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Preface 

Although it has changed considerably in both coverage and length, this book 
originated from lecture courses at the Ecole Polytechnique. It is useful to re
mind non-Prench readers of the special place this institution occupies in our 
education system, as it has few features in common with institutes with a 
similar name in other parts of the world. In fact, its programme corresponds 
to the intermediate years at a university, while the level of the students is 
particularly high owing to their strict selection through entrance examina
tions. The courses put a stress on giving foundations with a balance between 
the various natural and mathematical sciences, without neglecting general 
cultural aspects; specialization and technological instruction follow after the 
students have left the Ecole. The students form a very mixed population, 
not yet having made their choice of career. Many of them become high-level 
engineers, covering all branches of industry, some devote themselves to pure 
or applied research, others become managers or civil servants, and one can 
find former students of the Ecole amongst generals, the clergy, teachers, and 
even artists and Presidents of Prance. 

Several features of the present volume, and in particular its contents, 
correspond to this variety and to the needs of such an audience. Statistical 
physics, in the broadest meaning of the term, with its many related disci
plines, is an essential element of modern scientific culture. We have given a 
comprehensive presentation of such topics at the advanced undergraduate or 
beginning graduate level. The book, however, has to a large extent moved 
away from the original lecture courses; it is not only intended for students, 
but should also be of interest to a wider public, including research workers 
and engineers, both beginning and experienced. A prerequisite for its use 
is an elementary knowledge of quantum mechanics and general physics, but 
otherwise it is completely self-contained. 

Rather than giving a systematic account of useful facts for specialists 
in some field or other, we have aimed at assisting the reader to acquire a 
broad and solid scientific background knowledge. We have therefore chosen 
to discuss amongst the applications of statistical physics those of the greatest 
educational interest and to show especially how rich and varied these appli
cations are. This is the reason why, going far beyond the traditional topics of 
statistical mechanics - thermal effects, kinetic theory, phase transitions, ra
diation laws - we have dwelt on microscopic explanations of the mechanical, 
magnetic, electrostatic, electrodynamic, . . . properties of the various states 
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of matter. Examples from other disciplines, such as astrophysics, cosmology, 
chemistry, nuclear physics, the quantum theory of measurement, or even bi
ology, enable us to illustrate the broad scope of statistical physics and to 
show its universal nature. Out of a concern for culture, and also in trying 
to keep engineers and scientists away from too narrow a specialization, we 
have also included introductions to various physical problems arising in im
portant technological fields, ranging from the nuclear industry to lighting by 
incandescent lamps, or from solar energy to the use of semiconductors for 
electronic devices. 

Throughout this abundance we have constantly tried to retain a unity 
of thought. We have therefore stressed the underlying concepts rather than 
the technical aspects of the various methods of statistical physics. Indeed, 
one can see everywhere in the book under various guises two main guiding 
principles: on the one hand, the interpretation of entropy as a measure of 
disorder or of lack of information and, on the other hand, a stress on symme
try and conservation laws. At a time when excessive specialization tends to 
hide the unity of science, we have deemed it instructive to present unifying 
points of view, showing, for instance, that the laws of electrodynamics, of 
fluid dynamics, and of chemical kinetics all go back to the same underlying, 
basic ideas. 

The French tradition, both in secondary education and in the entrance 
examinations to the Ecole Polytechnique, has to some extent given pride of 
place to mathematics. We have tried to benefit from this training by putting 
our treatment on a strict logical basis and giving our arguments a structured, 
often deductive, character. Mathematical rigour has, however, been tempered 
by a wish to present and to explain many facts at an introductory level, to 
avoid formalistic stiffness, and to discuss the validity of models. We have 
inserted special sections to present the less elementary mathematical tools 
used. 

A first edition of this book was published in French in 1982. When the 
idea of publishing an English translation started to take shape, it seemed 
desirable to adapt the text to a broader, more international audience. The 
first changes in this direction brought about others, which in turn suggested 
a large number of improvements, both simplifications and more thorough 
discussions. Meanwhile it took some time to find a translator. Further lecture 
courses, especially one given at Yale in 1986, led to further modifications. One 
way or another, one thing led to another and finally there was little left of 
the original text, and a manuscript which is for more than eighty per cent 
new was finally translated; the present book has, in fact, only the general 
spirit and skeleton in common with its predecessor. 

The actual presentation of this book aims at making it easier to use by 
readers ranging from beginners to experienced researchers. Apart from the 
main text, many applications are incorporated as exercises at the end of each 
chapter and as problems in the last chapter of the second volume; these are 
accompanied by more or less detailed solutions, depending on the difficulty. 
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At the end of each of the two volumes we give tables with useful data and 
formulae. Parts of the text are printed in small type; these contain proofs, 
mathematical sections, or discussions of subjects which are important but lie 
outwith the scope of the book. For cultural purposes we have also included 
historical and even philosophical notes: the most fundamental concepts are, 
in fact, difficult to become familiar with and it is helpful to see how they 
have progressively developed. Finally, other passages in small type discuss 
subtle, but important, points which are often skipped in the literature. Many 
chapters are fairly independent. We have also tried clearly to distinguish 
those topics which are treated with full rigour and detail from those which 
are only introduced to whet the curiosity. The contents and organization of 
the book are described in the introduction. 

I am indebted to John Gregg and Dirk ter Haar for the translation. The 
former could only start on this labour, and I am particularly grateful to the 
main translator, Dirk ter Haar, for his patience (often sorely tried by me) and 
for the care bestowed on trying to present my ideas faithfully. I have come 
to appreciate how difficult it is to find exact equivalents for the subtleties of 
the French language, and to discover some of the subtleties of the English 
language. He has also accomplished the immense task of producing a text, 
including all the mathematical formulae, which could be used directly to 
produce the book, and which, as far as I can see, should contain hardly any 
misprints. 

The Service de Physique Theorique de Saclay, which is part of the Com
missariat a I'Energie Atomique, Direction des Sciences de la Matiere, and in 
which I have spent the major part of my scientific research career, has always 
been like a family to me and has been a constant source of inspiration. I 
am grateful to all my colleagues who through many discussions have helped 
me to elaborate many of the ideas presented here in final form. They are 
too numerous to be thanked individually. I wish to express my gratitude to 
Jules Horowitz for his suggestions about the teaching of thermodynamics. As 
indicated in the preface to the first edition, I am indebted to the teaching 
staff who worked with me at the Ecole Polytechnique for various contribu
tions brought in during a pleasant collaboration; to those mentioned there, 
I should add Laurent Baulieu, Jean-Paul Blaizot, Marie-Noelle Bussac, Do
minique Gresillon, Jean-Frangois Minster, Patrick Mora, Richard Schaeffer, 
Heinz Schulz, Dominique Vautherin, Michel Voos, and Libero Zuppiroli, who 
to various degrees have helped to improve this book. I also express my thanks 
to Marie-Noelle Bussac, Annie Gervois, Albert Lumbroso, Madeleine Porneuf, 
and Marcel Veneroni, who helped me in the tedious task of reading the proofs 
and made useful comments, to Anne Desalos, Valerie Lambert, and Sylvie 
ZaflFanella, who efficiently typed urgent matter, and to Dominique Bouly, 
who drew the figures. Finally, Lauris and the other members of my family 
should be praised for having patiently endured the innumerable evenings and 
weekends at home that I devoted to this book. 

Roger Balian 
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The teaching of statistical mechanics at the Ecole Polytechnique used for a 
long time to be confined to some basic facts of kinetic theory. It was only 
around 1969 that lonel Solomon started to develop it. Nowadays it is the 
second of the three physics "modules", courses aimed at all students and 
lasting one term. The first module is an introduction to quantum mechanics, 
while the last one uses the ideas and methods of the first two for treating 
more specific problems in solid state physics or the interaction of matter 
with radiation. The students then make their own choice of optional courses 
in which they may again meet with statistical mechanics in one form or 
another. 

There are many reasons for this development in the teaching of physics. 
Enormous progress has been made in statistical physics research in the last 
hundred years and it is now the moment not only to reflect this in the teach
ing of future generations of physicists, but also to acquaint a larger audience, 
such as students at the Ecole Polytechnique, with the most useful and in
teresting concepts, methods, and results of statistical physics. The spectac
ular success of microscopic physics should not conceal from the students the 
importance of macroscopic physics, a field which remains very much alive 
and kicking. In that it enables us to relate the one to the other, statistical 
physics has become an essential part of our understanding of Nature; hence 
the desirability of teaching it at as basic a level as possible. It alone helps to 
unravel the meaning of thermodynamic concepts, thanks to the light it sheds 
on the nature of irreversibility, on the connections between information and 
entropy, and on the origin of the qualitative differences between microscopic 
and macroscopic phenomena. Despite being a many-faceted and expanding 
discipline with ill-defined boundaries, statistical physics in its modern form 
has an irreplaceable position in the teaching of physics; it unifies tradition
ally separate sciences such as thermodynamics, electromagnetism, chemistry, 
and mechanics. Last and not least its numerous applications cover a wide 
range of macroscopic phenomena and, with continuous improvements in the 
mathematical methods available, its quantitative predictions become increas
ingly accurate. The growth of micro-electronics and of physical metallurgy 
indicates that in future one may hope to "design" materials with specific 
properties starting from first principles. Statistical physics is thus on the way 
to becoming one of the most useful of the engineering sciences, sufficient 
justification for the growth of its study at the Ecole Polytechnique. 
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This book has evolved from courses given between 1973 and 1982 in the 
above spirit. The contents and teaching methods have developed considerably 
during that period; some subjects were occasionally omitted or were intro
duced as optional extras, intended only for a section of the class. Most of 
the major threads of statistical mechanics were reviewed, either in the course 
itself, or in associated problems. Nevertheless, on account of their difficulty, 
it has been possible to treat some important topics, such as irreversible pro
cesses or phase transitions, only partially, and to mention some of them, like 
superconductivity, only in passing. The published text contains all the ma
terial covered, suitably supplemented and arranged. It has been organized 
as a basic text, explaining first the principles and methods of statistical me
chanics and then using them to explain the properties of various systems and 
states of matter. The work is systematic in its design, but tutorial in its ap
proach; it is intended both as an introductory text to statistical physics and 
thermodynamics and as a reference book to be used for further applications. 

Even though it goes far beyond the actual lecture programme, this is the 
text circulated to the students. Its style being half way between a didactic 
manual and a reference book, it is intended to lead the student progressively 
away from course work to more individual study on chosen topics, involving 
a degree of literature research. Typographically, it is designed to ease this 
transition and to help the first-time reader by highlighting important parts 
through italics, by framing the most important formulae, by numbering and 
marking sections to enable selective study, by putting items supplementary to 
the main course and historical notes in small type, and by giving summaries 
at the end of each chapter so that the students can check whether they have 
assimilated the basic ideas. However, the very structure of the book departs 
from the order followed in the lecture course, which, in fact, has changed 
from year to year; this is the reason why some exercises involve concepts 
introduced in later chapters. 

Classes at the Ecole Polytechnique tend to be mixed, different students 
having diflferent goals, and some compromises have been necessary. It is useful 
to take advantage of the mathematical leanings of the students, as they like 
an approach proceeding from the general to the particular, but it is equally 
essential that they are taught the opposite approach, the only one leading to 
scientific progress. The first chapter echoes this sentiment in using a specific 
example in order to introduce inductively some general ideas; it is studied at 
the Ecole as course work in parallel with the ensuing chapters, which provide a 
solid deductive presentation of the basis of equilibrium statistical mechanics. 
Courses at the Ecole Polytechnique are intended to be complemented later on 
by specialized further studies. When we discuss applications we have there
fore laid emphasis on the more fundamental aspects and we have primarily 
selected problems which can be completely solved by students. However, we 
have also sought to satisfy the curiosity of those interested in more difficult 
questions with major scientific or technological implications, which are only 
qualitatively discussed. Conscious of the coherence of the book as a whole, we 
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have tried to maintain a balance between rigour and simplicity, theory and 
fact, general methods and specific techniques. Finally, we have tried to keep 
the introductory approach of the book in line with modern ideas. These are 
based upon quantum statistical mechanics, richer in applications and con
ceptually sim^pler than its classical counterpart, which is commonly the first 
topic taught, upon the entropy as a measure of information missing because 
of the probabilistic nature of our description, and upon conservation laws. 

Capable of being read at various different levels, and answering to a vari
ety of needs, this course should be useful also outside the Ecole Polytechnique. 
Given its introductory nature and its many different purposes, it is not in
tended as a substitute for the more advanced and comprehensive established 
texts. Nevertheless, the latter are usually not easy reading for beginners on 
account of their complexity or because they are aimed at particular appli
cations and techniques, or because they are aimed at an English-speaking 
audience. The ever increasing part played by statistical physics in the scien
tific background essential for engineers, researchers, and teachers necessitates 
its dissemination among as large an audience as possible. It is hoped that the 
present book will contribute to this end. It could be used as early as the end 
of undergraduate studies at a university, although parts are at the gradu
ate level. It is equally well geared to the needs of engineering students who 
require a scientific foundation course as a passport to more specialized stud
ies. It should also help all potential users of statistical physics to learn the 
ideas and skills involved. Finally, it is hoped that it will interest readers who 
wish to explore an insufHciently known field in which immense scientific ad
vances have been made, and to become aware of the modern understanding 
of properties of matter at the macroscopic level. 

Physics teaching at the Ecole Polytechnique is a team effort. This book 
owes much to those who year after year worked with me on the statistical 
mechanics module: Henri Alloul, Jean Badier, Louis Behr, Maurice Bernard, 
Michel Bloch, Edouard Brezin, Jean-Noel Chazalviel, Henri Doucet, Georges 
Durand, Bernard Equer, Edouard Fabre, Vincent Gillet, Claudine Hermann, 
Jean Iliopoulos, Claude Itzykson, Daniel Kaplan, Michel Lafon, Georges Lam-
pel, Jean Lascoux, Pierre Laures, Guy Laval, Roland Omnes, Rene Pellat, 
Yves Pomeau, Yves Quere, Pierre Rivet, Bernard Sapoval, Jacques Schmitt, 
Roland Seneor, lonel Solomon, Jean-Claude Toledano, and Gerard Toulouse, 
as well as our colleagues Marcel Fetizon, Henri-Pierre Gervais, and Jean-
Claude Guy from the Chemistry Department. I have had the greatest plea
sure in working with them in a warm and friendly environment, and I think 
they will excuse me if I do not describe their individual contributions down 
the years. Their enthusiasm has certainly rubbed off onto the students with 
whom they have been in contact. Several of them have given excellent lectures 
on special topics for which there has regrettably not been room in this book; 
others have raised the curiosity of students with the help of ingenious and in
structive experiments demonstrated in the lecture theatre or classroom. This 
book has profited from the attention of numerous members of the teaching 
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staff who have corrected mistakes, simplified the presentation, and thought 
up many of the exercises to be found at the end of the chapters. Some have 
had the thankless task of redrafting and correcting examination problems; 
the most recent of these have been incorporated in the second volume. To 
all of them I express my heartfelt thanks. I am especially indebted to lonel 
Solomon: it is thanks to his energy and dedication that the form and con
tent of the course managed to evolve sufficiently rapidly to keep the students 
in contact with live issues. On the practical side, the typing was done by 
Mmes Blanchard, Bouly, Briant, Distinguin, Grognet, and Lecuyer from the 
Ecole's printing workshop, efficiently managed by M. Deyme. I am indebted 
to them for their competent and patient handling of a job which was ham
pered by the complexity of the manuscript and by numerous alterations in 
the text. Indeed, it is their typescript which, with some adjustments by the 
publisher, was reproduced for the finished work. The demanding and essen
tial task of proofreading was performed by Madeleine Porneuf from our group 
at Saclay. I also thank the staffs of the Commissariat a I'Energie Atomique 
and of the Ecole Polytechnique, in particular, MM. Grison, Giraud, Servieres, 
and Teillac for having facilitated publication. Finally, I must not forget the 
many students who have helped to improve my lectures by their criticism, 
questions, and careful reading, and from whose interest I have derived much 
encouragement. 

Roger Balian 
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10. Quantum Gases Without Interactions 

"La preuve de fait de Leibnitz etait que, se promenant un 
jour dans le jardin de I'eveque de Hanovre, on ne put jamais 
trouver deux feuilles d'arbre indiscernables." 

Voltaire 

"L'un dit une chose, I'autre allait justement dire la meme 
chose et repete cette meme chose. II semble qu'il etait im
possible de parler autrement. On est strictement jumeaux. 
Se distinguer, on n'y songe plus. Identite! Identite!" 

Henri Michaux, La nuit remue 

"Quand nous voulons nous meler, nos elans l'un vers I'autre 
ne font que nous heurter l'un a I'autre." 

Maupassant, Solitude 

"Soubdain, Panurge, sans aultre chose dire, jette en pleine 
mer son mouton criant et bellant. Tons les aultres moutons, 
crians et bellans en pareille intonation, commencerent soy 
jecter et saulter en mer apres, a la file. La foulle estoit a qui 
premier y saulteroit apres leur compaignon. Possible n'estoit 
les en guarder, comme vous sgavez estre du mouton le na-
turel, tons jours suyvre le premier, quelque part qu'il aille." 

Rabelais, Quart Livre 

So far we have studied gases and liquids; in those states of mat ter quantum 
mechanics plays a hidden role, mainly through the internal structure of the 
molecules. The classical approximation was sufBcient to t reat the transla-
tional degrees of freedom of the molecules, bo th for gases (Chap.7), and for 
liquids (Chap.9). However, we saw in Chap.8 tha t the progressive freezing 
in of the internal degrees of freedom made it necessary for us to treat them 
quantum mechanically when the gas cools off. We expect tha t the same must 
also occur for the translational degrees of freedom of molecules, since the 
entropy of a classical gas would become negative if the temperature were 
lowered sufficiently, and this is impossible. 

The freezing in of the translations gives rise to a large number of macro
scopic effects where quantum mechanics plays a much more direct role than 
for gases and liquids. For most substances it manifests itself in the crystalliza-
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tion of the sample; the characteristic temperature associated with transla
tions is the solidification temperature. Therefore, solids (Chap. 11) are macro
scopic quantum system.s. In Chaps. 12 and 13, we shall study other macro
scopic quantum systems: liquid helium at low temperatures and electromag
netic radiation at equilibrium in a container. Further examples, such as white 
dwarfs in astrophysics and magnetism, will be treated in the Problems sec
tion. 

For most of these applications we use simplified models of quantum, gases 
of non-interacting indistinguishable particles. The present chapter is devoted 
to the formalism suitable for such gases and to its simplest applications. 
We shall start reminding ourselves of what quantum mechanics says about 
the Pauli principle (§10.1), and shall mention several physical phenomena 
where the indistinguishability of the constituent particles leads to remarkable 
effects, either on a microscopic or on a macroscopic scale (§ 10.1.4). 

The formalism involving wavefunctions is not suitable for a description 
of systems consisting of indistinguishable particles, because it requires the 
labelling of these particles. We present in § 10.2 an alternative, more adequate, 
representation, due to Fock, in which the particles remain anonymous, as 
should be the case. This representation is essential in quantum field theory, 
as it accounts easily for the creation or annihilation of particles. It is also 
particularly suited for our purpose, since it is convenient for dealing with 
large numbers of non-interacting particles. 

We shall thus be in a position to study quantum gases without interactions 
in grand canonical equilibrium, first in general terms (§10.3), and then by 
treating examples of gases consisting oiferm,ions (§ 10.4) or of bosons (§ 10.5). 
We shall stress the differences between these two kinds of quantum gases, and 
we shall discuss both the classical limit (§ 10.3.4) and the large volume limit 
(§10.3.3). 

Note that the "particles" which we are considering here are not necessar
ily elementary particles such as electrons, nor even composite particles such 
as atomic nuclei. We shall see, when constructing models to describe some 
material or another ~ for instance, crystals in Chap.11 - that we may be 
dealing more generally with elementary entities which behave practically as 
non-interacting objects, and which may have lost the features of the consti
tutive elementary particles. 
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10.1 The Indistinguishability of Quantum Particles 

10.1.1 Exchange of Two Identical Particles 

When two particles have the same characteristics, such as mass, charge, and 
so on, there is no way one can distinguish them; this is true both in classi
cal and in quantum mechanics. Nevertheless, indistinguishablity has a more 
subtle character and more far-reaching consequences in quantum mechanics, 
as we can see from the following example. Consider a collision between two 
identical point particles which interact through a finite-range potential. In 
classical dynamics we could think of following their trajectories; if we label 
them 1 and 2 before the collision, it is then possible to find out after the col
lision which of the emerging particles was previously labelled 1. In quantum 
mechanics, if before the collision the two incident particles are represented 
by wavepackets which are separated in space, one can still label them 1 and 
2; however, as soon as the particles approach at distances smaller than the 
spatial extension of the wavepackets, their individuality is lost, and it be
comes impossible to know finally what was the original label of a particular 
particle which emerges from the region where the collision occurred. Hence, 
labelling identical particles is in quantum mechanics not only arbitrary, but 
also inadequate, as the particles can exchange their labels. This is the reason 
why in § 10.2 we shall construct a formalism which allows us to preserve the 
anonymity of indistinguishable particles. 

Let us retain for the time being the more usual formalism of wavefunc-
tions; we write ip{l, 2) for the wavefunction of a pair of particles, denoting by 
1 (or 2) the space and, possibly, also the spin coordinates of the first (or the 
second) particle. The exchange operator E12 transforms the wavefunctions 
as follows: 

^12^(1,2) = V'(2,l), (10.1a) 

interchanging the labels of the particles. A physical observable A cannot dis
tinguish them, which means that the expectation value of A over any function 
•^(1,2) is the same as its expectation value over tl){2,1); we can express this 
by the equation EI2AE12 = A. As £'12 is Hermitean and its square is the 
unit operator, it follows that each physical observable must commute with the 
exchange operator. The momentum of one particle, its position, the opera
tor £̂ 12 itself, are not observables associated with physical quantities - even 
though they are Hermitean operators - whereas the total momentum or the 
position of the centre of mass of the pair are such observables. 

The Hamiltonian H which generates the evolution with time of the wave-
function T/'(1, 2) cannot distinguish the particles, and thus commutes with 
E12. We can therefore diagonalize these two operators at the same time, so 
that amongst the quantum numbers which characterize the eigenstates of 
H we have the eigenvalue rj of E12. As (£12) = I, we have rj^ = 1. The 
eigenfunctions of H, which also satisfy the equation 
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Ei2^{l,2) = r/V(l,2) (10.1b) 

with 7? = ±1 , fall therefore into two classes: those which are symmetric {r/ = 
+1), and those which are antisymmetric {rj — —1) under the exchange of the 
labels 1 and 2 of the two particles. 

One would expect a priori to find the two kinds of levels with 77 = ±1 
by analyzing spectra of systems which consist of two identical particles. Let 
us therefore consider a nitrogen molecule, N2. In the far infra-red, neither 
the electronic nor the vibrational motions take part in the corresponding 
transitions (§8.4.1); one expects thus that the only relevant energy levels of 
H are the lowest rotational levels, given by 

ei = so+l{l + l)^, (10.2) 

with a m.ultiplicity equal to 2Z + 1. The corresponding eigenfunctions have the 
form R{p)Yim{6, ip), where p, 0, ip are the relative spherical coordinates of the 
two nuclei (§8.4.4); they are symmetric with respect to the exchange 1 <-> 2 
when I is even, and they are antisymmetric when / is odd (77 = (—)')• However, 
even though experiments show transitions between the levels (10.2) for even 
I, the odd I levels are never observed, at least not for natural nitrogen which 
consists of the '̂̂ N isotope. In contrast, if one considers ^^N^^N molecules 
which consist of two different isotopes, the whole of the spectrum (10.2) 
is seen. The indistinguishability of the nuclei of ^^N thus has the effect of 
forbidding the states with 77 = —1. (We shall see in § 10.1.3 why we may here 
neglect the electrons.) 

On the other hand, let us consider the spectrum of a helium atom consist
ing of two electrons in the field of the He nucleus which we assume to be fixed. 
The Hamiltonian depends little on the spin of the electrons so that we can 
classify its 4 lowest eigenstates, which are practically degenerate, as forming 
one spin singlet and one spin triplet. The orbital wavefunction is the same 
for these four states; it is isotropic and symmetric under the exchange of the 
coordinates of the two electrons, so that we have 77 = —1 for the singlet state, 
which is antisymmetric under the exchange of the two spins, and 77 = -|-1 in 
the triplet states. Experimentally we find in this case that only the 77 — —1 
state exists; this shows up, for instance, in the absence of magnetism - an 
external magnetic field has practically no effect on a singlet, but it would 
split the components of a triplet which have a total spin 1. 

In these two cases one notices a remarkable property of quantum sys
tems of indistinguishable particles: only 77 = +1 states are allowed for the 
^^N nuclei, and only 77 = —1 states for electrons. Such a restriction on the 
possible wavefunctions has no equivalent in classical mechanics; it is one of 
the fundamental principles of quantum physics and we shall now state it in 
a general form. 
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10.1.2 The Pauli Principle 

A considerable amount of experimental evidence, of which we just gave two 
examples and which we shall survey in § 10.1.4, supports the symmetrization 
principle. As we mentioned in §2.1.5, this principle completes the principles 
of quantum mechanics given in § 2.2.7. We can state it as follows. 

The particles which make up any physical system can be classified either 
as bosons or as fermions. If one exchanges the (spatial and, if appli
cable, spin) coordinates of two identical particles, any wavefunction of 
the system remains invariant, if we are dealing with bosons, or changes 
its sign, if we are dealing with fermions. The Hilbert space 5H associ
ated with the system therefore does not contain all possible wavefunc-
tions, but only functions which are symmetric (bosons) or antisymmetric 
(fermions) under any exchange of the labels of two indistinguishable par
ticles. Moreover, bosons have integral spin (usually 0 or 1) and fermions 
have half-odd-integral spin (usually | ) . 

Thus, every wavefunction of a system of N indistinguishable bosons must 
remain invariant under any permutation of the labels of the N particles. For 
a system of fermions, it must be multiplied by (—)^, where P is the parity 
of the permutation, that is, the number modulo 2 of exchanges of particles 
which are necessary to produce that permutation (note that this number, 
though itself not uniquely defined, has a well defined parity). This property 
is consistent with the identity E23 = E12E13IS12 which shows that a function 
which is odd under the exchanges 1 <-» 2 and 1 <-̂  3 is also odd under the 
exchange 2 <-> 3. The signature rj defined by (10.1), rj — +1 for bosons, 
7? = —1 for fermions, is clearly conserved during the time evolution; this is 
another consistency requirement. 

Let q denote the set of quantum numbers characterizing a single-particle 
wavefunction (for examples see § 10.2.1), and let q(l) denote this wavefunc
tion in the single-particle Hilbert space f̂  , we use in q{l) the single symbol 
1 to denote the set of space and possibly spin coordinates of a particle with 
label 1. The product qi{l)q2{2).. .qi\r{N), where qi,q2,- • • ,qN are N (dif
ferent or not) single-particle states, is an allowed wavefunction for a system 
of N distinguishable particles. However, this product which is an element 
of the product Hilbert space [®^H ] (§2-l-l) does, in general, possess no 
simple symmetry properties under the exchange of particle labels, and it can 
therefore not be accepted as a wavefunction for N indistinguishable particles. 
Nonetheless, we can derive from qi{l)q2{2)... qN{N) a family of TV! wave-
functions - which are all different, ii qi,q2,- • • ,qN are different - by taking 
all possible permutations of the particle labels. Their (normalized) sum de
scribes a state which is symmetric under any exchange, and it can thus be 
accepted for N bosons. When the quantum numbers qi,q2, • • • ,qN are all 
different, one can similarly construct, by adding all possible Nl permuta
tions, but in this case each multiplied by the appropriate factor (—)^, a state 
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which is antisymmetric under any exchange and which is thus acceptable for 
N fermions; this state can alternatively be writ ten in the form of a Slater 
determinant: 

1 

^m 

91(1) 91(2) . 
92(1) 92(2) . 

9iv(l) 9iv(2) . 

• qi{N) 

• 92 ( ^ ) 
(10.3) 

This symmetrization or antisymmetrization procedure generates a complete 
base in the Hilbert space associated with either N bosons or N fermions, 
provided the base q of single-particle states, which was our start ing point, 
itself is a complete base in S-^ . We shall use this method in §10.2.2 to 
construct the states of systems with arbitrary numbers of indistinguishable 
particles, s tart ing from the single-particle states. 

The principle just given, which expresses in mathematical language in the 
wavefunction formahsm the properties connected with the indistinguishabil-
ity of the particles, is usually called the Pauli principle. Actually, Pauli him
self s tated only the exclusion principle for fermions. Less abstract than the 
principle of antisymmetric wave functions, but equivalent, the exclusion prin
ciple forbids two fermions to have the same quantum numbers q: in Eq.(10.3) 
the single-particle states 9i, 92, • • •,9Ar must all be different in order tha t one 
can construct an antisymmetric function. The indistinguishability thus forces 
identical fermions to be correlated by mutual exclusions. 

For bosons, the symmetry of the wave functions also imposes correlations, 
but in a more subtle manner. Let us consider two orthogonal single-particle 
states, q and q'. Two distinguishable particles can occupy them independently 
so tha t the two-particle states are linear combinations of the 4 orthogonal 
states 

g(l)g(2), 9(1)9'(2), 9'(1)9(2), 9'(1)9'(2). (10.4) 

Two fermions exclude one another and thus can only be in the s tate 

^[q{l)q'{2)-q'{l)q{2)]. (10.5) 

For two bosons, the symmetrization procedure produces, s tart ing from (10.4), 
on the one hand, the two states 

q{l)q{2), q'{l)q'{2), (10.6a) 

and, on the other hand, the state 

-^[q{l)q'{2) + q'{l)qi2)]. (10.6b) 

The numbering of the micro-states is therefore different for bosons, for 
fermions, or for distinguishable paxticles. In particular, we should note tha t , 



10.1 The Indistinguishability of Quantum Particles 7 

corresponding to the single s tate (10.6b) for bosons, there are two states, 
q'{l)q{2) and q(l)q'{2) for distinguishable particles. As a result, if the micro-
states considered above in (10.6), (10.5), or (10.4) are equiprobable, two 
bosons have 2 chances out of 3 of having the same quantum numbers, ei
ther q or q', whereas this chance is 0 for two fermions, and 1 out of 2 for two 
distinguishable particles. The bosons are thus correlated in a way which is 
the opposite of tha t for fermions: they behave gregariously, as the presence of 
one boson in a single-particle state q produces a preference for another boson 
to occupy the same state. 

For an arbitrary number of particles, one caUs the different ways of 
numbering the micro-states "statistics", respectively, Bose-Einstein statis
tics {r} = 4-1), Fermi-Dirac statistics {rj = —1), and Boltzmann statistics 
(distinguishable particles). In order to study the thermal equilibrium of a 
gas of indistinguishable particles we must thus calculate Z as a sum over 
symmetric (boson) or antisymmetric (fermion) states, rather than include all 
eigenstates of the Hamiltonian; the numbering of the symmetric or antisym
metric states will thus be crucial. 

Wolfgang Pauli (Vienna 1900-Ziirich 1958) stated the exclusion principle in 
1925 for systems of electrons and this was the discovery for which he was awarded 
the Nobel Prize in 1945. The principal experimental fact on which he relied was 
the periodic classification of the chemical elements, which had been known since 
the work by Dmitri Ivanovich Mendeleev (Tobolsk 1834-St Petersburg 1907) in 
1869, but had remained unexplained. On the other hand, the indistinguishability 
of particles had equally been for a long time a problem in the field of statistical 
mechanics. Gibbs's paradox (see §§3.4.3 ajid 8.2.1) had shown up a difficulty in 
classical physics: as Gibbs discussed in his book "Elementary Principles in Statisti
cal Mechanics", published in 1902, in classical mechanics it is not clear whether or 
not one must consider two configurations which go over into one another through 
a permutation of identical particles as being the same (§ 10.1.1). The answer to 
that question was only given by the Pauli principle; as we shall see in § 10.3.4 for 
the case of a gas, it implies that the common classical limit of the Bose-Einstein 
and Fermi-Dirac statistics yields the classical measure (2.55), including the factor 
l/N], a factor which is essential to resolve the Gibbs paradox and which the old 
Boltzmann statistics could not justify. 

The first quarter of the twentieth century has seen heavy traffic between 
the emerging quantum mechanics (Bohr atom 1913, L. de Broglie's thesis 1925, 
Schrodinger equation 1926) and the statistical mechanics of systems consisting of 
a large number of indistinguishable particles. The first quantum theory which gave 
an explanation for the form of the black-body radiation spectrum (Planck 1900, 
Einstein 1905; see §§3.4.4, 13.2.2 and 13.3.1) led after a while to the concept of a 
photon, a particle which does not obey Boltzmann statistics. Important stages were 
the interpretation of the photoelectric effect and the analysis of exchange of energy 
between atoms and radiation by Einstein, and then the proof by Satyendra Nath 

^ Zs. Physik 31 (1925) 765-783. 
^ Ann. Physik (Leipzig) 17 (1905) 132. 
^ Zs. Physik 19 (1917) 301. 
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Bose (Calcutta 1894-1974) that a quantized mode of electromagnetic oscillations in 
a cavity is equivalent to a system of photons . However, notwithstanding Einstein's 
papers in 1924-5 on the new Bose-Einstein statistics which is obeyed by a gas of 
photons, the raison d'etre of these statistics was still obscure in 1925 (as Einstein 
said, "von vorlaufig ganz ratselhafter Art"). At about the same time, Pauli was 
led by the study of atoms and molecules to recognize the exclusion principle for 
electrons. Enrico Fermi (Rome 1901-Chicago 1954) discovered soon after that the 
important consequences of this principle for the electron gas in metals (§ 10.4.1); 
we shall come across his name many times in Chaps. 10 and 11. It was left to Paul 
Adrien Maurice Dirac (Bristol 1902-Tallahassee 1984) to show how one can un
derstand these results by connecting the indistinguishability of particles with their 
wave nature and with the symmetry character of the wavefunctions. 

Finally, the relation between spin and statistics, which up to that time was 
regarded as an empirical fact, was proved in 1939-40 by Pauli and Belinfante. The 
(difEcult) proof is based upon relativistic field theory and, in particular, uses the 
fact that measurements on two particles in space-time points which are lying at a 
space-like distance from one another cannot perturb one another. Bearing in mind 
the simplicity of the result, it is remarkable that so far it has been impossible to 
find a simple proof. 

10 .1 .3 B o s o n s a n d Fermions; 
E l e m e n t a r y a n d C o m p o s i t e Part i c l e s 

Amongst the particles which one encounters most often, the photon is a 
boson with zero mass and spin 1 (with a particular property which we shall 
discuss in § 13.1.4); the electron, the proton, and the neutron are fermions 
with spin | . 

One often is dealing with composite particles whose internal structure 
plays no role at the scale considered. For instance, the ^*N nucleus in 
the nitrogen molecule (§ 10.1.1) behaves like a single particle, consisting of 
7 protons and 7 neutrons bound together by nuclear forces. Exchanging two 
such nuclei amounts to exchanging at the same time the 7 protons and 
7 neutrons which make them up. This does not change the wavefunction, 
as the number of fermions which is exchanged is even; in this way one is 
led to t reat the ^*N nucleus as a boson in atomic, molecular, or solid state 
physics, and to regard it then as a single point particle, which behaves as 
if it were elementary. Of course, its composite nature shows up at the nu
clear scale of fermis. More generally, if a particle consists of an odd number 
of fermions, possibly together with any number of bosons, it behaves as a 
fermion; if it consists of an even number of fermions, it behaves as a boson. 
This rule is compatible with the relation between spin and statistics, as one 
obtains the total spin of a composite particle by taking the vector sum of the 

* Zs. Physik 26 (1924) 178. 
^ Zs. Physik 36 (1926) 902. 

Proc. Roy. Soc. (London) A112 (1926) 661. 
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spins of the constituents, which is integral for bosons and half-odd-integral 
for fermions, together with the orbital angular momentum, which is integral. 

In particular, a nucleus is a boson or a fermion according to the parity 
of the number of its nucleons, the protons and neutrons. A (neutral) atom 
is a boson or a fermion according to the parity of the number of neutrons in 
its nucleus, since the number of protons is equal to the number of electrons. 
Thus, ^He atoms are bosons, whereas atoms of the ^He isotope are fermions; 
this has important consequences which we shall examine in Chap.12. 

The situation is slightly less simple in the case of molecules since these can 
be built up from several kinds of indistinguishable particles, atomic nuclei and 
electrons. For instance, any wavefunction of a nitrogen molecule ^^N2 must 
be symmetric under the exchange of its two nuclei and antisymmetric with 
respect to its 14 electrons. In the Born-Oppenheimer approximation (§§ 8.4.1 
and 8.4.4) an eigenfunction tp of H can be factorized into a product (i) of 
an electronic part ipe which depends directly on the electron coordinates and 
involves indirectly the coordinates Ri and R2 of the nuclei as parameters and 
(ii) a purely nuclear part, 'tpniRi}R2), which was studied in §8.4.4. For the 
lowest lying states, which are sufficient to determine the infrared spectrum 
and the gas properties at thermal equilibrium, the electron cloud is frozen in 
into its ground state V'e which is completely antisymmetric with respect to 
the electrons and invariant under the exchange of the two attractive centres 
i l l and R2. As a result, in the study of the symmetry character of tp it 
is legitimate, on the one hand, to forget about the electrons and, on the 
other hand, to forget about the Ri- and i?2-dependence of ipe', it is therefore 
sufficient to consider ip^, requiring it to be symmetric under the exchange of 
the two ^^N nuclei, and antisymmetric in the case of a ^^N2 molecule. This 
argument justifies the considerations of § 10.1.1 where we restricted ourselves 
implicitly to the nuclear part rp^ of the wavefunction, the symmetry of which 
is governed in final reckoning by Yi^{6, (f). The Pauli principle then implies 
that I must be even for ^^N2; in the case of ®̂N2 the antisymmetry also 
involves the spin-i of the nuclei, and / takes on odd values for the spin 
triplet and even values for the singlet. Note that the exchange operation 
refers here to the ^^N nuclei which are bosons, and not to the atoms which 
are fermions. A simplistic argument where the nitrogen molecule is thought 
to be a bound state of two composite fermions, the ^^N atoms, and where one 
neglects the antisymmetry with respect to the constituent electrons and the 
symmetry with respect to the nuclei, would lead to a wrong result: requiring 
the wavefunction to be antisymmetric with respect to the atoms one would 
find / to be odd, rather than even, for all levels of •'̂ '*N2. Indeed, one cannot 
regard a nitrogen molecule as just the combination of two "̂̂ N fermions, 
because the tight binding of the two atoms has radically changed the electron 
wavefunction; the valence electrons no longer belong to one atom or the other, 
but to both. 

As illustrated by this example, we must be careful when defining a com
posite particle and assigning to it the character of a boson or of a fermion. 
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since the Pauli principle only applies to the global exchange of two parti
cles, each of which must behave as a whole. In principle, the analysis of a 
complex system, such as a piece of mat te r or even a molecule, should s tar t 
from its most elementary constituents, which are unambiguously fermions or 
bosons. Nevertheless, in order to make the structure and the properties of 
this system intelligible, it is necessary to bring into the discussion composite 
entities which behave like weakly interacting particles. The composite pax-
ticles introduced in this way are always the result of approximations: such 
objects have an individual nature only if their size is small as compared to 
the characteristic dimensions of the system which we t ry to describe through 
them, and if their binding energy is large as compared to the characteristic 
energies of the system. For instance, it is legitimate to describe liquid helium 
as an assembly of bosons, the He atoms, which are small and strongly bound, 
forgetting about the electrons and nuclei which are their constituents. On 
the other hand, we have just seen tha t it is incorrect to describe a nitrogen 
molecule as being formed from two fermions, the N atoms, and that we must 
go back to the nitrogen nuclei and the electrons, at least the valence elec
trons: even though a nitrogen a tom can exist on its own and consists of an 
odd number of fermions, it does not behave like a fermion in the nitrogen 
molecule. 

In solid state physics one introduces various kinds of "quasi-particles", which 
are elementary excitations of the material. One is dealing with composite entities 
in which often a large number of elementary particles, electrons and atomic nuclei, 
are involved, and this gives them a pronounced collective nature. For instance, we 
shall discuss in § 11.3.2 conduction electrons and holes, which are quasi-particles 
used to describe an insulator or a semiconductor; they are fermions, consisting of an 
extra or a missing electron, together with the perturbation which it produces in its 
vicinity. Other quasi-particles, formed by binding an electron and a hole together, 
then behave like a boson, provided their size is sufBently small and their binding 
energy sufficiently large. For instance, the "Cooper pairs" which are pairs of bound 
electrons responsible for superconductivity in many metals at low temperatures 
(§ 12.3.3) behave only very approximately as bosons and retain some memory of the 
exclusion principle of the constituent electrons, due to their small binding energy, 
which is typically 10^ eV, and their large size, which is typically 1 |.im. 

On subnuclear scales, elementary particle theory helps us to classify these par
ticles by letting bosons and fermions play different roles. One distinguishes two 
kinds of elementary fermions: on the one hand, the quarks and, on the other hand, 
the leptons - electron, p., and x particles and their associated neutrinos - with 
each particle having its own antiparticle. The elementary bosons are responsible for 
the interactions between the fermions, namely, the photon for the electromagnetic 
interactions, the weak bosons Z , W for the weak interactions, and the gluons 
for the strong interactions. The attraction between quarks due to the exchange of 
gluons is so strong that one never observes free quarks or free gluons, but only 
states with several quarks which are bound together by the gluons and which are 
called hadrons. Amongst those, the baryons appear above the fm scale as compos
ite particles, consisting of 3 quarks - plus an undetermined number of gluons and 
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quark-antiquark pairs; they therefore are fermions. In particular, the proton and the 
neutron have, respectively, the structures uud and udd, where u and d denote the 
so-called up and down quarks. The mesons, such as, for example, 7t and K consist 
of a quark-antiquark pair and are thus bosons. The prediction by Pauli and Fermi 
in 1933 of the existence of the neutrino was connected, on the one hand, with the 
necessity to explain the energy balance in [5-radioactivity and, on the other hand, 
with a consequence of the Pauli principle, the conservation of the parity of the 
number of fermions in weak interactions. In fact, the angular momentum is integral 
for an even number of fermions and half-odd-integral for an odd number; hence, 
angular momentum could not be conserved if, for instance, the decay of the neutron 
followed the scheme n —» p -f e, rather than producing a neutrino according to the 
scheme n —> p -|- e -|- Ve. In terms of more elementary particles, this reaction is 
nowadays interpreted as d —> u -|- W " —> u -|- e -I- Ve, where the W~ intermediate 
boson can be transformed into the fermion-antifermion pairs d, u or e, Ve. 

10 .1 .4 Effects C o n n e c t e d w i t h Indis t inguishabi l i ty 

Very many phenomena, bo th at the microscopic and at the macroscopic scale, 
are explained by the Pauli principle. To demonstrate the extent of the field 
of applications of the latter we shall review several examples, giving a quick 
explanation. Other examples will be t reated in more detail in later chapters 
and in the problem section. 

The Periodic Table of the Chemical Elements. Rydberg noted in 1913 tha t 
the different periods in Mendeleev's table had the length 2n^ (where n = 1, 
2, 3, or 4), a formula considered "cabalistic" by Sommerfeld. Pauli explained 
in a simple way the existence of the periodicity and the length of the periods 
by noting tha t the eigenstates of an electron in the central potential of an 
a tom are grouped in shells separated by wide energy gaps of order 10 eV, 
with a multiplicity 2n^, where the factor 2 comes from the spin and the 
n^ = YM=O (^' + ^) froni the orbital angular momentum; the electrons fill 
successively each shell and elements with the same number of electrons in the 
last shell behave similarly. The situation is somewhat similar in the case of the 
structure of the nuclei; in tha t case one must , however, take into account the 
presence of two kinds of spin | nucleons, the protons and neutrons, rather 
than one kind for the atoms, the electrons. This produces "nuclear magic 
numbers" , which are different from the atomic ones. 

Instability of Nuclei with a Large Neutron Excess. The ^*N and ^^N isotopes 
are stable, whereas ^^N, ^'''N, ^^N, ^^N are unstable, with lifetimes decreasing 
from 7 s to 0.4 s, and there is no nitrogen nucleus with more than 19 nucleons. 
This is a quite general situation. Nevertheless, nuclear forces are at tractive 
for neutrons, which should favour an increasing stability when the number of 
neutrons increases. To solve this paradox, we note tha t the number of single-
neutron bound states in a nucleus is finite, and the exclusion principle limits 
the number of neutrons which can be accommodated in these states. 
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f3-radioactivity of Nuclei. An isolated neutron is p-unstable, according to 
n —> p + e + Ve, with a lifetime of 12 s. However, the neutrons in a nucleus 
such as ^He do not show p-decay. This is due to the fact that the protons are 
fermions. In fact, the lowest (s | ) shell of ^He is completely occupied by two 
protons with opposite spin and two neutrons with opposite spin. In order 
that one of the latter decays, it must emit a proton which must go to an 
unoccupied level, that is, to an excited shell. However, the energy difference 
between the occupied and the first free proton shells is larger than the p-decay 
energy of the neutron; the decay is therefore forbidden. 

