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1.  INTRODUCTION

The problem of time in physics and chemistry is closely related to the formula-
tion of the second law of thermodynamics. Therefore another possible title
of this lecture could have been: “the macroscopic and microscopic aspects of
the second law of thermodynamics”.

It is a remarkable fact that the second law of thermodynamics has played
in the history of science a fundamental role far beyond its original scope.
Suffice it to mention Boltzmann’s work on kinetic theory, Planck’s discovery
of quantum theory or Einstein’s theory of spontaneous emission, which were
all based on the second law of thermodynamics.

It is the main thesis of this lecture that we are only at the beginning of a
new development of theoretical chemistry and physics in which thermodynamic
concepts will play an even more basic role. Because of the complexity of the
subject we shall limit ourselves here mainly to conceptual problems. The
conceptual problems have both macroscopic and microscopic aspects. For
example, from the macroscopic point of view classical thermodynamics has
largely clarified the concept of equilibrium structures such as crystals.

Thermodynamic equilibrium may be characterized by the minimum of the
Helmholtz free energy defined usually by

Are most types of “organisations” around us of this nature? It is enough to
ask such a question to see that the answer is negative. Obviously in a town,
in a living system, we have a quite different type of functional order. To
obtain a thermodynamic theory for this type of structure we have to show that
that non-equilibrium may be a source of order. Irreversible processes may lead
to a new type of dynamic states of matter which I have called “dissipative
structures”. Sections 2-4 are devoted to the thermodynamic theory of such
structures.

These structures are today of special interest in chemistry and biology.
They manifest a coherent, supermolecular character which leads to new, quite
spectacular manifestations; for example in biochemical cycles involving os-

cillatory enzymes.
How do such coherent structures appear as the result of reactive collisions.

This question is briefly discussed in Section 5. We emphasize that conventional
chemical kinetics corresponds to a “mean field” theory very similar to the
Van der Waals theory of the equation of state or Weiss’ theory of ferro-
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magnetism. Exactly as in these cases the mean field theory breaks down near
the instability where the new dissipative structures originate. Here (as in
equilibrium theory) fluctuations play an essential role.

In the last two sections we turn to the microscopic aspects. We briefly
review the recent work done by our group in this direction. This work leads to
a microscopic definition of irreversible processes. However this is only possible
through a transformation theory which allows one to introduce new non-uni-
tary equations of motion that explicitly display irreversibility and approach to
thermodynamic equilibrium.

The inclusion of thermodynamic elements leads to a reformulation of (classi-
cal or quantum) dynamics. This is a most surprising feature. Since the begin-
ning of this century we were prepared to find new theoretical structures in the
microworld of elementary particles or in the macroworld of cosmological
dimensions. We see now that even for phenomena on our own level the in-
corporation of thermodynamic elements leads to new theoretical structures.
This is the price we have to pay for a formulation of theoretical methods in
which time appears with its full meaning associated with irreversibility or
even with “history”, and not merely as a geometrical parameter associated
with motion.

2 .  ENTROPY PRODUCTION

At the very core of the second law of thermodynamics we find the basic distinc-
tion between “reversible” and “irreversible processes” (1). This leads ulti-
mately to the introduction of entropy S and the formulation of the second
law of thermodynamics. The classical formulation due to Clausius refers to
isolated systems exchanging neither energy nor matter with the outside world.
The second law then merely ascertains the existence of a function, the entropy
S, which increases monotonically until it reaches its maximum at the state of
thermodynamic equilibrium,

(2.1)

It is easy to extend this formulation to systems which exchange energy and
matter with the outside world. (see fig. 2.1).

Fig. 2.1. The exchange of entropy between the outside and the inside.
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We have then to distinguish in the entropy change dS two terms: the first,
d eS is the transfer of entropy across the boundaries of the system, and the
second d iS, is the entropy produced within the system. The second law
assumes then that the entropy production inside the system is positive (or
zero)

The entropy S is a Lyapounov function for isolated systems. As shown in all
textbooks thermodynamic potentials such as the Helmholtz or Gibbs free
energy are also Lyapounov functions for other "boundary conditions" (such
as imposed values of temperature and volume).

