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Abstract

We describe a new approach for the purely Eulerian simulation of
incompressible fluids. In it, the fluid state is represented by a C2-
valued wave function evolving under the Schrödinger equation
subject to incompressibility constraints. The underlying dynami-
cal system is Hamiltonian and governed by the kinetic energy of
the fluid together with an energy of Landau-Lifshitz type. The
latter ensures that dynamics due to thin vortical structures, all
important for visual simulation, are faithfully reproduced. This
enables robust simulation of intricate phenomena such as vor-
tical wakes and interacting vortex filaments, even on modestly
sized grids. Our implementation uses a simple splitting method
for time integration, employing the FFT for Schrödinger evolu-
tion as well as constraint projection. Using a standard penalty
method we also allow arbitrary obstacles. The resulting algorithm
is simple, unconditionally stable, and efficient. In particular it
does not require any Lagrangian techniques for advection or to
counteract the loss of vorticity. We demonstrate its use in a va-
riety of scenarios, compare it with experiments, and evaluate it
against benchmark tests. A full implementation is included in the
ancillary materials.

Keywords: discrete differential geometry, fluid simulation,
Schrödinger operator

Concepts: •Mathematics of computing→ Partial differential
equations; •Computing methodologies → Physical simula-
tion; •Applied computing→ Physics;

1 Introduction

We introduce incompressible Schrödinger flow (ISF), a new method
to simulate incompressible fluids (Fig. 1, middle). Instead of
describing the fluid evolution in terms of the velocity or vor-
ticity field, ISF evolves a two-component wave function ψ =
(ψ1,ψ2)ᵀ : M → C2, which encodes the fluid state on a 3D domain
M . The classical fluid density ρ and fluid velocity v = (v1, v2, v3)ᵀ
are extracted from ψ as

ρ = |ψ|2 = 〈ψ,ψ〉R and ρvα = ħh〈
∂ψ

∂xα
, iψ〉R α= 1,2, 3

where 〈φ,ψ〉R = Re(〈φ,ψ〉C) = Re(φ1ψ1 + φ2ψ2). The time
evolution of these wave functions is governed by the Schrödinger
equation

iħhψ̇= − ħh
2

2 ∆ψ+ pψ ∂ψ

∂ N

�

�

∂M = 0 (1)
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Figure 1: Comparing experiment (dry ice vapor, top) with ISF simu-
lation (middle), followed by a visualization of the underlying wave
function ψ. Vorticity is concentrated within the green region.

subject to the constraints

〈∆ψ, iψ〉R = 0 and |ψ|2 = 1, (2)

which correspond to div(v) = 0 and ρ = 1 in the classical vari-
ables (Sec. 4.1). The scalar potential p : M → R in Eq. (1) is the
Lagrange multiplier for the divergence constraint (App. A), and
we will refer to it as pressure in analogy to the Euler equation. The
reduced Planck constant ħh of quantum Physics becomes the only
parameter for our fluid and controls the quantization of vorticity.
For a large range of initial conditions ISF tends to concentrate
vorticity in filaments of strength 2πħh (Fig. 1, bottom).

We call Eqs. (1) and (2) the incompressible Schrödinger equations
and the corresponding flow the incompressible Schrödinger flow.

http://dx.doi.org/10.1145/2897824.2925868


ISF is computationally very attractive. Using a splitting method
for time integration, each step requires only linear Schrödinger
evolution, followed by normalization and pressure projection,
i.e., solution of a Poisson problem (Alg. 1). All advection hap-
pens within the Schrödinger evolution, no separate advection
step is needed. The resulting algorithm is unconditionally stable,
straightforward to implement, and efficient. Obstacles are also
easily incorporated (Alg. 4).

ISF is a Hamiltonian flow with respect to the energy

HISF(ψ) =
ħh2

2 ‖dψ‖
2 = 1

2‖v‖
2 + ħh

2

4 Hs(ψ) (3)

(Thm. 2, Sec. 4.4) with ‖.‖ denoting the L2 norm. The kinetic
energy alone (first summand) would give the Euler equations
for ideal, i.e., inviscid and incompressible, fluids. In ISF these
equations are modified by the presence of the term Hs (Secs. 4.2–
4.5). For flows dominated by vortex filaments it can be interpreted
geometrically as approximating the 4π multiple of the length of
all vortex filaments in the fluid (Sec. 4.5).

This modification has significant consequences for incompress-
ible fluid simulation on grids. Standard methods using a direct
velocity or vorticity representation typically struggle with main-
taining coherent vortical structures and their dynamics over time
(Sec. 1.2). These structures are usually concentrated along curves
and often persist over significant periods of time, while their dy-
namics are critical for the visual appearance of flows (Fig. 1, cmp.
top and middle). ISF captures their energy in Hs, preserving vor-
tical structures and their dynamics over a wide range of scales on
modest resolution grids.

Note To simplify the derivations we will use Exterior Calcu-
lus [Abraham et al. 2001, Ch. 6] in the remainder of the paper,
working with the velocity 1-form η= v[ = ħh〈dψ, iψ〉R instead of
v and correspondingly ∗ d∗η= 0 instead of div(v) = 0.

Notation Meaning

ψ= (ψ1,ψ2)ᵀ : M → C2 wave function
ψ̇= ∂ψ

∂ t time derivative
dψ differential of ψ
〈φ,ψ〉C = φ1ψ1 +φ2ψ2 Hermitian form on C2

〈φ,ψ〉R = Re
�

〈φ,ψ〉C
�

Euclidean product on C2

|ψ|2 = 〈ψ,ψ〉R pointwise squared norm
〈u, v〉 Euclidean product on R3

2πħh vortex filament strength
η= v[ = ħh〈dψ, iψ〉R velocity 1-form
ω= dη vorticity 2-form
ξ= ∗ d∗η divergence
ℒvψ= (v · ∇)ψ Lie derivative of ψ

ℒvη=
�

(v · ∇) v + 1
2∇|v|

2
�[

Lie derivative of η

Table 1: Notations used.

1.1 Physics Foundations

In the context of fluids the Schrödinger equation typically only
appears in the study of fluids at very low temperatures and very
small scales, so called superfluids. Despite this, superfluid dy-
namics are of great interest for computer graphics applications
because of the remarkable similarities between vortex dynamics

in ordinary and superfluids, both at the experimental and theo-
retical levels [Schwarz 1985] (see also the more recent [Stagg
et al. 2014] and references therein).

In most situations of practical import the dynamics of ordinary
fluids are dominated by thin vortex filaments [Saffman 1992].
Because of their thinness these are inherently difficult to resolve
at feasible grid resolutions with traditional representations (ibid,
p. 201). In superfluids, using wave functions to describe the state
of the system, such filaments are a topological feature and thus far
more persistent and computationally resolvable even at relatively
modest resolutions.

Early on in the history of the study of superfluids it was recognized
that they carry quantized vorticity in atomic scale filaments [On-
sager 1949; Feynman 1955]. These were later experimentally
verified [Hall and Vinen 1956] and even photographed [Packard
and Sanders 1969]. In our approach the strength of the filaments
is 2πħh, which we can take as a quantization parameter of our
simulations, setting the strength of vortex filaments and with it
the level of detail present in the flow.

