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I. INTRODUCTION

It was assumed that a description of evolution of deterministic systems required

a solution of the equations of motion, starting from some initial conditions.

Although Poincaré [1] knew that it was not always true, this opinion was

common. Since the work of Lorenz [2] in 1963, unpredictability of deterministic

systems described by differential nonlinear equations has been discovered in

many cases. It has been established that given infinitesimally different initial

conditions, the outcomes can be wildly different, even with the simplest

equations of motion. This feature means the occurrence of deterministic chaos.

The literature devoted to this multidisciplinary and rapidly developing disci-

pline of science is huge. There are many excellent textbooks, monographs, and

collections of main papers, and we mention only a few [3–8].

In this overview we focus our attention on some problems of optical chaos.

In many optical effects and devices intrinsic instabilities occur and for over

thirty years they have been extensively investigated. The literature on optical

chaos is widespread and a few excellent reviews and collections of papers

should be recalled [9–13].

After an overview of the main papers devoted to chaos in lasers (Section I.A)

and in nonlinear optical processes (Section I.B), we present a more detailed

analysis of dynamics in a process of second-harmonic generation of light

(Section II) as well as in Kerr oscillators (Section III). The last case we consider

particularly in the context of coupled nonlinear systems. Finally, we present a

cumulant approach to the problem of quantum corrections to the classical

dynamics in second-harmonic generation and Kerr processes (Section IV).

A. Chaos in Lasers

Since the discovery of lasers it has been known that a derivation of time-

dependent equations governing interaction of molecules with electromagnetic

cavity modes leads to the so-called spontaneous instabilities. These laser ins-

tabilities were also observed experimentally — even for the first laser built by

Maiman in 1960. A random, periodic, or quasiperiodic train of spikes in a laser

generation is a fundamental instability due to nonlinearity of laser equations.

A comprehensive review of this specific laser-related topics was published in

1983 [14].

A major development reported in 1964 was the first numerical solution of the

laser equations by Buley and Cummings [15]. They predicted the possibility of

undamped chaotic oscillations far above a gain threshold in lasers. Precisely,

they numerically found ‘‘almost random spikes’’ in systems of equations adop-

ted to a model of a single-mode laser with a bad cavity. Thus optical chaos

became a subject soon after the appearance Lorenz’ paper [2].
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Real development in the field of chaotic properties of laser action began over

10 years later. In 1975 Haken [16] used the model of a single-mode laser with a

homogeneously broadened line (HBL) described by the Maxwell–Bloch equa-

tions and after some approximations showed the equivalence with an appro-

priate Lorenz system of equations. The model was extended to a multimode case

[17]. For a modulated external field, certain laser systems are described by a

driven Van der Pol oscillator, and the existence of chaos was found numerically

for these systems [18]. In the case of HBL lasers, a spatial inhomogeneity of

pump leading to a coupling of different modes, could give rise to an undamped

spiking behavior of lasers. This instability is chaotic and was found numerically

in a two-mode laser case [19]. A detuning was also incorporated in this model

[20], and the exact equivalence between a bad-cavity laser with a modulated

inversion and nonlinear oscillator in the Toda potential driven by an external

modulation was presented a few years later [21]. The parameters in HBL lasers

for which chaos is expected are highly unreal because of big loss in cavity rates.

For a detailed discussion of instabilities in HBL lasers, we refer the reader to a

treatise by Milonni et al. [13] and a paper by Harrison and Biswas [22].

The Haken model can be easily extended to the case of a single-mode

inhomogeneously broadened line (IBL) laser [13]. Numerical investigation of

the Maxwell–Bloch equations has been carried out for the case of a Doppler

broadening and for different parameter ranges, leading to findings of period

doubling and intermittency routes to chaos [23,24]. A phenomenon of meta-

stable chaos was also observed. The Maxwell–Bloch equations with an

inhomogeneously broadened line were also studied in the context of mode

splitting [13,25], bad-cavity instability conditions [26], ring laser configuration

[27], Hopf bifurcations [28], and a period doubling route to chaos [29].

Laser instabilities were experimentally investigated in many kinds of lasers

(see an overview of early papers [14]), but the first experimental observation of

the optical chaos was performed by Arecchi et al. [30] in 1982. They used a

stabilized CO2 laser with modulated cavity loss � ¼ gð1 þ acos�tÞ and by

changing the frequency of modulation �, they found a few period doubling

oscillations of the output intensity, both numerically and experimentally.

A detailed analysis shows that the case of the IBL laser is more convenient in

experimental investigations because the value of the threshold gain coefficient

needed in a laser setup is much smaller. Some spontaneous instability for this

case was first discovered experimentally by Casperson quite early [31] in a low-

pressure, electric discharge HeXe laser at 3.51 mm. For a special choice of

parameters the laser worked in the regime of the so-called self-pulsing

instability. But the first chaotic output from an IBL laser was experimentally

shown in 1982 by Weiss and King [32] in a HeNe laser (3.39 mm). A period

doubling route to chaos was found. In a HeXe laser, Gioggia and Abraham [33]

in 1983 reported a chaotic behavior of a generated signal and confirmed period
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doubling and intermittency routes to chaos. Similarly, chaotic emission was

observed in a ring cavity laser [34]. For an overview of early papers devoted to

IBL laser instabilities and chaos, see the study on self-pulsing and chaos in

continuous-wave (cw)-excited lasers by Abraham et al. [35].

To achieve the instability of homogeneous broadened line lasers, a satisfac-

tion of much more difficult conditions is required: large gain and the so-called

bad-cavity properties. This special regime for damping constants and mode

intensity is fulfilled in the far-infrared lasers [36]. In 1985 Weiss et al. [37,38]

experimentally found a period doubling route to chaos in the NH3 laser. Further

experimental investigation of chaotic dynamics in such lasers was reported

later [39].

The CO2 lasers were also investigated in connection with chaotic behavior,

and here we mention the most important papers in the field. The chaotic be-

havior associated with a transverse mode structure in a cw CO2 laser was obser-

ved in 1985 [40]. In the CO2 laser with elastooptically modulated cavity length,

a period doubling route to chaos was also found [41].

Chaos was also investigated in solid-state lasers, and the important role of a

pump nonuniformity leading to a chaotic lasing was pointed out [42]. A modula-

tion of pump of a solid-state NdP5O14 laser leads to period doubling route to

chaos [43]. The same phenomenon was observed in the case of laser diodes with

modulated currents [44,45]. Also a chaotic dynamics of outputs in Nd:YAG

lasers was also discovered [46–48]. In semiconductor lasers a period doubling

route to chaos was found experimentally and theoretically in 1993 [49].

An important technique of chaos control [50] was introduced in laser

systems in 1992 by Roy et al. [51]. They adopted the so-called occasional

proportional feedback method to stabilize limit cycles in a multimode Nd:YAG

laser with KTP crystal (doubling the basic frequency), pumped by a diode laser.

The CO2 laser with cavity loss modulation was used to implement the control

method of output signals proposed by Pyragas [52] and Bielawski et al. [53].

The experimental investigation of the control scheme based on a ‘‘washout

spectral filter’’ has been performed in the chaotic regimes of the CO2 laser with

modulated loss [54] as well as in the CO2 laser with intensity feedback [55]. In

1998, a control of chaos was demonstrated in Nd-doped laser with modulated

loss and pump and nonfeedback methods were adopted [56]. These important

methods of stabilization of chaotic systems are related to communication

theory. In particular, a synchronization of lasers in chaotic regimes has many

potential applications. In 1994 Roy and Thornburg proved experimentally for

the first time the possibility of synchronization of chaotic lasers [57], with

possible applications in digital communication [58]. The last experiments with

chaotic lasers revealed a possibility of transmitting a desired message in a very

fast way as well as encoding and decoding information in output lasers signals

[59–61].
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B. Chaos in Nonlinear Optics

Nonlinear optics is a very convenient area to investigate the phenomenon of

deterministic chaos both from theoretical and experimental points of view.

The Jaynes–Cummings model describing an ensemble of two-level atoms in

a resonant cavity with a single-mode field is a basic paradigm in quantum

optics. Numerical calculations of the appropriate Maxwell–Bloch equations

have revealed a chaotic behavior of the system in a semiclassical approach when

no rotating wave approximation is used [62,63]. In a full quantum-mechanical

approach, Graham [17] determined the eigenvalues and eigenstates of the

coupled atom-field system by numerical diagonalization, and the basis for a

quantum description of chaos was prepared. Later, different aspects of chaos in

the Jaynes–Cummings model were investigated in a semiclassical or in a full

quantum model [64–68].

A complex dynamical behavior was experimentally and numerically found in

a system of spin-1
2

atoms in an optical resonator with near-resonant cw laser

light and external static magnetic field [69]. Three-dimensional Bloch equations

were solved, and a chaotic motions was found and compared with experiment.

Quite early optical chaos was found in optical bistability. In 1979 Ikeda used

a ring cavity configuration for an optically bistable system with two-level

absorbing atoms [70]. Ikeda constructed an iterated map of a such system and

solving it, found the chaotic output of transmitted field strengths. Moreover, by

changing the input light intensities, he proved a period doubling route to chaos.

Later, chaos was investigated in the case of off-resonant (dispersive) bistability

[71–74]. The first experimental observation of chaos in optical bistability

system was made in 1981 by Gibbs et al. [75] in an optical device with electro-

nically introduced delay time. Nakatsuka et al. [76] in 1983 observed experi-

mentally the first chaotic generation in the phenomenon of dispersive bistability.

Next, experimental and theoretical evidence of chaotic behavior of signals

generated in bistable systems was checked by a few groups [77–82].

Second-harmonic generation of light is a nonlinear phenomenon in which

chaotic behavior was discovered in 1983 [83] (for details, see Secction II). In

the Kerr effect with an external time-dependent pump, a chaotic output may also

occur, which was proved for the first time in 1990 by Milburn [84] (see also

Section III).

Many kinds of molecular systems pumped by a strong laser light show

chaotic dynamics. Indeed, in a semiclassical model of a multiphoton excitation

on molecular vibration, chaos was discovered by Ackerhalt et al. [85] and

theoretically and numerically investigated in detail [86,87]. Moreover, the

equations of motion that describe a rotating molecule in a laser field can exhibit

a chaotic behavior and have been applied in the classical case of a rigid-rotator

approximation [87,88].
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Dynamical instabilities and chaos were discovered in many light scattering

processes. For example Milonni et al. in 1983 [89] found a chaotic strange

attractor in stimulated Raman scattering. They solved numerically the classical

coupled wave equations in the case of perfect phase-matching conditions. Next,

a period doubling route to chaos was found, and a fractal dimension of the

attractor was calculated by Nath and Ray [90]. Chaos in stimulated Brillouin

scattering was found in 1984 by Candall and Albritton [91]. The dynamics of

generated signals in stimulated scattering processes in optical fibers has also

been investigated [92].

Another class of good candidates for a study of chaos in nonlinear optics are

wave-mixing processes in which chaos appears in the propagation of laser light

through passive nonlinear media [93]. A chaotic behavior was observed in

three-wave mixing [94] and in four-wave mixing [95].

Experimental work and theoretical investigation show an important role of

spatial chaos in optical fibers, directional couplers, and generally in all-optical

switching devices [96/97].

The problem of quantum chaos in optics has been studied in a few areas. For

a short review, see Section IV.

II. CHAOS IN SECOND-HARMONIC GENERATION OF LIGHT

A. Introduction

Nonlinear optics deals with physical systems described by Maxwell equations

with an nonlinear polarization vector. One of the best known nonlinear optical

processes is the second-harmonic generation (SHG) of light. In this section we

consider a well-known set of equations describing generation of the second

harmonic of light in a medium with second-order nonlinear susceptibility wð2Þ.
The classical approach of this section is extended to a quantum case in

Section IV.

The first experimental evidence of SHG was reported by Franken et al. [98],

who focused a ruby laser beam (lL ¼ 0:694 nm) on a quartz crystal and

analyzed the two outgoing beams by a standard method (the second-harmonic

beam was observed in the UV region 2lS ¼ 0:347 nm). This experiment was

soon followed by a theoretical analysis by Armstrong et al. [99]. Since then

many articles have appeared on the subject (bibliographies are presented in

Refs. 100 and 101).

To analyze the dynamics of SHG, we use time-dependent ordinary differen-

tial equations. At the beginning, Maxwell’s equations governing SHG were

studied, and a simple analytical time dependent solutions was found [99]. The

classical case of SHG was discussed by Bloembergen [102], and the present-day

state in the dynamics of SHG without damping and pumping was clarified
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[103]. The same equations, albeit with damping and coherent external driving

field, were studied by Drummond et al. [104] as a particular case of sub/second-

harmonic generation. They proved that below a critical pump intensity, the

system can reach a stable state (field of constant amplitude). However, beyond

the critical intensity, the steady state is unstable. They predicted the existence of

various instabilities as well as both first- and second-order phase transition-like

behavior. For certain sets of parameters they found an amplitude self-modula-

tion of the second harmonic and of the fundamental field in the cavity as well as

new bifurcation solutions. Mandel and Erneux [105] constructed explicitly and

analytically new time-periodic solutions and proved their stability in the vicinity

of the transition points.

SHG equations were used also to analyze of deterministic chaos. Savage and

Walls were the first [83] to prove the existence of chaos in the case of nonzero

detuning between laser and cavity modes. They found a period-doubling route

to chaos. Bistability, self-pulsing, and chaos were also studied Lugiato et al.