Chemical Binding. Let us consider the example of H2 and let us begin by ne
glecting the interaction between the electrons. Each electron sees the effective 
potential of the two nuclei so that its lowest bound state, which is two-fold 
degenerate because of the spin, has a lower energy than that of the electron in 
an H atom. One can thus, by putting the two electrons in this pair of bound 
states, form a molecule with an energy which is lower than that of the two 
separated atoms, provided the two nuclei are not too close; in this case the 
repulsion between them and the repulsion between the electrons would lose 
the energy that we have just gained through the effect discussed here. The 
Pauli principle prevents the same effect to produce HeH, as there are then 3 
electrons available for only one pair of single-electron lowest bound states. 

Ferromagnetism. As Exerc.Qa shows, ferromagnetism can be explained by 
starting from the idea that matter consists of interacting spins with the con
tribution to the energy from a pair of spins (Ti and o"2 having the form 
—J(o'i • (T2). The Curie transition temperature, below which the material is 
ferromagnetic, is thus of order of magnitude J/k. Nevertheless, the direct 
magnetic interaction. 

Anr^ 

between the two moments /x = /XBO' of the spins, where u denotes the unit 
vector in the direction connecting the two spins, r their distance apart, and 
where ^ B = eh/2m = 0.927.10"^^ JT^^ , does not have the necessary fea
tures. Not only does it change sign depending on the relative position of the 
spins, but especially its numerical value is too small, as fiofi^/iirr^k in tem
perature units reaches only 0.6 K for a distance of 1 A. However, there are 
many ferromagnetic materials at room temperature. In fact, it is an indirect 
combined effect of the Pauli principle and the Coulomb repulsion between 
electrons which produces the "exchange force", an effective force between 
spins which is much stronger than their magnetic interaction. The antisym
metry of the wavefunction of two electrons can be realized in two different 
ways. Either the spatial wavefunction is antisymmetric and the spins of the 
electrons are in one of the symmetric triplet states (total spin 1, that is, 
{<Ti • 0"2) — +1), or the spatial wavefunction is symmetric and the spins are 
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in the antisymmetric singlet state (ci + <T2 = 0, that is, (<TI • <T2) = —3). In 
the first case, the electrons are on average further apart than in the second 
esseJ &s the antisymmetry forces the wavefunction to vanish at small dis
tances apart. The Coulomb repulsion is thus less effective, so that the energy 
is lower, by an amount which we shall denote by 4J. The energy thus contains 
a contribution — J(o"i • <T2) which looks like a strong interaction between the 
spins, tending to align them. 

Extensivity of the Thermodynamic Quantities. This property expresses the 
experimental fact that the volume and the internal energy of a substance 
are, at fixed pressure and temperature, proportional to its mass. To explain 
this microscopically is far from easy and is a major problem in mathematical 
physics, depending crucially on the interactions between the constituent par
ticles (§5.5.2). In particular, if these attract one another at short distances, 
they tend to agglomerate the more strongly, the larger their number, in order 
to minimize the energy, so that the density and the energy per particle, E/N, 
cannot have a limit for large N. Even for a non-interacting gas of bosons, ex
tensivity raises questions (Exerc.l2c). In the most fundamental description, 
a substance consists of N electrons and a number of atomic nuclei such that 
electrical neutrality is ensured. Let us strike an energy balance between the 
repulsive and attractive Coulomb forces. If both the electrons and nuclei were 
bosons, there would be configurations where the attraction would dominate 
at short distances; for instance, the state described by a constant wavefunc
tion would be acceptable, and one sees easily that the average value of the 
energy in that state is proportional to —NQ^'^/^, if the substance occupies a 
volume Q. The volume would thus tend to decrease and the substance would 
collapse. The Pauli principle for the electrons guarantees the stability of the 
m.atter, by forbidding such low energy wavefunctions where large numbers 
of particles become stuck together. More intuitively, the exclusion principle 
does not permit more than two (two because of the spin) electrons to be at 
the same point. It thus produces a short-range repulsion which ensures the 
extensivity of the thermodynamic quantities. 

Stellar Stability. The gravitational equilibrium of a star (Exerc.6e) is realized 
only if its weight is counterbalanced by pressure forces which prevent the 
collapse of the star. In a rather young star which is hot and not very dense, 
like the sun, the matter behaves like a perfect gas where the pressure, which 
is proportional to the temperature, counterbalances the gravitational forces. 
During its evolution, the star emits radiation, using up nuclear energy. As 
the nuclear "fuel" gets exhausted, the temperature decreases, the pressure is 
no longer sufficient to counterbalance the gravitation, and the star collapses. 
In certain cases one reaches in this way a new type of very dense star, a white 
dwarf which consists of a plasma of electrons and nuclei (Probs.9 and 10). 
The internal pressure which ensures the stability of the star is then dominated 
by the repulsion (10.61) between the electrons due to the Pauli principle. We 
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study this effect in Prob.9, where we show that equiHbrium remains possible, 
provided the stellar mass is not too large. For more massive stars, collapse 
produces a violent implosion - a supernova - and may lead to an even denser 
residue, a neutron star, which can be modelled as a system of non-interacting 
neutrons. Here also, gravitational equilibrium is guaranteed by the fact that 
neutrons are fermions which effectively repel one another due to the exclusion 
principle, even when their interactions are neglected (Exerc.lOe). 

Lasers. As they are bosons, photons are created in a given mode more easily 
if there are already some photons in that mode. This effect, discovered in 
1917 by Einstein, is called stimulated emission (Exerc.l5e). It plays an im
portant role in the possibility to construct lasers, devices which allow one to 
accumulate a large number of photons in the same mode. 

Superfluidity of Helium. The ^He isotope of helium, which is the most abun
dant one, is a boson. At low temperatures it possesses the remarkable prop
erty of superfluidity: it can move without viscosity. This phenomenon is con
nected with the fact that at low temperatures the atoms accumulate in the 
single-particle state with the lowest energy because they are bosons (§ 12.3 
and Prob.l4). 

Superconductivity. Many substances become superconducting at sufiiciently 
low temperatures when, in particular, they can let an electrical current pass 
through them without resistance (§ 12.3.3). This effect is related to superflu
idity, but here the bosons which condense in the same state and thus easily 
transport the current are electron pairs (with opposite spins). The so-called 
Cooper mechanism which permits a pair of electrons to get bound together 
and to behave like a boson cannot be understood intuitively. It again is based 
upon the Pauli principle, but for fermions. The Fermi-Dirac statistics obeyed 
by the electrons forbid a pair to occupy states which are already occupied 
by other electrons. This modifies the dynamics of that pair, so that an effec
tive attraction, however weak, is sufficient to produce a bound state of two 
electrons which resembles a boson^. 

10.2 Fock Bases 

In this section we shall construct a formalism which will allow us to take 
the Pauli principle automatically into account without having to label the 
indistinguishable particles. This formalism is particularly adapted to deal 
with the classification of the eigenvalues and eigenfunctions of a Hamiltonian 

"^ J. Bardeen, L.N. Cooper, and J.P. Schrieffer, Phys.Rev. 108 (1957) 1175. 
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of non-interacting particles. Such a Hamiltonian has, in the A'^-particle Hilbert 
space £^ , the" form, 

N 

of a sum of identical operators referring, respectively, to the particles i = 
1,2,... ,N. If we want to avoid the complications due to the symmetrization 
or antisymmetrization of the wavefunctions (Exerc.lOa), it will be useful to 
leave N arbitrary and work in the Fock space already introduced in §§ 2.3.6 
and 4.3.2. Let us remind ourselves that we are dealing with the space 5H = 

© £}. ' which is the direct sum of spaces of N indistinguishable particles 

which can be bosons or fermions. Note that we shall use the same notation 
for those two kinds of particles, even though the corresponding spaces are 
not equivalent as soon as AT > 2. We refer to §§2.1.1 and 2.1.2 for the 
algebraic concepts used below when we shall be dealing with Hilbert spaces 
and operators. 

10.2.1 Single-Particle States 

We start from the Hilbert space £^ ' of the single-particle states. In contrast 
to the complete Fock space, this space has the same structure for fermions 
as for bosons: the nature of the particles does not manifest itself until there 
are several particles present. We choose for the base {q} of the space 5^ the 
set of eigenvectors of the single-particle Hamiltonian h. We indicate the set 
of quantum numbers which characterize each of these vectors by q, and the 
value of the corresponding energy eigenvalue by £,. Sometimes Sg depends 
only on some of the quantum numbers q and one must take care in such cases 
of degeneracy to sum over the other quantum numbers when one evaluates 
traces. 

To fix the ideas, we shall give a few examples. For a particle, such as 
a helium atom, enclosed in a parallelepiped shaped box of edge lengths 
Lx,Ly,Lz, the single-particle Hamiltonian h reduces to the kinetic energy, 
plus a potential which is zero inside and infinite outside the box. The eigen-
kets which span the space 5^ are stationary plane waves which vanish at 
the walls of the box and which are characterized by three quantum numbers 
mx,my,mz,= 1,2,... . The absolute values of the momentum components 
are given by 

hn hn hn . . 
Px = mx^j-, Py = my—, pz = m^-—. (10.8) 

Lix ^y J-'z 

The corresponding (single-particle) eigenfunction is 

1/2 
. PxX . PyV . PzZ 

sm ——- sin ^— sm 
LlxJ^yi-Jz J ft ft ft 
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where the origin of the coordinate system is taken at one of the corners of 
the box. If the particle also has a spin s, its ket will be characterized by an 
extra quantum number s^ which can take on 2s + 1 values. The energy Cg 
corresponding to the set of quantum numbers q = {rrix, ray, rriz, Sz) equals 

2m 2m 
(10.9) 

where m is the particle mass. 
It is sometimes convenient to get rid of the surface effects which are due to 

the presence of the walls of the box and to use periodic boundary conditions 
- also called the Born-von Karman conditions - as a mathematical artifice: 
rather than asking the wavefunctions to vanish at the walls, one requires 
that the walls are pairwise identical; this means that the wavefunctions must 
satisfy periodicity conditions such as 

V'(0,y,z) = tp{L^,y,z), '>p'^{0,y,z) = i^'^iL^^y^z). 

The eigenfunctions of the single-particle Hamiltonian h then become simply 
travelling waves, 

1/2 / 1 y/^ 
r r T ^^P l(P»'^ + PyV + P^^)l^'^ 

\Lix-LiyLiz / 

the momenta are still determined by (10.8) and the energies £, by (10.9), but 
the quantum numbers m,x,my, m^ now take the values 0, ±2, ± 4 , . . . . 

In the case of the electrons in a solid, the single-particle Hamiltonian h 
in (10.7) contains, apart from the kinetic energy, also an effective periodic 
potential due to the nuclei and the other electrons. The base states q and the 
corresponding eigenvalues £, are obtained by solving a Schrodinger equation 
in the three variables x,y,z (§ 11.2.2). 

If one represents an atomic nucleus as a system of protons and neutrons 
in an effective central potential (which models the interactions) q denotes, 
both for the protons and for the neutrons, the angular quantum numbers /, m, 
the radial quantum number n, and the spin quantum number s^. The single-
particle energies e, depend only on I and n, and the levels are 2{2l + l)-fold 
degenerate. 

Finally, we shall in what follows also consider massless particles such 
as photons enclosed in a container. These represent the vibrations of the 
quantized electromagnetic field inside the container; in that case the photon 
momentum p = hk is again given by (10.8), but now the energy equals 

£q = hv — hu! = Cp. (10.10) 

Each vibrational mode, characterized by the quantum numbers q, can be 
identified as a single-particle state. 
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Just as we numbered the paramagnetic ion sites in § 1.1.2, we assume here 
that the single-particle states q are arranged in some standard order which is 
fixed once and for all. Note that these states are distinguishable even though 
the particles which occupy them are not. 

10.2.2 Occupation Numbers 

We shall associate with the base {q} of the single-particle states defined 
above, a base in the space 5^ of states of TV indistinguishable particles, 
bosons or fermions. The method used has already been sketched in § 10.1.2. It 
consists of symmetrizing (for bosons) or antisymmetrizing (for fermions) the 
product wavefunctions 51(1)^2(2).. •9Ar(iV"). The symbol q\ denotes both a 
set of quantum numbers and the associated eigenfunction of h, while (1), (2), 
. . . , {N) represent the (space and spin) coordinates of the particles numbered 
1, 2, ... ,N. We must be careful about the terminology, as the word "state" 
has different meanings: according to the general principles, we shall later be 
interested in a thermal equilibrium macro-state which is defined through as
signing probabilities to the micro-states; the latter, which are symmetric or 
antisymmetric eigenstates of (10.7), are N-particle states constructed from 
the single-particle states (or modes) q through the symmetrization or an-
tisymmetrization of a product. We shall not always indicate which type of 
state we are dealing with, but that should be clear from the context. 

In order to carry out this programme explicitly, it is convenient to have 
at our disposal a simple and adequate notation for specifying the different 
A/̂ -boson or N-ieiraion eigenstates. The first stage of the symmetrization 
procedure is to specify the states qi,q2,. ..,qN which the particles 1,2, ... ,N 
occupy, respectively. However, a permutation of these single-particle states 
does not change the symmetric or antisymmetric A'^-particle state which we 
have produced; moreover, we must specify at the start that for fermions 
9i) 92) • • •) 9iv are different. To avoid these complications of multiple counting 
and of exclusion, we shall change our point of view: instead of specifying 
which state is occupied by each of the particles, we shall look at the set of 
single-particle states q and specify for each of them whether it is empty or 
whether it is occupied by one or more of the N particles. This will define for 
each single-particle state q an occupation number n , , which may be zero. 

We are thus led to characterize the vacuum, which is the only state in 
the Hilbert space £^ of no particles, by stating that every one of the single-
particle states q is empty, or equivalently, that all occupation numbers n , are 
zero. 

Let us return to the Hilbert space £^ of the single-particle states q. To 
express that the particle is in the state q, we use the following language: 
we say that the occupation number nq of the state q equals 1 and that the 
occupation numbers nqi of the other states q' are all zero. Each single-particle 
state of the base {g} will thus be denoted by a set of occupation numbers 
{riq] which are all equal to 0, except one which equals 1. We shall write the 
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ket \q) representing a particle in the state q as follows: 

|0 , - - - ,0 ,n , = l ,0,---), (10.11) 

where we have arranged the single-particle states 5 in a standard order and 
where the occupation numbers are written down in that standard order - all 
zero except rig. 

(21 We now turn to the two-particle states which span the Hilbert space £^ . 
For non-interacting particles, the Hamiltonian has the form 

If one disregards indistinguishability, the eigenfunctions of H^^^ are simply 
the product of two functions, q{l) for particle 1 and q'{2) for particle 2, 
while their energy is Sg + e,'; the quantum numbers q and q' may or may 
not be different. In the first case, q'{l)q{2) differs from q{l)q'{2), but has 
the same energy. However, for fermions the Hilbert space £^' is the Hilbert 
space of antisymmetric functions. We associate with each pair q < q' oi states 
of E^ the wavefunction (10.5) of 5jj , which is a suitably antisymmetrized 
eigenstate of H^'^' with energy e, + Sqi. We denote this state by letting two 
occupation numbers Ug and Ugi he equal to 1 {q < q'), all other occupation 
numbers being equal to zero, and we write it as 

|0,---,0,ng = l ,0 , - - - ,0 ,n , ' = l ,0,---), (10.12) 

rather than as (10.5). 
For two bosons the wavefunctions of £^ ' must be symmetric. A first class 

of functions corresponds as before to each pair q < q' for which we form 
the symmetric combination (10.6b) with energy e, + £,/. We characterize 
this state by two occupation numbers Ug and rigi equalling 1 {q < q'), the 
other occupation numbers being zero, and we write it again as (10.12). The 
use of the same notation (10.12) for the antisymmetric state (10.5) and for 
the symmetric state (10.6b) should not lead to any confusion as long as we 
make clear from the start whether we are dealing with fermions or with 
bosons. However, we can also put two bosons in the same state q according 
to (10.6a). The corresponding symmetric wavefunction, which in the usual 
notation is q{l)q{2), has an energy 2eq. We characterize this state by a single 
non-vanishing occupation number Uq = 2, and we write its wavefunction as 

|0 , - - - ,0 ,n , = 2,0,---). (10.13) 

One can easily extend these arguments to an arbitrary particle number 
N. For N fermions each micro-state (10.3) was constructed by choosing TV 
different single-particle states. One assigns to those states, arranged in the 
order gi < q'2 < • • • < 9JV, occupation numbers n^^ = . . . = Uq^ = 1, and to 
the other states q occupation numbers n , = 0. An iV-fermion micro-state is 
thus characterized by 
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\ni,---,ng,---), (10.14) 

where each n^ equals either 0 or 1, and where the sum of the n , over all 
single-particle states equals 

N = Y^Hq. (10.15) 

The energy associated with the micro-state (10.3) was £gi + ^gj + • • • + Sg^i 
an eigenvalue of (10.7). In the occupation number language it can also be 
written as 

9 

as each term equals either £g or 0. 
For N bosons the single-particle states qi,q2,... ,qN, needed to con

struct the A/^-particle micro-states by symmetrizing the product 51 (1) 52(2) 
• • • qnf{N), are not necessarily different from one another; a permutation of 
them does not modify the TV-particle state. Each TV-boson micro-state is thus 
characterized by specifying, for each q, the number n , of times that q appears 
in the sequence qi < qi < • • • < qN', the occupation number set {riq} is a one-
to-one representation for each of the different micro-states. We still write it 
as (10.14), but each number Uq is now a positive integer or zero. The particle 
number TV and the energy are again given by (10.15) and (10.16). 

We have altogether, starting from the base of smyZe-particle states of the 
5^ ' Hilbert space, constructed a complete base {Uq} for the Fock space of 
states with an arbitrary number of particles, 

in the two cases where the wavefunctions must be antisymmetric (fermions) 
or symmetric (bosons). Each state of this base, written in the form (10.14), 
is characterized by giving the quantum numbers n, , each of which can take 
on the values 0,1 for fermions, or 0 ,1 ,2 , . . . for bosons. The base (10.14) is 
called the Fock base associated with the base {q} of the single-particle states. 
Although the notation (10.11), (10.12), (10.13) seems unnecessarily compli
cated to denote states consisting of a small number of particles, the Fock 
base is very useful for systems consisting of a large number of indistinguish
able particles. In contrast to the representation in terms of wavefunctions, this 
one does not need labelled coordinates to describe the particles: the symmetry 
or antisymmetry of the wavefunctions is automatically taken into account by 
the definition itself of the ket (10.14), and by the set of values which the 
occupation numbers can take on. 

The above construction of the Fock base, starting from the space of the 
single-particle states, is called second quantization. This name is justified 
by the existence of two levels of quantum numbers, which are different in 
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character and in the role they play. The vectors of the base {q} of the £^ 
Hilbert space of the single-particle states are characterized by the quantum 
numbers q. When one switches to the 5H Fock space for an arbitrary number 
of bosons or fermions, one has available a new base (10.14), the subset (10.11) 
of which is isomorphic with the base {q} of the subspace fpj • However, 
the new quantum numbers classifying the vectors of the Fock base are the 
occupation numbers {rxg}. In the Fock representation one must no longer 
consider the numbers q as quantum numbers; they henceforth play the role 
of indices of the occupation numbers n, . 

10.2.3 Operators in the Fock Representation 

The introduction of the Fock base allows us to express all physical observables 
in a simple way. First of all, we define the occupation number operator riq, the 
eigenstates of which are the states (10.14) of the Fock base, with eigenvalues 
rig = 0 or 1 for fermions, n , = 0, 1, 2, . . . for bosons. The operators riq form 
a complete set of commuting observables, associated with the base (10.14). 

The particle number operator is their sum 

N = Y,nq, (10.17) 

and its eigenvalues are given by (10.15). Similarly, one can write down the 
Hamiltonian for non-interacting particles as 

H = Y^ EqUg (10.18) 
9 

in the complete Fock space. Each of its eigenvalues, the energy (10.16) of an 
iV-particle state, is obtained simply by adding the energies Sq of the occupied 
states, weighted by the number n , of particles occupying the state q. One 
should note that the representation (10.18) of the operator H is valid for 
all its components Hi, H2, . . . in the N = 1,2,.. .-particle Hilbert spaces, 
whereas the usual representation (10.7), in terms of the fi and p^ operators 
associated with the positions and momenta of the labelled particles, changes 
when the number of particles changes and, moreover, does not automatically 
take their nature (fermions or bosons) into account. 

Apart from being better adapted to the physical reality - identical par
ticles need no longer be labelled, and their bosonic or fermionic nature is 
directly taken into account through the possible values of the occupation 
numbers - Fock space brings about a major simplification for the study of 
quantum gases at equilibrium. At first sight, the Hamiltonian (10.18) in Fock 
space hardly looks simpler than the Hamiltonian (10.7) in the iV-particle 
Hilbert space. However, the evaluation of the canonical partition function 

TIN exp -/3 ^ hi 
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is impracticable, notwithstanding the fact tha t the density operator seems 
to factorize into contributions associated with separate particles; indeed, the 
wavefunctions of the base have a compHcated, unfactorized structure which 
involves the N\ permutat ions necessary to account for the symmetry or anti
symmetry. Adding another particle thus necessarily modifies the s tate of the 
other particles through the symmetry structure of the wavefunctions; this 
introduces correlations of a quantum nature between particles, even when 
there are no interactions. The indistinguishability thus prevents the factor
ization of the canonical parti t ion function into a product of factors referring 
to separate particles. On the other hand, second quantization with its change 
in point of view - the accent is now on states and their filling rather than 
on the particles themselves - and the use of the grand canonical ensemble 
make another kind of factorization possible. The Hamiltonian (10.18) in Fock 
space is a sum of terms which are now associated each with a single-particle 
state q. The latter are distinguishable, in contrast to the particles, and they 
fill up independently of one another: each quantum number n , takes on all 
permissible values without interfering with the filling up of the states differ
ent from q. The price paid in order to benefit from this independence is that 
one needs to work in the grand canonical ensemble. 

Prom a more mathematical point of view, Fock space has the simple struc
ture of a direct product of spaces relating to different single-particle states q, 
in contrast to 5jj which cannot be factorized into simpler spaces: 

fH = © 4 ^ ^ = ® f H , . 
JV=0 q 

This shows up clearly in the base (10.14); each subspace q is spanned by the 
vectors n , = 0 , 1 , 2 , . . . for bosons, and by the vectors n , = 0 or 1 for fermions. 
This property allows the factorization (4.23) of the Boltzmann-Gibbs grand 
canonical density operator in terms of elementary operators, 

4 = ^ e x p ( - / 3 e , n , + Q n , ) = ~ {XX\ (10-19) 
^q ^q 

each acting in a 5 subspace of Fock space, and the factorization (4.22) of 
the grand canonical parti t ion function. The single-particle states q, which are 
more abstract entities than the particles, play here the role of the statistically 
independent subsystems of §4.2.5. 

The introduction of the Fock base also has other advantages. When an observ
able commutes with N one can represent it, as we did with the Hamiltonian (10.7), 
in terms of its components in the £^ spaces; this was the way we characterized 
the grand canonical ensemble in § 4.2.3 through its components for each value of 
N. Nonetheless, some physical systems involve observables which do not commute 
with the particle number. For instance, the interaction of quantized electromagnetic 
radiation with charged particles induces changes in the state of the field through 
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changes in t he number of photons; a t ransi t ion between different energy levels in
volves t he emission or absorpt ion of a photon . Similarly, in part icle physics, in an 
electron-posi tron collision these two fermions can annihi la te one another producing 
two photons in t he process. Even when the part icle numbers are conserved, it m a y 
be useful t o describe, for instance, an elastic collision process as t he annihi lat ion of 
one pair , followed immediate ly by the creation of a pair wi th different momen ta . 
T h e m e t h o d s of t he so-called many-body problem take advantage of this idea by 
using second quant izat ion. In par t icular , theories of superconduct iv i ty or of t he 
superfluidity of hel ium (Exerc . l2d) describe the systems of t he electrons or of t he 
He a toms by breaking the invariance (end of § 9.3.3) which is associated wi th t he 
part icle number conservation: even though the Hamil tonian and the exact g rand 
canonical density opera tor D commute wi th N, one can construct a fair approxi
ma t ion to D by replacing it by an operator I> which is sufficiently simple t o make 
calculations possible, bu t which does not commute wi th N; this opera tor can be 
de termined by the variat ional me thod , as in §9.3 .1 . Superconduct ivi ty and super
fluidity are closely connected wi th this symmet ry breaking which occurs when T 

lies below the t rans i t ion t empera tu re . To describe such phenomena we need opera
tors which do not conserve t he number of particles and which therefore cannot be 
wr i t ten in t e rms of wavefunctions. One introduces t h e m as follows. 

We first of all in t roduce opera tors Cg whose effect is to reduce t he occupat ion 
number Uq by unity, wi thout changing the other occupat ion numbers . It is conve
nient to include in their definition a factor given by 

cq\ni,...,ng,...) = {T]}^I'<I'''>',y^\ni,...,ng~-l,...), (10.20a) 

where 77 is 1 for bosons and —1 for fermions, and where t he indices q are a r ranged 

in t he s t anda rd order. T h e 'cq opera tors are called annihilation operators and their 

Hermi tean conjugates, 'cq, which add a part icle in the s ta te q, according to t he rule 

?l\ni,...,nq,...) = {ri)^i'<i ""' y/l + rjUq | n i , . . . , n , + 1, . . . ) , (10.20b) 

are called creation operators. T h e factors in t roduced in (10.20) guaxantee, in par

t icular, t h a t Cq applied t o the vacuum gives 0 and t h a t for fermions c , applied to a 

s ta te where q is a l ready occupied also gives 0. Moreover, t hey lead t o t he following 

simple algebraic relations: 

c'gCg, - V^C^fCq = Sqql, 'c^q, - r)'Cq,'Cq = 0. (10.21) 

T h e definition (10.20) itself of the creation and annihi lat ion operators implies 

t h a t any operator in Fock space can be expressed as an element of t he algebra 

generated by the 'cq and c j th rough mult ipl icat ions and linear combinat ions. In 

par t icular , one can check t h a t the occupat ion number observables are given by the 

equat ion 

riq = 2]^q, (10.22) 

so t h a t we get for t he Hamil tonian (10.18): 
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CgCgCg. 

More generally, let us consider a single-particle observable F, for instance, a com-
(N) 

ponent of the angular momentum; its components in £^ have, in terms of wave-
functions, the form X^j^j fi, which is similar to (10.7), where / is characterized 
by its matrix elements {q\f\q ) with respect to the single-particle states. In second 
quantization we find for F: 

F = J2cl{q\f\g% 

The creation and annihilation operators are also helpful to find expressions for 
observables which do not commute with N. In particular, we shall see in § 13.1.3 that 
the observables which in quantum mechanics describe the magnetic and electrical 
field at one point can be expressed as lineaj combinations of Cg -|- ?q and i(cg — 
^g), respectively, where Cg absorbs and Cg creates a photon. The quantization of 
the electromagnetic field thus presupposes that one uses the second quantization 
formalism. Let us also note that any - symmetric or antisymmetric - iV-particle 
wave function is, according to (10.20b) the result of operating with a product of N 
creation operators on the vacuum \(t>). 

We have assumed in the foregoing that the base {q} of the single-particle states 
was the base of the eigenfunctions of the Hamiltonian h. However, second quan
tization can start from any single-particle base. Changing the base in the space 
£ij thus induces a change of base in Fock space and a linear transformation of 
the annihilation operators. In particular, starting from the base \r) of states which 
represent a particle localized at the point r, second quantization produces annihi
lation operators ipir) and creation operators tp*{r), called field operators - which 
may have a spin index, omitted here for the sake of simplicity. When operating 
on the vacuum \(j)), if}'(r) produces the state ip'{r)\(f>) = \r), while Cg produces 
Cgl^) = \q) = J d r \r){r\q). Hence, we have 

/ 
d^ri,\r){r\q) , i^{r) = Y, i^W)'^'!- (10-23) 

9 

The operator associated with the number of particles per unit volume at the point 
r, the average of which is the particle density, is therefore given by 

i^^{r)^{v) = Y^c\{q\r){r\q}-^g. (10.24) 

The second quantization procedure, through eliminating the wavefunctions 
which do not possess the necessary symmetry, has at the same time eliminated 
all operators which do not commute with the exchange operator, such as, for in
stance, the momentum of one of the particles. In fact, such operators cannot be 
written in terms of the elementary operators ^g,cj ; acting upon the base (10.14) 
of symmetric or antisymmetric wavefunctions, they would induce a departure from 
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Fock space. They do therefore have no meaning in the occupation number formal
ism. The questions raised in § 10.1.1 which appeared natural as long as the particles 
were labelled do no longer show up. 

The Pauli principle itself has become implicit in the new formalism. It is ex
pressed simply by the structure of Fock space. By requiring that the iV-particle 
states are all symmetric for bosons, all antisymmetic for fermions, we have identi
fied any exchange operator in £^ with just the unit operator / for bosons, and 

with —/ for fermions. Accordingly, any Hermitean operator in £^ commutes with 
the exchange operator and is thus invariant under a relabelling of the particles. Con
versely, one can show that, if any Hermitean operator in some iV-particle Hilbert 
space represents a physical observable which does not distinguish between the par
ticles, the wavefunctions of this space must be all symmetric, or all antisymmetric. 
This is an alternative formulation of the Pauli principle, to which we alluded in 
§§2.1.3 and 2.2.7. The distinction between bosons and fermions is mathematically 
expressed in second quantization through the algebraic relations (10.21). The ex
change of the labels of two particles, which has no longer a meaning, is replaced 
by the exchange of two single-particle states in the commutation or anticommuta-
tion relation CqC , = rjc ,Cq: when applied to the vacuum, the operator CqC ,, which 
first fills the state q according to (10.20b) and then the state q, leads to the ket 
(10.12) ii q < q', whereas 'c icq leads to this same ket, multiplied by -|-1 for bosons, 

by —1 for fermions. When q = q , the anticommutation relation of 'cq and ^ , for 

fermions reduces to (cq) = 0, which expresses the exclusion principle. 

10.3 Equilibrium of Quantum Gases 

We have just emphasized in § 10.2.3 tha t the occupation number formalism 
enables us to factorize the contributions from the single-particle states for 
non-interacting quantum gases, notwithstanding the correlations between the 
particles introduced by the indistinguishability. However, in order to be able 
to sum freely over each rig it is necessary to get rid of the constraint (10.15) 
and to work thus in a grand canonical ensemble (§4.3.2). For a macroscopic 
system, the ensembles are equivalent (§ 5.5.3), and it is therefore legitimate 
to choose the one which is technically the most convenient. 

10.3 .1 G r a n d Canonica l P a r t i t i o n Func t ion 

The Hamiltonian (10.18) of non-interacting particles and the particle number 
(10.17) ajre diagonal operators in the Fock base (10.14), with eigenvalues 
(10.16) and (10.15). Calculating a trace over Fock space amounts to summing 
over the permit ted quantum numbers, tha t is, over n , — 0 or 1 for each single-
particle s tate q when the system consists of fermions, and over rig = 0 , 1 , 2 , . . . 
when it consists of bosons. The grand parti t ion function can thus be expressed 
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- / 3 ^ £ , ' n , - + a ^ no ' 

{n,} q' ni,n2,— 

«2 
2 

where we have written 

Xg = e -/3e„+a 

(10.25) 

(10.26) 

and where we must sum independently over each quantum number Uq. 
The calculation now falls into the general framework of §4.2.5, as Fock 

space, the density operator (10.19), and expression (10.25) all factorize into 
contributions associated with each state q. We have thus 

In ZG = E 1"̂  ^9' (10.27) 

where Zg is a trace in the elementary Fock subspace associated with the 
single-particle state q. In the case of Bose-Einstein statistics (rj = 1), n^ 
takes on all non-negative integral values and we get 

Zq = J2 X-
i-x„ 

(10.28a) 

in the case of Fermi-Dirac statistics (rj = —1), Uq equals 0 or 1, and we have 

Zq = E ^9 = 1 + ^9- (10.28b) 
n=0,l 

Combining Eqs.(10.27), (10.28), and (10.26), we get finally for the grand 
partition function 

I n Z c -r,Eln(l jye -/3e,+a\ (10.29) 

which is valid both for a gas of bosons (r; = 1) and for a gas of fermions 
( 7 7 = - ! ) . 

The average number of particles, the internal energy, and the entropy can 
be derived from (10.29) through differentiation, as was indicated in §4.3.2, 
and the pressure is P = In ZQ/IHQ for an extensive system. Below we shall 
give these quantities in an explicit and more convenient form. 
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10.3.2 Occupation Factors 

All thermodynamic quantities follow from (10.29), but other, more detailed 
quantities can be derived from the grand canonical equilibrium density oper
ator (10.19). In particular, the probability for the occupation number n , has 
an exponential Boltzmann-Gibbs form: 

Pin,) = ~ (X,)" ' = l-e-C^e^-aV,. (10.30) 
^q ^q 

Using it, we can derive the expectation value, fq = {ug) of the occupation 
number for the state q, which is called the Fermi factor or the Bose factor 
depending on the case. Explicitly, we get for fermions 

and for bosons 

« n„=0 

Xq Xq 

Zq ~ 1 + X , ' 

Xq Xq 

Zg{l - Xq)^ 1 - Xq 

More simply, one uses the standard procedure of § 4.2.6 and derives fq from 
In ZQ, noting that, if In ZQ is regarded as a function of /?, a and the energies 
Sq, its partial derivative with respect to e, is just —j3{nq). Thus we get 

However we calculate it, the final, important expression for the Fermi or Bose 
occupation factor is 

f,- ' Ql3e,-a _ ^ 
(10.31) 

We can use this expression, together with the exponential form of (10.30) and 
the statistical independence of the different q, to characterize the probability 
distribution of the occupation numbers riq. For instance, the fluctuations of 
riq are given by 

{n<i-Uf) = / , ( 1 + »?/,), (10.32) 

and (10.30) is equivalent to 

(1 + Vfg) 
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We can also express all thermodynamic quantities in terms of the fq, 
thanks to the relation 

(3e,-a = I n i i - ^ , (10.33) 

which follows from (10.31). In particular, the grand partition function (10.29) 
can be written as 

In ZG = 7? ^ ln(l + 77/,). (10.34) 

The particle number and the internal energy, which are the averages of (10.17) 
and (10.18) are given by 

iV = ^ / „ (10.35) 

9 

Using Eqs.(10.33) to (10.36) and (4.36) we find the entropy: 

S = k{hi ZG + PU - aN) 

= kJ2 {V{1 + Vfg) ln(l + Vf,) - h In /g], (10.37) 
1 

which alternatively can be expressed in terms of £,, if we use (10.31) and the 
relation 

1 + 77/5 = [1-776-^^^+°]" ' . 

10.3.3 Large Volume Limit; Density of States 

We have expressed the various thermodynamic functions (10.34-37) as sums, 
over the single-particle states q, of functions i^(eq) of the eigenenergies Sq. 
One often has to consider the limit where the extent of the system be
comes infinite; the Sq spectrum then becomes a continuum, and expressions 
(10.34-37) integrals. 

Let us, as an example, consider a gas of non-interacting bosons or fermions 
enclosed in a box, which we assume to be a parellepiped. If we forget about 
the spin of these particles, the states q are, according to (10.8), characterized 
by three quantum numbers mx,my, rriz = 1,2,... . The summation over rUx 
becomes, as L^ —> 00, an integration over the momentum component p^, 
with a weight which follows from (10.8): 

/•oo 7- />oo 7- /»+cx) 

y ^ ^ / dm^ = ^ dpx = -^ dp^ 
t^ Jo Tra ^0 h J_^ 



28 10. Quantum Gases Without Interactions 

(the integrand is independent of the sign oi Px)- Altogether, for a large size 
box the sum over q becomes a triple integral which is proportional to the 
volume: 

(10.38) 

Of course, we should not forget to sum over spin indices, if they occur. 
In the case of a thin layer - liquid helium film or metallic layer; see Ex-

erc.lOd, Prob.l l , and Prob.18 - we obtain in the same way a double integral, 
{S/h?) f (Pp, with a weight which is proportional to the area S, but the quan
tum number corresponding to the transverse momentum remains discrete. 

For a box with periodic boundary conditions (§ 10.2.1) the values of rrix, 
TUy, and m,z in (10.8) become positive and negative, but restricted to even 
values. In the limit as J? —> oo these two effects cancel one another and one 
gets again the same result (10.38) as for particles enclosed in a box with 
rigid walls. More generally, one can prove that (10.38) remains valid for a 
large box of arbitrary shape with arbitrary boundary conditions. This result 
ensures the existence of the thermodynamic limit (§ 5.5.2) for quantum gases 
without interactions and the extensivity of the various quantities (10.34-
37): in the large volume limit the thermodynamic quantities are independent 
of the shape and of the surface conditions of the container, and are either 
proportional to the volume or constant. A notable exception is the gas of non-
interacting bosons (§ 12.3) which becomes pathological when its temperature 
is sufficiently low or its density sufficiently high. In fact, a then tends to zero, 
the integrand becomes singular at p = 0, and the replacement (10.38) is no 
longer justified. We shall see that this leads to a phase transition (§ 12.3.2) 
and that the extensitivity of the Bose gas poses some problems (Exerc.l2c). 

The result (10.38) bears a similarity to the classical limit (2.69) of the 
trace for a single-particle Hilbert space. 

; / ^ . < - - ) 
„ , (fr (fip 
Tr - ' 

h 

which after integration over r reduces to (10.38). One should, however, note 
the differences between these limits. On the one hand, going over to the in
finite volume limit (10.38) is, as we shall see in later sections and chapters, 
applicable to systems where quantum phenomena play an important role, 
even on the macroscopic scale. On the other hand, this limit (10.38) is only 
relevant to single-particle states in sums such as (10.34-37) for a large box 
with a constant potential, whereas the classical limit (10.39) can be general
ized, as indicated in § 2.3.4, to any number of particles in any potential. 

As the thermodynamic quantities (10.34-37) depend on the indices q only 
through Sq, it is often useful in the case of three-dimensional systems to write 
them as single integrals over the variable e, rather than as the triple integrals 
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(10.38). To do this, we introduce the single-particle density of states 2?(e), 
defined through 

V{e) = 5 ] 5(£ - Sg), (10.40) 

which means that V{s) ds is the number of states q with energies Sg between 
e and e + de. The sums (10.34-37) can then be written in the form 

Y, ¥>(£,) = j deV{e)^{e) (10.41) 

and the study of a quantum gas at equiUbrium is directly connected with 
finding the distribution of the eigenvalues Sq, (10.40), of the single-particle 
Hamiltonian h. In particular, the particle number and internal energy, 

TV = j deV{e)f{e) , U = J deVis)s fie), (10.42) 

involve solely the product of the density of states 2?(e), which characterizes 
the single-particle properties, and the occupation factor 

fie) ^ l/ie^^--n), 

through which the temperature, the chemical potential, and the statistics 
obeyed by the particles are introduced. Equations such as (10.42) thus clearly 
separate the dynamics of the particular system under consideration, which 
enter through 2?(e), from the statistical parameters /3, a, and rj = ±1 . 

For a finite system, Vie) is a distribution and (10.41) is useless. Nonethe
less, in the large volume limit, T>ie)/Q tends to a function which should 
be evaluated before we can use (10.42) directly. As an example, for a non-
relativistic spin-s particle, £g is given by (10.9) if there is no magnetic field, 
and using (10.38) in the definition (10.40) gives us (the Heaviside step func
tion Oie) equals 0 when £ < 0 and equals 1 when e > 0) 

^ ( . ) M 2 . + l ) | / < i V ( . - | ^ ) 

= (25 + 1)—47r / p^dp — SiV2me-p) 
n Jo P 

we have integrated over the angles and afterwards used the properties of the 
6 distribution which are summarized at the end of this volume. In a more 
elementary way we find the same result by rewriting (10.38) in spherical 
coordinates, integrating over the direction of p, and finally changing from 
the radial coordinate p to e = p'^ /2m. 
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On account of the practical interest of ^{s), we give yet another method 
of calculating it. We start by looking for the number Af{e) of single-particle 
states with energies lower than e, the derivative of which is simply X>(e): 

^f{£) = J2 d{£-eg) = f de'V{e'). (10.44) 

For the non-relativistic particle considered, N{e) is the number of points 
in p-space belonging to the lattice (10.8) and situated inside the sphere of 
radius p = y/lme. For a box with rigid walls, they have coordinates (10.8) 
with integer values of rrix, f^y, m^ and only one octant of the sphere should 
be retained; for periodic boundary conditions, the mesh is doubled and the 
sum extends over the whole of the sphere. In the limit as i? ^ oo the points 
lie densely, and asymptotically their number is in both cases 

N{e) = {2s + l)^^{2mef'H{e), (10.45) 

which leads again to (10.43). 
The density of states depends crucially on the form of the energy e{p) 

and on the dimensionality of the system. For three-dimensional relativis-
tic particles (Exerc.lSc, Prob.9) we must replace in the above calculations 
£ = p^ /2m by £ = ^/rn?c'^ ̂ p^c^. In particular, for massless particles, with 
energies (10.10), we find 

for each possible spin value (for photons we must multiply (10.46) by 2). 
Other examples of density of states which show up the role of an external 
potential and of the dimensionality are given in Exerc.lOc, Chap.11, and 
Probs.ll, 12, and 18. 

Writing the thermodynamic quantities as integrals with the weight func
tion V{e) enables us to perform useful integrations by parts. In particular, 
we can use Eqs.(10.29), (10.41), and (10.44) to rewrite the grand potential 
and the pressure V in the form 

-VQ = ^ = - i l n Z c = I f deV{e)ln{l-r]e-'^^+°') 

I deM{e)f(e), (10.47) 

and similarly we get for the particle number (10.42) 

N = - I deUie)^^. (10.48) 

Expression (10.47) is particularly useful to calculate the low-temperature pres
sure of a gas of fermions, in contrast to the original expression (10.29) for 
the grand potential, for which it is more difficult to take the limit as /3 —> oo. 
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10.3.4 Classical Limit; Low Densities 

We indicated in § 7.1.2 that the classical perfect gas model was justified for 
the low density or for the high temperature limit. One should therefore expect 
that in those limits the results obtained above reduce to the properties of a 
perfect gas. In order to discuss the validity of the classical approximation, we 
rewrite the relation (10.42), which connects the density with the temperature 
and the chemical potential, in terms of dimensionless quantities, for the case 
of a non-relativistic gas in a box with the density of states given by (10.43). 
Putting X = /3e, we have 

f? (27rmfcT)3/2 ' Q ^^ ^ ' V^ Jo e^ - rj' 
A3. = (2, + l ) _ / - X ^ . (10.49) 

We have introduced here the thermal length AT which is proportional to 
T^-^/^ and was already defined in Chap.7. The relation (10.49) determines a 
as an increasing function of the quantity NX^/H. In order that the latter be 
small compared to unity, we need to have e~° ^ 1, and the term in rj is then 
negligible in the integrand on the right-hand side of (10.49). After integrating 
over X we find in this classical limit 

This condition defines the domain of validity of the perfect gas approxima
tion, in terms of the density and the temperature or in terms of the chemical 
potential jj, = kTa. It is satisfied, as we saw in § 7.3.1, when the density is 
sufficiently low or the temperature sufficiently high for the thermal length to 
be short compared to the distance between the particles; this is the case for 
all atomic and molecular gases - bar helium below a few K. In that situation 
we have, both for bosons and for fermions, 

fg ~ 6"''^''+" < 1 (10.51) 

in all single-particle states. If we use (10.51) and (10.38) we find for the grand 
partition function (10.34) 

InZa - J2fi -- {2s+l)~e- J d'pe-^P'/'"^ 

(2s -h l )e" /2 
j\rp 

(10.52) 

the same expression as equation (7.28) which was calculated directly in the 
framework of classical statistical mechanics; there is no classical equivalent 
for the factor (2s -f- 1) and it can be interpreted as an internal partition 
function of the type discussed in §8.3.1. Thus, in the limit (10.50) or (10.51), 
we recover all thermodynamic properties of the perfect gas. In particular, we 
find again from the quantum entropy (10.37) the classical expression 
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5 = fe ̂  / , (1 - In / ,) = kY, e-^''-^" (1 + ^£, - a). 
Q 1 

The number of particles with momenta within the volume element d^p is, 
in the limit (10.50) and taking the spin into account, equal to 

{2s + l)^d'pU ~ (2. + l ) ^ e « - ' ^ ^ ' / 2 ' " d V (10.53) 

We thus recover the Maxwell distribution. Moreover, the normalization of 
(10.53) is in agreement with Eqs.(7.31) or (8.13) for the density of a perfect 
gas as function of the chemical potential. 

In order to understand better why the Bose-Einstein and Fermi-Dirac 
statistics have as common limit the perfect gas when (10.50) is satisfied, 
we note that, if e" <C 1, very few single-particle states are occupied. The 
probabilities (10.30) are practically equal to 1 for Uq = 0, they are small 
and close to (10.51) for Uq = 1, and, for the case of bosons, are completely 
negligible for n , > 1; thus the distinction between the statistics no longer 
plays a role. Note, nevertheless, that the lowest-order corrections to (10.51), 
and hence to the thermodynamic quantities (10.37), (10.42), or (10.47) have 
opposite signs for fermions and for bosons; the perfect gas thus appears to 
lie half-way between the non-interacting fermion or boson quantum gases 
(Exerc.lOf, lOg). 

