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ABSTRACT
Hydrodynamic cosmological simulations at present usually employ either the Lagrangian
smoothed particle hydrodynamics (SPH) technique or Eulerian hydrodynamics on a Cartesian
mesh with (optional) adaptive mesh refinement (AMR). Both of these methods have disadvan-
tages that negatively impact their accuracy in certain situations, for example the suppression
of fluid instabilities in the case of SPH, and the lack of Galilean invariance and the presence
of overmixing in the case of AMR. We here propose a novel scheme which largely elimi-
nates these weaknesses. It is based on a moving unstructured mesh defined by the Voronoi
tessellation of a set of discrete points. The mesh is used to solve the hyperbolic conservation
laws of ideal hydrodynamics with a finite-volume approach, based on a second-order unsplit
Godunov scheme with an exact Riemann solver. The mesh-generating points can in principle
be moved arbitrarily. If they are chosen to be stationary, the scheme is equivalent to an ordinary
Eulerian method with second-order accuracy. If they instead move with the velocity of the local
flow, one obtains a Lagrangian formulation of continuum hydrodynamics that does not suffer
from the mesh distortion limitations inherent in other mesh-based Lagrangian schemes. In this
mode, our new method is fully Galilean invariant, unlike ordinary Eulerian codes, a property
that is of significant importance for cosmological simulations where highly supersonic bulk
flows are common. In addition, the new scheme can adjust its spatial resolution automatically
and continuously, and hence inherits the principal advantage of SPH for simulations of cos-
mological structure growth. The high accuracy of Eulerian methods in the treatment of shocks
is also retained, while the treatment of contact discontinuities improves. We discuss how this
approach is implemented in our new code AREPO, both in 2D and in 3D, and is parallelized
for distributed memory computers. We also discuss techniques for adaptive refinement or
de-refinement of the unstructured mesh. We introduce an individual time-step approach for
finite-volume hydrodynamics, and present a high-accuracy treatment of self-gravity for the
gas that allows the new method to be seamlessly combined with a high-resolution treatment
of collisionless dark matter. We use a suite of test problems to examine the performance of the
new code and argue that the hydrodynamic moving-mesh scheme proposed here provides an
attractive and competitive alternative to current SPH and Eulerian techniques.
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1 I N T RO D U C T I O N

Numerical simulations have become an indispensable tool to study
astrophysical problems of structure formation. They are the method
of choice to predict the fully non-linear outcome of the well-
specified initial conditions of the standard � cold dark matter
cosmology. In fact, they have played an instrumental role to es-

�E-mail: volker@mpa-garching.mpg.de

tablish the viability of the standard cosmogony, and continue to be
of crucial importance for theoretical research on galaxy formation.

When only dark matter is considered, the current generation of
cosmological codes have reached a high degree of accuracy, allow-
ing an impressive dynamic range in high-resolution studies of dark
matter clustering. There is now a consensus emerging in the field
about important key results, such as the central dark matter density
profile of collapsed haloes (Navarro et al. 2008; Stadel et al. 2009).
This is important progress, which is in part due to the fact that there
is little doubt about what is required to achieve high accuracy in
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collisionless simulations; this is simply an accurate gravitational
force calculation (which can be easily and objectively tested), accu-
rate time integration (also easy to check) and use of a large number
of particles (to make the collisionless dynamics more faithful, and
resolve smaller scales).

However, the situation is different for hydrodynamic cosmo-
logical simulations. Here, a variety of fundamentally quite differ-
ent numerical methods are in use, the most prominent ones are
Lagrangian smoothed particle hydrodynamics (SPH; Lucy 1977;
Gingold & Monaghan 1977; Monaghan 1992) and Eulerian mesh-
based hydrodynamics (e.g. Stone & Norman 1992) with or without
adaptive mesh refinement (AMR; Berger & Colella 1989), but also
more exotic schemes have been proposed, such as treating hydro-
dynamics through an approximation of the collisional Boltzmann
equation (Xu 1997; Slyz & Prendergast 1999). An issue of great
concern is that these methods sometimes yield conflicting results
even for basic calculations that only consider non-radiative hydro-
dynamics (e.g. Agertz et al. 2007; Tasker et al. 2008; Mitchell et al.
2009). Perhaps the most famous example is the Santa Barbara clus-
ter comparison project (Frenk et al. 1999), and the systematic offsets
in the core entropy that are apparently produced between SPH and
AMR codes. The right answer to this problem is presently still
unclear (but see Mitchell et al. 2009, for some hints). This uncer-
tainty compromises the trust one would like to have in the predictive
power of ab initio hydrodynamical cosmological simulation, espe-
cially when applied to the full problem of galaxy formation, where
additional processes such as radiative cooling, star formation and
feedback must be included. The latter bring about significant addi-
tional complexity, and further extend the dynamic range that needs
to be addressed.

It has become clear over recent years that both SPH and AMR
suffer from fundamental problems that make them inaccurate in cer-
tain regimes. SPH codes have comparatively poor shock resolution,
and offer only low-order accuracy for the treatment of contact dis-
continuities. Worse, they appear to suppress fluid instabilities under
certain conditions (Agertz et al. 2007), as a result of a spurious sur-
face tension and inaccurate gradient estimates across density jumps.
While it is possible to alleviate these effects by introducing artificial
heat conduction or mixing terms (Price 2008; Wadsley, Veeravalli
& Couchman 2008), or a modified treatment of the artificial vis-
cosity (Dolag et al. 2005), it is still unclear whether any of these
suggestions provides a universal solution that generally improves
the results without introducing significant problems in other situa-
tions. In any case, the absence of any entropy production through
mixing in SPH, as particularly apparent in the entropy-formulation
of SPH (Springel & Hernquist 2002), is an important conceptual
difference to Eulerian codes, where entropy is implicitly produced
when fluxes with different thermodynamic state are mixed together
in a single cell.

Eulerian methods are the traditional method to solve the system of
hyperbolic partial differential equations that constitute ideal hydro-
dynamics. There are decades of experience with these methods in
computational fluid dynamics, and accurate Godunov schemes exist
which offer high-order spatial accuracy, have negligible post-shock
oscillations and low numerical diffusivity. However, fundamental
problems remain with these methods as well. Perhaps the most se-
rious one is their lack of Galilean invariance, making the results
sensitive to the presence of bulk velocities (e.g. Tasker et al. 2008;
Wadsley et al. 2008). This is a source of substantial concern in simu-
lations of galaxy formation, where galaxies move with large speeds
relative to each other, speeds that are often orders of magnitude
larger than the sound speed of the dense interstellar medium that

one wants to follow hydrodynamically. Similarly, it is also chal-
lenging with AMR to follow a highly refined region that moves
with large velocity relative to the reference frame adopted for the
calculation as a whole, because refinement criteria that correctly
‘anticipate’ the motion of a system across a grid are difficult to
construct.

Another concern lies in the mixing inherent in multi-dimensional
Eulerian hydrodynamics. This provides for an implicit source of
entropy, with sometimes unclear consequences, a situation that
prompted Wadsley et al. (2008) to propose an explicit modelling
of the mixing through additional terms in the fluid equations. Even
though it is clear that some mixing helps and provides a dissipation
scale for the finite resolution, there may well be overmixing if the
resolution is limited or the bulk velocities are large. Also, it is rather
unclear whether the turbulent cascades that actually happen in nature
are correctly captured if the AMR hierarchy is truncated at a cer-
tain maximum refinement level (Iapichino et al. 2008; Iapichino &
Niemeyer 2008). It has been suggested that this can lead to unphys-
ical solutions for fluid instabilities like the Rayleigh–Taylor (RT)
instability, and that recovery of the correct behaviour requires sub-
resolution models for turbulence (Scannapieco & Brüggen 2008).
In any case, the different treatment of mixing is arguably the most
fundamental difference between SPH and AMR (see also Trac, Sills
& Pen 2007; Mitchell et al. 2009).

It has also become clear that current cosmological AMR codes
presently in use have problems to accurately treat structure for-
mation driven by gravitational instability (O’Shea et al. 2005;
Heitmann et al. 2008). This happens because it is quite difficult
to refine ‘early enough’ on all the many small density fluctuations
that grow at high redshift, and if a refinement is placed, the res-
olution increases discontinuously by a factor of 2 per dimension.
In typical calculations, this introduces a subtle suppression of the
growth of small haloes, such that the halo mass functions show a
deficit of small haloes at late times. The AMR approach is there-
fore not ideal for a high-accuracy treatment of the N-body problem
posed by cosmic structure; only when very fine base meshes and
conservative refinement criteria are adopted, do AMR results ap-
proximatively recover those obtained comparatively easily by SPH
codes, which treat self-gravity in a Lagrangian fashion, and do not
have discontinuous jumps in resolution.

As has long been recognized, Eulerian methods have also prob-
lems to properly resolve flows where the kinetic energy is much
larger than the thermal energy, and both the pre- and post-shock gas
move supersonically with respect to the grid. This situation is ubiq-
uitous in cosmological applications, and prompted the development
of schemes that try to circumvent the problem when necessary, such
as the ‘dual energy formalism’ (Bryan et al. 1995) or schemes that
evolve a conservation law for the entropy outside of shocks (Ryu
et al. 1993). Usage of such schemes usually means that exact energy
conservation is sacrificed in favour of a more accurate treatment of
the gas entropy. The need for such fixes is in part a consequence
of the choice of a fixed reference frame for describing the flow,
and hence is related to the Galilean non-invariance of the Eulerian
treatment. Indeed, there have been attempts to solve the bulk-flow
problem by formulating the equations such that a more natural
reference frame can be adopted. In particular, Trac & Pen (2004)
developed a special method where a frame change is introduced
when the gas-dynamical equations are coupled to self-gravity. The
frame velocity is estimated based on a smoothed large-scale veloc-
ity field. This relatively simple approach can reduce the artefacts
stemming from large bulk flows, but it does not really render the
results invariant of the original reference frame and therefore does
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not provide a complete solution for the non-Galilean invariance of
the underlying Eulerian approach.

A more radical approach is to let the mesh itself move. This is an
obvious and old idea, but one fraught with many practical difficulties
that have so far prevented any widespread use in astrophysics and
cosmology. There have been a number of attempts that seemed
promising however. In particular, Whitehurst (1995) presented
his first-order-accurate code FLAME for hydrodynamics based on
Delaunay and Voronoi tessellations and his ‘signal method’ which
was able to perform quite well on a number of test problems. Un-
fortunately no practical applications followed.

Gnedin (1995) and Pen (1998) have presented moving-mesh hy-
drodynamic algorithms that have successfully been applied to a
range of cosmological problems. Their methods rely on the contin-
uous deformation of a Cartesian grid. However, the need to limit
the maximum grid distortions severely limits the flexibility of the
codes for situations in which the mesh becomes heavily distorted,
and special measures were required to let the codes evolve cos-
mological density fields into a highly clustered state. For example,
Gnedin (1995) addressed this by letting an Eulerian solver take
over in regions where the Lagrangian approach fails due to se-
vere mesh distortions. In general, mesh tangling (manifested in
‘bow-tie’ cells and hourglass-like mesh motions) is the traditional
problem of multi-dimensional Lagrangian hydrodynamics. In arbi-
trary Lagrange–Eulerian (ALE) approaches, remapping techniques
to more regular meshes are used to counteract the deteriorating in-
fluence of mesh distortions, allowing the calculation to continue
past the point where it would otherwise be stopped by mesh twist-
ing. The remapping is a diffusive operation, however, and the task
to automatically construct ‘good’ new regularized meshes is very
challenging in general. This appears to have impaired wide-spread
adoption of ALE techniques in astronomy thus far, apart from no-
table exceptions in stellar astrophysics (Murphy & Burrows 2008).

Another interesting study directly related to our approach was that
of Xu (1997), who presented an N-body and hydro-solver on an un-
structured, fixed mesh. This work used a Delaunay tessellation, and
the hydrodynamic scheme was formulated based on a gas-kinetic
approach, with the goal to apply it to cosmological simulations of
structure formation. However, the method appears to have not been
investigated much further afterwards (except for an unpublished
master thesis by M. Ruetalo, University of Toronto, privately com-
municated to us by J. R. Bond). We note that unstructured triangular
meshes are regularly used in engineering applications, however of-
ten in the context of stationary flows, for example around airplane
foils (see Mavriplis 1997, for a review).

We here propose a new formulation of continuum hydrodynamics
based on an unstructured mesh. The mesh is defined as the Voronoi
tessellation of a set of discrete mesh-generating points, which are
in principle allowed to move freely. We show how a finite-volume
hydrodynamic scheme with the Voronoi cells as principle control
volumes can be consistently defined. Most importantly, due to the
mathematical properties of the Voronoi tessellation, the mesh con-
tinuously deforms and changes its topology as a result of the point
motion, without ever leading to the dreaded mesh-tangling effects
that are the curse of traditional ALE methods. Our method therefore
retains the principal advantage of the mesh-free SPH approach: it
offers free and unrestricted, continuous adjustment of its resolution
to local clustering. In addition, we show that our new method is
Galilean invariant when the mesh is moved along with the flow.
There are no preferred directions in it, unlike in Cartesian grids.
Thanks to its Lagrangian nature, mesh refinement is normally not
needed when one wants to maintain roughly constant mass resolu-

tion, but if desired, the Voronoi mesh may also be adaptively refined
or derefined.

With these properties, the moving-mesh approach represents a
compromise between SPH and AMR. It inherits the automatic adap-
tivity, geometric flexibility and Galilean invariance of SPH, while
it shares the high-accuracy treatment of shocks, shear waves and
fluid instabilities, as well as the low noise and the absence of ar-
tificial viscosity, with AMR. A further advantage of the method
lies in its ability to easily handle boundary conditions at curved
surfaces that can be stationary, move with the flow or are governed
by a prescribed velocity field. We also show how the method can
be made adaptive in time by means of individual time-steps, and
how it can be coupled to a high-resolution gravitational solver (a
TREEPM scheme) that gets around the problems experienced by the
current generation of AMR codes in cosmological structure forma-
tion calculations. We think this makes the new code AREPO1 that we
built with this approach a very interesting and competitive method
for future applications in cosmology, as well as in other fields.

We demonstrate the performance of AREPO in a number of test
problems, which include purely hydrodynamical tests in one, two
and three dimensions (1D, 2D and 3D, respectively), as well as
simulations where self-gravity is included. We also present com-
parisons with the state-of-the-art Eulerian code ATHENA (Stone et al.
2008), both to validate our hydrodynamic algorithms and to discuss
issues of Galilean (non-)invariance. Because our scheme relies on
Voronoi meshes, it is very important to develop algorithms that are
able to construct the mesh rapidly and robustly on distributed mem-
ory platforms. We will therefore discuss in some detail the solutions
we have developed for this problem.

This paper is structured as follows. In Section 2, we discuss our
mesh generation algorithms, both in 2D and in 3D. In Section 3,
we then formulate continuum hydrodynamics on the Voronoi mesh,
based on a finite-volume ansatz and a second-order-accurate exten-
sion of Godunov’s method. In Section 4, we discuss how the mesh
motion can be steered to maintain constant mass or volume per
cell, or to improve mesh regularity. Our treatment of self-gravity is
described in Section 5, and the refinement or de-refinement of the
unstructured mesh in Section 6. In Section 7, we outline our methods
for time-integration, in particular the use of individual time-steps,
and we describe the basic architecture of our new simulation code.
We then turn to an extensive discussion of test problems, including
pure hydrodynamical tests in Section 8, and tests that include the
gravitational effects from the gas itself and from a collisionless dark
matter component in Section 9. Finally, we summarize and discuss
our findings in Section 10.

2 G ENERATI NG D ELAUNAY
A N D VO RO N O I ME S H E S

For a given set of points, a Voronoi tessellation of space consists
of non-overlapping cells around each of the sites such that each
cell contains the region of space closer to it than any of the other
sites. This definition holds both in 2D and in 3D, and can be readily
extended to higher dimensions if desired. A direct consequence of
this definition is that the cells are polygons in 2D and polyhedra in
3D, with faces that are equidistant to the mesh-generating points of
each pair of neighbouring cells.

1 Named after the enigmatic word AREPO in the Latin palindromic sentence
sator arepo tenet opera rotas, the ‘Sator Square.’

C© 2009 The Author. Journal compilation C© 2009 RAS, MNRAS 401, 791–851



794 V. Springel

Closely related to the Voronoi tessellation is the Delaunay tessel-
lation, which is in fact the topological dual of the Voronoi diagram.
In 2D, the Delaunay tessellation for a given set of points is a tri-
angulation of the plane, where the points serve as vertices of the
triangles. The defining property of the Delaunay triangulation is
that each circumcircle around one of the triangles of the tessellation
is not allowed to contain any of the other mesh-generating points
in its interior. This empty circumcircle property distinguishes the
Delaunay triangulation from the many other triangulations of the
plane that are possible for the point set. Furthermore, this condition
uniquely determines the triangulation for points in general position.
Similarly, in 3D, the Delaunay tessellation is formed by tetrahe-
dra that are not allowed to contain any of the points inside their
circumspheres.

As an example, we show in Fig. 1 the Delaunay and Voronoi
tessellations for a small set of points in 2D, enclosed in a box
with imposed periodic boundary conditions. The mid-points of the
circumcircles around each Delaunay triangle form the vertices of
the Voronoi cells, and for each line in the Delaunay diagram, there
is an orthogonal face in the Voronoi tessellation. This topological
duality also holds in 3D, where each edge of a tetrahedron lies
orthogonal to a face of a Voronoi polyhedron.

Delaunay and Voronoi tessellations are basic constructions in
computational geometry, and numerous mathematical properties
are known for them (Okabe et al. 2000). For example, the Delaunay
triangulation maximizes the minimum angle among all possible
triangulations for a given point set. For points in general location, the
Delaunay and Voronoi tessellations are unique. If there exist circles
with more than three points on them (or spheres with more than
four points in 3D), the Delaunay triangulation contains degenerate
cases where the triangulation may flip by an infinitesimal motion
of one of the points. Note, however, that the Voronoi tessellation is
still unique in this case. In fact, an edge between two degenerate
points of the Delaunay triangulation has a dual Voronoi area of zero
size. Nevertheless, degeneracies can be a significant problem for
the robustness of mesh-construction algorithms, an issue we will
discuss in more detail later on.

There is a sizable body of literature in computational geome-
try on algorithms for constructing the Delaunay and Voronoi tes-
sellations. It is in general much easier to construct the Delaunay
tessellation and obtain the Voronoi tessellation from it, instead of
trying to directly construct the Voronoi tessellation. The Voronoi
construction hence effectively reduces to the problem of construct-
ing the Delaunay triangulation, an approach we will also follow
here.

The different construction algorithms for the Delaunay triangu-
lation include the following:

(i) incremental insertion,
(ii) projection of the convex hull of a higher dimensional embed-

ding,
(iii) recursive subdivision (divide and conquer),
(iv) direct incremental construction,
(v) improving an arbitrary triangulation by flipping.

Incremental insertion due to Bowyer (1981) and Watson (1981) is
conceptionally the simplest approach. Here, one starts with a valid
tessellation, inserts an additional point and then repairs the mesh
locally by ‘flipping’ triangles/tetrahedra to restore Delaunayhood
(see below). It can be shown that the worst case behaviour for this
method (for unfavourable input particle sets) scales as N 2, but in
practice, the observed scaling is much better. In fact, for point sets
in general location which are added to the tessellation in random
order, a scaling of N log N is reached.

Another interesting method is obtained by adding an additional
coordinate to the point set, r2 = x2 + y2 + z2, which effectively pro-
duces a higher dimensional embedding of the form of a paraboloid.
The convex hull of this lifted point set yields the Delaunay trian-
gulation when projected down on to the original lower dimensional
space. This method hence reduces the Delaunay triangulation to
the problem of finding the convex hull in n-dimensional space, for
which the quickhull algorithm can be used.

In 2D, the fastest algorithm is based on a divide and conquer
strategy, as proposed by Guibas & Stolfi (1985) and refined by
Dwyer (1987). Here, the point set is recursively subdivided, until a
single triangle can be constructed. These sets are then merged along
the dividing lines. Unfortunately, this elegant approach is difficult to
implement in 3D, primarily because of the difficulty of constructing
a 2D merging phase along the dividing planes. Cignoni, Montani &
Scopigno (1998) overcame this problem in the Dewall algorithm,
essentially by reversing the order of the split and merge steps. These
authors first construct a ‘wall’ of Delaunay triangles directly, which
splits the tessellation into two halves; those can then be processed
recursively in turn.

Direct incremental construction techniques start out from one
Delaunay edge, and then find the correct point that completes
it to form a Delaunay triangle. This has been used by van de
Weygaert (1994), for example, who applied Voronoi tessellations
for a statistical analysis of cosmic structures (a comprehensive dis-
cussion and overview about this topic is given by van de Weygaert
2007).

Figure 1. Example of a Voronoi and Delaunay tessellation in 2D, with periodic boundary conditions. The panel on the left-hand side shows the Voronoi
tessellation for N = 64 points (shown as red circles); the panel in the middle gives the corresponding Delaunay tessellation, while the panel on the right-hand
side shows both simultaneously (the solid lines show the Voronoi and the dashed lines the Delaunay tessellation).
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Figure 2. The point insertion algorithm in 2D. We start with a valid Delaunay triangulation in which we want to insert an additional point. We first locate the
triangle containing the point (step 1), then split it into three triangles (step 2). The edges (drawn in red) in the new triangles opposite of the inserted point may
violate the in-circle criterion and need to be tested individually. If an edge is Delaunay (step 3), it is part of the final tessellation, but if it violates the in-circle
criterion (step 4), the edge needs to be flipped in the quadrilateral formed by the adjacent triangles (step 5). The flip generates additional edges that need to be
tested (steps 6 and 7). Any violating edge found (e.g. step 9) needs to be corrected by flips. Once all remaining new edges are validated (steps 10 and 11), we
arrive again at a valid Delaunay tessellation (step 12).

Finally, the flipping method starts from an arbitrary triangulation,
and then tries to give it the Delaunay property by local changes in
the triangulation (‘flips’). In 2D, it can be shown that this can always
succeed through simple flips of edges between two adjacent trian-
gles. However, in 3D, one may get stuck with tetrahedralizations that
are not flipable into the correct Delaunay triangulation. While this
may appear as a show stopper for incremental insertion algorithms
in 3D, Edelsbrunner & Shah (1996) have shown that this is not the
case. Provided one starts with a valid Delaunay triangulation, local
flips can always restore Delaunayhood after a further point has been
inserted into the mesh, so that the incremental insertion strategy is
actually a robust algorithm also for the 3D case.

We use the incremental insertion strategy in our new hydrody-
namical code. It is among the fastest known algorithms, and most
importantly for us, it allows implementing our particular paralleliza-
tion strategy for distributed memory machines, which requires that
additional points from other processors can be easily added to an
existing local tessellation. This task cannot be readily accomplished
with the other tessellation approaches, where normally the full point

set needs to be known already at the start of the tessellation proce-
dure.

We illustrate the sequential insertion algorithm in Fig. 2. Starting
from a valid Delaunay tessellation, the new point first needs to be
located in one of the triangles (or tetrahedra in 3D), a problem
we shall discuss further below. After this first step, the identified
triangle is then subdivided into three triangles by inserting the point,
yielding a new triangulation. However, one or several of the new
triangles may now violate the empty circumcircle criterion. We
note that the latter can also be formulated for individual edges;
we say an edge is a Delaunay edge if there exists a circle through
both of its endpoints which does not contain any other point in
its interior. It can be shown that if an edge is Delaunay, it is part
of the correct Delaunay triangulation. It is easy to show that the
three edges around the newly inserted point are Delaunay, but the
opposite edges may have lost this property as a result of the insertion
(marked in red in ‘Step 2’ of Fig. 2). These edges must be tested
in turn using the in-circle criterion. If a violating edge is found
(Step 4), it is flipped in the quadrilateral formed by the two adjacent
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triangles. This produces two more edges that may now have lost
the Delaunay property, and which lie again opposite of the inserted
point. These edges are added to the list of edges that need to be
tested with the in-circle criterion. The algorithm continues until this
list is exhausted, at which point the new site has been successfully
inserted, and a new valid Delaunay triangulation has been obtained.

To make sure that every point that needs to be inserted always lies
in a triangle to begin with, we start the tessellation procedure with
a fiducial large triangle enclosing the whole system. Especially in
3D, this simplifies the algorithms enormously, as the difficult case
of an insertion of a point outside of the convex hull of the current
tessellation does not have to be dealt with.

In practice, we will always use periodic or reflecting boundaries
that are realized with a layer of ghost cells (see below). The enclos-
ing triangle is chosen large enough that both the primary simulation
domain and the ghost region are enclosed in its interior, such that
the enclosing triangle’s shape or orientation does not influence the
used part of the final tessellation in any way.

The geometric in-circle test can be formulated compactly in terms
of an evaluation of a determinant. For example, in 2D, the in-circle
test is given by

TInCircle(a, b, c, d) =

∣∣∣∣∣∣∣∣∣

1 ax ay a2
x + a2

y

1 bx by b2
x + b2

y

1 cx cy c2
x + c2

y

1 dx dy d2
x + d2

y

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
bx − ax by − ay (bx − ax)2 + (by − ay)2

cx − ax cy − ay (cx − ax)2 + (cy − ay)2

dx − ax dy − ay (dx − ax)2 + (dy − ay)2

∣∣∣∣∣∣∣ . (1)

Provided the triangle (a, b, c) is positively oriented, this gives
T InCircle(a, b, c, d) < 0 if the point d lies inside the circumsphere
of the triangle, and T InCircle(a, b, c, d) > 0 if the point is outside.
T InCircle(a, b, c, d) = 0 corresponds to the interesting case that d lies
exactly on the circumsphere of the triangle. It turns out that correct
detection of this degenerate case is problematic in the light of finite
floating point precision on a computer, but crucial for the stability
of the mesh-generating algorithm, an issue which we shall discuss
further below.

The orientation of a triangle can also be established with a deter-
minant, through

TOrient2D(a, b, c) =
∣∣∣∣∣∣

1 ax ay

1 bx by

1 cx cy

∣∣∣∣∣∣ =
∣∣∣∣ bx − ax by − ay

cx − ax cy − ay

∣∣∣∣ . (2)

A positive value indicates positive orientation. Internally, we always
store the triangles/tetrahedra of our Delaunay triangulation such that
they are positively oriented, which minimizes the required number
of orientation tests.

In 3D, the incremental construction algorithm works very sim-
ilarly, apart from a few additional complications. Briefly, when a
point is inserted, we now need to carry out a ‘1-to-4 flip’, i.e. we re-
place the insertion tetrahedron by four new tetrahedra, as illustrated
in Fig. 3.

Just as in 2D, this can render tetrahedra that share a face with the
four new tetrahedra invalid. These tetrahedra have to be subjected
to the in-sphere test with the inserted point. We store the faces that
need to be tested on a stack, where we specify the face that needs
to be tested for Delaunayhood with a reference to a tetrahedron and
the face’s opposite point (which is always the inserted point). If a
face that is pulled from the stack fails the in-sphere test, we need
to check how we can replace the two adjacent tetrahedra. Unlike

Figure 3. A ‘1-to-4’ flip. A newly inserted point splits its insertion tetrahe-
dron into four daughter tetrahedra.

Figure 4. The standard replacement operation in 3D required for restoring
Delaunayhood. It consists of 2-to-3 (from left to right) or 3-to-2 (from right
to left) flips of tetrahedra. Note that the 2-to-3 flip is only possible if the
line connecting the two points opposite of the common face intersects the
interior of this face. Conversely, the 3-to-2 flip is only possible if an edge is
shared by exactly three tetrahedra.

in 2D, we cannot simply replace two tetrahedra with two other
tetrahedra. Instead, we may be able to replace the two tetrahedra
with three tetrahedra, in a ‘2-to-3 flip’, provided the line connecting
the two tips opposite of the common triangle of the two tetrahedra
intersects this triangle in its interior. This is illustrated in Fig. 4.
If on the other hand the intersection point lies outside one of the
edges of the common triangle, then there is a tetrahedron formed
by this edge and the two tips which needs to be included in the
replacement operation. We can then replace these three tetrahedra
with two, in a ‘3-to-2 flip’, which is just the reverse of the ‘2-to-3
flip’ shown in Fig. 4. We note that the intersection point may also
lie outside two of the edges of the common triangle; in this case the
violating face is not flipable and can be skipped. It can be shown
that the algorithm nevertheless finishes successfully, thanks to the
flips that can be carried out for other violating faces. Depending
on the type of the flip that has been performed, either two or three
new faces need to be put on to the test stack. The tests and flips are
then continued until the stack is empty, at which point the Delaunay
tessellation is valid again.

In 3D, the relevant determinant for the in-sphere test is given by

TInSphere(a, b, c, d, e) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 ax ay az a2
x + a2

y + a2
z

1 bx by bz b2
x + b2

y + b2
z

1 cx cy cz c2
x + c2

y + c2
z

1 dx dy dz d2
x + d2

y + d2
z

1 ex ey ez e2
x + e2

y + e2
z

∣∣∣∣∣∣∣∣∣∣∣∣
. (3)

This is negative if the point e lies inside the circumsphere around the
positively oriented tetrahedron (a, b, c, d), positive if the point lies
outside and zero if it is exactly on the circumsphere. The orientation
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of a tetrahedron can be established by testing the sign of

TOrient3D(a, b, c, d) =

∣∣∣∣∣∣∣∣∣

1 ax ay az

1 bx by bz

1 cx cy cz

1 dx dy dz

∣∣∣∣∣∣∣∣∣
, (4)

which is positive for positive orientation.2

Once the Delaunay triangulation is generated, we calculate the
areas and centres of the Voronoi faces, and the volumes of all
Voronoi cells, as well as their centres-of-mass. To this end, we
first calculate the mid-points of the circumspheres around each
tetrahedron; these points form the vertices of the Voronoi cells. We
then introduce a new data structure for each Voronoi face, storing
the face area and references to the two adjacent cells, information
that is later needed to determine the hydrodynamic fluxes across the
face. To calculate the area of a Voronoi face, we circle in clockwise
fashion around all tetrahedra that share the same Delaunay edge
between the two mesh-generating points that belong to the face.
Note that the line connecting these two points need not necessarily
intersect the face. Once we have determined the area of the face, we
can also easily obtain the volumes of the two equally sized pyramids
formed by the face and its two associated mesh-generating points.
The volume of each Voronoi cell is then obtained as a sum over the
pyramid volumes of all the cell’s surface polyhedra.

2.1 Data structures for the tessellation

From the above, it is clear that an important practical consideration
for working with an unstructured polyhedral mesh is the use of
efficient data structures to represent the tessellation. Ideally, the data
structure should allow rapid and convenient access to the topological
objects of the tessellation, such as individual triangles, the surfaces
of Voronoi polyhedra and neighbourhood relations, while at the
same time not requiring too much memory. In 2D, Guibas & Stolfi
(1985) introduced an elegant quad-edge data structure which can
encode both the Delaunay triangulation and its dual at the same
time. Besides storing references to the points of an edge, this edge-
based structure stores links to the first adjacent edges in a clockwise
or anticlockwise direction around the end points. While being very
elegant, it is difficult to extend this structure to 3D. The ‘face-edge’
structure of Dobkin & Laszlo (1989) is one such possibility, but
it produces substantial memory overhead. We therefore follow the
approach taken in most codes for 3D Delaunay triangulation and
adopt full tetrahedra as basic data structures for describing the mesh.
In 2D, we correspondingly use full triangles.

For each tetrahedron, we store references to its four points. These
are oriented such that the fourth point lies above the oriented trian-
gle formed by the first three points. We also store along with each
point of a tetrahedron a reference to the adjacent tetrahedron that
lies opposite of the point and shares a face with the present tetra-
hedron. In addition, we store the index location of the point in this
adjacent tetrahedron that lies opposite to the common face. This
simplifies various types of construction and navigation tasks in the
tessellation. Note that using this data structure we can also easily
specify individual faces of tetrahedra in terms of a reference to the
tetrahedron and to the point that lies opposite to the face in question.