[106]. The dynamics of SHG in the case of time-dependent external pumping

was investigated by the present authors. Numerical analysis of the equation of

motions was performed for the modulated pump amplitude [107] as well as for

the external pump of rectangular pulses [108]. Alekseeva et al. [109] presented a

detailed study of the spatial evolution of multifrequency fundamental and

second-harmonic radiation and showed that the system may exhibit a spatial

chaos due to multiple competing processes. Also, a hyperchaotic dynamic in

SHG was numerically predicted [110,111].

B. Basic Equations

Let us consider an optical system with two modes at the frequencies o and 2o
interacting through a nonlinear crystal with second-order susceptibility placed

within a Fabry–Pérot interferometer. In a general case, both modes are damped

and driven with external phase-locked driving fields. The input external fields

have the frequencies oL and 2oL. The classical equations describing second-

harmonic generation are [104,105]:

da1

dt
¼ �i�0

1a1 � �1a1 þ ka�1a2 þ F1

da2

dt
¼ �i�0

2a2 � �2a2 �
1

2
ka2

1 þ F2

ð1Þ

Rapid oscillations (at the frequencies o;oL; 2o; 2oL) are removed from Eq. (1)

by frequency-matching conditions in the usual way. The quantities �0
1 ¼ o� oL

and �0
2 ¼ 2o� 2oL are frequency mismatches between the cavity and external

fields. Slowly varying in time, complex variables a1 and a2 are the electric field

amplitudes of the two modes E1ðtÞ ¼ a1ðtÞ expðiotÞ and E2ðtÞ ¼ a2ðtÞ expð2iotÞ
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describing fundamental and second-harmonic modes, respectively. Similarly, F1

and F2 are proportional to the electric field amplitudes of the two external

pumped modes F1ðtÞ ¼ F1ðtÞ expðioLtÞ and F2ðtÞ ¼ F2ðtÞ expð2ioLtÞ. Two

constants, �1 and �2, are the cavity loss rates for the appropriate modes. The

coupling constant k between the two modes is proportional to a nonlinear

susceptibility wð2Þ of the nonlinear medium. With a special choice of the spatial

mode functions, we can assume that k is real, and we exclude from our

investigation of polarization effects — all fields have linear polarization in the

same directions [104].

For numerical investigation, it is convenient to reduce the number of relevant

parameters in Eq. (1). On substituting

t ¼ kt; �1ð2Þ ¼
�0

1ð2Þ
k

; g1ð2Þ ¼
�1ð2Þ
k

; f1ð2ÞðtÞ ¼
F1ð2Þðt=kÞ

k
ð2Þ

into (2), we get the following redefined set of equations:

da1

dt
¼ �i�1a1 � g1a1 þ a�1a2 þ f1ðtÞ

da2

dt
¼ �i�2a2 � g2a2 �

1

2
a2

1 þ f2ðtÞ
ð3Þ

where fi are taken to be real. The above equations can be written in real variables.

On inserting

a1 ¼ Reða1Þ þ i Imða1Þ ¼ y1 þ i y3

a2 ¼ Reða2Þ þ i Imða2Þ ¼ y2 þ i y4

ð4Þ

we obtain four equations of motion:

dy1

dt
¼ �1y3 � g1y1 þ y1y2 þ y3y4 þ f1

dy2

dt
¼ �2y4 � g2y2 � 1

2
ðy2

1 � y2
3Þ þ f2

dy3

dt
¼ ��1y1 � g1y3 þ y1y4 � y2y3

dy4

dt
¼ ��2y2 � g2y4 � y1y3

ð5Þ

These four equations of motion describe the dynamics of SHG in the four-

dimensional phase space (Rea1; Ima1; Rea2; Ima2). In practice, we can observe

the motion only in the reduced phase space (phase surface). For example, with
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the help of two-dimensional phase portraits (Reai; Imaj), (Reai; Reaj) and

(Imai; Imaj), we can qualify the kind of motion of our system, which may be

periodic, quasiperiodic, or chaotic.

To identify chaotic behavior of a dynamical system, it is convenient to use

the Lyapunov exponents [112,113]. In particular, the procedure proposed by

Wolf et al. [114] is a very useful and efficient method that gives such exponents.

In this method we have to linearize the set of equations (5), and next the

linearized equations are solved together with the primary equations. Moreover,

we solve the eigenproblem for the Jacobi matrix of the set of linearized

equations in the so-called tangent space. Then, after Gram–Schmidt reorthonor-

malization, we obtain the set of Lyapunov exponents li as eigenvalues of the

long-time product Jacobi matrix. So, in this method the number of exponents, is

equal to a dimension of phase space [115]. In our case we have a set

fl1l2l3l4g; thus, we get a spectrum of Lyapunov exponents. Such a spectrum

is ordered from maximal to minimal value. The quantity l1 is traditionally

termed the maximal Lyapunov exponent (MLE), and its positive value points to

chaotic motion. If l1 
 0, the dynamical system behaves nonchaotically

(orderly).

A highly unstable system can manifest hyperchaotic behavior [116]. This

means that we have two positive Lyapunov exponents in a spectrum. The

phenomenon of hyperchaos have been investigated in many papers [117–120].

A route to hyperchaos was also investigated [121], and a method of controlling

of hyperchaos was introduced [122].

In next three sections we present a short overview of investigations of chaotic

and hyperchaotic behavior in the process of SHG.

C. Simplest Case: ci ¼ 0, �i ¼ 0, f i ¼ 0

In the simplest case of a free evolution without damping, pumping, and

mismatch, the equations of motion (3) are solved analytically. One easily notes

that the system (3) now belongs to the class of Hamiltonian systems with two

constants of motion:

I1 ¼ a�1a1 þ 2a�2a2

I2 ¼ � 1

2
i ða2

1a
�
2 � a2a�2

1 Þ
ð6Þ

They reduce the set (5) of four equations in real variables to two equations. This

means that we can have only regular, periodic, or quasiperiodic behavior, never

chaos. Chaos in a dynamical system governed by ordinary differential equations

can arise only if the number of equations is equal to or greater than 3. We

remember that we refer to the case of perfect phase matching (�k ¼ k1�
2k2 ¼ 0), and the well-known monotonic evolution of fundamental and
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second-harmonic mode intensities has been found [99,102] and is shown on

Fig. 1. If�k 6¼ 0, we obtain three equations of motion for a1, a2,�k (six equations

in real variables) and well known solutions show an oscillation behavior in such

cases of SHG. Detailed analysies are available in the literature [99,102,103].

Let us focus on the role of initial conditions in this case of SHG. The

equations of motion

da1

dt
¼ a�1a2 ;

da2

dt
¼ � 1

2
a2

1 ð7Þ

were solved with initial conditions a1ð0Þ ¼ a10 and a2ð0Þ ¼ a20. The case of

(a10 6¼ 0; a20 ¼ 0) is often called a second-harmonic generation process (Fig. 1).

For the case of (a10 6¼ 0; a20 6¼ 0), that is, when both fields start from the nonzero

initial conditions, we deal with a mixed process of sub/second-harmonic

generation. Throughout this work the symbol SHG refers to both these cases. In

Fig. 2 we see the evolution of the system from the initial conditions: a10 ¼
0:1 þ i0:1 and a20 ¼ 0:01 þ i0:01. One can observe in Fig. 2a the periodic

oscillation in intensity of both modes. However, in the phase space the motion of

0.00

0.01

0.02

0.03

0 50 100

|α1|2

|α2|2

τ

Figure 1. Monotonic behaviour of the fundamental and second-harmonic modes. Solution of

Eqs. (7) for the initial conditions a10 ¼ 0:1 þ i 0:1 and a20 ¼ 0.
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Figure 2. Time evolution of intensity (a) and phase portrait for the fundamental mode (b).

Solution of Eqs. (7) for the initial conditions a10 ¼ 0:1 þ i 0:1 and a20 ¼ 0:01 þ i 0:01. Quasi-

periodic behavior.
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the system is quasiperiodic, as seen in Fig. 2b. The phase point draws a nonclosed

path within the rosette area. The rosette becomes increasingly denser with time,

and finally we get a blackened area. A similar rosette is obtained for the second-

harmonic mode. For the case of (a10 ¼ 0; a20 6¼ 0), Eq. (7) have constant

solutions, and we do not observe any time changes in the SHG system. There is

no subharmonic generation without an external pumping f2.

To sum up, in nonlinear systems the influence of initial conditions on

dynamics of a system is essential, therefore the three different initial conditions

discribed above lead to different dynamics within the same equations of motion.

D. Coherent External Field

Another clear example of a system generating second harmonics is the one

employing an external coherent pump field fi ¼ constant without dumping

(gi ¼ 0) and frequency mismatch (�i ¼ 0). The system belongs to the class

of Hamiltonian systems. The function (Hamiltonian)

HðtÞ ¼ i f1 ða�1 � a1Þ þ i f2 ða�2 � a2Þ �
1

2
iða2

1a
�
2 � a2a�2

1 Þ ð8Þ

is a constant of motion for Eq. (3). Since we have only pumping, the trajectory

shows an expanding nature [123].

If we now include damping (without mismatch), we get results in compliance

with Ref. 104. As did Mandel and Erneux [105], we introduce the notions of

good (g1 � g2) and bad (g1 ffi g2) frequency conversion limits in our discus-

sions. We denote them as GCL and BCL, respectively. The case of a coherent

pump field was also studied by Drummond et al. [104] with a nonrescaled

version of Eq. (1). To get the compact results we use, in accordance with (3), the

parameters f0 ¼ 2, t ¼ 10t, and g1 ¼ g2 ¼ 0:34 (BCL) or g1 ¼ 0, g2 ¼ 0:34

(GCL). For the intensity of the coherent pump

f1 ¼ ð2g1 þ g2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g2ðg1 þ g2Þ

p
ð9Þ

and f2 ¼ 0, we get a transition from monotonic solutions of (3) to a self-

pulsation. As we see in Fig. 3a, after transient effects the system manifests self-

pulsation and an appropriate phase portrait for the fundamental mode is presented

in Fig. 3b. The limit cycle indicates a periodic motion of the system. If the pump

f1 increases some multiperiodic oscillations occur (Fig. 4). If we change the

parameters of pumping f1 and f2, we can find [104] that this system exhibits both

first- and second-order phase transition-like behavior and also has a hard mode

transition. Farther numerical and analytical analysis [105] indicated a new

transition involves an hysteresis cycle.
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Figure 3. Time evolution of intensity (a) and phase portrait for the fundamental mode (b).

Solution of Eqs. (3) for f1 ¼ 2; f2 ¼ 0; g1 ¼ g2 ¼ 0:34 (BCL) and initial conditions a10 ¼ 0:1 þ i 0:1
and a20 ¼ 0. Self-pulsation.
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Figure 4. Multiperiodic behaviour in SHG. The same as in Fig. 3 but f1 ¼ 5:
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Figure 5. Time evolution of intensity (a) and phase portrait for the fundamental mode (b).

Solutions of Eqs. (3) with parameters �1 ¼ �2 ¼ 1; f1 ¼ 5:5; f2 ¼ 0; g1 ¼ g2 ¼ 0:34 (BCL). The

initial conditions are a10 ¼ 0:1 þ i 0:1 and a20 ¼ 0:01 þ i 0:01. Chaos.
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We get a very similar time behavior in subharmonic generation where f1 ¼ 0

and f2 6¼ 0. Self-pulsation and multiperiodic evolution of intensities have been

found. However, these findings are not investigated here.

The case of a frequency mismatch between laser pumps and cavity modes

was investigated [83], and for the first time, chaos in SHG was found. When the

pump intensity is increased, we observe a period doubling route to chaos for

�1 ¼ �2 ¼ 1. Now, for f1 ¼ 5:5, Eq. (3) give aperiodic solutions and we have a

chaotic evolution in intensities (Fig. 5a) and a chaotic attractor in phase plane

(Im a1; Re a1) (Fig. 5b).

E. Modulated External Field

A more complicated behavior of the system (3) is manifested if the time-

dependent driving field and damping are taken into account. Let us assume that

the driving amplitude has the form f1ðtÞ ¼ f0ð1 þ sinð�tÞÞ, meaning that the

external pump amplitude is modulated with the frequency � around f0. More-

over, f2 ¼ 0 and �1 ¼ �2 ¼ 0. It is obvious that if we now examine Eq. (3), the

situation in the phase space changes sharply. In our system there are two

competitive oscillations. The first belongs to the multiperiodic evolution

mentioned in Section II.D, and the second is generated by the modulated

external pump field. Consequently, we observe a rich variety of nonlinear

oscillations in the SHG process.

The frequency of modulation � is now the main parameter, and we are able

to switch the system of SHG between different dynamics by changing the value

of �. To find the regions of � where a chaotic motion occurs, we calculate a

Lyapunov spectrum versus the ‘‘knob’’ parameter �. The first Lyapunov

exponent l1 from the spectrum is of the greatest importance; its sign determines

the chaos occurrence. The maximal Lyapunov exponent l1 as a function of � is

presented for GCL in Fig. 6a and for BCL in Fig. 6b. We see that for some

frequencies � the system behaves chaotically (l1 > 0) but orderly (l1 < 0) for

others. The system in the second case is much more damped than in the first

case and consequently much more stable. By way of example, for � ¼ 0:9 the

system of SHG becomes chaotic as illustrated in Fig. 7a, showing the evolution

of second-harmonic and fundamental mode intensities. The phase point of the

fundamental mode draws a chaotic attractor as seen in the phase portrait

(Fig. 7b). However, the phase point loses its chaotic features and settles into

a symmetric limit cycle if we change the frequency to � ¼ 1:1 as shown in

Fig. 8b, while Fig. 8a shows a seven-period oscillation in intensities. To avoid

transient effects, the evolution is plotted for 450 < t < 500.