The perfect gas limit which we have just discussed only deals with parti
cles in a box. In the general case where the single-particle Hamiltonian h is 
arbitrary, quantum mechanics appears in Eqs.(10.29) or (10.34) for the grand 
potential in two different ways which must be distinguished. On the one hand, 
we need to solve a single-particle quantum problem, that is, find the eigenval
ues Eq of h. On the other hand, the Pauli principle gives us the form of the 
occupation factor which depend on the statistics and differs from the clas
sical factor (10.51). As a consequence, depending on the circumstances, two 
different "classical" simplifications can occur even though classical statistical 
mechanics, in the strict sense of the word (§ 2.3), is not valid. 

(a) Low Densities. When the chemical potential is very large and negative -
to be more precise, when Q°'-0^<^ <^ 1, where EQ is the ground state energy of 
h - the approximation (10.51) is justified. As a result, (10.34) reduces to 

In ZG y e-^"''+« = e" tr e"'^'^, (10.54) 
9 

where the trace is taken over the single-particle Fock space. In this limit 
Bose-Einstein or Fermi-Dirac statistics no longer enter the discussion, but 
the quantum nature of the single-particle problem is, in general, still there 
through the diagonalisation of h. We give in § 11.3 an important example: 
the conduction electrons in an insulator are few so that (10.54) is justified, 
but they are subject to a potential which varies rapidly on the scale of the 
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lattice distances of the crystal and that makes it impossible to calculate the 
trace in (10.54) using semiclassical methods. A similar situation occurred in 
§ 8.4.4 for the molecular internal degrees of freedom which had to be treated 
quantum mechanically. Note that in the low-density limit (10.54) implies that 

the canonical partition function equals (tre"^*^) /N\; we recover the factor 
1/JV! of Eq.(2.55) which follows from the Pauli principle and which persists 
even though the Bose or Fermi statistics no longer appear. 

(b) Slowly Varying Potential. We saw in § 10.3.3 that, if the potential is con
stant, (10.38) is the same as the single-particle classical limit (10.39). More 
generally, let us assume that h contains, apart from the kinetic energy of 
the particle, only a potential which varies slowly in space. We shall meet 
with this situation in § 11.3 when studying the electrostatic equilibrium of 
matter, the electrons of which are subject to a slowly varying electric field; 
similarly, the gravitational equilibrium of a star (Exerc.6e,10e and Prob.9) 
involves a slowly varying gravitational potential. In such cases the considera
tions of § 2.3.4 justify us to replace the sum over q by the integral (10.39) in 
the evaluation of the various thermodynamic functions (10.29), (10.34-37). 
Everything proceeds as if the potential were constant in the various volume 
elements which make up the sample so that expression (10.39) is obtained 
by regrouping the contributions (10.38) from each volume element. Using 
dimensional arguments one sees that this approximation is valid when the 
potential varies sufficiently slowly and the temperature is sufficiently high so 
that A T | V F | -C kT. One could use the Wigner representation to calculate 
the corrections (§§ 2.1.2 and 2.3.4). However, it can happen that the above 
condition is satisfied without the low density condition e°'~^^° <S 1 being 
satisfied. In that case the classical limit is valid only with regard to the sum
mations over q, but quantum mechanics must be used for the form (10.31) of 
the occupation factors; the Pauli principle remains essential due to the high 
density. 

10.4 Fermi-Dirac Statistics 

10.4.1 Examples of Fermion Gases 

A variety of systems can be described by the model of non-interacting 
fermions in a box. 

A metal is a solid in which a number of electrons move freely within 
the sample, producing a high electrical and thermal conductivity. The other 
electrons remain strongly bound to the atomic nuclei. The resulting ions are 
fixed on a lattice and we assume that the conduction electrons move freely 
through that lattice. In fact, each of those electrons is subject to the combined 
potential of the other electrons and of the ion lattice. The model consists in 
replacing this potential to a first approximation by its average value over the 
lattice, taken to be constant inside the solid and becoming large outside it. 
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since the Coulomb at tract ion from all other particles prevents an electron 
from escaping (see Fig. 11.7). The difference between the potential outside 
and inside the metal is of the order of several eV, tha t is, very much larger 
than the temperature . We can therefore assume tha t the potential is infinite 
outside, except if we want to study phenomena when the electrons are pulled 
out of the metal (Exerc.lOc); we choose the potential inside the metal as the 
origin of the energy, and we are thus back at the model of a box introduced in 
§ 10.2.1. We may hope tha t this model will give us at least qualitative ideas 
about how the conduction electrons in a metal behave. We shall justify and 
improve it in Chap. 11. 

The number of free electrons depends on the valence of the metal. It is 
equal to 1 per a tom for Cu, and 3 for Al. We can easily evaluate N/f2: for 
Cu the atomic mass is 63.6 g mol^^ and the density 8.59 g cm~^, which gives 
TV/J? = 0.85 X 10^^ m^^, and hence distances between the electrons are of the 
order of 2 A. On the other hand, the electron mass is small so tha t Ax is much 
larger t han for a gas of a toms or molecules: Ax = 43 A at room temperatures . 
Combining these results we find tha t N\j,/0 is very large (0.67 x 10^ for the 
electron gas in Cu) and we have the opposite situation of the classical limit 
(10.50). In such a case where Fermi-Dirac statistics are essential, one often 
says tha t the fermion gas is "'degenerate". 

The first electron theory of metals was worked out by Paul Drude (Brunswick 
1863-Berlin 1906). It was based on the work of Hendrik Antoon Lorentz (Arnhem 
1853-Haarlem 1928) who laid the foundations of a theory of the interaction be
tween electromagnetic radiation and charged particles in matter in 1895, and that 
of Joseph John Thomson (Manchester 1856-Cambridge 1940) who showed that the 
"cathode rays" emitted by metals (Exerc.lOc) consisted of light particles, the elec
trons, whose mass and charge he measured in 1897 and 1898, respectively. Drude 
succeeded in explaining metallic brightness and the fact that the electrical and ther
mal conductivities are proportional to one another (Wiedemann-Pranz law, 1853) 
using the above model of free electrons in a box. However, he treated the electrons 
as particles of a classical perfect gas, obeying Boltzmann statistics, so that certain 
properties of metals such as their paramagnetism remained unexplained for another 
quarter of a century. One had to wait until 1926 before the new statistics following 
from the Pauli principle were applied by Fermi and by Dirac to the gas of electrons 
in a metal (§ 10.1.2). Pauli soon showed that the paramagnetism of metals was 
due to the exclusion principle and the electron spin (Exerc.lOb). It was mainly 
Arnold Sommerfeld (Konigsberg 1868-Munich 1951) who developed the quantum 
electron theory of metals . As we have already stressed, the classical approxima
tion is completely unjustified so that Drude's explanation of the Wiedemann-Franz 
law appears to be a happy accident (§ 15.2.3). 

** Ann. Physik (Leipzig) 1 (1900) 566 and 3 (1900) 369. 
^ Zs. Physik 41 (1927) 81. 
^°Zs. Physik 47 (1928) 1. 
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The inert gases with nuclei having an odd number of nucleons are another 
example of fermion gases since their atoms interact weakly with one another. 
Nonetheless, even for the lightest of them, the ^He isotope of helium, condi
tion (10.50) is well satisfied at ordinary pressures and temperatures: the ^He 
mass is 5000 times that of the electron and the number density is of the order 
of 1000 times smaller than that of the electrons in a metal. Hence the perfect 
gas approximation is valid, and Fermi statistics bring in only small, though 
measurable, corrections (Exerc.lOf). Only for liquid helium 3 at low temper
atures (T < 3 K) is the "degenerate" fermion gas model useful (§ 12.2). All 
other substances are found either in the solid state or in the classical gas or 
liquid states, depending on the temperature, as their atoms either are heavier 
or interact more strongly with one another. 

The atomic nuclei consist of protons and neutrons which are fermions. 
They can to a first approximation be described as gases of non-interacting 
nucleons enclosed in a box, the size of which is that of the nucleus. This 
model is qualitatively correct, even though the actual interactions between 
nucleons are strong. The short-range part of these interactions is inhibited by 
the exclusion principle, whereas the average effect of their longer-range part 
is taken into account through the box potential which confines the nucleons 
to the nucleus. The density of nuclear matter is so large that Fermi-Dirac 
statistics play their full role and a nucleus is practically at zero temperature. 
However, the number of nucleons is such that the infinite volume approxima
tion is, in general, insufficient. 

The matter of a neutron star (Exerc.lOe) consists to a first approxima
tion of non-interacting neutrons. Notwithstanding the high temperature, the 
density is so huge that the matter behaves as a "degenerate" fermion gas. 
Similarly, in a white dwarf (Piohs.Q and 10), the completely ionized matter 
consists of light nuclei and electrons; the latter produce a "degenerate" gas 
as in a metal, whereas the - heavier - nuclei satisfy condition (10.50) and 
behave like a classical gas. 

10.4.2 Fermion Gas at Zero Temperature; Fermi Temperature 

At zero temperature the canonical and grand canonical Gibbs distributions 
are the same, even if the system is finite. The iV-fermion gas is in its ground 
state, obtained by putting these N fermions in the N single-particle states 
with lowest energies Eg. (For the sake of simplicity we assume that the Nth 
and the N + 1-st level have different energies, so that the iV-particle ground 
state is not degenerate.) The maximum energy Eg attained in this filling up of 
states is called the Fermi energy, or Fermi level, ep. The number of particles 
in the gas is connected with ep through 

N = f deV{e) = M{ep), (10.55) 
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where we have used the definitions (10.44) of the function M{e) and (10.40) 
of the distribution P(e), while the energy of the gas equals 

U ^ I ^ deeV{e). (10.56) 

In the grand canonical formalism the Fermi factor, /(e) = j^e'^'^"'*' + l] , 
tends to the step function 

m^^J{,-e) = [l l^^l (10.57) 

which expresses the fact that the occupation numbers Uq are 1 when e < cp 
and 0 when e > ep. (Using (10.32) and (10.57) we can check that there are 
no fluctuations.) The Fermi energy ep is the same as the chemical potential 
at zero temperature; in agreement with general principles, we can identify it 
with the energy needed to add a particle to the system, at constant volume 
and entropy. 

In the case of a non-relativistic gas in a box, filling the single-particle 
states up to the Fermi level defines in momentum space the Fermi surface, 
a sphere, the radius of which, pp = v'2mep, is called the Fermi momentum. 
It is useful to measure the Fermi energy in kelvins, in this way defining the 
Fermi temperature 0p = sp/k. Using (10.45) and (10.55) we find for spin-| 
particles 

^^ - 2^ - 2^[^'' n) - 2k^^y (̂ °-̂ ^^ 

Numerically, for the free electrons in copper 0p is equal to 80 000 K, or, in 
energy units, 7 eV. (We could have expected this order of magnitude as ep 
is of the order of h /2m(fi, where d ~ 2 A is the average distance between 
electrons; this can be compared with the binding energy of 13.6 eV of a 
hydrogen atom, 7i^/2mao, where ao = 0.53 A is the Bohr radius.) The Fermi 
temperature (10.58) is the "characteristic temperature" of the problem: it 
is the only quantity with the dimensions of a temperature which one can 
construct from the Fermi gas density or from the density of states. This is 
the temperature with which we must compare the actual temperature T of 
the metal. The very large value of Op ensures that at all temperatures, even 
up to melting, we have T <C ©p. Hence the gas of the electrons in a metal is 
always at very low temperatures as compared to its characteristic temperature 
0p , which means that the approximation T = 0 is a good one. Nonetheless, 
the velocity vp of the electrons at the Fermi level is huge, as it equals 

vp = ^IkOplm. ^ 1500 km s " ^ (10.59) 

Pauli's exclusion principle therefore results in giving the electrons very large 
characteristic velocities, even at absolute zero. The characteristic velocities 
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of a classical gas of particles with the same mass would be much smaller at 
room temperatures, by a factor of ^/3T/20p ^ 1/10. Note that the quantity 
N\%jQ, defined in (10.49), behaves as 4(s + l)a^/'^/Z^ for e° » 1; it is 
thus the same as {&F/T) ' when T <^ 6>F, apart from a factor S/S-̂ /Tr. The 
condition (10.50) for the validity of the classical approximation is thus exactly 
the opposite of the condition T/0-p <t; 1 which expresses that the Fermi gas 
is "degenerate". 

In the case of the non-relativistic Fermi gas, to which we are restricting 
ourselves here, the ground state energy (10.56), (10.43) is 

U = iNev, (10.60) 

where we have used (10.58). Due to the Pauli principle the mean energy per 
particle, | £ F J is large, whereas it would have been zero for the Bose-Einstein 
and Boltzmann statistics; in the latter case it vanishes as |fcT. 

The pressure, given either by (10.47) or by the Gibbs-Duhem relation, at 
zero temperature equals 

'p ^ Yj r " ^ ^ ^ ^ ^ ^ " h ( ^ F ^ - ^ ) - (10-61) 

Using (10.60) we get for a non-relativistic Fermi gas V = 2e-pN/hQ, whereas 
the pressure V = kTN/Q of a perfect gas tends to zero at zero temperature. 
It is just the large value (10.61) of the pressure of the neutrons in a neutron 
star (Exerc.lOe) or of the electrons in a white dwarf (Prob.9) which enables 
the matter of those stars, for which kT -C Cpj to resist gravitational collapse. 

To summarize, the exclusion principle, by forcing the fermions to oc
cupy distinct single-particle states, considerably raises their typical velocities. 
Hence, at temperatures T <C ©F, the internal energy and the pressure take 
on values (10.60) and (10.61) which are much larger than the classical per
fect gas values, by a factor 2 0 F / 5 T , and which remain practically constant 
in that temperature range. 

10.4.3 Equilibrium Properties at Low Temperatures 

The properties of a fermion gas at finite temperatures are governed by the 
shape of the Fermi factor / , = /(Sg), which appeared in (10.34-37) or in 
(10.42), (10.47), and which equals 

/(e) = -t i ^ = ^-Jtanh^-^;^. (10.62) 
J V J g(e-^)/feT _^_i 2 2 2kT ^ ' 

It is essential to master a feeling for the shape of this function. 
Given that the occupation number Uq of a state q can only take on the 

two values 0 and 1, the Fermi factor, which is its expectation value, must 
necessarily lie between 0 and 1. It is a decreasing function of e,, as should be 
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Fig. 10.1. The Fermi factor 

IX + 2kT e, 

the case: states q with a high energy are less populated than those with a low 
energy. Figure 10.1 shows that the Fermi factor fq, as function of the energy 
Sq, has a sudden drop around the value Sg = fi — a//3, where the energy of 
the single-particle state q equals the chemical potential fj,. At sufSciently low 
temperatures fj, is close to ep as defined by (10.55), and one usually still calls 
/i the Fermi level. The lower the temperature, the faster the variation of fq 
around the Fermi level; the width of the region where / , decreases rapidly is 
of the order of 4kT. As a result, at very low temperatures the states situated 
below the Fermi level {Sq < /i) are practically all occupied by a fermion and 
the states situated above it are practically all empty. When the system is 
heated up, particles are excited from states q below the Fermi level to states 
above it, in a range \eq — fi\ of order kT. Thus, the occupied states become 
partially depopulated: to express that particles have been taken away, one 
says that ^'holes have been created" in the states Eg < fi. On the other hand, 
the empty states Sq > fi become partially filled. 

Note the symmetry of the f{e)-curve around the Fermi level fi. In fact, we 
see from (10.62) that if we change the sign of the energy e^ — /i of the state 
q, measured with respect to the Fermi level, fq transforms to 1 — fq. This 
symmetry reflects a symmetry between holes and particles: n , = 1 means that 
the state q is occupied by one particle, or equivalently, that there is no hole 
present, whereas n^ = 0 means a state q without a particle, or equivalently, 
the presence of a hole. Thus, whereas rig is the number operator for the 
particles occupying the state q, I — riq is the number operator for holes in the 
state q; if / , is the average number of particles in the state q, 1 — fq can be 
interpreted as the average number of holes in that state. When one creates a 
hole, the energy and the particle number decrease, which explains the change 
in sign oi Cg — fi in the particle-hole symmetry. This symmetry is also very 
evident in expression (10.37) for the entropy of a gas of fermions (r) = —1), 
which is invariant under an exchange of fq and 1 — fq. 

The symmetry of the Fermi factor becomes clear, if we note the formal 
analogy between the calculation of (10.28b) and that of the partition function 
(1.13') of the spins in a paramagnetic crystal. The sites i are here replaced by 
the single-particle states q; the quantum number ai, which took on the two 
values +1 and —1, is replaced by the occupation number Uq, which takes on 
the two values 0 and 1 so that 2nq — 1 plays the role of o-j. Expression (10.62) 
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must be compared formally with the average magnetic moment (1.37) of a 
paramagnetic ion, and the /q <-> 1 — /q symmetry corresponds to the obvious 
(cTi) '-^ {-<^i) symmetry. 

When one is far from the Fermi level on either side, / tends exponentially 
to 0 or 1. More precisely, we have 

/ ( e ) - Q-ie-^^)/kT ^jjgjj e-fx^kT, (10.63a) 

l - / ( £ ) ~ Q-(t^-'^)/kT ^ijgjj n-e->kT. (10.63b) 

Compared with (10.51), expression (10.63a) means tha t for sufficiently high 
energy levels Sq the particles behave classically. In fact, when the probabil
ity for the occupation of a single-particle state q is small, the Fermi-Dirac 
statistics reduce to the Boltzmann statistics. In particular, the classical limit 
of § 10.3.4 corresponded to a situation where the condition Eg — fi ^ kT was 
implied by (10.50) for all single-particle states q. The two limits (10.63a and 
b) are related to each other by the hole-particle symmetry, and Eq.(10.63b) 
means tha t the holes behave classically when they are sufficiently far below 
the Fermi level. This remark will be very important when we study insulators 
and semiconductors (§ 11.3). 

The behaviour of the Fermi factor / ( e ) enables us to understand qualita
tively a number of properties of metals and other degenerate fermion gases. 
When T/0-p is small, / ( e ) does not differ significantly from its limit (10.57) 
except in a narrow range with a width of the order of kT around the Fermi 
level. When the material is subjected to a weak external action, such as an 
electric or magnetic field, or heating, the only transitions allowed are the ones 
for which the particles gain or lose little energy. Tha t , however, is possible 
only for particles whose energies lie close to /i, as the states which lie far 
inside the Fermi surface are practically completely occupied and hence the 
particles remain frozen to them. This is the reason why the gas is called "de
generate" : the electrons which take part in the infinitesimal changes of s tate 
have practically the same energy Sq ~ /x. Their proportion is very small, even 
though they are responsible for important effects. 

For example, the electrons in a metal move rapidly - the Fermi veloc
ity (10.59) is of the order of lO^ms"^ - but when averaged their motions 
produce a zero current when there is no field. The electrical conduction, a 
non-equilibrium phenomenon which we shall s tudy in § 15.2, is due to a dif
ferential effect in the vicinity of the Fermi velocity: the only single-electron 
states of which the average occupation can change under the action of an 
applied field are those whose energy is close to the Fermi energy, as an elec
tron cannot be scattered into a s tate which is already occupied. Therefore, 
amongst the electrons with average velocities which are in absolute magni
tude close to v-p there are more which move in one direction than in the other 
one, and this produces a net non-vanishing current. 

The explanation of most of the other metallic properties is equally based 
upon merely considering the single-electron states close to the Fermi surface. 
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The Pauli paramagnetism associated with the electron spin (Exerc.lOb) is, 
for instance, calculated using Sommerfeld's expansion (10.64) like the specific 
heat, which we evaluate below; the Fermi-Dirac statistics of the electrons lead 
to characteristics which are very different from those of the paramagnetism 
of localized spins (Chap.l). In particular, the magnetic susceptibility tends 
to a constant value at low temperatures, rather than following a 1/T Curie 
law. Moreover, there is a diamagnetic contribution associated with the orbital 
motion of the electrons: the Landau diamagnetism. (Prob.ll). 

The Volta effect, that is, the appearance of an electrostatic potential dif
ference between two different metals which are brought into contact, can be 
explained by noting that their chemical potentials /x, which are a priori un
equal when the samples are separated, must become equal when it is possible 
to exchange electrons. The transfer of electrons from the metal which initially 
had the higher chemical potential towards the other metal creates then near 
the boundary a double layer of charges, positive on the side of the first metal 
and negative on the side of the second metal; this itself produces a poten
tial difference equal to the initial difference between the chemical potentials 
(§ 11.3.5). The thermionic effect (Exerc.lOc) is the emission of electrons by 
a heated metal. In order to understand it, we must improve the model and 
take into account the fact that the potential outside the box which confines 
the electrons is finite, equal to V. Thermally excited electrons with kinetic 
energies larger than V inside the metal may escape when they hit the wall; 
the number of electrons which is thus emitted is controlled by the Fermi 
factor (10.63a) in the range of energies higher than V. The emission of an 
electron current by a heated cathode leads to numerous practical applica
tions, such as the electron gun in a television tube, or high-power rectifying 
and amplifying lamps. The applications of the photoelectric effect (cells) are 
just as well known. Here, the absorption of a photon with a sufficiently high 
frequency allows an electron to acquire sufficient energy to leave the sample, 
and ultimately to be captured by the anode. The abrupt shape of the Fermi 
factor explains the existence of a threshold for the photon frequency, which 
must be higher than {V — iJ,)/h. Above this threshold, the luminous energy 
is transformed into electrical energy. 

To obtain quantitative results we must for T <C 0F expand the Fermi 
factor /(e) in the vicinity of its zero temperature limit (10.57). The terms 
of lowest order in T/0p will, generally speaking, be sufficient for our pur
poses. Nevertheless, the limiting form —6{e — /x) of df/de suggests that we 
must look for an expansion of /(e) in the sense of distributions. We there
fore shall consider the following integral, which is of the general type of the 
thermodynamic quantities we want to evaluate: 

/ def{e)cp{s) - / de<f{s), 
J • / — GO 
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where ip is a, regular test function. We distinguish in this expression the 
regions e > jj, and e < fi, and use as variable x — /3(e — /x) in order to stretch 
the dominant region e — /x < fcT. We find 

\ I X 
^ , dx ip { u+ T; I n 
f3 Jo ê  + l '^V /3y /? 

dx 
e^ + 1 

if [fi + 
/? 
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Changing a; to —x in the second term we have used the hole-particle sym
metry. We now only have to expand (̂  as /3 -^ oo, and we then get the 
asymptotic expansion (see formulas at the end of this volume) 
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As a consequence we can write down the low-temperature expansion of the 
Fermi factor, called the Sommerfeld expansion: 

f{e) = e{^,~e)--^{kTf8'{e-n) (10.64) 

which means that, for any regular function <p{e), 

I de fie) ^(e) ^^^ j ' ^ de ^(e) + ^ {kTf ^'{^l). (10.64') 

The thermodynamic properties of fermion gases at low temperatures are 
obtained by replacing f{s) by (10.64) in Eqs.(10.37), (10.42), (10.47). Using 
(10.44) we thus get for the expansion of the grand potential (10.47): 

A ^ - r dsAfie)- "^{kTfVi^C). 
J — OO ^ 

(10.65) 

Similarly we get from (10.37), (10.42), and (10.64) the particle number, the 
internal energy, and the entropy as functions of T and fi: 

N « Afifi) + -{kTfV'ii,), 

U ^ f deeV{e) + ^ {kTf [V{n) + ^lV'{^i)] 

(10.66) 

(10.67) 
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k^TVin). (10.68) 

These expressions can also be derived from (10.65). For the non-relativistic 
gas model describing the electrons in a metal we can use (10.43) and (10.45) 
to write them in the form 

N 
Q 

2,-K'^h' 
ilmiifl'' 

57r2a 

n X3/2 k'^T 

m^ ^'"^^^ M 

(10.69) 

(10.70) 

(10.71) 

Comparing (10.42) with (10.47) we see moreover tha t when V{£) oc e^/^ ^jjg 
pressure is related to the energy through 

2U 
(10.72) 

a relation which is valid at all temperatures . The origin of this relation, which 
is also satisfied by the perfect gas, is discussed in Exerc.lSa. 

In order to use (10.69-71) to find the thermal properties of a sample with 
a fixed number N of particles we must eliminate JJL, which varies with the 
temperature . Comparing (10.69) with its limit (10.55) at zero temperature , 
which defines 0 p as function of the density N/Q, we get 

/̂  ep 12 I 0p 
(10.73) 

As the temperature rises, the low-energy states empty to the advantage of the 
high-energy states; however, the latter lie more densely and it is necessary 
to decrease the chemical potential in order to keep the number of particles 
constant. Substi tuting (10.73) into (10.70) we find the correction to (10.60): 

U •NSF 
57r^ 

12 
T 
0^ 

(10.74) 

Hence we find the specific heat at constant volume at temperatures T <c ©F-

(10.75) C = 
dU n^ T 

— Nk--. 
2 ©F 

Note tha t the variation of ^ with temperature has played a part in this 
calculation; if we had taken the derivative of (10.70) with respect to T with 
t̂ constant, we would have obtained a wrong result. We could also have 
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derived Eq.(10.75) from (10.69) and (10.71) which give us 5 = n^NkT/20F. 
The fact that S/N vanishes with the temperature expresses that the Nernst 
principle is satisfied. 

The specific heat of metals thus contains a linear contribution (10.75) 
which comes from the conduction electrons. In Chap. 11 we shall show that 
this contribution, which is swamped at room temperature by those from the 
other degrees of freedom of the crystal, mainly the vibrations of the nuclei, 
dominates at low temperatures (see the curve of the specific heat of potassium 
in Fig.11.22). A comparison of (10.75) with the specific heat of a classical 
perfect gas, |JVfc, shows that the Pauli principle has the effect of introducing 
a small factor Tr^T/SSp. This corresponds to the fact that, in a metal, one can 
thermally excite only a small fraction, of the order of T /6*F , of the electrons, 
namely those which are situated in a layer with a thickness of the order of kT 
around the Fermi surface, while the other, deeper, electrons remain frozen in. 
The effective number of degrees of freedom which contribute to the specific 
heat is thus reduced by a factor of the order of kT/e-p. 

10.5 Bose-Einstein Statistics 

10.5.1 Examples of Boson Gases 

The formalism developed in § 10.3 applies to quantum gases for which the 
energy and the number of particles are constants of the motion. There are 
few examples of physical systems of bosons for which this model is relevant; 
the most notable one is helium in the form of its most common ^He isotope. 
We discussed in § 10.4.1 that the temperature must be very low, of the order 
of a few K, in order that this fluid is not a classsical gas or fluid. The model 
where one neglects the interactions between the helium atoms is a very coarse 
one, but it gives a qualitative explanation of several phenomena (Chap.12) 
and it can be improved (Prob.l4). 

In Nature there are also boson systems for which the number of particles 
is not conserved and for which these particles can be created or absorbed 
by their interactions with other particles. For instance, a photon gas in an 
enclosure (Chap.13) represents in quantum mechanics the electromagnetic 
fleld in that enclosure. The exchange of energy between the field and the 
charged particles within the walls corresponds to a change in the state of the 
field, that is, to a change in the number of photons. The typical elementary 
process is the one where an electron in the wall changes its quantum state, 
emitting or absorbing a photon (§§ 10.2.3, 13.1.3, and 13.1.4). 

Another example, studied in § 11.4, is that of phonons which are parti
cles representing the quantized mechanical oscillations in a solid. Here also, 
exchange of energy with the other degrees of freedom is accompanied by the 
creation or annihilation of phonons. 



44 10. Quantum Gases Without Interactions 

10.5 .2 C h e m i c a l P o t e n t i a l s of B o s o n G a s e s 

When the number of particles is conserved the thermodynamics of a boson 
gas follows from Eqs.(10.34-37) with r] = + 1 , and the Bose factor (10.31) is 
equal to 

f^ = [ i _ e ( - . - ' ^ ) A T ] - ' = e-(^'-^)/ '=^ (1 + / , ) ; (10.76) 

it is shown in Fig.10.2. The summation of the series (10.28a) for the grand 
part i t ion function, the necessity for the occupation probability (10.30) to be 
bounded as n , —> oo, or the fact tha t / , must be positive, imply that we have 

Eq — fi > 0 for all q. (10.77) 

As a result, whereas for a fermion gas /x can have any value, for a boson 
gas it is necessary tha t the chemical potential is lower than the lowest energy 
level Sq. In particular, in the case of a gas of bosons of mass m enclosed 
in a box with energies (10.9), the chemical potential must be negative at all 
temperatures . This means tha t , as in the case of a classical gas (§ 8.1.4), the 
energy of the system decreases when one adds a particle to it: whereas a Fermi 
gas at low temperatures with a positive chemical potential has a tendency to 
yield particles, a Bose gas has the tendency to absorb them. Even though the 
particles do not interact, the symmetry or antisymmetry of the wavefunctions 
thus produces an effect which is similar to tha t of a force. Fermions seem to 
repel one another, which is easy to understand as the presence of a fermion 
in a s tate q saturates tha t s tate and forces the other fermions to go to the 
other states q'. In contrast, bosons seem to a t t rac t one another, since the 
free energy decreases more than for the case of a classical gas when one adds 
particles (Exerc.lOg). 

The limit a = fi/kT —> —oo corresponds, as in the case of fermions, to 
the classical low-density limit, and (10.76) then reduces to the Boltzmann 
exponential. The high-density limit is found here as a —> 0, in which case 
each low-energy state Eg ~ |/x| is occupied by a very large number of bosons. 
We shall study this effect, the so-called Bose condensation, in § 12.3.1. It is a 
remarkable demonstrat ion of the gregarious nature of bosons, resulting from 

Fig. 10.2. The Bose factor 
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the fact tha t the Bose factor (10.76) has no upper bound as e , — /x —> 0, in 
contrast to the Fermi and Maxwell factors. 

For a boson gas in which the number is not conserved such as the photon 
gas, there is only one constraint, on the energy, instead of two independent 
constraints, on the energy and on the number of particles. The particle num
ber is no longer a constant of the motion; the thermal equilibrium state is 
found by looking for the maximum of the entropy, given the total energy, but 
leaving N unspecified. One needs introduce solely a single Lagrangian para
meter, /?, associated with the energy, so tha t we find for the density operator 
in Fock space 

D = ^e-f^". (10.78) 

Comparing this with the grand canonical density operator we see tha t not 
introducing a constraint on (N) amounts to putting the chemical potential JJL = 
a/j3 equal to zero. The evaluation of the various thermodynamic quantities 
is thus the same as in § 10.3 but with a Bose factor equal to 

The free energy F associated with the canonical distribution (10.78) is the 
same as the grand potential (10.47) with pi put equal to 0. The average 
number of particles, 

^ = E ^ ^ ' (10-80) 
1 

is no longer an independent variable which one can use to determine /i, as in 
the case of systems with a conserved number of particles; when the tempera
ture is given, (10.80) determines automatically the average particle number. 

Another way to understand why the chemical potential of a photon gas 
is zero in equilibrium consists of using the properties of equilibria of the 
kind occurring in chemistry (§6.6.3). Here the photon can, when in contact 
with a wall, undergo annihilation or creation reactions, while the number of 
the constituent particles of the wall remains unchanged. Using the language 
of chemical reactions, this is, if we disregard the particles which are only 
spectators, equivalent to y t:; 0, where y denotes the photon. There is thus 
one allowed reaction of the type (6.74), with î  = 1 for the photon. The general 
relation (6.78) characterizing the equilibrium then simply gives /x = 0. 

The formal analogy between (10.79) and the expressions found when we studied 
the equilibrium of the quantum harmonic oscillator (Exerc.4f) is not by chance. We 
shall, in fact, show (§§ 11.4 and 13.1) that a set of quantized - mechanical or electro
magnetic - oscillation modes is the same as a boson gas with non-conserved particle 
number: these are two equivalent descriptions of the same physical situation. 
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Summary 

The Pauli principle allows us to classify particles as fermions (electrons, 
protons, neutrons, ...) or bosons (photons, nuclei with an even number of 
nucleons, ...). The N-particle micro-states are constructed from the single-
particle states q by giving the occupation numbers n^ of each of them. For 
fermions Ug can take on the values 0 and 1, and for bosons it can take on the 
values, 0, 1, 2, . . . ,oo. 

When there are no interactions between the particles, the grand canonical 
partition function (10.29) can be factorized into contributions associated with 
each of the eigenstates of the single-particle Hamiltonian. The thermodynamic 
quantities can be expressed in terms of the Fermi or Bose factors (10.31) 
which are the expectation values of the occupation numbers. In the case of 
particles in a macroscopic box, these quantities become integrals, either over 
the momentum, (10.38), of one particle or over its energy, (IO.4I), with 
the single-particle density of states as weight function. The Fermi or Bose 
factor then accounts for the nature of the particles, the temperature, and the 
density of the gas, while the density of states accounts for the single-particle 
energies. When the density is sufficiently low and the temperature sufficiently 
high (molecular gases) we come back to the perfect gas. 

The opposite conditions are satisfied for the gas of electrons in a metal, 
since room temperatures are very low as compared to the characteristic Fermi 
temperature (10.58). Most properties of the system are then governed by the 
neigbourhood of the Fermi surface. They can be evaluated by using the expan
sion (10.64) of the Fermi factor. Far above or far below the Fermi level, the 
Fermi factor tends to 0 or 1 according to (10.63). Particles and holes play 
symmetric roles in Fermi-Dirac statistics. 

The Bose factor diverges as s — fi ^ 0. The chemical potential is negative 
for bosons if the particle number is conserved (*He) and zero if the particle 
number is not conserved (photons). 

Exercises 

lOa Indistinguishable Particles in a Harmonic Potential 

1. We consider a harmonic potential well in which there may be present 
one or more non-interacting particles. What is the spectrum of the single-
particle states? What are the changes in the canonical and in the grand 
canonical partitition functions, in the internal energy, and the chemical po
tential - for fixed (N) - when one changes the zero of the energies, replacing 
Eg by e'g = Sq + 61 Take afterwards the ground state energy as the origin of 
the energy and write e^l^^'^ = y. 
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2. Evaluate the canonical parti t ion function 

- for a single particle; 

- for two distinguishable particles; 
- for two fermions, assuming they have no spin; 
- for two spin-zero bosons; 
- for two spin-1 fermions. 

3. Compare the internal energies and the entropies in these cases. Study 
the limits as T ^ 0, as T —> oo, and as ?i ^ 0. Explain the results. 

4. Write the grand part i t ion functions for spin-zero fermions and bosons 
and for s p i n - | fermions in the form of series. Write down the relations between 
fi and {N) for fixed {N) in the case of high and low temperatures . 

5. Check the results of 2, starting from the form of the grand part i t ion 
functions. 

Solution: 

1. The energy levels of the harmonic oscillator are given by eq = {q + 2)^^ 
where the single quantum number q takes on the values 0, 1, 2, . . . . When £q is 
replaced by £q = Sq + S, ZQ becomes 

where E' = X^o^W^' ^'^'^ where the Uq must satisfy the constraint (10.15). The 
internal energy becomes U' = - 9 I n ZQ/OP = U + NS, and the change in the free 
energy is the same, whereas the entropy remains unchanged. The grand partition 
function becomes 

Z'G{l3,a) = ^ e - ' 3 ^ ' + " ' ^ = J2^-0EH<^'-0i)^ 

= ZGi0,a^l36). 

For a given particle number {N), dInZ'Q/da' = dlnZQ/da implies a' = a + 
136, fj- = iJ, + S. The chemical potential changes along with the single-particle ener
gies, but the value of the grand partition function remains unchanged. 

2. The single-particle canonical partition function is 

For N distinguishable particles we have Zj^ — Z^ , and, in particular, 

z? = Y. :Q + Q 1 

For two spin-zero fermions the states, which must have antisymmetric wavefunc-
tions, are characterized by stating which two different levels are occupied. Hence 
we have 
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CO 

7F0 _ -sp 0+9' _ 1 7 P 1 v ^ 2, _„ y 1 

q'>q>0 9=0 

For two bosons the two particles can occupy any two states, different or not, whence 

0 0 1 1 

rp-B Y ^ q+q' ^FO , V ^ 2g ' ' 

9 '>9>0 9=0 ^ ^ ^' 

For two spin-5 fermions the three triplet states, symmetric in the spins, must be 
associated with an antisymmetric orbital wavefunction and contribute 3Z ; the 
singlet state, antisymmetric in the spins, must be associated with a symmetric 
orbital wavefunction, as for bosons. Combining the two, we get 

7F q 7FO , yB 1 + 32/ 1 
Z12 — 0Z12 + ^2 ~ 1 + 2/ ( l - 2 / ) 2 ' 

3. The internal energy is given hy U = fiuju = —dlnZc/d/3 = huyd\nZQ/dy, 

1 - y 1 - 2 / 1 + 2/ 

u^ =Jy ^ , ^F =JT^+ 22/ 
y i + y ' 1-2/ (i + 3y)(i + j/) • 

In each case the entropy equals S = fc(ln Z — ulny). 
For a fixed temperature, we find 

U^ < U° < U^ < U^°. 

Even though the particles are non-interacting, the exclusion principle has the same 
effect as a repulsion, which is less pronounced if the fermions have spin ^ since in 
that case two fermions can have the same orbital quantum number q. In contrast, 
bosons have a lower energy than distinguishable particles, as if they attracted one 
another. 

We also find that for a fixed temperature the entropies and the free energies 
show the following ordering: 

5^° = 5 ^ < 5 ° < 5 ^ , F^° > F^ > F^ > J'^, 

whereas for a fixed energy 

^FO < 5B ^ ^ D ^ ^ F 

One can understand these inequalities for the entropies by interpreting e ' as an 
average number of configurations which are available at the given temperature or 
energy: this number is larger for distinguishable particles because of the possibility 
of exchanging particles, and even larger when the spin is non-zero, as there then 
exists an additional freedom. 
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At low temperatures, y —> 0, and 

Do FO 1 I t 

1 + y, u •y, u Ay. 

At zero temperature the exclusion principle forces the two spin-zero fermions to 
occupy the two levels 5 = 0 and g = 1, whence u = 1, whereas in the other cases it 
is possible for both particles to be in the g = 0 level, and hence w = 0. All entropies 
tend to zero, as 

•,P0 , B 1 oD 
2 "̂  

1 c-F 
4 '3 %(1 - I n J/). 

At high temperatures and also in the classical limit we find for all cases, through 
expanding around j / w 1 — Tujj/kT, 

U 2kT, 

in agreement with the equipartition theorem, and S ~ 2k\n{kT/Tiu;). In the ex
pressions for U and S there also occur constants which depend on the system 
considered. 

The results are gathered in Figs.10.3 and 10.4 which show U{T), S{T), and 
S{U), with dS/dU= 1/T. 

4. By applying (10.29) we find readily 

ln^§° 

InZi 

E 
9=0 

E 
9=0 

l n ( l + e V ) , 

I n ( l - e V ) : 

(a) (b) 

Fig. 10.3. The internal energy (a) and the entropy (b) as functions of the temperature 



50 10. Quantum Gases Without Interactions 

Fig. 10.4. The entropy as function 
of the internal energy 

^ Ulhio 

InZc = a i n Z g " . 

The number of particles is given by 

(AT) FO 1 / A r \ F 

(jv)B = V i 
^ ' / ^ g/3fta>g —a _ Ĵ  

At high temperatures these sums tend to the integrals 

77 In (1 - T̂e ) T— e , 
^ ' a—•-00 hw ha) I e^ — ri %u> 

J —a ' 

together with finite or small correction terms given by the Euler-Maclaurin formula 
(see end of this volume). When {N) is finite, we find for hypothetical spin-zero 
fermions or for spinless bosons 

fcTln 
kT 

hu>{N)' 

and (AT) must be replaced by (N) /2 for spin-^ fermions. 
At low temperatures, T -C hou/k, the fiUing-up up to the Fermi level gives 
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For bosons, only the 5 = 0 state is occupied, and we find 

5. By looking at the definition of the grand partition function ZQ we see that the 
canonical partition function for two particles is the term with e " in ZQ. Hence, 
expanding the expressions sub 4 up to second order in e° enables us to get the 
expressions sub 2. If we wanted to evaluate directly the canonical partition function 
for N > 2, the counting would become cumbersome. As in Exerc.4f, using the grand 
canonical ensemble solves this combinatorial problem. 

10b Paul i P a r a m a g n e t i s m 

We model the conduction electrons in a metal as a gas of free non-interacting 
fermions in a box. We apply a uniform magnetic field B parallel to the z-axis 
and neglect its interaction with the currents, bu t not with the electron spins. 
The magnetic moment M equals —fiB Yli ^j> where (TJ = 2S^ /h takes on the 
values ± 1 . Calculate the grand potential. Use it to find the spin susceptibility 
X and its limits at room temperatures and at high temperatures . 

We generalize the model by taking, for i? = 0, an arbitrary density of 
states T>{e). Show that % is proportional to dN/dfi. Find x and its limits in 
terms of 'D{e). 

Hints. The single-particle states characterized by their momentum p and their spin 
a have energies Sq = p /2m + fi^Bcr. We get the grand potential by using (10.29) 
and (10.38), and its derivative with respect to B is —(M), whence, using the fact 
that dfi/dB\j^ = 0 when S = 0, we get 

1 dM 
n dB 

Pt^l f 

N,B=0 

1 dM 
72 'dB 

1 5^ In ZQ 

d^p 

2h^ J cosh2[l /3(p2/2m-At)] ' 

At room temperatures, T <C ©p, only the Fermi surface contributes and we find 
the finite positive (paramagnetic) Pauli susceptibility x = 3lJ'BN/2epn. At high 
temperatures, T S> &F, we would have x ~ 

fx^N/kTfi which is the same Curie 
law as in Chap.l: the exclusion principle does no longer operate and everything 
behaves as if we had N independent spins. Note, however, that the limit T ^ ©p 
is unrealistic for metals. 

In the general case, we note that a shift in the energies Sq is equivalent to the 
opposite shift in /ix so that 

A{T,fj.,B) = ^[A{T,ix-HBB,0) + A(T,i.i + fiBB,0)] 

AiT,^^,0)+'J^^^^+(D{B'). 
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Hence we find 

-# f -# / - -< ' .. . „ .., r ^^^,j. 

Sommerfeld's formula gives for T <C © F 

where the last terms accounts for the shift in fj, with temperature. In the classical 
limit, we would have 

«-#/--w-**° = Sî  
lOc T h e r m i o n i c EflFect 

In order to s tudy the emission of electrons by a heated metallic cathode we 
model this metal by a box. The potential, assumed to be zero inside the 
metal , is not infinite outside it, as in §10.2.1, but constant and equal to 
V, the potential needed to extract an electron with zero momentum. Few 
electrons can escape, as V — fi ^ kT. We assume tha t all electrons which 
reach the wall with a sufficient velocity to escape do so, following the laws 
of classical dynamics. These electrons are collected by an anode and are 
replaced by other electrons thanks to the negative potential of the cathode, 
so tha t the metal remains neutral and lets the electrons escape. (Otherwise 
the bulk of the metal would gain a positive charge and would at t ract a thin 
shell of electrons in electrostatic equilibrium around the metal.) Calculate 
the electrical current emitted as a function of temperature . 

Solution. Since the energy of an electron is much higher than the Fermi energy fj, 
when p > 2mV, the Fermi factor reduces to the Maxwell factor and the number 
of electrons per unit volume with momenta within d p is given by the expression 

The number of electrons which hit a unit surface element during a time interval dt 
can be evaluated as in (7.50), the only difference being the value of /Lt, and equals 

m h^ 

Classical dynamics indicates that the particles which leave the metal are those for 
which px > V^mV. The emitted current density is thus 
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Evaluating this expression we find 

_ Airmek^ 2 ~(V-n)/kT 

in agreement with Richardson's empirical law (1912): 

i = AT\-^/^. 

The coefficient B equals {V — £F)/k when T ^ &p. If the electrons had formed 
a Maxwell gas, /x would have had for the same density the value, following from 
(10.49) and (10.50), 

JfeTln 
4 / © F X ^ / ^ 

3 v ^ \T ) 

which is of the order of 0.1 eV, whereas ep and V — ep are of the order of a few eV; 
hence, B would have been close to V/k instead of (V̂  — e-p)/k and the thermionic 
effect would have been imperceptible. If, for instance, ep = y — ep ~ 1 eV, we find 
g-F/feT ^ 2 X 10"^^ at room temperature. Although B/T = (V - e'p)/kT is large, 
it is not as large as V/kT, and e^ ' may be sufficiently large (4 x 10~^* in our 
example) so that one obtains significant currents from a heated cathode. 

lOd Meta l l i c F i l m 

We model a thin metallic layer as a gas of electrons in a box in the shape of 
a parallepiped with macroscopic dimensions L^ and Ly but with a thickness 
i j which is small. Show tha t the Pz degree of freedom remains frozen in, 
when the film is so thin that kTL^ <C STT^TI^. We assume henceforth tha t this 
condition is realized. 

We can by a suitable choice of the zero of the single-particle energies 
represent the free electrons in the film as a two-dimensional fermion gas. 
Calculate the density of states T>{e), the Fermi energy, the chemical potential 
as function of the temperature and of the density N/S per unit area of the 
electrons, the specific heat for T <C ©Y and for T ^ ©p, and the spin 
susceptibility per unit area. 