In all these cases the system evolves to an equilibrium state characterized
by the existence of a thermodynamic potential. This equilibrium state is an
“attractor” for non-equilibrium states. This is an essential aspect which was
rightly emphasized by Planck (1).

However thermodynamic potentials exist only for exceptional situations.
The inequality (2.2), which does not involve the total differential of a function,
does not in general permit one to define a Lyapounov function. Before we come
back to this question let us emphasize that one hundred fifty years after its
formulation, the second law of thermodynamics still appears more as a program
than a well defined theory in the usual sense, as nothing precise (except the
sign) is said about the entropy production. Even the range of validity of this
inequality is left unspecified. This is one of the main reasons why the applica-
tions of thermodynamics were essentially limited to equilibrium.

To extend thermodynamics to non-equilibrium processes we need an explicit
expression for the entropy production. Progress has been achieved along this
line by supposing that even outside equilibrium entropy depends only on the
same variables as at equilibrium. This is the assumption of “local” equi-
librium (2). Once this assumption is accepted we obtain for P, the entropy
production per unit time,

(2.3)

where the Jp are the rates of the various irreversible processes involved (chemi-
cal reactions, heat flow, diffusion. . .) and the X, the corresponding generalized
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forces (affinities, gradients of temperature, of chemical potentials . . .). This
is the basic formula of macroscopic thermodynamics of irreversible processes.

Let us emphasize that we have used supplementary assumptions to derive
the explicit expression (2.3) for the entropy production. This formula can only
be established in some neighborhood of equilibrium (see Ref. 3). This neighbor-
hood defines the region of “local” equilibrium, which we shall discuss from
the point of view of statistical mechanics in Section 7.

At thermodynamic equilibrium we have simultaneously for all irreversible
processes,

Linear thermodynamics of irreversible processes is dominated by two
important results. The first is expressed by the Onsager reciprocity relations (5),
which state that

When the flow Jp, corresponding to the irreversible process p, is influenced
by the force X,, of the irreversible process ,,,, then the flow Jp’ is also influenced
by the force X, through the same coefficient.

The importance of the Onsager relations resides in their generality. They
have been submitted to many experimental tests. Their validity has for the
first time shown that nonequilibrium thermodynamics leads, as does equi-
librium thermodynamics, to general results independent of any specific
molecular model. The discovery of the reciprocity relations corresponds really
to a turning point in the history of thermodynamics.

A second interesting theorem valid near equilibrium is the theory of minimum
entropy production (6). It states that for steady states sufficiently close to
equilibrium entropy production reaches its minimum. Time-dependent states
(corresponding to the same boundary conditions) have a higher entropy
production. It should be emphasized that the theorem of minimum entropy
production requires even more restrictive conditions than the linear relations
(2.5). It is valid in the frame of a “strictly” linear theory in which the devia-
tions from equilibrium are so small that the phenomenological coefficients
L,,, may be treated as constants.

The theorem of minimum entropy production expresses a kind of “inertial”
property of nonequilibrium systems. When given boundary conditions prevent
the system from reaching thermodynamic equilibrium (that is, zero entropy
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production) the system settles down to the state of “least dissipation”.
It was clear since the formulation of this theorem that this property is

strictly valid only in the neighborhood of equilibrium. For many years great
efforts were made to generalize this theorem to situations further away from
equilibrium. It came as a great surprise when it was finally shown that far
from equilibrium the thermodynamic behavior could be quite different, in
fact, even opposite to that indicated by the theorem of minimum entropy
production.

It is remarkable that this new type of behavior appears already in typical
situations studied in classical hydrodynamics. The example which was first
analyzed from this point of view is the so-called “Bénard instability”. Consider
a horizontal layer of fluid between two infinite parallel planes in a constant
gravitational field, and let us maintain the lower boundary at temperature
T 1 and the higher boundary at temperature T2 with T1 > T2. For a sufficiently
large value of the “adverse” gradient (T,-TT,)/(T,+T,),  the state of rest
becomes unstable and convection starts. The entropy production is then in-
creased as the convection provides a new mechanism of heat transport. More-
over the state of flow, which appears beyond the instability, is a state of
organization as compared to the state of rest. Indeed a macroscopic number of
molecules have to move in a coherent fashion over macroscopic times to
realize the flow pattern.