Let us emphasize that for other values of parameter � we can also observe in

the phase plane intricate symmetric limit cycles [107,123], such as the five-

period oscillations we get for � ¼ 0:78.

368 p. szlachetka and k. grygiel



2.0

−0.3

0.0

0.0

0.3

4.0 6.0

(a)

(b)

Ω

λ 1

2.0

−0.3

0.0

0.0

0.3

4.0 6.0
Ω

λ 1

Figure 6. Maximal Lyapunov exponent l1 versus the modulation parameter � for f0 ¼ 2 and

the initial conditions are a10 ¼ 0:1 þ i 0:1 and a20 ¼ 0:01 þ i 0:01. (a) GCL and (b) BCL.
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Figure 7. Time evolution of intensity (a) and phase portrait for the fundamental mode for

0 < t < 300 (b). Parameters are the same as in Fig. 6b (BCL), but with � ¼ 0:9. Chaos.
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Figure 8. Time evolution of intensity (a) and phase portrait for the fundamental mode for

t > 450 (b). Parameters are the same as in Fig. 6b (BCL) but with � ¼ 1:1. Limit cycle.
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Highly unstable systems lead to two positive Lyapunov exponents that show

the hyperchaotic behavior [116]. Now, Eq. (3) is numerically examined with

damping constants g1 ¼ g2 ¼ 0:01. In Fig. 9a we see only the two largest Lya-

punov exponents of all the spectrum versus the modulation parameter �. The
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Figure 9. The two largest Lyapunov exponents (a) and the bifurcation diagram (the maxima

of y1) (b) versus the modulation parameter �. Parameters are f0 ¼ 1; g1 ¼ g2 ¼ 0:01 and the initial

conditions are a10 ¼ 0:1 þ i 0:1 and a20 ¼ 0:01 þ i0:01. Hyperchaos.
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Figure 10. The phase portraits Rea2 versus Ima2 for f0 ¼ 1; g1 ¼ g2 ¼ 0:01;a10 ¼ 0:1 þ i 0:1,

and a20 ¼ 0:01 þ i0:01. The hyperchaotic trajectory for � ¼ 0:8 (a) and the limit cycle for

� ¼ 1:55(b). The time is 400 < t < 500.
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damping is so weak that we can state that the system is hyperchaotic. There are

two extensive regions of hyperchaos between 0:45 < � < 0:98 and � > 2:22,

where two Lyapunov exponents are positive. In the region 0:98 < � < 2:22

hyperchaos does not appear at all. Generally, the region 0:98 < � < 2:22 can be

treated as nonchaotic apart from a few values of the parameter � for which only

one Lyapunov exponent is positive. These regions of stability and instability are

best visualized in the bifurcation diagram (Fig. 9b), where we plot the maxima

of Re a1 ¼ y1 versus the parameter of modulation �. It is obvious that a change

in � switches the system among chaos, hyperchaos, or limit cycles. For

� ¼ 0:8, we observe a hyperchaotic orbit in the phase portrait of the second-

harmonic mode (Fig. 10a). The same orbit, except for � ¼ 1:55, becomes a

limit cycle (Fig. 10b).

When the damping in the system is increased, the regions of hyperchaos

disappear. Moreover, it is interesting that the region of order that we obtained in

Fig. 9 is very stable despite changing damping constants, so we can chose the

frequency of modulation of an external field in such a way ð1 < � < 1:8) that

the system remains stable even for a relatively small damping.

F. Pulsed External Field

In this section we consider a case particularly important for experimental

investigation. The external driving field f1ðtÞ applied to Eq. (3) has the form

of a train of pulses that are simulated by a computer. The length of the pulse is

denoted by T1, and the height of the pulse by f0. The distance between two

pulses is denoted by T2. For f0 6¼ 0 and T2 ¼ 0, the train of pulses becomes a

coherent driving field (Section II.D). The second driving field f2 is assumed to

be zero and �1 ¼ �2 ¼ 0. We examine the dynamical system (3) in the same

way as in Section II.E. In Fig. 11 we present the maximal Lyapunov exponent

l1 as a function of the length of the pulse T1 (for T2 ¼ 1). As shown in

Fig. 11a,b, at the beginning l1 is negative, implying the appearance of order in

the range 0 < T1 < 0:085 for GCL and 0 < T1 < 0:55 for BCL. The funda-

mental (j a1 j2Þ) and second-harmonic (j a2 j2) intensities tend to oscillatory

states in the course of time [108]. This is the short-pulse regime, and the

appropriate evolution of both intensities is shown in Fig. 12. Here, one can easy

recognize moments of time where the pulses are switched on and off. The

period of sawtooth-like oscillations is equal to the repetition rate of pulses. The

typical phase portrait for the short-pulse case is presented in Fig. 13. Finally, we

observe a limit cycle where the phase point moves up and down only a segment

of a straight line (shaded dark in Fig. 13b).

For 0:085 < T1 < 0:5 (GCL) and for 0:55 < T1 < 0:97 (BCL), the maximal

Lyapunov exponents l1 are near zero; consequently, we obtained quasiperiodic

trajectories. Typical quasiperiodic trajectories for both cases are shown in
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Fig. 14. The trajectory is a nonclosed path, and for long times we get a black-

ened area.

A more complicated behavior of the MLE is observed for higher values of

T1. Varying the length of the pulse T1, we observe regions of order and chaos.

By way of an example, the phase portrait Rea1 versus Ima1 for a chaotic

attractor is shown in Fig. 15.

Within the region of order ðl1 
 0Þ we see intricate symmetric and non-

symmetric limit cycles in phase diagrams. For example, for T1 ¼ 4:1 we see in
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Figure 11. The maximal Lyapunov exponent l1 versus the pulse duration T1, for

f0 ¼ 2; T2 ¼ 1; a10 ¼ 0:1 þ i 0:1;a20 ¼ 0: (a) the case of GCL g1 ¼ 0; g2 ¼ 0:34; (b) the case of

BCL g1 ¼ 0:34; g2 ¼ 0:34.
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Fig. 16a symmetric limit cycles for the second-harmonic mode (GCL) and in

Fig. 16b, an nonsymmetric phase portrait example for T1 ¼ 0:5 for BCL. In

both cases the phase point settles down into a closed-loop trajectory, although

not earlier than about t > 200. An intricate limit cycle is usually related to

multiperiod oscillations. For example, the cycle in Fig. 16a corresponds to

five-period oscillations of the fundamental and SHG modes intensity, and the

phase portrait in Fig. 16b resembles the four-period oscillations (see Fig. 17).

Generally, for T1 > 0:5, we observe many different multiperiod (even 12-period)

oscillations in intensity and a rich variety of phase portraits.

Some hyperchaotic behavior in SHG with pump of pulses has been shown

[111]. The two largest Lyapunov exponents versus a duration of pulse T1 are

presented in Fig. 18a for the cases of BCL. There are a two regions of

hyperchaos. A Typical hyperchaotic phase portrait is presented in Fig. 18b.

G. Final Remarks

Small changes in the modulated pump parameters �; fo and in the pulse

parameters T1; T2; fo induce dramatic changes the output fields. Therefore

0
0.00

0.03

0.06

10 20 30 40

lα1l2

lα2l2

τ

Figure 12. Intensities in the short-pulse regime for the GCL case. The parameters are the same

as for Fig. 11a but T1 ¼ 0:01.
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Figure 13. (a) A typical phase portrait in the short-pulse regime for GCL case; (b) an

enlargement of the signed region of Fig. 13a. The parameters are the same as for Fig. 11a but

T1 ¼ 0:01.
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SHG can be used as a source of signals with chaotic or even hyperchaotic

amplitudes that can be suddenly switched to the periodic regimes. This kind of

performance can be employed for communications devices. We mention here

the possibility of encoding a message within chaotic dynamics [124].

In order to relate the theory and numerical calculations to the physical

parameters, we followed the estimations of Drummond et al. [104]. For a typical

spherical Fabry–Pérot interferometer of length 10 cm with an appropriate crystal

(e.g., KDP of length 1 cm), one can get approximate values of parameters of the

SHG system. The typical damping constant for the mirror reflectivities 0.995 is

g ’ 106. The coupling constant k was estimated in the interval of 50--500 s�1.

These coupling constant values permit experimental verification of dynamical

behavior of SHG. In preceding, sections the coupling constant k is given by

relation k ¼ t=t, where t and t are the rescaled and real times, respectively.

Therefore the parameter of modulation � can change between 0 and 3500 Hz

(in our calculations 0 < � < 7 in arbitrary units). We also obtained the

appropriate pulse repetition rate in an interval from 10�3 up to 10�2 s. This

rather rough estimation allows experimental verification of our numerical

analysis.

III. CHAOS IN KERR OSCILLATORS

A. Introduction

Since 1990 considerable interest has been devoted to mutually coupled dyna-

mical systems. Different kinds of new dynamical behavior have been revealed

and studied, including synchronization effects [125–128], ON-OFF intermittency

[129], two-state ON-OFF intermittency [130], uncertain destination dynamics

[131], or riddled basins of attractions [132]. Other interesting topics in the field

of coupled nonlinear systems are generation of beats and their properties. The

structure of beats has been intensely studied mainly in quantum and nonlinear

optics. The intricate beats are frequently referred to as ‘‘revivals’’ and ‘‘collapse

phenomena’’ [133]. The revivals and collapses, representing the structure of

complicated modulations, remain quasiperiodic functions [134,135]. It is well

known that beats in linear systems originate from the superposition of periodic

functions with slightly different periods. The question is what are the changes in

the structure of beats in a linear system if the linear system is supplemented by a

nonlinear term and whether it is possible to generate chaotic beats.

One of the best known and most intensively studied optical models is an

oscillator with Kerr nonlinearity. Mutually coupled Kerr oscillators can be

successfully used for a study of couplers; the systems consist of a pair of coupled

Kerr fibers. The first two-mode Kerr coupler was proposed by Jensen [136] and

investigated in depth [136,137]. Kerr couplers affected by quantization can
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exhibit various quantum properties such as squeezing of vacuum fluctuations,

sub-Poissonian statistics, collapses, and revivals [138,139].

In this section we consider a model of interactions between the Kerr oscilla-

tors applied by J. Fiurášek et al. [139] and Peřinová and Karská [140]. Each

Kerr oscillator is externally pumped and damped. If the Kerr nonlinearity is

turned off, the system is linear. This enables us to perform a simple comparison

of the linear and nonlinear dynamics of the system, and we have found a specific

nonlinear version of linear filtering. We study numerically the possibility of

synchronization of chaotic signals generated by the Kerr oscillators by employ-

ing different feedback methods.

B. Basic Equations

The Hamilton function for a single Kerr oscillator is defined by

Hðp; qÞ ¼ p2

2
þ o2

0 q2

2
þ E

p2

2
þ o2

0 q2

2

� �2

ð10Þ

where E is the Kerr parameter. If E ¼ 0, the Hamiltonian expressed here describes

a simple harmonic oscillator with the natural frequency o0. The dynamical

variables p and q denote the momentum and generalized coordinate, respectively.

The Hamilton equations

dq

dt
¼ qH

qp
ð11Þ

dp

dt
¼ � qH

qq
ð12Þ

applied to the Hamiltonian (10) lead to the following coupled equations of

motion:

dq

dt
¼ p½1 þ Eðp2 þ o2

0q2Þ� ð13Þ

dp

dt
¼ �o2

0q½1 þ Eðp2 þ o2
0q2Þ� ð14Þ

If the initial state of the system is determined by the initial conditions qð0Þ ¼ q0

and pð0Þ ¼ p0, the solution of the system (13)–(14) is given by

qðtÞ ¼ q0 coso0½1 þ Eðp2
0 þ o2

0q2
0Þ�t þ

p0

o0

sino0½1 þ Eðp2
0 þ o2

0q2
0Þ�t ð15Þ

pðtÞ ¼ p0 coso0½1 þ Eðp2
0 þ o2

0q2
0Þ�t � q0o0 sino0½1 þ Eðp2

0 þ o2
0q2

0Þ�t ð16Þ
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The system (13)–(14) has two independent constants of motion (first integrals):

the Hamilton function (10) and

fðp; q; tÞ ¼ �o0 1 þ E p2 þ o2
0q2

� �� �
t þ arctan

o0q

p

� �
ð17Þ

For E ¼ 0, the quantities (10) and (17) become first integrals for the harmonic

oscillator [141]. It is obvious from (15)–(16) that a trajectory in phase space

ðp; qÞ for the Kerr oscillator is analytically the same ellipse as for the harmonic

oscillator

p2

p2
0 þ o2

0q2
0

þ o2
0q2

p2
0 þ o2

0q2
0

¼ 1 ð18Þ

The only difference is that for the harmonic oscillator the phase point draws the

ellipse with the frequency o0, whereas for the Kerr oscillator with the frequency,

� ¼ o0½1 þ Eðp2
0 þ o2

0q2
0Þ�. The frequency � depends on the initial conditions,

which is a feature typical of nonlinear conservative systems [143].

The set of equations (13)–(14) describes a conservative system. However, the

effect of linear dissipation can be incorporated phenomenologically. Then, Eqs.