Answers: 

V{e) = ^ e ( £ ) . 

ep 
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fx = kT In 

C 

exp 

Smnk 

if? 

Nk 

\S mkTj 

l _ 0 , e - « F / ^ | | 

oi§ 

exp S mkT J 

lOe N e u t r o n Stars 

1. The life of the most massive stars ends, in general, in an explosion 
(supernova). When the stellar mass is of the order of 10 solar masses, the 
centre of the star implodes and gives bir th to a residue, a neutron star. The 
lat ter consists almost completely of neutrons, the interactions between which 
we shall neglect. Knowing tha t the density is comparable with tha t of nuclear 
mat ter , 0.17 nucleons per fm^, and tha t the temperature in the interior of 
such a star is typically 10^ K, show tha t one may treat the mat te r in the 
neutron star as a non-relativistic fermion gas at zero temperature . 

2. Compare the thermodynamic pressure with the kinetic pressure. 
3. Assuming the density to be uniform, determine the radius R of the 

star as function of its mass M, taking into account the internal energy and 
the gravitational energy, which is —3GM^/5i? for a homogeneous sphere. 
Calculate tha t radius RQ as well as the particle density TIQ = N/il for a 
neutron star of 1 solar mass, M = 2 x 10^° kg. 

4. In actual fact, the density n{r) varies from the centre to the surface of 
the star, due to the variation of the gravitational potential V{r). Write down 
the equation for n{r). Justify the result obtained sub 3. 

5. Neutron stars rotate with very large angular velocities due to the con
servation of angular momentum during the stages when they are formed, 
when they contract - the period may be well below 1 s. They are detected 
just because of their periodically varying luminosity, and they are for that 
reason called pulsars. How can we microscopically take this rotation into 
account when we write down the equation for the equilibrium distribution? 

Hints and Results: 

1. Assuming that the conditions which we are trying to find are satisfied, we 
get e-p ~ 60 MeV, which is much larger than kT ci 10 keV, and much less than 
mc^ '^ 900 MeV. This justifies our hypotheses. 

2. We find V = 2e-pN/hQ either using (10.61), or using the kinetic approach of 
§ 7.4.2 in which we replace the Maxwell distribution by 0 ( £ F — p /2m.). This value 
is 2000 times larger than for a classical perfect gas at the same temperature. 
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3. The equilibrium of the star (Exerc.6e) corresponds to the minimum of the 
total energy, since the temperature is negligible, whence we find 

„ n^ /97r^2/3 

(T) G \ 4 / Mi/3rfi8/3-

When M = MQ, we find RQ ~ 10 km, no ^ 0.2 fm~ , in agreement with the 
assumptions made in 1. 

4. Even though the gas is degenerate, one can treat the single-particle problem 
classically (§ 10.3.4b). The Fermi factor is thus locally equal to 

^ - ^ - ^ ( ' ' ^ 

where V{r) is the gravitational potential, at a distance r from the centre of the 
star. In the relation 

^ ^ / o 2 / N \ 2 / 3 fj, - V{r) = -— (37r n{r)) 
2m 

we must at equilibrium have a uniform chemical potential, while V{r) is related to 
n{r) through Newton's law, that is, V V = ATTTTI Gn{r), or 

2, V{r) = -4-Km^G 
1 f^ t'^^ 
- I dr r n(r ) + / dr r n(r ] 
'• Jo Jr 

In terms of the dimensionless variables r/Ro and ip = n/no we find 

iio VV^''^ + 6(p = 0, 

which shows that the values obtained sub 3 were qualitatively correct. 
We would have obtained the sarae equation, if we had expressed the fact that 

at each point the pressure of the Fermi gas is in equilibrium with the weight. 
5. We can introduce a Lagrangian multiplier connected with the angular mo

mentum, as in Exerc.7b. 
Notes. We discuss the equation obtained sub 4 in Prob.9. We show there that the 
density varies slowly for small r and falls to 0 for a certain value of r/Ro of order 
unity beyond which it stays zero. The approximation sub 3 is thus qualitatively 
justified. 

The way neutron stars are formed implies that they have masses which are 
a little larger than the solar mass MQ. If the mass were significantly larger, the 
density at the centre would become so large as to violate the condition vp <C c. 
One should then take relativistic effects into account and replace Sq = p /2m by 
£q = y/irfic'^ -\-'fi(? — m(?. Calculations, similar to those in Prob.9, show that 
there would then be a maximum mass of the order of %MQ beyond which the star 
would be gravitationally unstable. 

A neutron star behaves like a huge nucleus, and we could ask, as in § 10.1.4, 
whether it is |3-stable. In fact, through the reaction n—>p + e-|-v, a certain number 
of protons and electrons will be produced. However, a kind of chemical equilibrium 
will be established; the relation (6.78) between the chemical potentials then implies. 
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if we take the kinetic, gravitational, and reaction contributions into account, that 
the fraction of electrons and protons remains small for staxs with a mass of the 
order of MQ. 

lOf Q u a n t u m Correc t ions t o t h e Perfect G a s 

Calculate the lowest-order corrections due to the Pauli principle to the chem
ical potential, the equation of s tate, the internal energy, and the specific heat 
of perfect gases. Such corrections are, in general, swamped by the interactions, 
but they can be seen by performing accurate measurements on the lightest 
rare gases and their isotopes, where the interactions between the atoms are 
weak. 

Results. Starting from the expajision of (10.29) for small e" we get 

^3 

A | J V A r]_ A | J V 

2n I 23/2 2/2 

Vn w NkT I 1 ^ ^ ^ 

2 V 25/2 2/2 

2 \̂  2V2 2/2 

where Ay is defined in (10.49). For fixed density and temperature Fermi-Dirac 
statistics increase the pressure, the chemical potential, and internal energy, whereas 
Bose-Einstein statistics decrease them. This agrees with the interpretation of these 
statistics as effective repulsion for fermions, effective attraction for bosons. However, 
the specific heat at constant volume changes in the opposite way. 

We can also obtain these results by using the Wigner representation (§§ 2.1.2 and 
2.3.4) to calculate the lowest-order correction term coming from the symmetrization 
(Eqs.(2.74-77)). 

lOg Spat ia l Corre lat ions D u e t o Ind i s t ingui shabi l i ty 

1. Use the formalism of § 10.2.3 to calculate in terms of the Fermi or the 
Bose factor the expectation value X — (clj^Sg^cJ^c^^) over a grand canonical 
ensemble. 

2. Use this result to evaluate the correlation function, defined by 

C{r-r') = (n ( r )n ( r ' ) ) - {n{r)){n{r')), 
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where n{r) = 'ip^r)^{r) is the operator (10.24) representing the number of 
particles per unit volume at the point r. First disregard the spin, and then 
take it into account. Discuss the results; find limiting expressions for short 
distances apart , for low densities, and for zero temperature for fermions. 

Solution: 

1. As the density operator is diagonal in the base (10.14), and as Q, and c^ 
change the states of that base according to (10.20), the two creation operators in X 
must refer to the same states q as the two annihilation operators. There are three 
possible cases: 

(i) gi = 52 7̂  93 = Q4- in that case X is, because of (10.22), the average oiriq^ng^ 
for which, if we use the factorization of § 10.3.1, we find fqifq^-

(ii) qi = q4 T^ q2 = QS- from (10.21) and (10.22) it then follows that X is the 
average of ngj (1 + r]ng2), which is equal to /gj (1 + ??/g2 )• 

(iii) 51 = 92 = 93 = 94 • in that case X is the average of (n^j) , which is given by 
(10.32). 

Combining these results we can write 

X = 0q^q20q^q^fq^fq^ + "gi94 *«293/91 (1 + ^/92 ) 

= {Cq^Cq2) \Cq3Cg4) + \Cq^Cq^) \Cq2Cq3)• 

The last equation is a special case of Wick's theorem, which expresses the expec
tation value of any number of creation and annihilation operators, for a density 
operator of the form D oc exp [— ̂  ^J /„„/ Cg/l, as a sum of terms, each of which is 
constructed by pairing the creation and annihilation operators in all possible ways. 

2. If we forget about the spin, q represents the three components of the momen
tum and the wavefunction {r\q) in (10.24) equals exp(ip • r/h)/^/Y2. If we substitute 
(10.24) into the definition of C{r — r ' ) , X appears. The first term in X is cancelled 
by the last term in C and if we use (10.38), there remains 

C{r-r') = ^ I d^pdye'^'-'-^^-^'-^'^/'^Ul + nf^,) 

h^ „ 

2 
/• J 3 _ Avir-rMh 

nS [r ~ r ) + rj 
J h? ^Pp^/im-a _ ^ 

The first term describes simply the correlation of a particle with itself. It would be 
present even for a set of points distributed randomly in the volume O; therefore, 
the only interesting term is the second one. It has the expected sign. 
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One must , in order to take the spin into account , include in t he 

definition of t he opera tor n{r) a sumiination over t he spin index a by wri t ing 

n{r) = ^ ip]r{r)ipa-{r)- This gives us for r- / 0 

C ( r ) = i]{2s + l) 
pdpe ipr/h 

e/3p2/2i 

At short distances, C{r) reaches its largest value, and behaves as 

Cir Tjn 

2 s + 1 

T h e condit ional probabil i ty of finding a part icle in a volume element dPr a round 
»• / 0 when there is already a part icle present a t the origin equals [n + C{r)/n] dr. 
For Bo l t zmann stat is t ics it would be equal t o nd r, as expected. Near t he origin 
t he correlations C{r) —> ^ n reduce t h a t probabil i ty t o zero for fermions wi th t he 
same spin, t he exclusion principle prohibi t ing two particles t o be at t he same point; 
t he probabil i ty is divided by 2 for spin-^ fermions, as two fermions wi th opposi te 
spins are uncorrelated. In contrast , for spin-zero bosons t he presence of one particle 
a t a point doubles the probabil i ty of finding another part icle in t he neighbourhood. 

We can evaluate the integral in the perfect gas limit and we get 

C(r) Tjn 
2 s + 1 

-mkTr^/h'^ rjn 

2 s + 1 

-2wr^/\^ T > © p . 

T h e correlations due to the indist inguishabil i ty vanish a t distances much longer 
t h a n the t he rma l length Ax, bu t the Paul i principle continues to play a role for 
shor ter dis tances. In fact, bar for helium at a few K (Exerc . l2d) , \T is for ordinary 
gases shorter t h a n the range of the in tera tomic forces and the q u a n t u m correlations 
are drowned by the correlations due to the interact ions. 

For a degenerate fermion gas we get th rough evaluat ing the integral in C ( r ) 

C{r) 
2 s + 1 

r (sin X • «= ) ] ' , T < 6>p, 

where x = ppr/h. T h e correlations decrease as 1/r a t large distances, but show 
oscillations on the scale h/2pp which is of t he order of a few A for electrons in 
a meta l . These so-called Priedel oscillations are indirectly t he source of magnet ic 
effects in alloys. 
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"La cristallisation d'un sel toujours assujetti a prendre une 
meme forme n'est elle pas aussi admirable que la generation 
constante des animaux?" 

A. de Condorcet, Haller 

"Sans ce mot (cristallisation), qui, suivant moi, exprime le 
principal phenomene de cette folie nommee amour, . . . la 
description que je donne de ce qui se passe dans la tete et 
dans le coeur de rhomme amoureux devenait obscure, lourde, 
ennuyeuse, . . . " 

Stendhal, De Vamour, III 

"lis allaient conquerir le fabuleux metal 
Que Cipango miirit dans ses mers lointaines." 

J.-M. de Heredia, Les conquerants 

The existence of the solid state is one of the most remarkable manifestations 
of quantum mechanics on a m,acroscopic scale: if microphysics were subject 
to the laws of classical mechanics, systems consisting of nuclei and electrons 
could not, not even at high densities and low temperatures, produce solids 
having the mechanical, electric, and optical properties with which we are fa-
m.iliar. Since we are dealing with relatively high densities, the interactions 
between the particles play an important role, even more so than in a liquid. 
Moreover, at sufficiently low temperatures the translational degrees of free
dom become frozen in, after all the other degrees of freedom: the constituents 
can no longer move freely, and their motion must be treated quantum me
chanically. Mat ter acquires a great degree of coherence and the resulting solid 
phase (or phases) has (have), in general, an ordered crystalline structure: the 
atomic nuclei are arranged in a regular lattice, with a three-dimensional pe
riodicity which is reflected in all the properties of the crystal. Increasing the 
temperature decreases the order, without making the periodic structure dis
appear; this persists up to the melting point, but vacancies are created and 
the nuclei oscillate around their equilibrium positions. We must consider the 
whole of the crystal as one huge molecule and our theoretical start ing point 
is the same as in Chap.8, namely the Born-Oppenheimer method (§ 11.1.1). 
However, due to the macroscopic size of a crystal, statistical mechanics is 
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needed to explain the extremely diverse properties that are found experimen
tally, such as elasticity, magnetism, thermal, optical, or electric properties, 
or conductivity. 

We shall in this chapter survey the simplest properties of crystalline solids 
in thermal equilibrium. In Chaps. 14 and 15 we shall come back to the trans
port properties of electrons in metals and semiconductors. Our guideline is to 
analyze the system in terms of independent degrees of freedom, at least ap
proximately, in order to study those separately along the lines of § 4.2.5. The 
elementary entities, or "quasi-particles", which we treat as non-interacting 
objects, are not the particles making up the solid, that is, the nuclei and 
electrons, but represent composite objects to be constructed by the theory. 
In any case, once we have identified the independent degrees of freedom, we 
can use the methods of Chap. 10 to find the thermodynamic properties of the 
material. 

We shall in this way see that some properties are connected with the 
lattice structure (§ 11.1.2), others with the electron motion (§§ 11.2 and 11.3), 
and yet others with lattice vibrations (§ 11.4). The first set reflects at the 
macroscopic scale the regular geometric arrangement of the atomic nuclei. 
It also includes properties resulting from defects in this arrangement. In the 
latter case the nearly independent entities serving to describe the micro-states 
simply are the defects themselves. 

The study of the electronic properties encounters from the start a serious 
difliculty: the Coulomb interactions of the electrons with one another and 
with the nuclei are strong and should not be neglected. We attack this prob
lem, using the Hartree approximation (§ 11.2.1) where one assumes that each 
electron moves in an effective average potential created by all the other parti
cles, which depends on the macro-state considered. The Coulomb interactions 
between the particles are thus modelled by a mean field which varies strongly 
on the microscopic scale and which, in principle, should be determined by a 
self-consistent variational calculation. In fact, this field acts upon the elec
trons, but is itself determined by the electronic charge density, while we treat 
the nuclei as fixed point charges. In this approximation the electron cloud 
is represented by a set of non-interacting electrons embedded in an external 
potential. The presence of the latter, on the other hand, prevents us from 
identifying the quasi-particles used to describe the material with the original 
"bare" electrons; the quasi-particles are here "dressed" electrons, modified 
by the medium surrounding them which, for instance, gives them an effective 
mass which differs from the electron mass. 

We have stressed that the periodicity of the crystalline lattice affects 
all the properties of the solid. As regards the electrons, described as non-
interacting fermions moving in a potential, the latter's periodicity has im
portant consequences which axe the subject of band theory. We give its essen
tial features (§§ 11.2.2 to 11.2.5) by using various approaches to discuss the 
shape of the spectra of the single-electron states in crystalline media. The 
combination of the results thus obtained with the Pauli principle explains 
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the existence of materials which are as different as metals, on the one hand 
(§ 11.3.1), and insulators (§ 11.3.2) or semiconductors (§ 11.3.4), on the other 
hand. In the first case, we shall in this way justify the model of fermions in a 
box which we used in the elementary theory of metals in § 10.4, at the same 
time finding its limitations. In the second case, we shall see emerging a new 
kind of quasi-paxticles, the holes which carry a positive charge. 

The microscopic theory sketched in the present chapter enables us not 
only to explain and even to predict the properties of various substances, but 
also to recover the concepts and to establish the general laws of macroscopic 
electrostatics. Just as in Chap.5 we used microscopic physics and statistical 
mechanics to derive the laws of thermodynamics, we carry out a similar de
duction for the laws of electrostatic equilibrium, at least in crystalline solids 
(§ 11.3.3). In particular, we explain the microscopic significance of the screen
ing effect, of the polarization, of the dielectric constant, and of macroscopic 
fields. 

Finally we shall show that the vibrational micro-states of the crystal 
lattice can also conveniently be represented as sets of quasi-particles, the 
phonons. They are bosons, the number of which is not conserved and the 
relation of which with the constituent particles of the solid is rather indirect; 
their effective interactions with one another and with the other degrees of 
freedom are weak. They contribute both to the propagation of sound and 
to the specific heat of the solid. Here again, we invoke the periodic lattice 
structure to find their properties and to establish, for instance, the relation 
between the energy of a phonon and its momentum. 

Solid state physics has since the start of this century been developed 
enormously and continuously. In the present book we shall only discuss a 
few topics, and if one wants to delve deeper into this vast topic, we suggest 
consulting the classic books by C. Kittel {Introduction to Solid State Physics, 
Wiley, New York, 1986) and by N.W. Ashcroft and D.N. Mermin {Solid State 
Physics, Holt, Rinehart, and Winston, Philadelphia, 1979). In particular, we 
shall hardly consider at all the many phenomena for the explanation of which 
we need to take into account the residual interactions between the quasi-
particles. These interactions are, generally speaking, treated by complicated 
perturbation theory methods, in the framework of a branch of statistical 
physics which started towards the end of the fifties and which is called the 
Many-Body Problem. We shall only briefly discuss superconductivity at the 
end of Chap.12, and treat ferromagnetism in metals as a problem (Exerc.llf). 

Solid state physics is also of major importance in technology and engineer
ing. If ferromagnetism did not exist, it would be very difficult to transform 
electrical and mechanical energies into one another by means of motors or 
alternators. Semiconductors have entered our every-day life and their use has 
revolutionized electronics; even though this broad subject goes beyond the 
framework of the present book, its importance has led us to give in §§ 11.3.4 
and 11.3.5 a brief account of the physical effects on which the manifold ap
plications of semiconductors are based. 
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11.1 Crystal Order 

11.1.1 The Born-Oppenheimer Method 

We have stressed at the beginning of this chapter that a crystal resembles a 
very huge molecule with its atomic nuclei arranged in a regular lattice. This 
is a profound analogy, as solid state theory is based upon the same Born-
Oppenheimer method which we have used in § 8.4.1 to describe the structure 
of a molecule in a gas. Its essential idea is approximately to separate the 
motions of the nuclei, which are heavy and hardly move, and of the electron 
cloud, in order to describe the solid in terms of independent entities. 

The aim of the theory is to find an approximation for the eigenenergies 
and eigenstates of the Hamiltonian 

H = fn + fe + F , (11.1) 

which contains the kinetic energies of the nuclei and of the electrons, 

n i 

and their potential interaction energy, V. The index i refers to electrons and 
the index n to nuclei, whose masses M„ and charges Z„e may have varying 
values if the solid contains different kinds of atoms. The magnetic interactions 
involving the spins are, in general, weak so that the potential energy, 

V = Vnn + Ven + Ke. (11.3) 

only contains the Coulomb interactions between nuclei and nuclei, between 
nuclei and electrons, and between electrons and electrons, 

i% _ e ^-v Z„Z„i ^ _ e ^-\ Zn 

'̂̂ ^o ^w \Rn-Rn'\ 47reo t r \fi-Rn\ 

' ' E F - ^ - (11-4) 47ren 
i>j 

The Born-Oppenheimer approximation consists in constructing a model 
which avoids the impossible diagonalization of H. It is based upon the fact 
that the nuclear masses M„ are so much larger than the electron mass m. 
This allows us to treat, to begin with, the positions R„ of the nuclei as 
parameters, while their momenta P „ vanish (§8.4.1). 

We then assume that the electron Schrodinger equation (8.39) has been 
solved. The eigenvalue W{{Rn}, A) of this equation, which depends on the 
positions {-R„} of the system of nuclei and on the state A of the electrons, can 
be interpreted as an effective potential for the nuclei. We finally must solve 
the nuclear Schrodinger equation (8.40) with W as potential. Both those 
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tasks, already hard for small molecules, seem here completely hopeless, as 
we should, in principle, solve equations with 10^^ variables. However, there 
is one major simplification, which makes it possible to produce solid s tate 
theory: solids are periodic structures. Each lattice unit contains only a few 
atoms so tha t the final problem is hardly more complicated than tha t of a 
small molecule with the size of a single cell, although the complete crystal 
behaves like a gigantic molecule of some 10^^ atoms. 

In order to explain the periodic structure of a solid, we shall consider its 
ground state, tha t is, its s tate at zero temperature and zero pressure. In the 
Born-Oppenheimer approximation the nuclei then see the effective potential 
W{{Rn},\ = 0), corresponding to the lowest electronic state, A = 0. In 
order to simplify the discussion, we shall assume tha t the nuclear masses 
are so large tha t we can neglect their kinetic energy T„, as compared to 
W. Jus t as for the diatomic molecule of Chap.8 the minimum of the effective 
potential W{g) between the two nuclei determined their mean distance apart , 
'g, here the minimum of the effective internuclear potential W{{Rn}, A = 0) 
must determine the average positions, {Rn}, of these nuclei and, hence, the 
crystal structure, at zero tempera ture and zero pressure. Because of the large 
number of variables characterizing the relative positions of the nuclei, the 
problem is not as simple as it was for the diatomic molecule. Nevertheless, 
one can show, and we shall assume, tha t the effective potential energy W has, 
under rather general conditions, its minimum when the nuclei are regularly 
placed upon a lattice; the dimensions and shape of the lattice corresponding 
to this minimum depend on the effective forces between the nuclei which, in 
turn, are determined by the nature of the material. 

A one-dimensional model will help us to understand why the stable equilibrium 
configuration is a regular lattice. Consider heavy particles interacting with one 
another pairwise through a potential W{g) which varies with the distance apart g 
in the same way as for a diatomic molecule. As in §8.4.1, W{g) has a minimum 
at a distance 'g. In the ground state each particle tries to place itself at a distance, 
close to 'g, from its two neighbours, in order to make the total potential, 

^ WQRn-Rn'l), (11.5) 
n>n' 

a minimum when the positions Rn are arbitrarily varied. More precisely, each par
ticle sees the total potential created by all other particles; in Fig.11.1 particle 1 
feels the repulsion of particles 0 and 2, the attraction of 3 and —1, an even weaker 
attraction of 4 and —2, and so on. The minimum of (11.5) is reached when the 
particles are equidistant from one another, at a distance apart go, slightly smaller 
than 'g, which is determined by the relation 

W'{go) + 2W'{2go) + 3W'{3go) + ... = 0. (11.6) 

This model fits rather well for organic molecules with long chains such as 
alkanes or polymers, where the carbon atoms are placed equidistantly along 
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Fig. 11.1. Potentials felt by particle 1 

the molecular axis. In a real, three-dimensional, solid the nuclei are situated 
similarly on a regular lattice, with mesh size close to 'g, the minimum of the 
interparticle potential, which is of the order of a few A. In several cases, 
the structure of a solid reminds one of that of molecules which contain the 
same constituents: in the diamond lattice each C atom is surrounded by 4 
neighbours, placed at the vertices of a tetrahedron, as in saturated organic 
compounds; graphite has a lamellar structure, and in each plane the C atoms 
form a hexagonal lattice as in the polycyclic compounds with fused benzene 
rings. In all cases, the strong repulsion at short distances apart, which is the 
combined effect of the Coulomb forces and the Pauli principle for electrons, 
ensures a lower bound for the interatomic distances, whereas the attrac
tion at larger distances apart tends to pack the atoms like billiard balls, the 
more compactly, the stronger the attraction. Nevertheless, although one can 
produce a two-dimensional hexagonal pattern which repeats the elementary 
compact shape consisting of three circles touching one another, it is impossi
ble to completely fill three-dimensional space regularly by spheres arranged 
compactly like tetrahedra. There are in three dimensions two kinds of regular 
packing, which are as compact as possible, and where each sphere has 12 near
est neighbours. Moreover, the ground state energies associated with different 
lattices may be close to one another. This explains the fact that the same 
material can occur in different crystal forms, and also that certain materials, 
such as glasses, solidify in an irregular lattice. The absence of periodicity 
makes the study of these so-called amorphous solids difficult. Recently inter
mediate materials, the so-called quasi-crystals, have been discovered where 
the energy minimum is reached for a lattice which is not periodic, but which 
has an orientational order at large distances. 

The crystal structure of a solid is thus determined, at least at zero temper
ature and zero pressure, by the preliminaxy stage of the Born-Oppenheimer 
method, which consists in looking for the minimum of W. Thanks to its three-
dimensional structure, a crystal lattice is much more rigid than a polymer 
chain molecule: in fact, this lattice remains ordered when the nuclei vibrate 
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due to the thermal agitations and when the solid is deformed by constraints; 
one therefore continues to see the crystal order up to the melting point and 
when there are external forces present. Further on we shall return to the 
next stages in the Born-Oppenheimer method, the study of the state of the 
electron cloud (§11.2.1), and the vibrations of the atomic nuclei around their 
equilibrium positions (§11.4.1). 

11.1.2 Properties Related to the Crystal Structure 

General observations indicate readily how the crystal lattice shows up almost 
directly at the macroscopic scale: optical or mechanical anisotropy of a crystal 
reflects that of its lattice, and its plane faces which make well defined angles 
with one another clearly exhibit the lattice planes. 

At the microscopic scale, a detailed experimental study of the lattice is 
carried out through wave diffraction by the regularly arranged nuclei; the 
wavelengths must be of the same order of magnitude as the lattice distances, 
that is, a few A. Diffraction of X-rays, or of synchrotron radiation photons, 
is useful for lattices with atoms, the atomic numbers of which are not too 
different, as the X-ray scattering cross-section is an increasing function of 
the nuclear charge. One also currently uses neutron diffraction; the neutrons, 
which are produced in a nuclear reactor, are "thermal" neutrons, as they are 
a gas in equilibrium with the matter of the reactor. At room temperature, 
where the mean neutron energy e equals | • ^ eV, the neutron de Broglie 
wavelength is h/p = h/\/2rae ~ 1.5 A, which is comparable with the in
teratomic distances. The scattering of neutrons may be important for light 
nuclei and it depends on the nuclear spin. This makes it possible to analyze 
lattices which contain both heavy and light nuclei, and also magnetic crystal 
structures. 

The long-range order which occurs in a crystal is truly spectacular: be
tween two parallel faces of a quartz crystal, at a distance of 5 cm, there are 
10^ planes which regularly repeat the same pattern! The microscopic struc
ture of the elementary cell, with a size of a few A, is thus directly shown 
at our scales. This macroscopic manifestation of quantum mechanics must 
be emphasized: as in the liquid-gas transition in § 9.3, the simplicity of the 
observations risks hiding the remarkable features of the phenomena. 

In §11.1.1 we restricted ourselves to giving reasons for the existence of 
a regular crystal lattice for a solid at zero temperature and zero pressure. 
The crystal structure is characterized by the group of space transformations, 
including translations, rotations, symmetries, and their products, which leave 
the crystal invariant. Crystallography is concerned with the study of the var
ious possible groups and with their classification; one must note that each of 
the 230 groups predicted by geometry is represented in Nature. A theoretical 
solid state physicist therefore wants to understand why a given material crys
tallizes in a given group for given temperature and pressure. More generally, 
he wants to explain the phase diagrams by determining the curves which, in 
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the temperature-pressure plane, separate the various crystal structures exhib
ited by a particular substance, and also the melting and sublimation curves 
which separate the regions of crystal order from the liquid and gas regions 
(Prob.8). 

To do this we use the same kind of variational method (§4.2.2) as for the gas-
liquid transition, a method which is very suitable to explain a qualitative change of 
the state of the material (§ 9.3). The rough argument which we used a moment ago, 
relying on looking for the minimum of the potential energy W, is only useful for 
finding the ground state of the solid. In order to study its state as function of the 
temperature and the pressure - or, what amounts to the same but is, in general, 
simpler, as function of the temperature and the chemical potentials of the electrons 
and the nuclei - we must look for the minimum of a test grand potential which 
depends on a number of adjustable parameters. We start therefore by assuming 
that the nuclei are placed on a test lattice. This test lattice may have the same 
invariance group as the one corresponding to the minimum of W, but it may also 
correspond to other crystal structures which could, for instance, become more stable 
at high pressures. On the other hand, the lattice distances, of the order of a few A, 
are also adjustable. We then construct, using the approximation methods of §§ 11.2 
and 11.4, for each test lattice the corresponding grand potential. We find thus a 
test grand potential A which depends on our choice of crystal structure, and on the 
shape and size of the lattice cell. To determine the various parameters in thermal 
equilibrium, as functions of the temperature and of the chemical potentials, we must 
thus look for the minimum of A, for given T and fi. Often one finds several relative 
minima, each corresponding to a given crystal structure, which depend on the 
thermodynamic variables. The lowest of them determines the equilibrium structure, 
and we obtain the separatrices of the phase diagram by looking for what values of 
the thermodynamic variables the absolute minimum of A is reached simultaneously 
for two different crystal structures. As to the melting and sublimation lines, we must 
similarly compare the test grand potential A determined in this way with the grand 
potential of the fluid phases found in § 9.3: the stable phase in thermal equilibrium 
is the one corresponding to the lowest test grand potential (Probs.8 and 10). 

An equivalent method consists in comparing the test free enthalpies Q{N, V, T) 
calculated for the geometries corresponding to the various crystal or fluid phases 
considered. Although the evaluation of the free enthalpy is often less simple than 
that of the grand potential, its more traditional use has the advantage of providing 
us directly with the usual phase diagram in the T, P plane, since the separating 
curves are obtained by equating the two trial free enthalpies. 

If two minima of A, or of Q, cross when a thermodynamic parameter, such as 
T, is varied, the lowest one corresponds to the equilibrium phase; the other is often 
associated with a phase which has become metastahle. Its lifetime can be more or less 
short, depending on whether there exists a set of many intermediate configurations 
which allow the system to evolve gradually from one phase to the other. If such 
configurations are rare, the metastable state corresponds to a Boltzmann-Gibbs 
equilibrium in the restricted set of accessible micro-states (§4.1.6, Exerc.9d and 
Prob.3). 

The method we have just sketched determines in principle not only the 
phase diagram, but also the shape and size of the elementary cell as function 
of the temperature , the constraints, and the chemical potentials. We can use 



11.1 Crystal Order 67 

it to determine the equation of state of the crystal, its elasticity constants, 
and its expansion coefficients in various directions (Prob.19). 

There are still other properties of solids which are related to the exis
tence of crystal order. In particular, we have so far assumed that the order is 
perfect. In fact, there are always crystallization defects, either point defects 
(vacancies or interstitial atoms), or linear defects (dislocations), or planar de
fects (stacking faults). The higher the temperature, the more numerous the 
defects at thermal equilibrium (Exerc.lla and Prob.8). They do not always 
disappear when we cool the crystal, as they should do if the crystal remained 
in thermal equilibrium, since the migration of atoms is, in general, a slow 
process in a solid (Prob.19). They play an essential role for the mechanical 
properties of solids, such as elasticity, plasticity, hardness, and so on, which 
are of great practical importance (Prob.19). In particular, the study of dis
locations is essential in physical metallurgy: a crystal lattice is too rigid to 
deform significantly in bulk under external constraints; those act, in fact, 
through the intermediary of the displacement of dislocations, which results 
in a change in shape without a large cost in energy. The point defects behave 
as weakly interacting localized quasi-particles. They play a role in the optical 
properties of transparent crystals, and often produce their colours. 

The arrangement of atoms in the crystal lattice determines the properties 
of alloys or composite solids. In particular, depending on the conditions, two 
kinds of atoms may alternate regularly, they may be arranged randomly on an 
ordered lattice, or they may segregate, thus giving rise to phases with different 
characteristics (Probs.4, 5, and 19). A convenient approximate approach is 
provided by the Ising model (Exerc.9a) for binary alloys, or by other magnetic 
models (Exerc.9d); the two values (T, = ±1 of the spin at each site should 
here be understood as denoting the presence of the one or of the other of the 
two species. Moreover, a host of phenomena related to the crystal geometry, 
or to the order and disorder of the atomic positions, concern crystal surfaces 
(Prob.3), which may have a rounded equilibrium shape. (The plane faces that 
we observe are generally the result of a dynamic growth process which only 
produces a metastable, but long-lived, state.) 

Let us note that the Born-Oppenheimer method described earlier, al
though elementary in principle, is hardly practicable except for the simplest 
solids, notwithstanding the large simplification brought about by the exis
tence of a periodic crystal lattice. For most theoretical studies of realistic 
solids we are led to use more schematic models, such as we used in Chap.l 
for paramagnetism, and such as we shall use in the remainder of this chap
ter, or in the exercises and problems mentioned above. Nevertheless, some 
phenomena depend on the interplay of the three characteristics of solids that 
we distinguished, namely, lattice structure, electrons, and lattice vibrations. 
In particular, we have just indicated that the temperature affects the lattice 
shape and the equation of state of the crystal, through the grand potential 
determined by the vibrational energy. There exist also materials (Prob.l2) 
where the electron state affects the crystal structure. 
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11.2 Single-Electron Levels in a Periodic Potential 

In the application of the Born-Oppenheimer method to diatomic molecules 
(§ 8.4.1) the study of the electron cloud was simple, as we could assume that 
it was frozen in into its ground state for all temperatures of interest. However, 
in a solid, the energy levels of the electron states A lie very closely, so that we 
need to take excited electron states into account, even at low temperatures. 
In the present section we study methods leading to a simple description of 
the electron cloud in a crystal. 

11.2.1 Independent Electron Approximation 

In the Born-Oppenheimer approximation the energy levels W of the electron 
cloud states A are, for fixed positions {i?„} of the nuclei, determined by 
Eq.(8.39) which has the form 

f, + V{{ri},{R„})\ |VAe> = T^({il„},A)|VAe), (11.7) 

where V is given by (11.3) and (11.4). 
In thermal equilibrium the nuclei vibrate around their average positions 

{Rn} which are arranged, as we have seen, in a lattice. They do not stray 
far from their average positions, not even when the temperature is close to 
the melting point (end of § 11.4.1), and we can, when we study the electron 
motion, to a first approximation replace {Rn} by {iln}. To simplify our 
formulae, we shall in §§ 11.2 and 11.3 denote the positions of the nuclei by R 
rather than by R. 

The potential V{{ri}, {Rn}) which occurs in the electron Schrodinger 
equation (11.7) consists of three terms. The first one, Kin, describes the 
Coulomb repulsion between the nuclei which are assumed to be fixed to the 
lattice sites; it is a constant and occurs directly in each of the eigenener-
gies W{{Rn}, A). The second is the Coulomb attraction between nuclei and 
electrons, 

it has the form of a periodic external potential produced by point charges, in 
which the electrons move independently of one another. If these two terms 
were the only ones, we would need only solve a one-electron Schrodinger 
equation; the eigenenergies of the A^-electron states would then simply be 
found by using the occupation number formalism of § 10.2.2. Unfortunately, 
the third term, the Coulomb repulsion between electrons, 

Ke = 
47r£o .^. 
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is an interaction term and it makes the Schrodinger equation (11.7) too com
plicated to be soluble. The difficulty is exactly the same as when one tries to 
find the energy levels of an atom, and we are similarly led to use the Hartree 
approximation. The idea is to replace the interaction potential between the 
electrons by an effective average potential, acting upon the electrons as if they 
were independent and simulating the interaction (11.9) as well as possible, 
so that Ven + Vee would be replaced by a one-electron potential of the form 

V = ^ V(fi). (11.10) 
i 

The contribution from the nuclei to V(T"J) is clearly the ith term in (11.8). 
As to (11.9), the ith electron sees all the other electrons, which are treated 
as a classical charged fluid of density n{r). This gives us the Hartree effective 
potential, 

V(f) = 
ineo 

^ " , / d^r' "(^') 
^ |f-i?„| + J (11.11) 

which, when acting upon the ith electron, only depends on the other electrons 
through the expectation value n{r) of the density. In this approximation, each 
electron moves in the mean field created by its surroundings, and we neglect 
the fluctuations and the interparticle correlations. 

We have thus been led to study a gas of independent fermions, subject 
to an external potential V produced by the nuclei and the electron cloud. 
Instead of the A'^-electron Schrodinger equation (11.7) we are left with an 
approximate one-electron problem with the Hamiltonian 

h^^+Vir). (11.12) 

As in § 10.2, we have to find the solution by diagonalizing h as follows: 

h\q) = eg\q). (11.13) 

In the next few subsections we shall discuss the general characteristics of 
the single-electron energy spectrum Sq. The micro-states A of the electron 
cloud are in the approximation used here characterized by an ensemble n , of 
occupation numbers; if we assume that the energy of such a micro-state can 
be evaluated as if the electrons behaved as non-interacting quasi-particles 
with energies £g, we expect the eigenvalue W of (11.7) to be given by 

Wi{Rn},X) ~ c + Y,^<,riq, (11.14) 
Q 

where c is a constant. The thermodynamics of the electron cloud in the solid 
is then finally reduced to that of a non-interacting Fermi-Dirac gas with 
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single-particle energies which are the eigenvalues of the Hamiltonian (11.12). 
In actual fact, we shall see in the remainder of this sub-section that it is not 
altogether consistent to t reat the electron cloud in the Hartree approximation 
as a gas of non-interacting quasi-particles with energies Sq which add up; 
however, it will also be seen tha t this point has hardly any consequences. 

Our solution scheme is as yet incomplete since E q . ( l l . l l ) contains the 
density n{r) of the electron cloud at the position r , which still has to be 
determined. In our independent electron approximation, each single-particle 
s tate q, with wavefunction {rs\q), where s = ± 1 denotes the spin coordinate, 
contributes | ( r s | g )p to the density of electrons with spin s. At equilibrium 
the mean occupation number of the state q is the Fermi factor fq which, as 
function of £q, is given by (10.62), so that we have 

n{r) = J2 fi\i^'\<l)\'- (11-15) 
qs 

The Hartree equations which we have found form a self-consistent system, 
with the density n{r) being expressed in terms of the effective potential V(T') 
through (11.12), (11.13), and (11.15), while V(T-) itself is connected with n{r) 
through (11.11). An efficient solution involves an iterative interplay: start ing 
from an assumed form of V ( T ' ) , we solve the three-dimensional Schrodinger 
equation (11.13), we then determine n{r) which we substi tute into (11.11) 
to find an improved form of V ( T ' ) , and so on. This is a numerically heavy 
programme, and we shall assume in what follows tha t it has been solved. 

In fact, among the equations which we have just written down, Eq.(11.14) for 
the energy of the electron gas is incorrect. We have used an extrapolation of (10.16) 
which was valid for a non-interacting fermion gas in an external potential assumed 
to be given. However, the self-consistency of the potential (11.11), which depends 
on the electron cloud state through n{r), implies that the total energy is not the 
sum of the individual energies, even if the independent electron approximation is a 
good one. Actually, the energy Sq of an electron takes the interactions with the other 
electrons into account through the second term in (11.11). Thus, the interaction 
between each i,j pair is counted twice in (11.14), once for the ith and once for the 
jth electron. 

In order to rectify this mistake, to better understand the nature of the Hartree 
approximation, and possibly to apply corrections to it, we shall give a variational 
justification based on the methods of § 4.2.2. Our aim is to simulate as well as 
possible the electron grand canonical density operator, 

D OC e-P"+-^, H = ^ K i + Vee, (11.16) 
i 

where Ki contains the kinetic energy of the ith electron, the potential (11.8) pro
duced by the nuclei, and, possibly, an external potential applied to the material. 
We introduce an approximate density operator, 

2) oc e - ^ E . ^ i + « ^ , (11.17) 
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where his a. trial single-electron Hamiltonian which we want to optimize. To do this, 
folowing the general scheme, we look for the minimum of the trial grand potential, 

A =TrV{H-tiN)-TS{T>) = ^ fq {q\K\q)+TrVVee 

1 

- A* 5 ] [/« + fcr ^ /<, In / , + (1 - U) ln(l - / , ) ] . (11.18) 

1 1 

In writing down (11.18) we have used the diagonalization (11.13) of the as yet 
unknown trial single-particle Hamiltonian h and second quantization (§ 10.2). The 
first term in (11.18) follows from the fact that the single-particle part, ^ Jfj, of H 
gives a contribution (g|jK"|g) for each state \q) occupied by an electron; the last term 
is the entropy (10.37) of the macro-state (11.17). Using the methods of §10.2.3 we 
can express the second term in (11.18) also in terms of the wavefunctions \q) and 
their occupation factors /q; we thus get the HaHree-Fock expression 

^^^-=\&J''"^'"^'v^\ T./^u 
qg'ss' 

X [{rs\q){q\{\rs){r's'\ - \r's'){rs\)\q'){q'\r's')]. (11.19) 

Earlier we had restricted ourselves to the Hartree method, which involves an 
extra approximation. Expression (11.19) is complicated, as it takes into account the 
spatial correlations between the electrons introduced by the Pauli principle, even 
though (11.17) describes a gas without interactions (Exerc.lOg). Let us neglect 
these correlations, which have a short range, of order h/pp. The average number of 
pairs of electrons within volume elements d r and d r' around the points r and r' 
is then given by the expression 2'n'{r)n{r')d r d r', where n{r) is given by (11.15); 
the factor ^ has been introduced in order not to count twice configurations where 
two electrons are interchanged - this is the counterpart to the restriction i > j 
in (11.11). In this Hartree approximation we thus have for the electron-electron 
interaction energy 

TiVVee ~ l - ^ f d\d^r'-—^^n{r)n{r'), (11.20) 
2 47reo J \r — r'\ 

which amounts to neglecting the second, so-called "exchange", term from (11.19). 
We must find the minimum of (11.18), (11.20) in terms of the trial single-particle 

operator h, or equivalently in terms of the eigenfunctions \q) and eigenvalues Eq of 
h. Alternatively, the trial operator 

/ EE ^ |5> / , {q\ = - ^ (11.21) 
, e/3'^-° + 1 

is in one-to-one correspondence with h, and we shall find it convenient to take in 
our calculations the matrix elements of (11.21) as independent variables; in those 
variables we get for (11.18), (11.20) 
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A =tTjK + l~^- / d^rd^r -^—rrnir)n(r') 
2 47reo J \r — r'\ 

- / i t r 7 + f c T t r | 7 l n 7 + ( l - 7 ) l n ( l ~ / ) ] (11.22) 

with n{r) = ^ ^ {rs\f\rs). After a short calculation using (11.21), we get for the 

variation of A. with h or / , 

6A = t r i ^ / K+-;^— f d^r' ,^ \ , n ( / ) - h I . (11.23) 
[ [ 47reo y Ir — r'l J J 

Putting this variation equal to zero for any 6f gives û s the self-consistent form 
(11.11), (11.12) of the effective Hartree Hamiltonian h, coupled with the same 
expression (11.21) of the Fermi factor as for independent electrons. We thus recover 
equations (11.11), (11.12), (11.13), and (11.15). 

Note that, in the present variational approximation, the equilibrium internal 
energy of the electrons, which follows from (11.20) or (11.22), is given by 

(W) - Vnn{{Rn}) = ( ^ Z ^ i + ^ee \ 

whereas the energy of a set of independent quasi-particles would be 

Yl 9̂<"9> = Y^qfl = tr/^ = ( E l Ki + 2Vee V 
q Q \ i / 

Expression (11.14), which would lead to an average energy (W) = c + ^ Sgfg 
is thus incorrect. Nevertheless, consider a shift in equilibrium associated with an 
infinitesimal change in the temperature, the electron density, or the field applied 
to the electrons from the outside or by the nuclei. This shift is characterized by 
variations ST, Sfj-, 6K of the parameters which through the various self-consistent 
equations give rise to variations in V(r), h, \q), Sq, and fq. The corresponding 
variation in the internal energy of the electrons equals 

6{W) = tvj6K + tr6f K + - ^ tr8] / d^r ,^ "̂  ,, n(r'), 

4n£o J \r — r'\ 

that is, if we bear in mind the variational equation SA = 0, 

s{w} = tT J sk + tisjh 
= J2 {fg{<l\SK\q}+eq6fq). (11.24) 

9 

The two terms in (11.24) are the same as if the energy of the quasi-particles were 
additive: the first is associated with the change in the Hamiltonian and the second 
with the change in the average occupation of the single-electron states. 
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In order to understand this simplification, note that the variational expression 
(11.22) differs from the grand potential of a gas of non-interacting fermions only in 
the interaction energy (11.20); the entropy and the particle number have a trivial 
form. Moreover, the grand potential, which is the minimum of (11.22) with respect 
to / , depends on the equilibrium parameters partly explicitly and partly indirectly 
through the occupation matrix / . In an infinitesimal shift of the equilibrium, the 
second relation has no effect, since (11.22) is stationary with respect to any variation 
in / , and (11.23) vanishes identically. Due to the variational nature of the Hartree 
approximation, SA thus reduces to the explicit variation 

6A = tij6K-6iJ.tiJ + k6T tv\flaj+{l-J) ln{l-J)]; (11.24') 

this expression is independent of the term (Ves) and has just the same form as for 
a gas without interactions. This result also holds for 6U = SA -j- 6{fj,N + TS). 