We have here a good example of the fact that non-equilibrium may be a
source of order. We shall see in Sections 3 and 4 that this situation is not
limited to hydrodynamic situations but also occurs in chemical systems
when well-defined conditions are imposed on the kinetic laws.

It is interesting to notice that Boltzmann’s order principle as expressed by
the canonical distribution would assign almost zero probability to the occur-
rence of Bénard convection. Whenever new coherent states occur far from
equilibrium, the very concept of probability, as implied in the counting of
number of complexions, breaks down. In the case of Bénard convection, we
may imagine that there are always small convection currents appearing as
fluctuations from the average state; but below a certain critical value of the
temperature gradient, these fluctuations are damped and disappear. However,
above some critical value certain fluctuations are amplified and give rise to a
macroscopic current. A new supermolecular order appears which corresponds
basically to a giant fluctuation stabilized by exchanges of energy with the
outside world. This is the order characterized by the occurrence of “dissipative
structures”.

Before we discuss further the possibility of dissipative structures, let us briefly
review some aspects of thermodynamic stability theory in relation to the theory
of Lyapounov functions.

3 .  THERMODYNAMIC STABILITY THEORY

The states corresponding to thermodynamic equilibrium, or the steady states
corresponding to a minimum of entropy production in linear non-equilibrium
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thermodynamics, are automatically stable. We have already introduced in
Section 2 the concept of a Lyapounov function. According to the theorem of
minimum entropy production the entropy production is precisely such a
Lyapounov function in the strictly linear region around equilibrium. If the
system is perturbed, the entropy production will increase, but the system reacts
by coming back to the minimum value of the entropy production.

Similarly, closed equilibrium states are stable when corresponding to the
maximum of entropy. If we perturb the system around its equilibrium value,
we obtain

As Glansdorff and the author have shown 6% is a Lyapounov function in
the neighborhood of equilibrium independently of the boundary conditions (7).

Classical thermodynamics permits us to calculate explicitly this important
expression. One obtains (8)

Here p is the density, v = 1 /ρ the specific volume (the index N, means that
composition is maintained constant in the variation of v) x the isothermal
compressibility, N, the mole fraction of component y and pYY the derivative

These conditions imply that 6% is a negative quadratic function. Moreover it
can be shown by elementary calculations that the time derivative of ES is
related to the entropy production P through (7) (see 2.3),

(3.4)

It is precisely because of inequalities (3.2) and (3.4) that 8% is a Lyapounov
function. Its existence ensures the damping of all fluctuations. That is the
reason why near equilibrium a macroscopic description for large systems is
sufficient. Fluctuations can only play a subordinate role, appearing as correc-
tions to the macroscopic laws which can be neglected for large systems.
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Fig. 3.1. Time evolution of second-order excess entropy (6%) around equilibrium.

We are now prepared to investigate the fundamental questions: Can we
extrapolate this stability property further away from equilibrium? Does 6%
play the role of a Lyapounov function when we consider larger deviations from
equilibrium but still in the frame of macroscopic description? We again cal-
culate the perturbation 6% but now around a nonequilibrium state. The
inequality (3.2) still remains valid in the range of macroscopic description.
However, the time derivative of 6% is no longer related to the total entropy
production as in (3.4) but to the perturbation of this entropy production. In
other words we now have (9),

(3.5)

The right-hand side is what we called the “excess entropy production”.
Let us again emphasize that the 8JJp  and 6X, are the deviations from the
values Jp and X, at the stationary state, the stability of which we are testing
through a perturbation. Now contrary to what happens for equilibrium or
near-equilibrium situations, the right-hand side of (3.5) corresponding to the
excess entropy production has generally not a well-defined sign. If for all t
larger than t0, where t0 is the starting time of the perturbation we have,

(3.6)

then 6% is indeed a Lyapounov function and stability is ensured (see fig. 3.2).
Note that in the linear range the excess entropy production has the same sign
as the entropy production itself and we recover the same result as with the
theorem of minimum entropy production. However the situation changes in
the far-from-equilibrium range. There the form of chemical kinetics plays an
essential role.
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Fig. 3.2. Time evolution of second-order excess entropy (6%) in case of (asymptotically)
stable, marginally stable, and unstable situations.