A mathematical model for the observed physics of superfluids
was developed by Gross [1961] and Pitaevskii [1961] (and ear-
lier Ginzburg and Pitaevskii [1958]). This model is now known
as the Gross-Pitaevskii (GP) equation, or simply the non-linear
Schrödinger (NLS) equation

iħhϕ̇ = − ħh
2

2 ∆ϕ +
1
a2

�

|ϕ|2 − 1
�

ϕ,

for ϕ : M → C and a parameter a > 0 which for us corresponds
to the core radius of vortex filaments.

The non-linear (cubic) term acts as a potential opposing the de-
viation of the density ρ = |ϕ|2 from 1. Indeed, in simulations
using the GP equation the density is near 1 in most of the domain,
save for the zero set of ϕ in whose vicinity the density smoothly
decreases to zero [Stagg et al. 2014]. Taking the limit a→ 0 one
expects the non-linear term to converge to the incompressible
limit and hence the GP equation to recover the Euler equations
for η. In 2D this has been rigorously established [Lin and Xin
1999; Jerrard and Spirn 2015].

As a practical matter, choosing a small a in the cubic term leads
to very stiff numerical problems. Since we are only interested in
the incompressible setting, we can replace the cubic non-linearity
with the incompressibility constraints. For single component wave
functions the uniform density constraint |ϕ|2 = 1 yields singular
ϕ and allows for irrotational velocity fields only. Using instead
a two-component wave function ψ: M → C2 leaves ψ smooth
under the constraint |ψ|2 = 1. Additionally it allows for smoothly
varying vorticity [Schönberg 1954; Sorokin 2001].

The interpretation of the Schrödinger equation in terms of flu-
ids was first pursued by Madelung [1926; 1927] in an effort to
elucidate the then new quantum mechanics. He showed that
the Schrödinger equation for single component wave functions is
equivalent to the quantum Euler equations. What became known
as the Madelung transform was later applied to Cn-valued wave
functions by Schoenberg [1954]. In particular he introduced
the form of η we use. Sorokin [2001] gave the C2 version of
the Madelung transform including explicit expressions for the
non-linear potentials which distinguish it from the classical Euler
fluid.

Two threads from Physics have influenced our work. On one hand
the hydrodynamical interpretation of Quantum Physics and on
the other the GP equation for the modeling of superfluids. Since
we are interested in incompressibility we replace the numerically



stiff cubic term in the GP equation with pressure projection. At the
same time our fluid inherits the robust representation of vortex
filaments from superfluids.

1.2 Vorticity in Computer Graphics

The importance of vorticity for visual simulation has long been
recognized in computer graphics, as has the difficulty to capture
its dynamics correctly with numerical methods.

The success of Jos Stam’s “Stable Fluids” [1999] method, using
semi-Lagrangian advection and pressure projection on a regular
grid, quickly led to work addressing its excessive numerical diffu-
sion [Fedkiw et al. 2001] using vorticity confinement [Steinhoff
and Underhill 1994]. Lost detail has also been compensated by
wavelet turbulence [Kim et al. 2008] or curl-noise [Bridson et al.
2007]. Unfortunately, these techniques are difficult to control
and easily lead to objectionable visual artifacts.

Alternatively one can represent vorticity through Lagrangian vor-
tex particles, a technique from the CFD community [Rosenhead
1931; Leonard 1980; Cottet and Koumoutsakos 2000] to avoid
many of these issues [Park and Kim 2005]. Since vorticity arises
at boundary layers as sheets and then quickly rolls up into fila-
ments, purely Lagrangian methods based on filaments [Angelidis
and Neyret 2005; Weißmann and Pinkall 2010] and sheets [Stock
et al. 2008; Brochu et al. 2012] have also been developed.

Using vorticity as a primary variable also improves mesh based
Eulerian simulations [Elcott et al. 2007], motivating [Zhang et al.
2015] to modify existing velocity based Eulerian solvers to per-
form as if using vorticity as their primary variable.

Many recent approaches are of a hybrid nature, integrating La-
grangian elements into grid based approaches [Selle et al. 2005;
Kim et al. 2009; Pfaff et al. 2012] or enhancing purely Lagrangian
methods with grids [Koumoutsakos et al. 2008].

Overall we see that proper resolution of vorticity is essential to
the visual appearance of flows and simultaneously difficult to
achieve. Grid based approaches battle loss of vorticity with vari-
ous devices, while purely Lagrangian approaches have their own
host of problems ranging from inadequate control of sample den-
sity (particles), to complex reconnection handling (filaments),
and the need for sophisticated multipole solvers, etc..

Our new method is grid based and purely Eulerian. Still we are
able to simulate vortex driven dynamics, with grids of modest
sizes, at a quality level comparable to purely Lagrangian methods.

2 The Algorithm

All our simulations are performed on a 3D lattice with vertex
set 𝒱 = {0, . . . ,𝒩x − 1} × {0, . . . ,𝒩y − 1} × {0, . . . ,𝒩z − 1}. For
a periodic domain, indices are taken modulo their respective
dimension. Vertices, v ∈ 𝒱, need to store samples of the wave
function ψv ∈ C2, the real-valued pressure qv ∈ R, and the real-
valued divergence ξv ∈ R. The discrete velocity 1-form is defined
on directed edges vw ∈ ℰ

ηvw := ħh arg〈ψv,ψw〉C (4)

with ηvw = −ηwv (App. D) and stored in staggered grid fashion at
the vertices (Fig. 2).

The discrete divergence, ξ = ∗ d∗η, is the usual signed sum over
incident edges, weighted by the quotient of dual facet area Avw to
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Figure 2: In all, 9 reals are stored at vertices: ψv, ξv, qv, and the
three circulations (η1,η2,η3)ᵀv associated with the edges emanat-
ing in the positive coordinate directions. The divergence ξv is the
normalized sum of the face fluxes Avw

lvw
ηvw on the enclosing cube.

edge length lvw and normalized by dual cell volume Vv (Fig. 2)

ξv = (∗ d∗η)v =
1
Vv

∑

vw∈ℰ

Avw
lvw
ηvw, (5)

following standard Discrete Exterior Calculus (DEC) conven-
tions [Desbrun et al. 2008; Crane et al. 2013].

Overall time integration uses operator splitting, performing in-
tegration of the Laplace term, normalization, and pressure pro-
jection in order. Later we include obstacles and buoyancy resp.
gravity forces.

Time integration requires an initial ψ(0), a time step size dt > 0,
and a quantization strength ħh > 0. Appropriate values will be
illustrated with the aid of example simulations (Sec. 3 and Tbl. 2).

Algorithm 1 Basic ISF

Input: ψ(0), dt,ħh . Initial state and parameters
1: for j← 0, 1,2, . . . do
2: ψtmp← SCHRÖDINGER(ψ( j), dt,ħh)
3: ψtmp←ψtmp/|ψtmp| . Normalization
4: ψ( j+1)← PRESSUREPROJECT(ψtmp)
5: end for

Schrödinger integration diagonalizes in the Fourier domain,
leading us to use the FFT (on periodic domains). For walls
∂M 6= ; Neumann boundary conditions are achieved with the
discrete cosine transform (DCT). Here λv are the eigenvalues of
the continuous 3D Laplace operator (Eq. (18), App. E).