(13)–(14) have the form

dq

dt
¼ p½1 þ Eðp2 þ o2

0q2Þ� � gq ð19Þ
dp

dt
¼ �o2

0q½1 þ Eðp2 þ o2
0q2Þ� � gp ð20Þ

where the terms gq and gp describe a loss mechanism, with the damping constant

g. The solution of the preceding equations is given by [142]

qðtÞ ¼ e�gt q0 cosNðtÞ þ p0

o0
sin NðtÞ

� �
ð21Þ

pðtÞ ¼ e�gtðp0 cosNðtÞ � q0o0 sin NðtÞÞ ð22Þ

where

NðtÞ ¼ o0t þ Eo0

2g
ðp2

0 þ o2
0q2

0Þð1 � e�2gtÞ ð23Þ

If E ¼ 0, the system (19)–(20) describes a damped linear oscillator governed by

the equation

d2q

dt2
þ 2g

dq

dt
þ ðo2

0 þ g2Þq ¼ 0 ð24Þ
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Generally, if Kerr systems are driven by external time-dependent forces, the

equations of motion are nonintegrable and have to be studied numerically.

C. Dynamics of Linearly Coupled Kerr Oscillators

Let us consider a system of two classical oscillators with Kerr nonlinearity. Both

oscillators interact with each other by way of a linear coupling; moreover, they

are pumped by external time-dependent forces. The Hamiltonian for the system

is given by

H ¼
X2

i¼1

½Hi þ EiH
2
i � qiFiðtÞ� � aq1q2 ð25Þ

where the Hamiltonian Hi ¼ 1
2
ðp2

i þ o2
0q2

i Þ describes a simple harmonic

oscillator with the frequency oo. Moreover, FiðtÞ ¼ Ai cosoit is the time-

dependent force, with the amplitude Ai and the frequency oi. The parameter of

Kerr nonlinearity is denoted by Ei. The interaction between the Kerr oscillators is

governed by the term aq1q2, where a plays the role of an interaction parameter.

The equations of motion for the system described by the Hamiltonian (25) are

given by

dq1

dt
¼ p1½1 þ E1ðp2

1 þ o2
0q2

1Þ� � g1q1 ð26Þ
dp1

dt
¼ �o2

0q1½1 þ E1ðp2
1 þ o2

0q2
1Þ� þ aq2 � g1p1 þ A1 coso1t ð27Þ

dq2

dt
¼ p2½1 þ E2ðp2

2 þ o2
0q2

2Þ� � g2q2 ð28Þ
dp2

dt
¼ �o2

0q2½1 þ E2ðp2
2 þ o2

0q2
2Þ� þ aq1 � g2p2 þ A2 coso2t ð29Þ

where the terms giqi and gipi describe a loss mechanism. The loss mechanism has

been incorporated phenomenologically. If the linear coupling parameter a is

equal to zero, both anharmonic oscillators behave independently; that is, they do

not interact with each other. Therefore, for a ¼ 0 the equations of motion (26)–

(29) form two independent sets of equations. The equations of motion (26)–(29)

give a four-dimensional nonautonomous system that can be easily autonomized

[115] if we put t ¼ q3 in the functions cosoit. Then, time becomes a dynamical

variable and the fifth equation is given by

dq3

dt
¼ 1; q3ð0Þ ¼ 0 ð30Þ

In general, the system (26)–(30) is nonintegrable and its dynamics has to be

studied numerically. We examined it with the help of a fourth-order Runge–Kutta
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method. To calculate Lyapunov exponents, we used the procedure proposed by

Wolf et al. [114]. The spectrum of the autonomized system (26)–(30) is denoted

by the symbols fl1; l2; l3; l4; l5g.

1. Noninteracting Oscillators

Let us first consider the case of noninteracting oscillators that takes place when

the interaction parameter a in Eqs. (26)–(29) is equal to zero. Then, the system

(26)–(29) consists of two independent subsystems in the dynamical variables

ðq1; p1Þ and ðq2; p2Þ. The parameters of the subsystems are A1 ¼ A2 ¼ 200,

o0 ¼ 1, E1 ¼ E2 ¼ 0:1, g1 ¼ 0:05, g2 ¼ 0:5. The frequencies o1;2 of the

external driving forces vary in the range 0 < o1;2 < 3:2. The autonomized

spectrum of Lyapunov exponents fl1; l2; l3g for the first oscillator I versus the

frequency o1 is presented in Fig. 19a. We observe three types of spectra:

fþ; 0;�g, f0; 0;�g; and f0;�;�g. The first indicates a chaotic attractor; the

second, a quasiperiodic orbit; and the third, a limit cycle. Therefore a change in

the frequency o1 switches the chaotic oscillations (chaotic attractors) into

nonchaotic oscillations (quasiperiodic orbits, limit cycles) and inversely. The

autonomized spectrum of Lyapunov exponents for the second oscillator II

versus the frequency o2 is shown in Fig. 19b. The difference between the

two figures is essential. The chaotic regions in Fig. 19b do not appear at all

because of the increase in damping in the system. The only attractors are limit

cycles f0;�;�g. By way of an example, for identical frequencies o1 ¼ o2 ¼
0:55, the Lyapunov spectra for the first and second oscillators are f0:08; 0:00;
�0:23gI

and f0:00;�0:55;�0:90gII
, respectively. The topology of the chaotic

attractor in the phase space ðq1; p1Þ is shown in Fig. 20a. The phase point starts

from the initial conditions q10 ¼ 10 and p10 ¼ 10 and moves within the

blackened area, which makes an attractor, after t > 200. In the phase plane

ðq2; p2Þ the phase point draws a limit cycle (Fig. 20b). The intricate structure of

the limit cycle is related to multiperiodic oscillations of the system. The

blackened areas at the top and bottom of the limit cycle have a periodic

structure invisible in the scale of the phase portrait.

The single Kerr anharmonic oscillator has one more interesting feature. It is

obvious that for Ej ¼ 0 and gj ¼ 0, the Kerr oscillator becomes a simple linear

oscillator that in the case of a resonance oi ¼ o0 manifests a primitive

instability; in the phase space the phase point draws an expanding spiral. On

adding the Kerr nonlinearity, the linear unstable system becomes highly chaotic.

For example, putting A1 ¼ 200, o1 ¼ o0 ¼ 1, E1 ¼ 0:1 and g1 ¼ 0, the spec-

trum of Lyapunov exponents for the first oscillator is f0:20; 0;�0:20gI
.

However, the system does not remain chaotic if we add a small damping. For

example, if g1 ¼ 0:05, then the spectrum of Lyapunov exponents has the form

f0:00; �0:03;�0:12gI
, which indicates a limit cycle.
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2. Interacting Oscillators

If the interaction parameter a is switched on, the system of coupled oscillators

(26)–(29) manifests a rich variety of spectacular behavior. Below, we concen-

trate on the most interesting ones. First, we answer the question as to how the

attractors in Fig. 20 change when both oscillators interact with each other.

1. The Case A1 ¼ A2, g1 < g2. The dynamics of the coupled oscillators is

investigated for an interaction parameter a varying in the range 0 < a < 1. The
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Figure 19. Spectra of Lyapunov exponents for the system (26)-(30) with a ¼ 0. The initial

conditions are q10 ¼ 10; p10 ¼ 10; q20 ¼ 10, and p20 ¼ 10. (a) Spectrum fl1;l2; l3gI
for the first

oscillator (I) versus the frequency o1 for o0 ¼ 1, A1 ¼ 200. g1 ¼ 0:05, and E1 ¼ 0:1. (b) The same

for the second oscillator (II) with the parameters: o0 ¼ 1;A2 ¼ 200; g2 ¼ 0:5, and E2 ¼ 0:1.
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joint autonomized spectrum of Lyapunov exponents fl1; l2; l3; l4; l5g versus

the interaction parameter a is shown in Fig. 21. The value a ¼ 0 is a limit value

related to the dynamics of the uncoupled oscillators. This has already been done

in Section III.C.1 In the region 0 < a < 0:74 the chaotic behavior of the coupled

oscillator system predominates over the nonchaotic one; thus, for most values of
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Figure 20. Phase portraits for the system (26)–(30) with a ¼ 0. The initial conditions are

q10 ¼ 10; p10 ¼ 10; q20 ¼ 10, and p20 ¼ 10. (a) Phase portrait (q1; p1) of the first oscillator for

A1 ¼ 200;o0 ¼ 1; E1 ¼ 0:1;o1 ¼ 0:55, and g1 ¼ 0:05. (b) Phase portrait (q2; p2) of the second

oscillator for A2 ¼ 200;o0 ¼ 1; E1 ¼ 0:1;o2 ¼ 0:55, and g1 ¼ 0:5.
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the parameter a, the maximal Lyapunov exponent is positive. For

0:68 < a < 0:71 we get the maximum chaos. For a > 0:74 the system does

not show chaotic behavior. Generally, the only spectra of Lyapunov exponents

that appear in Fig. 21 are of types fþ; 0;�;�;�g; f0; 0;�;�;�g, and

f0;�;�;�;�g. These three types of spectra (for a > 0) do not allow us to

ascertain which of the two interacting oscillators is more (or less) chaotic than

the other unless a ¼ 0. However, the dynamics of individual oscillators can be

estimated with the help of the appropriate phase portraits. For example, if the

interaction coupling is equal to a ¼ 0:7, the spectrum of Lyapunov exponents

has the form f0:14; 0:00;�0:39;�0:55;�0:79g, and the appropriate phase

portraits are as shown in Fig. 22. The attractors for the interacting oscillators

shown in Fig. 22 are reminiscent of the attractors for noninteracting oscillators

presented in Fig. 20. Let us note that the maximal Lyapunov exponent for the

system of interacting oscillators, which is equal to l1 ¼ 0:14, is greater than the

maximal Lyapunov exponent for the uncoupled oscillators, which equals

l1 ¼ 0:08. Therefore, for 0:67 < a < 0:72, the coupled oscillators are more

chaotic than their uncoupled version. However, as is seen from Fig. 21, this is not

a rule. In the range 0:2 < a < 0:5 the values of the maximal Lyapunov exponent

are of the rank � 0:08, which corresponds to the value for uncoupled oscillators

(a measure of chaos in the coupled and uncoupled oscillators is in practice the

same). Therefore, the linear coupling here is relatively small in order to
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Figure 21. Spectrum of Lyapunov exponents {l1;l2; l3;l4;l5} for the system (26)–(30)

versus the interaction parameter a. The other parameters are A1 ¼ A2 ¼ 200;o0 ¼ 1;o1 ¼
o2 ¼ 0:55; E1 ¼ E2 ¼ 0:1; g1 ¼ 0:05, and g2 ¼ 0:5. The initial conditions are q10 ¼ 10; p10 ¼ 10;

q20 ¼ 10, and p20 ¼ 10.
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additionally increase the instability of the system. Rather chaos flows from one

oscillator to the other by the coupling term a.

2. The Case A1 ¼ A, A2 ¼ 0, g1 ¼ g2 ¼ g. In what follows, we consider a

simple version of the system (26)–(29), namely: both oscillators are equally
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Figure 22. The same as in Fig. 20 but with the interaction parameter a ¼ 0:7.
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damped (g1 ¼ g2 ¼ g) and only the first oscillator is externally pumped

(A1 ¼ A;A2 ¼ 0). Therefore, the equations of motion are

dq1

dt
¼ p1½1 þ Eðp2

1 þ o2
0q2

1Þ� � gq1 ð31Þ

dp1

dt
¼ �o2

0q1½1 þ Eðp2
1 þ o2

0q2
1Þ� þ aq2 � gp1 þ Acosot ð32Þ

dq2

dt
¼ p2½1 þ Eðp2

2 þ o2
0q2

2�Þ � gq2 ð33Þ

dp2

dt
¼ �o2

0q2½1 þ Eðp2
2 þ o2

0q2
2Þ� þ aq1 � gp2 ð34Þ

This system in its linear version (i.e., when E ¼ 0) is a dynamical filter. Suppose

that the oscillators interact with each other with the interaction parameter

a ¼ 0:9. The frequency o of the external driving field varies in the range

0 < o < 4:2. The other parameters of the system are A ¼ 200, o0 ¼ 1, E ¼ 0:1,

and g ¼ 0:05. The autonomized spectrum of Lyapunov exponents fl1; l2; l3;
l4; l5g versus the frequency o is presented in Fig. 23. In the range 0 < o < 0:2
the system does not exhibit chaotic oscillation. Here, the maximal Lyapunov

exponent l1 ¼ 0 and the spectrum is of the type f0;�;�;�;�g (limit cycles).