In the next section we shall consider a few examples. For appropriate types
of chemical kinetics the system may become unstable. This shows that there
is an essential difference between the laws of equilibrium and the laws far
away from equilibrium. The laws of equilibrium are universal. However, far
from equilibrium the behavior may become very specific. This is of course a
welcome circumstance, because it permits us to introduce a distinction in the
behavior of physical systems which would be incomprehensible in an equi-
librium world.

Note that all these considerations are very general. They may be extended
to systems in which macroscopic motion may be generated or to problems in-
volving surface tension or the effect of external field (10). For example in the
case in which we include macroscopic motion we have to consider the expres-
sion (see Glansdorff and Prigogine (9)),

where u are the macroscopic convection velocities. We have integrated over the
volume to take into account the space dependence of all u. We may again
calculate the time derivative of 622  which takes now a more complicated form.
As the result may be found elsewhere (9) we shall not reproduce it here. Let
us only mention that spontaneous excitation of internal convection cannot
be generated from a state at rest which is at thermodynamic equilibrium. This
applies of course as a special case to the Bénard instability we have mentioned
in Section 2.

Let us now return to the case of chemical reactions.
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4.  APPLICATION TO CHEMICAL REACTIONS

A general result is that to violate inequality (3.6) we need autocatalytic
reactions. More precisely autocatalytic steps are necessary (but not sufficient)
conditions for the breakdown of the stability of the thermodynamical branch.
Let us consider a simple example. This is the so-called “Brusselator”, which
corresponds to the scheme of reactions (11),

(4.2)

which admits the steady state

Using the thermodynamic stability criterion or normal mode analysis we
may show that solution (4.3) becomes unstable whenever

point in the space X, Y tends to the same periodic trajectory. The important
point is therefore that in contrast with oscillating chemical reactions of the
Lotka-Volterra type the frequency of oscillation is a well defined function of
the macroscopic variables such as concentrations, temperatures . . . The chemi-
cal reaction leads to coherent time behavior; it becomes a chemical clock.
In the literature this is often called a Hopf bifurcation.

When diffusion is taken into account the variety of instabilities becomes
quite amazing and for this reason the reaction scheme (4.1) has been studied
by many authors over the past years. A special name has even been intro-
duced - it is generally called the Brusselator. In the presence of diffusion,
equations (4.2) now become

(4.5)
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In addition to the limit cycle we have now the possibility of nonuniform
steady states. We may call it the “Turing bifurcation” as Turing was the first
to notice the possibility of such bifurcations in chemical kinetics in his classic
paper on morphogenesis in 1952 (12). In the presence of diffusion the limit
cycle may also become space dependent and lead to chemical waves.

Some order can be brought into the results by considering as the “basic
solution” the one corresponding to the thermodynamic branch. Other solu-
tions may then be obtained as successive bifurcations from this basic one, or
as higher order bifurcations from a non-thermodynamic branch, taking place
when the distance from equilibrium is increased.

A general feature of interest is that dissipative structures are very sensitive
to global features which characterize the environment of chemical systems,
such as their size and form, the boundary conditions imposed on their surface
and so on. All these features influence in a decisive way the type of instabilities
which lead to dissipative structures.

Far from equilibrium, there appears therefore an unexpected relation be-
tween chemical kinetics and the “space-time structure” of reacting systems.
It is true that the interactions which determine the values of the relevant
kinetic constants and transport coefficients result from short range interactions
(valency forces, hydrogen bonds, Van der Waals forces). However, the solu-
tions of the kinetic equations depend in addition on global characteristics.
This dependence, which on the thermodynamic branch, near equilibrium, is
rather trivial, becomes decisive in chemical systems working under far-from-
equilibrium conditions. For example, the occurrence of dissipative structures
generally requires that the system’s size exceeds some critical value. The latter
is a complex function of the parameters describing the reaction-diffusion
processes. Therefore we may say that chemical instabilities involve long range
order through which the system acts as a whole.

There are three aspects which are always linked in dissipative structures:
the function as expressed by the chemical equations, the space-time structure,
which results from the instabilities, and the fluctuations, which trigger the
instabilities. The interplay between these three aspects

leads to most unexpected phenomena, including “order through fluctuations”
which we shall analyze in the next sections.