The variational derivation of the Hartree approximation therefore justi
fies all equations we had above, except (11.14) which differs from the correct 
approximate form for the internal energy through the presence of a factor | 
in the interaction term (11.20). The electrons are not really independent in 
this approximation; correlations due to their Coulomb repulsion are partially 
taken into account through the self-consistency of the potential V, and tha t 
part of the energy which comes from the interaction between a pair of elec
trons should not be a t t r ibuted simultaneously to each of them and counted 
twice, but should be shared between them. Moreover, the interactions be
tween electrons result in V depending on the equilibrium parameters such as 
the temperature , the chemical potential, or external fields. 

Nevertheless, even though the internal energy at equilibrium is not equal 
to c + Ylq ^qfgj its first-order variations when the electron cloud is changed 
through perturbat ions, such as the application of an external field, heating, or 
changes in the electron density, are well represented by the simplistic expres
sion (11.24). Everything follows as if V were not an effective self-consistent 
potential depending on the equilibrium parameters, but a fixed external po
tential. The two errors - on the one hand, the omission of the factor | in 
the interaction energy and, on the other hand, the neglect of the variation of 
Sq in ^ Sgfq, wheu fq is varied - cancel one another. It is permissible here 
to forget the self-consistency of V and the changes it implies in the energies 
Eg when the occupation numbers / , vary. This point will be useful for us in 
what follows: when we calculate in §§ 11.3.1 and 11.3.3 first derivatives of the 
grand potential or of the energy of some substance, say, as function of its 
tempera ture or its charge density, we shall rely on (11.24) or (11.24') without 
reservations. 

11.2 .2 I n t r o d u c t i o n t o B a n d T h e o r y 

We shall use the remainder of this section to study the general character
istics of the solution of the single-electron Schrodinger equation (11.11-13), 
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where we assume that n{r) is fixed at its equilibrium, value for the substance 
considered. The potential V(T"), which is strongly attractive near the nuclei, 
reaches maximum values between them. It has a remarkable feature which 
will entail a number of electronic properties of solids, namely, it has the sym
metries of the crystal lattice. We shall not consider symmetries which are 
specific for particular lattices, such as invariance under some rotations over 
T̂T in a cubic crystal, or over T̂T in a hexagonal crystal; we shall merely 

consider the generic symmetry which is common to all crystals, namely, the 
periodicity in three spatial directions with periods equal to the dimensions of 
the crystal cell. This periodicity of V(r) is clear for the first term of (11.11), 
which is governed by the positions i?„ of the nuclei. For the second term, it 
results from the fact that the electron density n{r) has, in general, the same 
symmetry properties as the lattice: unless these are broken spontaneously 
(Prob.l2), they are induced by the nuclei through the self-consistency of the 
Hartree equations. In order that the periodicity be a strict one, it is neverthe
less necessary that the crystal lattice can be regarded as perfect and infinite. 
For the time being, we shall not discuss surface eflfects or the effect of defects 
on the electrons. We shall later on return to these problems when we study 
how an excess or shortage of electrons is taken up in a semiconductor near 
an impurity or in a charged substance near the surface. 

A rough approximation, which is qualitatively correct for metals, consists 
in neglecting the spatial variations of the potential V. The electrons in a 
metal then behave like independent particles enclosed in a box, and their 
energy levels are given by (10.9). They lie extremely densely, in contrast to 
the electronic levels in a gas (§8.4.1), where only the lowest electron state 
contributes to the thermodynamic properties. In a metal, the electron degrees 
of freedom are not frozen in, the electrons themselves contituting a gas, and 
it is essential to take them into account as in § 10.4.3, when we study the 
properties of the solid. Nevertheless, in general, the approximation, which 
consists in replacing the potential V by its mean value, is inadequate. It 
cannot explain why solids can be classified as metals or insulators. Moreover, 
even for a metal, it is clear that not all electrons can be treated as being 
free in a box; whereas the conduction electrons move freely, those from the 
low-lying shells of the atoms which form the solid must remain bound. If we 
want to construct a less gross theory, it is thus necessary to take into account 
the spatial variation of the effective periodic potential V which acts on the 
electrons. This is the subject of band theory, the main results of which we 
shall summarize. 

The most striking consequence of the periodicity of the potential is the 
nature of the energy spectrum Eg of the single-electron states \q). As for all 
macroscopic systems (§10.3.3), this spectrum is continuous, with a density 
of states "D^e) which is proportional to the volume. Nevertheless, instead of 
covering a complete range e = (emim+oo)) it has gaps, or forbidden bands, 
energy ranges of varying width in which there is not a single one-electron level. 
The levels are grouped into allowed bands, the structure of which depends 



11.2 Single-Electron Levels in a Periodic Potential 75 

on the crystal geometry. We see thus the coexistence of two complementary 
aspects, which we shall meet with again in various forms: the allowed bands, 
separated by forbidden bands, remind us of the discrete nature of the hound 
states of an electron in an atom or molecule, whereas the continuous nature 
of the spectrum inside an allowed band reminds us of the spectrum of the 
plane waves inside a macroscopic box. 

In order to understand these results, to determine the form of the eigen-
functions \q) of h, and to find the quantum numbers which characterize each 
state \q), we shall, to simplify the discussion, consider a one-dimensional lat
tice, with N cells of size o. Retaining the notation r for the only coordinate, 
we write down the periodicity condition for the potential: V^r + a) = V(r). In 
order to get rid of boundary effects and to obtain a perfect periodicity with
out having to deal with an infinite crystal, we introduce periodic boundary 
conditions, as in § 10.2.1. We thus identify point 0 with point L, where L is the 
size of the crystal, which is a large integral multiple of the cell size, L = Na. 
We shall also omit the electron spin, on which h does not depend. In § 11.2.5 
we shall come back to the electron band structure of real three-dimensional 
solids. 

The mathematical formalism which takes into account the invariance un
der a translation by a is based upon the introduction of the unitary oper
ator U which produces that translation in the single-electron Hilbert space 
(§ 2.1.5). This operator can be expressed in terms of the momentum operator 
p, which is the infinitesimal generator of translations; it transforms the ket 
Ir), which describes a particle localized at r, as follows: 

U\r) = e-'P"/^|r) = \r + a). (11.25) 

The existence of periodic boundary conditions means that any ket in the 
Hilbert space remains invariant under a translation by Na, or equivalently, 
that 

U^ = L (11.26) 

The invariance of h under a translation by a implies that the operators h and 
U commute: 

[U,h] = 0, (11.27) 

so that we can diagonalize h and tl simultaneously by a unitary transforma
tion (§2.1.2). The common eigenfunctions \q) of h and U are called Block 
waves (Felix Bloch, Ziirich 1905-1983). 

As the operator U is unitary, its eigenvalues are complex numbers of unit 
absolute magnitude, so that we can define its eigenvectors and eigenvalues as 

U\q) = e-'P"/'* \q). (11.28) 
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We can thus assign a quantum number p to each Bloch wave \q)\ this is its 
quasi-momentum, which characterizes how it transforms under a translation 
over a. More generally, under a translation over ja which is a multiple of the 
cell size a of the lattice, the Bloch function is simply multiplied by a phase 
factor with an argument which is proportional both to the quasi-momentum 
p and to the translation ja: 

W\q) = e-'P(j")/^ \q). (11.29) 

Since the periodic boundary conditions amount to (11.26), we must have 

SO that p must be an integral multiple of 2Trh/L: 

p = m , where m is an integer. (11.30) 
L/ 

The quasi-momentum is a quantum number which bears some resem
blance to ordinary momentum, as suggested by comparison of (11.25) and 
(11.28). In fact, let us consider a plane wave \P) characterized by its mo
mentum P. (For future convenience, we have denoted the quasi-momentum 
by p, and to avoid confusion we shall use in the present chapter a capital P 
to denote the ordinary momentum, which is the eigenvalue of the momen
tum operator p.) For a particle in a box of length L with periodic boundary 
conditions, the values of P are, like those of p, quantized by (11.30). Under 
a translation over some distance a, represented by the unitary operator Ua, 
the plane wave transforms according to 

U„\P) = e-^P'^'^ |P), (11.31) 

as one can see immediately in the (r| representation. This equation resembles 
(11.29) which holds for a Bloch wave. In particular, like the Bloch waves, the 
plane waves are eigenfunctions of the operator U, with the same eigenvalues 
(11.28); hence for a plane wave the momentum and the quasi-momentum are 
the same. Nevertheless, one should not confuse these two concepts. Whereas 
the property (11.31) of a plane wave is valid for any translation, a Bloch wave 
is transformed according to the simple equation (11.29) solely for particular 
translations over a = ja which leave the lattice invariant and which form 
a discrete group. On the other hand, (11.28) only defines p modulo 2'Kh/a. 
Thus, whereas P and P + ̂ -nhja are different momenta, the quantum number 
p must be taken to be the same as p+2-K'h/a, so that all values p, p±27r?i/a,p± 
A.'Khja,... are equivalent. 

It is convenient to lift this ambiguity, which is inherent in the definition 
(11.28) of the quasi-momentum, through the following convention. We require 
that p is confined to the interval 
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— < P < —, 
a a 

(11.32) 

which defines the Brillouin zone (also called first Brillouin zone). The quasi-
momentum then takes on N non-equivalent values, given by (11.30), (11.32), 
which are uniformly distributed over the Brillouin zone. (Incidentally, the 
eigenvalues (11.28) of U are the Nth. power roots of unity, uniformly dis
tributed over the unit circle.) In the limit of an infinite crystal, N —>• oo, 
L -^ oo,a — L/N fixed, the possible values of the quantum number p become 
a continuum, and a sum over the quasi-momentum p becomes an integral. 

7- p-Txhja 

^ ^ ~h J-.n/a 
dp, (11.33) 

in the Brillouin zone. The weight L/h is the same as for the ordinary mo
mentum P , but the integration range is here finite. 

The quantum number p is not sufficient to characterize a Bloch wave 
\q), not even for our simplified one-dimensional problem, in contrast to P 
which characterizes the plane wave \P). Equation (11.28) where the quasi-
momentum p takes on a fixed value defines a subspace of the single-electron 
Hilbert space. The restriction hp of h to that subspace is an operator which 
must still be diagonalized. One can prove that, in contrast to h, the eigenval
ues of hp form a discrete spectrum, even in the limit as L —* oo. Moreover, 
in one dimension they are not degenerate. Let us arrange them in increasing 
magnitude, and characterize them by an index h, which takes on the values 
h = 1,2,.. . , and which is called the hand index (Fig.11.2). As a result, in the 

Fig. 11.2. The eigenenergies e in the 
Brillouin zone for the lowest bands 
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case of one spatial dimension, each Bloch wave \q) = \p, h) is characterized 
by two quantum numbers, the quasi-momentum p which varies continuously 
in the Brillouin zone in the limit as L —> c«, and the band index b which 
is discrete. If, for a given value of h, we vary the quasi-momentum p, the 
eigenenergy £g also varies continuously with p. Each (continuous) permitted 
band of the spectrum is thus characterized by its index h. One can show that 
in one dimension there is no overlap between the bands h = l,b = 2 , . . . , 
which are thus separated by forbidden bands that do not contain any energy 
level, as we mentioned earlier. We shall verify this in §§ 11.2.3 and 11.2.4 for 
two extreme cases. 

Let us finally define more precisely the structure of the Bloch waves by 
introducing for each band b its Wannier wavefunction, defined by 

X6(r) ^ - ^ 5 ] ( r | p , 6 > (11.34) 

in terms of the Bloch functions of the given band. This definition assumes 
that we have made a definite choice of phase for each Bloch function, which 
so far had been defined by (11.13) apart from an overall phase. One can 
show, and we shall assume, that provided these phases are suitably chosen, 
the Wannier function (11.34) is localized in the vicinity of some characteristic 
point ro of the lattice. Moreover, in one dimension, it is either symmetric 
or antisymmetric with respect to ro, and 2ro/a is an integer. We shall write 
down explicitly examples of Wannier waves in §§ 11.2.3 and 11.2.4 and check 
these properties. For definiteness, we assume here that ro = 0. By carrying 
out each of the N lattice translations we can use (11.34) to construct the set 
of functions X6(r — ja), each of which is localized around the site ja. Using 
(11.25) and (11.29) we get 

Xb{r-ja) = -y='^ {r-ja\p,b) 
V p 

N 
p 

^5]( r |p ,6)e- '^W^ (11.35) 

The summation over p is over N successive integers m defined by (11.30) and 
(11.32), and expression (11.35) shows that the Bloch waves of the band b are 
through a discrete Fourier transformation related to the translated Wannier 
waves. More precisely, the N x N matrix defined by the indices m and j 
through 

N yjN 
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is unitary, so that relation (11.35) can be inverted to give 

{r\p,b) = ^ E ^'"'"^^ Xbir ~ ja), (11.36) 
N 

J 

where the summation is over all lattice sites. All Bloch waves of one band are 
thus produced, starting from a single Wannier function. They are constructed 
by subjecting this Wannier function to discrete translations and by adding the 
terms thus obtained, after having multiplied them by a phase factor which 
increases progressively with each translation. We can compare Eq.(11.36) 
with the equation 

{r\P) = ~ f dae'^"/^S{r - a), 

which holds for a plane wave: the discrete translations over ja replace the 
continuous translations over a, and the Wannier wave plays the role of the 
wave 6{r), localized at the origin. Nevertheless, (11.36) applies inside each 
band b; moreover, the Wannier wave has a certain spatial extension which, 
one can prove, increases with the band index. 

Expression (11.36) for the Bloch waves clearly demonstrates their double 
nature and separates the roles of the two quantum numbers p and 6. The trav
elling wave nature shows up directly through the exponential factor, which is 
the only place where the quasi-momentum p occurs. For small p (11.36) has 
the form of a plane wave e'*""/̂  of momentum p, modulated by the factors x-
The localized nature shows up through the factors Xb, which change from one 
band to another and which are centred around each lattice site. We shall see 
in §11.2.4 that these functions are a reminder of the atomic orbitals in which 
the electrons could be as long as the substance was gaseous. Note that the 
Wannier waves are not eigenfunctions of either h or [/, but that they form 
an orthonormalized base: 

/ drxl{r - ja)xb'{r - j'a) = Sbb'Sjf. (11.37) 
Jo 

We shall summarize the various aspects of band theory in § 11.2.5 in a 
form suitable for what follows. Subsections 11.2.3 and 11.2.4 are mainly for 
illustration and can be skipped in a first reading. 

11.2.3 Weak Binding Limit 

As an exercise we shall study the band structure of a one-dimensional model 
where the potential V(r) is small. When V = 0, the problem is that of a 
particle in a box of length L with periodic boundary conditions, and the 
solutions of the Schrodinger equation (11.13) are the plane waves (11.31). 
The momentum P , which is quantized by (11.30), is a good quantum number 
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when V = 0, since the problem is invariant under translation over an arbitrary 
distance a, but it is no longer a good quantum number when V 7̂  0; however, 
we still have invariance under a translation over o, which implies the existence 
of the quasi-momentum quantum number p. It is therefore proper to find out 
how a plane wave \P) can be considered, in the limit as V —> 0, as the limit of 
a Block wave \p, b). First of all, if we give the momentum P, we can deduce 
the quasi-momentum p. In fact, comparing (11.28) with (11.31) for a — a, 
we get p = Pmod{2Trh/a), and condition (11.32) completely determines p. 
Conversely, with a given value of p in the Brillouin zone there is associated 
a family of plane waves, all with the same quasi-momentum p, which are 
characterized by their momentum 

p = p+s^^, s = 0 , ± 1 , ± 2 , . . . . (11.38) 
a 

The band index is then determined by ordering, for given p, in increasing 
magnitude the eigenenergies of this family, 

4"i = ^ = i (p+^^V. (".39) 'P''' 2m 2m a / 

where the index 0 indicates that V = 0. When 0 < p < nh/a these energies are 
ordered according to s = 0, —1, +1 , —2,...; whereas, when —irti/a < p < 0, 
the order is s = 0 ,+1, —1,+2,. . . . The band 6 = 1 thus corresponds to 
s = 0, the band 6 = 2 to s = —signp, the band 6 = 3 to s = -hsignp, the 
band 6 = 4 to s = —2 signp, and so on (Fig.11.3). The bands 1 and 2 join 
each other when e'̂ '̂ = (7r?i/a)^/2m, and, more generally, the bands b and 
6 + 1 when ê ") = {bTrhf/2m. 

In the case when there are no interactions, the Bloch wave \p, 6)0 is iden
tified with the plane wave 

(r|p,6)o = ^ e ' ^ ' - / ' ^ = l^QVr/h^2nisr/a^ (1J_4Q) 

where the index s is related to the band index 6 as we have just indicated. 
Using (11.34) and (11.33) we now find the Wannier waves corresponding to 
the potential V = 0, for the choice (11.40) of the phases of the Bloch waves: 

( 0 ) / X \ / a 

4 ir) = -
. b-KT . (6 — l )7rr 

sm sm 
a a 

(11.41) 

These waves are relatively localized, notwithstanding a long oscillatory tail 
coming from the singularities at the points p — Q,p — ±-Kh/a, where the 
bands are joined together. The oscillations of the Bloch wave (11.36) or 
(11.40) can partly be attributed to the phase associated with the quasi-
momentum, and partly to the Wannier wave, which only contributes to the 
wavelengths shorter than a. 
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6 = 3 

b =1 

Fig. 11.3. The band spectrum in the weak binding limit: the thinly drawn line cor
responds to a free particle; the thick line is the same spectrum, brought into the 
Brillouin zone, in terms of the quasi-momentum; the dashed curves are the per
turbed spectrum, where we have assumed that VQ = 0 

Introducing the potential V modifies both the Bloch waves (11.40) and the 
spectrum (11.39). Nevertheless, the invariance of V under a translation over 
a, which is expressed by (11.27), implies tha t , if we write h in the base (11.40) 
of plane waves, regarded as Bloch waves, its matr ix elements between states 
with different quasi-momenta vanish. The non-vanishing matr ix elements are 

o(p,6|/i|p,6')o 4>- + 
1 r 
a Jo 

drV{r) ^2Tvi{s' — s)r / a (11.42) 

The determination of the Bloch waves \p, b) and their energies £p,(, in the 
presence of the potential thus reduces to diagonalizing the matr ix (11.42) in 
b, b' for a given p, a task which we now shall achieve to first order in V. 

In the weak binding limit (V —> 0) the off-diagonal elements of the matrix 

(11.42) are small and we can determine its eigenvalues £pfi, which are close to e^ ^, 
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by expanding the characteristic determinant, det{h — e), of (11.42) in powers of V 

and of e — e /. There are two cases: 
p,o 

(i) Far from the band edges, which correspond to the values P = i:bnh/a, that 
is, p = 0 or p = ±7rft/a, we find to first order in V a simple shift of the set: 

^p^b •'p,b + Vo, Vo « Jo 
drVir). 

(ii) Near a band edge, two eigenvalues, e ^ and s^ ^ , j , lie close to each other, 
as the unperturbed bands join up at the energy value {bnh/a) /2m. We must thus 
determine simultaneously the two eigenvalues, Ep̂ ^ and Sp^b+li which correspond 
to them. This reduces, to lowest order in V, to solving the following equation for e: 

^P,l + Vo-e n 

v: 4°l+i+^o-

with 

1 Vb = - Tdr-Ve^'^""'/". 

- e 

We have used here the fact that \s 
up. We get 

0, 

b when the bands b and 6' = 6 + 1 join 

^p,b 

Ep,6+1 

(0) 
b 2 V P' 

~ 2\P'b 

pfi+i) + ^o Y4VP.6+1 p.V ^ 1 ''I 
(11.43) 

)+''o+Vi('S«-s)+i''>i 
-(0) _(0) this also includes the first case, which we find when s)pb+i ~ ^pb -^ l̂ *"!' •'•f we 

denote by 6p <C -Kh/a the distance of p from the band edge p = 0 or p = ii'Kh/a, 
we find from (11.43) for the two bands b and 6 + 1: 

1 [bnhy 
2m \ a J 2m V m.a J |V6P (11.44) 

which is shown by the dashed curve in Fig.11.3. 

The most noticeable feature of the spectrum is the appearance of forbid
den bands of width 2|Vb| at the points, s = {bTTh/a)^/2m, where the two 
unper turbed bands b and 6 + 1 join up. However weak the periodic potential 
V, it is sufficient to change the spectrum, which is continuous when there is 
no potential, into a spectrum with alternately allowed and forbidden bands. 
This fact shows the general nature of the band structure. Nevertheless, in 
general, IV5I decreases as b increases, so that the forbidden bands which are 
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relatively wide at lovsr energies, become narrower at high energies, while the 
width (26 — l)(7r^/a)^ of the allowed bands increases. 

The fact tha t a weak periodic potential V(r) manages to produce a signif
icant, qualitative, change in the spectrum can be understood as a resonance 
effect. This potential, which has a period a in space, induces transitions be
tween plane waves with wavenumbers P/2-Kh which differ by multiples of 1/a. 
These transitions are particularly effective between waves of the same energy 
P^/2m, tha t is, between waves |P) and | ~ P) with opposite wavenumbers; 
the effect is thus important if 2P/2TTh is a multiple of 1/a. These values 
P = ±b{Trh/a) are just the momentum values corresponding to the joining 
of the two bands b and 6-1-1, t ha t is, the points where the forbidden bands 
crop up. 

The determination of the Bloch waves to lowest order in V is similar, but less 
simple. One can show as an exercise that, with a suitable choice of phase, {r\p,b) 
is for each b an analytical function of p of period 2'rrh/a, and that the Wannier 
functions decrease for large \r\ as exp[—m,a|V(,r|/67r^ 1. One can also show that, 
depending on the band index and on the sign of V;,, these Wannier functions are 
either symmetric or antisymmetric with respect to r = 0 or to r = ^a. 

11 .2 .4 T ight B i n d i n g Limit 

In the preceding subsection we have shown how a weak periodic potential 
creates narrow forbidden bands in the continuous spectrum of a free elec
tron. We shall now study as a further exercise the opposite problem, and 
star t from bound electron states in order to show how an isolated, degener
ate level spreads out into a narrow allowed band. To do this, we introduce 
a one-dimensional, attractive, short-range potential v{r), with its centre at 
the origin of the coordinates; this potential models the action of an ion to 
which the electron may be bound. The electron Hamiltonian, p^/2m -\- v{r), 
produces a set of bound states b = 1 ,2 , . . . , with eigenfunctions ifbir), and 
with increasing energies e^ = —h Kl/2m. Outside the range of the potential 
V the orbital ifb{r) decreases as e^'^'"''"!. We shall not be concerned with the 
unbound part of the spectrum, as we shall consider solely the lowest e^ 
levels. 

Our model describes a hypothetical, very dilute crystal with a large cell 
size a, which we may gradually let decrease. Neglecting self-consistency ef
fects, we have for the single-electron Hamiltonian, when there are N a t t rac
tive, equidistant centres present, with periodic boundary conditions, 

^ = £+^(^) = S^ + T.-(r-ja). (11.45) 
j 

We shall look for its spectrum and its Bloch waves. As a —> oo the spectrum 

Cj , which is discrete, is the same as for a single at tractive centre, but each 
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level now has the large multiplicity TV"; letting a decrease, we shall see how 
each discrete level blows up and produces an allowed band. 

We start from the limit where the distance a between the attractive sites 
is much larger than the range 1/KI, of the orbital <Pbir). The lat ter remains an 
eigenfunction of h, as it is practically equal to zero in the regions where the 
potentials associated with the other centres ja [j ^ 0) act. Similarly, for a 
given j {j = 0 , 1 , . . . ) , the function ipi,{r—ja) only feels the potential v{r—ja) 

of tha t particular j , and it is also an eigenfunction of h with eigenvalue s^ . 

The spectrum of h is thus discrete, and each of its eigenvalues EJ, has a 

multiplicity N, with eigenfunctions ipb{r — ja). All intervals e^ i^t+i P^^y 
the role of forbidden bands, with the allowed bands being infinitely narrow. 
In this limit as o ^ oo, the Wannier waves can be identified with the orbitals: 
Xf, = (^bC^), and the Bloch waves, which are eigenkets common to h and U, 
are thus according to (11.36) given by 

{r\p,b)o = - ^ E e'"'"^" Mr - ja). (11.46) 

VN . 
In a realistic crystal structure, the cell size a is of the same order as the 

range of the potential, a few A. We shall t reat this problem here by start ing 
from the above very dilute crystal limit, and reducing gradually the inter
atomic distances a which, nevertheless, will remain large as compared to the 
range l/ztb of the orbitals. When a decreases, the Bloch waves are modified, 
because we can no longer neglect the overlap of a <p function corresponding 
to a particular site with the potential v corresponding to another site. The 
energies Sp^b are therefore no longer degenerate. It is convenient to use the 
base (11.46), which was the eigenbase of h in the limit as a —» oo. This base 
has the disadvantage of not being orthonormalized when a is finite. However, 
the fact tha t it has the quasi-momentum p as a quantum number simplifies 
the solution, as it allows us to work with a given p: in fact, thanks to the peri
odicity of the potential V(r) , the Hamiltonian h, writ ten in the base (11.46), 
has non-vanishing matrix elements only between states with the same quasi-
momentum, and tha t is also t rue for the unit operator. The energies e = Sp^b 
are thus, for given p, obtained by solving the eigenvalue equation 

detbb'[a{p,b\h-e\p,b')o] = 0. (11.47) 

In the tight binding limit which we are considering here, the orbitals ipb of inter
est are sufficiently tightly bound that their value at a neighbouring site, which is of 
the order of exp(—reja), remains small. Under those conditions, the matrix elements 
of (11.47) contain, apart from the unperturbed term 5jf,/(£t — s), only exponen
tially small contributions. Nevertheless, it is difficult to treat those by a simplistic 
perturbation expansion, as the orders of magnitude of the factors exp(—K^a) vary 
greatly when b varies. In particular, the overlap matrix 
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Rbb' = o{p,b\p,b')o = (566' + ^ ^-vja/n I drifib{r ~ ja)ipy{r) 

is dominated by the terms j = ± 1 , which behave as the largest of the two factors 
exp(—Kf,a) and exp(—«{,/«), the one for which 6 or 6 is the largest. 

We can similarly write the Hamiltonian matrix in the form 

o(p,6|%,6')o = ef^Rw+W^y, 

where 

W 6̂6' = ^ e"'^^"/'^ / dr<fib{r-ja)v(r-j'a)ifiy{r). 

Comparing the range of the potential with a, «{,, and Ky enables us to retain, in the 
dominant order, only the terms j ' = 0, j = ±1 in Wi,y, which behave as exp(—K;(,a); 
here we do not have a contribution behaving as exp(—Kf,/a), even when b' > 6. The 
eigenvalue equation (11.47) therefore becomes 

det,6, [ (4°^ - s ) hb' + (WR-^)^,,] = 0, 

where each row of the matrix {WR )j{,; is small like exp(—(tja). In evaluating 
the determinant when e is close to ê  , it therefore suffices in the dominant order 
to retain in each row b , different from 6, merely the diagonal element, of order 
Ey ~ £t . The eigenvalue Ep ĵ close to s[ is thus found to order exp(—Kto) by 
writing down the vanishing of the diagonal 6,6 element. Since the matrix R is close 
to unity, the result is 

~p,b 4 ° ^ + 2 cos ^ dripb{r-a)v{r)(pi{r). (11.48) 

The degeneracy of the band is thus lifted through the action of neigh
bouring sites. When KbC is large, the band remains narrow, its width, given 
by (11.48), being proportional to e~'*''". The shape of the band as function 
of p, which is a section of a sinusoid, looks like what we did find for the 
weak binding limit, but now the allowed, rather than the forbidden, bands 
are narrow. In practice, the tight binding approximation is justified for deep 
lying bands for which Kb is large. When b increases, Kb decreases, so tha t the 
allowed bands widen more and more; this conclusion is the same as in the 
opposite limit of § 11.2.3. 

To the order we have used, the Wannier and Bloch functions are, respec
tively, given by 

Xbir) = >Pb{r) - \ \^b{r - a) ^- ipb{r -H a)] 

X I dr'ifbir' -a)<pb{r'), (11.49) 
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and by (11.36), which are expressions consistent with the energy value (11.48). 
The corrections to the atomic orbitals tpb{r) given by (11.49) allow the func
tions Xbir) and Xb'{i" + ja), and hence the Bloch waves \p, b) and \p', b'), to be 
orthogonal. The Wannier waves can thus be interpreted as atomic orbitals, 
modified by the presence of neighbouring atoms in the solid, which are mu
tually orthogonal, and which can be used to construct, through the linear 
superposition (11.36), the eigenfunctions of the single-electron Hamiltonian. 

11.2.5 Three-Dimensional Bands 

The one-dimensional models considered in §§ 11.2.2-4 help us to understand 
the band structure of a realistic three-dimensional solid, which we shall only 
briefly describe. Each single-electron state q is characterized by five quan
tum numbers. The first three are the components of the quasi-momentum 
p, which is associated with the invariance of the solid under the discrete 
translation group of the crystal. Each translation, represented by a unitary 
operator generalizing U^ to three dimensions, is characterized by a vector 
which generalizes ja and which we denote by R. The set of possible values of 
R form a lattice, and the quasi-momentum p enters solely in the combina
tions e^^^P'-^^^^, similar to (11.29); it is therefore defined only modulo certain 
translations forming another lattice in momentum space. We can, as we did 
through (11.32), lift this ambiguity, by requiring p to be confined to a certain 
region, the Brillouin zone, the shape of which in three dimensions depends 
on the crystal lattice. For instance, in the case of a simple cubic lattice of cell 
size o, the Brillouin zone is itself a cube in momentum space with its centre 
at the origin and edgelength 27r7i/o. The components of p are quantized by 
(11.30) in each of the three spatial directions as in the case of plane waves 
in a box. The number of non-equivalent values of the quasi-momentum p is 
equal to the number N of cells in the crystal lattice. Whatever the crystal 
structure, the volume of the Brillouin zone is (27r?i)^/t;, where v is the cell 
volume, and the summation over p becomes in the case of a crystal with a 
large volume i? the integral (10.38) in the Brillouin zone. 

The fourth, discrete, quantum number is the band index b. Finally, the 
last quantum number is the ^-component Sz of the electron spin; the electron 
energy does not depend on it. The Bloch waves \p, b), which are the common 
eigenstates of the single-particle Hamiltonian h and of the translation opera
tors, can be written, in a similar way as (11.36), in terms of localized Wannier 
functions, where now the translations ja have been replaced by the lattice 
vectors R. 

In general, the spectrum e{p, b) for a given direction of p , as function of 
the length p, behaves similarly as in one dimension. Nevertheless, in some 
directions, two bands may join, cross, or even coincide. Moreover, it can 
happen that the maximum of the band 6, reached in one direction of p, is 
higher than the minimum of the band b + 1, reached in another direction. 
Therefore, whereas in one dimension the number of electron states in each 
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band was always twice (because of the spin) the number of lattice cells, the 
multiplicity and overlap effects imply that, in general, the allowed bands in 
three dimensions contain a number of single-electron states which is an even 
multiple of the number of cells. Between two successive gaps in the spectrum 
we may thus find a multiple band containing several subbands. 

As in one dimension, the single-electron states show the features both 
of free waves and of bound states. This is reflected directly in the quantum 
numbers q = {p, b,Sz), in the eigenfunctions, the form of which is a general
ization of (11.36) to three dimensions, and in the spectrum of h. Either the 
one, or the other of these two aspects was dominant in the approximations of 
§§ 11.2.3 and 11.2.4, and will be the origin of the difference between metals 
and insulators. The free electron aspect shows up in the fact that a Bloch 
wave extends through the whole of the crystal, that it resembles a plane wave 
in respect to discrete lattice translations, and that its quasi-momentum p, 
like its energy, can vajy continuously. The bound electron aspect is reflected 
in the localization of the Wannier functions around a crystal site, or around 
a bond between two sites, in the discrete nature of the band index b, and in 
the arrangement of the spectrum as bands separated by gaps. 

More precisely, in the tight binding approximation (§11.2.4), we start 
from a gas state where the atomic nuclei are far from one another and we 
build up the solid by letting these nuclei gradually get closer until they reach 
the lattice positions which they actually occupy in the crystal considered. At 
the start, the eigenstates are the atomic orbitals Is, 2s, 2p, 3s, 3p, ..., which 
are localized at one of the N sites. At each site, the multiplicity of a level isd = 
2(21 +1), due to the electron spin and to the invariance of the effective atomic 
potential under rotations. The Nd states which are in this way associated 
with each electron shell Is, 2s, . . . , and which have all the same energy, 
produce in the solid a continuous band containing Nd single-electron states; 
this band is a multiple one for Z > 1. The fact that an electron can pass from 
one site to another lifts the multiplicity N. During that process in which the 
electron shells are spread out, two neighbouring bands may encroach one onto 
the other, thus increasing the multiplicity of the allowed band. Conversely, 
a multiple band may split up. As an example we give in Fig. 11.4 the single-
electron energy levels e, of a hypothetical sodium crystal where we can change 
the cell size a arbitrarily. For the sodium gas (a —^ oo) the deepest shells. Is, 
2s (which are not shown), and 2p are all occupied, by 10 electrons, while the 
eleventh electron is in the 3s shell. As a decreases, each atomic shell expands 
into a band with Nd levels, which in the case of the deepest shells is very 
narrow, but which is wider for the outer shells because they feel more strongly 
the perturbation from the presence of neighbouring atoms. When the physical 
value of a has been reached, the 3s and 3p shells have mixed, producing a 
multiple 3s-3p band with 2(1 -|- 3)A'' = 8N states. The Wannier waves, which 
in the deepest bands are practically the atomic orbitals, are in such a case 
constructed through hybridization (linear combination) of orbitals; here, for 
instance, of the four 3s-3p orbitals of each atom, with possible hybridization 
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3p (d = 6) 
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" ls{d = 2) 
Fig. 11.4. The energy bands of a hypothetical sodium crystal with a variable mesh 
size a. The dotted vertical line represents the experimental value a = 3.7 A 

between neighbouring atoms. The examples of diamond, given below, and of 
graphite (§ 11.3.2) will show tha t the band structure obtained in this way for 
a solid may have little in common with the initial s tructure of the atomic 
shells. 

Moreover, one should take into account the invariance of the potential, not 
only under the translation group of the crystal, but also under certain rotations or 
symmetries which characterize the crystal structure, especially for multiple bands. 
One can show that the band shape depends on this structure. (In one dimension this 
kind of property shows up already in a very simplified manner in that a symmetry 
of the potential V(r) = V(—r) leads to a symmetry of the spectrum under the 
exchange p ^ —p-) The Wannier waves can similarly be related to one other, 
not only through translations, but also through the rotations and symmetries of 
the crystal group, which either leave them invariant or associate them in non-
equivalent multiplets. The corresponding band is in the latter case a multiple one, 
and we obtain a localized Wannier wave by a superposition of the Bloch waves of 
the subbands; conversely, the expression for a Bloch wave which generalizes (11.36) 
contains a summation over Wannier functions which are derived from one another 
not only through translations R, but also through rotations or symmetries. The 
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Wannier waves can be localized either around a nucleus, like the atomic orbitals, 
or between two nuclei, like the electrons responsible for the covalent bond in a 
molecule such as H2. 

On the other hand, the breaking of the rotational invariance of the atomic 
orbitals, due to the anisotropy of the crystal lattice, lifts the 21 + 1 degeneracy of 
the atomic shells when a decreases. If that effect is larger than the broadening of 
the multiple band, a single atomic shell may produce several bands. 

As an example, let us consider diamond. Without going into the details of its 
crystal structure, we note that each C atom is surrounded by 4 neighbours, placed 
at the vertices of a tetrahedron of which it is the centre. A crystal cell contains two 
C atoms, the tetrahedra of which have different orientations. The Is atomic shell 
produces a deep, very narrow band containing 4A'̂  states which are all occupied by 
electrons; here N is the number of cells and 2N the number of C atoms. Each atom 
supplies four more electrons, in the 2s and 2p shells. These shells lie closely together 
and produce in the solid altogether 16iV states, organized in 8 subbands which are 
expected more or less to overlap. (We must divide by 2 because of the spin, and by 
N because of the quantum number p.) On the other hand, the 8N corresponding 
Wannier waves are localized around the bonds between neighbouring atoms as in 
the covalent bond of tetrahedric carbon. The number of such bonds is 'iN. (Each 
of the 2N atoms has four bonds, but each bond is shared by two atoms; there are 
thus 4 non-equivalent bonds per cell, which can be derived the one from the other 
through symmetries and rotations.) Altogether, through hybridization of the atomic 
2s-2p orbitals, one can thus construct at each bond 2 Wannier waves; one, the so-
called bonding one, is a function which is symmetric with regard to the centre of the 
bond, and the other, called antibonding, is antisymmetric. The 8 subbands can thus 
be classified into two groups: the lower 4, which overlap, are associated with the 
symmetric Wannier function and with those derived from it through the operations 
of the crystal group, and the 4 higher ones are associated with the antisymmetric 
function. The two groups are separated by a forbidden band. At zero temperature, 
the 8N 2s-2p electrons occupy exactly the lower multiple band, and the gap is 
large enough so that they remain frozen in at room temperatures: diamond is an 
insulator. 

To study the equilibrium properties we need to evaluate, as we mentioned 
in § 10.3, sums over the quantum numbers q, which can be reduced to the 
integral (10.38) over p in the Brillouin zone together with sums over the band 
index b and the spin. Another method consists, as in § 10.3.3, to introduce 
the single-electron density of states 2?(e), defined by (10.40). In the model 
where these states are represented by plane waves in a box, V{£) was given 
by (10.43), tha t is, 

I-W'^^S^Vi'W. 

For a more realistic band spectrum we have 

217 C 
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Fig. 11.5. Density of states for electrons in a crystal. The dashed lines represent the 
density of states in the box model 

where the integral is over the Brillouin zone. The density of states, which 
is proportional to the volume and vanishes for e values in the forbidden 
bands, makes it easier in three dimensions to visualize the spectrum than the 
functions e{p,b). We have sketched it in Fig.11.5 strongly exaggerating the 
width of the lowest allowed bands. In fact, these bands are associated with 
very tightly bound electron orbitals, with a spatial extension which is small 
compared to the crystal cell size. The tight binding model (§ 11.2.4) shows 
that under those conditions the band width is very small, as a bound state at 
a site is practically unaffected by the potential produced by the other sites. 
The Is, 2s, 2p bands should, in fact, have been represented by extremely 
sharp peaks. The area of each allowed band represents the number of levels 
in that band: 2N for Is and 2s, 6iV for 2p, and 8N for 3s-2p. 

11.3 Electrons in Metals, Insulators, and Semiconductors 

The properties of the electron cloud in a solid depend directly on the band 
structure. We shall see several examples in what follows. The large mobility 
of the electrons, due to their small mass, explains that they determine all 
the electromagnetic properties of solids; on the other hand, energy exchanges 
between electrons correspond to frequencies of the order of those of visible 
light, one to three eV, so that the electrons also determine the optical proper
ties of solids. The great variety of the electromagnetic and optical properties 
of crystals reflects the complexity of band structures. 

Since we shall treat the electron cloud in the Hartree approximation as 
a non-interacting Fermi-Dirac gas, we shall restrict ourselves to explaining 
those properties of solids for which the interactions of electrons with electrons 
or with the lattice do not play a role. Phenomena, such as magnetism or 
superconductivity, which involve these interactions, can only be studied by 
using more refined models which go beyond the framework of the present 
book (see, however, Exerc.llf and § 12.3.3). 
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In Chapters 14 and 15 we shall also study heat and electricity transport 
properties which, in non-equilibrium situations, are connected with the ex
istence of temperature or chemical potential gradients. Again, by virtue of 
their great mobility, it is the electrons which are, in general, responsible for 
conduction effects in solids. Let us note right now the importance of band 
theory for their explanation. Electric conduction, for instance, is the result of 
the combination of two effects: the acceleration of the electrons by the applied 
field, and their collisions with fixed obstacles which tend to isotropize their 
velocity distribution. However, these obstacles are not the nuclei. In fact, we 
have just taken the effect of nuclei into account for the case where they are 
fixed to a regular lattice; the Bloch wave functions (11.36) of the electrons 
in the presence of fixed nuclei are similar to the plane waves which would 
have been asssociated with the free electrons, and we shall see in § 11.3.2, 
by writing down the equations of motion for a Bloch wavepacket, that its 
dynamics resemble that of a free wavepacket, possibly with a change in the 
mass. As a result, a regular lattice is transparent to electrons in contrast to 
a randomly distributed system of nuclei. This is an important fact, as the 
nuclei are densely packed, and if we assumed that the electrons are scattered 
by them, we would be unable to explain the observed high conductivity of 
metals. In fact, the electrons are scattered by lattice imperfections: crystal
lization defects, impurities, and, above all, displacements of the nuclei from 
their equilibrium positions (or "phonons", see §11.4.2). These are random 
displacements which are excited thermally and which produce a non-periodic 
perturbation of the potential seen by the electrons. 

11.3.1 Metals 

At zero temperature the system of electrons in a solid occupies the single-
electron states with the lowest energies e,, up to the Fermi level ep, which 
is the T = 0 limit of the chemical potential /x. Let us assume that the Fermi 
level lies inside an allowed band, which we shall then call the conduction 
band. We shall see that in this case the solid is a metal; in contrast, for an 
insulator, the available electrons will occupy exactly a number of the lowest 
energy bands. For example, in a crystal of N sodium atoms, IQN electrons 
occupy the deep lying Is, 2s, and 2p bands (we have greatly exaggerated the 
width of these bands and greatly decreased their height in Fig.11.6); there 
remain N electrons which occupy the bottom of the 3s-3p conduction band. 

The spacing of the bands is, in general, several eV (about twenty for 
Na) whereas room temperature corresponds to ^ e V . Hence, raising the 
temperature has no effect whatever on the electrons in the deep lying bands, 
which remain frozen in. Therefore, only the conduction band is involved in the 
thermal excitation of electrons, as in all effects, such as electric conduction, 
where the relevant energies are small compared to an eV. In fact, we shall 
show below that we can describe metallic sodium either by the band scheme 
of Fig.11.6, where the llA'^ electrons are subject to a self-consistent potential 
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Sodium 

conduction 
band 

3eV 
Fig. 11.6. The band structure and band occupation of sodium. The dashed lines 
refer to the box model 

created by themselves and by the N sodium nuclei, or by the following model. 
We replace the N Na nuclei by N Na"'" ions placed on the same lattice, and 
we introduce just the N conduction electrons, neglecting the lOiV electrons 
fixed to the ions. Each electron sees the effective potential of the Na"*" ions 
and a self-consistent potential due solely to the conduction electrons; in that 
case we need only take the conduction band into account, which is the lowest 
band for the new problem. 

The fact tha t the level density in the conduction band, which determines 
the thermodynamic properties of the electron gas in a metal, is similar to 
the level density of an electron gas in a box (see the dashed line in Fig. 11.6) 
justifies the latter model which we studied in § 10.4.3. In particular, even 
though there are UN electrons in the sodium crystal, one must model the 
crystal by solely N electrons enclosed in a box. Figure 11.7 allows us to clarify 
the relation between the box model for a metal and the more sophisticated 
band model: in contrast to the electrons of the deep lying bands which remain 
localized near the nuclei, those in the conduction band have sufficiently high 
energies so that we can reasonably replace the periodic potential by a constant 
average value, close to the energy at the bo t tom of the conduction band. 
Everything is happening in this approximation as if the system of Na"'" ions 
seen by the electrons were equivalent to a uniform positive charge density. 

One can justify the replacement of the nuclei and the electrons in the deep 
lying bands by fixed ions as follows. First of all, we note that those bands can 
be treated in the tight binding approximation of § 11.2.4. Even for the 2p band of 
Na, the binding energy, of the order of 20 eV, leads to a range 1/K of the electron 
atomic orbitals {ej^ = —K /2m) of about 0.5 A, whereas the cell size a is 3.7 A, so 
that the expansion parameter e" ' ' ' ' is only 0.5xl0~^. Hence, the Is, 2s, 2p bands 
are very narrow, with all energies Sq equal to the atomic binding energies; their 
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Metallic surface 

Bands 

3s - 3p 

Periodic potentiel 

Fig. 11.7. T h e box poten t ia l for sodium 

Wannier waves reduce t o t h e a tomic orbitals. O n the other hand , t he set of Bloch 
waves of a band can be derived from the corresponding set of Wannier waves, lo
calized near each of t he Na nuclei, t h rough the un i ta ry t ransformat ion (11.36). It 
is thus equivalent to saying t h a t all the Bloch states of a band are occupied or t h a t 
all Wannier s ta tes , t h a t is, all atomic orbitals of the corresponding shell are occupied. 
Filling t he I s , 2s, 2p orbitals amoun t s t o placing a N a ^ ion at each lat t ice site. 
Altogether , it is legi t imate to neglect b a n d theory for t he set of deep lying shells 
and to t rea t the corresponding electron cloud, together wi th the nuclei, as a rigid 
charge dis t r ibut ion produced by N Na ions a r ranged on the lat t ice. Prom this 
periodic dis t r ibut ion one can t h e n construct the Bloch waves of the conduct ion 
b a n d where one will find t he other N electrons. Here one can use t he weak binding 
limit (§ 11.2.3), as t he potent ia l produced by the Na ions does not vary greatly in 
space. The conduct ion band thus appears as t he lowest b a n d of this problem, which 
is not great ly pe r tu rbed , so t h a t t he density of s ta tes T>{e) in this energy range is 
similar to t h a t of t he box model , apar t from a change in origin. 