A disadvantage of our data structure is its comparatively large
memory requirement. If pointers are used for references to the four
vertices and four adjacent tetrahedra of each tetrahedron, 36 bytes

2 Note that the value of the determinant is equal to six times the volume of
the tetrahedron spanned by the four points.

are required on 32-bit architectures per tetrahedron, or 68 bytes
on 64-bit machines (using integer indices instead of pointers can
however easily reduce this back to 36 bytes, which is completely
sufficient if there are less than ∼200 GB or so available per MPI
task, which is well above the parameters of current supercomput-
ers). For a random point set, there are on average ∼6.77 Delaunay
tetrahedra per point (van de Weygaert 1994), giving ∼244 bytes (or
∼460 bytes if pointers on 64-bit architectures are used) per point
for storing the mesh. Additional storage is required to hold a list
of faces for the flux calculation. This sums up to a relatively hefty
cost in terms of memory, a factor of 3 to 4 or so larger than what is
needed for the tree construction in a Tree-SPH code like GADGET-2,
but not something that prohibitively restricts the sizes of possible
simulations. However, we note that by exploiting the adjacency rela-
tions to label nearby tetrahedra, the memory cost could in principle
be reduced to just about 7.5 bytes per tetrahedron in 3D (Blandford
et al. 2005). We leave such memory optimizations for future work.

2.2 Point location

The point location in the above insertion algorithm can be a limiting
factor, as a simple search through all triangles/tetrahedra would
produce an N 2-scaling of the algorithm. But there are different
possible approaches for speeding up the point location. One idea
is to store the past insertion history of Delaunay triangles in a
directed acyclic graph (Edelsbrunner & Shah 1996), such that the
insertion triangle can be localized through a tree-walk. However,
the manipulation of the history graph requires complex bookkeeping
and large amounts of memory.

Another method is the ‘jump and walk’ procedure for point loca-
tion first proposed by Mücke, Saias & Zhu (1996). Here, one walks
through the tessellation from a random triangle in the direction of
the point that is to be inserted. We will adopt this strategy. However,
instead of starting at a random triangle or using a search grid for
rapid location of an initial triangle, we order the points that are to be
inserted along a space-filling Peano–Hilbert curve (Springel 2005),
a trick that has also been employed by the tessellation code tess3
(Liu & Snoeyink 2005). This guarantees that the next point that is
inserted is always spatially close to the previous one. If we hence
remember a pointer to the last processed triangle/tetrahedron, we
can start the search in the immediate neighbourhood of the insertion
triangle, and only a very small number of steps are required to ar-
rive at the correct triangle. An additional advantage of this scheme
lies in cache utilization benefits; thanks to the spatial proximity of
subsequent insertion points, much of the required memory has been
accessed recently and may hence still be resident in the processor’s
cache, which increases performance.

To test whether a point lies inside a given tetrahedron, we cal-
culate whether it lies above all four of the planes defined by its
oriented triangles. If the point does not lie in the current tetrahe-
dron, we determine which of its faces is intersected by a line from
the centre of mass of the tetrahedron to the insertion point, and then
change to the adjacent tetrahedron on the other side of the selected
face.

The above requires an efficient way to test whether a given point
lies inside a tetrahedron (or triangle in 2D). Since all our tetrahedra
are positively oriented, one way to do this is to use four orientation
tests: if the point in question lies above all four oriented triangles
of the tetrahedron, it must be inside. However, this is slow due
to the required evaluation of four determinants. A faster method
is to expand the coordinates of the given point in terms of the
three linearly independent vectors spanned by the four points of the
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tetrahedron. This involves a linear system of equations which can be
quickly solved with Gauss elimination. The values of the expansion
coefficients α, β and γ then directly indicate whether the point lies
inside the tetrahedron. This is the case if we simultaneously have
α > 0, β > 0, γ > 0 and α + β + γ < 1. Only when there is
a danger of obtaining the incorrect result with this method due to
numerical round-off, we use instead an exact evaluation of the four
orientation tests, which we discuss in more detail below.

2.3 Treatment of degenerate cases

A problematic point about incremental insertion is that in this
method it can become hard to deal with degenerate point sets.
In particular, the algorithm described above for constructing the
Delaunay triangulation only works robustly for points in general
position, where in 2D never more than three points lie on a circle,
and never more than two points lie on a line. If we start with a
regular point distribution, for example a Cartesian grid, this condi-
tion is evidently strongly violated. But even for random point sets,
it is possible that a degenerate situation approximately occurs, and
due to floating point round-off, we may not be able to correctly
decide the outcome of one of the geometric tests, i.e. to evaluate
the correct sign of a nearly degenerate determinant (e.g. Clarkson
1992). However, failure to do so invariably leads to a breakdown
of the mesh construction. In addition, experience shows that at-
tempts to address this issue with crude patches, for example in the
form of random point perturbations, provides only unreliable (and
inelegant) workarounds.

One possible approach for solving this issue lies in systemat-
ically applying symbolic perturbations to the particle coordinates
(Edelsbrunner & Mucke 1990), which effectively bring the particles
into general position, such that the Delaunay triangulation becomes
formally unique and the algorithm for constructing the tessellation
is guaranteed to succeed. There may then still be triangles/tetrahedra
of zero volume attached to the complex hull of the final tessella-
tion, but their removal represents no major problem. However, the
symbolic perturbation approach still requires robust evaluations of
the correct sign of determinants, which Mücke (1998) proposes to
obtain with long-integer arithmetic.

Another possible method for constructing robust geometric pred-
icates is to employ exact floating point arithmetic, implemented
through suitable software packages. This is, however, very much
slower than standard double-precision arithmetic. An attractive al-
ternative is to use adaptive precision arithmetic, as proposed and
implemented by Schewchuk (1997). Here, the idea is to monitor
the maximum round-off error that can occur in the evaluation of a
geometric test. If there is a risk that the correct result may be missed
with standard floating point arithmetic (which is carried out in hard-
ware by the CPU), progressively more accurate approximations to
exact floating point arithmetic are employed, until the correctness
of the calculated sign can be guaranteed. Since the exact but slow
floating point arithmetic is only used when it is really needed, this
adaptive precision approach is much faster than using exact floating
point arithmetic throughout.

We use a different method instead which does not need per-
turbed point coordinates, but rather relies on modifications of the
point insertion algorithm such that it can directly deal with de-
generacies, and we combine this with a scheme that always guar-
antees the correct evaluation of geometric predicates. Let us first
discuss the latter. We here follow the idea of Schewchuk (1997) and
estimate the maximum round-off error in evaluations of in-circle
and orientation tests. When there is a risk of getting the wrong sign

Figure 5. Point insertion in 2D in the normal case (top, via a 1-to-3 flip)
and the degenerate case (bottom), where the point lies exactly on an edge
of the current tessellation. In the latter case, the two triangles need to be
replaced with four triangles (a 2-to-4 flip).

Figure 6. Degeneracy during point insertion in 3D. Here, the point that is
to be inserted falls on to a face of the current tessellation. The two tetrahedra
involved need to be replaced by six tetrahedra, constituting a 2-to-6 flip.

with standard floating point arithmetic, we however evaluate the de-
terminant with exact long integer arithmetic, which is both simple
and robust. To this end we establish a one-to-one mapping between
the floating point numbers of our point coordinates and the space
of 53-bit integers. This is accomplished by mapping our computa-
tional domain to the floating point interval [1, 2]. All these numbers
have the same exponent in the standard Institute of Electrical and
Electronics Engineers (IEEE) representation of double-precision
numbers, and the 53-bit mantissa effectively provides a linear and
uniform grid of the possible floating point values in this interval.
We read out this mantissa and use it to evaluate exact geometric
predicates using long integer arithmetic with the open-source GMP

library, when needed.
Let us now discuss the modifications required in the point in-

sertion algorithm such that it can deal with degenerate input point
sets if correctness of the geometric tests can be guaranteed. In 2D,
only one such modification is required. We need to detect the case
that the point that is to be inserted lies on an edge of the current
tessellation, as illustrated in Fig. 5. In this case, we cannot replace
one triangle with three new ones, but instead need to split both of
the triangles that share the edge into two triangles.

In 3D, things are considerably more complicated. Here, the point
that is to be inserted may lie on a face of the current tessellation.
In this case, we need to replace the two adjacent tetrahedra with
altogether six new tetrahedra. This replacement represents a ‘2-to-6
flip’, as shown in Fig. 6. It may also happen that the point falls
on to an edge of the current tessellation. There may be three, four
or more tetrahedra present that share this edge. All of them have
to be replaced by two tetrahedra each, such that we effectively
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Figure 7. Degeneracy during point insertion in 3D. Here, the point that is
to be inserted falls on to an edge of the current tessellation. In this case,
we need to make an n-to-2n flip, where n is the number of tetrahedra that
have the edge in common. In most case this is either three (top left) or four
(bottom left), like in the examples shown in this figure, but n can in principle
also be larger.

carry out an ‘n-to-2n flip’, as illustrated in Fig. 7. Finally, when
degeneracies are present, a further case needs to be considered in
the flipping operations that heal the mesh after a point has been
inserted. Recall that the decision whether a 2-to-3 or 3-to-2 flip is
carried out when an invalid Delaunay face has been found depends
on the location of the intersection between this triangular face and
the line that connects the tips of the adjacent tetrahedra. Previously,
we discussed the cases where the intersection lies inside the triangle,
or outside. For degenerate cases, it may lie exactly on one of the
edges, a case that requires special treatment. Here, a ‘4-to-4’ flip is
possible and needs to be carried out when needed, as illustrated in
Fig. 8.

We note that the topology of the resulting Delaunay tessellation
is not unique if degeneracies are present, and the exact outcome
(i.e. which of the different Delaunay tessellations that are possible
is realized) depends on the order in which the points are inserted.
However, the corresponding Voronoi tessellation is still unique, and
hence the outcome of our hydrodynamical calculations is unaffected
by the Delaunay non-uniqueness in the presence of degeneracies,
and also does not depend on the order in which the mesh-generating
points are inserted.

A related point concerns the change of the topology of the
mesh when the points are moved. While the Delaunay triangu-
lation changes discontinuously whenever a point is moved into
or out of the circumsphere of another triangle, the correspond-
ing Voronoi tessellation changes continuously. In fact, whenever
the Delaunay neighbourhood relations between two points change,
the corresponding Voronoi face shrinks to a vanishing area. As we
will see later on, it is this property that allows the mesh to deform
without running into the mesh-tangling problems that plague other
approaches for moving meshes. Also, note that we can calculate the
full motion of all Voronoi faces based just on the velocity vectors
of the mesh-generating points. We will make use of this property in
our hydrodynamical schemes, as discussed in Section 3.

Figure 8. Flipping degeneracy in 3D. If the line that connects the two
points opposite a common face of two tetrahedra intersects this face on one
of its edges (like in the sketch on top), the standard 2-to-3 flip cannot be
carried out. Instead, the two tetrahedra may be eligible for a 4-to-4 flip.
This requires, however, that the intersected edge is the common edge to
exactly four tetrahedra. In this case, four tetrahedra can be replaced by four
tetrahedra, as shown in the bottom of the sketch.

2.4 Parallelization of the tessellation code

Modern supercomputer platforms feature hundreds to thousands of
compute cores, with a continuing trend to ever larger numbers of
cores. Efficient use of this combined processing power for simu-
lations of dynamically tightly coupled systems can be quite chal-
lenging, especially on distributed memory computers, which offer
the largest and most cost effective performance. Parallelization of
simulation codes for such architectures requires decomposition of a
problem into individual parts, provided we want to avoid complete
data duplication, which is prohibitive if good scalability is desired.

A number of parallel construction algorithms for the Delaunay tri-
angulation have been proposed, some of them for distributed mem-
ory environments (e.g. Cignoni, Montani & Scopigno 1998; Lee,
Park & Park 2001), others for shared memory machines (Blandford,
Blelloch & Kadow 2006). However, the approach of Cignoni et al.
(1998) replicates the entire point set on each independent processor,
an approach we cannot afford to follow in the interest of scalability.

Rather, we decompose the point set into disjoint spatial domains,
each mapped to a different compute core with its own physical
memory. The idea here is that most of the Voronoi cells of a domain
will lie in its interior and hence only depend on the data local to
the processor, while some cells close to the surface may be affected
by data on other processors, which needs to be dealt with by data
communication. Our strategy to deal with this issue is to construct a
locally complete tessellation by importing ghost points from neigh-
bouring processors such that all the Voronoi cells of the points that
are local to the domain are correctly formed. This means that the
joint set of all primary Voronoi cells forms the complete tessellation,
but there is no need to actually ever form it explicitly, i.e. we do not
need to somehow mesh the tessellations across two neighbouring
domains together, which would be cumbersome. Instead, the ghost
points provide the ‘glue’ that gives the proper connectivity across
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domains. We will also use ghost points to implement periodic or
reflecting boundary conditions, which are simply realized through
fiducial points that are imported from the ‘other side’ of the simu-
lation box. In practice, the use of ghost points increases the number
of cells that need to be considered by a given processor typically by
3–10 per cent, depending on how many processors are used. Only
if a large number of processors are used for a small problem, this
induces significant overhead and a limit to scalability.

How can we find the ghost points that need to be imported, and
how can we be sure that our local point set is sufficiently complete?
We have implemented two different algorithms for this task. In the
simpler of the two, we start by first constructing the tessellation
for all local points r i within a domain. With each of the points
we associate a search radius hi, inherited either from the previous
time-step or initialized with a guess. We then search for all points
on other processors that lie within the spheres/circles of radius hi

around r i. The union of the ghost points found in this way is then
added to the local tessellation. For each local point, we can then
calculate a radius si equal to twice the maximum radius of all the
circumspheres of the Delaunay tetrahedra that have the point r i as
one vertex. The relevant geometry is illustrated for 2D in the sketch
of Fig. 9. Here, the red circle has radius si around the target point
i, which has an associated Voronoi cell shown in light blue. This
local Voronoi cell around point r i could only change if there was a
further point somewhere inside the red circle that has not yet been
added to the local tessellation. If we have hi > si, then we know that
such a point does not exist, and we are guaranteed that the Voronoi
cell around point i is correct. Otherwise, we need to look whether
further points from other processors need to be added to the local
tessellation. In this case, we increase the radius hi by some factor
and search again for additional points on other processors that have
not yet been inserted into the local tessellation. These points are
then added to the local tessellation, and the si are redetermined.
The process is repeated until the condition hi > si holds for all
points local to the processor, at which point the local tessellation is
complete, i.e. all Voronoi cells of local points are guaranteed to be
unaffected by the presence of the domain boundary.

Note that the ‘thickness’ of the layer of ghost points imported on
each domain is not fixed in this scheme, rather it adjusts to variations
of density along the domain boundaries, as well as to the geometry
of the domains themselves. Once the tessellation is complete, we
set hi to si for use in the next mesh construction; this usually ensures
close to optimum efficiency in finding the minimum required set of
ghost particles.

However, sometimes the above approach may create a ghost layer
that is thicker than really required in situations where the mesh res-
olution shows a strong spatial gradient, and a domain boundary lies
orthogonal to this gradient. Since the search region for ghosts is
taken to be spherical, this may lead to the import of a comparatively
large number of ghost points from the side where the mesh res-
olution becomes finer. If the mesh resolution changes sufficiently
rapidly in space, this can then incur a substantial overhead that ex-
ceeds the usual 3–10 per cent mentioned above. We have therefore
also implemented an alternative algorithm to determine the ghost
region, which is more efficient in this situation. In this approach,
we directly search for possible ghosts in all circumcircles of those
triangles in the local tessellation that have at least one local particle
as one of their vertices. If a ghost point is found, all triangles modi-
fied in the point insertion step of the ghost will be tested again until
no further ghosts are found. At the end, this method then guarantees
that all Delaunay triangles shared by a local particle are part of the
correct global mesh, and hence the Voronoi cell of this particle is

Figure 9. Geometry of the test for local completeness of a Voronoi cell.
Points on the left of the vertical grey line reside on the local domain. The
point i at the centre of the Voronoi cell (shown in light blue) has a search
radius hi equal to the dotted circle; all points on other processors inside
this circle have been imported as ghost points (red dots) and were added to
the local tessellation. We now have to decide whether the resulting Voronoi
cell around point i could still be modified by points not yet added to the
local tessellation. To this end we consider the circumcircles (shown in grey)
of all Delaunay triangles that share the central point. The smallest circle
encompassing all these circumcircles has a radius si equal to twice the
maximum circumcircle radius, and is shown in red. If the red circle lies
inside the dotted circle, i.e. for si ≤ hi, all the Delaunay triangles around
the target point i are valid and are part of the fiducial global Delaunay
tessellation that contains all points. Consequently, in this case the Voronoi
cell around the target point i is complete and unaffected by the presence
of the nearby domain boundary. For si > hi, we increase hi and add any
additional point found in the enlarged search region, until the condition
si ≤ hi is fulfilled.

complete. To prevent that initially very many ghost points are found
in the large triangles present in the first iteration at the surface of the
local domain, we always insert only the closest ghost particle found
in a circumcircle that has not yet been added to the local mesh.
Especially when individual time-steps are used and only parts of
the mesh are constructed for active particles (as discussed later in
the context of our individual time-stepping scheme), this approach
is usually more efficient, despite its larger number of spatial point
searches.

The above techniques rely on rapid algorithms to find all particles
within a given sphere of arbitrary radius. To this end we employ
a Barnes & Hut (1986) octtree and use the neighbour search al-
gorithms of the parallel SPH code GADGET-2 (Springel 2005). We
also adopted the specific domain decomposition strategy from the
GADGET-2 code, which is based on subdividing a space-filling Peano–
Hilbert curve, an approach that has recently become popular also in
other cosmological simulation codes (e.g. Shirokov & Bertschinger
2005). Similar to GADGET-2, we also use a ‘top-level tree’ that cov-
ers the full simulation volume. This allows us to quickly decide
whether or not a local search region is fully contained in the local
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domain, and if not, with which other processors it overlaps. This is
also useful for devising an efficient communication strategy.

The complexity of the tessellation algorithms discussed in this
section might suggest that the resulting computations are quite ex-
pensive and slow, but we want to remark that this is not really the
case. The geometric tests required to insert a point involve pri-
marily linear algebra operations that are calculated very efficiently
on modern processors (which often offer combined multiply add
operations in a single cycle), while the rearrangement of local trian-
gles or tetrahedra reduces to reorientations of pointers. As a result,
even without significant efforts for speed optimizations, we reach
tessellation speeds of the order of several tens of thousands of tetra-
hedra per second. This is comparable to or only slightly more than
the work needed for SPH neighbour search. More importantly, the
computational cost continues to scale just as N log N . There is
hence in principle no obstacle to use the tessellation techniques
for large-scale applications, even if the mesh is reconstructed each
time-step, as in our current approach.

2.5 Other applications of the tessellation code

While in the rest of this paper we will focus on applying the Voronoi
mesh to problems of continuum hydrodynamics, we briefly want to
mention that the tessellation methods discussed here are also useful
in other contexts.

In particular, Voronoi or Delaunay tessellations are useful for
general density reconstruction tasks. For example, van de Weygaert
(1994) used Voronoi tessellation to study cosmic large-scale struc-
ture and Bernardeau & van de Weygaert (1996) employed them to
analyze the statistics of velocity fields. Schaap & van de Weygaert
(2000) and Pelupessy, Schaap & van de Weygaert (2003) proposed
to use Delaunay tessellation as a general estimation tool for linear
reconstructions of the density field, based on the contiguous De-
launay cell that is formed by all Delaunay triangles around a given
point.

We have applied Voronoi density estimates to calculate the dark
matter annihilation signal expected in high-resolution dark matter
simulations of the formation of a Milky Way like galactic halo
(Springel et al. 2008). In comparison with SPH, this has the ad-
vantage to provide an unbiased sum of the volumes assigned to
each particle, and to produce less damping of the smallest resolved
structures by smoothing. In our largest simulation, we constructed
a Voronoi mesh for nearly 5 billion particles, composed of about
34 billion tetrahedra in the dual Delaunay tessellation, and with a
dynamic range in point density of more than 107. This may well be
one of the largest Voronoi meshes ever constructed. The mesh con-
struction took 516 seconds on 1024 CPUs of an SGI Altix 4700 (the
HLRB-II machine at the Leibniz-Computing Centre in Garching,
Germany).

Outside of astronomy, Voronoi tessellations are widely applied
for many different applications, including the point pattern analysis,
modelling of spatial processes, location optimization and computer
graphics, to name just a few. A comprehensive introduction to these
applications can be found in the monograph of Okabe et al. (2000).

3 FI N I T E - VO L U M E H Y D RO DY NA M I C S O N
A MOV I N G VO RO N O I M E S H

The Euler equations are conservation laws for mass, momentum and
energy that take the form of a system of hyperbolic partial differen-
tial equation. They can be written in compact form by introducing

a state vector

U =

⎛
⎜⎝

ρ

ρv

ρe

⎞
⎟⎠ =

⎛
⎜⎝

ρ

ρv

ρu + 1
2 ρv2

⎞
⎟⎠ (5)

for the fluid, where ρ is the mass density, v is the velocity field and
e = u +v2/2 is the total energy per unit mass. u gives the thermal
energy per unit mass, which for an ideal gas is fully determined by
the temperature. These fluid quantities are functions of the spatial
coordinates x and time t, i.e. U = U (x, t), but for simplicity we will
often refrain from explicitly stating this dependence in our notation.
Based on U , we can define a flux function

F(U) =

⎛
⎜⎝

ρv

ρvvT + P

(ρe + P )v

⎞
⎟⎠ , (6)

with an equation of state

P = (γ − 1)ρu (7)

that gives the pressure of the fluid. The Euler equations can then be
written in the compact form

∂U
∂t

+ ∇ · F = 0, (8)

which emphasizes their character as conservation laws for mass,
momentum and energy.

Over the past decades, a large variety of different numerical
approaches to solve this coupled set of partial differential equa-
tions have been developed (see Toro 1997; LeVeque 2002, for com-
prehensive expositions). Many modern schemes are descendants
of Godunov’s method, which revolutionized the field. By solv-
ing an exact or approximate Riemann problem at cell boundaries,
Godunov’s method allows the correct identification of the eigen-
structure of the local solution and of the upwind direction, which
is crucial for numerical stability. While Godunov’s original method
offers only first-order accuracy and is relatively diffusive, it can be
extended to higher-order accuracy relatively simply, and in many
different ways.

We will here employ a so-called finite-volume strategy, in which
the discretization is carried out in terms of a subdivision of the
system’s volume into a finite number of disjoint cells. The fluid’s
state is described by the cell averages of the conserved quantities
for these cells. In particular, integrating the fluid over the volume Vi

of cell i, we can define the total mass mi, momentum pi and energy
Ei contained in the cell as follows:

Qi =

⎛
⎜⎝

mi

pi

Ei

⎞
⎟⎠ =

∫
Vi

U dV . (9)

With the help of the Euler equations, we can calculate the rate of
change of Qi in time. Using Gauss’ theorem to convert the volume
integral over the flux divergence into a surface integral over the cell
results in

d Qi

dt
= −

∫
∂Vi

[F(U) − UwT ]dn. (10)

Here n is an outward normal vector of the cell surface, and w is the
velocity with which each point of the boundary of the cell moves. In
Eulerian codes, the mesh is taken to be static, so that w = 0, while in
a fully Lagrangian approach, the surface would be allowed to move
at every point with the local flow velocity, i.e. w = v. In this case,
the right-hand side of equation (10) formally simplifies, because
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then the first component of Qi, the mass, stays fixed for each cell.
Unfortunately, it is normally not possible to follow the distortions
of the shapes of fluid volumes exactly in multi-dimensional flows
for a reasonably long time, or in other words, one cannot guarantee
the condition w = v over the entire surface. In this case, one needs
to use the general formula of equation (10), as we will do in this
work.

The cells of our finite-volume discretization are polyhedra with
flat polygonal faces (or lines in 2D). Let Aij describe the oriented
area of the face between cells i and j (pointing from i to j). Then we
can define the averaged flux across the face i-j as

Fij = 1

Aij

∫
Aij

[F(U) − UwT ]dAij, (11)

and the Euler equations in finite-volume form become

d Qi

dt
= −

∑
j

Aij Fij. (12)

We obtain a manifestly conservative time discretization of this equa-
tion by writing it as

Q(n+1)
i = Q(n)

i − �t
∑

j

Aij F̂
(n+1/2)
ij , (13)

where the F̂ij are now an appropriately time-averaged approximation
to the true flux Fij across the cell face. The notation Q(n)

i is meant
to describe the state of the system at step n. Note that F̂ij = −F̂ji ,
i.e. the discretization is manifestly conservative.

Evidently, a crucial step lies in obtaining a numerical estimate
of the fluxes F̂ij, and a good fraction of the literature on computa-
tional fluid dynamics is concerned with this problem. This issue is
particularly important since the most straightforward (and perhaps
naive) approach for estimating the fluxes, namely simply approxi-
mating them as the average of the left and right cell-centred fluxes
catastrophically fails and invariably leads to severe numerical inte-
gration instabilities that render such a scheme completely useless
in practice.

One effective cure for the stability problem lies in ‘upwind’
schemes that do not weight the two sides equally, but rather with
a bias in the upwind direction of the flow. This works especially
well for simpler equations than the Euler system, for example the
advection equation. Another, physically particularly meaningful ap-
proach is given by the family of Godunov methods, which employ
analytic solutions of the Riemann problem occurring at each cell
interface, obtained either exactly or approximately.

We will employ Godunov’s method in the form of the MUSCL-
Hancock scheme (van Leer 1984; Toro 1997; van Leer 2006),
which is a well-known and relatively simple approach for ob-
taining second-order accuracy in space and time. This scheme is
also popular in astronomy and is used in several state-of-the art
Eulerian codes (e.g. Fromang, Hennebelle & Teyssier 2006;
Mignone et al. 2007; Cunningham et al. 2009). In its simplest form,
the MUSCL-Hancock scheme involves a slope-limited piece-wise
linear reconstruction step within each cell, a first-order prediction
step for the evolution over half a time-step, and finally a Riemann
solver to estimate the time-averaged inter-cell fluxes for the time-
step.

Fig. 10 gives a sketch of the problem of estimating the flux across
the face between two Voronoi cells. Since truly multi-dimensional
Riemann solvers are not known, we will calculate the flux for each
face separately, treating it as an effectively 1D problem. Since we
do not work with Cartesian meshes, we cannot use operator split-
ting (Strang 1968) to deal with the individual dimensions. Rather

Figure 10. Geometry of the flux calculation. We use an unsplit scheme
where the flux across each face is estimated based on a 1D Riemann problem.
To this end, the fluid state is expressed in a frame which moves with the
normal velocity w of the face, and is aligned with it. Note that the motion
of the face is fully specified by the velocities of the mesh-generating points
of the cells left and right of the face.

we use an unsplit method where all the fluxes are computed in one
step, and are then collectively applied to calculate the change of the
conserved quantities in a cell. For defining the Riemann problem
normal to a cell face, we rotate the fluid state into a suitable coordi-
nate system with the x′-axis normal to the cell face (see sketch). This
defines the left and right states across the face, which we pass to
an exact Riemann solver. The latter is implemented following Toro
(1997) with an extension to treat vacuum states, but could easily be
substituted with an approximate Riemann solver for higher perfor-
mance, if desired. We have also written an exact Riemann solver for
isothermal gas, similar to the scheme of Balsara (1994). We note
that in multi-dimensions the transverse velocities are also required
in the Riemann problem in order to identify the correct upwind
transverse velocity, which is important for an accurate treatment of
shear. Once the flux has been calculated with the Riemann solver,
we transform it back to the lab frame.

A further important point concerns the treatment of the allowed
motion of cell surfaces in our scheme. In order to obtain stable
upwind behaviour, the Riemann problem needs to be solved in the
frame of the moving face. This is important as the 1D Godunov
approach is not Galilean invariant in the following sense: suppose
left and right state at an interface are described by (ρL, P L, vL)
and (ρR, P R, vR), for which the Riemann solver returns an interface
state (ρF, P F, vF) that is the basis for the flux estimate. For example,
the mass flux across the interface is then given by ρFvF. Consider
now a velocity boost v applied both to the left and to the right side.
The new Riemann problem is given by (ρL, P L, vL + v) and (ρR,
P R, vR + v), and its solution will be sampled at the fixed coordinate
x = 0 in the new frame of reference, returning a flux estimate
ρ ′

Fv
′
F. However, in general this will yield ρ ′

Fv
′
F �= ρF(vF + v), which

means that the calculated flux vectors are not Galilean invariant.
This is not necessarily a problem in practice, but as we will see,
it can drastically reduce the accuracy of Eulerian hydrodynamics
in the presence of large bulk velocities. For this reason, we pay
particular attention to obtain a Galilean-invariant formulation of
our new scheme, which should be possible if the mesh motion is
tied to the fluid motion.

It is important to note that the Riemann problem itself is an ex-
act solution of the Euler equations, which is of course Galilean
invariant. However, the flux vector read off from the Riemann solu-
tion does not transform in a Galilean-invariant way, simply because
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the location where the self-similar solution is sampled depends on
the frame of reference. A time-step in our scheme may also be
viewed as a sequence of reconstruction, evolution and averaging
steps (REA approach). Both the spatial reconstruction (which is
linear in the primitive variables) and the evolution steps (by means
of the Riemann solver) are Galilean invariant, but the averaging is
not; it depends on the frame of reference. Note that the flux vectors
simultaneously encode the evolution and the averaging, and their
non-invariance ultimately originates in the latter. An immediate and
obvious corollary is that the diffusion error resulting from the av-
eraging depends on the frame of reference. One may also say in
a more general sense that the truncation error of the Eulerian ap-
proach is not Galilean invariant. Finally, we would like to stress that
this feature of Galilean non-invariance does, of course, not mean
that the Eulerian approach necessarily creates incorrect results. It
only means that the errors in the solutions depend on the frame
of reference, which is a highly unwelcome feature. But as higher
resolution always helps to reduce the diffusion error, one should
always be able to beat down, at potentially considerable numerical
cost, the additional diffusion error obtained from some bulk velocity
to the point where it lies below a prescribed tolerance. Neverthe-
less, it is clearly desirable to have a numerical scheme where the
Galilean invariance of the Euler equations is manifestly retained in
the discretized forms of the equations, a goal that is achieved by the
method proposed here.

In our new hydrodynamical scheme, each time-step involves the
following basic steps.

(i) Calculate a new Voronoi tessellation based on the current
coordinates r i of the mesh-generating points. This also gives the
centres-of-mass si of each cell, their volumes Vi, as well as the
areas Aij and centres fij of all faces between cells.

(ii) Based on the vector of conserved fluid variables Qi associated
with each cell, calculate the ‘primitive’ fluid variables W i = (ρ i, vi,
Pi) for each cell.

(iii) Estimate the gradients of the density, of each of the velocity
components, and of the pressure in each cell, and apply a slope-
limiting procedure to avoid overshoots and the introduction of new
extrema.

(iv) Assign velocities wi to the mesh-generating points.
(v) Evaluate the Courant criterion and determine a suitable time-

step size �t .
(vi) For each Voronoi face, compute the flux F̂ij across it by first

determining the left and right states at the mid-point of the face
by linear extrapolation from the cell mid-points, and by predicting
these states forward in time by half a time-step. Solve the Riemann
problem in a rotated frame that is moving with the speed of the face,
and transform the result back into the lab-frame.

(vii) For each cell, update its conserved quantities with the total
flux over its surface multiplied by the time-step, using equation (13).
This yields the new state vectors Q(n+1)

i of the conserved variables
at the end of the time-step.

(viii) Move the mesh-generating points with their assigned ve-
locities for this time-step.

For the sake of definiteness, we will now more explicitly describe
the most important details of these different steps.