Generally we have successive bifurcations when we increase the value of
some characteristic parameter (like B in the Brusselator scheme).
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Fig. 4.1. Successive bifurcations.

On the Fig. 4.1. we have a single solution for the value h,, but multiple solu-
tions for the value A2.

It is interesting that bifurcation introduces in a sense “history” into physics.
Suppose that observation shows us that the system whose bifurcation diagram
is represented by Fig. 4.1 is in the state C and came there through an increase
of the value of λ . The interpretation of this state X implies the knowledge of
the prior history of the system, which had to go through the bifurcation points
A and B. In this way we introduce in physics and chemistry an “historical”
element, which until now seemed to be reserved only for sciences dealing with
biological, social, and cultural phenomena.

Every description of a system which has bifurcations will imply both
deterministic and probabilistic elements. As we shall see in more detail in
Section 5, the system obeys deterministic laws, such as the laws of chemical
kinetics, between two bifurcations points, while in the neighborhood of the
bifurcation points fluctuations play an essential role and determine the
“branch” that the system will follow.

We shall not go here into the theory of bifurcations and its various aspects
such as, for example, the theory of catastrophes due to René Thorn (13).
These questions are discussed in my recent monograph in collaboration with
G. Nicolis (11). We shall also not enumerate the examples of coherent struc-
tures in chemistry and biology which are at present known. Again many
examples may be found in Ref. 11.

5. THE LAW OF LARGE NUMBERS AND THE STATISTICAL
DESCRIPTION OF CHEMICAL REACTIONS

Let us now turn to the statistical aspects of the formation of dissipative struc-
tures. Conventional chemical kinetics is based on the calculation of the average
number of collisions and more specifically on the average number of reactive
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collisions. These collisions occur at random. However, how such a chaotic
behaviour can ever give rise to coherent structures? Obviously a new feature
has to come in. Briefly, this is the breakdown of the conditions of validity of
the law of large numbers; as a result the distribution of reactive particles near
instabilities is no more at random.

Let us first indicate what we mean by the law of large numbers. To do so
we consider a typical probability description of great importance in many
fields of science and technology, the Poisson distribution. This distribution
involves a variable X which may take integer values X = 0, 1,2,3, . . . Accord-
ing to the Poisson distribution the probability of X is given by

This law is found to be valid in a wide range of situations such as the dis-
tribution of telephone calls, waiting time in restaurants, fluctuations of
particles in a medium of given concentration. In Eq. (5.1), <X> corresponds
to the average value of X. An important feature of the Poisson distribution
is that <X> is the only parameter which enters in the distribution. The
probability distribution is entirely determined by its mean.

(5.4)

The order of magnitude of the relative fluctuation is inversely proportional to
the square root of the average. Therefore, for extensive variables of order N
we obtain relative deviations of order N -1/2 This is the characteristic feature.
of the law of large numbers. As a result we may disregard fluctuations for
large systems and use a macroscopic description.

For other distributions the mean square deviation is no more equal to the
average as in (5.3). But whenever the law of large numbers applies, the order
of magnitude of the mean square deviation is still the same, and we have

Let us now consider a stochastic model for chemical reactions. As has
been done often in the past, it is natural to associate a Markov chain process
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of the “birth and death” type to a chemical reaction (14). This leads imme-
diately to a Master Equation for the probability P(X, t) of finding X molecules
of species X at time t,

On the right-hand side we have a competition between “gain” and loss
terms. A characteristic difference with the classical Brownian motion problem
is that the transition probabilities, W(X - r + X) or W(X + X + r), are
non-linear in the occupation numbers. Chemical games are non-linear and
this leads to important differences. For example it can be easily shown that
the stationary distribution of X corresponding to the linear chemical reaction

is no more given by the Poisson distribution,
This is very important from the point of view of the macroscopic kinetic

theory. Indeed, as has been shown by Malek-Mansour and Nicolis (17), the
macroscopic chemical equations have generally to be corrected by terms
associated with deviations from the Poissonian. This is the basic reason why
today so much attention is devoted to the stochastic theory of chemical
reactions.