The same idea also simplifies considerably t he theory of (insulating) ionic crys
ta ls , such as NaCl . Here, each of t he N cells contains one Na a tom and one CI 
a tom. In t he ground s ta te the electrons occupy exactly t he bands result ing from 
the I s , 2s, 2p shells of N a and the I s , 2s, 2p, 3s-3p shells of CI, which are all subject 
t o t he t ight binding approximat ion . Prom the electron point of view, the s ta te can 
be described in t e rms of bands , bu t equivalently and more simply by s ta t ing t h a t 
all these atomic orbitals are occupied ( the highest ones are slightly pe r tu rbed by 
the periodic s t ruc ture ) , which justifies t he intuit ive p ic ture of a crystal consisting 
of N Na ions and N C l~ ions. T h e effective potent ia l W which determines the 
crystal s t ruc ture (§11.1.1) reduces thus to the sum of t he eifective interactions be
tween those ions, which contain not only t he Coulomb forces associated wi th their 
to ta l charge, bu t also a short range repulsion due to t he Paul i principle, and other 
contr ibut ions associated wi th the spat ial extension of t he ions. 

W e h a v e seen in § 10.4.2 t h a t in t h e b o x m o d e l for m e t a l s t h e F e r m i 

e n e r g y ep = k0F e q u a l s a few eV. I n b a n d t h e o r y t h e o r d e r of m a g n i t u d e 
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of the Fermi energy, counted from the bottom of the conduction band, is 
the same so that kT/ep is of the order of 1%. The region, of order kT, in 
which the Fermi factor decreases from 1 to 0 is thus very narrow relative to 
the band shape: as a result, only the states q closest to the Fermi level are 
involved when we want to determine the properties of metals which are due 
to the electrons. The other states remain permanently either completely full, 
or completely empty, so that their structure is not implicated. Most physical 
effects are due to small changes in the occupation of the single-electron states 
close to the Fermi level, and the results obtained in §§ 10.4.2 and 10.4.3 in 
the free electron model need only small changes. Because of the anisotropy 
of the crystal the Fermi surface in the quasi-momentum p space has a more 
or less complicated shape which depends on the crystal structure and the 
number of conduction electrons. Close to a sphere for Na, the Fermi surface 
may get deformed enough so that it reaches the boundary of the Brillouin 
zone, as for copper. 

The various thermodynamic expressions (10.65) to (10.68) remain un
changed, provided the electrons are treated as independent particles with 
energies eg. They are valid for T <C 6>F, where the characteristic Fermi tem
perature 6>F is here defined in relation to the shape of ©(e) in the neigh
bourhood of £F , for instance, through fc6>F = A/'c(eF)/'Z?(£F), or through 
k0F = V{eF)/2'D'{sF), where N'c indicates the number of states counted 
from the bottom of the conduction band. Eliminating /j, for given N and 
T <C ©F gives 

n' 
3 

-jk'TVisF) - C, (11.52) 

so that the electron contribution, C = TdS/dT to the specific heat is linear 
in T, as in § 10.4.3. The chemical potential still remains close to £FJ whatever 
the temperature. 

Similarly, the magnetic susceptibity due to the electron spin, that is, the 
Pauli susceptibility, is nearly constant and equals 

2 P ( £ F ) /^I ON 

as in the box model. In order to find this expression (Exerc.lOb) one notes 
that the magnetic term /ie-Ba, which must be included in the Hamiltonian 
h, is for each value a — ±1 simply a constant which can be added to the 
energies e{p,h) of band theory without a magnetic field B. Hence, we get 
from Eq.(10.47) 

A = - ^ j deMie) ^ f{e + fiBBa), (11.54) 
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where Af{s) is evaluated for the case without field. As a result we find, for 
small B and using the fact tha t / ( e ) ~ 0{ep — e), the expression for the 
magnetization, 

M 

7? 
df{e + fXBB) dfje - n^B) 

de de TISB' in J *^<' ' 

'f I M(e) '^ ^ f^ VM. (11.55) 

and thus x-

We have used for the evaluation of the thermodynamics quantities in a metal 
the theory of a gas of non-interacting fermions, without taking into account the 
self-consistency of the potential V which depends on parameters such as T, fi, or 
B. Hence, expressions (10.47), (10.65), or (11.54) which we have written down for 
the grand potential, like Eq.(10.67) for the internal energy, are incorrect. In fact, as 
we saw in § 11.2.1, they overestimate the interaction energy (11.20) by a factor 2. 
In the Hartree approximation, the correct expression for the grand potential of the 
electrons is the minimum of (11.22), and it differs from (11.54). Nevertheless, the 
other equations (11.51-53) and (11.55) remain correct. One sees this by noting that 
N, S, and M all follow from the grand potential through differentiating with respect 
to n, T, or B. According to (11.24') these quantities can therefore be calculated in 
the Hartree approximation as if the electrons were a gas of non-interacting fermions 
with energies eq. 

The most remarkable property of metals is their high electric conductivity. 
We leave its s tudy to the end of § 11.3.2 and to § 15.2.3. 

11.3 .2 Insulators ; D y n a m i c s of E lec trons a n d Holes 

One of the properties which can vary most widely from one solid to another is 
the electric conductivity. For instance, at room temperature the resistivity of 
copper is 1.7x10^® O cm, whereas tha t of sulphur is lO^'^ Q, cm. We shall see 
tha t the distinction between metals and insulators arises from an essential 
difference in the way the electron bands are filled. 

Band Occupation 

A metal was characterized by a conduction band which was partially filled 
at zero temperature , and hence at all temperatures. An insulator is a solid 
such tha t the number of electrons is exactly equal to the number of states 
in the lowest bands. At zero tempera ture the Fermi level thus lies between 
two bands: the band above the Fermi level, the conduction band, is therefore 
completely empty, while the one below it, the valence band, is completely 
occupied (Figs.11.8 and 11.9). 
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Fig. 11.8. Band occupation in an insulator 

fiy M 

The interesting part of the Cq spectrum, the only part which will play a 
role in what follows, is the bottom of the conduction band and the top of the 
valence band. In the simplest cases these parts correspond to small values 
of the quasi-momentum in both bands. We shall restrict ourselves in what 
follows to such a situation and we shall denote by £c and e^ the limits of the 
forbidden band, which are reached for p = 0. 

One might think that this situation is an exception, as it implies the 
equality of two large numbers: the number of electrons and the number of 
states in the lowest bands. However, that is not the case, since we have seen 
in § 11.2.5 that the number of states in each band is a multiple of the number 
of cells in the crystal; the number of electrons is a multiple of the number of 
atoms, and this makes it possible, depending on the band structure, to fill a 
certain number of bands exactly. For instance, the crystals of the inert gases 
are insulators. The filled atomic shells produce, in fact, in this case filled 
bands, well separated from the empty bands which lie above them. On the 
other hand, most solids with an odd number of electrons per cell are metals: 
alkalis, Cu, Ag, Au, Al. In fact, due to the level degeneracy connected with the 
spin inside each band, the number of states in each band is an even multiple 
of the number of cells, which forbids the conduction band to be filled exactly. 

conduction 
band 

valence 
band 

forbidden 
band 

Fig. 11.9. The bands involved for an in
sulator, in quasi-momentum space 
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The situation is less simple for other substances; one can only decide about 
whether a solid is an insulator or a conductor through a detailed and difficult study 
of the band structure. This is particularly clear for substances such as carbon which 
may be either insulators or conductors, depending on their crystal structure: in 
§ 11.2.5 we described the bands of diamond which is a typical insulator, whereas 
graphite is an anisotropic conductor. Its atoms are arranged in hexagonal lattices 
in parallel planes. Let the z-axis be taken at right angles to those planes. As in 
diamond, the Is orbitals produce a deep lying, filled band. Hybridization similar to 
that in diamond, however, now occurs between the three 2s, 2px, and 2py orbitals; 
they produce two Wannier waves for each bond on the hexagonal lattice, one of 
which is bonding, and the other anti-bonding. (There are three such bonds per two 
C atoms.) Two sets of subbands correspond to them, which are separated by a 
forbidden band; the highest set is empty and the lowest set is filled with electrons 
- 3 per atom. The conducting nature of graphite shows up when one studies the 
remaining 2pz orbitals and the remaining electrons - one per atom. The bands 
produced by those orbitals do not have a simple structure, because the unit cell 
contains more than one C atom; but they overlap and constitute a multiple allowed 
band, which contains 2M single-electron states, when we take spin into account, 
where M is the number of C atoms. We still need to place M electrons in those 
bands, and their partial filling explains that graphite is a conductor, but not quite 
as good as a metal. 

We can easily understand why a complete filling of bands leads to an 
insulating crystal: it needs at least an energy equal to the gap 6 = Sc — 
Sv between the valence band and the conduction band to let an electron 
move freely through exciting it and thus to produce a current, whereas in a 
metal an infinitesimally small energy is sufficient to excite electrons in the 
neighbourhood of the Fermi surface. An insulating crystal thus resembles a 
gas molecule: in bo th cases the electronic degrees of freedom are frozen in. 

If the temperature increases, some electrons are thermally excited into the 
conduction band, leaving holes in the valence band. This is a very weak effect, 
as most electrons remain frozen in into the valence band: the temperature is, 
in fact, always small compared to the characteristic temperature , which here 
is 6/k, where 6 is the width of the forbidden band. Nevertheless a number of 
physical phenomena are the consequence of this small variation in population, 
as we shall see later on. Let us evaluate the average number of electrons excited 
into the conduction band: 

N, = 2J2 n^cip)]. (11.56) 
p 

The sum is over the quasi-momenta; £c(p) denotes the energies e , of the 
conduction band, and the factor 2 comes from the spin. In the Fermi factor, 

m e / 3 ( e - M ) - ^ l ' 

the exponential dominates the denominator: we shall see, in fact, tha t the 
chemical potential fi is close to the middle of the forbidden band so tha t the 
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exponential is large, of order e'̂ */^. Therefore, the conditions of § 10.3.4a 
hold. The Fermi-Dirac gas of the electrons in the conduction band - for the 
moment we forget about the other bands - behaves like a classical gas and 
we can replace / in that band by 

-/3[ec(p)-Ml (11.57) 

On the other hand, this factor decreases fast with increasing p so that only 
the small quasi-momenta play a role. We can therefore replace the energies 
in the conduction band by the start of their expansion in powers of p: 

Scip) - ^c + ^'^KijPiPj, i,j, = x,y,x. (11.58) 
ij 

To simplify matters we assume that the tensor K is isotropic, which is the 
case for crystals with cubic symmetry. The conduction band spectrum then 
behaves like a free particle spectrum, 

£e(p) ^ £c + ; ^ , (11.59) 

where the constant nic can be interpreted as an effective mass for the electrons 
in the conduction band. Finally, one can neglect the distinction between quasi-
momenta and momenta: the quasi-momentum values for a finite size crystal 
are the same as the momentum values in a box of the same shape, bar that 
the quasi-momenta are restricted within the Brillouin zone; however, since 
only the small values of p play a role, one can extend the summations to 
infinity. Finally, we thus find 

iv. . 2 $ : g/3(M-ec)-/3pV2mc 

P 

~ 2 — / d^pel^it'-^'')-0pV2m, 
h^ J 

= 2e'3(''-^»' -^(2me7rA;r)'/ ' , (11.60) 

which is the same expression as that for the number of molecules with mass 
rUc of a classical perfect gas with /z — Sc as its chemical potential (§ 7.2.2). 

Let us now evaluate the average number of holes, left in the valence band 
at a temperature T: 

AT, = 2 ^ { l - / [ e . ( p ) ] } . (11.61) 
p 

We use therefore the particle-hole symmetry which we exhibited in § 10.4.3. 
The energies Sy (p) of the valence band states have a form which is similar to 
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(11.58), with the matrix Kij now being negative so that Sv is the maximum 
of ey{p). In the approximation where we neglect the anisotropy, we have thus 

e^ip) c^ e ^ - ^ . (11.62) 

We know that by changing the sign of e^ and of /x we replace the expression 
for the average number of holes, 1 — / , , by that for the average number of 
particles, / , . Equation (11.61) has thus exactly the same form as (11.56) if 
we replace /x — EC by EV — M and mc by m v As a result we find 

iVv ~ 2e'3(^--'^) ^(2mv7rA;r) ' / ' . (11.63) 

The thermal excitation of the electron cloud thus produces two kinds 
of objects: electrons in the conduction band and holes in the valence band, 
which behave like independent particles. These elementary excitations, called 
"'quasi-particles" or "charge carriers", are a convenient method to describe 
how the electron cloud deviates from its ground state. The latter plays the 
role of a "vacuum" and each excited state can be interpreted as a collection 
of quasi-particles which move in this vacuum. An excess electron in the con
duction band resembles through its charge a "bare" electron, that is, a free 
electron. However, the fact that it moves through the insulator rather than 
through the true vacuum modifies its energy spectrum to (11.58) or (11.59). 
The change in - and possible anisotropy of - its mass is the effect of the 
"dressing" of the electron by its interactions with the other electrons and the 
lattice. The holes are new objects which appear because in our "vacuum" the 
valence band is filled. Producing a hole of quasi-momentum p is equivalent 
to suppressing an electron of quasi-momentum —p in the valence band. This 
operation increases the energy by an amount —Sv{—p) so that, according 
to (11.62), the holes in the valence band have a positive effective mass m^. 
Similarly, their charge is positive. 

Dynamics of Quasi-Particles 

The analogy between the conduction electrons (or the holes in the valence 
band) and a gas of particles with mass m^ (or m^) and charge —e (or -f-e), 
which we have just established for thermal equilibrium properties, also ex
tends to the dynamics of the electron cloud. To see that, consider a single-
electron wavepacket 

Q = Y. IP)(PI^P')(P'I, (11-64) 

which we assume has been formed by a superposition of Bloch waves, only 
from the conduction band. The single-electron density operator (11.64) can 
represent just as well a pure state as a statistical mixture and it satisfies 
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t r ^ =: 1. We denote the Bloch waves \p) of energy edp) solely by their 
quasi-momentum, omitt ing the conduction band index and the spin. We want 
to s tudy the dynamics of the excess electron when it moves in the lattice 
under the influence of a force / which is added to the periodic potential 
V( r ) . The force field is assumed to be uniform over distances of the order 
of the extension Ar of the wavepacket; it includes the effect of the screening 
due to the self-consistency of the potential (§11.3.3) so tha t the effective 
Hamiltonian of the electron is h—{f-r). We shall neglect interband transitions 
which might be induced by the field, so that g retains its form (11.64). If 
{p\d\p') is concentrated at values of p :i; p' which are small compared to h/a, 
or, more generally, if the fluctuation Ap of the quasi-momentum around its 
average value p is small compared to h/a, the spatial extension Ar of the 
packet will be large compared to the cell size a. The form (11.36) of the Bloch 
functions shows tha t the state ^will then on a large scale resemble an ordinary 
wavepacket in the vacuum, where \p) should be replaced by a plane wave: it is 
localized in a region Ar around (r) and oscillates as exp[i(p • r)/h]; however, 
on the scale of a cell, it involves a rapid supplementary spatial modulation 
coming from the Wannier wave x of the conduction band. To simplify mat te rs 
we assume tha t the lat ter is a simple band, produced by a single Wannier 
function x ( r ) per cell. 

We shall show tha t this modulat ion on the small scale and the presence 
of the potential V{r) in h have as sole effect the substitution, in the classical 
equations of motion, of the kinetic energy of the bare electron by the band 
energy edp)- Let us, therefore, write down Ehrenfest's equations (2.29) which 
govern the evolution of the expectation values of the quasi-momentum and 
of the position. 

Using (11.64) we find 

;^{p) = T ^ t r ^ [ p , / i - ( / • ? ) ] 

TZ- ^ {p\'d\p'){p'\if-r)\p){p-p'), 

dt ih 

_ 1 
ih 

| ( r> = ^u-d[?,h-if.?)] 

= r^ ^ {p|?|p'){p'l^|p) [£c(p)-ec(p ' ) ]• 

Strictly speaking, the operator p is not well defined due to the ambiguity in the 

definition of the quasi-momentum p. Nevertheless, if the wavepacket is localized 

in quasi-momentum space well away from the boundaries of the Brillouin zone, 

we can use as a definition p = ^ \p}p{p\ where p is chosen inside that zone. The 

expression which we have just written down uses that convention; however, it should 

be changed, if the wavepacket passes through the boundary of the Brillouin zone. 

To calculate (p \r\p) we use the representation (11.36) of the Bloch waves in terms 
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of Wannier waves. We assume that the origin is at the centre of the crystal and by 
R we denote the translations which leave the lattice invariant. We find 

(P ' I^IP) = ^ E e'( ' '-«-' ' '-*')/ '^ I d\x\r-B!)rx{r-R) 
R,R' •' 

= ^ E e^*"-*-"'-^')/'^ \RSn,n'+ f d^rx*(r)rx{r - R +R') 
R,R' ^ •' -I 

= i?iVp,5p,p, +5p,p, VN I d^rx''{r)r{r\p). (11.65) 

We have replaced r- by i i +{r — R) and used the invariance under the translations 
R'. The second term in (11.65) does not contribute to the equations of motion, as 
they contain factors p — p' and Sc{p) — ec(p') which vanish when p = p ' . In the first 
term, we must treat p as a continuous variable, writing Sppi = {h /Q)6 (p — p') , 
whence we get 

^(p) = g J d'p{p\d\p)f = f, (11.66) 

^( ' •> = ^ /d^p(p |? |p>Vp£c(p) = (Vp£c(p)). (11.67) 

Hence, the motion of a quasi-particle in the conduction band resembles 
tha t of a bare particle in the vacuum. The variable which is conjugated to 
the position is no longer the momentum, but the quasi-momentum, and the 
kinetic energy is replaced by £c(p)- If the wavepacket is localized in a region 
Ar containing a large number of cells but still microscopic, and in a region Ap 
small compared to the size of the Brillouin zone, we can neglect the statistical 
fluctuations of p and r , and Eqs.(11.66) and (11.67) describe the motion of 
a classical particle with Hamiltonian edp) — if • i"). Alternatively we can 
interpret the velocity Vp £c of the conduction electrons, using the de Broglie 
relations p = hk, edp) = hu){k), as the group velocity of a wave characterized 
by the dispersion relation w(fe). When p is small, Eqs.(11.58) and (11.67) give 
as components of the velocity Vi = ^ • KijPj. If, moreover, the bo t tom of the 
band is isotropic, (11.59) gives v = P/TUC, so that the quasi-particle has the 
same dynamics as a particle of mass rUc in the vacuum. 

Similarly, when we consider a valence band with one electron missing, 
we can equivalently describe its dynamics by considering the motion of a 
wavepacket which represents the missing particle; this motion is described by 
Eqs.(11.66) and (11.67), with £c replaced by e^. However, the total momen
tum p of the cloud, which can be identified as the quasi-momentum of the 
hole, is the opposite of the quasi-momentum associated with the wavepacket 
and occurring in (11.66) and (11.67). The hole dynamics thus obeys the equa
tions 
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I (p) = A ^ - / , (11.66') 

| ( r ) = - ( V , M p ) ) . M . (n.67') 

The relation (11.67') between the velocity and the momentum has the same 
form as for a particle with a positive mass m^. On the other hand, from 
(11.66') it follows tha t the force / j j , felt by the hole, is the opposite of the 
force / applied to the electrons. This is consistent: since an electron in an 
electric field E is subjected to a force —eE, a hole must be regarded as a 
classical particle subject to the force eE, tha t is, a particle with a positive 
charge e. 

The equations of motion (11.66) and (11.67) look classical, but their derivation 
has not needed any of the conditions from § 10.3.4, and in actual fact we are dealing 
with quantum mechanical equations. The potential V{r) is clearly not a slowly 
varying one, and the electron density is not necessarily small. These equations are 
therefore valid not only for an insulator, but also for a metal. They are compatible 
with the exclusion principle at equilibrium, since they conserve the single-particle 
energy; if there are no external forces, ec(p) remains constant during the motion of 
a wavepacket, and this is thus also true of the expectation value of the occupation 
number which depends solely on £c(p)- Note, however, that the relevant part of 
the band spectrum for a metal is not the bottom or the top of a band, but the 
region where Sc{p) — ep- The gradient which occurs in the expression (11.67) for 
the velocity must be calculated at the Fermi surface, where an approximation such 
as (11.58) is, in general, not justified. In the case of the quasi-paiticles which are 
the conduction electrons in a metal the relation (11.67) between the velocity and 
the quasi-momentum is therefore not just a proportionality. 

Insulator as a Classical Gas of Carriers 

At equilibrium, in an electrically neutral insulator the total number of elec
trons remains fixed when the tempera ture varies. The number of electrons 
excited into the conduction band is thus equal to the number of holes left be
hind in the valence band. This condition, Nc — N^, determines the chemical 
potential of the electrons, if we use (11.60) and (11.63): 

M = i ( £ c + £v) + 7 f c T l n ^ . (11.68) 

The value thus obtained lies close to the middle of the band, since kT <Si 
6, which justifies the approximations made about the low densities of the 
conduction electrons and of the holes. As T —> 0, /i has a well defined Umit, 
| ( ec + £v), whereas the chemical potential would be undetermined between 
Ev and £c in the ground state itself. Eliminating /x from (11.60) and (11.68), 
we find 
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3/2 

V 2-Kn^ ) 
(11.69) 

As expected, this is a very small number because of the exponential factor 
and the large value of the characteristic temperature bjh. 

The introduction of quasi-particles is thus seen to be much more than 
artificial semantics. It considerably simplifies the description of the electron 
system in the insulator and makes physical reasoning easier. In fact, one can 
forget the complications connected with the original electrons, that is, their 
mutual interactions and their interactions with the lattice, the band structure 
- apart from the bottom of the conduction band and the top of the valence 
band - and even the Fermi-Dirac statistics, however important it was for the 
construction of our quasi-particle model. This new description only involves 
two kinds of non-interacting quasi-particles or charge carriers, the conduction 
electrons with a charge —e and the holes in the valence band with a charge 
+e. These quasi-particles do not see the lattice^ which has dropped out of the 
description. At zero temperature there are no quasi-particles present and the 
electron state of the insulator can be interpreted as the vacuum for the quasi-
particles. Supplying energy to the electron cloud, for instance, by heating it, is 
equivalent to creating pairs of opposite charge carriers. Their density remains 
always extremely small so that we can treat them as a mixture of two very 
dilute classical perfect gases. 

The quasi-particle energies have the same form as the ordinary kinetic 
energy, with effective masses iric and my which are diflferent from the original 
electron mass; these effective masses occur both in the occupation numbers at 
thermal equilibrium and in the dynamics which is the same as that of classical 
particles. Finally, Eqs.(11.60) and (11.63), which relate the densities of the 
two gases of carriers to the chemical potential, have the same form (8.7), 
(8.5) as for a classical gas; the density of conduction electrons contains the 
factor e^^'^~^''\ replacing the factor ^e'^^ which usually occurs in the density 
of a classical gas, but the hole density contains a factor e^'^^^"^'. We are thus 
led to assign to the conduction electrons and the holes chemical potentials 
/ic = M •̂iid ŷ v = —ftj which satisfy the relation /j.^ +IJ.V = 0 when the material 
is at equilibrium and, morover, the relation TVc = A'̂  when it is electrically 
neutral. The equation //c+jUv = 0 is nothing but a special case of the chemical 
equilibrium condition (6.78), applied to the reaction "electron -\- hole ^ 0", 
which describes the creation or annihilation of a pair of carriers. In contrast 
to the situation for a mixture of ordinary gases, the number of carriers is not 
conserved; it varies with temperature, following (11.69), changing in such a 
way that the material is electrically neutral and at equilibrium. It will be 
essential to rely on this model of two carrier gases, which we have justified 
above, when we want to understand the behaviour of an insulator or of a 
semiconductor. 

The various properties of insulators are governed by the presence of a 
forbidden band and by the fact that the electrons in the valence band are 
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nearly completely frozen in. They are easily evaluated in the description in 
terms of two classical gases. The grand potential is given by (11.22), where fq 
is replaced by its classical approximations, (10.63a) for the conduction band 
and (10.63b) for the valence band, while fq = l for deeper bands. Accordingly, 
the entropy is expressed by the Sackur-Tetrode formula (7.41) for each of the 
two gases of quasi-particles; it is extremely small, since the densities Nd fi 
and N^l f2 are very low, and cannot be experimentally observed. In particular, 
the contribution from the electrons to the heat capacity is negligible. In fact, 
heating an insulator just amounts to exciting electrons from the valence band 
into the conduction band and the number of pairs N^ = N^ produced in 
this way is given by (11.69). The energy absorbed for producing a pair is 
practically equal to 6 so that the electron specific heat is equal to 

dNc ^ k / S "-^ 
^- - ^ ^ - 2 [kf) ^^(^)- ^''-''^ 

The factor e^*/^*'^ in Âc makes this quantity negligible at all temperatures 
as compared to the contributions from other degrees of freedom. 

The fact that many insulating crystals are transparent is a consequence 
of the fact that only photons with energies above 6 can be absorbed, with 
the creation of a pair of carriers. The photons of the visible spectrum, with 
wavelengths of 0.4 to 0.8 |.im, have energies of 1.5 to 3 eV, which is less than 
6 for many insulators, so that they cannot interact with these substances. 
This property is in contrast to the metallic brightness, the result of elastic 
scattering of photons by the electrons in the metal which are close to the 
Fermi surface and which can easily be excited, thus creating surface currents. 
We shall see in § 13.3.3 that the electrostatic properties of insulators also 
follow from the fact that the number of free charge carriers is small, which 
itself is a consequence of the wide forbidden band. 

Conduction 

The (low) electric conductivity of an insulator originates from the charge 
transport by the two gases of carriers, the density of which increases when 
the insulator is heated. The quasi-particles, which are equivalent to the elec
tron cloud, are accelerated according to (11.66) and (11.67) by an electric 
field - the electrons in the opposite direction and the holes in the same di
rection. Nevertheless, when we studied the dynamics of the quasi-particles 
we assumed that the electrons interacted with a regular lattice of fixed nu
clei; we neglected the interaction of those electrons with variations in the 
nuclear positions, or with crystallization defects in the lattice. If we subtract 
the periodic potential, which has already been taken into account in (11.66) 
and (11.67), a nucleus missing from a given lattice site behaves like a neg
ative charge added at that point, and a displaced nucleus behaves like an 
electric dipole (Prob.5). As a result of those residual interactions, the con
duction electrons and the holes which are accelerated by the electric field also 
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Fig. 11.10. The conductivity of germanium as function of the temperature 

undergo collisions and can transfer energy to the lattice which will increase 
its vibrations and heat up. This is the origin of the Joule effect. A station
ary, nan-equilibrium, regime is produced for the conduction electrons and the 
holes, where they acquire a non-vanishing mean velocity. Below and in § 15.2 
we shall give more or less elementary arguments which enable us to calculate 
the resistivity. Nevertheless, it is clear, without having to develop the theory 
in more detail, tha t the conductivity must be proportional to the numbers of 
charge carriers, Nc and N^. This can be checked from Fig.11.10 which shows 
the conductivity of germanium as function of temperature . As we shall see 
in § 11.3.4, semiconductors, of which Ge is an example, are insulators with 
a small gap 6. The curve clearly is dominated by the factor e"*'^^^ occurring 
in (11.69) and varying very fast: the logarithm of the conductivity is, in 
fact, nearly a linear function of the inverse temperature . One could use these 
experimental results to calculate, as an exercise, the value of the forbidden 
band gap 6 in germanium; one finds 6 = 0.7 eV. 

The various experimental points shown in Fig.11.10 correspond to germanium 
crystals with different impurity densities. We note that below a certain temperature 
the amount of impurities governs the conductivity. In fact, we shall see in § 11.3.4 



106 11. Elements of Solid State Theory 

that, with decreasing temperature, the number of charge carriers decreases much 
more slowly in a crystal containing well chosen impurities than in a pure crystal. 

We have just shown that the resistivity of an insulator decreases rapidly 
with increasing temperature. On the contrary, the resistivity of a metal in
creases when it is heated. To understand this property we note that the 
conduction in a metal is due to a change in the occupation numbers of the 
states near the Fermi surface when an electric field is applied; however, this 
change hardly interferes with the smoothing of the average occupation factor 
/ when the temperature changes. That is therefore not the mechanism which 
controls the changes in the resistivity with temperature. Nevertheless, we 
have seen that the resistivity was due to collisions between the electrons and 
lattice irregularities, crystallization defects and displacements of the nuclei 
from their equilibrium positions. These imperfections increase with increas
ing temperature; for instance, we shall see in § 11.4 that the amplitude of 
nuclear vibrations grows as VT; Exerc.lla and several of the problems sim
ilarly show that the number of defects increases. The slowing down of the 
electrons thus increases with increasing temperature and this effect means 
that the resistivity of the metal increases with temperature. 

We shall give in § 15.2 a quantitative theory of the conductivity which will 
confirm these qualitative indications. It will turn out that, notwithstanding 
their essential differences, metals and insulators have a conductivity given 
by the same simple formula, which is used all the time in technology, and 
which we now write down using a rough elementary argument. We assume 
that between two collisions the charge carriers are freely accelerated by the 
electric field E, like classical particles of mass m and charge q; their velocity 
at time t is thus given by the formula 

V = vo + — {t~to), (11.71) 
m 

where VQ is the velocity at the moment to of the last collision. We also assume 
that as the result of a collision the charge carrier acquires a random velocity 
VQ with an isotropic distribution; the average (VQ), taken over the system of 
carriers, is thus equal to zero. The average drift velocity of the carriers is thus 
equal to 

{v) ^ ^T, (11.72) 
m 

where r is the average time elapsed since the last collision, of the order of 
the average time between collisions. We define the electric mobility /iei by 

Me, = ^ = y , (11.73) 

which characterizes the average velocity imparted to the charge carriers by 
a unit field. Traditionally the mobility is denoted by /u; this should not be 
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confused with the chemical potential. We thus find for the conductivity, the 
ratio of the electric current density Jei to the field, 

Jei nq(v) 
'̂  = ^ = - ^ = "9 Mel, (11.74) 

where n is the number of carriers of the type considered per unit volume. 
This relation, which we shall derive in a more elaborate way in § 15.2.2, 

is useful not only for an insulator or a semiconductor but also for an ionic 
solution; in both cases the hypotheses which we have made are well justified. 
In the former case, the collisions are with lattice imperfections, especially with 
phonons; there are two kinds of carriers, with charges q — ̂ e and with masses 
rric and rriv, which contribute additively to the conductivity; their mobilities 
(11.73) differ, not only because of their different effective masses, but also 
because the times between collisions are difierent - the mean free paths are 
about the same, but the average velocities, of the order of -^kT/m, differ. The 
large change in carrier density with temperature dominates (11.74), masking 
the changes in mobility, as we can see in Fig.11.10. We shall show (§ 15.2.3) 
that Eq.(11.74) happens to remain valid for a metal where now n is of the 
order of the density of the whole set of conduction electrons, notwithstanding 
the fact that in the conduction process only those near the Fermi surface 
are involved. The number n is thus enormous and this explains the large 
conductivity of a metal. Moreover, contrary to what happens for insulators, 
it does not change with temperature so that the conductivity (11.74) varies 
as the mobility. Hence the resistivity is proportional to the density of crystal 
imperfections, and it increases with temperature. 

11.3.3 Microscopic Foundations of Electrostatic Equilibrium 

In §§ 11.3.1 and 11.3.2 we have considered neutral substances, where the total 
charge of the electrons was exactly the same as that of the nuclei. Various elec
trostatic perturbations can change that situation. If we increase the chemical 
potential, the number of electrons increases and we thus produce a negative 
charge density. Moreover, when we took the potential V to be periodic, we 
assumed implicitly that the substance was pure and without defects. Adding 
im,purities changes the charge distribution: if in metallic sodium we replace 
a Na nucleus with Z = 11 by an Al nucleus with Z = 13, there will occur at 
that spot an excess charge +2e, while we have added two electrons; the situ
ation resembles that of an atom with Z = 2 being embedded in a pure metal. 
Finally, we can operate on the material by applying an external electric field. 

In all those cases the electrostatic perturbation is accompanied by a re
arrangement of the electron cloud, whose equilibrium state is changed. We 
expect, in particular, that the electron density will increase where the elec
tric potential is the highest. However, this density variation, Sn{r), itself will 
induce a field which counteracts the applied field and reduces its effects. This 
is called the screening effect. It is particularly pronounced in conductors. 
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inside which one cannot produce electric fields on a scale larger than the in
teratomic distances. For instance, the potential due to the excess charge +2e 
of an impurity Al nucleus in Na attracts electrons, which are free to rear
range themselves near the Fermi surface. At equilibrium, the average number 
of electrons increases by 2 in a region of a few A round the impurity, of the 
order of the atomic size. The distance over which the perturbation of the elec
tron cloud extends is called the screening length. As soon as we are further 
away from the impurity than one screening length, the potential produced by 
the two bound electrons balances exactly that of the excess charge +2e of the 
nucleus: the electrons screen the perturbation introduced by this charge +2e, 
and the presence of the impurity has no effect beyond the screening length. 
Similarly, if the metal is globally charged, or if it is subject to an external 
field, the electron cloud is deformed in such a way that the total charge den
sity differs from zero only at the surface of the sample, in a thin layer with 
a thickness of the order of the screening length, a few A. This layer, which is 
negatively or positively charged, according to whether there is an excess or 
deficit of electrons as compared to their average equilibrium density in the 
neutral metal, produces a field which inside the metal compensates exactly 
any applied field. 

The effect of screening is important in metals because near the Fermi 
surface it costs so little energy to move an electron from an occupied state 
to an empty state. This ease with which the electron cloud can be perturbed 
explains the small value of the screening length. On the other hand, in in
sulators the screening effect is weak. At zero temperature, there are no free 
charge carriers which can get bound to an impurity to neutralize it, or which 
accumulate at the surface to counterbalance an external field; each electron 
transition needs at least an energy 6; moreover, changing /i by less than 6/2 
does not introduce any change. When the temperature is finite, a few quasi-
particles appear, which can move from one region to another to screen applied 
fields; however, because of their low density this process is not efficient in a 
good insulator. Furthermore, we shall see in § 11.3.4 that in a semiconductor 
the size of the quasi-particle orbitals which are bound to an impurity nucleus 
can be as large as a hundred A. 

Nevertheless, there exists another phenomenon which reduces the effect of 
an applied field, the polarization of the medium. In a neutral insulator, each 
nucleus is surrounded by an electron cloud, formed by filling all bands below 
the forbidden band, or, what amounts to the same, all associated Wannier 
orbitals. Apart from a crystal deformation, this cloud resembles that of the 
atomic orbitals in an ion or an atom. Under the influence of an external field, 
it becomes deformed, even at zero temperature. For example, in the neigh
bourhood of a positive excess charge, the centres of the orbitals are displaced 
in the direction of the impurity; in Fig. 11.11 the dashed lines indicate their 
positions in the pure insulator and the asterisks the fixed nuclei. At each site 
we thus get a dipole moment due to the change in the electron density. The 
resulting polarization produces a field which reduces the external field. We 
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^^-+7;N Fig. 11.11. Polarization of a medium by 
*_^ a positive excess charge 

shall show in what follows tha t this per turbat ion of the electron cloud results 
in dividing the applied field by a factor e/eo which is characteristic for the 
medium and which is its relative dielectric constant or permittivity. 

The microscopic theory of electric equilibrium in solids is based upon the 
following principles. Both the screening effect and the polarization, which 
are a result of a rearranging of the electron cloud, will be explained as con
sequences of the self-consistency of the potential V(r ) seen by each electron. 
This potential is produced not solely by the nuclei and by sources outside 
the medium, but also by the Coulomb interactions between the electrons. 
Its formula (11.11) shows tha t a change 6n{r) in the electron density n{r), 
start ing from its value in a neutral medium without impurities or defects, 
produces a change ^Vei(r) which is added to the applied potential. The solu
tion of the equations which we get in this way will allow us to justify the laws 
of macroscopic electrostatics, to understand quantities such as the screening 
length, and to calculate their values in a given medium. 

We start from the coupled equations (11.11-15) and treat all effects due to ex
cess charges, applied fields, or deformations of the electron cloud, as perturbations. 
In our reference situation, the solid is neutral and there are no impurities, defects, 
or applied fields. The corresponding Hartree Hamiltonian ho is periodic, and it is 
thus associated with a band structure, \q), Sq, and an unperturbed electron density 
n(r) , all of which we assume to be known. The perturbation, 

h~ho = SV{?) = Vext + Vimp + 5Vel, (11.75) 

contains contributions from various sources. The term Vext = —e^ext comes from 
the external electric potential ^ext to which the medium may be subject. Each 
impurity nucleus or each defect produces an excess or deficit charge at a point in 
the solid, and Vimp is the potential created by this change in the nuclear charges. 
Finally, SV^\ is the contribution to the Hartree potential (11.11) coming from the 
change bn{r) in the self-consistent electron density as compared to its reference 
value n(r) . Altogether, the perturbation added to the band Hamiltonian hg is 

SV{r) = Vext(r-) + Vtop(r-) + 
47reo / 

d^r' 
- Sn(r'). (11.76) 
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The total electron charge at equilibrium is controlled by the value of the chem
ical potential. We denote by 6fj, its deviation from its reference value /j,. 

The perturbation 6V induces through (11.12) and (11.13) changes \Sq) and 
Ssq in the eigenfunctions and eigenenergies of h. The corresponding change in the 
electron density (11.15) can, in the linear approximation, be split as follows, 

Sn{r) = Sniir) + 6n2ir), (11.77) 

Sm{r) = Y,6f,\{r\q)f, (11.77') 
9 

Sn2ir) = Y,f,6\{r\q)f. (11.77") 

9 

The first term comes from the change in the occupation of the states \q) associated 
with the changes Ssq and Sfi; it describes a local electrostatic change in the filling of 
these electron states, and we shall interpret it as representing the screening effect. 
The second term is associated with the deformation \Sq} of the single-electron states, 
and describes the polarization. 

To evaluate Sn{r) explicitly we rewrite (11.15) using (11.21), as we did for 
(11.22), and after that vary h and fi in the operator / . This gives 

6n{r) = (r\6j\r) = {r\S[e'^''-°'+ l]~'^\r}. 

Using the identities 

/3 

(11.78) 

for the variations of operators, and using as base the unperturbed Bloch waves, we 
get 

6n{r) = - ^ {H9 '> {9 ' l / , ' (5e ' ' ' ' - " ) / , k ) (gk> 
9,9' 

9^9 

r/5 
X 

/o 
/ du fqifq exp[Me,/ + (/3 - u)Eq - a], 

Jo 

or, after integrating and using (10.33), 

6n{v) = y^{r\q'){q'\[6V{r) - t,]\q){q\r)^-^^^-^. (11.79) 

9.9 

The coupled equations (11.76) and (11.79) determine the electrostatic equilibrium 
on the microscopic scale. 

To change to a larger scale we must smooth out the rapid oscillations in Sn{r) 
with the crystal cell size as period. We also assume that 5V{r) varies slowly in 
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space as compared to the cell size. First of all, we shall even calculate (11.79), using 
the approximation procedure of § 10.3.4b: we imagine that the solid can be divided 
into small cells each of which is at the same time sufficiently small that in it we 
can replace the potential by a constant, and sufficiently large that one can use the 
large volume limit for it. Near the point r we therefore simply replace in (11.79) 
the operator (5V(9) by the number 6V{r). The sum (11.79) reduces to the terms 
with q=^ q , and in those (/_; — fq)/{e„i — eq) must be interpreted as a derivative, 
so that we get for (11.77') the approximation 

5ni(r) =. Y. KH9>l'^#^ [6V{r)-6^], (11.80) 

while (11.77 ) vanishes. We could have obtained (11.80) directly starting from 
(11.15), if we had assumed that 6V were a constant. In fact, adding 6V to the 
energies Sq and 6fi to the chemical potential only changes the Fermi factors, and 
thus changes n{r) to 

n{v) + 6n{r) = Y^\{r\q)\'^ f{eq + 6V - 6ix). (11.81) 

9 

This expression, which is valid provided 6V{r) varies sufficiently slowly, does not 
require that 8n, 6V, and dfi are small. It reduces to (11.80) to first order in 6V and 

The average of —e6n{r), taken over a cell, can be interpreted as the macroscopic 
electron charge density Qelii")- If ^ext(»') denotes the external charge density which 
produces the applied field, and ffinip('') the impurity charge density, the smoothing 
out of —SV{r)/e performed on the last term of (11.76) gives, in the approximation 
(11.81), for the macroscopic electric potential just the Coulomb potential: 

or, equivalently, the Poisson equation 

e o V ^ * + Pext + Kmp + eel = 0. (11.83) 

The density ^el itself can be expressed as a function of <P by taking the spatial 
average over a cell of (11.80) or (11.81). Noting that \q) is normalized in a volume 
n and that K^lq)! is periodic, we find that the average of |(r|q)| \s Q~ and we 
get the Thomas-Fermi equation: 

eei(r) = - e ^ M ^ ^ _ e / " d £ ^ { / [ £ - e ^ ( r - ) - 5 ^ ] - / ( £ ) } , (11.84) 

~ e [e^r) + S^l] f d s ' ^ ^ . (11.84') 

We can then explain the screening effect in a simple manner. Assuming that 
e$ + Sfi is small, we eliminate $ from (11.84') and (11.83), and find inside the 
material 

[l - X^V^) eelir) = -amp(»-). (11.85) 
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The screening length X is here defined by 

£0 
A-2 = i - /-^(-f)- <•«) 

In the neighbourhood of an impurity with charge +e at the origin, the solution of 
(11.85) with gijnip = e^ (T-) gives 

which represents a cloud with a total charge —e, localized within a region of size A. 
Similarly, near the surface of a charged substance, (11.85) shows that the electron 
density decreases exponentially over a depth A. Beyond that one finds that the 
matter is neutral, and (11.84') shows that the potential ^(r) is uniform and equal 
to —Sfi/e over distances from electrostatic irregularities larger than A. This justifies 
the name electrochemical potential given to /i in this context. One should bear in 
mind, however, that in electrostatic equilibrium /x is everywhere uniform - which is, 
in fact, the equilibrium condition - in contrast to $( r ) which satisfies the Poisson 
equation (11.83). Moreover, in non-equilibrium situations the changes in the local 
electrochemical potential ij,{r, t) and of the macroscopic electrical potential ^{r, t) 
are not directly related to one another (§ 15.2.2). 

In the case of a metal the integral occurring in (11.86) reduces to I ' ( £ F ) / / 2 . In 
the box model, the screening length (11.86) can thus be expressed in terms of the 
Bohr radius ao — 4TTeoh /me ~ 0.53 A and the electron density N/f2, as 

1 /7rr2\V6 ^/2 

- ( — j a/ :. 0.5 A, 2 

where the numerical value is for copper. As we mentioned earlier, we find a screening 
length of the order of interatomic distances. However, the small value we found 
makes our hypothesis, that #( r ) varies slowly, invalid, and that was the basis of 
the Thomas-Fermi approximation. The result can thus only be considered to give 
us an order of magnitude, underestimating slightly the screening effect in a metal. 

However, the approximation is justified for other substances where the screening 
length is longer. We shall use it in § 11.3.5 for semiconductors. Its extension to dilute 
solutions of strong electrolytes gives us the Debye-Huckel equation which governs 
the ion distribution when there is a field present. In that case, (several kinds of) ions 
play the role of electrons, their interaction with the solvent changes their mass to an 
effective mass, and the factor / occurring in (11.84) must be replaced by its classical 
limit e-^^+". The same idea applies to plasma physics, where the effect of a charge 
is screened by the classical electron gas with density n <C {mkT/h ) ' , over a 
range given by (11.86), A = [ne'^/eokT)~^''^, called the Debye length. 

For insulators the macroscopic charge density (11.84) represents a local lack of 
balance between the numbers of holes and conduction electrons. Its value does not 
become appreciable, except for insulators with a narrow forbidden band (semicon
ductors; see § 11.3.4), or when |e$-|-5/x| becomes sufficiently large for the Fermi level 
to approach the edge of the conduction, or the valence, band. Nevertheless, there is 
another effect, even if the applied field is weak, namely, the polarization. It comes 
about on the microscopic scale from the deformation (11.77 ) of the Bloch waves 
in an electrostatic field. So far we have neglected it. Let us come back to (11.79) to 
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evaluate it in an arbitrary solid. By treating the potential 5V{r) as nearly constant, 
we have neglected the effects of the electric field on the scale of a cell, and those 
we just need here. To calculate the polarization induced by the field E = —V#, 
we treat this field as a constant in the volume considered, and thus take SV to be 
linear, putting ^V(T") = e{E • r) in (11.79). We neglect the thermal excitation of 
quasi-particles, replacing /(e) by 9{iJ, — e) so that of the states \q) and \q') in (11.79) 
one is occupied and the other one empty. The result, 

Sn2{r) ~ - e E - V {v\q'){q'\7\q){q\v) ^ + c.c, (11.88) 
•^—' En — £../ 

is the same as that of first-order perturbation theory for the wavefunction \q) in 
(11.77"), as expected. We can use (11.65) to write (11.88) in a more explicit form; 
the two Bloch waves \q) and \q ) have for an insulator different band indices so that 
only the last term in (11.65) contributes, and we can write (11.88) in the form 

6n2{r) ~ - 2eE- ^ y/N j d^r 

p,b,b' 

X {r\p,b')xl>{r')r'{r'\p,b){p,b\r}^—^ ^ + c.c, (11.88') 
£b(P) -£b'(P) 

where b stands for the empty and b' for the full bands. 
The electron charge distribution ~e6n2{r), which is periodic, has a zero average 

in a cell, since the integration of (11.88') over r gives a factor {p,b\p,b') = 0. It 
therefore does not contribute to (11.84). However, it has a dipole moment so that 
each cell behaves, as predicted, as an electric dipole. The polarization, that is, the 
mean dipole moment per unit volume, follows from (11.88): 

P = - - J I d^rrSn2ir) = xE, (11.89) 

where the electric susceptibility tensor x is given by 

2 -. 