Algorithm 2 Time integration of Schrödinger equation

1: function SCHRÖDINGER(ψ, dt,ħh)
2: ψ̂← FFT3D(ψ)

3: ψ̂← eiλdt
ħh
2 ψ̂

4: return INVFFT3D(ψ̂)
5: end function

Pressure projection Eq. (10) uses the scaled (ħh−1) discrete di-
vergence as the right hand side of a Poisson problem. We use
an FFT (or DCT) to invert the Poisson problem (Sec. 4.1) using
eigenvalues λ̃v of the discrete Laplacian for discretely divergence
free velocity fields (Eq. (17), App. E).



Algorithm 3 Divergence free constraint

1: function PRESSUREPROJECT(ψ)
2: for each vw ∈ ℰ do . Scaled velocity 1-form at edges
3: η̃vw = arg〈ψv,ψw〉C . ħh−1 multiple of Eq. (4)
4: end for
5: for each v ∈ 𝒱 do . Scaled divergence at vertices
6: ξv =

1
Vv

∑

vw∈ℰ
Avw
lvw
η̃vw . Eq. (5)

7: end for
8: ξ̂← FFT3D(ξ)

9: ξ̂← ξ̂
�

λ̃−1 if λ̃ 6= 0
0

10: q← INVFFT3D(ξ̂)
11: return e−iqψ
12: end function

This completes the description of the basic algorithm. While we
make extensive use of the FFT (or DCT) our method is not tied
to the Fourier domain. For example, the Schrödinger integra-
tion could use [Al-Mohy and Higham 2011] while the pressure
projection step might employ [McAdams et al. 2010].

Fig. resolution size [m3] dt[s] ħh[m2 s−1] Video

1 1283 53 1/48 0.03 04:48
4 128× 64× 64 10× 5× 5 1/24 0.1 00:05
5 643 23 1/24 0.01 01:17
6 1283 43 1/48 0.02 01:42
7 128× 64× 64 4× 2× 2 1/48 0.02-0.04 02:18
8 192× 64× 64 6× 2× 2 1/48 0.015 03:41
9 192× 64× 64 6× 2× 2 1/48 0.015 03:56

10 96× 192× 96 3× 6× 3 1/48 0.02 04:09
13 1283 43 1/48 0.02 02:00
14 643 resp. 1283 53 1/24 0.05 00:39
15 512× 12× 208 20× 1/2× 8 1/48 0.03 02:48

Table 2: Parameters for simulations.

3 Using the Algorithm

With the basic algorithm in place, we now discuss its use, be-
ginning with simple benchmark simulations and building up a
set of straightforward tools capable of describing a large set of
interesting simulation scenarios. All examples used our native
implementation in Houdini 15 (Fig. 3). Complete source code is
included. Comparisons with other methods used Houdini as well.
Performance is controlled by the cost of the FFT. A single step of
Alg. 1 takes less than 1s at 1283 resolution and less than 9s at
2563 on a 3.5GHz i7 iMac.

Note on initializations ISF is invariant under unitary transfor-
mations of C2. We exploit this by initializing ψ1 with the desired
initial state, using ψ2 = ε (we use ε = 0.01) merely to guard
against zeros in ψ1 during normalization. After normalization
simple quantitative statements such as “the norm of ψ2 indicates
the presence of a vortex core” make sense.

3.1 Vortex Filaments

In ISF vorticity has the tendency to concentrate in one-dimen-
sional filaments, as it does in actual fluid dynamics. The ability to
create and handle filaments gracefully, inherited from its origins
in the theory of superfluids, is a principal strength of ISF. To

Figure 3: All algorithm components were implemented entirely
within Houdini 15.

elucidate this, we look at the way individual filaments evolve
and interact in our algorithm. To do so we need a ψ(0) which
represents one or more vortex filaments. Since ψ for multiple
filaments are just the componentwise product of single filament
ψ functions, we begin by describing a simple method for the
construction of ψ(0) for a single filament curve γ.

Suppose γ is the boundary of
an embedded topological disk,
γ = ∂Σ. We first construct a
complex functionϕ which has γ
as its zero set. Consider the vol-
ume created by a positive and
negative offset of the oriented
surface Σ along its normal di-
rection for distance r > 0 (see inset). In this “slab” of thickness
2r with Σ as its middle surface, set

θ = π
�

1+ d
r

�

for d the signed distance function of Σ. Letting θ = 0 outside
the slab, we set ϕ = eiθ . Pointwise normalizing and pressure
projecting (ϕ,ε)ᵀ then gives us the desired ψ(0), encoding the
Biot-Savart velocity field of the curve γ.

A classic example of interesting filament dynamics are the
leapfrogging vortex rings [Lim 1997, Video]. Two closely
spaced circular vortex filaments will alternately leapfrog one
another. This phenomenon is typically very hard to repro-
duce in standard fluid solvers but runs without difficulty in our
method. Fig. 4 shows a comparison between a state of the
art 5th order HJWENO [Osher and Fedkiw 2003, Ch. 3.4] ve-
locity advection method with 2nd order MacCormack time step-
ping [Selle et al. 2008], as implemented in Houdini, and our
ISF. HJWENO/MacCormack is never able to complete even the
first leapfrog cycle, quickly yielding only a merged, single vor-
tex ring while our method goes through the correct cycle and
is still proceeding without any “damage” after 2000 time steps
(approx. four cycles). See also Sec. 4.5 for a discussion of the
energy behavior during this simulation.

This method also works for far more
complex filaments since there always
exists a Seifert surface, i.e., an em-
bedded, oriented surface Σ, which is
bounded by the closed curve γ [Seifert
1935]. Software to construct it is read-
ily available (SeifertView). The inset
shows the Seifert surface for the trefoil knot. Producing ψ(0) as
above with this Σwe can simulate the evolution of the trefoil knot

http://sidefx.com/
http://serve.me.nus.edu.sg/limtt/video/leapfrog.mpeg
http://www.win.tue.nl/~vanwijk/seifertview/


Figure 4: Leapfrogging vortex rings using HJWENO/MacCormack
(top) and ISF (bottom). Left to right: iteration 45, 360, 2000 (cmp.
to [Lim 1997, Video]).

(Fig. 5) and correctly replicate the reconnection event which oc-
curs when the initial filament crosses itself. This produces two
separate filaments with the smaller one moving off and matches
experiments [Kleckner and Irvine 2013, Video].

Figure 5: Evolution of the trefoil knot with ISF showing frames 50,
100, 210 (cmp. to [Kleckner and Irvine 2013, Video]).

Taken to an extreme we can produce initial configurations of vor-
tex filaments which optimally approximate arbitrary initial veloc-
ity fields using the method of Weißmann and co-workers [2014].
Given a target velocity 1-form η̂ a single component wave func-
tion ϕ is found as the ground state of the magnetic Schrödinger
operator

ϕ = argmin
‖φ‖2=1

‖dφ − iη̂φ‖2,

which amounts to finding the principal eigenvector of a SPD ma-
trix. Pointwise normalizing, (ϕ/|ϕ|,ε)ᵀ, yields the desired ψ(0)

after pressure projection.