3.1 Gradient estimation and linear reconstruction

According to the Green–Gauss theorem, the surface integral of a
scalar function over a closed volume is equal to its gradient inte-

grated over the same volume, i.e.∫
∂V

φ dn =
∫

V

∇φ dV . (14)

This suggests one possible way to estimate the mean gradient in a
Voronoi cell, in the form

〈∇φ〉i 
 − 1

Vi

∑
j

φ( f ij) Aij, (15)

where φ( fij) is the value of φ at the centroid fij of the face shared by
cells i and j, and Aij is a vector normal to the face (from j to i), with
length equal to the face’s area. Based on the further approximation

φ( f ij) 
 1

2
(φi + φj ), (16)

this provides an estimate for the local gradient. Note that with the
use of equation (16), the gradient of cell i only depends on the values
φj of neighbouring cells, but not on φi itself. While the estimate (15)
can be quite generally applied to arbitrary tessellations, due to the
use of only one Gauss point per face it is also relatively inaccurate
and is not exact to linear order in general.

For the special case of Voronoi cells, it is however possible to
obtain a considerably better gradient estimate with little additional
effort. The key is to carry out the surface integral more accurately.
Let us assume that in the vicinity of a point i the scalar function
φ(r) can be well approximated linearly as φ(r) = φi + b · (r − r i).
The vector b is the local gradient that we seek to estimate. We can
now write the surface integral as

Vi 〈∇φ〉i =
∫

∂Vi

φ dn =
∑
j �=i

∫
Aij

[φi + b · (r − r i)]
rj − r i

rij
dA (17)

where the sum extends over all faces of the Voronoi cell of i, and the
integrals extend over each of the faces. Note that we here already
made use of the fact that the surface normal of each face is parallel
to the separation vector of i and j, a property that is in general
only fulfilled for Voronoi tessellations. Following the notation of
Serrano & Español (2001), we now define cij as the vector from the
mid-point between i and j to the centre-of-mass of the face between
i and j, i.e.

cij ≡ 1

Aij

∫
Aij

(
r − r i + rj

2

)
dA. (18)

Noting that φj = φi + b · (r j − r i), equation (17) can be rewritten
as

Vi 〈∇φ〉i = −
∑
j �=i

[
φi + φj

2
+ b · cij

]
r ij

rij
Aij, (19)

where r ij = r i − r j is the vector of length r ij = |r ij| connecting the
two neighbouring points, and Aij is the area of the face.

Next, we can make the replacement (b · cij) r ij = (b · r ij) cij +
b × (r ij × cij), and set b · r ij = φi− φj. Then, the term involving the
cross-products can be rewritten by reinserting the definition of cij:

b ×
∑
j �=i

r ij × cij

rij
Aij = b ×

∑
j �=i

r ij

rij
×
∫ (

r − r i + rj

2

)
dA (20)

The term involving r is really the surface integral
∫

∂V
r ×dn, which

can be cast into a volume integral of the curl of r , but ∇ × r = 0
vanishes. Likewise, we have r ij × (r i + r j)/2 = r ij × r i, so that the
remaining term is proportional to the surface integral

∫
∂V

r i × dn,
which also vanishes since r i is a constant vector. As a result, the
double cross-product b × (r ij × cij) gives a vanishing contribution
to equation (19).
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We are hence finally left with the following gradient estimate:

〈∇φ〉i = 1

Vi

∑
j �=i

Aij

(
[φj − φi]

cij

rij
− φi + φj

2

r ij

rij

)
. (21)

Note that this result is exact to linear order, independent of the
locations of the mesh-generating points of the Voronoi tessella-
tion. Without the term involving cij this is the same as the simpler
Green–Gauss estimate. However, retaining this extra term leads to
significantly better accuracy, because the gradient estimate becomes
exact to linear order for arbitrary Voronoi meshes. In practice, we
shall therefore always use this gradient estimation in our MUSCL-
Hancock scheme for the Euler equations, where we calculate in this
way gradients for the five primitive variables (ρ, vx, vy, vz, P ) that
characterize each cell.

The result (21) has also an interesting relation to the formulae
obtained by Serrano & Español (2001) for the partial derivatives of
the volume of a Voronoi cell with respect to the location of one of
the points. As Serrano & Español (2001) have shown, the derivative
of the volume of a Voronoi cell due to the motion of a surrounding
point is given by

∂Vi

∂rj

= −Aij

(
cij

rij
+ r ij

2rij

)
for i �= j . (22)

Furthermore, they show that

∂Vi

∂r i

= −
∑
j �=i

∂Vj

∂r i

. (23)

Using these relations, and noting that according to the Gauss theo-
rem we have
φi

Vi

∑
j �=i

Aij
r ij

rij
= 0, (24)

because the summation is just the surface integral of a constant
function, we can also write the estimate for the gradient of φ at r i

more compactly as

〈∇φ〉i = − 1

Vi

∑
j

∂Vj

∂r i

φj . (25)

An interesting corollary of the above is that provided φ(r) varies
only linearly, the sum

S =
∑

i

φ(r i)Vi (26)

approximates the integral
∫

φ(r) dV exactly, independent of the
positions of the points that generate the Voronoi tessellation. This
follows because we then have ∂S/∂r i = 0 for all the points i.

In our approach, we use the gradients estimated with equa-
tion (21) for a linear reconstruction in each cell around the centre-
of-mass. For example, the density at any point r ∈ Vi of a cell is
estimated as

ρ(r) = ρi + 〈∇ρ〉i · (r − si), (27)

where si is the centre of mass of the cell. Note that independent of
the magnitude of the gradient and the geometry of the Voronoi cell,
this linear reconstruction is conservative, i.e. the total mass in the
cell mi is identical to the volume integral over the reconstruction,
mi = ∫

Vi
ρ(r) d3r . An alternative choice for the reference point is to

choose the mesh-generating point r i instead of si. This is the more
natural choice if the cell values are known to sample the values of
the underlying field at the location of the mesh-generating points,
then the reconstruction is exact to linear order. However, our input
quantities are cell averages, which correspond to linear order to the

values of the underlying field sampled at the centre-of-masses of
the cells. For this reason we prefer the centre-of-mass of a cell as
reference point for the reconstruction.

Nevertheless, this highlights that large spatial offsets between the
centre-of-mass of a cell and its mesh-generating point are a source
of errors in the linear reconstruction. It is therefore desirable to
use ‘regular’ meshes if possible, where the mesh-generating points
lie close to the centre-of-mass; such meshes minimize the errors in
the gradient estimation and the linear reconstruction. Or in other
words, we would like our Voronoi meshes to be relatively close
to so-called centroidal Voronoi meshes, where the mesh-generating
points lie exactly in the centre of mass of each cell. As we will
discuss in more detail later, we have developed an efficient method
for steering the mesh motion such that this regularity condition can
be approximately maintained at all times (if desired).

In smooth parts of the flow, the above reconstruction is second-
order accurate, with a stencil that consists of the local cell plus all
adjacent cells. However, in order to avoid numerical instabilities the
order of the reconstruction must be reduced near fluid discontinu-
ities, such that the introduction of new extrema by over- or under-
shoots in the extrapolation is avoided. This is generally achieved
by applying slope limiters that reduce the size of the gradients near
local extrema, or by flux limiters that replace the high-order flux
with a lower-order version if there are steep gradients in the up-
stream region of the flow. These techniques allow the construction
of total variation diminishing (TVD) schemes, in which spurious
oscillations in solutions can be completely suppressed.

We here generalize the original MUSCL approach to an unstruc-
tured grid by enforcing monotonicity with a slope limiting of the
gradients. To this end we require that the linearly reconstructed
quantities on face centroids do not exceed the maxima or minima
among all neighbouring cells (Barth & Jesperson 1989). Mathemat-
ically, we replace the gradient with a slope-limited gradient

〈∇φ〉′
i = αi 〈∇φ〉i , (28)

where the slope limiter 0 ≤ αi ≤ 1 for each cell is computed as

αi = min(1, ψij). (29)

Here, the minimum is taken with respect to all cells j that are
neighbours of cell i, and the quantity ψ ij is defined as

ψij =

⎧⎪⎨
⎪⎩
(
φmax

i − φi

)
/�φij for �φij > 0(

φmin
i − φi

)
/�φij for �φij < 0

1 for �φij = 0

(30)

where �φij = 〈∇φ〉i · ( f ij − si) is the estimated change between
the centroid fij of the face and the centre of cell i, and φmax

i =
max(φj) and φmin

i = max(φj) are the maximum and minimum values
occurring for φ among all neighbouring cells of cell i, including i
itself.

We note that this slope limiting scheme does not strictly enforce
the total variation diminishing property, which means that (usually
reasonably small) post-shock oscillations are still possible. How-
ever, by choosing a slightly more conservative slope-limiter it is
possible to obtain TVD behaviour, at the price of a more dissipa-
tive scheme (Barth & Ohlberger 2004). Finally, we note that future
refinements of the present method could also employ higher-order
polynomial reconstruction schemes, for example based on a larger
stencil and conservative least square reconstruction (e.g. Ollivier-
Gooch 1997). This would be similar in spirit to higher-order essen-
tially non-oscillatory (ENO) or weighted essentially non-oscillatory
(WENO) schemes.
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3.2 Setting the velocities of the mesh generators

A particular strength of the scheme we propose here is that it can
be used both as an Eulerian code and as a Lagrangian scheme. The
difference lies only in the motion of the mesh-generation points.
If the mesh-generating points are arranged on a Cartesian mesh
and zero velocities are adopted for them, our method is identical
to a second-order-accurate Eulerian code3 on a structured grid. Of
course, one can equally well choose a different layout of the points,
in which case we effectively obtain an Eulerian code on an unstruc-
tured mesh. The real advantage of the new code can be realized
when we allow the mesh to move, with a velocity that is tied to the
local fluid speed. In this case, we obtain a Lagrangian hydrodynam-
ics code, which has some unique and important advantages relative
to an Eulerian treatment.

In fact, our code belongs to the general class of so-called Arbitrary
Lagrangian-Eulerian (ALE) fluid dynamical methods. Unlike other
ALE schemes, the method proposed here, however, does not rely
on remapping techniques to recover from distortions of the mesh
once they become severe, simply because the Voronoi tessellation
produced by the continuous motion of the mesh-generating points
yields a mesh geometry and topology that itself changes continu-
ously in time, without any mesh-tangling effects. The motion of the
mesh-generating points can be chosen nearly arbitrarily, including
cases where it is prescribed by an external flow field, for example
to smoothly concentrate resolution towards particular regions of a
mesh. Also, as we shall discuss below, we may modify the flow of
mesh-generating points such that certain desired properties of the
fluid tessellation are maintained or achieved, e.g. a constant mass
per cell, or that cell sizes are constrained to lie within prescribed
minimal or maximal bounds.

The most simple and basic approach for specifying the motion of
the mesh generators is to use

wi = vi , (31)

i.e. the points are moved with the fluid speed of their cell. This
ansatz is clearly appropriate for pure advection and in smooth parts
of the flow. Whereas it is not strictly Lagrangian because it does
not guarantee that the faces of the cells move with the local veloc-
ity and hence mass exchange can still occur between the cells, it
nevertheless approximates Lagrangian behaviour by minimized the
mass flux between cells. Also, it can be expected that this ansatz
will roughly keep the mass per cell fixed, leading to an adaptive
spatial resolution in situations with strong clustering of matter.

However, in this scheme there is no mechanism built in that tries
to improve the regularity of the Voronoi mesh in case the mean
mass per cell should develop substantial scatter around a desired
mean value, or if a large number of cells with high aspect ratios
occur. If desired, such tendencies of a growing mesh irregularity
can be counteracted by adding corrective velocity components to
the mesh velocities wi given by equation (31). There are many
different possibilities for how exactly to do this, and we consider
this freedom a strength of the formalism. In Section 4, we will
discuss a few simple regularization terms that we have explored
thus far, and which have proven to be very effective.

3 There are of course many different variants of second-order Eulerian
schemes. Our method corresponds to the well-known MUSCL-Hancock
approach.

Figure 11. Sketch illustrating the calculation of the normal velocity of a
face based on the motion of its two associated mesh-generating points.

3.3 Flux computation

An important aspect of our approach is that the specified motion
of the mesh-generating points fully determines the motion of the
whole Voronoi mesh, including, in particular, the velocities of the
centroids of cell faces. This allows us to calculate the Riemann
problem in the rest-frame of each of the faces.

Consider one of the faces in the tessellation and call the fluid
states in the two adjacent cells the ‘left’ and ‘right’ states. We first
need to determine the velocity w of the face based on the velocities
wL and wR of the two mesh-generating points associated with the
face (they are connected by a Delaunay edge). It is clear that w

has a primary contribution from the mean velocity (wL + wR)/2 of
the points, but there is also a secondary contribution w′ from the
residual motion of the two points relative to their centre of mass.
This residual motion is given by w′

R =−w′
L = (wR− wL)/2, and

we need to determine its impact on the motion of the face centroid.
Fig. 11 sketches the geometry of the situation. The components of
w′

R and w′
L parallel to the line connecting the centroid f of the face

with the mid-point m of the two mesh-generating points rL and
rR induce a rotation of the face around the point m. We are only
interested in the normal velocity component of this motion at the
centroid of the face. This can be easily computed as

w′ = (wL − wR) · [ f − (rR + rL)/2]

|rR − rL|
(rR − rL)

|rR − rL| . (32)

The full velocity w of the face is then given by

w = wR + wL

2
+ w′. (33)

We note that this result can also be used to calculate the rate of
change of the volume of a cell i due to the motion of its neighbouring
points, viz.

dVi

dt
= −

∑
j �=i

Aij

[
cij

rij
· (wj − wi) + r ij

2rij
· (wj + wi)

]
, (34)

where r ij = r i − r j is the distance vector between the two points
i and j (with r ij = |r ij|), Aij is the area of the common face and
cij = fij − (r i + r j)/2 is a vector pointing to the centre fij of the
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face from the mid-point between i and j. We note that the same
result can also be obtained with equations (22) and (23).

We now calculate the flux across the face using the MUSCL-
Hancock approach, with the important difference that we shall carry
out the calculation in the rest-frame of the face. It is convenient to
do this in the primitive variables (ρ, v, P ), where we first transform
the lab-frame velocities of the two cells to the rest-frame by sub-
tracting w,

W ′
L,R = W L,R −

⎛
⎝ 0

w

0

⎞
⎠ . (35)

We then linearly predict the states on both side to the centroid of
the face, and also predict them forward in time by half a time-step.
This produces the states

W ′′
L,R = W ′

L,R + ∂W ′

∂r

∣∣∣∣
L,R

( f − sL,R) + ∂W ′

∂t

∣∣∣∣
L,R

�t

2
. (36)

The spatial derivatives ∂W ′/∂r are known, and given by the (slope-
limited) gradients of the primitive variables that are estimated as
described in Section 3.1. Note that the gradients are unaffected by
the change of rest frame described by equation (35). The partial
time derivate ∂W/∂t can be replaced by spatial derivatives as well,
based on the Euler equations in primitive variables, which are given
by

∂W
∂t

+ A(W )
∂W
∂r

= 0, (37)

where A is the matrix

A(W ) =

⎛
⎜⎝

v ρ 0

0 v 1/ρ

0 γP v

⎞
⎟⎠ . (38)

Having finally obtained the states left and right of the interface, we
need to turn them into a coordinate system aligned with the face,
such that we can solve an effectively 1D Riemann problem. The
required rotation matrix � for the states only affects the velocity
components, viz.

W ′′′
L,R = � W ′′

L,R =

⎛
⎜⎝

1 0 0

0 �3D 0

0 0 1

⎞
⎟⎠ W ′′

L,R, (39)

where �3D is an ordinary rotation of the coordinate system, such
that the new x-axis is parallel to the normal vector of the face,
pointing from the left to the right state.

With these final states, we now solve the Riemann problem, and
sample the self-similar solution along x/t = 0. This can be written
as

W F = Riemann

(
W ′′′

L , W ′′′
R

)
, (40)

where Riemann is a 1D Riemann solver, which returns a solution for
the state of the fluid W F on the face in primitive variables. We now
transform this back to the lab-frame, reversing the steps above,

W lab =

⎛
⎜⎝

ρ

vlab

P

⎞
⎟⎠ = �−1W F +

⎛
⎜⎝

0

w

0

⎞
⎟⎠ . (41)

Finally, we can use this state to calculate the fluxes in the conserved
variables across the face. Here, we need to take into account that
the face is moving with velocity w, meaning that the appropriate

flux vector in the lab frame is given by

F̂ = F(U) − UwT =

⎛
⎜⎝

ρ(vlab − w)

ρvlab(vlab − w)T + P

ρelab(vlab − w) + P vlab

⎞
⎟⎠ , (42)

where U is the state W lab expressed in the conserved variables,
and elab = v2

lab/2 + P lab/[(γ − 1) ρ lab]. The scalar product of this
flux vector with the normal vector of the face gives the net flux of
mass, momentum and energy that the two adjacent, moving cells
exchange. It is the flux of equation (42) that can finally be used in
the conservative updates of each cell, as described by equation (13).

3.4 Galilean invariance

In the above scheme, it is clear that the state W F sampled from the
Riemann solver is invariant under Galilean transformations, because
a special invariant frame for evaluation of the Riemann problem is
adopted, that of the face moving with the flow. As a result, the
input left and right states are invariant under a Galilean boost; any
such boost is simply absorbed into the motion of the face. This also
means that the velocity difference u ≡ (vlab − w) appearing in the
flux of equation (42) is invariant as well. It is thus clear that the
mass flux between cells is Galilean invariant, but this property is
much less evident for the momentum and energy fluxes, as they still
have an additional dependence on the velocity vlab in the lab-frame,
as seen in equation (42).

Recall that the desired invariance means that it should not matter
whether we evolve the state of a cell in the current lab-frame, or in a
reference frame that is boosted by a constant velocity relative to it.
In both cases, we should obtain the same final state when compared
again in the same frame.

We can demonstrate this property for the above scheme as fol-
lows. Let us assume for simplicity that there is only one flux vector
in or out of a cell. When calculated in the current lab-frame, the
new state after a time-step �t will then be

Qnew =

⎛
⎜⎝

Q0

Q1

Q2

⎞
⎟⎠ +

⎛
⎜⎝

ρ u

ρ vlab uT + P

ρ elabu + P vlab

⎞
⎟⎠ A�t, (43)

where A is the normal vector of the face, and Q0, Q1 and Q2 are
mass, momentum and energy of the cell at the beginning.

Let the function G( Q, v) return the state vector Q′ of conserved
quantities of a cell in a frame that is moving with a constant velocity
relative to the current frame. For a Galilean boost with velocity v0,
the new state is given by

Q′ = G( Q, v0) (44)

where

G( Q, v) =

⎛
⎜⎝

Q0

Q1 + Q0v

Q2 + Q1 · v + 1
2 Q0v

2

⎞
⎟⎠ (45)

defines the boost transformation. We can now evolve this boosted
state over one time-step, which yields

Q′′ = Q′ +

⎛
⎜⎝

ρ u

ρ (vlab + v0) uT + P

ρ e′
labu + P (vlab + v0)

⎞
⎟⎠ A�t, (46)

where e′
lab = elab + vlabv0 + 1

2 v2
0. The flux is here different because

vlab transform to vlab + v0 in the boosted frame. Finally, we can take
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the state Q′′ back to our original frame by calculating

Q̃
new = G( Q′′, −v0). (47)

Our scheme is Galilean invariant if this state Q̃
new

agrees with
the state (43) obtained by evolving the cell in the original system.
Inserting equations (44), (45) and (46) into (47), and after a bit of
algebra, it is seen that this is indeed the case. This is an extremely
important property not shared by ordinary Eulerian codes.

As a word of caution, we note that the finite numerical round
off errors always present in ordinary floating point arithmetic will
perturb the exact Galilean invariance of our discretization scheme
in practice. In particular, since the conserved quantities are always
stored in the lab-frame, the effective number of significant bits left
for the internal energy will be reduced for very large bulk velocities,
as it is then defined as the difference of two large numbers. However,
with double precision arithmetic this may only become a problem
for really extremely large Mach numbers, and it could always be
solved by the use of extended floating point precision if needed.

3.5 Poorly resolved cold flows

It is a well-known problem in Eulerian finite-volume methods that
flows that are dominated by their kinetic energy – or in other words
are very cold and move supersonically with respect to the calcula-
tional frame – often exhibit spurious heating in adiabatic parts of
the flow. This arises from small amounts of dissipation occurring in
the cold gas, introduced by finite discretization errors. Better spa-
tial resolution alleviates the problem, but if the gas is sufficiently
cold, even very small dissipative effects become readily visible in
the evolution of the gas temperature. Whereas the pressure forces
remain typically negligible as a result of this effect and hence do
not change the gas motion itself, the temperature evolution can be
very seriously in error. Unfortunately, this problem is ubiquitous in
cosmology, where the early phases of structure formation always
involve very cold gas combined with relatively large velocities that
are induced by gravity, resulting in extremely high Mach numbers.
If the spurious dissipation is not prevented, the temperature of the
low-density intergalactic medium cannot be trusted and becomes
unusable for quantitative analysis.

Different solutions have been developed in the literature to cope
with this problem (which incidentally is absent in the SPH formal-
ism; see e.g. Springel & Hernquist 2002). Ryu et al. (1993) evolve
the entropy of the gas as an additional conserved quantity and define
a number of criteria for deciding whether the energy or the entropy
equation should be used. Bryan et al. (1995) on the other hand
propose a ‘dual energy formalism’, where the internal gas energy
is evolved in addition to the total energy. When the gas motion is
highly supersonic, the temperature and pressure of the gas are set
based on the result of the internal energy equation, while otherwise
the total energy is used.

The Galilean invariance of the moving-mesh code suggests that
it should in principle have fewer problems with highly supersonic
flow. However, if the velocity differences from cell to cell are of the
order of the local sound speed or larger, we find that the moving-
mesh code can also give rise to spurious dissipation in the cold gas
and as a result can produce an incorrect temperature evolution. The
problem is that in adiabatically evolving gas, any small difference
between the total energy and kinetic energy of a cell automatically
appears in the thermal energy. Even if the discretization errors from
fluid advection are quite small, equal to only a small fraction of the
total energy of a cell, these errors will give rise to spurious changes
of the temperature if the thermal energy is comparably small.

A related problem arises in simulations that are coupled to a col-
lisionless dark matter or stellar component. The collisionless fluid
often dominates the gravitational field, and is usually treated with
the gravitational N-body approach. The problem is that the resulting
gravitational force field is relatively noisy, and imparts a stochas-
tic driving on to the gas as it flows through the bumpy potential
provided by the N-body system. We have found that the resulting
small-scale velocity fluctuations are readily dissipated away by the
mesh-based hydrodynamics, giving rise to a significant spurious
heating of the gas. Interestingly, SPH is much less susceptible to
this effect, presumably because of its much poorer ability to detect
very weak shocks. Part of the heating effect can be readily under-
stood by the analysis of Steinmetz & White (1997), who showed
that two-body encounters between collisionless particles and fluid
elements induce substantial heating in the gas. In numerical experi-
ments with cold gaseous discs in isolated galaxies with live N-body
dark matter haloes, we have found that the effect in the finite-volume
hydrodynamics is even stronger than expected based on Steinmetz
& White (1997), presumably because the gas also reacts strongly
to slower moving collisionless particles that are not well treated by
the impulse approximation. We also found that the heating can only
be efficiently suppressed if either an extremely large number of N-
body particles is used or a smooth analytic potential is employed.
But such large particle numbers are impractical in many applica-
tions, and also not needed in the SPH approach. We therefore seek
a method that can suppress the spurious heating of the gas through
the N-body component, if needed.

To circumvent the problems described above, we adopt a solution
that is similar to that of Ryu et al. (1993), but differs in a number of
important aspects. We first define a measure of the total entropy of
a cell as

Si = MiAi = Mi

Pi

ρ
γ

i

, (48)

where Ai ≡ Pi/ρ
γ
i is an entropic function that effectively labels

the entropy per unit mass of the gas, and γ is the adiabatic index.
Note, however, that the quantity S is not the thermodynamic entropy
itself, but is related to it through a simple monotonic relation. In
fact, for a monoatomic ideal gas the thermodynamic entropy S therm

per particle is given by

Stherm

N
= 3

2
kB

[
ln

(
S

N

)
+ ln

(
2πm5/3

h2

)
+ 5

3

]
, (49)

where N is the number of atoms, m is their mass and h is Planck’s
constant. For simplicity, we will call S the total entropy, as it is
simpler to work with than using the thermodynamic entropy directly.

The Euler equations show that outside of shocks, S is a conserved
quantity. We can hence add a further hyperbolic conservation law
of the form

∂

∂t
(ρA) + ∇ · (ρAv) = 0 (50)

to the set of equations we solve in our finite-volume scheme, and
treat Si as a further component in the vector Qi of conserved quan-
tities for each cell. Furthermore, we may optionally replace the
primitive variable Pi with the entropic function Ai = Si/Mi of a
cell. For the vector of primitive variables W = (ρ, v, A), the Euler
equations can in this case be written as

∂W
∂t

+ B(W )
∂W
∂r

= 0, (51)
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where B is the matrix

B(W ) =

⎛
⎜⎝

v ρ 0

γAργ−2 v ργ−1

0 0 v

⎞
⎟⎠ . (52)

This again shows that A stays constant along the flow, making this
variable particularly convenient to characterize adiabatic motion.

We can now apply our usual gradient estimation, spatial recon-
struction and slope limiting procedures to the entropic function Ai

(in addition to, or instead of, the pressure). When the pressure is
needed, for example as input to the Riemann problem, it is calcu-
lated as P = Aργ . Finally, we compute additional flux components
at each cell face, namely the entropy fluxes corresponding to equa-
tion (50), and use them to update the entropies Si of all cells, keeping
the sum of the total entropy constant. At each cell face, we take the
entropy flux to be ρF vF AU, where ρF and vF are the density and
normal velocity returned by the Riemann solver, while AU is chosen
equal to the entropic function of the upwind side of the Riemann
problem (i.e. AU is either equal to AL or to AR), which we select
based on the sign of vF. This hence advects the entropy assuming
that the flow is smooth.

However, normally the result of this entropy advection is dis-
carded at the end of each time-step. Instead, we reinitialize the
entropy Si of each cell based on the updated values of total en-
ergy, total momentum and mass. This takes care of the fact that in
general the entropy will not be conserved after all. It will tend to
increase, either through dissipative processes in shock fronts as cap-
tured by the analytic Riemann solution or as a result of the mixing
entropy that is generated when the Riemann solution is averaged
over a cell and mapped back to a piece-wise constant state. The
entropy conservation law (50) is therefore essentially redundant in
finite-volume methods because the other conservation laws already
fully determine the final averaged state of the cell. This is why in
an ordinary Godunov scheme the entropy is normally not consid-
ered explicitly, the scheme automatically injects exactly the right
amount of entropy to satisfy the conservation laws of total energy,
momentum and mass.

However, if the flow is poorly resolved and very cold, or if it
is governed by a noisy external gravitational field, we may give
precedence to the entropy conservation law over that for the total
energy, provided the flow is sufficiently smooth. This can be simply
accomplished by keeping the updated entropy Si of a cell at the
end of a time-step, thereby suppressing local dissipation. Instead of
reinitializing the entropy with the help of the total energy equation,
the entropy is then used together with the new density to update
the thermal energy, and hence the pressure. In this case there is no
spurious heating of the gas in parts of the flow that are dominated
by their kinetic energy, or are cold and poorly resolved. Instead,
the temperature will evolve adiabatically, as expected for a smooth
flow. The catch is that this procedure temporarily gives up manifest
conservation of total energy, as the thermal energy is now not de-
fined as a difference between total energy and kinetic energy, but
rather based on the value expected for isentropic evolution of the
gas. The resulting errors should normally be negligible, however,
if the entropy scheme is only applied when the thermal energy is
a negligible part of the total energy, and the pressure forces are
unimportant.

The above discussion makes it clear that an important part of this
method is the specific criterion used to decide whether a sufficiently
smooth, poorly resolved cold flow is actually present, and hence a
dissipative update of the entropy via the total energy equation can

be delayed. We presently use the following simple criteria for this
purpose.

Our primary criterion relies on directly detecting the presence
of shocks with the help of the Riemann problem that we solve
for each face. The Riemann problem yields a contact wave that is
sandwiched on both sides either by a shock wave or by a rarefaction
fan. The Mach number(s) of the shock(s) present in the Riemann
problem can be easily determined. We hence can find for each
cell the maximum Mach number that occurs in any of the Riemann
problems of its surrounding faces. The idea is to only use the entropy
equation whenever this maximum Mach number is smaller than a
prescribed threshold value.

To examine the consequences of such a scheme, we recall the
irreversible thermal dissipation rate of shock as a function of its
Mach number. For a shock propagating with Mach number M =
v1/c1 into a medium of density ρ1, sound speed c1 and thermal
energy per unit mass u1, the dissipative increase in thermal energy
per unit time and unit shock surface area dF can be written as (see
also Pfrommer et al. 2006)

dEdiss

dt dF
= ρ1v1ρ

γ−1
2 (A2 − A1)/(γ − 1), (53)

where A1 and A2 are the pre- and post-shock entropic functions, and
ρ2 is the post-shock density. The adiabatic heating rate just from
the reversible compression of the gas is given by

dEadiab

dt dF
= ρ1v1

(
ρ

γ−1
2 − ρ

γ−1
1

)
A1/(γ − 1). (54)

The jumps in density and entropy can be expressed in terms of Mach
number only:

fρ(M) ≡ ρ2

ρ1
= (γ + 1)M2

(γ − 1)M2 + 2
, (55)

fA(M) ≡ A2

A1
= 2γM2 − (γ − 1)

γ + 1

[
(γ − 1)M2 + 2

(γ + 1)M2

]γ

. (56)

This allows us to express the dissipative heating rate as

dEdiss

dt dF
= ρ1u1c1 fdiss(M), (57)

with

fdiss(M) = M[fA(M) − 1]f γ−1
ρ (M). (58)

This shows the well-known result that the dissipation rate in a shock
depends very sensitively on Mach number, fdiss(M) ∝ (M − 1)3.
Similarly, we can write the heating rate from the adiabatic shock
compression as

dEadiab

dF dt
= ρ1u1c1 fadiab(M), (59)

with

fadiab(M) = M
[
f γ−1

ρ (M) − 1
]
. (60)

Note that the adiabatic heating rate increases more slowly with
Mach number than the dissipation, fadiab(M) ∝ (M− 1). For very
low Mach numbers, the adiabatic heating strongly dominates, and
the dissipative heating becomes comparatively unimportant. This is
shown in Fig. 12, where we plot the factors fdiss(M) and fadiab(M)
as a function of Mach number, as well as their ratio.

This suggests to use a threshold Mach number Mthresh for de-
ciding whether the entropy equation may be used to update a cell
instead of the total energy equation. If we pick Mthresh ∼ 1.1 and
use the entropy equation only if the maximum Mach number of all
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Figure 12. Dissipative heating rate fdiss(M) in a shock as a function of
Mach number M (red solid line), for a γ = 5/3 gas. The dashed blue line
gives the adiabatic heating rate fadiab(M) of the gas as it is compressed
at the shock. Finally, the dash-dotted line gives the ratio of adiabatic and
dissipative heating rates.

shocks in the Riemann problems surrounding the cell lies below
this number, then the entropy production of very weak shocks that
are associated with spurious dissipation is suppressed. The flow is
effectively treated as being smooth and adiabatic. Note that if real
weak shocks of this small strength are present, they still nevertheless
have the correct adiabatic heating rate, which strongly dominates
for these weak shocks (by a factor of more than 100 for M < 1.1),
suggesting that errors in the dynamics should be very minor. In-
deed, we have found that this scheme works especially well for
suppressing artificial heating of the gas from the Poisson noise in
the gravitational field of an N-body system. In this case we have
also not been able to find any detrimental impact on the quality with
which the total energy is conserved (on the contrary actually), which
we recall is not manifestly conserved in self-gravitating systems.