For example, for o ¼ 0:05 we have f0:00;�0:07;�0:07;�0:07;�0:07g, and

the limit cycles are shown in Fig. 24. The blackened areas in Fig. 24 have a

periodic structure invisible in the scale applied. In the range 0:21 < o < 3:41,
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Figure 23. Spectrum of Lyapunov exponents {l1;l2; l3;l4;l5} for the system (31–(34)

versus the pump frequency o. The other parameters are A ¼ 200;o0 ¼ 1; g ¼ 0:05; E ¼ 0:1, and

a ¼ 0:9. The initial conditions are q10 ¼ 10; p10 ¼ 10; q20 ¼ 10, and p20 ¼ 10.
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new types of spectra appear: f0; 0;�;�;�g, fþ; 0;�;�;�g, and fþ;þ; 0;
�;�g. The first indicate a quasiperiodic orbit; the second, a chaotic attractor, the

third, a hyperchaotic attractor. Let us concentrate on the last and the most

interesting case, with two positive Lyapunov exponents. The system reaches the
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Figure 24. Phase portraits (q1; p1) and (q2; p2) for the system (31)-(34) with a ¼ 0:9. The other

parameters are A ¼ 200;o0 ¼ 1; E ¼ 0:1; g ¼ 0:05; and o ¼ 0:05. The initial conditions are the

same as for Fig. 23. Limit cycles.
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highest degree of hyperchaos for o ¼ 2:1. Then, the spectrum is f0:26; 0:
10; 0:00;�0:25;�0:41g, and the behavior of the phase point is presented in the

phase diagrams in Fig. 25. Here, the phase point starts from the initial state

q10 ¼ q20 ¼ p10 ¼ p20 ¼ 10 and moves into the hyperchaotic attractor after

t > 50. For o > 3:41 the system behaves orderly.
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Figure 25. The same as in Fig. 24 but for o ¼ 2:1. Hyperchaos.
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The system (31)–(34) with E ¼ 0 is a linear system with the normal

frequencies �1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

0 � a
p

and �2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

0 þ a
p

. For o0 ¼ 1 and a ¼ 0:9, we

have �1 ¼ 0:32 and �2 ¼ 1:38. It is known from linear dynamics that if

�1 > o > �2, the steady-state amplitude of the first oscillator is greater than

the steady-state amplitude of the second oscillator. If �1 < o < �2, we observe

the inverse situation — the steady-state amplitude of the second oscillator is

now greater than that of the first oscillator. This behavior is known as dynamical

filtering of the signal FðtÞ ¼ Acosot. The frequency range ð�1;�2Þ is called

the charge-transfer band, whereas �1 and �2 are the lower- and upper-band

frequencies, respectively. The question is whether the filtering is, in a sense, also

maintained in our nonlinear system. A detailed analysis shows that thevibrations

of the first oscillator are always greater than the oscillations of the second

oscillator, irrespective of the value of o. This is also seen from the phase

portraits in Figs. 24 and 25, which show that the volume of the attractor in the

phase space ðp2; q2Þ is always less than the attractors in the phase space ðp1; q1Þ.
The linear version ðE ¼ 0Þ of the system (31) — (34) has one more interest-

ing feature; namely, if g ¼ 0, o ¼ o0 and the following initial conditions are

satisfied ðq10 ¼ 0, p10 ¼ 0, q20 ¼ �A=a , p20 ¼ 0Þ; then the solutions of the

linear equations of motion are q1ðtÞ ¼ 0, p1ðtÞ ¼ 0, q2ðtÞ ¼ ð�A=aÞcoso0t and

p2ðtÞ ¼ ðAo0=aÞsino0t. Therefore, the first oscillator remains in a state of rest

and the second performs harmonic vibrations; such a system is frequently

referred to as a dynamical damper. However, a nonlinear counterpart of the

linear dynamical damper does not exist. For E ¼ 0:1, A ¼ 9, a ¼ 0:9, and

o ¼ oo ¼ 1, the system behaves hyperchaotically. The spectrum of Lyapunov

exponents is f0:68; 0:04; 0:00;�0:04;�0:68g.

Finally, let us briefly consider the dynamical properties of the system (31)–

(34) without damping, that is, when g ¼ 0. The other parameters are o0 ¼ 1,

a ¼ 0:9, and A ¼ 200. The appropriate spectrum of Lyapunov exponents

fl1; l2; l3; l4; l5g versus the frequency 0 < o < 2 is presented in Fig. 26.

As is seen from Fig. 26, the system is completely hyperchaotic. Here, the only

type of spectrum is fþ;þ; 0;�;�g. This type of spectrum is a case of the

symmetric spectrum ( the axis symmetry is the Lyapunov exponent l3 ¼ 0).

3. Synchronization

In chaotic motion trajectories starting from insignificantly different initial

conditions diverge from each other exponentially. The question is whether we

can converge chaotic signals from two identically or slightly different sub-

systems, both starting from different initial conditions. This behavior is possible

by linking them with a common signal and synchronizing both outputs. We

show that two single Kerr oscillators are a convenient system for synchroniza-

tion. According to the continuous feedback method [52,61,125,127], we

consider two Kerr subsystems (oscillators) where one subsystem is called the
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drive and the other the response. Both systems are coupled unidirectionally by a

difference signal. The behavior of the response system depends only on the

drive system, but not vice versa. The dynamics of our system is governed by the

following set of equations:

dq1

dt
¼ p1½þE1ðp2

1 þ o2
0q2

1Þ� � g1q1 ð35Þ
dp1

dt
¼ �o2

0q1½1 þ E1ðp2
1 þ o2

0q2
1Þ� � g1p1 þ A1 coso1t þ S ð36Þ

dq2

dt
¼ p2½1 þ E2ðp2

2 þ o2
0q2

2Þ� � g2q2 ð37Þ
dp2

dt
¼ �o2

0q2½1 þ E2ðp2
2 þ o2

0q2
2Þ� � g2p2 þ A2 coso2t ð38Þ

where S ¼ kðq2 � q1Þ is the difference signal and k is the control parameter. As

is seen, the second oscillator (drive) pumps a signal to the first oscillator

(response) via the term S in Eq. (36) . The synchronization of chaos (for a chosen

parameter k and the initial conditions q10 6¼ q20 and p10 6¼ p20) takes place if the

chaotic trajectory q1 ¼ q1ðtÞ of the response oscillator jumps after some time

into the chaotic trajectory q2 ¼ q2ðtÞ of the drive oscillator. The time needed to

uniform chaotic motions of subsystems is called a synchronization time.

Let us consider the dynamics of synchronization for the system (35)–(38)

with the parameters A1 ¼ A2 ¼ 200 , o0 ¼ 1, o1 ¼ o2 ¼ 0:55, g1 ¼ g2 ¼ 0:05,

and E1 ¼ E2 ¼ 0:1. The initial conditions for the drive and response systems are

ðq10; p10Þ ¼ ð10; 10Þ and ðq20; p20Þ ¼ ð5; 5Þ, respectively. For k ¼ 0 both sys-

tems draw different chaotic orbits. Figure 27 shows the measure of synchroni-

zation �s ¼ q1ðtÞ � q2ðtÞ versus time t for k ¼ 0:33. The appearance of the
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Figure 26. The same as in Fig. 23 but for g ¼ 0.
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straight line after Ts ffi 2900 clearly implies that both chaotic orbits have just

been synchronized: q1ðtÞ ¼ q2ðtÞ. The efficiency of the synchronization process

depends on the parameter k. This is illustrated in Fig. 28a, where the synchro-

nization time Ts is presented as a function of the parameter k. We observe four

regions of synchronization: 0:28 < k < 0:35, 0:42 < k < 0:54, 0:77 < k <
0:80, and k > 1:58. In the other regions it is not possible to achieve the

synchronization effect. The synchronization time takes the minimum value

Ts ffi 200 for k > 1:59.

In physical terms the unidirectional synchronization means that the drive

oscillator plays the role of an external source. The situation is different if one

considers the problem of a mutual synchronization of two oscillators, which we

may assume to be identical in all respect except for the initial conditions:

q10 6¼ q20 and p10 6¼ p20. Let us consider the following model of mutual

synchronization

dq1

dt
¼ p1½1 þ E1ðp2

1 þ o2
0q2

1Þ� � g1q1 ð39Þ
dp1

dt
¼ �o2

0q1½1 þ E1ðp2
1 þ o2

0q2
1Þ� � g1p1 þ A1 coso1t þ S ð40Þ

dq2

dt
¼ p2½1 þ E2ðp2

2 þ o2
0q2

2Þ� � g2q2 ð41Þ
dp2

dt
¼ �o2

0q2½1 þ E2ðp2
2 þ o2

0q2
2Þ� � g2p2 þ A2 coso2t � S ð42Þ
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Figure 27. The time evolution of �s ¼ q1 � q2 for k ¼ 0:33. The parameters and the initial

conditions of the system (35)-(38) are o1 ¼ o2 ¼ 0:55;A1 ¼ A2 ¼ 200;o0 ¼ 1; E1 ¼ E2 ¼ 0:1;

g1 ¼ g2 ¼ 0:05; ðp10; q10Þ ¼ ð10; 10Þ, and ðp20; q20Þ ¼ ð5; 5Þ.
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where S ¼ kðq2 � q1Þ. The system is similar to that governed by Eqs. (26)–(29).

The equations of motion (39)–(42) can be derived from the Hamiltonian (25) if,

instead of aq1q2, we put 0:5kðq1 � q2Þ2
. The values of the parameters and the

initial conditions for the model of mutual synchronization are the same as for the

unidirectional model. Synchronization takes place in the ranges 0:22 < k < 0:27,

0:38 < k < 0:41 and k > 0:79, as is shown in Fig. 28b. For k > 0:80 we obtain
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Figure 28. Synchronization time Ts versus k. (a) for Eqs. (35)–(38); (b) for Eqs. (39)–(42). The

parameters and the initial conditions are the same as for Fig. 27.
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It is interesting to note that the regions of unidirectional and mutual syn-

chronization do not overlap. In both cases we have the critical value of k (1.59,

unidirectional synchronization; 0.80, mutual synchronization), after which the

coupling is strong enough to maximize the process of synchronization.

4. Chaotic Beats

Let us now concentrate on the problem of beats generated by the system

(26)–(29) without a loss mechanism ðg1 ¼ g2 ¼ 0Þ. For g1 ¼ g2 ¼ 0, and

a ¼ 0, the dynamics of the system (26)–(29) is reduced to two noninteracting

Kerr subsystems:

dqj

dt
¼ pj½1 þ Ejðp2

j þ o2
0q2

j Þ� ð43Þ

dpj

dt
¼ �o2

0qj½1 þ Ejðp2
j þ o2

0q2
j Þ� þ Aj cosojt ; j ¼ 1; 2 ð44Þ

These Kerr oscillators, with E1 ¼ E2 ¼ 0, are linear subsystems that in the case

of resonance (o ¼ o1 ¼ o2) exhibit a common instability — the solutions of

Eqs. (43) and (44) for t ! 1 grow linearly without bound. This resonance

instability of our linear subsystems vanishes for E1 6¼ 0 and E2 6¼ 0. The

subsystems become stable but only for small values of E1 and E2. For example,

beats generated by the first oscillator for E1 ¼ 10�9, A1 ¼ 200, and o0 ¼ o1 ¼ 1

are illustrated in Fig. 29a, and the appearing beats originate from the Kerr

nonlinearity.

Beats generated by the second oscillator for E2 ¼ 10�9, A2 ¼ 200, o0 ¼ 1,

and o2 ¼ 1:05 are shown in Fig. 29b. The Lyapunov analysis of beats presented

in Fig. 29 leads to the conclusion that the beats have a quasiperiodic nature, or,

as we frequently say, they are almost periodic solutions and our system can be

treated as a nearly linear system [143]. The structure of beats in the coupled

system (26)–(29) is much more intricate than for the individual noninteracting

subsystems (43)–(44), where the beats are quasiperiodic functions. Let us

suppose that the individual noninteracting oscillators ða ¼ 0Þ behave as pre-

sented in Fig. 29 and answer the question as to how the structure of beats in both

figures change when the oscillators interact with each other ða 6¼ 0Þ, that is, how

the occurrence of beats in the coupled oscillators depends on the selected value

of a. Numerical calculations show that the coupled system generates distinct

beats if a < 0:3. Let us now have a look at the Lyapunov analysis of beats. The

autonomized spectrum of Lyapunov exponents for the system (26)–(29) versus

the coupling parameter ð0 < a < 0:16Þ is presented in Fig. 30. As is seen, the

most spectacular behavior of the system is observed for 0:01 < a < 0:13. In this

range our system generates beats and behaves hyperchaotically. The magnitude

of chaos depends on the value of the coupling parameter a. The highest degree
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of hyperchaos is achieved at a ¼ 0:04, and the spectrum of the Lyapunov

exponents is given by the following set f0:013; 0:003; 0:000;�0:003;�0:013g.

The beats with chaotic envelopes in the q1- component are shown in Fig. 31a.

The envelope function is very sensitive to the interaction parameter a. A small

change in a, for example, from a ¼ 0:04 to a ¼ 0:05 drastically changes the

shape of the envelope function (Fig. 31a,b), leaving the basic frequency of

oscillations almost unchanged (Fig. 31, window). As seen in Fig. 31, the
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Figure 29. Evolution of q1 and q2 versus t for Eqs. (26)–(29) with a ¼ 0. The initial conditions

are q10 ¼ 10; p10 ¼ 10; q20 ¼ 10, and p20 ¼ 10. The other parameters are A1 ¼ A2 ¼ 200; g1 ¼
g2 ¼ 0; E1 ¼ E2 ¼ 10�9, and o0 ¼ o1 ¼ 1 (a), o0 ¼ 1;o2 ¼ 1:05 (b).
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envelope functions can be drawn as smooth functions, in contradistinction to the

envelopes of beats generated stochastically [144,145]. For a > 0:16 the beats

lose their chaotic behavior and for a > 0:4, the beats vanish completely.

It is interesting that envelope functions can also behave as multiperiod

oscillations. This takes place if we take into account small damping. By way of

an example, for the damping constant g1 ¼ g2 ¼ 0:1, the envelope function has

a feature of two period doubling oscillations.