3.2 Velocity Constraints

Being able to prescribe a constant velocity in a particular region
is a basic tool for the construction of initial conditions as well as
while a simulation is running. In the context of our wave function
ψ this amounts to enforcing a plane wave in a particular region.
Given a wave vector k ∈ R3, a plane wave is given by the function

ϕk,t,ħh = ei〈k,x−ħhkt/2〉.

ψ(0) = (ϕk,t,ħh, 0)ᵀ is then a solution of ISF corresponding to the
constant velocity field v = ħhk.

Consider now the scenario of setting up an initial, divergence free,
velocity field with two regions, say the Bunny and the Teapot, each
having some constant but different velocity, e.g., pointing at one
another. Using the corresponding ψ(0) as initial condition, we
can simulate the consequent inertial motion dynamics (Fig. 6).

Formally, we seek a divergence free ψ, constrained to have ηΩ in
some region Ω ⊂ M

η|Ω = ηΩ and ∗ d∗η= 0.

In our example Ω would have two connected components, Bunny
resp. Teapot, and ηΩ correspondingly specify a velocity for each
component. We construct such an η through constraint projection,
which enforces the velocity constraint and subsequently ensures
vanishing divergence through pressure projection.

Algorithm 4 Velocity constraint projection

1: function CONSTRAINTPROJECTION(ψ,Ω, k,ħh, t)
2: ψtmp←ψ
3: ψtmp|Ω← ϕk,t,ħh(|ψ1|, |ψ2|)ᵀ
4: return PRESSUREPROJECT(ψtmp)
5: end function

Starting with an initial guess, e.g., ψ = (1,ε)ᵀ in M \ Ω and
(ϕkΩ ,t,ħh,ε)ᵀ in Ω and normalizing it, iterating Alg. 4 is guaranteed
to converge [Cheney and Goldstein 1959]. We find that 5 – 10
iterations are sufficient in practice.

Suppose now that we want to simulate a jet. This is an example
of enforcing a fixed velocity in some region Ω, the jet nozzle,
throughout the simulation (Fig. 7). To accomplish this we use the
volume penalization method [Arquis and Caltagirone 1984]. This
method was devised for standard fluid simulation methods and
includes the constraint via a parameter α in the Navier-Stokes
equation

η̇+ℒvη= ν∆η− dp− 1
αχΩ(η−ηΩ) and ∗ d∗η= 0.

Figure 6: Two regions of red and blue ink are initialized to constant
velocities pointing towards each other. Running ISF with this initial
condition produces the corresponding inertial motion dynamics (left
to right, top to bottom) at frames 1, 25, 85, and 270. The Bunny
and Teapot centers were 2m apart, each moving towards the other
at 1m s−1.

http://serve.me.nus.edu.sg/limtt/video/leapfrog.mpeg
http://www.nature.com/nphys/journal/v9/n4/extref/nphys2560-s7.mov
http://www.nature.com/nphys/journal/v9/n4/extref/nphys2560-s7.mov


Figure 7: Jet of 1ms−1 velocity and a nozzle opening radius of 0.3m.
Left to right the vorticity quantization parameter ħh = 0.04, 0.03,
0.02m2 s−1, illustrating the finer detail with decreasing ħh due to
more plentiful and narrowly spaced vortex filaments. The bottom
row visualizes filaments as level set surfaces |ψ1|2 − |ψ2|2 = 0.

Here ν is the kinematic viscosity andχΩ the characteristic function
of Ω. For α→ 0 the solution converges to a solution of the Navier-
Stokes equation which respects the constraints [Angot et al. 1999;
Carbou and Fabrie 2003].

To integrate the constraint we use the implicit Euler scheme
of [Jause-Labert et al. 2012] as it applies to our ψ. The method
has no time step restriction and we can take the limit of α→ 0
directly. It amounts to a single constraint projection with param-
eters at the end of the time step, i.e., ψ( j+1), Ω( j+1), k( j+1), t( j+1).
The corresponding call to Alg. 4 follows the pressure projection
in Alg. 1.

Fig. 7 shows the resulting simulation also illustrating the effect
of different values for ħh. With decreasing ħh the strength of vortex
filaments is lowered and correspondingly their number increased,
resulting in finer details in the flow. This can also be seen in the
direct visualization of the filaments as level set surfaces.

Figure 8: Frame 600 of a spherical obstacle of radius 0.4m in a
1ms−1 flow.

Maintaining a velocity constraint for some region can also be used
to incorporate obstacles into our simulation. In that case ηΩ = 0
while Ω may or may not be a function of time. Fig. 8 shows an
example of a stationary obstacle in a background flow while Fig. 9
shows a moving obstacle.

3.3 Gravity and Buoyancy

Both gravity and buoyancy are important forces in simula-
tions. A simple model for this is the heavy/buoyant vortex fila-
ment [Saffman 1992, Sec. 5.8]. Given the way we have initialized
ψ(0), filaments are zeros of ψ1 while ψ2 is indicative of the fila-
ment core. Hence buoyancy and gravity enter at the level of the
Schrödinger equation (1) as linearly varying potentials applied
to the ψ2 component

iħhψ̇= − ħh
2

2 ∆ψ+ pψ+ (0, 〈g, x〉ψ2)
ᵀ,

Figure 9: Example of a moving obstacle at frames 1, 100, and 240.

with the vector g ∈ R3 controling magnitude and direction while
x ∈ R3 is the spatial coordinate.

Since the potential does not depend on time, integration is
straightforward and amounts to multiplying ψ2 with the plane
wave ϕdt g,0,ħh after normalization but before pressure projection
in Alg. 1.

Figure 10: A jet subject to a buoyancy force which “bends” it up-
wards from its tilted initial trajectory at frame 150, 350, and 500.

Fig. 10 shows an example of a jet with buoyancy causing a gentle
upward bend.

4 Mathematical Foundations of ISF

To understand ISF we first show that it gives rise to a Clebsch
variable and then derive the underlying dynamics in terms of this
variable. Throughout this section we will identify C2 with the
quaternions H, which greatly simplifies the derivations. Before
diving in, we briefly recall some relevant facts regarding Clebsch
variables and quaternions. To keep the presentation simple we



assume henceforth that M is a compact contractible domain in
R3 with smooth boundary.

Clebsch variables represent incompressible flows through a
function rather than directly as a velocity or vorticity vector
field [Clebsch 1859] (see also [Deng et al. 2005] and references
therein for a contemporary exposition). For a flow described by a
vorticity 2-form ω, a function c : M → Σ, for some 2-dimensional
manifold Σ equipped with an area form dAΣ, is called a Clebsch
variable if

ω= c∗dAΣ

where c∗dAΣ denotes the pull back of the area form. In other
words, for each oriented surface Ω ⊂ M with its corresponding
image c(Ω) ⊂ Σ we have

∫

Ω

ω=

∫

c(Ω)

dAΣ = AreaΣ(c(Ω)).

The preimage of a region in Σ is a vor-
tex tube in M with a vorticity flux cross
section constant along the tube, and
c serving as a local parameterization
of the vortex lines within. In a classi-
cal Euler fluid, the dynamics are then
characterized by c being advected by
the velocity field

ċ +ℒv c = 0. (6)

This is typically done for maps to Σ = R2, but works equally well
for maps to the sphere Σ= S2 [Kuznetsov and Mikhailov 1980].