As an alternative to the Mach number switch discussed above, we
have also implemented a scheme that compares the thermal energy
of a cell with a suitably defined kinetic energy in order to determine
whether a flow is cold. This is more similar to the approach of Bryan
et al. (1995) and Ryu et al. (1993). In practice, we first determine
the expected new thermal energy Etherm = Etot − Mv2/2 at the end
of the time-step, based on the usual conservation laws. If this energy
is much smaller than the maximum kinetic energy Emax

kin among the
cell and all its neighbouring cells,

Etherm < αS Emax
kin , (61)

then the flow is considered ‘cold’ and the entropy is kept and not
updated in this step. We typically use αS ∼ 0.01 for the parameter
αS, but the results are not sensitive to this choice provided one
ensures that one switches back to the ‘normal’ treatment of the
hydrodynamics once a sufficiently strong dissipative event occurs.

In the Lagrangian mode of the code, we define the kinetic energy
Emax

kin of the neighbouring fluid cells relative to the velocity wi of
the current cell. In this way, the criterion (61) becomes Galilean
invariant and effectively compares the local sound speed with the
size of the velocity changes from cell to cell. Sometimes this renders

the criterion too restrictive, however, especially in simulations with
self-gravity. We then invoke a further condition,

Etherm < βS Mi gi Ri, (62)

which effectively compares the strength of pressure forces to the
gravitational acceleration. Here, Ri is the ‘radius’ of the cell (see
below), and gi is the magnitude of the local gravitational acceler-
ation. If one of the conditions (61) or (62) is fulfilled, the entropy
is kept for the current step. This is based on the idea that if the
pressure forces are negligible compared to the gravitational forces,
we are dealing with an effectively kinematically dominated flow,
and it then makes sense to keep the entropy as this provides for a
more accurate temperature evolution.

Note that the scheme described in this section is an optional
treatment in the AREPO code. Even if enabled, there is no difference
to the ordinary conservative hydrodynamics for sufficiently small
values of Mthresh, or αS and βS. Also, if these parameters are set to
unreasonably large values and the entropy production is artificially
suppressed, the dynamics are often still represented surprisingly
accurately. This is because weak shocks produce only little new
entropy. Even if this entropy production is ignored, the Riemann
solver still recovers the correct jumps in density and velocity and
rescues the dynamics.

3.6 Boundary conditions

We have implemented two simple boundary conditions thus far,
periodic boundaries and reflective boundaries. In both cases, the
computational domain is restricted to be a rectangular domain of
arbitrary aspect ratio. The implementation of periodic boundaries is
realized with the ghost cell technique discussed earlier. Even if only
a single processor is used, particles close to the edge of the domain
will find periodic image particles ‘on the other side’ of the principal
domain, and import those as ghost particles. While this means that
the cells that overlap with the box boundaries will be duplicated in
the mesh construction, the overhead in mesh storage this induces
is small. But the convenience of this approach lies in the fact that
it does not require a modification of the actual mesh construction
algorithms to make them aware of the periodic boundaries. Also,
this simple technique is readily combined with the approach we
adopted to cope with distributed-memory parallelization.

Reflective boundaries can be realized similarly, except that ghost
particles are now not simply primary particles/cells that are trans-
lated by one box-length. Instead, the spatial location of ghost parti-
cles correspond to mirrored copies of the primary mesh-generation
points. When added to the primary points, this means that the result-
ing Voronoi mesh for the principal domain will always have faces
aligned with the box boundaries. It is then possible to impose differ-
ent boundary conditions on these faces. For reflective boundaries,
we can simply copy the state of the fluid from the mirrored point,
but with the sign of the normal velocity component reversed. This
will automatically make the mass flux vanish on the surface of the
boundary, and leads to reflective boundary conditions. However, it is
also easily possible with this mirroring technique to realize outflow
or inflow boundary conditions. Finally, it is possible to arrange for
arbitrary curve-linear boundary conditions by arranging two parallel
strings of paired particles in a suitable way. One of the particles of
each pair would constitute a cell inside the computational domain,
the other would be a fiducial cell outside, and the desired boundary
condition can be imprinted at the face they share. If desired, such a
boundary may also be moved in complex ways. We will discuss an
illustrative example of this technique in Section 8.9.
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4 MESH R EGU LARITY

As seen in Fig. 1, Voronoi meshes may sometimes look quite ‘irreg-
ular’, in the sense that there is a significant spread in sizes and aspect
ratios of the cells, especially for sufficiently disordered point distri-
butions. While this is not a problem of principle for our approach,
it is clear that the computational efficiency will normally be opti-
mized if regions of similar gas properties are represented with cells
of comparable size. Having a mixture of cells of greatly different
volumes to represent a gas of constant density will restrict the size
of the time-step unnecessarily (which is determined by the smallest
cells), without giving any benefit in spatial resolution (which will
be limited by the largest cells in the region).

As we have seen, it is also desirable to have cells where the
centre-of-mass lies close to the mesh-generating point, because this
minimizes errors in the linear reconstruction and limits the rate at
which mesh faces turn their orientation during mesh motion. Below,
we will discuss our approaches for steering the mesh motion during
the dynamical evolution such that, if desired, mesh regularity in the
above sense can be achieved and maintained.

4.1 Making cells ‘rounder’

In so-called centroidal Voronoi tessellations, the mesh-generating
points coincide with the centre-of-mass of all cells. There is an
amazingly simple algorithm known as Lloyd’s method (Lloyd 1982)
to obtain a centroidal Voronoi tessellation starting from an arbitrary
tessellation. One simply moves the mesh-generating points of the
current Voronoi tessellation to the centre-of-masses of their cells,
and then reconstructs the Voronoi tessellation. The process is re-
peated iteratively, and with each iteration, the mesh relaxes more
towards a honey-web-like configuration in which the Voronoi cells
appear quite ‘round’ and have similar volume – a centroidal Voronoi
tessellation. This is illustrated in Fig. 13, which shows the Voronoi
tessellation of a Poisson distribution of 625 points in 2D, and the
result of 50 Lloyd iterations applied to it.

Inspired by this algorithm, we (optionally) employ a simple
scheme to improve the local shape of the Voronoi tessellation during
the dynamical evolution. We simply augment equation (31) with an
additional velocity component, which is designed to move a given

mesh-generating point towards the centre-of-mass of its cell. There
are different possibilities to parametrize such a corrective velocity.
One approach that we found to work very well in practice is to add
a correction velocity whenever the mesh-generating point is further
away from the centre-of-mass of a cell than a given threshold, ir-
respective of the actual velocity field of the gas. To this end, we
associate a radius Ri = (3Vi/4π)1/3 with a cell based on its volume
(or area in 2D). If the distance di between the cell’s centre-of-mass
si and its mesh-generating point r i exceeds some fraction η of the
cell radius Ri, we add a corrective term proportional to the local
sound speed ci of the cell to the velocity of the mesh-generating
point. This effectively applies one Lloyd iteration (or a fraction of
it) to the cell by repositioning the mesh-generating point on to the
current centre-of-mass, ignoring other components of the mesh mo-
tion. In order to soften the transition between no correction and the
full correction, we parametrize the velocity as

w′
i = wi + χ

⎧⎪⎨
⎪⎩

0 for di/(η Ri) < 0.9

ci
si−r i

di

di−0.9 ηRi

0.2 ηRi
for 0.9 ≤ di/(η Ri) < 1.1

ci
si−r i

di
for 1.1 ≤ di/(η Ri)

(63)

but the detailed width of this transition is unimportant. In very cold
flows the sound speed may be so low that the correction becomes
ineffective. As an alternative, we therefore also implemented an
option in the code that allows a replacement of cs(si − r i)/di in
equation (63) with (si − r i)/�t . This more aggressive approach
to ensure round cells generally works very well too, but has the
disadvantage of depending on the time-stepping. Our typical choice
for the threshold of the correction is η = 0.25, and we usually set
χ = 1.0, i.e. the correction is, if present, applied in full over the
course of one time-step. Smaller values of η can be used to enforce
round cell shapes more aggressively, if desired. Smaller values of
χ can be used to apply the corrective velocity more gently in time,
but we have not noticed problems with the choice of χ = 1.0 in the
problems we examined thus far.

Because only relatively regular meshes have their centres of mass
always close to their mesh-generating points, the extra velocity
component has the tendency to make the local mesh more reg-
ular. Indeed, the above scheme is quite effective in maintaining
low aspect rations for the mesh cells at all times during the evolu-
tion. We therefore found it to be a good default choice for general
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Figure 13. Example for a mesh regularization with Lloyd’s algorithm. The panel on the left shows the Voronoi mesh of a Poisson sample of 625 points in the
unit square, with periodic boundary conditions. The panel on the right-hand side is the same mesh after being evolved with 50 iterations of Lloyd’s algorithm,
i.e. in each step the mesh-generating points are moved to the centre-of-mass of their cell. The mesh slowly ‘crystallizes’ into a quite regular structure with
mostly hexahedral cells that are of very similar volume.
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simulations with the moving-mesh approach. Note that for a rea-
sonably ‘roundish’ mesh, the correction velocity vanishes and the
mesh will be strictly advected with the fluid in smooth parts of the
flow.

4.2 Maintaining constant mass or volume for the cells

In many applications in cosmology, it is desirable to have constant
mass resolution, and to increase/decrease the spatial resolution au-
tomatically when matter clusters or expands. If the mesh-generating
points are moved with the local fluid velocity, the gas mass in the
cells will stay very nearly constant, thus approximately fulfilling
this desired Lagrangian adaptivity during the course of a simula-
tion. However, some scatter in the mass per cell will nevertheless
occur after a while, and in complicated flows with strong compres-
sions and shocks, these fluctuations may reach factors of several.
This calls for a method that is automatically able to restore and
maintain a constant mass per cell.

Similarly, we would sometimes like to impose constraints on the
volumes of cells as well, for example by requesting that they should
not exceed a maximum size, or not become smaller than a prescribed
scale. A special case of this are simulations where one would like
to have roughly constant volume per cell, even though large density
contrasts develop and at the same time the mesh should still move
with the local flow velocity as far as possible.

In many practical applications, one may in fact request that both
the mass and the volume of cells respect certain regularity condi-
tions. For example, in situations where a self-gravitating clump of
gas (say a galaxy) is embedded in large regions of essentially empty
space, it would be best to have cells of nearly equal volume in the
region that are largely (or completely) devoid of gas. (In fact, equal
mass per cell would be ill-defined in this case as it basically meant
that a single cell would have to represent all of this volume.) On the
other hand, in the regions where the density is large, it would at the
same time be desirable to have equal mass per cell.

We have implemented a scheme to regulate the mesh motion
which effectively ensures that such prescribed constraints are re-
spected by the moving mesh. Our method is inspired by the
Zeldovich approximation and requires the solution of a Poisson-
like equation. It is very powerful as it can eliminate even large-scale
deviations from the desired distribution of cells in very few steps,
as we discuss next.

Let n(x) describe the current number density distribution of
mesh-generating points. Let us suppose that this distribution is not
quite ideal yet for the given density field of the gas, according to
some suitable criterion, but that it is not too far away from the ideal
distribution n0(x). In the following we will assume that linear order
is sufficient to describe the differences between the current and the
ideal distribution of the mesh-generating points. For each point, let
q i be its ideal coordinate, and xi its current coordinate. They are
related by

xi = q i + ε d i , (64)

where d i is the displacement of site i from its ideal coordinate, and ε

is a fiducial dimensionless time variable, with ε = 1 corresponding
to the current situation. Our goal is to estimate d i, such that by
applying a coordinate shift −d i to all the points, we can move the
mesh close to the ideal configuration.

We shall now assume that the displacements can be obtained as
gradient of a scalar field �,

d = −∇�. (65)

Furthermore, since we only consider linear order, we can write
the evolution of the number density field nε(x) along the particle
trajectories as

nε(x + εd) = ε n(x + d) + (1 − ε) n0(x). (66)

The ‘velocities’ of each point in this transformation are given by
vi = dxi/dε = d i. Invoking the Lagrangian continuity equation for
the motion of the points,

dn

dε
+ n∇ · v = 0, (67)

and evaluating it at ε = 0, we obtain the Poisson-like equation

∇2� = n(x + d)

n0(x)
− 1 
 n(x)

n0(x)
− 1, (68)

where in the last step we approximated to linear order n(x + d) 

n(x). What remains to be done is to specify the desired density of
mesh-generating points n0 for the ideal configuration of the Voronoi
cells. Here, we use the following ansatz that can deal with quite
general situations, including cases where there is empty space. We
would like that the quantity

Ki ≡ mi

m̃
+ Vi

Ṽ
(69)

is equal to a constant value K̃ for all cells, i.e. Ki = K̃ . Here, m̃ is
a prescribed constant which effectively sets the desired (maximum)
mass per cell, and Ṽ is a chosen value that determines the desired
maximum volume per cell, while mi and Vi are the actual mass and
volume of the cell i. For the ideal mesh, the mass and volume of a
cell are given by mi = ρ(q i)/n0(q i) and Vi = 1/n0(q i), respectively.
We can hence write

n0(x) = 1

K̃

(
ρ(x)

m̃
+ 1

Ṽ

)
. (70)

Note that the density field itself is assumed to be stationary here;
only the sampling by the mesh points changes. This leads finally
to the following Poisson-equation to obtain the mesh-displacement
vectors:

∇2� = K̃ n(x)

ρ(x)/m̃ + 1/Ṽ
− 1. (71)

This can be solved in the same way as we solve for the gravitational
field, either with particle-mesh (PM) methods in Fourier-space or
in real-space via a tree, or by a combination of the two (TreePM
method). Finally, we estimate the displacement of a point from its
ideal position by evaluation d = −∇� at its current coordinate
instead of the unknown ideal coordinate, which is again accurate to
leading linear order.

We will typically assume periodic boundary conditions for the
mesh regularization. The value of K̃ should then be set such that
the source term on the right-hand side of equation (71) integrates
to zero for the current particle distribution; this is a prerequisite
that the Poisson equation actually has a well-defined solution for an
infinite periodic space. This means that we should set

K̃ = Vtot∑
i

(
ρi/m̃ + 1/Ṽ

)−1 , (72)

where V tot is the total volume of the simulation domain. The -1 on
the right-hand side of equation (71) then eliminates the constant
term in Fourier space. This is similar to the treatment of self-gravity
in periodic spaces, where the mean density needs to be subtracted
from the density field in order to obtain a finite solution of the
Poisson equation.
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Solving for the displacement field is equivalent to calculating the
gravitational accelerations for a particle distribution with ‘masses’
given by K̃/(ρi/m̃ + 1/Ṽ ). We use the TreePM formalism for
this, which has the advantage of being free of any restrictions on
dynamic range while at the same time being quite fast. Once we
have obtained the displacement vectors d i for all particles, we add
a corrective velocity to the mesh motion as follows:

w′
i = wi − κ

d i

�t
. (73)

We usually set κ = 0.5, such that the estimated displacement from
the ideal position is cut in half in each time-step. If needed, κ is
reduced for the current step such that the maximum displacement
of a point does not exceed half of its cell size, which is needed for
stability reasons. As this scheme is quite effective in maintaining
an ideal mesh at all times, the size of the prefactor κ does not really
matter much in practice.

We note that the above approach essentially corresponds to an
‘inverse Zeldovich approximation’, as it is used for example by the
GADGET-2 code (Springel 2005) to produce a gravitational ‘glass’
(White 1996) of constant density, except that we generalized the
approach to allow construction of generalized glasses for variable
density fields that are constrained by the freely adjustable constants
m̃ and Ṽ . We note that this method may also be useful to construct
‘quiet starts’ for SPH calculations that need to initialize astrophys-
ical objects with a prescribed density structure, such as stars in
simulations of stellar collisions. The methods most commonly used
for this purpose at the moment rely on settling the particle distribu-
tion into equilibrium with the help of artificial friction or pressure
forces (e.g. Goodman & Hernquist 1991). We also remark that both
schemes for mesh-regularization discussed above obey the property
of Galilean invariance of the moving-mesh code. This is because the
primary mesh motion is still given by equation (31); any Galilean
boost would simply be absorbed into it, while the mesh-correction
velocities would remain unaffected.

4.3 Constructing suitable initial conditions

The above discussion about mesh regularity also prompts the ques-
tion of how suitable initial conditions for a prescribed initial density
field can be constructed. For many hydrodynamical test problems,
constant density fields are needed that can simply be realized with
Cartesian grids. This is also a possible choice for cosmological
initial conditions, where Cartesian grids may be used for the un-
perturbed initial conditions. However, sometimes one would like to
start a simulation with a non-trivial density distribution for the gas,
for example in the form of a gaseous disc with a prescribed surface
density profile, or in the form of a spherically symmetric gas cloud
that approximates the gas distribution in a cluster of galaxies.

One popular approach to realize such general density distribu-
tions in SPH lies in randomly sampling the density field, for exam-
ple with the rejection method (Press et al. 1992). This effectively
produces a Poisson sampling of the underlying density field. While
such a particle distribution can be used as initial conditions for the
mesh-generation points, the quite irregular mesh this corresponds
to represents a significant disadvantage. For example, in the top-left
panel of Fig. 14, we show the Voronoi mesh resulting from a ran-
dom realization of a gaseous disc with an exponential gas surface
density profile. In addition to 750 particles used for the primary
disc distribution, a coarse Cartesian grid with 102 points has been
used here to fill the volume with cells that do not exceed a certain
maximum volume. Due to the random sampling, the resulting mesh

is characterized by cells with significant scatter in their volume at
any given radius, as seen in the top panels of Fig. 14, and since the
desired density profile has been prescribed, this is reflected in an
equally large scatter in the mass per cell.

It is of course nevertheless possible to start a simulation with such
a Poisson distribution and then to let the simulation code improve
the mesh with time. However, if a more quiet start is desired, one can
also first relax the initial mesh with the methods described above,
except that the gas distribution is kept fixed in space by solving
the advection equation for the moving mesh, instead of the Euler
equation. For the advection equation, we use a simple second-order-
accurate upwind scheme to determine the fluxes at all cell faces.

An example for the result of such a relaxation is shown in the two
bottom panels of Fig. 14. The panel on the left shows the Voronoi
mesh, and the panel on the bottom right the radial profiles of mass
and volume of each cell, as well as the surface density profile.
Evidently, the relaxed mesh is much more regular and features
relatively ‘roundish’ cells with low aspect ratios. Also, at any given
radius, there is little scatter in the mean mass and mean volume of the
cells. In fact, their radial variation follows the imposed constraint of
constant mi/m̃+Vi/Ṽ very well. This produces a situation where in
the inner parts of the disc the mass per cell is constant, while in the
low-density outer regions, the volume of the cells is kept fixed, with
a smooth transition in between. This behaviour is particularly useful
for structures embedded in nearly or completely empty space, for
example for simulations of isolated or colliding galaxies.

5 SELF-GRAVI TY

Outside of astrophysics, self-gravity of gases plays hardly any role
in computational fluid dynamics. However, gravitational forces are
the primary driver of cosmological structure formation. This fun-
damental importance of gravity adds a significant complication to
hydrodynamic codes. In fact, in cosmology there is arguably lit-
tle value in calculating the hydrodynamics highly accurately when
gravity is not treated with comparable accuracy.

There are some indications that the specific challenges posed
by an accurate treatment of self-gravity have been underes-
timated when traditional Eulerian approaches have been em-
ployed in cosmology. This is suggested by recent comparisons of
P3M/Tree/TreePM methods and AMR codes where both are applied
in pure gravity mode to the clustering of collisionless dark matter.
Both in O’Shea et al. (2005) and in Heitmann et al. (2008) it was
found that state-of-the-art AMR codes like ENZO and FLASH have sig-
nificant problems in accurately recovering the low-mass end of the
mass function of dark matter haloes. They are only able to match the
results of high-accuracy N-body codes once much finer base meshes
and stricter refinement criteria are used than are normally employed
with these codes. They are then no longer competitive with alter-
native approaches in cosmological structure formation in terms of
calculational efficiency and memory consumption (O’Shea et al.
2005). While these results have been found in comparison studies
that only tested the AMR gravity solver for a collisionless fluid, it
is clearly worrying that similarly poor behaviour is likely also to
affect calculations of self-gravity in hydrodynamical applications.

The problem seems to be that the adaptive refinement strategy,
as presently applied in the gravity solvers of some of the cosmo-
logical AMR codes, does not work particularly well for the gravita-
tional instability of dark matter, where structures may grow every-
where from very small seed perturbations. Since the placement or
removal of refinements corresponds to discrete and discontinuous
changes in local resolution, the growth of small perturbations can be
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Figure 14. Mesh regularization of the initial conditions of an exponential disc. We here randomly distributed 750 particles with an exponential surface profile
of scalelength R0 = 1.0. To represent the ‘vacuum’ outside the disc, an additional Cartesian grid of 10 × 10 particles was placed into the simulation domain,
which is a periodic box of 20 length units on a side. The resulting Voronoi mesh is shown in the top panel. While it has the right density field, the mass per
cell (and hence the cell volumes) shows substantial scatter, as seen in the top-right panel. However, after the mesh regularization has been applied, a much
better mesh results, as seen in the bottom panels. While the surface mass density profile has remained the same, there is now little local scatter in the mass and
volume per cell. Inside the disc, constant mass per cell is reached, while far outside, a constant volume per cell is obtained, with a smooth transition between
the two regimes.

delayed if a refinement is placed ‘too late’ on to an emerging halo.
The effectively Lagrangian behaviour of tree codes fares better in
this respect. Here, the spatially homogeneous high force resolution
allows tree codes to be formulated such that they observe the Hamil-
tonian structure of the collisionless dynamics of dark matter. This
structure is broken each time the AMR mesh hierarchy is modified,
because this changes the effective gravitational softening associ-
ated with the mesh, and modifies the potential energy stored in the
density field. As we will see, in the moving-mesh approach such
discontinuous changes in the Hamiltonian structure of gravitational
dynamics can be avoided.

An attractive feature of our new Lagrangian hydrodynamical
scheme lies in the possibility of combining it easily with a particle-
based approach to calculate the gravitational field, in the form of the
familiar high-accuracy N-body solvers for collisionless dynamics,
for example Tree or TreePM schemes. The simplest approach for
this is to treat the mass of each cell as being concentrated in the cen-
tre of the cell, and then to calculate the gravitational force on a cell
as the suitably gravitationally softened N-body force of the resulting
point set. The hierarchical multipole expansion used in tree codes,

carried out to monopole or quadrupole order, provides an efficient
way to compute these forces. Thanks to the tree-based approach, the
gravitational resolution then automatically and continuously adjusts
in a collapsing structure, and the spatial resolution of self-gravity in
the gas is always matched accurately to that of the hydrodynamics
(see also Bate & Burkert 1997). We shall employ this approach in
this work. The specific N-body algorithms we adopt for calculating
the gravitational forces are those of an updated version of the code
GADGET-2 (Springel 2005).

5.1 The Euler equations with self-gravity

If a gravitational field is present, the Euler equations (8) are modified
by source terms for momentum and energy, which take the form

∂U
∂t

+ ∇ · F =

⎛
⎜⎝

0

−ρ ∇�

−ρv∇�

⎞
⎟⎠ . (74)
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The gravitational potential � may be externally specified, or it de-
scribes the self-gravity of the gas as a solution of Poisson’s equation,

∇2� = 4πG ρ. (75)

In the former case, the total energy Etot = ∫
(ρe + ρφ)dV stays

constant if the potential is static. In the more relevant case of self-
gravity, the total energy of the system is given by

Etot =
∫ (

ρe + 1

2
ρ�

)
dV , (76)

and is conserved in the dynamics, i.e.

dEtot

dt
= 0. (77)

Without gravity, the finite-volume formulation for hydrodynam-
ics introduced earlier ensures conservation of the sum of thermal
and kinetic energy to machine precision. Since the thermal energy in
this approach is actually defined as the difference between the total
energy and kinetic energy of a cell, it is in principle highly desir-
able to also obtain a discretized formulation of the dynamics in the
self-gravitating case where the conservation of energy is manifest.
Furthermore, it would be convenient if the gravitational source term
could be incorporated into the time integration such that there is no
need to explicitly include gravity in the Riemann solver (this can be
done approximately, however, see for example the PPM scheme of
Colella & Woodward 1984).

In the following, we first review a standard approach to include
self-gravity in finite-volume codes, which however is not explicitly
energy-conserving. In fact, we will show that the resulting errors can
be quite substantial for certain types of problems. We then briefly
discuss an attempt to improve on this by restoring manifest con-
servation of the total energy, based on including the gravitational
self-energy in the total energy variable that is evolved for each cell.
Unfortunately, it turns out that this approach is numerically prob-
lematic since it can lead to unphysical changes of the local thermal
energy. We therefore ultimately adopt a different solution that cor-
rects for the large errors that can appear in the ‘standard’ approach.
While not manifestly conservative, we find that, in practice, the
total energy is conserved quite accurately in this approach. Since
monitoring the accuracy of total energy conservation can then also
serve as a useful check of the quality of the integration, we consider
this as a good compromise. Finally, we discuss our treatment of
locally adaptive, time-dependent gravitational softening and how
this is accounted for in the dynamics.

5.2 A standard approach to include self-gravity

Arguably the simplest method to include self-gravity lies in an
operator-splitting approach, where one alternatingly evolves the
system under the homogeneous Euler equations and the gravita-
tional source terms. However, such fractional step methods are often
inadequate for handling the gravitational source terms, especially
in situations with approximate hydrostatic equilibrium (Müller &
Steinmetz 1995; LeVeque 1998; Zingale et al. 2002). We will there-
fore not consider this method here.

Instead, we consider the method suggested by Müller & Stein-
metz (1995), which is employed in similar form in many current
finite-volume cosmological codes (e.g. Truelove et al. 1998). Since
the gravitational energy is non-local, an explicit conservation of
total energy in the discretizations of equations (74) and (75) can-
not easily be obtained with an extension of the standard flux-based
formalism of finite-volume methods. We may therefore give up the

property of manifest energy conservation and instead couple the
gravitational field to the Euler equations in a way that resembles
the fractional-step approach, except that gravity is also properly
included in the half-step prediction of the hydrodynamical step.

We begin by noting that, when the Euler equations are expressed
in primitive variable formulation,

∂W
∂t

+

⎛
⎜⎝

v ρ 0

0 v 1/ρ

0 γP v

⎞
⎟⎠ ∂W

∂r
=

⎛
⎜⎝

0

−∇�

0

⎞
⎟⎠ , (78)

where W = (ρ, v, P ), the gravitational source term couples only to
the momentum equation. Hence, to first order in time, the gravita-
tional field does not change the pressure or density of a fluid, only
the velocity is altered. We can therefore account for the gravitational
field in the hydrodynamic flux calculation if we augment the half-
step prediction of the velocities with the gravitational acceleration
according to

ṽ
(n+1/2)
i = v

(n+1/2)
i − �t

2
∇i�

(n), (79)

where the potential �(n) is calculated at the beginning of the step.
Applying the ordinary reconstruction and Riemann solver tech-
niques discussed earlier, we can then obtain time-centred flux esti-
mates that solve the homogeneous part of the Euler equations. To
add the gravitational source term into the final time-advance, we
then proceed as follows. We first use the estimated mass flux to
update the mass contained in each cell,

m
(n+1)
i = m

(n)
i − �t

∑
j

AijF
ij
m , (80)

which exploits the fact that the gravitational field does not appear in
the mass equation of the conservative form of the Euler equations.
With the new masses in hand, we can calculate the gravitational
forces at the end of the time-step, ∇ i�

(n+1). This allows an update
of the momentum of each cell, according to

p(n+1)
i = p(n)

i − �t
∑

j

Aij Fij
p

−�t

2

[
m

(n)
i ∇i�

(n) + m
(n+1)
i ∇i�

(n+1)
]
,

(81)

where Fp is the hydrodynamical momentum flux. Note that this
step also determines the new velocities at the end of the step. We
can use them to finally obtain a second-order-accurate update of the
energies of each cell,

E(n+1)
i = E(n)

i − �t
∑

j

AijF
ij

E

−�t

2

[
m

(n)
i v

(n)
i ∇i�

(n) + m
(n+1)
i v

(n+1)
i ∇i�

(n+1)
]
. (82)

Here, the term in square brackets is the gravitational work term,
while the flux term involving FE stems from the homogeneous part
of the Euler equations.

The above scheme does not explicitly conserve total energy, but
it still conserves total momentum and mass. Violations of energy
conservation can arise because the gravitational work term, which
is estimated effectively with cell-centred fluxes, may not precisely
balance the actual energy extracted from the gravitational field,
which is determined by the mass fluxes obtained with the Riemann
solver around a cell’s boundary. We have found that this subtle
difference can sometimes lead to substantial inaccuracies in total
energy conservation, especially in collapse problems that involve
strong shocks and a conversion of large amounts of gravitational
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energy into heat energy. For example, ‘Evrard’s collapse problem’,
discussed in Section 9.1, shows large errors of this kind, especially
when the spatial resolution is relatively poor. Note that in this case
the violation of the total energy conservation is first order in time,
i.e. it does not go away with very fine time-stepping and instead
stays constant at a finite (large) size even in the limit of highly
accurate time integration. It is therefore desirable to obtain a more
accurate discretization of the energy equation when a gravitational
field is present.

5.3 An explicitly conservative formulation
to include self-gravity

One idea for a more accurate discretization of the conservative
Euler equations in the presence of gravity is based on rewriting the
standard form of the energy equation,

∂

∂t
(ρe) + ∇ [(ρe + P ) v] = −ρv∇�, (83)

with the help of the continuity equation as

∂

∂t

(
ρe + 1

2
ρ�

)
+ ∇

[(
ρe + 1

2
ρ� + P

)
v

]

= 1

2
ρ

∂�

∂t
− 1

2
ρv∇� . (84)

This suggests redefining the total energy of an individual cell as

Ei =
∫

Vi

(
ρe + 1

2
ρ�

)
dV , (85)

such that the total energy of the system simply becomes the sum of
the Ei of all cells. If we suitably modify the energy flux function
in the hydrodynamical finite-volume scheme, the left-hand side of
equation (84), which has the form of a conservation law, can be
easily solved such that the total energy stays constant. If we can
also find an explicitly conservative discretization of the modified
source term on the right-hand side of equation (84), we would
obtain a scheme that manifestly conserves the total energy.

This can, in fact, be achieved. We can write the right-hand side
of equation (84) as

1

2
ρ

∂�

∂t
− 1

2
ρv∇�

= G

∫
ρ(x)ρ(x′)

v(x) + v(x ′)
2

∇x
1

|x − x ′|d3x ′. (86)

If we decompose the x ′-integration into a sum over integrals over
all cells, and integrate the full energy equation over x for a cell i,
we obtain the discretized form
dEi

dt
+
∑

k

AikF
(E)
ik =

∑
j

vi + vj

2
f ij (87)

for the energy equation, where fij is the gravitational force between
cells i and j. We see that the term on the right-hand side effectively
symmetrizes the gravitational work term the two cells exert on to
each other. The sum over j extends over all cells, but both relevant
terms, the total force

∑
j f ij and the total work term

∑
j vj f ij can

be accurately and efficiently calculated with a tree algorithm. The
sum over k in equation (87) accumulates the energy fluxes

F
(E)
ik = ρik

(
eik + �ik

2

)
(vik − wik) + Pikvik (88)

from the neighbouring cells of cell i, where the (ρ ik, eik, vik − wik,
P ik) are determined by the Riemann problem between cells i and k,
and the potential �ik on the face between two cells can be defined

as the arithmetic mean �ik = (�i + �k)/2 of the potentials at the
corresponding mesh-generating points of the cells. It is not difficult
to define a time integration scheme for equation (87) that preserves
its conservative character in the discretized form, such that at least
formally a finite-volume scheme results that accurately conserves
up to machine precision the total energy, momentum and mass in
the presence of a gravitational field. However, the above approach
shows severe shortcomings in practice. In particular, the fact that
the temperature of the gas is effectively defined by subtracting the
kinetic energy and the potential energy from the total energy as-
sociated with a fluid element causes trouble. This can give rise to
spurious local changes in the temperature of the gas due to the
presence of a gravitational field, even though the Euler equations
in primitive variable form show that there should be no first-order
change in the temperature due to a gravitational field. We have
found that in some cases this may even drive the temperature to
unphysical negative values. Secondly, in this approach the temper-
ature field couples to discreteness noise present in the gravitational
field, which considerably reduces the accuracy of the hydrodynam-
ical calculations. In combination, these defects are severe enough
that the ‘total energy approach’ described in this section appears
not to be a viable practical solution for implementing self-gravity
in the moving-mesh approach. We therefore refrain from using it in
our practical applications.