For example the Schlögl reaction (18),

(5.9)

has been studied extensively by Nicolis and Turner (19) who have shown that
this model leads to a “non equilibrium phase transition” quite similar to that
described by the classical Van der Waals equation. Near the critical point as
well as near the coexistence curve the law of large numbers as expressed by
(5.5) breaks down, as <(6X)2>  becomes proportional to a higher power of
the volume. As in the case of equilibrium phase transitions, this breakdown
can be expressed in terms of critical indices.

In the case of equilibrium phase transitions, fluctuations near the critical
point have not only a large amplitude but they also extend over large distances.
Lemarchand and Nicolis (20) have investigated the same problem for non-
equilibrium phase transitions. To make the calculations possible, they con-
sidered a sequence of boxes. In each box the Brusselator type of reaction (4.1)
is taking place. In addition, there is diffusion between one box and the other.
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0

Fig. 5.1. Distance dependence of spatial
c o r r e l a t i o n  f u n c t i o n  G i ,  j  w e l l  b e l o w
critical  point.  A = 2,  d 1 = 1 ,  d 2 =  4

Fig.  5 .2.  As bifurcation parameter ap-
roaches crit ical  value, r a n g e  o f  G i ,  j
increases slightly with respect to behavior
shown in Figure 5.1.

Fig. 5.3. Critical behavior of spatial correlation function Gi, j for same values of parameters
as in Fig. 5.1. Correlation function displays both linear damping with distance and spatial
oscillations with wavelength equal to that of macroscopic concentration pattern.
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Using the Markov method they then calculated the correlation between the
occupation numbers of X in two different boxes. One would expect that
chemical inelastic collisions together with diffusion would lead to a chaotic
behavior. But that is not so. In Figures 5.1-5.3, the correlation functions for
below and near the critical state are represented graphically. It is clearly seen
that near the critical point we have long range chemical correlations. Again
the system acts as a whole inspite of the short-range character of the chemical
interactions. Chaos gives rise to order. Moreover numerical simulations indi-
cate that it is only in the limit of number of particles, N + 00, that we tend
to “long range” temporal order.

To understand at least qualitatively this result let us consider the analogy
with phase transitions. When we cool down a paramagnetic substance, we
come to the so-called Curie point below which the system behaves like a ferro-
magnet. Above the Curie point, all directions play the same role. Below, there
is a privileged direction corresponding to the direction of magnetization.

Nothing in the macroscopic equation determines which direction the
magnetization will take. In principle, all directions are equally likely. If the
ferromagnet would contain a finite number of particles, this privileged di-
rection would not be maintained in time. It would rotate. However, if we
consider an infinite system, then no fluctuations whatsoever can shift the
direction of the ferromagnet. The long-range order is established once and
for all.

There is a striking similarity with the case of oscillating chemical reactions.
When we increase the distance from equilibrium, the system begins to oscillate.
It will move along the limit cycle. The phase on the limit cycle is determined
by the initial fluctuation, and plays the same role as the direction of mag-
netization. If the system is finite, fluctuations will progressively take over and
perturb the rotation. However, if the system is infinite, then we may obtain
a long-range temporal order very similar to the long-range space order in the
ferromagnetic system. We see therefore, that the appearance of a periodic
reaction is a time-symmetry breaking process exactly as ferromagnetism is
a space-symmetry breaking one.

6 .  THE DYNAMIC INTERPRETATION OF THE LYAPOUNOV
FUNCTION

We shall now consider more closely the dynamic meaning of the entropy and
more specifically of the Lyapounov function 6% we have used previously.

Let us start with a very brief summary of Boltzmann’s approach to this
problem. Even today Boltzmann’s work appears as a milestone. It is well
known that an essential element in Boltzmann’s derivation of the H-theorem
was the replacement of the exact dynamic equations (as expressed by the
Liouville equation to which we shall come back later) by this kinetic equation
for the velocity distribution function f of the molecules,
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(6.3)

and plays therefore the role of a Lyapounov function.
The progress achieved through Boltzmann’s approach is striking. Still many

difficulties remain (21). First we have “practical difficulties”, as for example
the difficulty to extend Boltzmann’s results to more general situations (for
example dense gases). Kinetic theory has made striking progress in the last
years; yet when one examines recent texts on kinetic theory or non-equilibrium
statistical mechanics one does not find anything similar to Boltzmann’s
H-theorem which remains valid in more general cases. Therefore Boltzmann’s
result remains quite isolated, in contrast to the generality we attribute to the
second law of thermodynamics.