Quaternions Throughout this section ψ ∈ C2 will be treated
as a quaternion via the map ψ 7→ ψ1 + ψ2 j, where j is one
of the quaternionic imaginary units, the others being i and k.
At times we also exploit that the imaginary quaternions ImH
are in a natural one-to-one correspondence with 3-vectors in R3,
(x , y, z)↔ x i + y j + zk. A quaternion can be thought of as the
sum of a scalar and a vector a = as+av = Re(a)+ Im(a), in terms
of which multiplication becomes

ab = (as bs − 〈av , bv〉) + (as bv + bsav + av × bv).

Lastly for |a|2 = 1 the product abv a represents a general 3D
rotation of a 3-vector bv ∈ ImH [Cayley 1845]. For a more
detailed introduction to quaternions see [Hanson 2005].

To simplify the derivations we use the shorthands

η̃ := η/ħh= Re(−ψidψ), s :=ψiψ, (7)

and

µ :=−ψidψ= 1
2 (dψiψ−ψidψ)
︸ ︷︷ ︸

=Re(dψiψ)=〈dψ,iψ〉R

− 1
2 (dψiψ+ψidψ)
︸ ︷︷ ︸

=d(ψiψ)=ds

=η̃− 1
2 ds, (8)

in terms of which we may write

dψ= iψ
�

η̃− 1
2 ds

�

and ds = 2 (ψidψ+ η̃) . (9)

4.1 Incompressible ψ

Let ψ: M → Cn be a wave function and ρ = |ψ|2 its density. For
incompressibility we require constant densityρ = 1 and vanishing
divergence, ∗ d∗η= 0.

The normalization constraint is easily enforced initially for n≥ 2
since a C2-valued function generically never vanishes on a region
in R3. Thereafter the constraint ∗d ∗η = 0 maintains the point-
wise normalization (App. A). It is equivalent to 〈∆ψ, iψ〉R = 0
for ∆= ∗ d∗d since 〈dψ, idψ〉R = 0. Therefore the dynamics of
ISF correspond to trajectories ψ(t) on the manifold

ℳ :=
�

ψ ∈ C∞(M ,C2)
�

� |ψ|= 1, 〈∆ψ, iψ〉R = 0, dψ(N) = 0
	

.

Here N is the unit normal vector field to the boundary of M and
dψ(N) = 0 is equivalent to the velocity being tangent to ∂M .

To project an arbitrary ψ ∈ C∞(M ,C2) with |ψ|2 = 1 to ℳ
observe that for a smooth function q : M → R, e−iqψ has velocity
1-form η− ħhdq. Therefore the velocity field will be divergence
free if q satisfies the Poisson problem

∆q = ∗ d∗η̃. (10)

Because constant functions form the kernel of ∆, e−iqψ is unique
up to a global phase, which leaves η unchanged. In the time
dependent setting the divergence free constraint is enforced by
the potential p in Eq. (1) (App. A).

4.2 Coordinates on Phase Space

For a proper phase space we need to eliminate the global phase
degree of freedom left in the definition of ℳ (Sec. 4.1). This is
accomplished by using s ∈ C∞(M ,S2) as given in Eq. (7).

To see that s uniquely describes the state of the system, suppose
ψ,φ ∈ℳ with ψiψ= s = φiφ then there is a function q : M →
R such that φ = e−iqψ. Since ψ,φ ∈ ℳ, q is harmonic with
zero Neumann boundary conditions, so in particular q is constant
and ψ and φ are the same element of ℳ (up to a global phase).
The map a 7→ āia from S3 to S2 is known as the Hopf map [Hopf
1931; Lyons 2003].

We have shown that every ψ ∈ ℳ is uniquely determined up
to a constant phase by the map s =ψiψ. Conversely, using the
contractibility of M , it can be shown that for every s ∈ C∞(M ,S2)
there is a ψ ∈ℳ such that s =ψiψ.

Thus s alone represents the state of the system and to study the dy-
namics of ψ it suffices to look at the dynamics of s ∈ C∞(M ,S2).

4.3 The Clebsch Variable s

Since s completely describes ψ ∈ℳ we can study the dynamics
of ψ(t) ∈ℳ under ISF by looking at the time evolution of s ∈
C∞(M ,S2).
Theorem 1. The function s = ψiψ is a Clebsch variable of ISF
with

ω= ħh2 s∗dAS2 (11)

where dAS2 is the standard area form on the unit sphere.

Proof. To see that the vorticity 2-form of ISF, ω = dη = ħhdµ, can
be expressed as the area form on S2 first observe that

sdµ= −ψiψdψ
︸︷︷︸

=−dψψ

∧ idψ=ψidψ∧ψidψ= µ∧µ= 1
4 ds ∧ ds,

where the last equality follows from distributing the wedge prod-
uct over µ = η̃ − 1

2 ds (8). Because s takes on values in S2 we
have ds ∧ ds = 2s(s∗dAS2). Explicitly, for X , Y ∈ TM ,

s∗dAS2(X , Y ) = dAS2(ds(X ), ds(Y )) = 1
2 〈s, ds× ds〉(X , Y ).

where the cross product of twoR3-valued 1-formsα and β is given
by α× β (X , Y ) = α(X )× β(Y )− α(Y )× β(X ). This completes
our claim.



4.4 Dynamics of the Clebsch Variable

To derive the dynamics of ISF in terms of s we show that the
symplectic gradient flow of the Hamiltonian

HISF(ψ) =
ħh2

2 ‖dψ‖
2 = 1

2‖η‖
2 + ħh

2

8 ‖ds‖2 = He(ψ) +
ħh2

4 Hs(ψ)

(cf. Eq. (3)) coincides with the time evolution of s when derived
directly from the ISF. (Note that the decomposition into kinetic
and scaled Dirichlet energies follows directly from Eq. (9).)

First we define a suitable symplectic form on the space of vari-
ations of s ∈ C∞(M ,S2). Let ṡ,�s ∈ TsC

∞(M ,S2) be two such
variations then

σ(ṡ,�s) = ħh2

∫

M

〈s, ṡ×�s〉

is our symplectic form. Next we compute the symplectic gradients
of the two terms in the Hamiltonian beginning with the kinetic
energy.

Let dΦ= ∗η with Φ|∂M = 0, the existence of which is assured by
the Helmholtz-Hodge decomposition for manifolds with bound-
ary [Schwarz 1995], and consider a variation�s of s ∈ C∞(M ,S2)

dHe(�s) =

∫

M

�η∧ ∗η=
∫

M

�η∧ dΦ=

∫

M

−d(�η∧Φ) + d�η∧Φ

= ħh4

∫

M

�

〈�s, ds× ds〉
︸ ︷︷ ︸

=0

+2〈s, d�s× ds〉
�

∧Φ

= ħh2

∫

M

d
�

〈s,�s× ds〉 ∧Φ
�

− 〈ds,�s× ds〉
︸ ︷︷ ︸

=0

∧Φ+ 〈s,�s× ds〉 ∧ ∗η

= ħh2

∫

M

〈s×�s, ds ∧ ∗η〉= σ(�s,ℒvs).