One exception is the case where gravity is simply described by
an external static gravitational potential �. We can then express the
conservation of total energy as

∂

∂t
(ρe + ρ�) + ∇ [(ρe + ρ� + P ) v] = 0, (89)

which suggests that we include the gravitational energy in the def-
inition of the total energy of a cell. The thermal energy can then
be defined by subtracting both the kinetic energy and the potential
energy from the total energy. We also need to augment the energy
flux term for a cell interface with an additional gravitational en-
ergy flux, with the result that the total energy is exactly conserved.
The inclusion of gravity into the dynamics then proceeds like in
equations (80), (81) and (82), except that in equation (82) the ex-
plicit gravitational work term (in square brackets) is omitted as it is
already accounted for by the energy flux.

5.4 An improved coupling of self-gravity to
the Euler equations

In the following, we discuss a method that tries to improve the
discretization of the energy equation used in the ‘standard approach’
discussed in Section 5.2. Recall that the gravitational work exerted
on a cell over a time-step �t is given by

�E
grav
i = −

∫
dt

∫
Vi

dV ρ v∇�, (90)

integrated over the moving volume of a cell. We may also rewrite
this integral as

�E
grav
i = −

∫
dm

∫
ds∇�, (91)

where d s is the displacement of each individual mass element. This
highlights that the key to accurate energy conservation in case of
self-gravity is to correctly account for the actual mass motions that
happen in the system. The problem with equation (82) is that this
is not guaranteed explicitly since it estimates the mass motion with
a cell-centred flux, but the mass fluxes actually used are calculated
at the surfaces of the cells, and may sometimes be quite different.
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We suggest another discretization of equation (90) that improves
on this. First, we introduce the velocity vector wi of the cell’s
motion, which splits the integral into two parts, one describing the
motion of the cell itself (with all of its mass), and the other account-
ing for the motion of mass elements that are actually exchanged
between two adjacent cells, viz.

�E
grav
i = −�t miwi∇�i − �t

∫
ρi(v − wi)∇�i dV . (92)

Instead of approximating the volume integral of the second part
with a cell-centred flux, we transform it into a surface integral.
Neglecting spatial variations in the density, velocity and force fields
for the moment, we can write v − wi = ∇[(r − r i)(v − wi)] and
apply the Green-Gauss theorem. This yields

�E
grav
i = −�t miwi∇�i

−�t

2

∑
j

ρij[(vij − wi)r ij][∇�i r ij/rij]Aij, (93)

where the sum is now over all faces of area Aij of a cell, and, as usual,
r ij = r i − r j is the displacement vector between the neighbouring
mesh-generating points. We have also replaced the values of density
and velocity on the surface with those determined by the Riemann
solver. In fact, the term �tρ ij(vij − wi)r ijAij/r ij can be recognized
as the integrated mass flux �mij = �tAijF

ij
m exchanged between

two cells i and j, yielding

�E
grav
i = −�t miwi∇�i − 1

2

∑
j

�mijr ij∇�i. (94)

An even more instructive form of this equation is obtained with the
replacement

r ij∇�i 
 �i − �j (95)

which gives

�E
grav
i = −�t miwi∇�i − 1

2

∑
j

�mij(�i − �j ). (96)

If we define the total gravitational energy of the discretized system
as

Epot = 1

2

∑
ij

G mi mj φ(rij) = 1

2

∑
i

mi�i (97)

and the potential as

�i =
∑

j

G mj φ(rij), (98)

where φij describes the gravitational interaction kernel between two
cells, then it is easy to see that equation (96) describes the gravita-
tional energy change exactly to linear order in time. This is a signif-
icant improvement compared with schemes based on cell-centred
flux for the gravitational work estimate. The above can hence replace
the energy update of equation (82) with a more accurate version that
ensures conservation of the total energy in self-gravitating systems.

In practice, we typically use the version (94) based on the gravita-
tional forces, instead of equation (96) based on the potential. In order
to render the time integration of the energy equation second-order
accurate, we need to replace the gravitational forces (or potentials)
with averages between the beginning and end of the time-steps,
which can be done as in Section 5.2. We note that this method is
also applicable in ordinary Eulerian codes, where �wi = 0, not just
in the moving-mesh approach developed in this paper. However,
the method may also cause drifts of the temperature of the gas in
certain situations, and is hence not completely free of the problems
that were mentioned earlier.

5.5 Gravitational softening

To calculate gravitational potentials and forces for our unstructured
hydrodynamical mesh, we represent each cell as a mass point with
an appropriate gravitational softening, and employ techniques that
are commonly used in N-body algorithms. In principle, the gravita-
tional field of a single Voronoi cell could be adopted as the field of
a polyhedron of constant density, with the cell’s shape and its total
mass. However, this would make an exact calculation of the field
unwieldy and unnecessarily complicated. As we anyway run out of
gravitational resolution on the scale of the mesh cells, the precise
shape of a cell should be unimportant, provided we can ensure that
the generated field is sufficiently smooth and free of anisotropies
due to the mesh geometry. For simplicity, we therefore represent
the potential of each gaseous cell as that of a top-hat sphere of
constant density and radius h. In order to improve the smoothness
of the potential in light of the varying geometries of individual
cells, we typically choose the volume of this top-hat sphere to be
slightly larger than the cell volume itself. In practice, we relate h
to the volume V of a cell as h = fh(3V /4π)1/3, where we choose
fh ∼ 1.0–1.5. We note that for well-behaved meshes a softening of
the force-law is not strictly necessary because the mesh-generating
points are then always sufficiently distant from each other. However,
a gravitational softening is always required if a collisionless particle
component is present as well, and it allows a consistent definition
of the gravitational binding energy of the gas.

The gravitational potential kernel of a cell of volume V is taken
to be

φ(r, h) = −1

r

{
r

2h

[
3 − (

r

h

)2
]

for r ≤ h,

1 for r > h,
(99)

as a function of distance r. We then define the total gravitational
self-energy of the system of Voronoi cells as

Epot = 1

2

∑
ij

G mi mj φ(rij, hj ). (100)

Ignoring mass exchanges between cells for the moment, this implies
that the gravitational acceleration of a cell is given by

mi agrav
i = −∂Epot

∂r i

= −
∑

j

Gmimj

r ij

rij

[
φ′(rij, hi) + φ′(rij, hj )

]
2

−1

2

∑
jk

Gmjmk

∂φ(rjk, hj )

∂h

∂hj

∂r i

,

(101)

where φ′(r , h) = ∂φ/∂r and r ij = r i − r j. The interaction be-
tween cells of different softening lengths is hence symmetrized by
averaging the forces, as opposed to, for example, by averaging the
softening lengths. This is analogues to the formalism employed in
Hernquist & Katz (1989). By defining the potential energy of equa-
tion (100) slightly differently, in terms of an interaction potential
with a symmetrized softening length hij, one can however also arrive
at a scheme where the softening lengths are averaged, but then the
correction force derived below is less convenient to calculate.

The last term in equation (101) describes an additional force
component which stems from changes of the gravitational softening
lengths. It has to be included to make the system properly conser-
vative when spatially adaptive gravitational softening lengths are
used (Price & Monaghan 2007) that are allowed to vary in time,
which is our default approach to treat self-gravity in the moving-
mesh scheme. Since we tie the gravitational softening length to the
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volume of a Voronoi cell, we have

∂hj

∂r i

= ∂hj

∂Vj

∂Vj

∂r i

= hj

3Vj

∂Vj

∂r i

. (102)

Defining the quantities

ηj ≡ 1

2

∑
k

Gmjmk

∂φ(rjk, hj )

∂h

hj

3Vj

, (103)

we can rewrite the last sum in equation (101) as

mi asoft
i = −

∑
j

ηj

∂Vj

∂r i

. (104)

Using equations (22) and (23) for the partial derivative of the
Voronoi volume (see Serrano & Español 2001), this can be more
explicitly expressed as

mi asoft
i =

∑
j �=i

(ηj − ηi) Aij

(
cij

rij
− r ij

2rij

)
, (105)

where the sum extends over all the Voronoi neighbours of a cell.
Note that Aij, cij and rij are invariant when i and j are exchanged,
while r ij changes sign. The term involving cij produces therefore an
antisymmetric force between i and j, but the same is not obvious
for the force from the r ij-term. However, according to the Gauss
theorem we have

ηi

∑
j �=i

Aij
r ij

rij
= 0, (106)

because the summation is just the surface integral of a constant
function. If we subtract equation (106) from equation (105), we
obtain

mi asoft
i =

∑
j �=i

Aij

[
(ηj − ηi)

cij

rij
− (ηj + ηi)

r ij

2rij

]
, (107)

where now the antisymmetry of the correction force between parti-
cles i and j is manifest.

To properly account for the changes in the gravitational energy
when the softening lengths are varied, we hence need to calculate
the quantities ηi given by equation (103), which can be conveniently
done alongside the tree walk used for the gravity calculation. With
these values in hand, we can then calculate the correction force as a
surface integral over the local Voronoi cell. Finally, the correction
force is added to the ordinary gravitational force, and the resulting
total force is used in equations (81) and (82), or alternatively in
equations (96), replacing −m∇� where appropriate.

For the dark matter particles, we employ a softening kernel with
a different shape, the same one as used in the SPH-code GADGET,
which corresponds to spreading the mass of a particle with the more
centrally concentrated SPH kernel. This softening kernel is given
by

φdm(r, h) = −G

r

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

14
5 u − 16

3 u3 + 48
5 u5

− 32
5 u6, 0 ≤ u < 1

2 ,

− 1
15 + 16

5 u − 32
3 u3

+16u4 − 48
5 u5 + 32

15 u6, 1
2 ≤ u < 1,

1, u ≥ 1.

(108)

where u = r/h. Often, we will quote the gravitational softening
length for collisionless dark matter particles in terms of an ‘equiv-
alent’ Plummer softening length ε, defined such that the potential
at zero lag is m φ(0) = −Gm/ε. This implies h = 2.8ε. We keep
the softening lengths for dark matter particles fixed, which ensures
that the collisionless dynamics are conservative without the need for

0.0 0.5 1.0 1.5
u

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Φ

Figure 15. Softened gravitational potential for cells and particles. The solid
line shows the spline-based softening we use for collisionless particles,
while the dot–dashed line is the top-hat like softening of gaseous cells.
Both potentials become equal to the Newtonian potential for u ≥ 1.0. For
comparison, we also show the Plummer softening with a dotted line. The
dashed line is the Newtonian potential of a point mass.

correction forces like the ones derived for the gaseous cells. Fig. 15
illustrates the difference in shape between the ‘particle’ and the
‘cell’ kernels, for an equal choice of h. The gravitational softening
we have chosen for dark matter particles results in a slower decline
of the force within the softening length.

In our tree-based gravity calculation, we store for each tree node
the maximum softening length hnode of all particles it represents,
and we always open a node if its distance is smaller than max(hi,
hnode), where hi is the softening of the particle under consideration.
As a result, softened interactions only occur between particles, and
not between nodes and particles.

Finally, a brief comment about our treatment of the gravitational
self-energy of individual resolution elements. In our tree-based cal-
culation of the potential, we always sum over all particles, hence
the potential at the location of a particle contains a contribution
from the particle itself. In the case of a dark matter particle of
mass m and softening length h = 2.8ε, this is −Gm/ε. Because
the dark matter particle masses are constant, there is then a finite
gravitational binding energy left even if all particles are spread out
to infinity. While unimportant for the dynamics itself, we prefer to
eliminate this contribution by subtracting the self-potential −Gm/ε

from the calculated potential of a collisionless particle. For gas par-
ticles (which really represent cells of a well-defined volume), the
situation is different. As their mass and volume can change, the
self-energy contribution of a gaseous cell is not constant and hence
cannot simply be subtracted. This is also not necessary in this case.
As the gas mass is spread out to infinity, its self-energy will auto-
matically tend to zero, because then the cell volumes and smoothing
radii tend to infinity as well.

6 R EFI NI NG O R D EREFI NI NG C ELLS

In ordinary Eulerian hydrodynamics, adaptive-mesh refinement
techniques are very useful methods for dynamically concentrat-
ing the mesh resolution in regions where it is needed most, while
smooth regions or parts of the flow that are not of interest can be
derefined and modelled more coarsely. For applications with a large
dynamic range in density and length scales (which is typical in cos-
mology), AMR is, in fact, often a prerequisite in Eulerian methods
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in order to achieve the necessary resolution in the regions that are
of most interest.

The Lagrangian moving-mesh methodology introduced in this
paper, when combined with the techniques to steer the mesh-motion,
removes much of the need for AMR, especially in applications
where quasi-Lagrangian refinement criteria are used, as is typical in
cosmological structure formation calculations with AMR. In fact,
we think that the Lagrangian moving-mesh approach with its auto-
matic adjustment of resolution to the local clustering state is ideal
for this type of application, and is arguably more natural than AMR.

One of AMR’s particular strengths is however that the refinement
criteria can be nearly arbitrary. This allows resolution to be gained
not only where most of the mass goes, but where resolution is needed
or desired most, according to the problem at hand. For example, one
might want to resolve low-density regions or locate shock fronts
particularly well. Both can be achieved with AMR by an appropriate
choice of the refinement criteria. If the same flexibility is desired
for the unstructured Voronoi code discussed here, one needs to find
ways to refine or derefine the local mesh resolution dynamically, a
topic that we discuss briefly in this section.

In structured AMR, collections of cells can be hierarchically cov-
ered with patches of refined meshes. Since here the geometry of the
cells is simple, it is easy to arrange the daughter meshes to exactly
cover a certain set of cells in the parent mesh. This makes the op-
erations of interpolation and prolongation straightforward. For our
unstructured mesh, the situation is more complicated. In particular,
it is not straightforward to cover a contiguous set of cells with an-
other set that is better resolved, simply because of the fact that the
cell boundaries are defined as the edges of a Voronoi tessellation.
Finding a new, larger set of points as a replacement for the points
contained in some evacuated region such that the outer convex hull
of the Voronoi cells of all original points remains unchanged is non-
trivial in general. There is one exception, however: If we want to
refine just a single cell, we can split a Voronoi cell into two halves
if we insert a new mesh-generating point at almost exactly the same
location as the cell’s original point. This will leave all surrounding
Voronoi cells unchanged.

This forms the basic mechanism for mesh-refinement in our code.
According to a criterion of choice, any given cell can be flagged
for refinement. It is then split into two cells by introducing a fur-
ther mesh-generating point, as illustrated in Fig. 16. The conserved
quantities of the original cell (mass, energy, momentum) are dis-
tributed among the two halves in a conservative way, either simply
by weighting with the relative fractions of the volumes occupied
by the two new cells, or by using the estimated linear gradient for
a conservative reconstruction combined with a volume integration.
After the new point has been inserted, the mesh-regularization tech-
niques then dynamically change the local mesh such that the two
nearby points created by the cell split become well separated from
each other over the course of a few time-steps. By introducing the
new point in the direction of fluid gradients, one can furthermore
optimize the direction for which the spatial resolution is gained.

Note that a fundamental difference in this refinement approach
compared with the standard AMR method is that there is no hi-
erarchy of multiple meshes that cover the same region of interest.
Instead, there is always only a single mesh, albeit with spatially
varying resolution. Refinement in our approach means the dynamic
introduction of further cells to locally increase the resolution.

As we stressed above, the Lagrangian nature of the moving-mesh
approach largely eliminates the need for ‘mesh de-refinements’ in
many practical applications. This is because the mesh follows the
flow, which often means that the resolution automatically stays

de-refinement

refinement

Figure 16. Example for the mesh refinement and de-refinement operations.
In the middle panel, a Voronoi cell is marked in grey. In a refinement
operation, the cell is split into two cells, as shown in the top panel. If a
coarsening of the mesh resolution is desired, the cell may be eliminated
from the mesh in the derefining operation shown in the bottom panel.
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where it is needed, and in particular, advection alone does not
generate a need for refinement or de-refinement, in contrast to AMR
codes. For example, if a galaxy that is highly resolved in its centre
moves through space with large velocity, the moving-mesh approach
automatically follows the centre well, without any need to introduce
mesh refinements. In Eulerian AMR on the other hand, refinements
would have to be constantly introduced along the path of the galaxy’s
centre, and then removed again once it has passed by. Nevertheless,
in certain applications, one may encounter situations also in the
moving-mesh approach where one would like to dynamically reduce
the spatial resolution in special regions of a mesh. However, the
geometry of the Voronoi mesh imposes significant restrictions on a
suitable mesh coarsening operation. One possibility is to basically
try to reverse the refinement operation discussed above. To this end
one can move two mesh-generating points close together over the
course of a couple of time-steps, until they have essentially identical
position. Once this is achieved, the Voronoi cells corresponding to
the two points can simply be merged by replacing the two points
with a single mesh-generating point at the same location. The new
cell then inherits the sum of the conserved fluid variables of the two
merged cells.

However, there are several technical difficulties in this approach
that make its application problematic in practice. For example, the
decision for de-refinement is not made for a single cell, but for two
neighbouring cells simultaneously. In addition, several time-steps
are needed to bring two mesh-generating points close together in
a smooth fashion, either during the actual time evolution (over
which the conditions for de-refinement may well change) or during
a pseudo-evolution where the density field is kept static and only
the advection equation for the deforming mesh is solved.

Because of these difficulties, we have implemented an alterna-
tive de-refinement strategy where a cell is dissolved instantly by
simply removing its mesh-generating point from the tessellation.
This means that the volume of the removed cell will be claimed by
the surrounding Voronoi cells, as illustrated in Fig. 16. It is then
also natural to distribute the conserved fluid quantities (mass, en-
ergy, momentum) of the dissolved cell among these neighbours,
in proportion to the claimed volume fractions. Working out the
corresponding geometrical factors requires the construction of
the Voronoi diagram of the neighbouring cells with and without
the point that is removed.

A small complication in this approach is that the removal of a
cell changes the geometry of all the neighbouring cells. This in turn
may well change the outcome of the de-refinement criterion for
these neighbouring cells. For example, if all cells below a certain
size are supposed to be derefined and two neighbouring cells are
candidates for the de-refinement, then the removal of one of them
will make the other larger, so that it may no longer fulfil the de-
refinement criterion. To make the order of de-refinement a well-
defined procedure, we construct the list of cells that are derefined in
a given time-step in the following way. First, we restrict ourselves
to de-refinement criteria that allow a priority ordering of some kind,
i.e. we need to be able to unambiguously identify the cell that
should ‘most urgently’ be derefined. Starting with this cell, we then
flag cells for de-refinement in the order of this urgency parameter.
However, we skip all cells that already have a neighbouring cell
that is flagged for de-refinement in the same time-step. In this way
we always have a well-defined set of cells that can be derefined in
a given time-step, and only cells whose de-refinement criteria are
independent of each other are derefined in the same step. This also
means that two neighbouring cells are never derefined in the same
time-step. In Section 8, we will discuss a test problem (the Noh

problem) where we apply both the refinement and de-refinement
strategy described here.

7 T I M E IN T E G R AT I O N

In this section, we discuss issues of time integration. In particular,
we introduce an individual time-step scheme that can be used for our
finite-volume discretization on an unstructured mesh. We will also
address how we combine the hydrodynamics with the integration of
a collisionless N-body system that represents dark matter or stars
in galaxies. Finally, we detail how we implemented cosmological
integrations in an expanding universe, and we explain the general
structure of our new simulation code AREPO that implements the
methods discussed in this paper.

7.1 Time-step criterion

For hydrodynamics with a global time-step, we employ a simplified
CFL time-step criterion in the form

�ti = CCFL
Ri

ci + |v′
i |

(109)

to determine the maximum allowed time-step for a cell i. Here Ri

is the effective radius of the cell, calculated as Ri = (3Vi/4π)1/3

from the volume of a cell [or as Ri = (Vi/π )1/2 from the area in
2D], under the simplifying assumption that the cell is spherical. The
latter is normally a good approximation, because we steer the mesh
motion such that the cell-generating point lies close to the centre-
of-mass of the cell, which gives it a ‘roundish’ polyhedral shape.
CCFL < 1 is the Courant–Friedrichs–Levy coefficient (usually we
choose CCFL 
 0.4–0.8), ci = √

γP/ρ is the sound speed in the
cell and |v′

i| = |vi − wi| is the velocity of the gas relative to the
motion of the grid. In the Lagrangian mode of the code, the velocity
|v′

i| is close to zero and usually negligible against the sound speed,
which means that larger time-steps than in an Eulerian treatment are
possible, especially if there are large bulk velocities in the system.

If the code is operated with a global time-step, we determine the
next system time-step as the minimum

�t = min
i

�ti (110)

of the time-step limits of all particles. In simulations with grav-
ity, we also impose a second kinematic time-step criterion for each
particle, as described in Springel (2005), and we restrict the maxi-
mum allowed time-step to a suitable value. However, we have also
implemented an individual time-step scheme, where the different
time-step conditions of different cells are treated in a more flexible
and computationally efficient fashion. This is discussed next.

7.2 Individual time-steps

In typical cosmological simulations, a large dynamic range in den-
sities quickly occurs as a result of gravitational clustering. Accord-
ingly, local dynamical times can vary by orders of magnitude. It has
hence long been common practice to use individual time-steps for
the collisionless N-body problem, a technique that has also been
extended to hydrodynamical SPH simulations (e.g. Katz, Weinberg
& Hernquist 1996; Springel, Yoshida & White 2001). However,
the use of individual time-steps in mesh-based finite-volume codes
is more problematic and appears to be rarely used, except in the
context of AMR simulations. In the latter, individual refined grid
patches are typically subcycled in time (frequently by a factor of 2
if the refinement factor is 2) relative to their parent grid. Refluxing
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techniques are then used to assure that a fully conservative solu-
tion is obtained on the coarser parent grid as well. Note that in this
approach the same volume is effectively covered multiple times.

We aim for another solution, because in the moving-mesh ap-
proach the cell size may vary greatly without an associated nested
grid structure. In order to save computational time in simulations
with a large dynamic range, we would like to be able to evolve only
certain parts of the mesh with a small time-step, and other parts
with a larger step size. At the same time we want to retain the con-
servative character and the stability of the finite-volume approach
that is obtained for a global time-step.

Our approach to address these requirements is based on a dis-
cretization of the allowed time-step sizes into a power-of-two hier-
archy, similar to the approach frequently adopted in cosmological
SPH codes (e.g. Katz et al. 1996). This means that the actual time-
step �ti of a cell i is determined by taking the largest power of
2 subdivision that is smaller than the time-step criterion of equa-
tion (109). This effectively puts the cells into a set of time-step bins
that form a nested hierarchy of possible time-steps, providing for a
partial synchronization of the time-steps of different cells.

Our individual time-step integration of the unstructured mesh is
based on the principle that, if two adjacent cells have different time-

steps, their common face is evolved with the smaller of the two
steps. This leads to a time-integration scheme that is graphically
explained in the sketch of Fig. 17. In this example, in ‘Step 0’, the
current system time is synchronized with the start of all three time-
step sizes that are present. As a result, the Voronoi mesh needs to be
generated for all cells present in the system, and fluxes are estimated
for all of the faces. However, the flux estimate is done for different
time-step sizes, depending on the time-steps of the involved cells, as
indicated in the sketch. For each face, always the smaller time-step
of the two neighbouring cells is used as actual time-step, and the
time-integrated fluxes estimated for the faces are used to update the
conservative quantities of the two adjacent cells.

Once the step is completed, the system time is advanced to the
next beginning/end of occupied time-step bins, and step 1 in Fig. 17
begins. For cells that have completed their time-step (these are the
ones marked with time-step size ‘1/2�t’), new primitive fluid vari-
ables and gradients are estimated, but the other cells continue to use
their old primitive variables and gradients for half-step predictions
and flux estimates. Also, their mesh-generating points continue to
move with the velocities assigned in their last active step. In step 1,
only a much smaller set of the faces is active during the step, and
only those cells of the Voronoi mesh need to be constructed that

Figure 17. Sketch of the individual time integration scheme used in AREPO for the hydrodynamics. The mesh cells in this example occupy three different
time-bins, and are coloured accordingly in the sketch. In each time-step, fluxes are calculated for all faces where at least one of the cells is active on the current
time-step. The cells then exchange conserved quantities on the smaller of the two time-step sizes of the two neighbouring cells of each active face. A cell has
the possibility to reduce its time-steps at the end of each step, but can only move to a time-step twice larger every second step in order to maintain a nested
synchronization of the time-step hierarchy.
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have at least one active face. We achieve this by inserting only the
mesh-generating points of such active cells into the mesh, and by
ensuring the completeness of their Voronoi cells with the search ra-
dius technique discussed in Section 2.4. Fluxes are estimated only
for the active faces, and used to update the conservative quanti-
ties of the involved cells. This process repeats again in step 2 and
step 3. Whenever a cell has completed its time-step, its primitive
variables are updated based on the accumulated changes of its con-
served quantities. Also, the cell may then change its time-step size.
The time-step can always become smaller after a step has been
completed, but it can only increase if the higher time-step level is
synchronized with the current time, i.e. if the target time-bin starts
one of its steps at the current time. This means that a cell may
increase its time-step only every second step. An example for time-
step changes is seen in step 4 of the sketch in Fig. 17: after having
completed step 3, a few cells reduce their time-step, and others in-
crease it. With this change, the system is then integrated forward in
time through steps 4 and 5.

By construction, the above scheme is conservative as it only
involves pairwise exchanges of conserved fluid quantities. We have
also found it to perform accurately in practice, in the sense that we
obtained comparable accuracy in simulations where a global time-
step or the more efficient individual time-step scheme were used. A
specific test of this will be discussed in Section 8.

A crucial point lies in the determination of suitable individual
time-steps; this obviously can have a large impact on the accuracy
of the individual time-step scheme, as well as on the efficiency gain
that can be realized with it. The time-step criterion of equation (109)
is purely local, and is only appropriate for hydrodynamical waves
that travel with the local sound speed. If a supersonic shock wave is
approaching, the local gas element would be ignorant of it until the
shock has arrived, and may therefore be put on an inadequately large
time-step just before the shock strikes. We hence need to determine
adequate time-steps by somehow taking information about distant
regions into account. The idea is that any given cell should estimate
the earliest time when it could become affected by the gas present
in some other cell, and this would then provide a suitable maximum
individual time-step. To make this concept more explicit, we define
a ‘signal speed’ (Whitehurst 1995; Monaghan 1997) between two
cells i and j,

v
sig
ij = ci + cj − vij · r ij/rij, (111)

where the velocity difference vij of the two cells is projected on to
their separation vector. We then require that the time-step of cell i
should be smaller than the travel time of this signal over the distance
rij of cells i and j. This means we replace the time-step criterion of
equation (109) with

�ti = CCFL min

(
τi,

Ri

ci + |v′
i |
)

, (112)

where

τi = min
j �=i

(
rij

ci + cj − vij · r ij/rij

)
. (113)

The time-step of equation (112) is the maximum allowed time-step
for cell i, and can be used in our individual time-step approach.

A brute-force calculation of this time-step criterion would be a
prohibitive N 2 process. However, we can use a hierarchical tree-
based grouping of the particles for a much more rapid evaluation of
the time-step criterion, with a cost of order O(log N ) per particle.
For this purpose we use the same oct-tree that we anyway employ for
neighbour search (as needed in the parallelized mesh construction;

see Fig. 9) and the gravity calculation. For each tree node, we
store the maximum sound speed cmax, and the maximum velocity
magnitude vmax for all the cells with their mesh-generating points
contained in the node. The calculation of the maximum allowed
time-step is then done with a special tree walk. We start the walk
with a first guess for the time-step, equal to �t current = Ri/(ci +
|v′

i|). If a single particle j �= i is encountered, its value of r ij/v
sig
ij is

computed and used to update �t current if it is smaller. If a tree node
is encountered, we calculate a special tree opening criterion, of the
form

dmin < �tcurrent (ci + cmax + |vi | + vmax), (114)

where dmin is the smallest distance of the point r i to the boundaries
of the node under consideration. If this condition is fulfilled, the
tree node is opened and its daughter nodes are considered in turn,
otherwise the tree walk along this branch of the tree can be dis-
continued because there cannot be a particle inside the node that
would require a smaller time-step than the current one. When the
tree walk finishes, the time-step of cell i is finally given by �ti =
CCFL�t current.

We note that this scheme is more general and flexible than the sug-
gestion by Saitoh & Makino (2009) to restrict the time-step choices
of a particle (cell) by the time-steps of its immediate neighbours. Our
approach can choose optimum time-steps even under extreme con-
ditions. For example, one can imagine a high-speed collision of two
self-gravitating cold blobs of gas. While the blobs are still separate,
our scheme would assign large time-steps to them, allowing them
to efficiently propagate through space, but right before the physi-
cal collision starts, the time-steps would be reduced appropriately.
We also note that the above scheme produces Galilean-invariant
time-step choices.

7.3 Cosmological integration

In an expanding Friedman–Lemaitre cosmology, the Euler equa-
tions need to be modified by source terms that describe the decay of
velocities and energies due to the expansion of space. It is convenient
to describe the fluid positions in terms of comoving coordinates x =
ar , where a is the cosmological scalefactor a = 1/(1 + z) and z
is the redshift. We also define a comoving density ρc ≡ a3ρ, and a
‘comoving pressure’ P c ≡ (γ − 1)ρcu. The Euler equations in an
expanding universe can then be written as

∂ρc

∂t
+ 1

a
∇c(ρcv) = 0, (115)

∂(ρcv)

∂t
+ 1

a
∇c[(ρcvvT + Pc)v] = −H (a) ρcv − ρc

a2
∇c�c, (116)

∂(ρce)

∂t
+ 1

a
∇c[(ρce + Pc)v] = −2H (a) ρce − ρcv

a2
∇c�c. (117)

Here v = a ẋ is the peculiar velocity. The specific energy is defined
in terms of the peculiar velocity as e = u + v2/2. The gradient
operator ∇c acts on the comoving coordinates x, and H (a) = ȧ/a is
the Hubble expansion rate. �c is the comoving peculiar gravitational
potential, which is the solution of

∇2
c �c = 4πG [ρc(x) − ρc], (118)

where ρc is the mean comoving density of the universe.
Integrating these equations over the comoving volume of a

Voronoi cell, it is easy to see that suitable ‘conservative’ variables
are still given by mass, momentum and energy of a cell, except that
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the total momentum and total energy of the simulated system are
not strictly conserved any more due to the presence of the terms in-
volving H(a). However, surface integrals over cells simply yield the
ordinary fluxes of the Euler equations, evaluated with the physical
fluid quantities and the physical areas of the cell interfaces. Hence,
we can continue to use the Godunov approach for determining the
fluxes, and they themselves are still fulfilling a detailed balance
between cells.

To incorporate the loss terms due to cosmological expansion, we
proceed similarly as for the gravitational source terms. To calculate
time-centred fluxes, we incorporate the decay terms in the half-step
prediction of the primitive variables and then obtain a second-order
accurate update for the full step by evaluating the loss terms at the
beginning and end of the step. For example, for the energy contained
in a cell, this takes the form

En+1 = En + �Eflux − [H (an)En + H (an+1)En+1] �t, (119)

where En+1 is the energy at the end of the step, and �Eflux denotes
the accumulated energy flux into the cell across its surface. Note
that equation (119) can be easily solved for the new energy En+1 at
the end of the step.