In addition we have “theoretical difficulties”. The most serious is probably
Loschmidt’s reversibility paradox. In brief, if we reverse the velocities of the
molecules, we come back to the initial state. During this approach to the
initial state Boltzmann’s H-theorem (6.3) is violated. We have “anti-thermo-
dynamic behavior”. This conclusion can be verified, for example by computer
simulations.

The physical reason for the violation of Boltzmann’s H-theorem lies in the
long-range correlations introduced by the velocity inversion. One would like
to argue that such correlations are exceptional and may be disregarded.
However, how should one find a criterion to distinguish between “abnormal”
correlations and normal correlations especially when dense systems are
considered ?

The situation becomes even worse when we consider, instead of the velocity
distribution, a Gibbs ensemble corresponding to phase density p. Its time
evolution is given by the Liouville equation,

where

If we consider positive convex functionals such as
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Therefore, R as defined in (6.5) or (6.6) is not a Lyapounov function, and the
laws of classical or quantum dynamics seem to prevent us from constructing at
all a Lyapounov functional which would play the role of the entropy.

For this reason it has often been stated that irreversibility can only be intro-
duced into dynamics through supplementary approximation such as coarse-
graining added to the laws of dynamics (22).

I have always found it difficult to accept this conclusion especially because
of the constructive role of irreversible processes. Can dissipative structures
be the result of mistakes?

We obtain a hint about the direction in which the solution of this paradox
may lie by inquiring why Boltzmann’s kinetic equation permits one to derive an
H-theorem while Liouville equation does not. Liouville’s equation (6.4) is
obviously Lt-invariant. If we reverse both the sign of L (this can be done in
classical dynamics by velocity inversion) and the sign oft, the Liouville equa-
tion remains invariant. On the other hand, it can be easily shown (21) that
the collision term in the Boltzmann equation breaks the Lt-symmetry as it is
even in L. We may therefore rephrase our question by asking: How can we
break the Lt-symmetry inherent in classical or quantum mechanics? Our
point of view has been the following: The dynamical and thermodynamical
descriptions are, in a certain sense, “equivalent” representations of the
evolution of the system connected by a non-unitary transformation. Let us
briefly indicate how we may proceed. The method which we follow has
been developed in close collaboration with my colleagues in Brussels and
Austin (23, 24, 25).

7 .  NON-UNITARY TRANSFORMATION THEORY

As the expression (6.6) has proved inadequate we start with a Lyapounov
function of the form,

This is certainly not always possible. In simple dynamical situations when
the motion is periodic either in classical or quantum mechanics, no Lyapounov
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function may exist as the system returns after some time to its initial state.
The existence of M is related to the type of spectrum of the Liouville operator.
In the frame of classical ergodic theory this question has been recently studied
by Misra (26). Here we shall pursue certain consequences of the possible
existence of the operator M in (7.1) which may be considered as a “micro-
scopic representation of entropy”. As this quantity is positive, a general
theorem permits us to represent it as a product of an operator, say Λ-1, and its
hermitian conjugate (A-r)+  (this corresponds to taking the “square root” of
a positive operator),

This is a most interesting result, because expression (7.4) is precisely of the
type that we were looking for in the first place. But we see that this
expression can only exist in a “new” representation related to the preceding
by the transformation (7.5).

First let us write the new equations of motion. Taking into account (7.5),
we obtain

(7.6)

with

(7.8)

The microscopic “entropy operator” M may therefore not commute with L.
The commutator represents precisely what could be called the “microscopic
entropy production”.

We are of course reminded of Heisenberg’s uncertainty relations and Bohr’s
complementarity principle. It is most interesting to find here also a non-
commutativity, but now between dynamics as expressed by the operator L
and “thermodynamics” as expressed by M. We therefore have a new and most
interesting type of complementarity between dynamics, which implies the
knowledge of trajectories or wave functions, and thermodynamics, which
implies entropy.
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When the transformation to the new representation is performed, we obtain
for the entropy production (7.9),

This implies that the difference between @ and its hermitian adjoint cD+ does
not vanish,

It is not astonishing that we do find a non-unitary transformation law.
Unitary transformations are very much like changes in coordinates, which
do not affect the physics of the problem. Whatever the coordinate system, the
physics of the system remains unaltered. But here we are dealing with quite
a different problem. We want to go from one type of description, the dynamic
one, to another, the “thermodynamic” one. This is precisely the reason why
we need a more drastic type of change in representation as expressed by the
new transformation law (7.13).