^^i = 77 5Z (gFik')(g'|yj|g) ^ _^ +C-C. 
n ^^ 

^^ d rd r'{p,b\r)riXb'{r) J n ^-^ 
P,b,b' 

X X*b'[r')r'j{r'\p,b) . / ^ . . + c.c. . (11.90) 
eb{P)-£b'{p) 

The susceptibility thus depends on the overlap between the Wannier functions of 
the full bands b and the Bloch functions of the bands 6 into which the electrons 
can be excited. The narrower the forbidden band, the larger it is. It is a symmetric 
tensor, and for substances with a simple crystal structure it reduces to a constant, 
Xij =xSij-
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We must still find the contribution from the charge density —e6n2{r) to the 
potential (11.76), when the field E and the polarization P vary in space. To do 
that we first write the integral over r' inside a cell centred at a point R of the 
lattice in the form 

X^^-3(/)^/^c^V 
l ^ + ^ ' - ' - ^ ^ - ^ - N T ^ 

Sn^ir ) 

^ „ ^ 1 
Ne \r-R\' 

where P is the polarization (11.89) at the point R. If P varies slowly, the remaining 
summation over the cells R again becomes an integral, and we must add to (11.82) 
the contribution 

^pol = * - *ext - ^imp - *el 

. . 1 f d^r' , „ I f (fr' , . 
91) 

The smoothing out of —e6n2{r) has thus on the macroscopic scale produced a 
charge density 

-e8n2{r) = ^poi = - d i v P . (11.92) 

In the case of a uniformly polarized sample, £ipoi is localized at the surface. The 
polarization produces a field E-p^i — — V^poi = —P/so, which is proportional to 
the applied field and directed against it, thus reducing the effects of that field. 

Altogether we have used the self-consistency of the Hartree potential 
to derive Eqs.(11.76) and (11.79) which connect the microscopic potential 
V + 6V and the electron density n + ^n in electrostatic equilibrium. Gett ing 
the macroscopic laws was then achieved by smoothing, replacing the vari
ous quantities by their averages in each cell of the crystal. The average of 
—6V(r)/e can be interpreted as the macroscopic electric potential # which 
is associated with the macroscopic electric field E = — V # . The electrons 
make two contributions to the macroscopic charge density. The first one, g^i, 
given by (11.84), can be interpreted as deriving from "free" charges; it is 
the dominant one in the behaviour of metals, of plasmas, and of electrolyte 
solutions, and it also contributes to semiconductor properties. The second 
one, Ppoi, given by (11.92), describes the effects of the polarization of the 
medium, especially in insulators and semiconductors. We can eliminate it 
from the equations by introducing the electric displacement or induction, 

D = eoE + P = {so+x)E = eE. (11.93) 

We thus find, start ing from (11.91) the equations of macroscopic electrostat
ics: 

cmlE = 0, E = - V # , div£> ^ Qe^t + Qimp + Qeh (11.94) 



11.3 Electrons in Metals, Insulators, and Semiconductors 115 

where the elimination of P has the effect of replacing the constant £0 = 1/ 
(47r X 10~^c^) in SI units, by the permittivity or dielectric constant e — 
So + X- Our microscopic theory has, moreover, given us formula (11.90) for 
the latter. In an insulator or a semiconductor we can thus forget about the 
self-consistency effect associated with the deformation of the wavefunctions, 
by everywhere replacing SQ by e. In particular, in the quasi-particle dynamics, 
the force which occurs in (11.66) is eV<?; if it is produced by an impurity, 
we must calculate it by replacing the impurity charge by an effective charge 
which is reduced by the factor e/eo. If there are no macroscopic localized 
charges in the substance, tha t is, if #imp = ^ei = 0, D/EQ can be interpreted 
as the external field .Eext which gives rise to the total field E = E^^t + -Epoi-
Let us, finally, remind ourselves tha t the free charges £>ei are responsible for 
the screening effect which is included in the macroscopic equations (11.94) 
and (11.84), and which is more explicitly described by (11.85) and (11.86). 

11 .3 .4 S e m i c o n d u c t o r s 

When the width 6 of the forbidden band is sufficiently small, the conductivity 
of an insulating solid may become appreciable at room temperatures . Such 
solids are called intrinsic semiconductors when they are pure. For germa
nium, for instance, we have 6 = 0.7 eV, and the effective masses are of the 
order of one ten th of the electron mass so tha t at room temperatures (11.69) 
leads to 7 X 10^^ excited electrons per cm^. Relatively speaking the ratio is 
completely negligible, since a band contains typically 10^^ states per cm^; 
however, the electrons which are excited and the holes which are left behind 
in the valence band behave as free charge carriers. These particles which are 
easily excited and accelerated can transport significant electric currents: in 
the case of germanium the total charge density of the excited electrons and 
of the holes is about 0.2 C m^^ and their mobilities, given by Eq.(11.72), are 
of the order of 0.1 m^ V~-^ s"^. 

The semiconductor which is currently used most is silicon with 6 = 
1.12 eV, but there are many others, for instance, the III-V compounds, such 
as GaAs or InAs. We shall illustrate our theory mainly by using germanium 
as an example. The section of the periodic table which concerns us most is 
shown in Fig.11.12 and contains parts of columns III, IV, V, and VI. The es
sential facts are the following. Introducing a very small proportion of certain 
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Fig. 11.12. Part of the periodic table containing the 
elements of importance for semiconductors 
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impurities considerably changes the number of quasi-particles. Moreover, one 
can control these changes, for instance, by applying potentials, which enables 
one to play with the properties of the substance and as a result to realize 
different electronic devices. More precisely, an impurity or extrinsic semicon
ductor is an insulator with a narrow forbidden band, the density of states 
2?(e) of which has been changed by introducing impurities in the crystal. In 
practice, this addition is carried out by ''''doping" (Exerc.l5a), tha t is, by a 
hot migration of impurities controlled in such a way tha t they will diffuse to 
the required regions. Depending on the nature of the impurities one distin
guishes two kinds of extrinsic semiconductors, the n type in which most of 
the charge carriers are negative, and the p type in which most of them are 
positive. 

In n-type semiconductors the impurities are elements which bring in elec
trons, such as As or Sb for Ge - in the next column of the periodic table. We 
shall see tha t doping Ge with a number, Ni, of As impurities produces Ni 
extra levels, or donor levels, with energies e^ which lie in the forbidden band, 
at a very small distance (0.0127 eV) below e^ (Fig.11.13). One can easily 
understand how these impurity levels arise: each impurity corresponds to the 
replacement in the lattice of a (tetravalent) Ge nucleus by a (pentavalent) As 
nucleus. This As nucleus has a charge which is larger by unity than the Ge 
nucleus tha t it replaces; the impurity also brings in an extra electron. Com
pared to the reference s tate without impurity, the situation resembles tha t of 
a hydrogen atom: the extra positive charge of the As nucleus tends to retain 
the extra electron; the donor level, associated with the As impurity, and at 
zero tempera ture occupied by an electron if the substance is neutral, can be 
described as a hound state of that electron near the excess impurity charge. 
We explain below why the binding energy E^ — e j is so weak, and accordingly 
why the spatial extension of the bound state is large, of the order of 100 A. 

To study the properties of a donor state and to calculate its binding energy 
£c — £d we start from the reference situation of pure Ge, with a full valence band, 
and we assume that an As atom is substituted for the Ge atom at the origin. The 
effective single-electron Hamiltonian differs from the Hamiltonian for the Ge bands 
through the addition of the Coulomb potential —e /A-Ke^r, associated with the 
extra charge of the As nucleus. Moreover, we saw in § 11.3.3 that the redistribution 
of the electron charges due to the presence of an impurity gives, through self-

3 

donnor 
impurity 

levels 

Ev £d M «c 

Fig. 11.13. Density of states for an n-type semiconductor 
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consistency, rise to an extra potential. We shall show in what follows that the effect 
of the impurity and of the electron cloud which screens it extends over a distance 
which is large compared to the crystal cell. Under those conditions, we can use 
the results found for an insulator in § 11.3.3, and simply represent the effect of 
the self-consistency of the potential by the dielectric constant. The latter is large 
(e = 15.8eo in Ge) because the forbidden band is narrow. Hence, the effective 
potential — e /47rer due to the impurity is considerably weaker than that of a 
hydrogen atom. 

If we only consider the lowest states of the conduction band, with Bloch waves 
|p, c) and approximate energies (11.59), we must diagonalize the Hamiltonian 

ec + J2 i - ' ^ > £ ; ^ - ' ^ i - ^ ^ - (̂ 1-̂ )̂ 

Once again we use the fact that we expect the wavefunction of the donor state to 
extend over a large number of cells. The l / r potential can thus be considered to 
vary slowly. Its matrix elements between Bloch waves \p, c), calculated as in (11.65) 
by using the representation (11.36) in Wannier waves, are approximately 

P ,c p,c N 
R.R 

- i ^ e^"-')-/'^ I ^ i / ' ^ e H ^ - ' ) - / ^ (11.96) 
R •^ 

where we have used the fact that the Wannier functions are localized to replace r by 
R, and that they are orthonormalized. Expression (11.96) is the same as between 
plane waves with momenta p and the Hamiltonian (11.95) is thus the same as that 
for a hydrogen atom in the p representation, apart from that m is replaced by ruc 
and eo is replaced by e; the spatial modulation due to the Wannier waves and, 
more generally, the band structure do not play a role at all. The binding energy, 
following from that of the hydrogen atom, is therefore 

e,-e^ = [ - ^ \ ^ = f ^ ) ' ! ! i £ i 3 . 6 e V ^ 5 x 10^^ eV. 

Due to the screening and to the smallness of the effective mass, it is considerably 
reduced. The value we have found is comparable with the experimental one. One can 
obtain a better result by taking into account the large anisotropy of the conduction 
band of Ge: the eigenvalues of the matrix K in (11.58) have a ratio of 1 to 20. 

A large spatial range is associated with the weak binding energy of the donor 
state. As compared to the hydrogen atom, we get a Bohr radius, 

h Aire Tx e „ _„ s ,„„ s 
^ = 0.53 A ~ 100 A, 

mc e^ mc eo 
which is large compared to the crystal cell size; this a posteriori justifies the use of 
the dielectric constant and the approximation (11.96). 

In principle, the impurity produces also other levels, but they do not play any 
role as their binding energy is much smaller than kT so that they do get mixed up 
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with the bottom of the conduction band. Moreover, we have forgotten about the 
spin. If there were no interactions between the electrons, the Â i impurities would 
produce 2Ni levels with an energy e j . However, the Coulomb repulsion prevents 
two electrons with opposite spin to be bound to the same impurity site. This is 
the reason why we have said, not quite properly, that Nj impurities produce ATj 
donor levels. In what follows we shall write that at equilibrium those levels are oc
cupied by Ni/[e^^^'^^^' +1] electrons. Being more realistic, and taking into account 
the fact that there are 3 rather than 2 possibilities for each level - no electron, elec
tron with spin up, and electron with spin down - we should write 2iVi/[e'^(^d-/^)+2], 
as can easily be checked as an exercise. 

We still must justify that in (11.95) we have neglected the valence band. The 
excess Coulomb potential has, in fact, matrix elements not only between the Bloch 
waves of the conduction band c, but also between those of the valence band v. In the 
Bloch wave base, this matrix contains, first of all, (c,c) elements which, as we saw 
in (11.96), are similar to those of the hydrogen potential in the plane wave base. 
Then there are the interband (c,v) and (v,c) elements; however, they are small, 
since the potential varies slowty on the scale of one cell so that a calculation similar 
to the one leading to (11.96) would involve the orthogonal Wannier functions Xc 
and Xv- Finally, it contains (v,v) elements which are again similar to those of the 
hydrogen potential in the plane wave base. The corresponding problem is decoupled 
from that of the conduction band. However, as the unperturbed term associated 
with the valence band is EV — p /Im-vi there is a change in relative sign between 
the potential and the kinetic energies. Everything thus happens as if the impurity 
is repulsive for the valence band, and there is no essential change in the spectrum 
of that band. 

The second class of impurity semiconductors consists of the p-type semi
conductors, such as Si or Ge, doped with B, Al, Ga, or In impurities; such 
trivalent impurities lead to acceptor levels with energies e^ slightly above Cy 
and empty at zero temperature . These semiconductors play a symmetric role 
as compared to the n-type semiconductors, with electrons being replaced by 
holes. The extra negative charge of the impurity repels the electrons, tha t is, 
a t t rac ts the holes which have a positive charge. A bound state for positive 
charge carriers is thus produced. For a substance which is neutral at zero 
tempera ture the acceptor level is empty. One can express this fact by saying 
tha t a hole is bound to tha t impurity. 

The study of acceptor levels is similar to that of donor levels. The contribution 
to the potential due to the excess negative charge of the impurity nucleus is e /ATver 
so that the single-electron Hamiltonian only differs from the effective Hamiltonian 
for a donor studied above by a change in sign and by interchanging the valence and 
the conduction bands. This implies that when there are Ni acceptor impurities, 
there are Ni single-electron states, of energy ea slightly larger than £v and such 
that Sa ~ Ev is of the same order of magnitude as EC — £d- Just as the donor levels 
were produced starting from the conduction band, the acceptor levels are produced 
starting from the valence band. Hence, the total number of states of that band is 
reduced by Ni so that, if Â i electrons are missing, as is the case for a neutral 
substance, the acceptor levels remain empty at zero temperature. The symmetry 
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between n- and p-type semiconductors is complete with respect to an exchange 
between the two types of quasi-particles: the acceptor level is a state of an excess 
hole, of mass rriv and charge e, bound to the impurity with excess charge —e. 

In a homogeneous and neutral semiconductor at equilibrium the numbers 
of conduction electrons and of holes are determined by the temperature and 
the doping. They are related to the chemical potential through (11.56) and 
(11.61) while in an n-type semiconductor a number Nd = Ni / ( sd ) of electrons 
remain fixed to the donor sites at non-zero temperatures . We get fi from the 
condition of electric neutrality, Nc + N^ — N^ = A î- Solving these equations 
is essential for semiconductor technology; one can only do this numerically or 
using more or less rough approximations (Exerc . l lb) . One difficulty comes 
from the fact tha t the classical approximations (10.63) for the Fermi factors, 
which led to the simple formulae (11.60) and (11.63) for insulators, cannot 
always be used for a semiconductor. Depending on the temperature and the 
doping, one can distinguish three limiting regimes. 

At low temperatures or strong doping, we are in the extrinsic regime or 
the impurity or "freeze-out" regime. Let us focus on an n-type semiconductor. 
Noting tha t at zero temperature all donor levels are occupied by the extra 
electrons and tha t the conduction band is empty, we conclude that this regime 
resembles the s tate of an insulator with forbidden band (ed, £c)- The chemical 
potential is thus equal to | ( ec + £d) and it varies very little with temperature , 
if the number Ni of the donor centres is large (Exerc . l lb ) . It therefore remains 
close to the bo t tom of the conduction band, since ^{EC ~ £d) is only ^ eV 
for Ge doped with As, as compared to room temperature , corresponding to 
-^ eV. The number of conduction electrons N^ ~ A^i(l — / (cd) ) «« large at 
not too low temperatures , being a fraction, of the order of half, of -/Vj. On 
the other hand, the holes, whose number was given by (11.69) for a pure 
semiconductor, have practically completely disappeared through the effect of 
n-type doping, as fx has increased by about | 5 and (11.63) is here dominated 
by a factor e^^*. 

In the opposite case, the intrinsic regime, corresponding to weak doping, 
resembles the insulator described in § 11.3.2, as there are too few impurities 
to fix n in the range (sdi^c)- The value of fi lies therefore near the centre of 
the forbidden band {e^jSc)- The numbers Nc and N^ given by (11.60) and 
(11.63) remain small, but now may differ significantly from one another, if 
we take into account tha t N^ ^ iVje^'^^^''"''' electrons are bound to the 
donor sites. Eliminating fi between those expressions gives, for an n-type 
semiconductor at equilibrium, mass action type laws: 

N. 

n 

Nc 

^^~0S f^/mcm^kT\ 

yrric J 

(11.97) 

3/2 

(11.98) 
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which, together with the relation N^ + N^ — N^ = Ni, determine the carrier 
numbers Âc and Ny as functions of Nj. We note, in particular, that Nc and 
Ny are inversely proportional to one another. 

Finally, an intermediate doping, or temperature, leads to the exhaustion 
or saturation regime where fi — |(ec + £v) S> kT and where s^ — n ^ kT. 
Equations (11.97) and (11.98) remain valid. The first condition means that 
Ny ^ Â c) and the second that N^ <^ Ni so that the donor levels are practi
cally empty and there are practically no holes. As a result, we have TVc c:^ Nj: 
everything happens, as if all the extra electrons introduced by the donor 
impurities were injected into the conduction band. 

A sufficient amount of doping therefore enables us significantly to increase 
the conductivity given by (11.73), which here takes the form a = e{nfj,a+PIJ-p)', 
the symbols n — N^/fi and p = Ny/Q denote, respectively, the negative and 
positive charge carrier densities, and /Ltn and /Xp their mobilities, which are of 
the order of 0.1 m^ V^^ s^^. The electrons fixed to the donor centres do not 
take part in the conductivity. Figure 11.10 showed the conductivity of Ge in 
the intrinsic regime, but one could already see at low temperatures plateaus 
depending on the amount of impurities. We can now explain these by noting 
that they correspond to the saturation regime where the conductivity, for the 
case of As impurities, reduces to cr ĉ  en/^n — e{Ni/f2)fXn which varies little 
with temperature, but strongly with doping. Fractional amounts of As of the 
order of 10~® are sufficient to dominate the conductivity completely. This 
strong sensitivity to a parameter which is difficult to control explains why 
for a long time semiconductivity was a badly understood phenomenon. 

For a p-type semiconductor the situation is symmetric. In particular, in 
the extrinsic regime, for a sufficiently large impurity density and not too high 
a temperature, the Fermi level fi lies near Sy, whereas it was lying near EC for 
extrinsic n-type semiconductors. The crystal then contains a number of holes 
of the order of Â i at room temperatures and the conduction is now ensured 
mainly through the displacement of these (positively charged) holes, whereas 
it is through the displacement of the conduction electrons in n-type semicon
ductors. One says that among the quasi-particles the positive charge carriers 
(holes) are the majority carriers in a p-type semiconductor, and they are the 
minority carriers in an n-type semiconductor. The Hall effect (1879) shows 
the sign of the majority carriers. If there is a current in the a;-direction flowing 
through the semiconductor, applying a magnetic field in the z-direction tends 
to deflect the carriers, whatever their sign, into the —y direction. A stationary 
regime is established, where an excess of carriers on the —y boundary of the 
sample and a deficit of carriers on the +y boundary create an electric field 
along ±y, depending on the sign of the carriers, which enables the current to 
remain parallel to x. One can detect this effect by measuring the potential 
difference between the —y and +y boundaries: its sign is the same as that of 
the majority carriers (Exerc.lSd). The frequent occurrence of positive carri
ers - in p-type semiconductors - was only explained in 1931, by A.H.Wilson, 
who clarified the role of bands in different substances and who introduced 
the hole concept. 



11.3 Electrons in Metals, Insulators, and Semiconductors 121 

The temperature dependence of the conductivity of semiconductors has 
been used to advantage to construct resistance thermometers, for example, 
between 0.1 and 100 K, by using Ge doped with As in the extrinsic regime. 
One obtains the temperature immediately by a simple resistivity measure
ment. 

When a semiconductor is illuminated, a photon with an energy larger 
than the width 6 of the forbidden band can be absorbed, by exciting an elec
tron from the valence band into the conduction band, that is, by producing 
a pair of charge carriers of opposite sign. Continuous illumination produces 
a stationary, non-equilibrium state where there is an excess of carriers and 
where the conductivity is thus the larger, the stronger the light flux. This 
eff'ect, photoconductivity, has many applications. For instance, in a photoelec
tric cell, measuring the resistivity of a semiconductor immediately gives us 
the illuminance. One uses, for example, CdS with a forbidden band of 2.4 eV 
(in the green part of the visible spectrum). Infrared detectors use semicon
ductors with a narrower band (0.2 to 0.04 eV). The sensitive part of a video 
camera is a semiconductor, such as PbO for which 6 = 2.3 eV, covered by a 
conducting transparent anode, and swept from behind by an electron beam. 
If the spot where this beam hits is not illuminated, the resistivity is large, 
the electrons are stopped in the semiconductor and cannot reach the anode; 
at points which receive light, a current circulates which is proportional to the 
light intensity and it is evacuated by the anode. Treating the signal thus ob
tained enables one to reconstruct the image afterwards. Finally, photocopiers 
use a similar principle. A layer of Se (5 = 2 eV) deposited on the surface of 
a metal is charged positively, before being exposed to light. As it is a bad 
conductor, it retains in the dark that charge on its surface notwithstanding 
the proximity of the metal substrate. However, the points where it is illumi
nated become conducting, the charge which was there moves away through 
the metal so that an electric image is formed of those regions which were in 
the dark and remained charged. One then sprinkles a pigment powder on the 
Se layer, which is attracted to the charged zones. Finally, one applies a piece 
of paper to which the pigment is transferred and is fixed by heating. 

Many other industrial applications involve semiconductors (§11.3.5). The 
interest in these substances arises from the fact that they are very flexible 
in their use, which results from the possibilities to bring into contact several 
types of semiconductors and metals, to vary the proportions of the impu
rities, and to operate easily on the electrons by applying electric potentials 
at various spots. Moreover, the orders of magnitude involved are particu
larly convenient: the binding energies of the donor and acceptor levels and 
the width 6 of the forbidden band, vary from a small fraction of an eV to 
several eV, that is, they are comparable with room temperatures ( ^ eV) 
and with optical (1.5 to 3 eV) or infrared photons, and they correspond to 
electric potentials of the order of a volt. The various devices have many ad
vantages: reliability, strength, longevity, and low energy consumption. Above 
all, in the last thirty years one has developed inexpensive mass production 
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methods, which allow both miniaturization and arrangements of many ele
mentary components by techniques related to printing or engraving. Selected 
substances can, for instance, be deposited from a plasma or by sputtering 
and removed by chemical attack. Starting from a Si layer which is as pure 
as possible, one introduces at chosen points the required amounts of chosen 
impurities, or one uses masks to cut the surface, controlling the migration of 
the impurities which is more or less fast, depending on the temperature. In 
this way one can get side by side, for instance, weakly n-doped Si and strongly 
p-doped Si; through oxidization one can produce insulating regions. One also 
knows how to make heterojunctions (between different intrinsic semiconduc
tors) or metal-semiconductor interfaces by successive deposits. One can thus 
practically on demand produce composite devices which are extremely small 
and through which one is able to realize predetermined complicated opera
tions. 

11.3.5 p-n Junctions, Photocell, Diode, and Transistor 

The essential element of many systems based on the use of semiconductors 
is the p-n junction, that is, the juxtaposition of two semiconductor pieces, 
one of which is doped with acceptors, and the other with donors. Let us start 
by studying the electrostatic equilibrium of such a junction, using the results 
of § 11.3.3. The inhomogeneity of the system has remarkable consequences. 
Before they are in contact, the n- and p-type semiconductors have different 
chemical potentials, situated near £c and e^, respectively. When they are 
brought into contact they must therefore exchange electrons, and the equi
librium state corresponds to an equalization of the chemical potentials. The 
electric neutrality, which is locally ensured in each lattice cell of the pure 
substance or within a Bohr radius (of the order of 100 A) around each impu
rity, does no longer exist in a junction, because of this transfer of electrons 
from the n side where the chemical potential is the higher to the p side. 
A spontaneous macroscopic charge density appears, which is positive on the 
n side and negative on the p side. This charge produces, through the self-
consistency of the microscopic potential V(r), a macroscopic field E{r) and 
a macroscopic electric potential # ( r ) . Here "macroscopic" refers to scales 
of 1000 A = 0.1 \ixa. All devices using junctions are based upon the exis
tence of these electrostatic effects, produced by the contact between different 
substances, like the Volta effect in metals (§ 10.4.3). 

A quantitative study can be based on the equations which we found in 
§ 11.3.3. The total macroscopic charge density associated at each point with 
the electrons and the impurities is here 

Q = e ( p - n + i ' d - n d - t-a+Pa), (11.99) 

where n — N^/fi and p = N^/Q are the standard notations for the local 
densities of the carriers which take part in the conduction, v^ and Vg, are the 
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donor and acceptor centre densities, and na and Pa the numbers of electrons 
and holes fixed to them per unit volume. We take into account the charge 
due to the polarisation by means of the dielectric constant, so tha t we have 
for the electric potential (11.82) and (11.91) 

# ( r ) = 
47re J 

d^v' 
T^sir'). (11.100) 

In each point, one must use the Thomas-Fermi approximation (11.84), which 
adds —e# to the band energy, so tha t we have locally 

J —{ 

dE 

de 12 Q0{-e+e^+^) _|_ I 

rid = 
t'd 

g/3(ed-e#-M) 4- 1 ' 

_ V^ 
(11.101) 

The coupled equations (11.99), (11.100), and (11.101) characterize the 
electrostatic equilibrium of a semiconductor when it is, for instance, globally 
charged or inhomogeneously doped; they determine the shapes of $(r) and 
Q{r). A graphic representation much used in technology consists in taking 
one of the spatial coordinates along the abscissa axis, and drawing along the 
ordinate axis the energies of the band edges EC ̂  e# and e^ — e^, and possibly, 
the donor and acceptor level energies ea ~ e # and e^ — e# . This shows the 
shift by —e#(r) of the energy levels, when the electrostatic potential is read 
from top to bot tom. In thermal and electrostatic equilibrium the chemical 
potential is represented by a horizontal line. Its position represents the filling 
of the bands: where the conduction band is close to the chemical potential, 
the density n of negative carriers is larger; similarly, the density p of positive 
carriers increases when the chemical potential comes close to the valence 
band. Figure 11.14 shows the neighbourhood of the surface (on the left) of 
an n-type semiconductor which has been positively charged. Far from the 
surface, the situation is the same as in the case of equilibrium of the neutral 
semiconductor, apar t from a shift by —e#(oo). The potential <? decreases close 
to the surface, in order to satisfy Eq.(l l . lOO), which implies e V ^ # + g = 0. Its 

.s^-e<P (r) 
^ 

£d - e<P (r) 

• E ^ - e<P ( r ) 

Fig. 11.14. Position of the bands and donor levels in a positively charged n-type 
semiconductor near its surface 
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variation produces the curving of the conduction band and of the donor levels, 
and so engenders a partial emptying of those, thus creating the necessary 
positive charge to satisfy the coupled equations (11.99) and (11.101), and the 
condition imposed upon the global charge of the sample. As in a conductor, 
this charge distributes itself over the surface according to Eq.(11.84), but 
here the approximation (11.84') is no longer valid; the screening effect is very 
weak so that the thickness of the charged region is macroscopic, of the order 
of a fraction of a micron, whereas the screening length in a conductor is of 
the order of an A. An order of magnitude of this thickness is evaluated in 
Exerc.llc. 

The above description of the surface of a positively charged n-type semi
conductor can be applied to the n side of the p-n junction. Indeed, the latter 
can be modelled as a sudden discontinuity in doping, and at equilibrium it 
is equivalent to the juxtaposition of two n- and p-type semiconductors with 
opposite charges. In the p part, which is negatively charged, the potential 
has an inverted shape (Fig. 11.15). The parameters which are characteristic 
for the junction, such as the charge transferred from the p side to the n side, 
the thickness of the charged zone, and the shapes of the potential and of the 
electric field, are obtained by writing down the electrostatic equations (11.99-
101), together with the conditions for the matching of the electric and chem
ical potentials (Exerc.llc). The electric potential, <?(r), must be continuous, 
as well as its first derivatives, when it passes through the p-n partition. The 
chemical potential, /i, must be constant; far from the junction it must have 
the same position in relation to the bands as for the neutral pure substances, 
apart from the global shifts —e#n — —e#(+oo) and —e#p = —e#(—oo). Fig
ure 11.15 shows schematically the junction in equilibrium. In order that fi 
can be constant, there occurs in the junction a spontaneous potential differ

ence #n — $p of the order of a volt, slightly smaller than the width of the 
forbidden band. In fact, e($n — ^p) is equal to the difference /in — Mp between 
the chemical potentials of the two separated neutral semiconductors. This 

v'm 

e, - e<P (r) 

Fig. 11.15. Potential, field, and charges in a p-n junction at equilibrium 
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potential diflference # „ — #p is produced, in accordance with Eq.(l l . lOO), by 
an electrostatic double layer of charges s i tuated astride the junction: the ac
ceptor levels get part ly filled by electrons on the p side and the donor levels 
get part ly emptied on the n side; the populations of the two bands are also 
changed, which has as a result a reduction of the conductivity. The varia
tion of # implies tha t there exists at equilibrium a spontaneous electric field 
E = — V # at the level of the junction, which is directed from the n to the 
p side. The thickness of the zone where this field and the charges exist is of 
the order of a fraction of a micron. 

Even though various semiconductor devices use non-equilibriumiunctions, 
we are now in a position to understand their functioning. In § 15.2.2 we shall 
give complementary discussions of t ransport phenomena in semiconductors, 
and of non-equilibrium situations where the chemical potentials are not con
stant . Tha t should make it easier to undertake the study of more specialized 
books such as S.M. Sze, Physics of Semiconductor Devices, Wiley, New York, 
1981. 

A photocell or a solar cell has as its essential element a junction between 
two thin p and n layers, which is used to catch light. As in the case of 
photoconductivity (§ 11.3.4), the absorption of photons produces an extra 
population of pairs of carriers of both signs. However, here the spontaneous 
field, acting in the junction, pushes the excess electrons to the n side and the 
holes to the p side before they have had time to recombine. In an open circuit 
one produces thus an electromotive force between the electrodes which are 
connected with the n and p faces, and a current when the circuit is closed 
{photovoltaic effect). The photocells are used to transform solar energy into 
electricity, and also as radiation detectors. Their efficiency, of the order of 15 
%, the low density of the solar energy (1 kW m~^), and the small e.m.f. (a 
fraction of a volt) restrict their use to the production of low powers. 

The electroluminescent diodes used for the display and transmission of 
low power signals (remote control, signal indicators) are based on the inverse 
phenomenon: when a current flows through a junction from p to n, the ma
jority carriers, holes on the p side and electrons on the n side, are forced 
to move towards one another and they recombine in the junction, producing 
photons with energies close to S, in the visible or the infrared. 

A semiconductor diode consists of a single p-n junction. It functions as a 
rectifier as it lets electric current from p to n pass more easily than from n 
to p . An explanation of this non-equilibrium effect, which is more elementary 
but less rigorous than t ransport theory (Chap. 15), can be given by kinetic 
theory (Chap.7), using simply the expression for the flux of classical particles 
which hits a wall. 

Let us first examine how the conduction electron density, at equilibrium, re
mains important at the n side and small at the p side: thermal agitation tends to 
equalize the populations, but the potential <?(»•) pushes the electrons from p to n. 
Quantitatively, the minority electrons at the p side carry, when they move to n, a 
current IQ, in the direction from n to p, equal to 
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This current is hardly at all sensitive to the field occurring in the junction, and 
it remains unchanged if we apply to the junction an extra potential difference, in 
a non-equilibrium situation. Nevertheless, the majority electrons arriving at the 
junction from the n side, which axe much more numerous, are decelerated by the 
potential so that only the fastest ones manage to pass through; the others are 
reflected. At equilibrium, the corresponding current, which is directed from p to n, 
must be equal to IQ, SO as to cancel it. However, in contrast to the current in the 
opposite direction, this current is changed when one applies a potential V to the 
junction: only those electrons with a sufficiently high kinetic energy, from among the 
electrons in n moving towards p, can overcome the total electric potential difference 
^n — ^p and pass through. The number of those fast electrons varies approximately 
as exp[—/3e{$n — ^p)], a factor which occurs outside the integration over p because 
of the lower bound e{$n — ^p) on the kinetic energy p /2mc. If we denote by V 
the electric potential applied to the p semiconductor and added to the spontaneous 
potential, the current due to the electrons going from n to p will be equal to IQ e^" . 

Altogether, the equilibrium is broken by the potential V applied to p: 
there occurs a current due to conduction electrons which, if measured as 
going from p to n, equals 

= /o(e ' ' ^^ !)• (11.103) 

We see easily tha t the same considerations when applied to holes do not 
change the conclusion, although the definition of IQ must be modified. Equa
tion (11.103) thus gives us the junction characteristic, tha t is, the relation 
between the current and the applied potential; its asymmetric form enables 
us easily to understand the rectifying effect of a p-n junction. Notwithstand
ing the approximations made to find tha t expression, its agreement with 
experiments is remarkable, as Fig.11.16 shows. The order of magnitude of IQ 
following from (11.102) is, however, not correct, as our discussion assumed 
an electron mean free pa th longer than the thickness of the junction. A more 
rigorous theory must take into account the scattering of charge carriers in 
the junction and also the recombination of holes and conduction electrons; 
these effects reduce (11.103) by a factor 1000. Nevertheless, the expression 
for IQ is dominated as in (11.102) by an exponential factor close to e"*''*'-^, 
so tha t it is necessary to use semiconductors with a narrow forbidden band 
in order to obtain appreciable currents. 

Another fundamental electronic device is the transistor, invented in 1948 
by J. Bardeen and W.H. Bra t ta in in the form of a point-contact transistor, 
and in 1949-51 by W. Shockley in the form of a junction transistor or bipolar 
transistor which we shall describe. Such a transistor is obtained by combining 
three alternating semiconductors, for instance, n-p-n. The first is the emitter, 
the second the base, and the third the collector (Fig.11.17). We bring the base 
to a potential Vb which is positive relative to the emitter and which can be 
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Fig. 11.16. Characteristic of a p-n junction 

varied, and the collector to a large, fixed, positive potential V^. As a result, 
currents Ig, 7b, and I^ flow in the three connections; we want to evaluate these 
currents. We sketch in Fig. 11.18 the spatial variation of the band edges, which 
are the constants £c and e^ plus —e#(r) , before and after the application of 
the potentials. 

Let us calculate the currents through each of the two junctions, first examining 
the dominant contribution from the conduction electrons, and analyzing the fluxes 
in both directions as we did for a single junction. Because Vc is large, practically 
no electron passes in the collector-base direction. On the other hand, the electrons 
moving from the emitter to the base produce, as in a diode, a current 

loe' /3eVb (11.104) 

and we can neglect IQ as compared to this current. The operation of the transistor 
is based upon an essential characteristic of its geometry: the base is very thin, 
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Fig. 11.17. The n-p-n junction transistor 
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Fig. 11.18. Potential in the n-p-n junction transistor 

with a thickness of the order of a micron. Most electrons coming from the emitter, 
with a mean free path of the same order of magnitude as this thickness, are thus 
accelerated by the strong field acting between the base and the collector, and are 
captured by the latter before having had the time to diffuse in the base. Let ^ be the 
ratio of the electrons diffused within the base and then channelled by the conductor 
connection which maintains its potential at Vj,, to the number of electrons captured 
by the collector. This is a small number, of the order of 1 %, and it depends mainly 
on the shape and size of the various parts of the transistor. The currents / j , and Ic 
are then given by the relations 

h + h h = ilc (11.105) 

The thinness of the base and the fact that there the electrons are minority carriers 
imply that the conduction electrons do not make other significant contributions to 
the currents than the ones which we have considered. 

In this discussion we have neglected the current carried by the holes. They 
are minority carriers in the collector and only make a small contribution to the 
current Ic- On the other hand, the large potential Vc prevents the holes to pass 
from the base to the collector. Nevertheless, they can easily pass from the base to 
the emitter, producing a current which must be added to I\, and thus decreases the 
amplification ratio Ic/Ih- For a junction between base and emitter which would have 
a hole-particle symmetry, this current would be of the same order of magnitude as 
the current le of the conduction electrons, and the transistor effect would practically 
disappear. To get rid of this unwanted effect one uses for the base material a 
weakly doped p-type semiconductor so that the hole density in it is much lower 
than the conduction electron density in the emitter. Nevertheless, the doping must 
be sufficient to maintain a significant spontaneous potential difference between the 
emitter and the base. 
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The currents and the potentials in the transistor are thus approximately 
connected with one another through Eqs.(11.104) and (11.105). The para
meters IQ and ^, which is a small number, thus characterize its behaviour in 
a circuit. The remarkable phenomenon is tha t small changes in Vt, or in Jb 
produce large changes in 7c or /e = (1 + ^)/c: the transistor is an amplifier. 
Moreover, we get a linear amplification of the current, since I^ is proportional 
to 7bj with an amplification ratio 1/^. Finally, it can also operate as a gate, 
since I^ varies, according to (11.104), abruptly with Vb, which enables us to 
control the current I^ ~ Ic by means of the base potential. 

Many other devices based upon the p-n junction are used in electronics. 
Depending on the potential V applied between n and p, the thickness of the 
charged region varies. We have seen tha t the conductivity is weaker in that 
region where the free-carrier density is reduced. One can therefore operate 
upon a current flowing in one of the semiconductors along the junction by 
simply controlling V. This idea gives the principle of the^eZd effect transistor 
which is a device where the resistance along the junction is governed by a 
transverse voltage between n and p (Prob.18). The most often used type is the 
M O S F E T - from Metal Oxide Semiconductor Field Effect Transistor; a layer 
of oxide (dielectric) and a layer of metal, put on one of the semiconductors of 
the junction, together with it form a condenser which provides the controlling 
voltage. 

We may also mention the variable-capacitance diode, or varactor, used, for 
instance, to control the frequency of a radio receiver. Here also the potential 
V applied to the p-n junction changes the way it is charged and thus controls 
its capacity. 

Let us finally remark that the semiconductor properties described here are not 
limited to the perfect crystals which we have considered. It is true that the simpli
fications produced by the geometry, the existence of a quasi-momentum and Bloch 
waves, do not exist for amorphous substances; however, the analysis of the tight 
binding theory shows that the electron structure of an amorphous substance retains 
a certain memory of the discrete nature of the levels of its atoms. In particular, 
the single-electron density of states retains a shape which is similar to that of an 
insulator: there is no longer a forbidden band, but it is replaced by a region which 
contains few levels and this plays an analogous role. The manufacture of badly crys
tallized or amorphous semiconductors is relatively cheap: for this reason the use of 
amorphous silicon is likely to develop rapidly, for applications where a completely 
forbidden band is not required. 

11.4 Phonons 

So far we have firstly studied the properties of solids which are connected 
with the average positions of the atomic nuclei. After tha t we considered their 
electronic properties, and there now remains for us to investigate the role of 
the nuclear displacements. Motions with relatively large amplitudes do not 
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occur until the solid melts (Probs.8 and 10). Otherwise, the nuclei in the solid 
s tate move, in general, only slightly from their equilibrium positions and the 
harmonic approximation is already sufficient for describing their vibrations. 
These vibrations are responsible for the heat capacity of the solid. However, 
it is essential to t reat them quantum mechanically. This fact was realized 
in 1907 by A. Einstein (Exerc . l ld) even though quantum mechanics of the 
simplest systems (Bohr's a tom model of 1913, the de Broglie relations of 
1926, or the Schrodinger equation of 1926) had not been worked out at t ha t 
t ime. A major step in the quantum theory of solid vibrations was the work 
by Petrus Debye (Maastricht 1884-Ithaca, NY 1966) who in 1912 gave a 
quantitative explanation of the specific heats and in 1914 introduced the 
concept of phonons, applying it to heat conduction in insulators. 

11.4 .1 Lat t i ce V i b r a t i o n s 

As we mentioned in § 11.1.1, the last stage in the Born-Oppenheimer method 
(§8.4.1) consists in treat ing the eigenvalue W{{Rn}) of Eq.(11.7) as an in
teraction potential for the nuclei in the effective Schrodinger equation (8.40). 
Eliminating the electron degrees of freedom leads thus to an effective Hamil-
tonian, 

Hn = fn + Wi{Rn}), (11.106) 

where the coordinates i2„ of each nucleus n, which so far had been considered 
to be parameters , are replaced by operators. It is difficult, if not impossible, 
to calculate the potential VF({il„}) explicitly, as this would require tha t 
we had solved the electronic problem (11-7) not only when the nuclei are 
fixed to their equilibrium positions in the lattice as in § 11.3, but also when 
they are displaced from those positions. However, it will be sufficient to be 
aware of two essential properties of W. Firstly, W{{Rn}) is a minimum, when 
the nuclei occupy their average positions Rn which form the lattice; as the 
nuclei do not move far from these positions, one can expand W around tha t 
minimum. Secondly, the periodicity of the lattice implies tha t W is invariant 
under displacements of the crystal group, such as translations, rotations, 
symmetries, and their combinations. 

The energy W defined by Eq.(11.7) depends, in fact, not only on the nuclear 
coordinates, but also on the state A of the electrons. Those remain practically frozen 
in into their ground state for an insulator, as for a molecule. We have seen that this 
is not the case for a metal. To be more rigorous, we must then take for the potential 
W{{Rn}) which occurs in (11.106) the average, at the temperature considered, over 
the electron microstates A, of W{{Rn},^) so that this effective potential depends 
on T and fi. This dependence is, however, weak and can be neglected. Moreover, the 
fact that W depends both on the coordinates {Rn} and on the state A generates 
axi effective interaction between the nuclear and electron degrees of freedom, an 
interaction which we shall neglect (§ 11.4.2). 
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For molecules, the search for the eigenstates of the effective nuclear Hamil-
tonian (8.40) consisted of a study of global rotations and of internal motions, 
which for the simple molecules considered reduced to vibrations. Among the 
various possible motions of the nuclei in a crystal, the global rotations and 
translations, which are macroscopic displacements, are not thermally excited: 
in contrast to the molecules in a gas which can be rotated by thermal exci
tation, a crystal retains its fixed orientation and its fixed position in space 
when it is heated. Hence, we must only consider from amongst the nuclear 
motions those which correspond to vibrations, excluding the global rotations 
and translations. We remind ourselves that for a diatornic molecule there 
was a single vibrational mode, associated with changes in the interatomic 
distance, with an angular frequency a; which could be calculated by expand
ing the potential around its minimum reached at the equilibrium position. 
The number of modes of the lattice vibrations is 3N — 6, where N is the 
number of nuclei: we have to subtract from the total number of coordinates 
the 3 translations and the 3 rotations of the whole system. As TV is large, we 
shall in what follows replace 3iV — 6 by 3N. 

As in any small vibrations problem, we look for the normal modes of the 
vibrations of the crystal nuclei, replacing in (11.106) the potential W{{R„}) 
by its quadratic approximation around the average values Rn, and then diag-
onalizing the quadratic form in {6Rn} = {Rn} — {Rn} which we have thus 
obtained. To simplify the discussion, let us assume henceforth that we have 
only one atom per cell and let its mass be M. The expression 

W{{Rn}) - W({S;}) (11.107) 

is a quadratic form of the 3A'' variables {SRn}, 1 < n < N. We write the 
eigenvalues of the corresponding matrix as ^Mw'i; they are all positive as we 
have a stable equilibrium. Let ĝ be the eigenvectors, which are linear func
tions of the displacements {6Rn}; their number is SAT. Finally, the momenta 
TTg, conjugate to the variables ^q, are the corresponding linear combinations 
of the nuclear momenta P „ . The effective nuclear Hamiltonian (11.106) can 
thus be written in the small vibration approximation as 

^ „ = W{{Rn}) + Y . ^+[w({Rr.})-W{{R-n})] 
-1 

TT^ 

= W{{Rn}) + Y. l27& + 2 ^ ' ' « ^ ) ' (̂ -̂̂ ^̂ ^ 

where there are ZN terms in the sum over q. In fact, (11.108) includes 6 
terms associated with the translations and rotations of the crystal, for which 
Wq = 0 since W remains constant under those displacements. 

In terms of the normal coordinates ^q and their conjugate momenta, the 
nuclear small vibration Schrodinger equation can thus be split into a set 
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of 3N equations for one-dimensional independent harmonic oscillators with 
angular frequencies Wg. (Strictly speaking the frequency is u = UJ/2TT but uj 
itself is often simply called frequency.) The lattice vibrations are quantized; 
the energy levels of H^ are given by 

W({R^}) + J2^<!(nq + l] = b + Y,ng^^Q' (11.109) 
g ^ ^ g 

and characterized by 3N independent quantum numbers n , = 0,1, 2 , . . . . The 
thermodynamic properties will mainly depend on the frequency spectrum ujg 
of the various vibrational modes for small a>q and we must thus determine it 
by explicitly diagonalizing the quadratic form (11.107). 