7.4 Structure of the AREPO code

In Fig. 18, we show a basic flowchart of the new cosmological hy-
drodynamical code AREPO that implements the methods described in
this paper, and which was used to calculate all the test problems dis-
cussed in the next sections. This code is parallelized for distributed
memory computers, and is written in ANSI-C. Its input and output
files largely match those of the TreePM/SPH code GADGET-2, such

that a comparison of moving-mesh calculations with corresponding
ones done with SPH is straightforward.

The AREPO code allows a variety of different types of simulations,
both in 2D and in 3D. Self-gravity of the gas can be included, and
is either computed with a pure Tree or a TreePM approach. A col-
lisionless dark matter or stellar fluid can be optionally included as
well. Simulations both in Newtonian space and in an expanding
universe are possible. Also, fully adaptive, individual time-steps
are supported both for the gas and for the dark matter particles.
The flow chart of Fig. 18 shows how the code arranges the differ-
ent calculational steps. We have also implement additional physics
modules into our new code, such as radiative cooling, star formation
and energy feedback processes, following the treatment in the most
recent version of the GADGET code. Details of these implementations
will be described elsewhere.

8 H Y D RO DY NA M I C A L T E S T PRO B L E M S

In this section, we consider a number of hydrodynamical test prob-
lems in order to assess the accuracy and robustness of our new
moving-mesh code. We will frequently compare the results with
calculations that start from identical initial conditions but do not
allow for a motion of the mesh-generating points. In this case, our
code should behave equivalently to a standard Eulerian scheme with
second-order accuracy in space and time. For a few of the test prob-
lems we investigate this aspect explicitly by also comparing with the
publicly available, high-accuracy MHD code ATHENA (Stone et al.
2008). A number of our test problems also allow comparisons with
results published in the literature for other codes. Note that tests
involving self-gravity are discussed separately in Section 9.

Figure 18. Flow chart of the simulation code. After a number of initialization steps (marked by the dashed box on the left), the code enters a main loop. In each
iteration of the main loop, the system advances by a time interval �t that corresponds to the smallest occupied time-bin. Active cells or collisionless particles
are always those with a time-step that is in sync with the current time of the system. In the first phase, operations correspond to active particles beginning their
time-step, in the second phase to those that end their time-step.
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Figure 19. L1 error norm for an acoustic wave in 1D, calculated with the
moving-mesh code (red circles), or with a fixed mesh (blue open circles).
The two schemes produce nearly identical errors (the moving-mesh code
lies only ∼1–2 per cent lower), and the solution converges as L1 ∝ N−2,
i.e. with second-order accuracy.

8.1 One-dimensional waves

We begin with arguably one of the most elementary hydrodynam-
ical test problems, the treatment of simple waves in 1D. This, in
particular, can serve as a sensitive test of the convergence rate of the
code (see e.g. the discussion in Stone et al. 2008). We first consider
simple acoustic waves. Following Stone et al. (2008), we initialize
a travelling sound wave of very small amplitude �ρ/ρ = 10−6 (to
avoid any wave steepening) and with unit wavelength in a periodic
domain of unit length and unit density. We use a 1D version of the
code in this test, where the Voronoi faces can be easily constructed
at the mid-points of the mesh-generating points. However, we have
checked that the same results are also obtained with the 2D version
of the code. The pressure is set to P = 3/5, such that the adiabatic
sound speed is cs = 1 for a gas with γ = 5/3. The mesh-generating
points are moved with the local velocity of each cell, without terms
for mesh regularization.

We let the wave travel once through the box, and compare the
final result with the initial conditions in terms of an L1 error norm.
We define the latter as

L1 = 1

N

∑
i

|ρi − ρ(xi)|, (120)

where N is the number of cells, ρ i is the numerical solution for cell
i and ρ(xi) is the expected analytic solution for the problem (which
is equal to the initial conditions in this first test).

In Fig. 19, we show results for the error norm for the acous-
tic sound wave test as a function of the number of cells, both for
a fixed-mesh and for the moving mesh. Reassuringly, the results
demonstrate global second-order convergence of the code, as ex-
pected for a smooth problem like this one. This is true both for
the moving-mesh approach and when we keep the mesh fixed, with
almost identical errors. Furthermore, we note that the absolute size
of the errors is very similar to what Stone et al. (2008) achieved
with ATHENA.

Next, we consider a more demanding test, the advection of a
contact discontinuity once through the box. To this end, the left
half x < 0.5 of the box is set to density ρ = 1, and the right
half to density ρ = 2, with pressure P = 3/5 everywhere. We
now let this contact discontinuity move once through the box with
velocity vx = 1.0 everywhere. In Fig. 20, we show the L1 error as a
function of resolution if a fixed mesh is used. Now the convergence
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Figure 20. L1 error norm for a contact discontinuity (a density step from
ρ = 1 to ρ = 2 that moves once through a box). The blue circles show the
error as a function of resolution when we use our code with a Cartesian
mesh with a fixed grid. In the presence of the discontinuity and the need to
advect it the global rate of convergence is reduced to only about L1 ∝ N−3/4.
However, for the moving-mesh code, shown with red circles, the error is
consistent with zero within floating point rounding errors. For comparison,
we also show with diamonds the L1 error of the same test carried out with
ATHENA (using second-order reconstruction and the Roe solver). The dotted
line illustrates a second-order scaling.

is in fact only L1 ∼ N−0.75. This is simply reflecting the numerical
diffusivity of the Eulerian approach for contact discontinuities. We
have checked that ATHENA also shows the same scaling of the error
if second-order reconstruction is used. On the other hand, for our
moving-mesh code, the error is consistent with zero to machine
precision, L1 � 10−17. This is of course the expected result for a
Galilean-invariant scheme, as for vx = 0 the fixed mesh recovers
the analytic result. This illustrates in a first practical application the
accuracy gain offered by a moving-mesh: pure advection errors are
reduced or eliminated. On the other hand, the error for the Eulerian
result is primarily set by the distance over which the discontinuity
needs to be advected, largely independent of the velocity of the flow.
It is hence a strong function of the reference frame picked for the
calculation.

8.2 Shock-tube test

We continue our investigation of basic hydrodynamical test prob-
lems with a 1D Sod shock tube. For definiteness, we pick a left state
(x < 0) described by P 1 = 1, ρ1 = 1 and v1 = 0, and a right state
(x ≥ 0) given by P 2 = 0.1795, ρ2 = 0.25 and v2 = 0, in a gas with
adiabatic index γ = 1.4. Of course, a large number of other sim-
ple Riemann problems are equally well possible. We have adopted
these parameters because they were previously used in a number of
other code tests (Hernquist & Katz 1989; Rasio & Shapiro 1991;
Wadsley, Stadel & Quinn 2004; Springel 2005, among others).

We sample the problem with points of spacing �x = 0.2 along
the x-axis, and examine the solution at time t = 5.0. Note that in
our moving-mesh-calculation this means that the cells start out with
unequal masses. We however refrain here from trying to adjust the
mesh motion such that the masses per cell become equal. Rather, the
mesh motion is simply taken to be given by the local flow velocity in
the moving-mesh case. We have set-up this problem in a 2D domain
to also test the 2D mesh generation, even though this problem could
of course be more efficiently calculated with the 1D version of our
code.
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Figure 21. A shock tube test with initial conditions frequently used in previous code tests (Hernquist & Katz 1989; Rasio & Shapiro 1991; Wadsley et al.
2004; Springel 2005). The panel on the left shows the result (symbols) of a 2D test with equal volume per cell and a fixed mesh, the right when the mesh is
allowed to move. The solid lines show the analytic solution, and the dotted lines in the top row mark the initial conditions.

In Fig. 21, we compare the shock-tube results, both for our
moving-mesh code and for the fixed-mesh case, with the analytic re-
sult expected for this Riemann problem. Both calculations produce
a sharply resolved shock (of Mach number M = 1.48), but there
is a trace of small post-shock oscillations in the Lagrangian calcu-
lation. Presumably, this could be avoided with a more sophisticated
wave-by-wave flux limiting procedure that would give our scheme
the total-variation-diminishing (TVD) property, which it presently
does not have due to the simpler MUSCL-Hancock approach. Note
that the contact discontinuity is smoothed out quite noticeably in
the Eulerian calculation, which also gives rise to a corresponding
error in the entropy profile across the contact discontinuity. As we
have also seen above, this is a generic feature in Eulerian methods
and results from advection errors in evolving the moving contact
discontinuity. In contrast, the contact discontinuity is very sharp in
the moving-mesh calculation, and it stays sharp as a function of
time. The conclusion that one may draw from this test is hence that
the moving-mesh approach can resolve shocks just as well as an
Eulerian method on a fixed mesh, but it is able to produce more
accurate results for contact discontinuities.

8.3 Interacting blast waves

Another classic 1D test problem is the interaction of two strong
blast waves, as introduced by Woodward & Colella (1984). Here,
a gas of density ρ = 1 with adiabatic index γ = 1.4 in the domain

x ∈ [0, 1] is initially at rest. The pressure is set to P = 1000 for
x < 0.1, to P = 100 for x > 0.9 and to P = 0.01 elsewhere. The
boundary conditions are reflective on both sides. The time evolution
of this problem features multiple interactions of strong shocks and
rarefactions, which provides for a sensitive test of a hydrodynamical
code.

We follow Stone et al. (2008) and study a low-resolution calcu-
lation of the problem with 400 equally spaced points in the domain
of width L = 1. We consider both a calculation with a fixed mesh
and one with a moving mesh; in the latter case, the mesh-generating
points are moved with the local flow velocity, so that the calcula-
tion is effectively Lagrangian, and mesh-regularization is carried
out with η = 0.1 and χ = 1.0. We use the 1D version of the code.
For comparison purposes, we also compute a high-resolution result
with a fixed mesh of 20 000 cells, which serves as a proxy for a
nearly exact solution.

In Fig. 22, we show the density profile at time t = 0.038, at
which point our results can also be compared with those of Stone
et al. (2008) and Woodward & Colella (1984). Our ‘Eulerian’ fixed-
mesh solution is similar in quality to that obtained with ATHENA by
Stone et al. (2008), except that it shows slightly more diffusion in
the contact discontinuities. This presumably reflects the benefits of
the third-order reconstruction that Stone et al. (2008) had used for
this problem, while we have only employed our standard second-
order scheme. Nevertheless, both Eulerian results show quite sizable
smoothing of the contact discontinuities, especially for the one
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Figure 22. Density profile at time t = 0.038 of the interacting double blast wave problem of Woodward & Colella (1984), for a resolution of 400 cells in the
domain [0, 1]. The panel on the left shows our result for the moving-mesh code, while the panel on the right is based on the same initial conditions but using a
fixed mesh. The red circles mark density values for individual cells of the 400-cell calculation, while the solid line is a high-resolution calculation with 20 000
cells and a fixed mesh, for comparison.

at x 
 0.6. On the other hand, the moving-mesh solution does
much better in this respect. The deviations to the high-resolution
result are much smaller everywhere, and in particular, the density
maximum at x ∼ 0.8 is recovered quite well and the discontinuities
are resolved sharply. For the same number of cells, the moving-mesh
code therefore clearly produces a more accurate solution. Similar
to the simple shock tube problem, we see that it is again the contact
discontinuities that are improved most.

8.4 Point explosion

In this test, we inject an energy E into a point-like region in an ini-
tially homogeneous cold gas of density ρ. This results in a spherical
Taylor–Sedov blast wave, which has a well-known analytic self-
similarity solution (e.g. Landau & Lifshitz 1966). After a time t, the
blast wave propagates to a distance r(t) = β(Et2/ρ)1/5, where the
constant β depends on the adiabatic index γ (β 
 1.15 for γ = 5/3
in 3D), E is the explosion energy, and ρ describes the initial density
of the ambient gas. Directly at the spherical shock front, the gas
density jumps to a maximum compression of ρ ′/ρ = (γ + 1)/(γ −
1), with most of the mass inside the sphere being swept up into a
thin radial shell. Behind the shock, the density rapidly declines and
ultimately vanishes towards the explosion centre.

We first consider the 2D case, which allows us to illustrate the
mesh motion in an easy way. In Fig. 23, we show the time evolution
of the density field with the mesh overlaid for a low-resolution
calculation of the blast wave problem. Initially, the mesh-generating
points for a gas of unit density are arranged in a 45 × 45 Cartesian
mesh, and an energy of E = 1 is injected into the central cell. The
mesh is allowed to move with the local flow velocity. We see that
the propagation of the blast wave is reflected in an evolving mesh
geometry, with the smallest cells occurring where the mass piles
up behind the shock. Periodic boundary conditions are used in this
problem, so that the shock eventually collides with its mirror copies
at the boundaries of the box. This compresses most of the mass
temporarily into the corners of the box. However, the moving-mesh
algorithm can deal with this gracefully and robustly.

Actually, for the simulation displayed in Fig. 23, the mesh was
not moved just with the local flow velocity of each cell, but in
addition the correction scheme of equation (63) was applied (using

η = 0.3 and χ = 1.0), which tries to keep mesh cells round. The
effect of this can be seen in Fig. 24, where the mesh geometry at
time t = 0.55 is compared with (right) and without (left) any mesh
regularization. Clearly, when the cells are moved with the local flow
velocity alone, the mesh acquires some cells of quite high aspect
ratio. Actually, the shape of the cells tends to adapt to the local flow
features, for example, the cells become elongated parallel to the
blast wave. This improves the spatial resolution in the direction of
propagation of the shock front, which can be desirable in principle.
In fact, this automatic resolution adjustment mimics attempts to
make SPH more adaptive to local resolution requirements with the
help of anisotropic kernels (Owen et al. 1998). However, for general
flow problems, we argue that it is safer and more robust to avoid
high aspect ratios, as one cannot rely on local symmetries for long,
and the next shock wave may strike from another random direction.
Also, as we discussed earlier, ‘roundish’ cells offer the best accuracy
for spatial reconstruction and the treatment of self-gravity.

We now consider the accuracy of the shock front by comparing
with the analytic solution. In Fig. 25, we compare the densities
of individual cells as a function of radial distance to the explosion
centre, both for the moving-mesh approach and for the code run with
a fixed Cartesian mesh. The comparison is made at time t = 0.06,
for an initial grid of 643 cells, now in 3D. Clearly, the moving-mesh
approach resolves the sharp density spike of the blast wave better,
due to its improved spatial resolution in regions of high density. It
also shows slightly weaker deviations from spherical symmetry at
r ∼ 0.25 compared with the Cartesian grid. There is a small phase
error in the sense that the numerical simulation appears slightly
more evolved than the analytical solution; the origin of this lies
in the poorly resolved early phase of the point explosion. At later
times, or for better resolution (which is essentially the same for this
self-similar problem), this error becomes ever smaller. We note that
Feng, Shu & Zhang (2004) give 2563 results for their WENO solver,
which curiously look somewhat worse than our results here despite
their higher mesh resolution.

Finally, in Fig. 26 we illustrate the behaviour of our individual
time-step integration scheme for the 2D Taylor–Sedov blast wave
problem. We show the mesh at three different times (corresponding
to the first three panels shown in Fig. 23), with each cell shaded
according to its assigned time-step. Far away from the explosion site,
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Figure 23. Time evolution of the density field in a 2D Taylor–Sedov blast wave calculation with the moving-mesh code. The time of each snapshot is indicated
in the panels. The evolving Voronoi mesh is overplotted, and has a resolution of 45 × 45 cells. Roughly at time t = 0.19, the shock reaches the periodic
boundaries of the domain of unit side length L = 1, and effectively collides with the blast wave of the periodic grid of explosions described by this set-up. This
compresses much of the matter into the corners of the domain, a process that is well followed by the moving mesh.

the allowed time-steps are significantly larger than close to the shock
wave and in the heated central bubble. The time-steps are restricted
in a sequence of spherical shells even ahead of the shock, such that
the arriving shock wave is guaranteed to be integrated accurately
in time, even though the cold gas far away can be integrated on
time-steps that can in principle be orders of magnitude larger. This
choice of time-steps is made possible by our tree-based scheme to
estimate the earliest possible arrival time for every cell of a signal
from any other cell.

We note that the results of the individual time-step scheme are
essentially indistinguishable from a fixed time-step integration, but
require significantly less computational effort. Compared to the
equivalent calculation with a global time-step (set equal to the min-
imum of the local time-step constraint of all cells), 4.3 times fewer

flux computations and Riemann problems have to be calculated
over the course of a calculation from t = 0 to t = 0.1. For higher
resolution or in 3D, the saving would be still larger. In fact, many
physical applications in cosmic structure formation feature such a
large dynamic range in time-scales that individual time-steps are
mandatory to make large simulations still tractable.

8.5 The Gresho vortex problem

An interesting test for the conservation of vorticity and angular
momentum is provided by the ‘triangle vortex’ problem of Gresho
& Chan (1990), which we apply here to the Euler equations in 2D,
following Liska & Wendroff (2003). The vortex is described by an

C© 2009 The Author. Journal compilation C© 2009 RAS, MNRAS 401, 791–851



Hydrodynamical simulations on a moving mesh 827

Figure 24. Effect of mesh regularization on the geometry of the Voronoi mesh. The panel on the left shows the Voronoi mesh obtained at t = 0.55 for the
Sedov–Taylor blast wave test of Fig. 23 when the mesh-generating points are only moved with the local gas velocity. While this produces a mesh well adjusted
to the particular flow properties and symmetries of this problem, the high aspect ratio of some cells may be unfavourable in more general flows. The panel on
the right shows the Voronoi mesh if we apply our standard mesh regularization procedure during the mesh motion. This tends to make the cells ‘rounder’ and
more isotropic. Note that the predicted density distributions of both simulations are very similar.
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Figure 25. Density profile for a 3D Taylor–Sedov blast wave calculation at time t = 0.06. The initial resolution was 643 cells, with all the explosion energy
injected into a single cell. We compare results for our moving-mesh code (left-hand panel) with the result obtained for a fixed Cartesian mesh (right-hand
panel). The circles give the densities of individual cells, which have been randomly subsampled by about 1/200 to avoid too strong crowding.

azimuthal velocity profile

vφ(r) =

⎧⎪⎨
⎪⎩

5r for 0 ≤ r < 0.2

2 − 5r for 0.2 ≤ r < 0.4

0 for r ≥ 0.4

(121)

in a gas of constant density equal to ρ = 1. Thanks to a suitable
pressure profile (Liska & Wendroff 2003) of the form

P (r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5 + 25/2r2 for 0 ≤ r < 0.2

9 + 25/2r2−
20r + 4 ln(r/0.2) for 0.2 ≤ r < 0.4

3 + 4 ln 2 for r ≥ 0.4

(122)

the centrifugal force is balanced by the pressure gradient and
the vortex becomes independent of time. Note that in princi-
ple an arbitrary constant pressure could be added to the pressure
profile.

We shall consider three different variants of this test. In the first,
the vortex is at rest in the calculational frame, which we describe by

40 × 40 cells in the unit domain at our default resolution (arranged
initially as a Cartesian mesh). In the second and third variants, we
follow Liska & Wendroff (2003) and let the vortex move with a
constant velocity vvortex along the positive x-direction, i.e. all the
gas gets an additional velocity component of �vx = vvortex. We
consider the choices vvortex = 1 and vvortex = 3, and use periodic
boundary conditions, such that the vortex moves three and nine
times, respectively, through the box over the simulated time-span
of t = 3 time units. The additional gas motion in the vvortex > 0 case
makes the problem more difficult for the Eulerian approach because
it becomes more demanding to advect the gas accurately over the
grid. In all cases, we run the problem for t = 3 time units, and then
compare the azimuthal velocity profiles of the final with the initial
state.

Before we discuss these results, we first illustrate in Fig. 27 the
time evolution of the mesh geometry produced by our moving-
mesh code in the stationary vortex case. In order to guide the eye
and to show the motion of individual mesh cells, a horizontal row
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Figure 26. Spatial distribution of the sizes of individual time-steps in an integration of the 2D Taylor–Sedov blast problem. The cells shaded in different
colours are evolved with different time-steps in a power-of-two time-step hierarchy, as labelled. Fluxes between cells are always calculated on the smallest
time-step of the two adjacent cells. Our tree-based approach to calculate the first possible arrival time of a signal from any other cell puts cells well ahead of
the blast wave on sufficiently small time-steps.
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Figure 27. Mesh-motion in the ‘triangular’ vortex problem of Gresho, calculated with a 40 × 40 grid of particles. One horizontal row of particles in the initial
distribution is marked with circles, and the same cells are labelled with circles in all subsequent frames.

of cells has been marked with circles in the initial conditions, and
the same cells are then labelled again in all subsequent time frames.
Also, for a vertical strip of cells, velocity vectors are added in the
plots at each output time. It is nicely seen how the central region
of the mesh accurately follows a solid body rotation in the early
evolution, and how it is surrounded by an outer shell that exhibits
strong shear. However, there is no pathological mesh twisting or
tangling due to this shear. Rather, the Voronoi mesh transforms
its geometry continuously, and changes the local neighbourhood
relations between cells in a smooth fashion. As time goes by, the

initial symmetry in the mesh geometry slightly deteriorates, but the
mesh motion stays nicely regular.

In Fig. 28, we compare the results for the azimuthal velocity
profiles at the final time of all of our runs. In the top row of panels,
we show calculations where the vortex was stationary relative to
the computational frame. We give results obtained with our new
code both with a fixed mesh and with a moving mesh, based on
identical initial conditions. To compare our results with another
high-accuracy Eulerian code, we have also computed this problem
with the publicly available code ATHENA by Stone et al. (2008). For
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Figure 28. Azimuthal velocity profiles at time t = 3.0 for Gresho’s ‘triangular’ vortex problem when calculated with different codes and for different bulk
velocities of the vortex. In the panels of the top row, the vortex is stationary, while in the middle row it moves with a speed vx = 1.0, and in the bottom row with
vx = 3.0, which is comparable to the speed-of-sound of the gas. We compare results calculated with our AREPO code, both for a moving mesh and for a fixed
Cartesian mesh, with those obtained using the ATHENA code (Stone et al. 2008). For vx = 0.0, all three methods produce results of comparable quality. However,
if the vortex is non-stationary, the Eulerian approaches develop significant asymmetries and show elevated diffusivity and angular momentum transport due to
the increase in advection errors. In contrast, the Lagrangian moving-mesh result is invariant when the vortex is set in motion.

the latter, we used second-order spatial reconstruction and the Roe
solver. After three time units, all three codes show some signifi-
cant smoothing of the initial velocity profile, but they do not differ
strongly in the quality of the results.

It is now interesting to consider the changes in these results when
the vortex is set in motion. We show the corresponding results in
the middle and bottom row of Fig. 28, for the cases vvortex = 1 and
vvortex = 3. Of course, in principle nothing should change, as the
physical problem only differs by a Galilean transformation from
the original setup of a stationary vortex. Indeed, our moving-mesh
code produces the same result as before, and proves completely
insensitive to this velocity boost, as expected for a Galilean-invariant
formulation. Quite in contrast, both our own code when used with
a fixed mesh and ATHENA show substantially degraded results in
the moving vortex case. In particular, the symmetry of the vortex
motion is partially lost (consistently with the results of Liska &
Wendroff 2003), and there is a larger degree of smoothing of the

azimuthal velocity profile. Clearly, this is the result of additional
numerical diffusivity and advection errors that now occur in the
Eulerian treatment. A particularly troubling aspect of these errors is
that they are a strong function of the velocity with which the vortex
moves, as this determines the distance over which the system has
to be advected during the simulated time-span. This becomes clear
by comparing the results for different vortex velocities; increasing
vvortex and keeping the simulated time-span fixed, the error in the
Eulerian calculations can be increased nearly arbitrarily. In contrast,
the moving-mesh code retains its original solution independent of
the bulk motion of the vortex, which is physically a much more
meaningful behaviour.

We now examine more quantitatively the convergence rate for
this vortex problem. To this end we measure the L1 error for the
azimuthal velocity profile at time t = 3.0, as a function of the mesh
resolution. We compare the results obtained for the moving-mesh
approach with those of the fixed mesh, again for our three different
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Figure 29. L1 error norm of the azimuthal velocity profile of the Greho
vortex problem at time t = 3.0, as a function of initial mesh resolution
(N × N ). We show results for three different bulk velocities of the vortex,
v = 0, v = 1 and v = 3. The results for our moving-mesh code are shown as
red circles – they are independent of the bulk velocity to machine precision.
If we use a fixed Cartesian mesh instead, we obtain the results shown by
the open blue circles. The three sets of results correspond to the different
bulk velocities. In contrast to the moving-mesh code, the errors grow with
increasing bulk velocity. Finally, for comparison with an independent Eu-
lerian hydrodynamics code, we show the results obtained with ATHENA as
triangles.

bulk velocities, vvortex = 0, vvortex = 1 and vvortex = 3. Our results
are summarized in Fig. 29, where we also include results obtained
with ATHENA, for comparison. Clearly, for zero bulk velocity, the
errors of our code AREPO are quite similar between the moving-
mesh and the fixed-mesh, and also very close to the independent
code ATHENA. Note that the results converge only approximately
as L1 ∝ N−1.4, as indicated by the solid line in the plot. This is
presumably a consequence of the discontinuities in the vorticity
profile present in this problem, at r = 0.2 and r = 0.4. If a non-
vanishing bulk velocity is included, we see significant accuracy
differences between the moving-mesh and the fixed mesh. Whereas
the moving-mesh results do not change at all, the error increases for
the Eulerian approach with growing bulk velocity. The magnitude
of this deterioration is consistent between AREPO and ATHENA. We
argue that this highlights an important shortcoming of traditional
Eulerian approaches.

In passing, we want to note that we also tried SPH on this prob-
lem, with the implementation of SPH in the GADGET3 code. It turns
out that this is a hard problem for SPH, and a direct comparison
with the results presented above shows SPH to be substantially less
accurate when the same number of particles is used. In fact, for the
lower resolutions, the vortex typically does not survive until t =
3.0; the angular momentum is transported to the boundaries of the
domain before this time, where it is then effectively cancelled by
encounters with oppositely moving gas from the adjacent periodic
image domains. We defer a more detailed comparison of SPH with
the moving-mesh code to a future study.

8.6 The Noh problem

We now consider the strong shock test proposed by Noh (1987),
which has an analytic solution. This is generally considered a very

difficult problem, and quite frequently, numerical methods have
problems running this test without crashing. In fact, in the test suite
of Liska & Wendroff (2003), only four out of the studied eight
schemes managed to run this problem at all. The set-up consists of
a γ = 5/3 gas that has initially uniform density equal to ρ0 = 1,
vanishingly small pressure, and everywhere a radial inflow velocity
towards the origin of v = −1. As a result of the inflow, a strong
spherical shock wave of formally infinite Mach number develops
and travels outwards with a speed vs = 1/3. Inside of the shock
front, the density is constant; it has a value of 4 in the 1D case, 16 in
the 2D case and 64 in the 3D case. Outside of the shock, the density
profile is given by

ρ(r, t) = ρ0 (1 + t/r)n, (123)

with n = 2 in the 3D case, n = 1 for the 2D case and n = 0 for the
1D case.

The problem has been considered in 1D, 2D and 3D in the liter-
ature, but we restrict ourselves to 2D and 3D tests. As in previous
studies of this problem, we calculate only one quadrant when a
Cartesian mesh is used, and apply reflective boundary conditions
at the inner boundaries. However, when an unstructured mesh is
used, we calculate all four quadrants in order to avoid imposing
mirror symmetry along the coordinate axes. The outer boundaries
are modelled with a special inflow boundary that makes use of the
analytic solution known for the problem.

We begin by considering the 2D problem carried out with dif-
ferent strategies for treating the mesh. The simplest approach is a
fixed Cartesian mesh of resolution 25 × 25 cells in one quadrant.
Our second calculation was done with an unstructured mesh that
has the same total number of cells as in the Cartesian case, but is
also kept stationary. Comparison of these two schemes allows an
assessment of how well the unstructured mesh performs relative
to a Cartesian mesh of equal spatial resolution. Our third calcu-
lation uses a moving unstructured mesh where the mesh cells are
moved with the local velocity of the gas, such that the mass per cell
stays constant to good approximation. We here use an initial mesh
that has been extended to [−3, 3] × [−3, 3] in order to provide
enough mesh area for the implosion problem. Finally, in our last
variant of this problem we also use a moving mesh but exercise
our schemes for dynamically refining and derefining the mesh, as
described in Section 6. Specifically, we split cells into two when
their mass has gone up above 1.5 times the initial average mass of
a cell, m = 1/252. This automatically generates new cells in the
inflow region, and maintains a constant mass resolution there. In
this case we do not have to extend the mesh beyond the [−1, 1]2

domain; rather, new mesh cells appear dynamically as needed. In
addition, we also derefine cells (i.e. delete them) if their volume
falls below 0.25 times the initial volume V = 1/252 of the cells.
This prevents the spatial resolution in the high-density region from
getting better than a certain limit. In fact, it limits the maximum
effective resolution per dimension to Neff = 1/(0.25 × V )1/2 = 50.

In Fig. 30, we compare the results of these four different mesh
strategies. In each case we show a projected density field at time t =
2.0, and we compare the densities of individual mesh cells with the
expected analytic solution for the radial density profile. In all four
cases, the post-shock flow shows some substantial density scatter.
This is presumably a combination of weak post-shock oscillations
present in our scheme, and geometrically induced asphericities. The
oscillatory behaviour is particularly noticeable and coherent in the
Cartesian case, where also the so-called ‘carbuncle’ phenomenon
is at work, which can produce artefacts for very strong grid-aligned
shocks. Stone et al. (2008) invoke a special cure for this problem
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Figure 30. The Noh problem in 2D at low resolution, calculated with four different strategies for the treatment of the mesh. The top four pairs of panels
illustrate the result of the calculation at time t = 2.0 for each of these schemes. In each case, we show a projected density field in one quadrant of the implosion,
and we give the radial density profile where we compare the densities of all mesh cells with the analytic solution. In the top left, the result for a stationary
Cartesian mesh with 252 cells in the unit quadrant is shown. For comparison, the top right gives the result for an unstructured stationary mesh with the same
number of cells. The middle left pair of panels shows the case of an unstructured moving mesh with constant mass resolution of mi 
 1/252. Finally, the fourth
case (middle-right panels) is for a dynamically refined/derefined mesh, where cells are split if mi > 1.5/252 or eliminated if their volume falls below Vi <

0.25/252. The bottom three panels show the mesh geometries at the final time of the three schemes where an unstructured mesh is used. From left to right: the
stationary unstructured case, the moving-mesh case with constant mass resolution and finally the dynamically refined/derefined mesh.

and achieve a quiet post-shock flow in the Noh problem with the
help of judiciously introduced extra dissipation. We expect that the
unstructured fixed mesh should be less susceptible to such grid
alignment effects. Indeed, the result for this case (top-right panel of
Fig. 30) shows no coherent oscillations and preferred directions of
the kind seen for the Cartesian grid, but it nevertheless exhibits a
similar degree of noise.

Our calculation with a moving unstructured mesh and constant
mass resolution (middle left in Fig. 30) benefits from an automati-
cally higher spatial resolution in high-density regions. As a result,
the position of the shock front is recovered more accurately, and the
shock is nicely round. Nevertheless, this solution suffers from a sim-
ilar degree of oscillatory behaviour in the post-shock region. Finally,
we consider our calculation with a dynamically refined/derefined
moving mesh, shown in the middle right of Fig. 30. Here, the shock
is also recovered well, with an accuracy that is slightly better than
for the fixed-mesh results, thanks to slightly smaller cell sizes at the

shock front. In the post-shock region, the oscillations are noticeably
reduced. This is a result of the de-refinement procedure that is active
in this region, which tends to smooth out high-frequency noise. It
is in any case reassuring that our dynamical mesh refinement and
de-refinement schemes work robustly in this difficult hydrodynamic
problem without introducing any artefacts. The suppression of the
density at the origin is perhaps caused by so-called ‘wall heating’
(Ryder 2000), which is commonly seen at a similar level in other
calculations of the Noh problem (e.g. Liska & Wendroff 2003; Stone
et al. 2008).