Here we used Stokes’ theorem, Φ|∂M = 0, cyclic permutation in
the determinant, ds,�s(p) ∈ TS2, s ⊥ TS2, and ∗(ds ∧ ∗η) = ℒη] s.

Recalling that the symplectic gradient sgrad He is defined by
σ(�s, sgrad He) = dHe(�s), we have shown that the Hamiltonian
flow of He is

ṡ = − sgrad He = −ℒvs

which establishes Eq. (6) for the Clebsch variable s and by implica-
tion that η behaves as an ideal fluid modified by the term arising
from the second part of the Hamiltonian, the scaled Dirichlet
energy Hs.

Once again let�s be a variation of s ∈ C∞(M ,S2)

ħh2

4 dHs(�s) =
ħh2

4

∫

M

〈d�s ∧ ∗ds〉= ħh
2

4

∫

M

d〈�s,∗ds〉 − 〈�s, d∗ ds〉

= − ħh
2

4

∫

M

〈s×�s, s× ∗∆s〉= − ħh2σ(�s, s×∆s),

where we used that the restriction of ∗ds to the tangent bundle
on the boundary is ds(N) dA∂M and ds(N) = 0 since dψ(N) = 0.

Consequently the Hamiltonian flow due to ħh
2

4 Hs is

ṡ = ħh2 (s×∆s) ,

the isotropic Landau-Lifshitz equation (LLE) [Landau and Lifshits
1935] which describes the evolution of magnetization in ferro-
magnets with s giving the orientation (“spin”) of the magnetic
field at each point in the domain. Interestingly the LLE by itself ad-
mits (magnetic) vortex rings [Cooper 1999; Sutcliffe 2007]which

travel through the material and exhibit such complex dynamics
as leapfrogging [Niemi and Sutcliffe 2014].

Theorem 2. ISF is the Hamiltonian flow of HISF = He+
ħh2

4 Hs. That
is, the evolution of s under ISF is

ṡ+ℒvs =
ħh
2 (s×∆s). (12)

Proof. We compute ṡ directly in terms of ψ using only ψ ∈ℳ
and that it is a solution of the Schrödinger equation (1)

ṡ = ψ̇iψ+ψiψ̇= 2 Im
�

ψiψ̇
�

= 2 Im
�

ψi
�

−ℒvψ−
ħh
4 iψ (s×∆s)− p̃iψ

��

= − (ℒvψiψ+ψiℒvψ) +
ħh
2 (s×∆s)

= −ℒvs+
ħh
2 (s×∆s)

where we used Eq. (14) (App. B).

As a corollary we find the evolution equation for the velocity
1-form as

η̇+ℒvη= dp̂+ ħh
2

4 〈∆s, ds〉, ∗ d∗η= 0

for a suitable pressure p̂ (App. C). In particular we see that the
velocity 1-form η is advected by the velocity field subject to a
tension force.

4.5 Landau-Lifshitz Modified Fluid

In Sec. 4.4 we showed that the dynamics of ISF arise from the
standard kinetic energy of η, which would correspond to an ideal
fluid, with an ħh

2

4 -multiple of the Dirichlet energy of s added in.
The latter by itself would have resulted in Landau-Lifshitz dynam-
ics. What is the impact of this modification from the point of view
of incompressible fluid simulation? We begin with some basic
observations.

For initial data as we set up, almost all the mass ofψ is contained
in ψ1 over most of the domain. Only near the zero set of ψ1,
which generically consists of closed curves or curves beginning
and ending on the boundary, doesψ2 take up significant mass due
to the normalization constraint |ψ|2 = 1. Since sx = |ψ1|2−|ψ2|2
for s = ψiψ, s is mostly near (1,0,0) and moves towards the
antipode (−1, 0,0) only near zeros of ψ1, inbetween “sweeping”
over the entire sphere S2 (Fig. 11). Eq. (11) then implies that the
vorticity integral over a small surface transversal to a zero set of
ψ1 is 2πħh. In particular, filaments in ISF carry vorticity quantized
to 2πħh.

This characterization of s continues to hold as the simulation
progresses since the mean of s is an invariant of the flow. This
follows from ‖ψ1‖2 and ‖ψ2‖2 being invariants since ψ1 and ψ2
by themselves are solutions to the Schrödinger equation, whose
time evolution is unitary. Hence the mean of sx is invariant. Due
to the symmetry of S2 so must be the mean of s.

But what does this imply for the Landau-Lifshitz energy? Since
the Dirichlet integrand is bounded below by the absolute value
of the area density, Eq. (11) implies

1
2 |ds|2 ≥ 2

ħh |ω|,

with equality achieved for a conformal map s. Here |ω| is the
norm of the corresponding vorticity vector field. In practice we
observe that the Landau-Lifshitz energy is near this minimum and
hence the Dirichlet integrand supported mostly in the vicinity of



s

Figure 11: A slice of a 3D domain with a vortex filament moving to
the left. The color on the plane visualizes s according to the color
map on the sphere. Large regions of the plane are nearly the same
color, i.e., covering a small area on the sphere = little vorticity. As
the filament translates the gridded region maps to an ever larger
area on the sphere. The preimage of the equator (the level set
|ψ1|2 − |ψ2|2 = 0) visualizes the vortex tube (see also Fig. 7).

the filaments, with an integral over a surface transversal to the
filament yielding approximately 2πħh independent of the thickness
of the filament. Consequently, the integral of the Dirichlet energy
for a tubular neighborhood of a filament γ yields ≈ 4πL(γ).
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Figure 12: Energy plot for the leapfrogging vortex filaments (Fig. 4).
The kinetic energy tracks closely between HJWENO/MacCormack
and ISF. The additional Landau-Lifshitz component in the latter
stays nearly constant, keeping the vortex filaments “alive” in ISF.

What then are the dynamics consequences of the Landau-Lifshitz
energy term? In examples of ISF we observe phenomena which
are difficult to reproduce using grid simulations without exces-
sively high resolution (Figs. 4, 13, 14). Since such phenomena
arise from vortex filaments whose thickness is comparable to the
grid resolution, a velocity or vorticity representation of fluids
tends to lose the energy contained in the vortex cores, directly
impacting the dynamics of the coherent vortical structures. For
ISF the Landau-Lifshitz energy, proportional to the total length
of the filaments independent of their thickness, maintains this
otherwise lost energy. Fig. 12 demonstrates this quantitatively
for the simple example of the leapfrogging vortex filaments of
Fig. 4.

Additionally, the length L(γ) of filaments is also the Hamiltonian
of the local induction approximation (LIA) for the motion of thin
vortex filaments [Rios 1906; Hasimoto 1972] (see [Saffman 1992,
Ch. 11] for a modern exposition). This hints at a deeper relation
between the LIA and the Landau-Lifshitz term in ISF. Fig. 13
shows the simulation of the Teapot/Bunny collision using Eule-
rian HJWENO/MacCormack (top left) and a Lagrangian filament
method [Weißmann and Pinkall 2010] (top center), comparing
it to our ISF (top right; see also Fig. 6 bottom right). Remark-
ably, the Lagrangian filament simulation which uses sub-grid scale
vortex thickness and explicitly includes the LIA forces, yields qual-
itatively the same results as our Eulerian ISF method.