We have called this transformation a “star-unitary” transformation and
introduced the notation,
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or

It is the even part which gives the “entropy production”.
Let us summarize what has been achieved. We obtain a new form of micro-

scopic equation (as is the Liouville equation in classical or quantum mechanics),
but which displays explicitly a part which may be associated to a Lyapounov
function. In other words, the equation

macroscopic irreversible
description averaging procedures
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The effective construction of the Lyapounov function R, (7.1), through the
transformation A involves a careful study of the singularities of the resolvent
corresponding to the Liouville operator (24).

For small deviations from thermodynamical equilibrium it can be shown,
as has been done recently together with Grecos and Theodosopulu (27), that
the Lyapounov functional R, (7.1), reduces precisely to the macroscopic
quantity PS, (3.2), when in addition only the time evolution of conserved
quantities is retained. We therefore have now established in full generality
the link between non-equilibrium thermodynamics and statistical mechanics
at least in the linear region. This is the extension of the result which was ob-
tained long time ago in the frame of Boltzmann’s theory, valid for dilute
gases (28).

8 .  CONCLUDING REMARKS

Now a few concluding remarks.
The inclusion of thermodynamic irreversibility through a non-unitary

transformation theory leads to a deep alteration of the structure of dynamics.
We are led from groups to semigroups, from trajectories to processes. This
evolution is in line with some of the main changes in our description of the
physical world during this century.

One of the most important aspects of Einstein’s theory of relativity is that
we cannot discuss the problems of space and time independently of the problem
of the velocity of light which limits the speed of propagation of signals. Similarly
the elimination of “unobservable" has played an important role in the basic
approach to quantum theory initiated by Heisenberg.

The analogy between relativity and thermodynamics has been often
emphasized by Einstein and Bohr. We cannot propagate signals with arbitrary
speed, we cannot construct a perpetuum mobile forbidden by the second law.

From the microscopic point of view this last interdiction means that quan-
tities which are well defined from the point of view of mechanics cannot be
observables if the system satisfies the second law of thermodynamics.

For example the trajectory of the system as a whole cannot be an observable.
If it would, we could at every moment distinguish two trajectories and the
concept of thermal equilibrium would lose its meaning. Dynamics and thermo-
dynamics limit each other.

It is interesting that there are other reasons which at the present time
seem to indicate that the relation between dynamic interaction and irreversibil-
ity may play a deeper role than was conceived till now.

In the classical theory of integrable systems, which has been so important in
the formulation of quantum mechanics, all interactions can be eliminated by
an appropriate canonical transformation. Is this really the correct prototype
of dynamic systems to consider, especially when situations involving elementary
particles and their interactions are considered? Do we not have first to go to
a non-canonical representation which permits us to disentangle reversible and
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irreversible processes on the microscopic level and then only to eliminate the
reversible part to obtain well defined but still interacting units?

These questions will probably be clarified in the coming years.
But already now the development of the theory permits us to distinguish

various levels of time: time as associated with classical or quantum dynamics,
time associated with irreversibility through a Lyapounov function and time
associated with "history" through bifurcations. I believe that this diversifica-
tion of the concept of time permits a better integration of theoretical physics
and chemistry with disciplines dealing with other aspects of nature.
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ABSTRACT

We have dealt with the fundamental conceptual problems that arise from the
macroscopic and microscopic aspects of the second law of thermodynamics.
It is shown that non-equilibrium may become a source of order and that
irreversible processes may lead to a new type of dynamic states of matter
called “dissipative structures”. The thermodynamic theory of such structures
is outlined. A microscopic definition of irreversible processes is given and a
transformation theory is developed that allows one to introduce non-unitary
equations of motion that explicitly display irreversibility and approach to
thermodynamic equilibrium. The work of the Brussels group in these fields
is briefly reviewed. We believe that we are only at the beginning of a new
development of theoretical chemistry and physics in which thermodynamics
concepts will play an ever increasing role.
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