The bottom three panels of Fig. 30 show the mesh geometry at the
final time of the three calculations that use an unstructured mesh. It is
nicely seen how the constant mass-resolution case (bottom-middle
panel) produces a mesh that varies strongly in spatial resolution.
On the other hand, the dynamically created and derefined mesh
(bottom-right panel) shows almost no trace of the spherical shock
front, due to the particular de-refinement criterion used. Note that
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the latter is arbitrary, and if desired, one could for example refine
the mesh only in the region of the shock, and derefine it elsewhere.

Finally, we now consider 3D calculations of the Noh problem.
This represents a still more demanding test than the 2D problem
due to the larger density contrast reached in the 3D case. To test
many of the new features of our moving-mesh code, we carry out
this test with dynamic generation of mesh cells, and dynamic de-
refinement in the high-density region. Specifically, a cell is created
if its mass content lies above mi > 1.5 m, and it is dissolved if its
volume has dropped below Vi < 0.05 V , where m and V are the
initial average mass and volume per cell. In Fig. 31, we give results
for two different initial resolutions, corresponding to ∼16.73(m =
V = 2.16 × 10−3) and ∼503 cells in the unit octant. With the
above refinement/de-refinement criteria, by t = 2.0 the effective
resolution in the lower resolution calculation has grown to N eff ∼
34 at r = 1, and in the central high-density region, it is limited to
a maximum of ∼45.2. For the higher resolution calculation, these
numbers are three times as large. We note that in the lower resolution
calculation, about 812 620 cells have been created, and 225 209
were destroyed during the course of the calculation. For the higher
resolution calculation, these numbers are a factor of ∼27 higher.
In Fig. 31, we see that the moving-mesh code with dynamic mesh
refinement/de-refinement is able to integrate this problem robustly,
with satisfactory accuracy given the effective resolutions employed
here, nevertheless some limited post-shock oscillations are present.
Also, some ‘wall heating’ is clearly present at the centre (Ryder
2000; Liska & Wendroff 2003).

8.7 Kelvin–Helmholtz instability

Fluid instabilities are among the most interesting phenomena of hy-
drodynamics, and they play a crucial role in mixing processes and

the production of turbulence. Their importance in cosmological gas
dynamics is potentially very large. For example, fluid instabilities
are thought to be important for an accurate treatment of stripping of
gas from satellite galaxies, and for calculating the correct level
of turbulence and entropy expected in the intracluster gas of clus-
ters of galaxies. Recently, numerical inaccuracies of SPH in the
treatment of fluid instabilities across contact discontinuities with
large density jumps have caused concern about the scheme’s ability
to adequately treat such problems (Agertz et al. 2007). Fixes have
been proposed for this issue (Price 2008; Wadsley et al. 2008), but it
is not clear yet whether they can be applied successfully in general
calculations without introducing inaccuracies in other regimes.

On the other hand, it is not obvious that Eulerian methods provide
superior accuracy for fluid instabilities in all regimes, even though
this is often assumed by advocates of these schemes. One can cer-
tainly expect that problems due to the Galilean non-invariance of
Eulerian codes could be a source of concern here. In this section
we will examine these issues with the important example of the
Kelvin–Helmholtz (KH) instability. This occurs across contact dis-
continuities in the presence of a tangential shear flow.

For simplicity, we first consider a simple shear flow in 2D, where
we strongly excite a single mode by imposing a suitable velocity
perturbation. In a periodic domain of unit length on a side, with
principal coordinate range [0, 1]2, we set-up gas with density ρ =
2 in the central horizontal strip described by |y − 0.5| < 0.25, and
give it velocity vx = 0.5 to the right, whereas the rest of the box is
filled with gas of density ρ = 1 that moves to the left with speed
vx = −0.5. The pressure is set to P = 2.5 everywhere, with γ =
5/3. There are hence two contact discontinuities along which KH
instability can develop.

To make sure that initially a single mode will dominate the
linear growth of the instability, we excite a single mode with a
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Figure 31. The Noh problem in 3D at two different effective resolutions, calculated with dynamical mesh creation and mesh de-refinement. The panels on
the left are for a low-resolution calculation, where cells are created at the edge of the box such that the mass resolution does not drop below 1.5 × m, with
m = 2.16 × 10−3, and cells in the high-density region are eliminated if their volume drops below Vi < 0.05V , with V = 2.16 × 10−3. The high-resolution
calculation on the right-hand side has 27 times better mass and volume resolution. In both cases, the bottom panels give the effective resolution per dimension
for the cells as a function of radius, defined as N i

eff = 1/V
1/3
i , where Vi is the volume of a cell. Only a random subset of 2000 of the cells is shown in each

panel.
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wavelength equal to half the box size by perturbing the vy velocity
field according to

vy(x, y) = w0 sin(4πx)

×
{

exp

[
− (y − 0.25)2

2σ 2

]
+ exp

[
− (y − 0.75)2

2σ 2

]}
(124)

with w0 = 0.1 and σ = 0.05/
√

2. The two exponential damping
factors restrict the perturbation to the region close to the two inter-
faces. The details of how this perturbation is imparted are relatively
unimportant for the test.

We first carry out a test at low resolution, using 50 × 50 cells that
are initially arranged as a Cartesian mesh. This allows us to visualize
the motion of the mesh as a function of time when our moving-mesh
approach is used. This is illustrated in the time-sequence shown in
the top four panels of Fig. 32,4 which includes an overlay of the
Voronoi mesh. We see that the moving-mesh approach develops
well-defined KH billows and is able to maintain a relatively sharply
defined boundary between the two fluids, with only a small amount
of mixing between them. Also, the moving-mesh approach has no
problem coping with the strong shear present in this simulation.
This has traditionally been a significant challenge for Lagrangian
hydrodynamics codes.

In the bottom two panels of Fig. 32, we show the final result
at t = 2.0 obtained for the same initial conditions when the mesh
is kept fixed instead, in one case calculated with our own code,
in the other with ATHENA. Reassuringly, the two codes give nearly
indistinguishable solutions when a fixed mesh is used. This confirms
that our code AREPO is comparable in accuracy to state-of-the-art
second-order accurate Eulerian codes when run with a fixed mesh.
The two fixed-mesh calculations of Fig. 32 can also be compared
to the moving-mesh result shown in the top four panels. Clearly,
the results are qualitatively similar, but there is substantially more
mixing in the fixed-mesh calculations, which wash out the KH
billows to nearly constant density at this resolution. While this
effect is expected to become smaller with increasing resolution, the
effective numerical diffusivity of the Eulerian calculation is clearly
much higher than that of the moving-mesh approach, a finding that is
also expected based on the advection tests of a contact discontinuity
carried out at the beginning of this section. There is also a further
important difference between the moving-mesh and the fixed-mesh
results. In the non-linear regime, the KH instability appears to evolve
somewhat faster for the moving-mesh approach than for the fixed
mesh. In fact, the fixed-mesh result at t = 2.0 is more similar to the
t = 1.5 moving-mesh output than to its t = 2.0 output.

We next consider the ability of the schemes to cope with addi-
tional bulk fluid motion, or in other words, with a transformation
into a boosted frame of reference. To this end we simply add a
constant velocity vector to all cells of the initial conditions, and we
shall again compare the results at time t = 2.0. The physics does
not change due to such a Galilean boost, and we should therefore
get the same results. We have already seen that this is not in general
the case for Eulerian codes. Here, we test how strong the resulting
effects are in practice. In Fig. 33, we show what AREPO returns for
velocities equal to v = 1, 10 or 100, imposed both in the x- and
in the y-directions, if the mesh is kept fixed. Thanks to the periodic
boundary conditions, the system will have returned at time t = 2.0
again to its original position, after the code had to advect it one or

4 A video of this simulation as well as other videos of our example calcula-
tions may be found at http://www.mpa-garching.mpg.de/∼volker/arepo

several times through the box. In principle, all three results should
therefore be identical. But the actual results are very different; in
this Eulerian mode, the code’s result and hence the error in the cal-
culation is a strong function of the magnitude of the bulk velocity
relative to the rest frame of the calculation. Especially when these
velocities become supersonic, the calculated solution can become
qualitatively and quantitatively inaccurate. For the somewhat brutal
test of v = 100, the calculated solution is completely dominated
by advection errors, with the density field in the box becoming
almost homogeneous. We have also evolved the same initial condi-
tions with the ATHENA code, finding very similar results. We expect
this behaviour to be generic for Eulerian codes. The accuracy with
which fluid instabilities are calculated across contact discontinuities
quickly deteriorates if the contact discontinuity moves. In contrast,
when we run the same initial conditions with the moving mesh of
AREPO, we recover the same results in all three cases, and they are
identical to the v = 0 result shown in Fig. 32.

Is this a serious problem for Eulerian codes? This very much
depends on the problem that is studied. In many applications, an
individual system is studied and one can freely choose a convenient
reference frame for the calculation. One will then pick one in which
velocities relative to the calculational frame are small. The issue of
Galilean non-invariance may then not be of great concern. However,
we argue that this is not the case for cosmological simulations,
where multiple objects are simulated at the same time, many of
them moving with large velocities compared to their sound speed.
In this case, the accuracy of the calculation correlates strongly with
the bulk velocity of the galaxies, a rather worrying effect.

However, Galilean non-invariance may not be the only prob-
lem that troubles the Eulerian approach when the KH instability
is considered. We have found that in an Eulerian calculation of
this problem at high resolution, multiple secondary KH billows
are spawned in the early evolution due to grid irregularities. On the
other hand, the moving-mesh method appears less susceptible to this
problem, thanks to its ability to advect the mesh with the contact
discontinuity. Some of these grid-induced features can even affect
the long-term evolution of the instability. In Fig. 34, we compare
fixed and moving-mesh versions of the same KH instability test at
a resolution of 10242. The moving-mesh preserves much more fine
detail in the flow. This is because contact discontinuities between
different phases can be advected with large speeds without being
necessarily mixed. We think this is a very interesting difference,
which makes the moving-mesh code particularly attractive for the
study of multi-phase media.

8.8 Rayleigh–Taylor instability

Another important type of fluid instability arises in stratified atmo-
spheres in approximate hydrostatic equilibrium if a denser fluid lies
above a lighter phase. In such a Rayleigh–Taylor (RT) unstable state,
energy can be gained if the lighter fluid rises in the gravitational
field, triggering buoyancy-driven fluid motions.

We consider a simple test in 2D where we excite a single RT
mode for clarity. Our setup is a small variation of a similar test
considered in Liska & Wendroff (2003), and also similar to a test
described in Jim Stone’s test suite of ATHENA. The computational
domain is chosen as x ∈ [0, 0.5] and y ∈ [0, 1.5], with periodic
boundary conditions at the x-boundaries, and reflecting walls at the
top and bottom of the domain. The density is ρ = 2 in the top half
of the domain, and ρ = 1 in the bottom half. The pressure in the
vertical mid-plane is P 0 = 2.5 (with γ = 1.4) and varies vertically as
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Figure 32. The top four panels show the time evolution of the KH instability in a low-resolution (50 × 50) test calculation with the moving-mesh method.
Each panel gives the density field (at times t = 0.5, 1.0, 1.5 and 2.0), with the Voronoi mesh overlaid in black in the lower half of the box. For comparison,
the lower two panels show the results for the same initial conditions, but this time computed keeping the initial Cartesian mesh fixed. The panel on the bottom
left shows the result at time t = 2.0 obtained with our code AREPO for a fixed mesh, while the bottom right gives the result of ATHENA (with second-order
reconstruction and the Roe solver). The latter two results are nearly identical. Note, however, that in the non-linear regime the KH instability appears to evolve
somewhat faster for the moving-mesh code compared with the fixed grid.
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Figure 33. KH instability test at time t = 2.0, computed with AREPO with a fixed mesh. In the three cases, different boost velocities along both the x- and
y-directions have been applied. The fact that the results do not agree (and in particular not with the V = 0 result shown in the bottom of Fig. 32) is direct
evidence for a violation of Galilean invariance of the Eulerian approach. We note that we have obtained nearly identical results for this test when it is carried
out with ATHENA instead of our code AREPO.

Figure 34. KH instability test at high resolution, using a 1024 × 1024 initial mesh. We compare results obtained with the moving-mesh approach (left-hand
panel) to those on a fixed grid (right panel), at time t = 2.0. Quite strikingly, small-scale features of the flow are preserved in the moving-mesh code with much
less mixing, albeit at the price of earlier generation of asymmetries in the flow.

P (y) = P 0 + g(y − 0.75)ρ, where g = −0.1 is an imposed external
gravitational field. This ensures an initial hydrostatic equilibrium.
The initial velocities are zero everywhere, except for a small pertur-
bation that is designed to excite a single mode for the RT instability.
We adopt for this perturbation

vy(x, y) = w0 [1 − cos(4πx)][1 − cos(4πy/3)], (125)

where w0 = 0.0025. For the tests discussed in the following, we
deliberately use a comparatively low resolution of 48 × 144 cells.

In Fig. 35, we first compare the time evolution of the system
between a calculation carried out with a static Cartesian mesh, and
one with our new moving-mesh approach. Clearly, the evolution
is rather similar during the early linear growth of the perturbation.
However, the moving-mesh approach is able to maintain a sharper
contact discontinuity, as expected. Eventually, the evolution starts
to differ markedly once the dynamics become very non-linear. The
moving-mesh solution loses vertical symmetry and starts to develop
turbulence. In contrast, the fixed-mesh calculation is able to main-
tain perfect symmetry for a longer time, but it shows much stronger
mixing than the moving-mesh calculation, which also damps the
fluid motion. In both cases, the loss of symmetry is caused by small
round-off errors, but in the moving-mesh approach their growth in

the transverse direction is faster and less benign. This is due to a
kind of bending instability in the mesh. When the mesh is com-
pressed strongly in one direction, it automatically means that the
cells develop a large aspect ratio, which can only be relaxed (in the
sense that the cells become rounder again) through some transverse
motions. It turns out that the mesh likes to respond to transverse
perturbations in this situation; they tend to grow quickly, and nu-
merical round-off is sufficient to trigger this. This also means that
the moving mesh can itself be a source of unwanted perturbations,
but they only really become relevant in poorly resolved flows, where
the shape of an individual cell directly matters. This is similar to
the KH problem on a Cartesian mesh, where at high-resolution
small-wavelength secondary billows are triggered by perturbations
originating at the mesh corners. If the RT problem is simulated with
higher resolution and with resolved (i.e. softened) phase bound-
aries, symmetry is maintained much longer in the moving-mesh
approach.

We have also used this RT test to investigate once more the ques-
tion of Galilean invariance. To this end we have added a constant
velocity vx to the initial state. As the system is periodic in the x-
direction, the evolution should in principle not change if viewed in
the rest frame of the moving fluid. In Fig. 36, we show a comparison
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Figure 35. Time evolution of a RT instability in simulations with a moving (top) and a static (bottom) mesh. The resolution is quite low, only 48 × 144 cells
have been used for this test.

of the resulting fluid state when either a moving mesh or a fixed
mesh is used in our code AREPO. We carry out this comparison for
horizontal flow velocities of vx = 0.033, vx = 1, vx = 10 and vx =
100. It is seen that the Eulerian result changes significantly along
this sequence. The horizontal motion leads to a damping of the
growth rate of the instability, additional mixing and also to a loss of
symmetry. In fact, for a sufficiently large velocity boost, the insta-
bility is suppressed entirely. We note that in this case the Eulerian
calculations also become much more expensive, as their Courant
condition becomes limited by the bulk velocity. The moving-mesh
calculation does not suffer from this problem, and it produces a
Galilean-invariant solution as expected. However, the way the sym-
metry is lost in the calculation tends to vary, as this is determined
by small numerical noise in the mesh motion.

In Fig. 37, we show the kinetic energy in the simulations as a
function of time. The thick dashed line and the dotted line show the
results for a fixed mesh with no velocity boost, comparing our code
AREPO with ATHENA (the latter using the Roe solver and second-order
accurate reconstruction). The results of the two codes for the evolu-
tion of the kinetic energy agree qualitatively very well, showing first
a maximum, followed by a rapid decline to a nearly constant level
that then declines over a much longer time-scale. This is produced
by the initially very symmetric evolution of the RT instability when
a Cartesian mesh is used, and the subsequent transition to turbulent
motions at later times. The symmetry is broken when a velocity
boost is applied in the Eulerian calculations, and even a velocity as
small as vx = 0.033 is sufficient for that. The other two dashed lines
of Fig. 37 show the evolution of the kinetic energy (relative to the
rest frame of the gas) when a boost of vx = 1 or vx = 10 has been ap-
plied, respectively. Now the pronounced maximum is gone, and for

increasingly larger boost velocities the plateau of the kinetic energy
becomes ever smaller. For the moving-mesh case on the other hand,
the results are insensitive to the velocity boost. This is shown by
the three solid lines, which give the kinetic energy for vx = 0, vx =
1 and vx = 10, respectively. These Lagrangian calculations also do
not produce the strong maximum seen in the vx = 0 case for the
Eulerian code, which we interpret as effectively being an artefact of
the grid symmetry, because the higher asymmetries in the numerical
round-off errors present in the moving-mesh approach are sufficient
to break the symmetry in the evolution early on.

8.9 Moving boundaries

As briefly discussed earlier, the moving-mesh approach can also be
quite easily adapted to describe curved boundaries of essentially
arbitrary shape, and if desired, these boundaries can also move in
complex ways. While this feature is probably not helpful in most
astrophysical problems, it has potentially very useful applications
in other areas, for example aerodynamics. We here discuss a simple
example to illustrate this possibility.

In Fig. 38, we show how a special curved boundary can be con-
structed in terms of two parallel strings of mesh-generating points
that have an equal distance from either side of the desired contour.
In our example, we want to model a solid obstacle, where the red
points are meant to be inside the obstacle, and the blue points are
outside, i.e. on the side of the fluid. The Voronoi faces between
the points will be modelled with reflecting boundaries by the code,
and represent the surface of the solid body. Unlike the other mesh-
generating points that define the mesh, the red and blue points
are only moved together, as a rigid body. We can now impose a
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Figure 36. RT instability calculated with different Galilean boosts vx in the
horizontal direction (the simulation domain is periodic in the x-direction).
The correct result should in principal be independent of v. The top row shows
the result at time t = 15.0 computed with our moving-mesh approach, while
the bottom row of panels gives the corresponding results for a fixed-mesh
calculation with AREPO.

motion for our solid object, and the fluid will always be forced to
flow around it. In our chosen example, we will move the object with
constant velocity according to a prescribed path, with the fluid being
initially at rest. This means we will effectively stir the fluid with the
object, much like moving a spoon in a coffee cup, except that our
‘coffee cup’ is 2D here. The lower panel of Fig. 38 shows the mesh
geometry around the object after it has moved by a small amount. It
is nicely seen that the points that model the curved boundary con-
dition have moved together as a rigid body, while the background
mesh reacted to this motion by starting to flow around the object.

In Fig. 39, we show the time evolution of a test problem calculated
with such a moving boundary. The background fluid is represented
with 768 × 768 points, and the solid object with 600 particles. The
domain [0, 1] × [0.1] is modelled with reflecting boundaries on
the outside. The upper half for y > 0.6 is filled with gas of density
ρ = 0.5, the lower with gas at unit density ρ = 1. The pressure is
P = 1 everywhere, with γ = 5/3. Our solid object is rotated around
the centre in counterclockwise direction with an angular velocity
ω = 2π/5. In this particular example we are especially interested
in the mixing of the two phases of the initial configuration. To this
end we give each phase a ‘dye’, a conserved tracer variable. This
is followed as a passive conserved scalar along with the ordinary
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Figure 37. Kinetic energy in our RT test calculations as a function of
time. For the boosted simulations, the kinetic energy was defined by first
subtracting the horizontal boost from the vx velocity component. The black
solid lines show the moving-mesh calculations, for velocity boosts vx = 0,
vx = 1 and vx = 10 (the thickness of the lines decreases in this sequence).
The dashed lines give the results for fixed-mesh calculation with our code,
for the same three velocities, from top to bottom. Finally, for comparison,
the dotted line gives the result obtained with ATHENA for vx = 0.
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Figure 38. Example of a reflective curved boundary condition, realized
with two adjacent strings of 60 mesh-generating points (top panel). The blue
points are on the fluid side, while the red points are ‘outside’. The Voronoi
faces between these points are given reflective boundary conditions, while
the rest of the mesh is treated in a regular fashion. In the bottom panel, we
show the mesh geometry at a slightly later time, when the special points
have moved as a solid body on a prescribed path, while the rest of the mesh
and the surrounding fluid have reacted to this motion.
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Figure 39. Time evolution of the mixing of two fluids induced by the motion of a solid object. This test illustrates the ability of AREPO to cope with arbitrarily
curved, moving boundary conditions. As illustrated, the orange ‘spoon’ is moved on a circular path, through a two-phase gaseous medium that is initially at
rest. The mixing is shown in terms of a tracer dye that is advected with the flow, and which was given an initial value of 1 (white) in the lower-density top
phase, and a value of 0 (black) in the higher-density lower phase. Each frame shows the value of the dye in grey-scale, at different times as labelled. The square
domain was initially populated with a 768 × 768 mesh-generating points on a Cartesian grid, and has reflective boundary conditions at the outer walls.

fluid variables by the code. In Fig. 39, we show the value of
this dye as function of time, with the solid body displayed in
orange.

It is nicely seen how the motion of the object induces complex
gas motions, including the generation of vorticity and turbulence.
This eventually leads to a complete mixing of the two phases, but for
a long time partially mixed regions survive. Thanks to the motion
of the mesh with the flow, contact discontinuities between the two
media can be advected almost without numerical errors, allowing
the foliated structure of partially mixed fluid to remain intact even
while moving. Such a low level of numerical diffusivity would be
very difficult to achieve with an Eulerian treatment.

9 TEST PRO BLEMS W ITH SELF-GRAVITY

As the long discussion in Section 5 made clear, an accurate treatment
of self-gravity in finite-volume codes is actually a surprisingly subtle
and tricky problem, more so than in SPH. In this section, we will
first discuss a 3D gravitational collapse problem of a cold gaseous
sphere, which is a good test for energy conservation in the presence
of a strong virialization shock, a scenario that is of direct relevance
for cosmological simulations. We then examine the collapse of
Zeldovich pancakes as a basic test of the cosmological integration in
AREPO. We finally turn to two example applications of our new code,
a colliding galaxy problem and the ‘Santa Barbara cluster’. Both
of these problems are primarily meant to illustrate that the AREPO

code introduced here is fully functional and suitable for science
applications in computational cosmology.

9.1 Evrard’s collapse test

Evrard (1988) has introduced an interesting collapse problem that
has been frequently used in the literature to test SPH simulation
codes (e.g. Hernquist & Katz 1989; Dave, Dubinski & Hernquist
1997; Springel, Yoshida & White 2001; Wadsley, Stadel & Quinn
2004); but results for mesh codes have been rarely reported. The
initial conditions consist of a sphere of gas with mass M = 1 and
radius R = 1, with an initial density profile of the form

ρ(r) =
{

M/(2πR2r) for r ≤ R

0 for r > R.
(126)

The gas with adiabatic index γ = 5/3 is initially at rest and has
thermal energy u= 0.05 per unit mass, which is negligible compared
with the gravitational binding energy (assuming G = 1).

In the beginning of the evolution, the gas is freely falling towards
the origin under self-gravity. Eventually, it bounces back in the
centre, with a strong shock propagating outwards through the still
infalling outer parts of the gas sphere. The system then virializes
and settles to a spherical distribution in hydrostatic virial equilib-
rium. The time evolution of the system is hence characterized by a
conversion of gravitational potential energy first to kinetic energy,
and then to heat energy. As such, it tests a situation that is prototyp-
ical for gravitationally driven structure growth, and also provides a
sensitive test of the ability of a code to conserve the total energy
accurately in self-gravitating gaseous systems.

In Fig. 40, we show radial profiles of density, velocity and en-
tropic function A = P/ργ at time t = 0.8, when the strong shock has
formed. We compare simulations carried out with different calcula-
tional schemes, but all with the same number of 24 464 resolution
elements in the initial radius of the sphere. The top three rows give
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Figure 40. Shock profiles in the ‘Evrard-collapse’ problem, carried out with different simulation techniques. In all cases, the same number of resolution
elements inside the initial radius R = 1 of the gas cloud has been used. The top panel gives the result at t = 0.8 for a fixed Cartesian grid. The second row
shows the result for AREPO when the mesh-generating points are arranged as a stretched grid of points such that the mass per cell is constant for the initial
ρ ∝ 1/r profile, but the mesh was kept static in this case. This is different in the third row; here the mesh was allowed to move with the flow, and in addition
the mesh-shaping scheme based on the ‘inverse Zeldovich’ approach was enabled. Finally, the bottom row gives the equivalent result obtained with the same
particle number using SPH, as implemented in the GADGET-2 code. The red solid line is a 1D PPM result obtained by Steinmetz & Müller (1993).

results calculated with our mesh-code AREPO. In the first case, we
consider a fixed Cartesian mesh, which we expect to be challenged
by the large dynamic range of this problem. In the second and third
rows, we use a radially stretched mesh as initial conditions, which
has equal mass per cell initially. This mesh is much better adjusted
to the radial symmetry of the system, and the increase of density to-
wards the origin. The simulation shown in the second row keeps this
unstructured mesh fixed throughout the evolution, while in the third
row the full moving-mesh approach is applied, where the mesh-

generating points are moved with the local flow velocity. Finally,
in the bottom row, an alternative Lagrangian result is shown, this
time based on SPH, using the ‘entropy-formulation’ of Springel &
Hernquist (2002) as implemented in GADGET-2 (Springel 2005).

Among these calculations, the least accurate result is clearly pro-
duced by the fixed Cartesian mesh, which offers the poorest spatial
resolution in the central regions of the sphere, as a result of its
lack of adaptivity. The stretched fixed grid already gives much bet-
ter results, but the central density distribution is still significantly
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underestimated. However, if the mesh is allowed to move, a sig-
nificantly improved solution is obtained, even though here also the
limited spatial resolution produces a shock front that is radially too
far advanced compared to the expected solution for close to infinite
resolution. The latter is shown as a solid line and was produced
by a 1D PPM calculation kindly provided by Steinmetz & Müller
(1993). We note that the SPH result shown in the bottom row also
produces the main features quite well, but its shock is significantly
broader than in the moving-mesh calculation, and there is also sub-
stantial pre-shock entropy production in the infall region ahead of
the shock, as a result of the artificial viscosity that becomes active
in converging parts of the flow.

The timing offset in the shock location appears to be a result of the
low resolution used in this test, as this vanishes for better resolution.
To illustrate this point, we show in Fig. 41 an equivalent plot for
a high-resolution simulation of the same problem using 1.56 ×
106 mesh-generating points, arranged in a stretched mesh that is
here kept fixed during the evolution (the moving mesh gives an
essentially indistinguishable result). The result reveals an excellent
agreement with the high-accuracy 1D calculation.

Finally, we consider the conservation of total energy in this prob-
lem, as this is not readily guaranteed in the finite-volume approach
with self-gravity. In Fig. 42, we show the time evolution of the
thermal, kinetic and potential energy, for simulations of the Evrard
collapse carried out with different numerical resolutions and dif-
ferent strategies to couple the gravitational field to the hyperbolic
Euler equations. In the left-hand panel, results for the ‘standard’ ap-
proach to treating self-gravity, discussed in Section 5.2, are shown.
We can see that there are substantial errors in the total energy, which
amount to a relative error as large as ∼50 per cent for the poorest
resolution considered here, where 24 464 cells are inside the initial
radius of the sphere. With better spatial resolution, the size of the
error progressively shrinks. However, it cannot be made smaller by
improving the time integration as it is ultimately caused by spatial
discretization errors. The cell-centred mass fluxes used to estimate
the gravitational work on a cell are not accurately balancing the
amount of energy actually extracted from the gravitational field
when the strong virialization shock propagates outwards. As a re-
sult, a substantial energy error is produced, which, in this example,
corresponds to a gain of energy of the whole system. Clearly, the
energy error from this can become quite severe, especially for poor
resolution, so the first generation of cosmic structures could be quite
strongly affected by this problem.

However, rewriting the gravitational work term in terms of a
surface integral, as described in Section 5.4, leads to much bet-

ter energy conservation. This is shown in the right-hand panel of
Fig. 42, where the same simulations are shown but this time us-
ing our improved coupling of self-gravity to the Euler equations.
We see that in this case the relative error in the total energy stays
well below 10−3 and does not show any systematic resolution de-
pendence, which is a dramatic improvement relative to the results
above. For these results, the gravitational work term was calculated
with the gravitational potentials, as described in equation (96). If the
simpler formulation of equation (94) is used instead, the maximum
relative errors become considerably larger (up to 10−2 in the peak)
but are still acceptable. All the simulations shown in Fig. 42 were
calculated for an unstructured stretched mesh that was kept fixed;
if the mesh is allowed to move instead, the errors tend to be slightly
smaller.

Finally, we would like to examine whether the softening correc-
tion factors discussed in Section 5.5 make a significant difference for
the energy conservation. First, note that such a difference is really
only expected if the gravitational interaction between two neigh-
bouring points is affected by the softening kernel. In other words,
the quantities ηj defined in equation (103) are only different from
zero if the gravitational softening lengths are large enough so that
some ‘overlap’ with neighbouring cells occurs at least in a fraction
of the cells. This can be guaranteed by choosing a sufficiently large
value for the softening constant fh, for example fh = 2.5. In simu-
lations of the Evrard collapse with this setting, we find a maximum
energy error of the same size as above, i.e. it stays below 10−3. How-
ever, if we disable in the code the corrective force of equation (107)
that accounts for changes of the softening lengths, the energy error
goes up by more than a factor of 10, and reaches slightly more than
1 per cent in the peak. This shows that this correction factor should
indeed be included for high-precision results.

9.2 Zeldovich pancake

A useful standard test for cosmological codes is the evolution of a
sinusoidal density perturbation in an expanding Einstein–de-Sitter
universe. After an initial linear growth phase, the 1D wave collapses
to a Zeldovich pancake, involving a pair of very strong shocks.
As this problem can be viewed as a ‘single-mode’ of the general
cosmological structure formation problem, it is a particularly useful
test of any cosmological code. Furthermore, it is also a useful test-
bed for the dual entropy-energy treatment described in Section 3.5,
as the initial gas temperature is negligibly small and drops further
through the cosmic expansion.
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Figure 41. High-resolution result (symbols) for the Evrard collapse problem calculated with AREPO, using 1.56 × 106 resolution elements in the initial gas
sphere of radius R = 1. An analytic solution for this problem is unavailable, but the solid gives the results of a 1D high-resolution PPM calculation kindly
provided to us by Steinmetz & Müller (1993) which should be fairly close.
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Figure 42. Energy evolution in the ‘Evrard-collapse’ problem, calculated for different numerical resolutions and different calculational schemes to couple
self-gravity to the Euler equations. In the panel on the left, results for a standard approach to treat self-gravity are shown. Here, the gravitational work on
a cell is estimated with cell-centred mass fluxes. This can, however, produce substantial errors in the presence of strong shock waves, especially when the
spatial resolution is quite coarse. The plot on the right gives results for the same simulations, except that the gravitational work term is estimated based on the
mass-fluxes determined by the Riemann solver at the surfaces of cells. This leads to a quite accurate conservation of the total energy of the system.

The comoving position x corresponding to an initial unperturbed
coordinate q at redshift z is given by (Zeldovich 1970)

x(q, z) = q − 1 + zc

1 + z

sin(kq)

k
, (127)

where k = 2π/λ is the wavenumber of the perturbation of wave-
length λ. The comoving density corresponding to the displacement
is given by

ρ(x, z) = ρ0

1 − 1+zc
1+z

cos(kq)
, (128)

and the peculiar velocity is

vpec(x, z) = −H0
1 + zc

(1 + z)1/2

sin(kq)

k
. (129)

Here ρ0 are the background density (equal to the critical density)
and H0 is the Hubble constant today. These equations describe the
solution exactly up to the redshift zc of collapse.