Figure 13: Frame 270 from colliding Teapot/Bunny simulation
using Eulerian HJWENO/MacCormack (top left), Lagrangian vor-
tex filaments [Weißmann and Pinkall 2010] (top center), and our
Eulerian ISF (top right). The center bottom shows the filaments of
Weißmann and Pinkall which, at thickness 0.017m, are below the
grid size of the ISF simulation. ISF vortex tubes (|ψ1|2− |ψ2|2 = 0)
and their cores (ψ1 = 0) are shown on the bottom right.

A further example of vortex filament dynamics, which are chal-
lenging to simulate, are the obliquely colliding vortex rings [Lim
1989, Videos front & top]. Fig. 14 compares our method with sta-
ble fluids and HJWENO/MacCormack at two resolutions. Stable
fluids, due to its excessive numerical diffusion cannot reproduce
this experiment at all. HJWENO/MacCormack does somewhat
better and successfully reproduces the reconnection event only
at 2563 resolution (not shown). ISF on the other hand produces
the correct dynamics already at 643.

5 Additional Results

An important characterization of classical fluids is given by the
Reynolds number Re = |v|D/µ where D is a characteristic size,
e.g., the diameter of an obstacle in a flow, |v| a characteristic
speed, e.g., speed of the background flow, and µ the kinematic
viscosity. For superfluids as well as our setup there is no kinematic
viscosity, but one can define an equivalent superfluid Reynolds

http://serve.me.nus.edu.sg/limtt/video/Oblique_collison_front.mpg
http://serve.me.nus.edu.sg/limtt/video/Oblique_collison_top.mpg


Figure 14: Comparison of methods for oblique smoke ring collision
at resolution 643 (top) and 1283 (bottom) showing from left to
right the initial configuration, stable fluids with RK4 back trace,
HJWENO/MacCormack, and ISF, each at frame 600. The vortex
filaments have strength 2πħh for ħh = 0.05m2 s−1, they are of radius
0.6m making an angle of ±45° to the domain with their centers
separated by 2m (cmp. to [Lim 1989, Videos front & top]).

number Res = |v|D/(2πħh) [Volovik 2003], where |v|/(2πħh) is the
number of filaments per unit of distance. Note that the typical
range of Res is quite different from the classical Reynolds number.
In our experiments 1≤ Res ≤ 10.

The superfluid Reynolds number is helpful when scaling simula-
tions. For example, scaling ħh and the velocity by the same factor
leaves Res invariant.

Figure 15: Von Kármán vortex street forming behind a cylindrical
obstacle with Res ≈ 3.18 and St≈ 0.14 at frame 1050. The cylinder
measured 0.3m radius in a flow of 1m s−1.

A phenomenon that is characterized by the Reynolds number is
the shedding of vortices with a particular frequency f from an
obstacle. This can be captured by the Strouhal number [Strouhal
1878], St= f D/|v|. For a large range of Reynolds numbers (Re ∈
[800, 200000]) one finds St ≈ 0.2. Such measurements, though
far fewer in number, have also been performed for superfluids
(simulation and experiment) where the corresponding Strouhal
number falls into the range of 0.12− 0.18 [Reeves et al. 2015].
In our own experiments we have observed 0.14≤ St≤ 0.18 for
2≤ Res ≤ 8 (see Fig. 15 for a typical example). This agrees well
with the numbers reported for superfluids and is close to, though
smaller than, the universal 0.2 for classical fluids.

6 Discussion

ISF is a close relative of the GP equation, replacing the cubic non-
linear term with the limiting case of pressure projection to enforce
a divergence free velocity field. The corresponding dynamics are
related to superfluids but can be used for the visual simulation
of classical fluids as we have demonstrated. Because ISF adds a
Landau-Lifshitz energy term to what would otherwise have been
an Euler fluid, we find that coherent vortical structures and their
dynamics are captured, even at modest resolutions, with fidelity
rivaling purely Lagrangian methods.

Shortcomings There are a number of practical issues and open
theoretical questions at this time.

The simple splitting method we employ for time integration ex-
hibits loss of kinetic energy. Even though its impact is not as
problematic due to the Landau-Lifshitz term, design of an in-
tegrator more tailored to the particulars of ISF would be very
interesting.

Design of flows is not yet fully general. For example, we do not
know how to express arbitrary forces at the level of ψ, limiting
the use of standard special effects design tools.

With discrete circulation given by the difference of phases along
an edge (4), there is an upper bound on the velocity that can
be represented without aliasing. Ideas from [Knöppel et al.
2015] may help here. A related issue arises at the global level,
where the periodicity of the domain leads to quantization of grav-
ity/buoyancy.

Our method has only one parameter, ħh, which controls the quanti-
zation of vorticity. Notably there is no parameter to control viscos-
ity, though there are diffusion [Frisch et al. 1992] and drag [Sasaki
et al. 2010] phenomena.

The implicit integrator for constraints is of low order, occasionally
leading to leakage of fluid into the interior of obstacles. A higher
order integrator for the constraints would therefore be desirable.

Open Questions and Opportunities In this paper we have only
scratched the surface of the theory underlying ISF.

An interesting direction to pursue is the simulation of multi-
phase fluids, e.g., air and water. When applying gravity/buoyancy
forces we have already treated the two components of ψ differ-
ently. How far can this be taken? How do interface forces enter?
Are there interesting physics to be modeled with wave functions
ψ: M → Cn for n> 2?

At the theory level we would like to understand the limit of ħh→ 0.
Does it yield Euler fluids? How can we characterize the velocity
fields which can be represented by ψ ∈ℳ resp. s ∈ C∞(M ,S2)?

Clearly we are only at the beginning of exploring this new ap-
proach to fluid simulation and are hopeful that many new math-
ematical, physical, and simulation tools will spring from it.
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A Pressure Potential

For incompressibility we require constant density ρ = |ψ|2 = 1
and div(v) = 0. When ρ = 1 the constraint div(v) = 0 is equiv-
alent to 〈∆ψ, iψ〉R = 0. This condition maintains the pointwise
normalization under Eq. (1) since

∂
∂ t |ψ|

2 = 2〈ψ̇,ψ〉R = −ħh〈∆ψ, iψ〉R −
2
ħh p〈iψ,ψ〉R = 0.

To ensure 〈∆ψ, iψ〉R = 0, observe that for an arbitrary ψ ∈
C∞(M ,C2) with |ψ|2 = 1 there exists a smooth phase q : M → R
so that e−iqψ is divergence free (Sec. 4.1). Therefore the term
pψ in Eq. (1), which generates general phase shifts, suffices to
keep ψ divergence free.

Explicitly, the scalar potential p : M → R in Eq. (1) ensures a
divergence free velocity field when it solves

∆p = ħh
2

2

�

〈∆2ψ,ψ〉R − 〈∆ψ,∆ψ〉R
�

with

∫

M

p = 0. (13)

To see this, note that 〈∆ψ, iψ〉R must have vanishing time deriva-
tive, yielding

0= ħh ∂
∂ t 〈∆ψ, iψ〉R = 〈∆ψ, iħhψ̇〉R − 〈∆iħhψ̇,ψ〉R

= 〈∆ψ,− ħh
2

2 ∆ψ+ pψ〉R + 〈
ħh2

2 ∆
2ψ−∆(pψ),ψ〉R

= ħh
2

2

�

〈∆2ψ,ψ〉R − 〈∆ψ,∆ψ〉R
�

−∆p− 2〈dψ(∇p),ψ〉R,

which proves Eq. (13) since dψ⊥ψ due to |ψ|2 = 1.