5. Final Remarks

The dynamics of two linear coupled Kerr oscillators strongly depends on the

value of the interaction parameter a, frequency of pumping fields oj, and the

damping constants gj. If the oscillators are coupled, both undergo a homo-

genization regarding the nature of their motion; either both are chaotic, or both

are ordered, as is obvious from the phase graphs. For some parameters chaotic

signals generated by the Kerr oscillators can be synchronized. Both unidirec-

tional and mutual synchronization have been studied. The phenomenon of beats

appears in linear and nonlinear systems whenever an impressed frequency is

close to a natural frequency of a linear system or whenever two slightly different

frequencies are impressed on a system regardless of what its natural frequencies
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Figure 30. Spectra of Lyapunov exponents {l1;l2; l3;l4;l5} for the system (26)–(29) versus

the coupling constant a. The other parameters are A1 ¼ A2 ¼ 200; g1 ¼ g2 ¼ 0;o0 ¼ 1;

o1 ¼ 1;o2 ¼ 1:05, and E1 ¼ E2 ¼ 10�9. The initial conditions are q10 ¼ 10; q20 ¼ 10; p10 ¼ 10,

and p20 ¼ 10.
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may be. For the small parameters of nonlinearity E ¼ 10�9, the quasiperiodic

beats in uncoupled Kerr oscillators become beats with chaotic envelopes if the

Kerr oscillators are linearly coupled. A small change in the interaction

parameter rapidly changes the shape of the envelopes, whereas the basic

frequencies of vibrations remains practically unchanged. Therefore the coupled

oscillators can be used as a source of signals with chaotic envelopes and stable

fundamental frequency. The appropriate materials useful for the generation of

beats with chaotic envelopes could be optical systems consisting of a pair of
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Figure 31. Evolution of q1ðtÞ versus for Eqs. (26)-(29) from the initial conditions

q10 ¼ 10; p10 ¼ 10; q20 ¼ 10, and p20 ¼ 10 for (a) a ¼ 0:04; ðbÞ a ¼ 0:05. The other parameters

are A1 ¼ A2 ¼ 200; g1 ¼ g2 ¼ 0;o0 ¼ 1;o1 ¼ 1;o2 ¼ 1:05, and E1 ¼ E2 ¼ 10�9.
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coupled Kerr fibers [138,139,146]. Since the pioneering work by Jensen [136],

twin-core nonlinear fibers (so-called couplers) have been one of the highest-

priority topics of fiberoptic research. The couplers are expected to find important

applications as all-optical switches [147] in photonics, for example. Another

interesting problem connected with optical application to secure communication

is synchronization of coupled systems [148,149].

D. Dynamics of Nonlinearly Coupled Kerr Oscillators

Let us now consider a system of two nonlinearly coupled Kerr oscillators. Now,

we write the Hamiltonian (25) in the form

H ¼
X2

i¼1

½Hi þ EiH
2
i � qiFiðtÞ� þ 2E12H1H2 ð45Þ

where E12 the intermodal coupling constant. The autonomized equations of

motion for the Hamiltonian (45) have the following form:

dq1

dt
¼ p1½1 þ E11ðp2

1 þ o2
0q2

1Þ þ E12ðp2
2 þ o2

0q2
2Þ� � g1q1 ð46Þ

dp1

dt
¼ �o2

1q1½1 þ E11ðp2
1 þ o2

0q2
1Þ þ E12ðp2

2 þ o2
0q2

2Þ�

� g1p1 þ A1 coso1t ð47Þ
dq2

dt
¼ p2½1 þ E22ðp2

2 þ o2
0q2

2Þ þ E12ðp2
1 þ o2

0q2
1Þ� � g2q2 ð48Þ

dp2

dt
¼ �o2

0q2½1 þ E22ðp2
2 þ o2

0q2
2Þ þ E12ðp2

1 þ o2
0q2

1Þ�

� g2p2 þ A2 coso2t ð49Þ
dq3

dt
¼ 1; q3ð0Þ ¼ 0 ð50Þ

Let us emphasize that if Aj ¼ 0, the set of equations (46)–(50) is integrable and

has a relatively simple analytic solution. If the initial state of the system is deter-

mined by the initial conditions qjð0Þ ¼ qj0 i pjð0Þ ¼ pj0, the analytic solution is

given by [110]

qjðtÞ ¼ e�gj t qj0 cosEjðtÞ þ
pj0

oj

sinEjðtÞ
� �

ð51Þ

pjðtÞ ¼ e�gj t pj0 cosEjðtÞ � ojqj0 sinEjðtÞ
� �

; j ¼ 1; 2 ð52Þ
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where

E1ðtÞ ¼ o0t þ E1o0

g1

H10ð1 � e�2g1tÞ þ E12o0

g2

H20ð1 � e�2g2tÞ ð53Þ

E2ðtÞ ¼ o0t þ E2o0

g2

H20ð1 � e�2g2tÞ þ E12o0

g1

H10ð1 � e�2g1tÞ ð54Þ

Hj0 ¼
p2

j0

2
þ
o2

0q2
j0

2
; j ¼ 1; 2 ð55Þ

The system (46)–(50) is examined numerically with the following parameters:

A1 ¼ A2 ¼ 200, o0 ¼ 1, E1 ¼ E2 ¼ 0:1, g1 ¼ 0:05, g2 ¼ 0:5. The frequencies

o1;2 of the external driving forces and the cross interaction Kerr constant E12 vary

in the range 0 < o1;2 < 3 and 0 < E12 < 1:5, respectively. Therefore we study

the dynamics of two nonlinearly coupled oscillators, I and II, which differ only in

the value of the damping constants g1 and g2.

1. Noninteracting Oscillators

The case of noninteracting oscillators takes place when the coupling constant

E12 is equal to zero. Then, the systems (46)–(50) with E12 ¼ 0 and (26)–(29)

with a ¼ 0 are identical, and their dynamics are considered in Section III.C.1.

2. Interacting Oscillators

Let us now consider the behavior of the system when the Kerr coupling constant

is switched on (E12 6¼ 0). For brevity and clarity, we restrict our discussion to the

question of how the attractors in Fig. 20 change when both oscillators interact

with each other. To answer this question, let us have a look at the joint auto-

nomized spectrum of Lyapunov exponents for the two oscillators fl1; l2; l3;
l4; l5g versus the interaction parameter 0 < E12 < 0:7. The spectrum is seen in

Fig. 32 and describes the dynamical properties of our oscillators in a global

sense. The dynamics of individual oscillators can be glimpsed at the appropriate

phase portraits. Let us now fix our attention on a detailed analysis of Fig. 32. For

the limit value E12 ¼ 0, the dynamics of the uncoupled oscillators has already

been presented in Fig. 20. In the case of very weak interaction 0 < E12 < 0:0005,

the system of coupled oscillators manifests chaotic behavior. For E12 ¼ 0:0005

we obtain the spectrum f0:06; 0:00;�0:21; �0:54;�0:89g. It is interesting to

note that the maximal Lyapunov exponent l1 ¼ 0:08 for the system of

noninteracting oscillators ðE12 ¼ 0Þ is greater than the maximal Lyapunov

exponent l1 ¼ 0:06 for the coupled system with the parameter E12 ¼ 0:0005.

Therefore, in this case, the uncoupled system is more chaotic than the coupled

system. A further increase in the interacting parameter E12 leads to the dis-

appearance of chaos. In the region 0:0005 < E12 < 0:15 the oscillators behave

orderly and nonchaotically. By way of example, for E12 ¼ 0:1, all the values of
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Lyapunov exponents are nonpositive: f0:00; �0:12;�0:26;�0:53; �0:68g. In

this case the appropriate limit cycles are shown in Fig. 33a,b. The intricate

structure of the limit cycles is reminiscent of the structure seen in Fig. 20. The

blackened areas in Fig. 33 contain some pattern structure invisible in the scale

used. As we see from Fig. 32, the situation changes in the region 0:15 < E12 <
0:43. Chaotic behavior of the system predominates over nonchaotic behavior —

for most values of the parameter E12, one Lyapunov exponent is positive. The

most spectacular behavior of the coupled oscillators is observed in the region

0:43 < E12 < 0:49. Here, two positive Lyapunov exponents in the spectrum

indicate hyperchaotic behavior of the system. The highest degree of hyperchaos

is achieved by the system at E12 ¼ 0:46. The spectrum of the Lyapunov

exponents is given by the set f0:87; 0:05; 0:00;�0:83;�1:71g, pointing to the

existence of an hyperchaotic attractor. Its topology in the phase portraits ðq1; p1Þ
and ðq2; p2Þ is shown in Fig. 34a,b. Precisely, in the phase portraits the system

initially manifests a transient behavior but then (for t > 500) settles into a

hyperchaotic attractor.

For E12 � 0:49 we observe a reduction of hyperchaos to chaos. Generally, in

the region 0:49 
 E12 
 0:75 chaos dominates order and is maximal for the

value E12 ¼ 0:63, and the spectrum is f0:67; 0:00;�0:20;�0:90;�1:48g. Spec-

tacular chaotic attractors appear for E12 ¼ 0:7. Their phase portraits are presen-

ted in Fig. 35, where both attractors make impressions of spread limit cycles, as
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−1.00

−0.50
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Figure 32. Spectrum of Lyapunov exponents {l1;l2; l3;l4; l5} for the system (46)–(50)

versus the Kerr coupling constant E12. The other parameters are o0 ¼ 1;o1 ¼ o2 ¼ 0:55;

A1 ¼ A2 ¼ 200, and E1 ¼ E2 ¼ 0:1. The initial conditions are q10 ¼ 10; p10 ¼ 10; q20 ¼ 10, and

p20 ¼ 10.
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chaos is relatively small here. The spectrum of Lyapunov exponents is f0:06;
0:00;�0:31;�0:92;�1:01g.

3. Final Remarks

The emergence of order and chaos in the system of two oscillators depends on

the value of the Kerr coupling constant E12. For the fixed parameters of damping

−10.00
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Figure 33. Phase portraits for the system (46)–(50) for E12 ¼ 0:1 with the initial conditions

q10 ¼ 10; p10 ¼ 10; q20 ¼ 10, and p20 ¼ 10: (a) phase portrait ðq1; p1Þ of the first oscillator for

A1 ¼ 200;o0 ¼ 1; E1 ¼ 0:1;o1 ¼ 0:55, and g2 ¼ 0:05; (b) phase portrait ðq2; p2) of the second

oscillator for A2 ¼ 200;o0 ¼ 1; E2 ¼ 0:1;o2 ¼ 0:55, and g2 ¼ 0:5. Order.
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gi, the sum of all exponents in the Lyapunov spectrum is not an invariant of the

parameter E12. For the noninteracting oscillators (E12 ¼ 0), the sum is equal toP5
i¼1 li ¼ �1:60 and tends to the value

P5
i¼1 li ¼ �2:25 if E12 ! 0:7. There-

fore we can say that the coupling term with E12 in the equations of motion has an

attribute of damping. These negative values result from nonconservation of

volume in phase space (for conservative systems, the sum of Lyapunov

(b)
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Figure 34. The same as in Fig. 33 but with E12 ¼ 0:46. Hyperchaos.
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exponents equals zero). Obviously, even if the volume of the system is sup-

pressed, this does not mean that its length is equally suppressed in all directions.

Some directions are stretched. In the direction of stretching we observe only an

exponential separation of the trajectories, namely, chaotic or hyperchaotic

behavior of the system. Finally, let us emphasize that the appropriate media

for the experimental studies of chaotic behavior generated by Kerr nonlinea-

rities could be optical fibers. The appearance of chaotic output signals generated

by Kerr media means that the signals are unstable. The instability depends on
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Figure 35. The same as in Fig. 33 but for with E12 ¼ 0:7. Weak chaos.

408 p. szlachetka and k. grygiel



the value of the coupling constant E12. Therefore, by changing the value of the

coupling constant, we can turn the output chaotic signals into the periodic ones

and vice versa. Promising materials for the implementation of nonlinear Kerr

oscillators also seem to be some organic polymers [150].

IV. QUANTUM CHAOS

The modifications introduced by quantum mechanics into the dynamics of

classical systems that manifest deterministic chaotic behavior are frequently

referred to collectively as ‘‘quantum chaos’’ [4,6,13,151– 161]. It is rather

conceded that quantization drastically modifies classically chaotic behavior. For

example, suppression of chaos to quasiperiodicity is observed in the quantum

kicked rotator, whose classical counterpart behaves chaotically [6,151,152]. In

the system of a hydrogen atom in a microwave field, quantum effects suppress

diffusive ionization by the mechanism of quantum localization [153,154].

Certain manifestations of chaos also become apparent in quantum optics [84,

162–167]. It seems that Wigner’s formulation of quantum mechanics offers the

simplest comparison between quantum and classical chaos in contradistinction

to the conventional procedure. The conventional way is to study how a wave-

packet initially fixed around a certain position q and momentum p follows the

appropriate classical trajectory. However, this involves a disadvantage. Speci-

fically, the wavepacket spreads in the course of time and is no longer sharply

fixed around a particular position and momentum, rendering dubious the com-

parison with the respective classical trajectory. To avoid this spreading problem,

we can make use of the so-called Wigner symbols, which are a quantum

generalization of classical variables. For example, we can compare the time

evolution of the Wigner symbols for the position q̂ and momentum p̂ operators

with the classical evolution of the position q and momentum p, respectively.