We follow Bryan et al. (1995) and Trac & Pen (2004), and choose
λ = 64 h−1 Mpc and zc = 1. Our test simulations are started at
zi = 100, with an initial gas temperature of Ti = 100 K. As the
pressure forces are negligible up to the formation of the pancake,
the temperature should evolve adiabatically as

T (x, z) = Ti

[(
1 + z

1 + zi

)3
ρ(x, z)

ρ0

]2/3

(130)

until collapse. We carry out tests of the Zeldovich problem using
both a moving mesh and a fixed mesh. This in particular serves as a
useful test of the correct implementation of the cosmological time
integration, and the coupling of the gasdynamics to self-gravity in
an expanding background space. As our code AREPO has presently
no 1D gravity solver, we carry out the tests in 2D instead, and for
simplicity, we use only the PM solver in 2D with a sufficiently large
mesh.

In Fig. 43, we show the density, velocity and temperature profiles
of the Zeldovich pancake at two different times, briefly before col-
lapse at redshift z = 2.14, and well into the non-linear evolution of
the pancake at z = 0. In all panels, a high-resolution result (based
on 1024 fixed points per dimension) is shown with solid lines, and
symbols of a low-resolution calculation with initially 32 points per
dimension are overlaid. In the high-redshift result shown in the top
panel, we also include the analytic solution of Zeldovich in terms
of a thick-dashed line. Before the collapse of the pancake at z = 1,
both the fixed mesh and the moving-mesh calculation trace the an-
alytic result with comparable accuracy, we therefore only show one
of the results. In the middle row of panels, the fixed-mesh result at
z = 0 is shown. Outside of the shock fronts, the solution is still very
accurate, but the lack of resolution inside the collapsed region leads
to a poor representation of the structure of the pancake, even though
its characteristic values of density and temperature are reasonably
well reproduced. The moving-mesh calculation shown in the lower
row of panels does significantly better in this respect. Remarkably,
even though only 32 points were available initially, the density and
temperature structure of the pancake, as well as the location of the
two strong shocks, are represented very accurately.

Note that the temperature evolution in this Zeldovich pancake test
is particularly difficult to get right, as there is a very large dynamic
range between the initially cold gas and the shocked heated gas in
the pancake, amounting to a difference of ∼10 orders of magnitude.
Before the gas is heated by the shocks, the flow is extremely cold
and dominated by gravitational forces, meaning that the problems
discussed in Section 3.5 with respect to spurious heating of very
cold flows in finite-volume methods are bound to be present in this
Zeldovich pancake test. Indeed, in the results shown in Fig. 43 we
have applied the entropy-energy scheme described in Section 3.5.
The ordinary treatment based on the total energy alone invariably
leads to significant heating of the gas well outside of the shock
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Figure 43. Zeldovich pancake test at two different times, and for two different ways to move the mesh. The top row of panels shows the pancake at z = 2.14
when it is still in the linear regime, before the collapse occurs at zc = 1. We show the analytic solution as a thick dashed line in red, while a high-resolution
calculation with 1024 cells is shown as a solid line and the blue symbols give a low-resolution result with 32 fixed cells, for comparison. The middle and
bottom rows of panels give the state of the pancake at z = 0, well into the non-linear regime, once calculated with a fixed mesh and once with the moving-mesh
approach. Again, we compare with a high-resolution result based on 1024 fixed cells (solid line). Note in particular that the temperature in the unshocked parts
of the flow is very accurate, thanks to the energy-entropy formalism that is applied by the code in very cold parts of the flow.

front prior to the collapse of the pancake. While this does not alter
the motion of the gas (the resulting pressure forces remain way too
small), the temperature evolution of the gas becomes inaccurate,
especially when the resolution is comparatively low. However, with
the entropy scheme, a very accurate solution is recovered in a ro-
bust way. We note that especially with respect to the temperature
evolution, our results also compare favourably to those of Trac &
Pen (2004) obtained with their moving-frame formalism. They also
show much sharper shock fronts than obtained with SPH (Dave
et al. 1997).

9.3 The Santa Barbara cluster

In the ‘Santa Barbara Cluster Comparison Project’ (Frenk et al.
1999) a large number of cosmological hydrodynamic codes were
applied to the same initial conditions, set-up to produce a rich cluster
of galaxies in an Einstein–de-Sitter universe. The inter-comparison
of the results produced by this set of different codes, which included
both SPH and Eulerian AMR methods, allowed an assessment of the
systematic uncertainties in such cosmological structure formation
simulations. While a fair amount of scatter between the different
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results was found, there was still quite reasonable agreement in most
of the cluster bulk properties (such as total mass, temperature, etc.),
and in the radial cluster profiles (such as the radial run of density,
baryon fraction, etc.), with typical code-to-code scatter of the order
of 10 per cent. The same initial conditions have also been regularly
used as hydrodynamic code test in subsequent work (e.g. Wadsley
et al. 2004; Springel 2005; Thacker & Couchman 2006).

It seems likely that the scatter in the results for the Santa Bar-
bara cluster would be smaller if the experiment was repeated today
with the most recent versions of the most commonly employed
cosmological codes, thanks to the progress made in the numeri-
cal simulation techniques in recent years. However, at the same
time there is little indication that arguably the most important
systematic difference found by Frenk et al. (1999) between the
Lagrangian SPH and the Eulerian AMR codes, namely the system-
atic difference in the entropy predicted for the central cluster gas,
has gone away. This entropy was found to be lower in SPH than
in the AMR calculations, which in turn also affects the tempera-
ture and gas density profiles in the inner parts of the cluster. This
also has an impact on cluster cooling rates if radiative cooling is
allowed, and on important observables such as the emitted X-ray
luminosity.

In SPH, entropy is accurately conserved (Springel & Hernquist
2002; Ascasibar et al. 2003), but it could be artificially low due
to the absence of entropy production through mixing and to SPH’s
tendency to spuriously suppress fluid instabilities. On the other
hand, the Eulerian codes may overestimate the central entropy as a
result of numerical diffusivity and overmixing. Also, they are more
prone to suffer from heating caused by the noisy gravitational field
produced by the collisionless matter. Recently, the idea that the
difference may ultimately arise from differences in the treatment of
mixing has found some support in numerical experiments (Mitchell
et al. 2009). Presently, it remains however unclear what the correct
entropy profile for the Santa Barbara profile really is, even though
this is an important question for numerical cosmology. Note that
due to the absence of radiative cooling in this problem, the Santa
Barbara cluster represents comparatively clean and ‘easy’ physics.
If even this case cannot be calculated fully reliably, it is clear that the
more demanding simulations that also account for radiative cooling
are fraught with numerical uncertainties.

We here give first results for the Santa Barbara Cluster with our
new moving-mesh code, calculated at comparatively low resolution.
All our simulations follow the original initial conditions in a periodic
box of side-length 32 h−1 Mpc, using homogeneous sampling of the
dark matter component, and an equal number of mesh-generating
points as dark matter particles. The simulations are started at red-
shift z = 50, and use cosmological parameters of a critical density
cosmology with dark matter content �dm = 0.9, baryonic density
�b = 0.1 and Hubble constant H 0 = 100 h km s−1 Mpc−1 with h =
0.5.

In Fig. 44, we first show the evolution of the mean mass-weighted
temperature of the whole simulation box, from the starting redshift
to the present time. Initially, no structures have formed yet, so that
the mean mass-weighted temperature should decline as T ∝ a−2 for
a while. Eventually, the thermal energy content in the shock-heated
gas of the first forming cosmic structures starts to dominate and the
mean temperature begins to rise rapidly. This general evolution is
reflected in the four simulation results depicted in Fig. 44, albeit
with interesting differences in detail. The green dashed line shows
the result of the moving-mesh approach when the ordinary total
energy approach is applied. The red line gives the result when the
energy-entropy formalism is used with a Mach number threshold
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Figure 44. Evolution of the mean mass-weighted temperature in four low-
resolution calculations (2 × 323) of the Santa Barbara cluster. The dashed
green line shows the result of the moving-mesh approach when the ordinary
total energy approach is applied. Here the gravitationally dominated cold
flows at high redshift are clearly subject to some spurious heating. The red
solid line shows the result when our entropy-energy scheme is used with a
Mach-number threshold Mthresh = 1.1, which turns out to be ineffective in
preventing the high-redshift heating, as the Mach numbers responsible for it
are very high. If we instead use our alternative scheme for deciding when to
preserve the entropy (with αS = 0.05) we obtain the blue solid line, where
now the heating in very cold, low-density gas is suppressed and the expected
adiabatic decline of the mean temperature at high redshift is obtained. For
comparison, the dashed lines give an SPH result obtained with GADGET-2 at
the same resolution.

Mthresh = 1.1, while the solid blue line uses our alternative switch
for deciding whether the entropy should be kept instead of updating
it with the total energy equation. In the latter case, the entropy is
used if the thermal energy is at most a small fraction αS = 0.05 of
the local kinetic energy. This proves effective to yield the expected
adiabatic decline of the mean temperature at a high redshift. On the
other hand, the Mach-number-based switch does not make a differ-
ence in this regime, as the shock waves responsible for this high-z
heating are typically quite strong. However, it can still effectively
act against noise-induced heating in virialized structures at lower
redshift. For comparison, the dashed light blue line gives an SPH
result obtained with GADGET-2 at the same resolution. It yields a
high-redshift evolution very similar to the moving-mesh code when
the entropy scheme is used for the cold gas, but at low redshifts its
gas ends up being noticeably colder on average. A substantial part
of this difference in the final temperature is probably simply caused
by the lower effective resolution of SPH, which tends to reduce the
heating through shocks. Higher resolution SPH calculations yield
a mean temperature that is 5-8 per cent higher, quite close to the
mesh-based result.

Radial profiles of mean gas density, gas entropy, gas temperature
and dark matter density of the final Santa Barbara cluster are given
in Fig. 45. We show results for the different numerical resolutions
of 323, 643 and 1283 with solid circles, in different colours as la-
belled. All these simulations use the entropy-energy formalism with
a threshold Mach number Mthresh = 1.1 in order to suppress spuri-
ous heating from the noise in the gravitational field induced by the
dark matter. The thermodynamic profiles converge reasonably well,
but not nearly as well as the dark matter density. Interestingly, the
central cluster entropy is actually quite close to the SPH result that
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Figure 45. Radial profiles of the gas entropy (top left), gas temperature (top right), gas density (bottom left) and dark matter density (bottom right) of the Santa
Barbara cluster, calculated with different resolutions and with different calculational methods. For our moving-mesh approach, results for the three resolutions
2 × 323, 2 × 643 and 2 × 1283 are shown with solid circles. Here, we applied our entropy-energy scheme with a Mach number threshold Mthresh = 1.1.
The open circles show the result for the 2 × 1283 run when only the total energy equation is used, and the gravitational work term is estimated based on
the actual mass fluxes. However, the results at this high resolution show no difference when the gravitational work term is estimated with cell-centred fluxes
instead. Finally, a high-resolution result obtained with the SPH code GADGET-2 is shown with diamonds. The vertical dotted lines mark the virial radius of the
cluster (Rvir = 2.754 Mpc), while for comparison the dashed line in the top-left panel illustrates the shape of the dark matter density distribution in terms of
the best-fitting NFW profile (with concentration c = 7.5), scaled by the gas to dark matter mass ratio.

is shown for comparison, but the innermost entropy profile shows
a shallower slope that produces a temperature profile that keeps
slowly rising to the very centre. If the total energy equation is ap-
plied throughout the calculation in the 1283 run, we obtain the result
shown with hollow circles. It produces much higher core entropy
and central gas temperature, as well as a lowered central gas density,
when compared with our default mesh-based calculation. We think
these results clearly show that the origin of the discrepancy found
first in Frenk et al. (1999) between the central cluster entropy in SPH
and AMR codes is caused by dissipation in extremely weak shocks
and the production of mixing entropy in effectively smooth parts
of the flow. Part of this dissipation is clearly artificial and caused
by gravitational N-body noise, which has much more drastic conse-
quence in mesh-based calculations than in SPH. It therefore appears
clear that mesh-based results that use the energy equation alone will
overestimate the central entropy. Unfortunately, it is less clear how
much suppression of dissipation is warranted, and where hence the
true entropy level ultimately lies. This will be investigated further
in future work.

We note that the dark matter density profiles found with AREPO

converge very well, and are consistent with the ones found with
GADGET-2. Also, we have found that at high resolution (643 and
1283) it makes essentially no difference to the results whether the
‘standard’ approach to treat the gravitational work term is employed,
or our alternative scheme based on the actual mass fluxes at the
surfaces of cells. Only at the low resolution of 323, we have found
that the cell-centred approach gives slightly higher central cluster
entropy and temperature.

It is also interesting to examine the final state of the Santa
Barbara run with respect to statistical properties of the geometry
of its Voronoi mesh. For example, we would like to know whether
the calculation was able to maintain roughly constant mass per
mesh-cell, and whether the final mesh consists mostly of ‘roundish’
cells, as desired. The first of these questions is addressed in Fig. 46,
where we show in the top panel a scatter plot of the gas mass per
cell as a function of gas density. It is seen that roughly constant
mass per cell has been maintained over a dynamic range of ∼105 in
density (and hence also in volume). The distribution function of the
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Figure 46. Scatter plot of the mass per cell as a function of local gas density
(top panel). The mass is here expressed in units of the mean mass per cell,
〈m〉, and the measurement was made at z = 0 for our 2 × 323 run of the
Santa Barbara cluster. The bottom panel shows the distribution function of
m/〈m〉, which has roughly lognormal shape.

mass per cell is shown in the bottom panel of Fig. 46. It has roughly
lognormal shape, with a typical scatter of ∼20 per cent. This small
scatter is the direct result of our mesh-steering algorithm discussed
in Section 4.2.

In Fig. 47, we show various statistics of the geometry of the final
mesh at z = 0 in our 2 × 323 run of the Santa Barbara cluster. The
top panel histograms the number of faces per cell and compares it to
the same statistic for a Poisson distribution with the same number
of points. The average number of faces is 14.6 per cell, meaning
that on average we need to calculate 7.3 Riemann problems per
mesh-generating point. For a structured Cartesian mesh, a factor
of 2.43 fewer Riemann problems per cell need to be solved. The
middle panel gives the distribution function of the distance d of a
mesh-generating point to the centre-of-mass of its cell, in units of
the fiducial radius R = (3V /4π)1/3 of each cell. This quantity was
used in our method to ensure reasonably roundish cells, as described
in Section 4.1. The parameter χ was set to χ = 0.2, meaning that the
algorithm tries to make cells with d > 0.2 rounder, something that
clearly has worked well. Finally, another statistic that shows that our
final mesh is significantly more regular than a Poisson mesh is given
in the bottom panel. Here, we show the distribution function of the
ratio η = S3/2/(6

√
π V ) of surface area S of a cell to its volume V .

For a sphere, η = 1 is reached, and cells with high aspect ratios will
produce larger values. For our mesh, η peaks around ∼1.2.

Finally, it is of interest to comment on the overall code speed of
AREPO for such a real-world cosmological problem in comparison
to an equivalent SPH simulation. In our present implementation,
AREPO is a factor of 1.6 slower than GADGET-3 (an updated version
of GADGET-2; Springel 2005) for the Santa Barbara cluster, using
the same number of dark matter particles and cells/particles. This
was measured for runs on four processors, for the 2 × 323 initial
conditions. A full time-step of the moving-mesh hydrodynamics
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Figure 47. Geometry statistics of the final mesh at z = 0 in our moving-
mesh calculation of the Santa Barbara cluster. The histogram in the top panel
(thick line) counts the number of faces per cell; the average number is 14.6.
The thin line is the same statistic for a Poisson sample (∼15.5 faces per cell
on average). The middle panel gives the distribution function of the distance
d of mesh-generating points to their cell’s centre-of-masses, in units of the
cell radius. Again, we compare the cosmological simulation (thick line) to
a Poisson sample (thin line). Finally, the bottom panel gives the distribution
of the ratio η = S3/2/(6

√
π V ) of the surface areas of cells to their volumes.

takes about ∼2.8 times as much CPU-time as the SPH calcula-
tions, and this cost is dominated by the mesh-construction, which
weighs in with twice the cost of the SPH calculations, whereas the
calculations for the finite-volume hydrodynamics itself (gradient
estimation, flux estimation with Riemann solver, etc.) is slightly
faster than SPH, as this requires no neighbour searches. However,
the calculation of self-gravity is costly in high force-accuracy cos-
mological codes, and in fact makes up nearly two-thirds of the cost
in the GADGET-3 calculation. This cost stays roughly equal in AREPO,
as expected, such that only a rather modest increase of the overall
run-time in the new code remains. This additional CPU-time is well
invested in our view, given that the new method yields a substantial
improvement in accuracy. Furthermore, we note that so far compar-
atively little effort has been spent on optimizing the speed of AREPO,
whereas GADGET-3 has been developed and tuned over many years.
There is hence certainly room for substantial further performance
improvements of AREPO in the future.

9.4 A galaxy collision simulation

The hierarchical bottom-up formation of structure from small build-
ing blocks is the leading theory of galaxy formation (White & Rees
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1978). In this scenario, galaxies frequently collide and merge to
form bigger systems. In fact, according to the ‘merger hypothesis’
(Toomre & Toomre 1972) galaxy collisions are a primary means to
form large elliptical galaxies out of disc systems, and are hence one
of the main drivers of the morphological evolution of galaxies.

Major mergers of spiral galaxies are observed in many spectacular
systems in the local Universe. They have also been extensively stud-
ied with N-body and N-body/SPH simulations, leading to important
insights into the nature of starbursts, the formation of spheroidal
galaxies and the secular evolution of galaxies (e.g. Gerhard 1981;
Negroponte & White 1983; Hernquist 1989; Barnes & Hernquist
1992; Mihos & Hernquist 1996; Athanassoula & Misiriotis 2002).
In recent times, galaxy merger calculations were also used to study
the growth of supermassive black holes at the centres of galaxies,
and their energy feedback on the host systems (Di Matteo, Springel
& Hernquist 2005; Springel, Di Matteo & Hernquist 2005). This has
led to important theoretical insights for the co-evolution of galax-
ies and supermassive black holes (Hopkins et al. 2006), and for
the characterization of merger remnants and elliptical galaxies as
two-component systems (Hopkins et al. 2008).

Interestingly, essentially all of the work thus far on isolated galaxy
mergers has been carried out with the Lagrangian SPH technique.
Not without reason, SPH can effortlessly deal with the large bulk
velocities present in the colliding galaxies before they coalesce, and
the large dynamic range in density and spatial scales that need to be
resolved. At the same time, the resolution automatically follows the
mass, and is concentrated where it is needed most, which in these
calculations is naturally at the centres of the galaxies. Achieving
this same set of features with AMR is technically and numerically
substantially more challenging. This is certainly one of the primary
reasons why this method has so far not been widely applied to this
very important type of cosmological simulation. An added difficulty
in the high-speed collisions of galaxies is that there is no convenient
frame of reference where both galaxies are simultaneously at rest. In
particular, the calculational hot spots where the AMR refinements
are most needed are quickly moving, which invokes the problems of
Galilean non-invariance inherent in the Eulerian approach. While a
successful application of AMR techniques to galaxy mergers should
certainly be possible in principle, AMR does not appear particularly
well matched to the nature of the problem.

In this last section, we show that our new moving-mesh code can
deal quite well with the particular challenges posed by simulations
of pairs of colliding galaxies. We here focus on the technical aspects
of carrying out such simulations with AREPO and give an illustrative
example, deferring a scientific analysis of the results of moving-
mesh-based galaxy mergers to future work.

We begin by briefly discussing the creation of appropriate initial
conditions. SPH can easily deal with vacuum boundary conditions,
and it is hence straightforward to represent isolated gaseous discs
in otherwise empty space. In contrast, our moving-mesh code al-
ways requires a well-defined total volume that is tessellated by the
mesh. We therefore enclose the isolated galaxies with a large box
that comfortably contains all the material of the galaxies and their
tidal debris. The outer walls of this box have reflective boundary
conditions for the gas, but collisionless particles are allowed to pen-
etrate freely. Also, the calculation of gravity is not influenced by
the presence of the box. Next, we need some sort of background
grid to fill all of this empty space through which galaxies with their
cells and gas can move. Ideally, we would like to be able to add this
background grid automatically to existing initial conditions of SPH
calculations, such that equivalent moving-mesh initial conditions
result. This allows continued use of the same initial condition codes

and facilitates easy comparison of the results. We have implemented
the following functionality in AREPO to produce appropriate initial
conditions that fulfil these requirements:

(i) Starting with a set of gas particles from an existing SPH initial
conditions, we first generate a new set of points for tessellating the
whole volume of the simulation box. We want this set of points
to produce cells of constant volume far away from the galaxy (or
galaxies), but close to the original gas distribution, there should be
cells of smaller size such that the original gas distribution stays well
localized when the Voronoi mesh is constructed. We want to avoid
that particles at the surface of the original SPH particle distribution
end up having Voronoi cells that extend far out into empty space,
which would cause a low-density leakage of the mass. We generate
an appropriate set of additional points via a special Barnes & Hut
(1986) oct-tree construction. We start with a Cartesian grid with
cells of size equal to the desired coarsest background resolution.
We then fill in the gas particles of the SPH initial conditions one
by one, requiring that a new set of eight empty daughter cells is
created whenever a particle falls into a leaf cell that already contains
a particle. (Note that unlike in the ordinary tree construction of
GADGET-2, the creation of empty cells is not prevented here.) Finally,
we create mesh-generating points at the centres of all empty leaf
cells. This procedure effectively creates an adaptively refined grid
that follows the original SPH particle distribution.

(ii) We now assign the mass, momentum and thermal energy
of the original SPH particles to the new set of mesh-generating
points. This is done by distributing these quantities to the new
points in a conservative fashion, using the SPH kernel and the
original SPH smoothing lengths, and by weighting each new point
with the volume of its associated parent tree node. This produces
new initial conditions that faithfully represent the gas distribution
of the original SPH simulation, and which can be directly fed to the
AREPO code.

(iii) As an optional step, we may now relax the created Voronoi
mesh by moving the mesh-generating points with the technique
described in Section 4.2. If desired, this can also be used to down-
sample the mesh resolution to exactly match the particle number of
the original SPH initial conditions. The spatial distribution of the
mass density, momentum density and thermal energy density stays
fixed in this step, only the mesh is moved by solving the advec-
tion equation. The mesh relaxes to a distribution where the factor
mi/m̃+Vi/Ṽ is roughly constant for all the cells (see equation 69).
Here, m̃ is the original mean gas particle mass in the SPH initial
conditions, and Ṽ is the volume of the coarsest cell used in back-
ground grid. These values of m̃ and Ṽ may then also be kept later on
to steer the mesh motion during the dynamical evolution. We note
that the numerical diffusion from the mesh advection in this step
reduces Poisson noise in the initial particle set, if present, which is
a welcome effect in this case.

In Fig. 48, we illustrate the outcome of this procedure when
applied to an isolated galaxy model. We selected SPH initial con-
ditions created with the methods described in Hernquist (1993)
and Springel & White (1999). The model has circular velocity
V c = 160 km s−1, total mass M200 = 9.52 × 1011 h−1M� and spin
parameter λ = 0.05. Most of the mass is in an NFW halo of concen-
tration c = 9.0, represented with 50 000 collisionless dark matter
particles. A fraction of md = 0.05 of the mass is in a disc with an
exponential surface mass profile with a scalelength of Rd = 3.6 h−1

kpc, and a vertical scaleheight of 0.15 × Rd. Half of the disc mass
is in a stellar disc, represented with 30 000 collisionless particles,
the rest in a gaseous disc of 30 000 SPH particles. We enclosed the
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Figure 48. The top-left panel shows the projected gas density in the original SPH particle distribution, which we adapt automatically to be used in the
moving-mesh code. In the top-right panel, we show the resulting gas distribution in the Voronoi mesh that is created automatically based on the original SPH
particle distribution. The lower-left panel gives the density distribution after 32 mesh relaxation steps have been applied, which improves the mesh regularity
and somewhat reduces the density fluctuations present in the original initial conditions. Finally, the lower right shows two sections through the 3D Voronoi
mesh corresponding to the lower left distribution.

whole system in a box of size 1200 h−1 kpc on a side, and applied
the initial conditions modification algorithm described above with
a background grid of 323 cells. This increased the final number of
mesh-generating points from 30 000 to 109 602.

In the top-left panel of Fig. 48, we show the projected gas density
in the original SPH particle distribution, projected with the adaptive
SPH kernel. In the top-right panel, we show the gas distribution in
the Voronoi mesh that is created after step (ii) in the above procedure

has been completed. Here, we projected the gas again with an SPH
kernel, now seeking neighbours among the mesh-generating points.
Clearly, the gas mass in the new mesh is localized well, as desired,
but there is a large amount of high-frequency noise both in the local
mesh structure and in the gas distribution. This noise is partially
eliminated in step (iii), as shown in the bottom-left panel, where we
show the mass distribution after iterating the advection equation for
32 relaxation steps. Finally, in the bottom-right panel we show
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planar sections through the 3D Voronoi mesh corresponding to the
relaxed initial conditions. The small pieces of cells that occasionally
occur in these sections are corners from cells that are intersected far
from their centres-of-mass.

The above procedures can also be readily applied to produce ini-
tial conditions that contain two galaxies on a collision orbit. We
consider a prograde merger of two identical copies of the above
galaxy model, placed at an initial separation of 160 h−1 kpc, and
set-up on a zero-energy orbit with impact parameter 2 h−1 kpc. In
Fig. 49 we show the time evolution of this galaxy merger sim-
ulated with the moving-mesh code. The baryons are treated as a
non-radiative gas in this calculation. The galaxies freely fall to-
gether with increasing velocity until they undergo a first encounter.
Tidal forces and shocks largely destroy the discs during this first
passages, but the inertia of the galaxies lets them separate again.
After sufficient braking from the dynamical friction of their dark
matter haloes, the galaxies turn around and fall together a second
time. This is soon followed by complete coalescence, violent relax-
ation of the collisionless components and virialization of the gas
distribution. By time ∼2 h−1 Gyr, a reasonably relaxed spheroidal
remnant galaxy has formed. We note that the images of Fig. 49
have been created by ray-tracing through the Voronoi tessellation
for each pixel, and integrating up the linearly reconstructed density
field along all ray segment cells that intersect individual cells . This
technique faithfully preserves the full information in the 3D density
field and does not rely on additional smoothing steps.

In Fig. 50, we show the radially averaged density profiles of gas
and stars of the final merger remnant, at time 2 h−1 Gyr. We com-
pare the results with the outcome of the same merger calculation
carried out with the SPH code GADGET-2. Interestingly, both the
stellar and gas density profiles are extremely similar, even though
there is a hint that the gas density profile is slightly more concen-
trated in the moving-mesh calculation in the outer parts of the halo,
and the innermost gas density profile is a bit shallower. We have
used our entropy-energy formalism with a Mach number threshold
of Mthresh = 1.1 in this moving-mesh calculation, which has sup-
pressed entropy production in very weak shocks. If this threshold
is raised to Mthresh = 1.3, the central gas density increases some-
what, while without any such threshold it is substantially lowered,
because in this case the cold gas in the discs already experiences
significant heating from noise in the gravitational field prior to the
actual collision of the two galaxies. Further work will be required
to better understand the dissipation in the moving-mesh code in the
presence of a collisionless particle component, and to establish the
most accurate setting of Mthresh, or to find an alternative approach
to suppress spurious dissipation in the finite-volume approach when
coupled to self-gravity and a collisionless N-body system.

10 DI SCUSSI ON

We have introduced a novel moving-mesh hydrodynamical scheme
that is second-order accurate both in space and in time and does

Figure 49. Time evolution of the projected gas density in a galaxy collision with non-radiative gas, calculated with the moving-mesh code AREPO. Each frame
has a length of 160 h−1 kpc on a side, and the elapsed time since the start of the simulation is given in units of h−1 Myr. The brightness of each pixel encodes
the projected gas surface density, and the colour hue the mass-weighted projected gas temperature.
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Figure 50. Spherically averaged density profiles of the remnant galaxy
formed in the merger simulation carried out with the moving-mesh code
AREPO, at time 2 h−1 Gyr after the start of the simulation. The thick red solid
line is for the gas, the thin blue solid for the stars. Dashed lines give the
result of a corresponding merger calculation carried out with the SPH-code
GADGET-2. The fluctuation seen in the thick red line at small radii is due to
counting statistics, as the number of cells there is small and each cell is
counted in full towards the logarithmic bin in which its centre falls.

not require an artificial viscosity. The method is based on a finite-
volume discretization of the Euler equations on an unstructured
mesh. The mesh is constructed as the Voronoi tessellation of a
finite set of mesh-generating points, which are free to move during
the time evolution. However, unlike in many other moving-mesh
approaches, there are no mesh-tangling or mesh-twisting effects
since the motion of the mesh-generating points induces a continuous
deformation of the mesh, without the occurrence of ‘bow-tie’ cells
or other topological artefacts. The freedom to move the mesh with
a nearly arbitrary flow field adds considerable flexibility to the
method.

If the mesh-generating points are fixed, the method becomes
effectively identical to an Eulerian code, formulated with an unsplit
MUSCL-Hancock scheme on an unstructured grid. If the points
are fixed and arranged on a Cartesian grid, the method becomes
identical to an ordinary Eulerian code on a regular structured mesh.
However, the most attractive mode of operation is obtained by tying
the mesh motion to the local fluid velocity, in the simplest case
making the velocities of the mesh-generators equal to the fluid
velocities of the corresponding cells. In this Lagrangian mode, the
dynamics become Galilean invariant and benefit from the automatic
adaptivity of Lagrangian approaches, which is advantageous for
many problems of interest.

Conceptually, our method shares aspects of SPH and of Eulerian
hydrodynamics. From SPH, it inherits the concepts of points as
carriers of thermodynamic quantities and their spatial distribution
sets the resolution in the flow. From Eulerian codes it inherits the
concept of finite-volume discretization of the Euler equations, and
the Godunov approach to accurately estimate the exchange of con-
served quantities across cell faces. On the other hand, our approach
avoids some of the weaknesses of these two schemes. For example,
it does not show the same level of noise and diffusiveness as SPH,
and it avoids the Galilean non-invariance of Eulerian codes. In our
view, this new synthesis of properties makes our new approach a
very attractive technique, providing a better numerical accuracy for
many problems compared with the alternative methods available
thus far.

We note that our new method is significantly different from other
approaches to improve SPH, such as, e.g., the approaches discussed
by Inutsuka (2002), where SPH is combined with a Riemann solver.
The important new concept in our method is the introduction of a
well-defined mesh, while SPH by its very definition is a mesh-free
technique.

In this paper, we have described in detail the numerical and
algorithmic approaches taken in our new cosmological code AREPO,
ranging from parallel mesh-construction techniques in 2D and 3D,
to spatial reconstruction and flux estimation techniques, as well as
time integration with individual and adaptive schemes. We have
shown that our new code performs very well on a wide range of test
problems. We therefore consider it to be an attractive alternative to
SPH or AMR codes used presently in cosmology, and argue that
it has the potential to become the method of choice for a number
of applications. We note, in particular, that our treatment of self-
gravity should be more accurate and better suited for the problem
of cosmic structure growth than that in the current generation of
cosmological AMR codes.

We note that our new moving-mesh method can also make
use of many advanced concepts that have been developed for
Eulerian codes, for example to deal with magnetic fields and ra-
diative transfer. In particular, if constrained transport methods for
ideal magnetohydrodynamics (MHD) can be adapted to a Voronoi
mesh, this would provide the exciting possibility of constructing a
Lagrangian MHD code. Another interesting idea is to apply the
ideas outlined in this paper in the modelling of relativistic flows,
which may yield a Lorentz invariant numerical scheme. Also, it
seems possible to increase the order of our scheme by employ-
ing more sophisticated reconstruction steps, e.g. those known as
weighted WENO schemes (e.g. Feng et al. 2004). However, the
second-order approach followed here is probably best for cosmo-
logical structure formation, as the integration of the collisionless
component is of second order only and involves a relatively noisy
gravitational field.
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