This p serves as the Lagrange multiplier for the divergence con-
straint in the continuous time setting. For discrete time, i.e., at
each time step, this role is played by q of Eq. (10), which pressure
projects a given ψ to the constraint space (Sec. 4.1).
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B Evolution of ψ

Here we rewrite the Schrödinger equation to expose the advection
going on “under the hood” and we will find that ψ is advected by
the velocity field subject to a modified pressure potential and a
Landau-Lifshitz term

ψ̇+ℒvψ= −iψ
� ħh

4 (s×∆s) + p̃
�

(14)

where p̃ = p
ħh −
ħh
2 |dψ|

2 − ħh4 〈s,∆s〉.

Eq. (14) follows from replacing ∆ψ in Eq. (1) with

∆ψ= ∗d
�

iψ
�

∗η̃− 1
2 ∗ ds

��

= i ∗ (dψ∧ ∗η̃)− i
2 ∗ (dψ∧ ∗ds)− i

2ψ∆s

= iℒη̃]ψ+
1
2ψ ∗

��

η̃− 1
2 ds

�

∧ ∗ds
�

− 1
2ψs∆s

= i
ħhℒvψ+ψ

�

∗ (η̃∧ ∗ (η̃+ψidψ)) + 1
4 ∗ (ds ∧ ∗ds)− 1

2 s∆s
�

= i 2
ħhℒvψ+ψ

�

|η̃|2 + 1
4 |ds|2 − 1

2 s∆s
�

= i 2
ħhℒvψ+ψ

�

|η̃|2 + 1
4 |ds|2 + 1

2 〈s,∆s〉 − 1
2 (s×∆s)

�

(15)

which used Eq. (9), ∗ d ∗η̃ = 0, the Hermitian product of two
quaternionic k-forms, 〈α,β〉= ∗ (α∧ ∗β), the Lie derivative of a
function, ℒvψ = dψ(v) = ∗ (dψ∧ ∗η) = ∗ (η∧ ∗dψ) for v = η],
and s∆s = −〈s,∆s〉+ s×∆s.

C Evolution of η

To derive the evolution equation for η we differentiate Eq. (14),
multiply the result on the left with −ψi, and finally take its real
part.

We begin with the lhs of Eq. (14)

−Re
�

ψi
�

dψ̇+ℒv dψ
��

= Re
�

−ψiiψ̇µ+ µ̇−ψiℒv (iψµ)
�

= Re
�

ψψ̇µ
�

+ ˙̃η+Re (ψℒvψµ+ψψℒvµ)

= Re
�

ψ
�

−i ħh4ψ(s×∆s) + p̃iψ
�

µ
�

+ ˙̃η+ℒvη̃

= ˙̃η+ℒvη̃−
ħh
8 〈∆s, ds〉,

since d(ψψ) = 0 = dψψ + ψdψ implies ψdψ ∈ ImH and
hence p̃ψiψµ = −p̃ψiψψidψ = p̃ψdψ ∈ ImH. Also, since
s ×∆s ∈ ImH and orthogonal to s, s(s ×∆s) ∈ ImH and hence
Re (s(s×∆s)µ) = − 1

2 〈s× (s×∆s), ds〉= 1
2 〈∆s, ds〉.

Differentiating the rhs of Eq. (14), multiplying on the left with
−ψi, and taking the real part leaves only

− ħh4 Re (ψdψ (s×∆s)) + dp̃ = − ħh4 Re
�

s
�

η̃− 1
2 ds

�

(s×∆s)
�

+ dp̃

= ħh8 〈s× ds, s×∆s〉+ dp̃.

It follows that the velocity 1-form η evolves as

η̇+ℒvη= ħh dp̃+ ħh
2

4 〈∆s, ds〉.

D Discrete Circulation

Here we prove that the discrete velocity 1-form is given by

ηvw = ħh arg〈ψv,ψw〉C,

and arises, as is standard, from computing the circulation of the
smooth velocity 1-form along the straight edge vw

ηvw = ħh
∫

vw

〈dψ, iψ〉R.

This formula presupposes that we have chosen along vw a curve
γ: [0,1] → C2, |γ(t)|2 = 1 that interpolates between ψv and
ψw. We will assume 〈ψv,ψw〉C 6= 0, so there is a unique short-
est geodesic path c : [0,1]→ S2 with c(0) = ψviψv and c(1) =
ψwiψw. We will construct γ in such a way that γiγ= c.

We distinguish two cases: (1) ψv and ψw are linearly dependent
or (2) independent, and construct γ explicitly in each case.

Suppose they are dependent, i.e., ψw is a complex scalar multiple
of ψv, then in fact ψw = eiηvwψv. Letting α: [0,1] → R with
α(0) = 0 and α(1) = ηvw, γ(t) := eiα(t)ψv will serve our purposes
and

ħh
∫ 1

0

〈dγ, iγ〉R = ħh
∫ 1

0

dα= ηvw = ħh arg〈ψv,ψw〉C, (16)

since 〈dγ, iγ〉R = 〈i dαγ, iγ〉R = dα.

Suppose now that ψv and ψw are independent, i.e., 〈ψv,ψw〉C =
cos(β)eiηvw , with ηvw ∈ (−π,π) and β ∈ (0, π/2). Define φ :=
csc(β)(e−iηvwψw−cos(β)ψv). One easily checks that 〈ψv,φ〉C = 0,
|φ|2 = 1 and

ψw = eiηvw (cos(β)ψv + sin(β)φ)

Let now γ(t) := eiα(t)(cos(β t)ψv + sin(β t)φ) and substitute in
Eq. (16) to find the desired result.

E Laplacian Eigenvalues

To use Fourier methods for Schrödinger integration as well as
the Poisson solve we need the eigenvalues of the 3D Laplacian.
Letting the index of a vertex be v= x, y, z, the spatial resolution
becomes a triple of edge lengths l = (lx, ly, lz), and the overall
cube measures L = (lx𝒩x , ly𝒩y , lz𝒩z).

The eigenvalues for the discrete (λ̃) resp. continuous (λ) Lapla-
cian on a periodic domain are

λ̃v = −
4
l2x

sin2
�

πx
𝒩x

�

− 4
l2y

sin2
�

πy
𝒩y

�

− 4
l2z

sin2
�

πz
𝒩z

�

(17)

λv = −(2π)2
�

x2

L2
x
+ y2

L2
y
+ z2

L2
z

�

. (18)

The corresponding eigenvalues for the 3D Laplacian with Neu-
mann boundary conditions, i.e., flow tangential to the wall, arise
from Eqs. (17) and (18) by replacing L ← 2L. In that case the
DCT replaces the FFT in Algs. 2 and 3.

In the continuous case Eq. (18) can be checked by direct differen-
tiation of the Fourier basis, while Eq. (17) uses a centered second
difference and some straightforward trigonometric identities.