Generally, Wigner’s formulation of quantum mechanics leads to a c-number

representation of the density matrix, that is, to the quantum analog of a classical

probability density in ðp; qÞ space. In quantum optics three kinds of c-number

functions are the most popular, the P representation, the Q function, and the

Wigner function W [168]. All these three functions are defined in ða ¼ p þ iq,

a� ¼ p � iqÞ space instead of in ðp; qÞ space. This is due to the coherent state

technique. The P representation is related to normal ordering of the creation âþ

and annihilation â operators, the Q function is related to antinormal ordering of

the operators, and the Wigner function W is related to symmetric (Weyl)

ordering. The c-number approach makes it possible to treat quantum systems

in a ‘‘classical way,’’ including all their quantum features and contrasting the

quantum and classical dynamics within the framework of a phase picture. The

equations for the Wigner-like functions P and Q belong to the class of

generalized Fokker–Planck equations whose solutions are known only for some
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simple optical models. The Wigner approach can also be used to study both

‘‘kicked’’ dynamics (i.e., a quantum map) and a continuous flow. Kicked models

are easier to analyze numerically than continuous models but are more difficult

to verify practically. On the other hand, continuous models seem to be

mathematically more cumbersome, resembling the complexity of hydrodyna-

mical systems. In the latter case we usually make some truncations leading to a

set of ordinary differential equations. Historically, for the first time in the

treatment of classical dynamical systems, a truncation method was used by

Lorenz [2]. A similar truncation method can be used for generalized Fokker–

Planck equations if we note that these equations generate a hierarchic and

infinite set of ordinary differential equations for statistical cumulants [169–171].

The first truncation always leads to equations having the form of classical

equations of motion. The second truncation plays the role of the first quantum

correction, and so on. The cumulant method has also been applied to the study

of some aspects of chaos in classical and quantum mechanics [173,174] and in

quantum optics [165,166,171,172]. To identify chaotic behavior of a classical

dynamical system, it suffices to use the maximal Lyapunov exponent. A

quantum analog of the Lyapunov exponent involving the Q function has been

proposed by Toda and Ikeda [175]. However, as we have already mentioned, the

equation for the Q ðP;WÞ function is mathematically cumbersome, and its

analytical solution is unknown for most nonlinear systems. This poses addi-

tional difficulties when it comes to calculate the Lyapunov exponents. However,

this problem can be solved indirectly and approximately by finite cumulant

expansion [165], enabling us to use the classical calculation method of

Lyapunov exponents for equations with statistical cumulants.

A. Chaos in a Kerr Oscillator

We write the Hamiltonian in the form

Ĥ ¼ Ĥ1 þ Ĥ2 þ Ĥ3 ð56Þ

where

Ĥ1 ¼ �hoâyâ þ �hw
2

ây2â2 ð57Þ

Ĥ2 ¼ i�hFðây � âÞ ð58Þ

Ĥ3 ¼ �h
X

j

�j b̂
y
j b̂j þ �h

X
j

ðKj b̂jâ
y þ K�

j b̂
y
j âÞ ð59Þ

In the single-mode Hamiltonian Ĥ1, the quantities â ðâyÞ are the photon

annihilation (creation) operators, respectively; o is the frequency of the
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harmonic oscillator, and w is the anharmonicity parameter. The Hamiltonian Ĥ2

describes the interaction between the classical external driving field F and the

single-mode field. The loss mechanism is described by the coupling to a heat

bath governed by the reservoir Hamiltonian Ĥ3. Here, the ðb̂jÞb̂y
j are the boson

annihilation (creation) operators of the reservoir. The frequencies of the reservoir

modes are denoted by �j. The quantities Kj are the coupling constants between

the optical and reservoir modes. On eliminating the reservoir operators, we

obtain the master equation for the density operator r̂ in the following form:

q r̂
q t

¼ �i

�h
½Ĥ1 þ Ĥ2; r̂ � þ Lir r̂½ � ð60Þ

The irreversible term Lir r̂½ � describes damping and has the following form:

Lir½r̂ � ¼
�

2
ð2âr̂ây � âyâr̂ � r̂âyâ Þ

þ � hni ðâyr̂â þ âr̂ây � âyâr̂ � r̂âây Þ ð61Þ

The parameter � is the damping constant, and hni is the mean number of

reservoir photons. The quantum theory of damping assumes that the reservoir

spectrum is flat, so the mean number of reservoir oscillators hni ¼ hb̂y
j ð0Þb̂jð0Þi

¼ ðexpð�ho=kTÞ � 1Þ�1
in the jth mode is independent of j. Thus the reservoir

oscillators form a thermal system. The case hni ¼ 0 corresponds to vacuum

fluctuations (zero-temperature heat bath). It is convenient to consider the

quantum dynamics of the system (56)–(59) in the interaction picture. Then the

master equation for the density operator r̂ is given by

q r̂
q t

¼ �i
1

2
ây2â2 þ iF ðây � âÞ; r̂

� �
þ g

2
ð2âr̂ây � âyâr̂ � r̂âyâ Þ

þ g hni ðâyr̂â þ âr̂ây � âyâr̂ � r̂âây Þ ð62Þ

where t ¼ tw is the redefined time, g ¼ �=w, and F ¼ F=w. The term oâyâ
does not appear in Eq.(62) as a consequence of the interaction picture.

The master equation (62) can be transformed to a c-number partial differ-

ential equation. Three kinds of equations can be derived from (62): (1) an

equation for the Wigner function �ðSymÞ related to symmetric (Weyl) ordering of

the field operators â; ây, (2) an equation for the Wigner-like function �ðAÞ
related to antinormal ordering of the operators, and (3) an equation for the

Wigner-like function �N related to normal ordering. The statistical properties of

the � functions are discussed fully in the book by Peřina [168]. These are

quasidistribution functions in the complex plane ða; a�Þ, where the quantity a is
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an eigenvalue of the annihilation operator â, i.e. â j ai ¼ a j ai. Here, j ai is a

coherent state.

For convenience we introduce the so-called s ordering of the field operators

â; ây. Then we can write �ðSymÞ ¼ �ð0Þ, �ðAÞ ¼ �ð�1Þ and �ðNÞ ¼ �ð1Þ.
From (62) we get the generalized Fokker–Planck equation for the quasidis-

tribution �ðsÞða�; a; tÞ related to the s ordering [165]:

q�ðsÞ
qt

¼ Lclass þ Lquant ð63Þ

where

Lclass ¼
q
qa

1

2
ga�Fþ iajaj2

� �
�ðsÞ

� �

þ q
qa�

1

2
ga� �F� ia�jaj2

� �
�ðsÞ

� �
þ ghni

q2�ðsÞ
qa qa�

Lquant ¼ �i ð1 � sÞ q
qa

a�ðsÞ � ð1 � sÞ q
qa�

a��ðsÞ

�

þ s

2

q2

qa2
a2�ðsÞ �

s

2

q2

qa�2
a�2�ðsÞ

þ ðs2 � 1Þ
4

q3

qa�2 qa
a��ðsÞ �

ðs2 � 1Þ
4

q3

qa2 qa�
a�ðsÞ

�

þ g
ð1 � sÞ

2

q2�ðsÞ
qa qa�

ð64Þ

Let us emphasize that there is no difference among the equations for �ðsymÞ, �ðAÞ,
and �ðNÞ as long as the system (56)–(59) is classical. This problem has been

studied elsewhere [176,177]. In the classical limit the term Lquant in Eq.(63)

vanishes and �ðsÞ is a classical distribution function. For Lquant ¼ 0 and g ¼ 0,

Eq.(63) reduces to the classical Liouville equation, and for Lquant ¼ 0 and g 6¼ 0,

to the classical Fokker–Planck equation. So, we can say that the Lclass term

governs classical dynamics whereas the Lquant term adds the quantum (operator)

correction. The decision as to whether chaos appears in the system (56)–(59) can

be made by investigating the separation rate of two peaks of a �ðsÞ function

initially close to each other or by the analysis of equations for the statistical

moments originating in Eq. (63). Thus, instead of attempting to solve the partial

differential equation (63), we deal with the problem of solving a set of ordinary

differential equations for the statistical moments.
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The calculation of statistical moments with the help of �ðsÞ is simple. For

example, if we want to calculate the average number of photons hayai, we use

one of the three function �ðNÞ, �ðAÞ or �ðsymÞ. We have

hâyâi ¼
ð
a�a �ðNÞða�; aÞd2a ð65Þ

hâyâi ¼
ð
ða�a� 1Þ �ðAÞða�; aÞd2a ð66Þ

hâyâi ¼
ð

a�a� 1

2

� �
�ðsymÞða�; aÞd2a ð67Þ

The value of hâyâi is always the same, but the averaging procedure differs in each

case. The relations (65)–(67) are a simple consequence of the boson commutation

relation ½â; ây� ¼ 1 and the definition

ha�aiðsÞ ¼
ð
a�a�ðsÞða�; aÞd2a ð68Þ

where ha�aiðNÞ ¼ hâyâi, ha�aiðAÞ ¼ hââyi; and ha�aiðsymÞ ¼ 1
2
hâyâ þ ââyi. It is

obvious that some expectation values do not depend on ordering, for example,

hâyni ¼ ha�niðNÞ ¼ ha�niðAÞ ¼ ha�niðsymÞ. The function�ðsÞ allows us to define the

quantum cumulants. The cumulants of first order are given by

ha�iðsÞ ¼ x� ; haiðsÞ ¼ x ð69Þ

The cumulants of second order have the forms

ha�aiðsÞ � ha�iðsÞhaiðsÞ ¼ BðsÞ ð70Þ

ha�2iðsÞ � ha�i2
ðsÞ ¼ C�

ha2iðsÞ � hai2
ðsÞ ¼ C

ð71Þ

It is easy to note that simple relations hold among BðNÞ, BðAÞ, and BðsymÞ, namely,

BðAÞ ¼ BðNÞ þ 1 and BðsymÞ ¼ 1
2
ð2BðNÞ þ 1Þ. Thus the average number of photons

can be expressed with the help of s ordering as follows: hâyâi ¼ GðsÞ þ x�x,

where GðsÞ ¼ BðsÞ � 1�s
2

.

Analytical solutions of quantum Fokker–Planck equations such as Eq. (63)

are known only in special cases. Thus, some special methods have been deve-

loped to obtain approximate solutions. One of them is the statistical moment

method, based on the fact that the equation for the probability density generates

an infinite hierarchic set of equations for the statistical moments and vice versa.
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However, for numerical reasons the set of equations has to be truncated to a

finite number, which means approximation. In this section we restrict ourselves

to the second truncation (Gaussian approximation), namely, to the equations for

x, C and GðsÞ. We arrive at the following set of equations:

dx
dt

¼ � 1

2
g xþF� i½2GðsÞxþ Cx� þ x2x�� ð72Þ

dC

dt
¼ �gCðsÞ � i½x2ð1 þ 2GðsÞÞ þ Cð1 þ 4jxj2Þ� � 6iGðsÞC ð73Þ

dGðsÞ
dt

¼ �gGðsÞ þ i½Cx�2 � C�x2� þ ghni ð74Þ

We examine the dynamics of this system with the initial conditions xð0Þ ¼ 1 þ i

and GðsÞð0Þ ¼ Cð0Þ ¼ 0. The driving field F is assumed in the form of a train of

rectangular computer simulated pulses. The length of the pulse is denoted by T1,

whereas T2 is the distance between the pulses, and F0 is their height. Moreover,

we put hni ¼ 0, g ¼ 0:5, F0 ¼ 2, T2 ¼ 1 and 0 < T1 < 7:5. The physical sense

of the truncation is clear if we note that the first truncation [Eq. (63) is without

s terms] gives only the classical equation for the anharmonic oscillator:

dx
dt

¼ � 1

2
gxþFðtÞ � ix2x� ð75Þ

Thus hâyâi ¼ jxj2 is a classical intensity. The system (75) is nonautonomous if

the function F is explicitly time-dependent. The autonomized version of Eq.(75)

is given by

dx
dt

¼ � 1

2
gxþFðwÞ � ix2x�

dw

dt
¼ 1; wð0Þ ¼ 0

ð76Þ

It is readily seen that the set of equations (76) consists of three equations of

motion in the real variables Rex, Imx, w. If FðtÞ ¼ constant, chaos in the system

does not appear since the set (76) becomes a two-dimensional autonomous

system. The maximal Lyapunov exponents for the systems (75) and (72)–(74)

plotted versus the pulse duration T1 are presented in Fig. 36. We note that within

the classical system (75) by fluently varying the length of the pulse T1, we turn

order into chaos and chaos into order. For 0 < T1 < 0:84 and 1:08 < T1 < 7:5,

the maximal Lyapunov exponents l1 are negative or equal to zero and,

consequently, lead to limit cycles and quasiperiodic orbits. In the points where

l1 ¼ 0, the system switches its periodicity. The situation changes dramatically if,
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instead of Eq. (75), its quantum version, Eqs. (72)–(74), is taken into account.

For the quantum system the maximal Lyapunov exponent is not positive,

Therefore the chaotic oscillations due to quantum correction vanish (Fig. 37).

The regular oscillations remain regular, but their structures change [165].

B. Chaos in Second-Harmonic Generation of Light

Let us consider a quantum optical system with two interacting modes at the

frequencies o1 and o2 ¼ 2o1, respectively, interacting by way of a nonlinear

crystal with second-order susceptibility. Moreover, let us assume that the

nonlinear crystal is placed within a Fabry–Pérot interferometer. Both modes

are damped via a reservoir. The fundamental mode is driven by an external field

with the frequency oL and amplitude F. The Hamiltonian for our system is

given by [169,178]:

Ĥ ¼ Ĥrev þ Ĥirrev ð77Þ
Ĥrev ¼ �ho1â

y
1â1 þ �ho2â

y
2â2 þ i�hFðây

1e�ioLt � â1eioLtÞ

þ i�h
k
2
ðây2

1 â2 � â2
1â

y
2Þ ð78Þ

Ĥirrev ¼ �h
X

j

X2

i¼1

ð�ðiÞ
j b̂

yðiÞ
j b̂

ðiÞ
j þ K

ðiÞ
j b̂

ðiÞ
j â

y
i þ K

�ðiÞ
j b̂

yðiÞ
j âiÞ ð79Þ

where Ĥrev describes the reversible part of interaction and Ĥirrev is the irreversible

part responsible for the loss mechanism. The quantities â1; ðây
1Þ; â2; ðây

2Þ are the
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Figure 36. Maximal Lyapunov exponents for the system before (solid line) and after quantum

correction (dashed line).
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photon annihilation (creation) operators for the fundamental and second-

harmonic modes, respectively. The parameter k is taken to be real and acts as

a nonlinear coupling constant between the two modes. Finally, the operators

b̂
yðiÞ
j ; b̂

ðiÞ
j are the boson annihilation (creation) operators of the reservoir. The

frequencies of the reservoir oscillations are denoted by �
ðiÞ
j and the coupling

constant between the optical and reservoir modes, by K
ðiÞ
j . The dynamics of the

(a)

Im ξ

R
e 

ξ

−2

−1

0

1

2

−2.0 −1.0 0.0 1.0

(b)
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0
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−2.0 −1.0 0.0 1.0

Figure 37. Phase portraits Rex versus Imx. (a) the classical case; Eq. (75) with the initial

condition xð0Þ ¼ 1 þ i. The parameters of the pulse are T1 ¼ 0:98;T2 ¼ 1, and F0 ¼ 2. The

damping constant is g ¼ 0:5, and the time is 100 < t < 200. (b) The quantum system; Eqs. (72)–

(74) with the initial conditions xð0Þ ¼ 1 þ i and GðsÞð0Þ ¼ Cð0Þ ¼ 0. The parameters of the pulse

are T1 ¼ 0:98; T2 ¼ 1, and F0 ¼ 2. The damping constant is g ¼ 0:5, and the time 100 < t < 200.

416 p. szlachetka and k. grygiel



system (77) on eliminating the reservoir Hamiltonian (79) is governed by the

appropriate master equation for the density operator r̂. The master equation in

the interaction picture leads to the following c-number Fokker–Planck equation

for the quasidistribution function �ðsÞ [168,169,178]

q�ðsÞ
qt

¼ Lclass þ Lquant ð80Þ

where

Lclass ¼
X2

i¼1

gi

q
qai

ðai�ðsÞÞ þ gi

q
qa�i

ða�i �ðsÞÞ
�

þ q
qai

ðDi�ðsÞÞ

þ q
qa�i

ðD�
i �ðsÞÞ þ gihnii

q2�ðsÞ
qa�i qai

#
ð81Þ

Lquant ¼
1 � s

2

� �X2

i¼1

gi

q2�ðsÞ
qa�i qai

� s

2

q2

qa2
1

ðD11�ðsÞÞ �
s

2

q2

qa�2
1

ðD�
11�ðsÞÞ ð82Þ

The quasidistribution function �ðsÞ is defined as follows: �ðs¼1Þ ¼ P and

�ðs¼�1Þ ¼ Q. The function �ðsÞ is determined in the complex plane

(a1; a2; a�1; a
�
2), where ai is an eigenvalue of the annihilation operator âi, namely,

âijaii ¼ aijaii. Here, jaii is a coherent state. The initial condition for the

Fokker–Planck equation is given by

�ðsÞða1ðtÞ;a2ðtÞ; tÞjt¼0 ¼ �ðsÞða1ð0Þ ¼ a10; a2ð0Þ ¼ 0; 0Þ ð83Þ

which means that the amplitude of the fundamental mode initially differs from

zero whereas the amplitude of the second harmonic equals zero. The coefficients

Di and D11 are given by

D1 ¼ �F� a�1a2

D�
1 ¼ �F� a1a�2

D2 ¼ 0:5a2
1

D�
2 ¼ 0:5a�2

1

D11 ¼ qD1

qa�1
¼ �a2

D�
11 ¼ qD�

1

qa1
¼ �a�2

ð84Þ
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The general relations among the coefficients Di and Dij are presented elsewhere

[179]. The quantities g1 and g2 are the damping constants for the fundamental

and second- harmonic modes, respectively. In Eq.(82) we shall restrict ourselves

to the case of zero-frequency mismatch between the cavity and the external

forces (o1 � oL ¼ 0). In this way we exclude the rapidly oscillating terms.

Moreover, the time t and the external amplitude F have been redefined as

follows: t ¼ kt and F ¼ F
k. The s ordering in Eq.(80) which is responsible for

the operator structure of the Hamiltonian allows us to contrast the classical and

quantum dynamics of our system. If the Hamiltonian (77)–(79) is classical (i.e.,

if it is a c number), then the equation for the probability density has the form of

Eq.(80) without the s terms:

� s

2

q2

qa2
1

ðD11�ðsÞÞ �
s

2

q2

qa�2
1

ðD�
11�ðsÞÞ; gi

1 � s

2

� �
q2�ðsÞ
qa�i qai

The s terms distinguish the classical and quantum dynamics quite naturally. If

they do not appear, the difference between P and Q vanishes.

The Fokker–Planck equation (80) generates an infinite and hierarchic set of

equations for the statistical moments (see Section IV.A.1). Below, we restrict

ourselves to a Gaussian approximation. The cumulants are defined by the

following relations:

xi ¼ hâii ð85Þ
Bi ¼ hây

i âii � hây
i ihâii ð86Þ

B12 ¼ hây
1 â2i � hây

1ihâ2i ð87Þ
Ci ¼ hâ2

i i � hâii2 ð88Þ
C12 ¼ hâ1 â2i � hâ1ihâ2i ð89Þ

Integration per partes of the Fokker–Planck equation for the quasidistribution

�ðs¼1Þ ¼ P (the choice of a particular s is a question of taste only) allows us to

write the appropriate equations for the cumulants. In what follows, we assume

that damping is included only by way of coupling to the reservoir at zero

temperature, that is, hnii ¼ 0. The first truncation (the cumulants higher than

first-order vanish) leads to the classical limit. Then, from Eq. (80), we get the

classical Bloembergen equations [102] [see Eqs. (1)]:

dx1

dt
¼ �g1 x1 þFþ x�1 x2 ð90Þ

dx2

dt
¼ �g2 x2 � 0:5x2

1 ð91Þ
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The initial conditions have the following form:

x1ð0Þ ¼ x10; x2ð0Þ ¼ 0 ð92Þ

The s terms in Eq. (80) contribute nothing to the preceding equations. The

second-order truncation (Gaussian approximation) leads to the following set of

equations:

dx1

dt
¼ �g1x1 þFþ x�1x2 þ B12 ð93Þ

dx2

dt
¼ �g2x2 � 0:5ðx2

1 þ C1Þ ð94Þ

dB1

dt
¼ �2g1B1 þ B�

12x1 þ B12x
�
1 þ C�

1x2 þ C1x
�
2 ð95Þ

dB2

dt
¼ �2g2 B2 � B�

12x1 � B12x
�
1 ð96Þ

dC1

dt
¼ �2g1C1 þ 2ðC12x

�
1 þ B1x2Þ þ x2 ð97Þ

dC2

dt
¼ �2g2C2 � 2C12x1 ð98Þ

dC12

dt
¼ �ðg1 þ g2ÞC12 þ B12x2 � C1x1 þ C2x

�
1 ð99Þ

dB12

dt
¼ �ðg1 þ g2ÞB12 þ C12x

�
2 þ x1ðB2 � B1Þ ð100Þ

The set of equations (93)–(100), proposed for the first time by Peřina et al. [169],

is a development of the Bloembergen equations (90)–(91). The initial conditions

with respect to (83) are given by

x1ð0Þ ¼ x10; x2ð0Þ ¼ x20 ¼ 0

B1;2ð0Þ ¼ B12ð0Þ ¼ C1;2ð0Þ ¼ C12ð0Þ ¼ 0
ð101Þ

The s terms in Eq. (80) contribute only the term x2 in Eq. (97). Thus, the term x2

represents the quantum diffusional s-terms in the Fokker–Planck equation. The

other terms in Eqs. (93)–(100) originate in the drift terms of the Fokker–Planck

equation. The terms B12 and C1 in Eqs. (93)–(94) play the role of feedback terms

that pump quantum fluctuations into the classical Bloembergen equations. If the

s terms in Eq. (80) do not appear (the classical case), the term x2 in Eq. (97) does

not appear, either. In this case the subset (95)–(100) with zero initial conditions

has zero solutions and in consequence leads to the first truncation [171].

Let us consider the driving field amplitude in the form F ¼ F0ð1 þ sin �tÞ,
meaning that the external pump amplitude is modulated with a frequency �

chaos in optical systems 419



0
−2

0

2

4

2 4 6
Ω

M
ax

im
a 

of
 R

e 
α 1

0
−2

0

2

4

2 4 6

M
ax

im
a 

of
 R

e 
α 1

0
−0.4

−0.2

0.2

0.0

2 4 6
Ω

Ω

λ 1

(c)

(b)

(a)

Figure 38. The calssical (dashed) and quantum (solid line) maximal Lyapunov exponents (a)

and the appropriate bifurcation maps (b,c) versus the modulated parameter �. The parameters are



around F0. For the time-independent field F ¼ F0 (� ¼ 0), the system does

not manifest chaotic behavior. However, a change of � in the range 0 < � < 7

leads the system from periodic to chaotic motion or vice versa. The dynamical

behavior of our system is reflected by the Lyapunov exponents. The maximal

Lyapunov exponents as a function of the modulation parameter � for the

classical case [Eqs. (90)–(91)] (dashed line) and for the quantum case [Eqs.

(93)–(100)] (solid line) is plotted in Fig. 38a. For the classical case, one observes

several regions where the system behaves chaotically (l1 > 0) whereas else-

where it behaves orderly (l1 < 0). For the quantum case we observe only one

region of chaos 1:3 < � < 1:72, which does not overlap exactly any classical

region of chaos. Generally, as is seen in Fig. 38, the quantum correction reduces

chaos in the system but does not eliminate it completely. For example, for

� ¼ 1:4, both the classical and quantum versions of the system behave

chaotically whereas the classical maximal Lyapunov exponent is greater than

quantum. This means a reduction of chaos in the classical system due to the

quantum correction. The reduction is also reflected by the appropriate bifurca-

tion diagrams (Fig. 38b,c). Another useful way to visualize the reduction of

chaos is to analyze the motion in the phase space. However, in our case, the

classical phase space is four-dimensional (Rex1; Imx1; Rex2; Imx2). This

means that we can compare only the motion in the reduced phase space. For

physical interpretation it is convenient to consider the motion in two-dimen-

sional intensity space ðI1 ¼ jx1j2; I2 ¼ jx2j2Þ. Then, instead of a typical phase

portrait, we deal with an intensity portrait. In the quantum case the intensities

are the average numbers of photons determined by hâþ
i âii ¼ jxij2 þ Bi, where Bi

is the quantum correction to the classical intensity Ii ¼ jxij2.
The reduction of chaos for � ¼ 1:45 is presented in the intensity portraits of

Fig. 39. However, as is seen in Fig. 38a, there is a small region

(1:68 < � < 1:80) where the system behaves orderly in the classical case but

the quantum correction leads to chaos. By way of an example for � ¼ 1:75, the

classical system, after quantum correction, loses its orderly features and the

limit cycle settles into a chaotic trajectory. Generally, Lyapunov analysis shows

that the transition from classical chaos to quantum order is very common. For

example, this kind of transition appears for � ¼ 3:5 where chaos is reduced to

periodic motion on a limit cycle. Therefore a global reduction of chaos can be

said to take place in the whole region of the parameter 0 < � < 7.

As we see in Fig. 38, transitions leading from classical order to quantum

order are also possible. For example, for � ¼ 6:7 the quasiperiodic classical

motion is reduced to periodic motion after the quantum correction.

C. Final Remarks

Using a cumulant expansion, we have shown how to obtain quantum corrections

to purely classical equations of motion. Quantum correction reduces chaos in
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the classical systems. The Lyapunov analysis and bifurcation maps show that

after the first quantum correction, the number of chaotic regions is reduced,

although not eliminated fully. The question is what happens if third-order or

higher-order corrections are taken into account?. Let us note that, for example,

the set (72)–(74) consists of 5 equations in real variables. If third-order

truncation is performed, the set (72)–(74) is additionally modified and supple-

mented with four equations in real variables, thus leading to 9 equations. The

fourth truncation leads to 15 equations in real variables, and so on. From the

formal point of view, the quantum corrections become more and more rigorous

with higher and higher order of the approximation. On the other hand, even if
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Figure 39. Transition from classical chaos (a) to quantum chaos (b). The parameters are those

of Fig. 38 but with � ¼ 1:4.
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the numerical calculations are performed in extended precision, computer errors

can accumulate significantly, leading to spurious high-order quantum correc-

tions due to the increasing numbers of equations and iterations. The quantum

Lyapunov whose classical counterpart is positive has to be calculated with a

finite time, empirically expressed. The time is of the rank ðlÞ�1
, where l is the

classical Lyapunov exponent [158].
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