We solve this problem for a one-dimensional model of a crystal, containing 
only one kind of atoms which can oscillate around their equilibrium positions 
Rj — ja. To simplify the calculations we assume that the effective poten
tial W only includes interactions w between nearest neighbour nuclei. It is 
therefore expanded in powers of SRj = Rj — ja as 

J V - l 

W = Y^ wiRj+i-Rj) 

J V - l 

= Yl [w{a) + w'{a){6Rj+,-6Rj) 

+ ^w"{a){6Rj+x - SRjf + • • •^, 
and the conditions that it is a minimum for Rj = ja are w'{a) = 0 and 
w"{a) = C > 0. In the harmonic approximation the Hamiltonian (11.106) 
thus reduces to 

JV Pf 1 
• J 

2M 2 
C{6Rj+i-6Rjf (11.110) 

where we have dropped the additive constant W({i?„}). 
As in band theory (§11.2.2), we wish to take advantage of the invari-

ance group associated with the periodicity of the crystal structure. Since the 
number of nuclei, N, is large, the boundary effects due to the fact that the 
crystal is finite must play a negligible role. We can therefore slightly change 
our model and introduce periodic boundary conditions (§ 10.2.1), that is, as
sume that the crystal ends are joined together. We therefore identify A'' + 1 
with 1 in the last term in (11.110). An important simplification when we 
look for the normal modes is now introduced by the fact that (11.110) is 
invariant under a lattice translation over a distance a. We use that property 
by carrying out the same discrete Fourier transformation as the one which 
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enabled us to connect the localized Wannier orbitals to the Bloch waves for 
the electrons through (11.35) and (11.36). Through this transformation we 
change from the lattice sites j to the wavenumbers k or the quasi-momenta 
hk. One should take care to distinguish between these quasi-momenta, which 
are associated with the translational invariance of the lattice, and the nuclear 
momenta Pj. In this way we introduce the normal coordinates 

and their conjugate momenta 

3 K 

where the indices k take on the Â  values 

k = m—, - - < fc < - . (11.112) 
L a a 

In terms of these new variables the Hamiltonian (11.110) has the form 

^ = E (^+^(l-'^o«H4^?n- (11-113) 

Although the operators ^ and n are not independent and non-Hermitean, 
since we have ^J = ^_fe, n^ = TT-J,, they satisfy the same commutation rela
tions as pairs of conjugated variables, namely [̂ fc,7ffc;] = ihSkk'j a property 
which one can check by using their definitions (11.111). The Hamiltonian 
(11.112) thus looks, for each value of fc ̂  0, like that of a harmonic oscillator 
of frequency 

2C 
'̂ fe = V l ^ ( l - ^ ° ^ H = ^\ T7 sin^fca. (11.114) 

M 
1. 
2 

To achieve its diagonalisation, we introduce, as for the ordinary harmonic 
oscillator, the operators 

?. ^^(60i^+^) (11.115) 

and their conjugates, which satisfy the commutation relations 

[cfc,Cfe'] = 0, [cfc,c['] = Skk'- (11.116) 
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Fig. 11.19. The frequency spectrum of a one-dimensional lattice 

We thus get for the Hamiltonian (11.113) 

Hry = ^hujk{clck + l) = '^hwk[nk + lj, (11.117) 

and its eigenvalues follow from those of fifc = ^Xk, which are nj, = 0 , 1 , . . . . 
We show in Fig. 11.19 the frequency spectrum ujk given by (11.114); we bear 
in mind tha t the possible values of k are given by (11.112). 

The term with fc = 0 in (11.113) does not contain the operator ^Oj which 
is associated with the global translations SRj = ^o/vN. It does not describe a 
vibrational mode, but represents simply the global kinetic energy of the crystal. It 
needs only weak pinning forces to prevent the crystal from moving as a whole; if 
there were no such forces, the mean square thermal equilibrium velocity would be 
of order ^JkTjra^ or 2 x 10^ m %~ for a 1 g crystal at room temperature. 

In three dimensions, for example in the case of a cubic lattice with cell 
size a and one a tom per cell, each mode occurs as a vibrational wave with the 
displacement SRn of a nucleus situated at the site i2„ being, as in (11.111a), 
proportional to the real or the imaginary part of 

„ife • R„ 

A mode q is characterized by the wavenumbers 

i^x 

27r 
m^ Ixiqi lltfi 

2-K 
k, = m. 

27r 
(11.118) 1,3, , n,y 1/I.y , ii^z ""Z J ) 

for a crystal of size L, where the (integer) values of the m are bounded by 
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Moreover, for each direction of propagation there are 3 vibrational modes, 
associated with the displacements of a toms in particular directions, depend
ing on the direction of the wavevector, and being mutually orthogonal. We 
thus recover the 3iV modes which we expected from the counting of degrees 
of freedom. If the medium were isotropic - were an amorphous solid - one of 
the modes would be longitudinal with the atoms vibrating parallel to k and 
the other two modes would be transverse for symmetry reasons. The same 
property holds for a cubic cystal, in the special case when k is parallel either 
to the edges or to the diagonals of the cell; however, in general, the direction 
of the vibrations of the atoms in an eigenmode is not oriented in a simple 
way relative to the wavevector, due to the anisotropy of the crystal. 

The mode frequencies are functions of the wavenumber. As the one-dimen
sional model we have just studied suggests, and as more detailed theories 
show, the frequencies Wfe of the three modes tend linearly to zero when k 
decreases. In the isotropic approximation oj/k is independent of the direction 
of k so tha t for the longitudinal and the two transverse modes we have 

w ^ uik, uj ~ Utk. (11.120) 

Small values of k correspond to macroscopic wavelengths A = 27r/fc, and the 
lattice vibrations thus propagate the acoustic waves in the solid. The veloc
ity VfeW of the displacement of a wavepacket is just the sound velocity. It is 
independent of the frequency when fca <C 1, but it may take on three differ
ent values, depending on the direction of the oscillations of the atoms, and 
it may also be not parallel to fe. A typical value is 5000 m s~^ in metals, 
with the longitudinal velocity ui being larger than the transverse velocity 
Ut, as compared to the sound velocity of 300 m s~^ in air. The mechanisms 
for sound propagation in solids and in fluids are quite different. In the first 
case, we are dealing with coherent displacements of the atoms in the lattice 
over wavelengths which are large compared to the crystal cell size, a micro
scopic mechanical efi'ect governed by the effective forces W{{Rn}); in the 
second case, we are dealing with the propagation of a pressure oscillation, a 
macroscopic thermodynamic effect governed by the hydrodynamic equations 
of § 14.4.6. 

For a solid with an arbitrary crystal structure the wavevectors fe of the eigen-
modes are restricted to the Brillouin zone which generalizes (11.119), and they 
continue to take on N values, where N is the number of cells in the lattice. If there 
are s atoms per cell, the 3Ns vibrational modes split into 3s branches, which gen
eralize the 3 branches of a simple cubic lattice. Nevertheless, in the limit as A; —> 0, 
these 3s branches can be classified as 3 so-called "acoustic" branches for which w 
decreases linearly with k, and 3s — 3 so-called "optical" branches for which ui re
mains finite. The latter correspond to oscillations for which different kinds of atoms 
in the same cell oscillate with opposite phases. On the contrary, for the acoustic 
branches all atoms oscillate in phase; the lattice is thus locally very little distorted, 
and this is the reason why for those modes the energy hu>f. tends to 0 with k. 
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The acoustic modes show up directly as mechanical vibrations of solids with 
long wavelengths and low frequencies. The optical modes, which hardly propagate, 
as their propagation velocity dw/dk tends to 0 with k, play a role in the interaction 
between the crystal and electromagnetic radiation, because of the order of magni
tude of their energy Tiuj^. For instance, in NaCl, with 2 atoms per cell, apart from 
the three acoustic modes, there are three optical modes, two transverse and one 
longitudinal, with frequencies which are, respectively, equal to 3.09 x 10 s"""̂  and 
4.87 X 10''^^s~^ in the A; = 0 limit. Infrared waves which have frequencies of that 
order of magnitude interact strongly with these optical modes and this explains 
their name. A photon can be transformed into an optical phonon, that is, it can 
be absorbed, while exciting lattice vibrations; the conservation of energy Two and of 
momentum Tik = fujijc can here be satisfied, thanks to the large value of the light 
velocity c. 

The calculation of the eigenfrequencies, starting from the effective interactions 
W between the atoms, can be done as in one dimension, using the transformation 
(11.111) which will for each k produce 3s pairs of ^,7r variables. One must thus 
eventually diagonalize a 3s x 3s matrix (Exerc.lle). 

The masses of the nuclei are sufficiently large that their average displacements in 
a solid remain practically always small compared to the cell size (Prob.lO). Even at 
the melting temperature the mean square displacement rarely exceeds g of the cell 
size {Lindemann's criterion). This justifies an approximation which we have made 
implicitly and which consists in neglecting the Pauli principle for the atomic nuclei. 
Their fermion or boson nature plays, in general, no role whatever in their vibrations 
- although those are quantized - as the wavefunctions remain localized round each 
lattice site. Under those conditions, the symmetrization or antisymmetrization of 
the wavefunction of the AT indistinguishable nuclei will not change anything. The 
indistinguishability only plays a role in solid heUum where the nuclei, bosons for 

He and fermions for He, are sufficiently light and sufRcently weakly bound that 
the states of neighbouring nuclei overlap. 

11.4 .2 In terpre ta t ion of a M o d e as a B o s o n S t a t e 

Expression (11.109) for the eigenenergies of the Hamiltonian of the lattice 
vibrations shows a large similarity with the expression ^ SgUg of the energy 
levels of a gas with an arbitrary number of bosons (§ 10.5.2). It is therefore 
natural to talk about the system of quantized lattice vibration modes as being 
a gas of particles, the ^^phonons", which satisfy Bose-Einstein statistics. We 
shall see in § 11.4.4 and in § 13.1, where we shall s tudy the quantized oscilla
tion modes of the electromagnetic field, tha t this is more than just a simple 
analogy, and tha t the photons and phonons show all the characteristics of 
elementary particles. We shall restrict ourselves here to pointing out the cor
respondence between the two languages describing the same reality, that of 
the quantized vibrations and tha t of the phonons. 

Each oscillation mode q corresponds to a single-phonon state, tha t is, a 
plane wave as for a particle in a box (§ 10.2.1). The wavevector k corresponds 
to the quasi-momentum p — hk given by the de Broglie relation and, accord
ing to (11.118) and (11.119), taking on the same values (11.30) and (11.32) 
as the quasi-momentum of an electron in the same crystal. Moreover, the vi-
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brational modes are characterized by an index which can take on three values 
for crystals with one a tom per cell, and which describes the (in the simplest 
cases longitudinal or transverse) polarization of the vibrational wave; this in
dex plays the same role as an internal quantum number - like the spin - of the 
phonon. The energy (11.109) of a vibrational micro-state corresponds, apart 
from an additive constant, to tha t of a system of bosons, (10.16), provided one 
associates the frequency uig with the phonon energy Sg = fuVg and interprets 
the quantum number n^ of each harmonic oscillator as the occupation number 
of the s tate q. A vibrational micro-state corresponds to a micro-state (10.14) 
of Fock space, and a change in the vibrational state is described as the cre
ation or annihilation of phonons. In the harmonic oscillation approximation 
considered here, the phonons do not interact, as is shown by Eq.(11.109) for 
the energy. Their total number is not a constant of the motion. As a result 
(§ 10.5.2), their chemical potential is zero. 

The phonons, like the conduction electrons and the holes in an insulator, 
are a characteristic example of quasi-particles. Instead of describing the crys
ta l lattice and its motion as a system of nuclei, interacting strongly with one 
another, we have been led to introduce the phonons, fictitious bosons with 
practically no interactions, which enables us to describe the same physical 
situation, but much more simply. Even though the quasi-particles have the 
same properties as real particles, they are only distantly related to the true 
particles which make up the crystal, the electrons and the nuclei. They rep
resent, in fact, collective aspects. For instance, in an insulator, a hole or a 
conduction electron describes how the whole of the electron cloud is changed 
when one tcikes away or adds an electron. The collective nature of phonons 
is even more pronounced, as the creation of a phonon amounts to chang
ing the vibrational s tate of the system of nuclei; the quasi-momentum hk of 
the phonon is related to the wavevector k of this vibrational state, but has 
nothing to do with the momenta of the nuclei. 

The correspondence between the quantized vibrations of the lattice and bosons 
is completed by identifying the operators (11.115), which through (11.117) diag-
onalize the harmonic oscillators associated with each mode, with the annihilation 
and creation operators (10.20) of the phonons. The algebra (10.21) and (11.116) of 
these operators is, indeed, exactly the sam.e. According to the general properties of 
§ 10.2.3, each observable can be expressed as a function of the operators ĉ  and 'c*. 
In particular, the displacement of each nucleus occurs as a linear combination of 
phonon annihilation and creation operators. For example, for the one-dimensional 
crystal model studied in § 11.4.1, we find from (11.111) and (11.115) that 

SR. = . / A y ^^-Ri ! ^ 1 ^ . (11.121a) 

k 

Similarly, the momentum Pj of a nucleus is given by 

— 2 ^ e ^ [ck-cl^^ - ^ - , (11.121b) 
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which is another combination of the annihilation and creation operators. Equations 
(11.121) enable us to translate all physical quantities from one representation to 
another, for example, to find from the average number of phonons (cj^k) = fk ^^ 
each mode the statistical fluctuations in the position of each nucleus in thermal 
equilibrium. 

The existence of anharmonicity is in the phonon language translated into the 
addition of extra terms to the Hamiltonian (11.117). For instance, a term with 6R 
or with 8R^ in the potential W produces, if we use (11.121), terms like c^ "cĵ  c^j^j.^ 
describing the scattering of two phonons with quasi-momenta k^ and k^ into the 
modes fci and &2 (with conservation of total quasi-momentum), like Ck^Ck^Ckz ^^' 
scribing the annihilation of 3 phonons (fci+A;2 + fc3 = 0), or like'c^ ^^ "cj-g describing 
the transformation of one phonon into two others. Even though they are small, those 
terms contribute to the establishment of equilibrium in the phonon gas, where the 
number of phonons is not conserved (/j, = 0). When they are significant, we treat 
them using perturbative expansions similar to those used in particle physics; the 
phonon language is then eminently suitable. 

We have similarly treated the electrons in § 11.2 in the approximation where 
the nuclei were fixed at their average position. A displacement 6Rn of the nuclei 
adds to (11.8) a perturbation 

47reo — • IV, ^ i t , 
^ 8Rn • {ri ~ Rn) 

which can be interpreted, if we take (11.121) into account, as an electron-phonon 
interaction describing the scattering of an electron, with the creation or annihilation 
of a phonon. This interaction is responsible for numerous physical phenomena, such 
as the Joule effect - the transfer of electron energy to the lattice, thus heating it. 
It also enables two electrons to exchange a phonon; this gives rise to an effective 
attraction between them. This attraction is enhanced by the sudden jump in f{s) 
at the Fermi surface, to such an extent that it is possible for two electrons with 
energy ep and with opposite momenta and spins to form a bound pair in spite of 
their Coulomb repulsion. The resulting pairs, the so-called Cooper pairs, resemble 
bosons and can condense; this is the mechanism for superconductivity in metals at 
low temperatures (§ 12.3.3). 

The phonons axe a prototype of ^^Goldstone bosons", which are quasi-particles, 
or particles, associated with a continuous invariance property of the system. Here 
we are concerned with the translational invariance which the Hamiltonian satisfies, 
but which is spontaneously broken (§ 9.3.3) at thermal equilibrium where the atoms 
occupy well-defined equilibrium positions. An arbitrary translation transforms this 
equilibrium state into another equivalent equilibrium state, with the same energy. 
Let us assume that we excite a vibrational mode, in the long wavelength limit. 
Locally this (non-equilibrium) state is obtained by a translation with an amplitude 
which varies slowly in space. We understand thus why the energy of this mode 
tends to 0 as fc decreases, since for A; = 0 we would have just a global transla
tion. This property holds generally (Goldstone's theorem) for any long wavelength 
excitation of a system, occurring because a continuous invariance is broken. The 
linear behaviour of wj. for small fc is a specific property of the phonons, but the 
existence of 3 acoustic branches, for which the energy vanishes with fe, is itself a 
mere consequence of the breaking of the translational invariance in the crystal. 
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Another example of a Goldstone boson is provided by the elementajy excita
tions, called "magnons", of a ferromagnetic solid (Exerc.9a). In the Heisenberg 
model where the spins ff, interact through an effective potential —J{ffi • ffj), the 
Hamiltonian is invariant under a rotation of the spins. This continuous invariance 
is spontaneously broken in the ground state and, more generally, in any equilibrium 
state at a temperature below the Curie temperature (Exerc.Qa), as the spins are 
in that case all oriented along a privileged direction. A global rotation of the spins 
does not change the energy. A magnon, or spin wave, describes an oscillation of 
the spins around their equilibrium orientation which propagates from one spin to 
another. It is the Goldstone mode associated with the spin rotations, and its energy 
vanishes with k. The same concept exists in particle physics where the ground (or 
equilibrium) state is replaced by the vacuum and where an elementary excitation 
with momentum p and energy e = y 771̂ 0"* + p^c"^ represents a particle with a rest 
mass m. The Goldstone bosons have an energy which vanishes with k, so that their 
mass is zero. An example is the photon; one caji show that this is the Goldstone 
boson associated with gauge invariance, which is broken because one must choose 
a particular gauge to write down the potentials occurring in the Hamiltonian of 
chajged particles. 

11 .4 .3 Specif ic H e a t s of So l ids 

The statistical mechanics of quantized lattice vibrations can be studied in 
either one of the two equivalent descriptions: the canonical parti t ion func
tion (11.117) for the independent oscillation modes, calculated by using its 
factorization (§4.2.5), is the same as the grand canonical part i t ion function 
for non-interacting phonons with fj, = 0, writ ten down in §§ 10.3.1 and 10.5.2. 
Thus, the thermodynamic functions associated with the vibrational modes 
of the lattice, tha t is, with the phonon gas in the crystal, are given by the 
formulae of § 10.3 with /i = 0. In particular, apar t from an additive constant, 
the internal energy (10.42) of the phonons, which is the average of (11.109), 
equals 

where X>(e) is the density of the modes, 

V{e) =- ^ ^ ( a w g - e ) . (11.123) 

g 

At low temperatures the important modes in the integral in (11.122) 
are those with low energies. They have a linear spectrum so tha t in three 
dimensions the mode density (11.123) behaves as £^ for small e, since ^ 
introduces an integral J d^k. As a result, if we take Ps as the variable in 
(11.122), we find an internal energy which is proportional to T'* as T ^ 
0, which means a specific heat proportional to T^. We shall determine its 
coeSicient in what follows, in (11.129). 
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At high temperatures (11.122) reduces to 

C/ph -- kT I dsV{e) = 3NkT, (11.124) 

where 3N is the total number of modes. More exactly, in a solid with several 
atoms per cell and N cells, the 3N acoustic modes contribute to (11.124) while 
the optical modes do not contribute, provided kT lies between the maximum 
energy of the acoustic modes and the minimum energy of the optical modes. 
The specific heat is therefore nearly constant and equal to 3Nk. 

The Debye model bridges these results. It is based upon the use of the 
isotropic approximation (11.120) for the phonon spectrum, which in the large 
volume limit (§ 10.3.3) and for small s gives 

V{e) = ^ [.5(MIP - £) + 2,5(MtP - £)] 
p 

= j ^ d^p[S{uxp-e) + 28{utp-e)\ 

f2 / 1 2 , 2 
27r2a'* V uf u: 3 ' 0.3 £ . (11.125) 

Nevertheless, I'(e) must vanish when e becomes large as the total number of 
modes, 3A'̂ , is finite; it must satisfy the normalization condition (11.124). The 
Debye approximation, which enables us to avoid the detailed determination 
of 23(e), consists in extrapolating (11.125) up to a certain maximum value 
after which one takes V to vanish. This value fc6>D is determined by the 
normalization condition, which determines the only parameter of the theory, 
the Debye temperature of the crystal. 

-^-l 
ni/3 

f? (wf̂  + 2Mt"̂ ) 
(11.126) 

One can determine it from measurements of the longitudinal and transverse 
sound velocities. Typical values are 90 K for Pb, 400 K for Al, and 3000 
K for diamond. One can therefore rewrite the mode density (11.125) in the 
approximate form 

^(^) = ( ^ 0 ^ ^ ( ^ ® D - ^ ) - (11-125') 

The resulting internal energy (11.122) equals 
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Fig. 11.20. The specific iieat of some solids 
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where we have taken x = /3e as variable. Hence we get for the phonon con
tribution to the specific heat of the crystal 

C, ph 
dUph 
dT 

9NkT^ Z-®"/^ a;4gx ^^ 
/ (e^ - 1)2 

(11.128) 

which we show in Fig.11.20. The dashed curve corresponds to the Einstein 
model (Exerc.lOd). 

The experimental results are also shown in Fig.11.20 for a few substances 
which have a sufficiently simple crystal s tructure for the phonon spectrum 
to be well represented by the Debye approximation. The agreement with the 
theoretical curve is remarkable: the Debye temperatures which produce the 
best agreement between theory and experiment are, up to a few %, equal to 
those which one evaluates from (11.126), using the sound velocities. 

We find, as predicted, the T^ dependence at low temperatures if in (11.128) 
we replace the upper integration limit by oo, which for T <C ©u gives (see 
formulae section at the end of the book) 

a ph 
9NkT^ f 

Jo 

x^e^ dx 

(e^ - 1)2 
(11.129) 

Fi gures 11.20 and 11.21 illustrate that experiments check the T'"' law very 
satisfactorily for most solids, and even with a remarkable accuracy for insu
lators at low temperatures (solid argon for T < 2 K) . A notable exception 
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2 4 6 8 
Fig. 11.21. Specific heat of solid argon. The solid line represents the theoretical curve 
for 6»D = 92 K 

is graphite, the specific heat of which varies rather like T^. This can be ex
plained by the practically two-dimensional structure of this substance, which 
changes the mode density (11.125) and produces a behaviour X'(e) oc e in
stead of oc e^ in a sufficiently large region. Nevertheless for metals at very 
low temperatures the specific heat is dominated by the electron contribution 
(11.52) which is linear in T, and which tends to zero less rapidly than the con
tribution (11.129) from the lattice vibrations. One can distinguish these two 
contributions easily by plotting C/T as function of T^, as the experimental 
results for potassium below 0.5 K show (Fig.11.22). 

When the temperature increases, the crystal vibrations become more and 
more unfrozen and Cph increases. When T ^ © D , we expect to find the re
sult of classical statistical mechanics, predicted by the equipartition theorem 
(§ 8.4.2): the number of degrees of freedom is 6N so tha t Cph should tend to 
37Vfc. One can check this result by expanding the integrand in (11.128) in the 
vicinity of a; = 0, which yields 

Cr' /mJ mol-' K-̂  

C/T = 2.08 + 2.57 T^ 

. - - • 
r̂ /K^ 

0 0.1 0.2 
Fig. 11.22. Specific heat of metallic potassium 

0.3 
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Cph ~ 3iVfc ( ^ 1 - ^ • • • ) . (11.130) 

The value SNk ~ 25 J mole~^ K~^ for the specific heat of solids had been ob
served experimentally for number of them at the beginning of the nineteenth 
century (Dulong and Petit law). We see tha t this concerns solids with a Debye 
tempera ture which is rather low, below room temperature . We also note tha t 
the electron contribution is negligible compared to SNk: for potassium, an ex
trapolat ion to T = 300K of the linear law only gives Cei — 0.6 Jmole^^ K~^. 

The Debye approximation thus enables us to connect the specific heats of 
solids with a simple structure to their sound velocities. For crystals with a 
less simple structure, or in order to obtain a greater accuracy, we must use 
(11.122) and (11.123) which connect the thermodynamic properties with the 
properties of the vibrations: another example of the unifying power of statis
tical physics. For many substances one has checked the agreement between 
the measured specific heat and its value calculated start ing from the uj{k) 
spectrum, which itself is determined in experiments, for instance, on inelastic 
scattering of neutrons or photons by phonons. 

11 .4 .4 T h e r m a l Equi l ibr ium of a V i b r a t i n g Str ing 

As an introduction to quantum field theory and as an exercise we shall s tudy 
a model describing the vibrations of a continuous medium, rather than of a 
discrete system of atoms as in § 11.4.1. This will help us to deepen the equiv
alence which we have established between quantized oscillators and quasi-
particles such as phonons (§ 11.4.2); the discrete nature of a substance should 
not play any role when ka <C 1. This will help us also to introduce in § 13.1 
the photon concept. In fact, the dynamical variables describing the deforma
tions of a continuous medium constitute a field and the quantization of the 
electromagnetic field will follow the same stages as the present quantization 
of the deformation field, the eigenmodes of which are mechanical oscillations. 

To simplify matters we shall restrict ourselves to a one-dimensional system, that 
is, to an elastic string. We assume that this string, which is fixed at its ends, x = 0 
and X = L, can only be deformed in one, transverse, direction. Moreover, we limit 
ourselves to small displacements and we assume that the tension r and the linear 
mass density g are given. In classical mechanics the displacement fix, t) of the 
string at the point x, which is the solution of the equations of motion (11.134) and 
which depends on the initial conditions ip{x, 0) and dip{x, 0)/dt, must be considered 
to be a classical fi.eld, that is, a continuum of dynamic variables if each of which is 
associated with a point x of the string. The oscillation eigenmodes are particular 
solutions, forming a base. They are characterized by their wavenumber 

k = ^ , m = 1, 2, . . . , (11.131) 
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which takes on discrete positive values, and by their angular frequency a;j. (or 
frequency î fc), 

/T-1.2 

uik = ^•^I'k = \ = cfc, (11.132) 

where c = x/r/g is the velocity of propagation of sound along the string. The 
general solution f^x, t) can be expanded as a superposition of eigenmodes: 

/ n 

ip{x,t) = \ Y / Cfc sinkx. (11.133) 

The amplitude ^j. of each mode in ifi(x), which satisfies the equation ^j. +uji.$.k = 0, 
is a sinusoidal function of the time with frequency ck/2n. Each mode thus appears 
as a classical harmonic oscillator ^j. and the string itself as a set of an infinite 
number of harmonic oscillators characterized by the index k. In the linear chain of 
atoms of § 11.4.1 the number of degrees of freedom was finite, which, according to 
(11.112), restricted the number of modes to N. The decomposition (11.133) is the 
continuous version of (11.111), with stationary rather than travelling waves; here 
X replaces Rj and ip replaces SRj. The eigenfrequency spectrum (11.132) replaces 
(11.114); here it remains linear for all wavenumbers, and is not bounded. 

One should take care not to confuse the equation of motion of the string, 

£ ? " ? § = ". '"•-) 
with boundary conditions <p{0, t) = (p{L, t) = 0, which is a classical wave equation, 
with a wave equation from quantum mechanics. It is true that there exists a certain 
formal analogy between ip(x, t) and a wavefunction •4>{x, t) which would describe 
the motion of a quantum particle enclosed in a one-dimensional box of length 
L. However, it is essential not to be confused either by this analogy or by the 
notation. Whereas in the case of a classical or quantum particle moving along an 
axis, the dynamic variable is x, together with its conjugate momentum p, with the 
wavefunction tp being a means of calculating the expectation values of observables, 
there are here an infinite number of dynamic variables, the values of ip at each point 
x; the coordinate a; is a continuous index which enables us to characterize each of 
the dynamic variables. The transformation (11.133) is just a change of variables 
from the dynamic variables fix) to the equivalent dynamic variables ^j . ; these are 
characterized by the wavenumber k, a discrete index which takes on an infinite 
number of values (11.131). 

The equation of motion (11.134), which expresses the acceleration d ip/dt of 
a point of the string in terms of the restoring force, formulates the dynamics in 
Newtonian form. In order to quantize the system, we need to know the conjugate 
momenta of the dynamic variables 'fi{x) or £fc, that is, to know the Hamiltonian 
formulation of the classical problem (§ 2.3.3). To do this, we pass through the inter
mediate stage of the Lagrangian formulation in terms of the variables ^j. and f̂c. The 
equations of motion ^k ^ ^k^k — 0 must be identified as the Lagrangian equations 
(2.61) so that we can take for the Lagrangian which produces these equations: 
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LUk,L} = IY.&~4d)- (11-135) 
fc 

As a Lagrangian remains the same under a change of variables, we can use (11.133) 

to rewrite (11.135) in terms of the original variables: 

We find the difference between the kinetic and the potential energy of the string 
as we might have expected. The equations of motion (11.134) are found as the 
Lagrangian equations following from (11.136), provided we treat the derivatives 
dL/d(p and dL/dCp as functional derivatives. By introducing the conjugate momenta 
TTfc = dL/d^f. of the variables ^ j . , the general relation (2.63), which defines a classical 
Hamiltonian, here gives, if we use (11.135), 

HUk,^k} = 5Z ( ^ '̂ fc + le4d)- (11-137) 
k 

To treat this problem quantum mechanically we must now replace the classi
cal, conjugate variables ^kt'^ki the time-development of which is governed by the 
Hamiltonian equations, by operators ^ki^k which satisfy the commutation relations 

[ik,T^k'] = î ^fefc'. [?/c.?fc'] = [̂ fc>7?j(.'] = 0. (11.138) 

The Hamiltonian (11.137) of the string thus takes the form of a sum of Hamiltonians 
of one-dimensional quantum mechanical harmonic oscillators for each mode. The 
variables ^^ play the rolejof "positions", and their conjugates 9^ that of momenta, 
Q that of mass, and —rk ^j. that of the restoring force. One should note again that 
the quantum mechanical dynamic variables are ^j. and TTf. and not the abscissa x 
and the wavenumber fc, or the variable p — hk which will be interpreted as the 
phonon momentum; those in quantum field theory remain indices and commute. 
The field ^{x) itself, which is related to ^j. through (11.133), forms a continuous 
set of operators characterized by x. In the Heisenberg picture (§2.1.5) it depends 
on the time as follows: 

ip(x,t) = e ' ^(a;,0)e ' , 

but in the Schrodinger picture which we are using here, the state and not the 
observables ^{x) depends on the time. 

One can diagonalize H by introducing, as in (11.115), the phonon operators 

ck = -j== (^kVe^+^=], (11.139) 

and their Hermitean conjugates. The Hamiltonian becomes 

H = Y, ^^ki^lck + I), (11.140) 
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and the commutation relations (1.138) are equivalent to the commutation relations 
(10.21), that is, 

which define boson annihilation and creation operators. The operator nj. = 'cVck is, 
as we saw from (10.22), the occupation number observable of the single-boson state 
k, and its eigenvalues n^ = 0 , 1 , . . . give us the eigenenergies, 

^ hujk (nk + 2) = X I '^kf^l' + -^0' (11.141) 
k k 

of the Hamiltonian (11.140). The latter can thus be identified with the Hamiltonian 
of a gas of bosons in Fock space, with EQ as the vacuum energy. 

A complete isomorphism appears in this way between the Hilbert space of the 
vibrations of a quantum string and the Fock space of a system of bosons enclosed in 
a one-dimensional box of length L. The classical vibrational modes k have become 
the single-phonon states. Using (11.133) and (11.139) we can write the field operator 
at a point x as 

^{x) = Jy- V -— sinkx(ck+'cl). (11.142) 

The form sin kx of the classical wave associated with the mode k appears here as 
the amplitude, related to this mode, of the operator describing the deformation of 
the string at the point x. It is proportional to the matrix elements of this oper
ator between the micro-states with nj. and nj. + 1 phonons in the state k. Hence 
we can interpret p = hk as the momentum of a phonon in that state. (More pre
cisely, it is the absolute magnitude of that momentum; to find its sign we should 
introduce periodic boundary conditions which would give classical oscillations with 
e = ^P^i"-.) The whole story of § 11.4.2 of quantum oscillators in terms of bosons 
follows. For instance, (11.140) shows that the energy of a phonon in the state k is 
TiuJk = ^ck = cp. Equation (11.142) implies that deforming the string is quantum 
mechanically equivalent to creating or annihilating phonons. In particular, this is 
what happens when the string interacts with a thermostat, which is coupled to 

One obtains the thermodynamics of the string in equilibrium at a temperature 
T by writing down the free energy associated with the spectrum (11.141), or, what 
amounts to the same thing, the grand potential for the non-conserved phonons with 
fi = 0. We thus find the free energy, 

00 

F{T) = kT Y, In fl - 6^"'^'^'^/^'=^) +Eo. (11.143) 
m—l 

One can simplify this function in the limit when the string is sufficiently long so 
that LT/c 3> Trh/k ~ 2.4 x 10~ K s. The sum over m then becomes an integral 
and gives (see formulae at the end of this volume) 
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•jrLk^T^ 

6fic 
(11.144) 

Prom F we derive the entropy S = —dF/dT, the internal energy U = F+TS ~ —F, 
and the specific heat 

which is proportional to the temperature when LkT S> he. 
The use of quantum mechanics is essential to calculate the equilibrium proper

ties of the string. In fact, one would obtain for the free energy in classical statistical 
mechanics: 

rp 1 Y ^ 1 / tigfc rfTTfc 1 / 2 , 2>2\ 

= -fcT y I n ^ ^ , (11.146) 
771 — 1 

which is a divergent series. The terms in (11.146) for which m <ti LkT/ivhc are 
good approximations for the corresponding terms in (11.143), but this is not the 
case for the higher-order terms. In fact, the equipartition theorem (§ 8.4.2) implies 
that the classical specific heat equals the product of k with the number of modes, 
which is infinite. 

One can easily check that (11.145) is the same as the expression, similar 
to (11.129), which would have been obtained at low temperatures for the one-
dimensional chain of atoms with the spectrum (11.114). At temperatures which 
are low as compared to the Debye temperature the dominant vibrational modes are 
those with wavelengths long as compared to the cell size a, and then one can replace 
the linear chain (11.110) by a continuous string with a linear density g = M/a and 
a tension r = C/a, where SR ~ <p. The sound velocities in those two models are the 
same. We can thus treat the crystal a.s a continuous medium not only to account 
for sound propagation, but also to find the specific heat, provided we quantize, as 
we have just done, the deformation field <p{x), and provided we restrict ourselves 
to low temperatures, T <ti 0D-

Prom the Boltzmann-Gibbs distribution we can find the probability law for the 
deformations of the string at thermal equilibrium. In classical statistical physics 
we know from (11.146) that this law cannot be normalized. Nevertheless, since 
the divergence arises from the summation over the modes, nothing prevents us 
from studying the distribution of a finite number of variables TTJ. and ^j . . These are 
uncorrelated, Gaussian, random variables, as the phase density is proportional to 
e~^ , where H is the quadratic form (11.137). The fluctuations in f̂e are given by 
the equipartition theorem: 



148 11. Elements of Solid State Theory 

1 2 ;*2 \ •"• Tm , 2\ 1 
le^aa) = ̂ iijrrk) = \^T. (11.147) 

The classical field at each point, which is a sum (11.133) of Gaussian random 
variables ^ j . , is also a Gaussian variable, characterized by the fluctuations and 
correlations, 

OO f 

, , . . , , , 2 V—̂  • Trmx . nmx kT 
(<p{xMx)) = - ^ ^ ^ - ^ r " " - L - r ( 7 r m / L ) 2 -

m—1 

Using the Fourier series 

cosnmy ^ ^2 f I _ V ^ y^\ 0 < y < 2, 
2^ m2 " I 6 2 ' 4 
m—1 

we find, for x < x', 

hT 
{ip{x)ip{x)) = ^ x{L-x). (11.148) 

LT 

Figure 11.23 shows, with a large magnification of the ordinates, the string at one 
particular time. Its shape fluctuates all the time: this is a new example of thermal 
noise due to coupling to a thermostat (§ 5.7.3). The amplitude of the fluctuations, 
which is obviously zero at the ends of the string, varies as x{L—x), and its maximum, 
at the mid-point of the string, equals •^LkT/'W. At room temperatures, a i m string 
under a tension of 1 g is in this way randomly displaced from its equihbrium position 
over a distance of 3 A. Such small displacements seem to be difficult to measure. 
However, one has been able to measure experimentally a completely analogous 
effect: thermal fluctuations of the free surface of a liquid around the horizontal 
plane. 

Extending these results to quantum statistical mechanics is based on evaluat
ing the probability distribution at equilibrium of the "position" variable ^f. for the 
harmonic oscillator with a Hamiltonian (11.140). The factorization of the various 
modes enables us to consider just a single one. As the spectrum of ^j. is continu-
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Fig, 11.23. Fluctuating shape of a classical string at thermal equilibrium 
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ous, the probability distribution for its eigenvalues can be found directly from the 
characteristic function 

,iACA ^ t re e ^ (11.149) 

which we shall evaluate. To simplify the notation we write 

a = I3hujk, b = X 
2QUJI, 

so that the required function (11.149) becomes g{b)/g{0), with 

/•i\ , —an i6(c+c') 
g(b) = t r e e ^ ' . 

The derivative dg/db = 1(^1 +^2) involves functions which we shall express in terms 
of 5: 

51 
. —an \b(c+c')— , —an i6 (c+c^)^ 
t r e e ^ ' c, 32 = t r e e ^ ' c'. 

In order to evaluate g\ we note that 

^ibQ+^)^^-H7+^) ^ ^ _ i 6 ^ (11.150a) 

which can be checked by differentiating both sides of the equation with respect to 
6, and that 

g-an- jgan ^ ^ a - (11.150b) 

which can be checked by letting both sides operate on the ket \n). By letting^pass 

through e' ^ ' and after that through e^"", and using the cyclic invariance of 
the trace, we find 

ffi = t r e - ° " ( ? - i 6 ) e ' ' ' ( ^ + ^ ) = tr (e"^-^ ifc) e""" e'''(^+^) 

= e"pi -ibg. 

We can similarly express 92 = ^"92 + ibg as a function of g, and we finally find 

1 § = - f e c o t h ^ . 
g db 2 

The solution of this equation gives us the characteristic function we were looking 
for 

iHk\ _ A 2 _ A _ c o t h J ^ 

Hence, the quantum mechanical amplitudes ^j, of the oscillator are still uncorrelated 
Gaussian random variables but their statistical fluctuations (11.147) have been 
changed to 
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Quantum mechanics enhances the fluctuations of a harmonic oscillator, especially 
for high frequencies fi.a;j. > kT. 

The probability distribution for the field ip(x) follows from (11.133) and 
(11.151): it again describes a Gaussian noise, characterized at any time by the 
correlation function 

oo I 

MxMx )) = _ ; ^ sm ^ - sm - ^ - coth ^ ^ ^ . (11.152) 
m—l 

We have found a new effect: when x = x' the series (1.152), which gives the fluc
tuation ((f (x)) at a given point, diverges, whereas the classical approximation 
(11.148), which is valid only at the beginning, m <C LkT/hc, of the series, remains 
finite. The quantization of the field has introduced short range singularities. 

The existence of such divergences which are called "ultraviolet" divergences, 
because they involve large values of the wavenumber k, is one of the difficulties 
of quantum field theory. We have earlier skipped another ultraviolet divergence: 
the constant EQ which occurs in the quantum Hamiltonian (11.140), and which 
represents the ground state energy of the string, or the energy of the vacuum for 
the equivalent gas of bosons, is a divergent series, ^ 2^k- This divergence has, 
however, no physical consequences, as it is not involved if we restrict ourselves 
to energy differences. This simplification is due to the fact that the classical field 
equation (11.134) is linear or, equivalently, that there are no interactions between 
the phonons; other divergences of the same kind appear for interacting particles 
and their elimination poses huge problems which are the subject of the so-called 
renormalization theory. 

Actually, (11.146) has shown us that even in classical statistical mechanics there 
occur ultraviolet divergences. We encounter those again if we try to calculate di
rectly, starting from (11.148), the potential energy ^ T /g dx {{dip/dx) ) at equili
brium, since 

if{x) - ip{x') = kT I ^ - ^ - \ 
v — x'\ L 

diverges The curvature of the classical string is thus on average infinite 
at each point at non-zero temperatures. 

However, the situation is even more pathological in quantum theory since 
(11.152) itself diverges as x' —» x, in contrast to (11.148). Moreover, this occurs 
even as T —» 0 when the string tends towards its ground state, which in phonon 
language is the vacuum. In fact, in quantum field theory the vacuum, has a non-
trivial structure. Even though the mean value of the field ^{x) vanishes, (11.152) 
shows that in the quantum vacuum there remain correlations and fluctuations which 
are characterized by 

(^(x)^(x ')) = # ^ In « i "^ (^ + ^ ' ) / 2 ^ , (11.153) 
\^K j-ry JI 27rr sin 7r|a; - x ' | /2L ^ ' 
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whereas (11.148) tends to 0 as T —+ 0. No phonons does therefore not mean no field. 
Conversely, according to (11.142), asking the field to vanish amounts to looking for 
the eigenstate of ^ j , + ^j[ for all values of k; however, that eigenstate, which is 
proportional to 

exp \ E (̂ I)̂  |o>. 

cannot be normalized, and gives a divergent value for the expectation value (rifc) 
of the number of phonons in each mode. Decreasing the fluctuations of the field 
makes the number of phonons diverge. We shall return in what follows to this 
complementarity between field and phonons. 

The ultraviolet divergence of (11.152) has the following consequences: 
as the statistical fluctuation, in a point x, of the field fix) is infinite at any tem
perature, one cannot measure this quantity. This important and surprising effect is 
connected with the continuity of the string. If, in fact, we introduce, instead of the 
field variables ^(x) , the M average displacements 

'Pj = ~r I dxip{x), (11.154) 
^ JjL/M 

which correspond to cutting the string into M small sections, their probability 
distribution will be completely reasonable: (ipj'ipji) will remain finite, and it will 
be approximated by (11.148) if 1 <C M -C LkT/hc. In quantum theory one cannot 
measure a field at a perfectly localized point. Even in non-relativistic physics it is 
necessary that the measuring apparatus has a certain spatial size. One can also 
check that, if one tries to make the measurement more and more localized, one 
must for the reduction of the wavepacket supply an energy which becomes infinite. 

The vibrating string model also illustrates another diSiculty of quantum field 
theory, the existence of "infrared" divergences. As the size L of the system becomes 
infinite, the free energy per unit length (11.144) has a finite limit, but the phonon 
density, 

(iV) _ 1 ^ 1 1 p dx 1 J. f°° 
L L •̂ -—' QTrmhc/LkT _ -^ L I ,„ ^T^xhc/LkT _ -^ 

m=l "'1/2 

kT 2LkT 
irhc nhc 

diverges logarithmically with increasing L. This divergence would also occur for 
a discrete linear chain. It is connected with the small values of the wavenumber 
or with large distances, and corresponds to the existence of an infinite number of 
bosons with a very small energy in the system. 

Let us, finally, note that, if we want a state to describe the string in the classical 
limit (§ 2.3.4), the expectation value (^(a;)) of the field ^(a;) in this state should be 
identified with the classical displacement of the string, and its fiuctuations should 
be relatively small, that is, should satisfy 

{^{x)'^{x')) ~ (ifiix)) {v{x')), 
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since the vanishing of fluctuations implies the vanishing of correlations. The fluc
tuations of the velocity or of the momentum conjugate to >fi{x), and, as a result, 
those of the ^j. and n^ variables, must also be small. By virtue of Eqs.(11.139) or 
(11.142) we find that in the classical limit the phonon creation and annihilation 
operators themselves must have non-vanishing expectation values, related to those 
of the field ip{x) and its velocity, and relatively small fluctuations: 

(ckcy) ~ (cfc) (?fc'), (c]^k') ~ 0k) ^k') ~ (cy'cl)- (11.155) 

If we take the commutation relations into account, we see that (11.155) implies 

\(^k)\ = l(?I)l » 1 , (11.156) 

at least for the low-frequency modes; the high-frequency modes are in the classical 
limit not excited if the string is not too irregular in shape. These relations imply 
i^k) ^ l(cfe)| ^ 1) o"̂ ! that the number of phonons in the excited modes is large. 
Moreover, it follows from (11.156) that a density operator which can describe the 
string in the classical limit must necessarily have off-diagonal elements between 
states with nj. and with n^ + l phonons, which is not the case in therm,al equilibrium, 

when the density operator D oc e"'^ gives (c^) = 0. In a state which can be 
interpreted classically, not only is the number of phonons large and ill defined, but 
also the eigenstates of the density operator themselves are coherent sums of kets 
in Fock space, associated with variable phonon numbers. For a single mode, an 
example of such a state is the projection operator on the so-called "coherent" state 
vector 

e7(^+^) |0)e-T(T+7*)/2 ^ e'^^ IO)e-TT*/2 ^ y - |jj) J ^ e^T^*/^ (11.157) 

n 

which is the (normalized) eigenket of 'c with eigenvalue 7, as can be seen from 
(11.150a) and (10.20b). The off-diagonal elements \n)(n'\ of the corresponding den
sity operator are essential for getting the relations (11.155); the latter reduce here 
to (c) = 7, (c ) = 7 , (?'c) = 77*, and (cc^) = 77* + 1, which is the same as (c)(p) 
if I7] ^ 1. The fiuctuation of n in the state (11.157) is An = \-y\. 

These remarks illustrate the complementarity between the descriptions in terms 
oi fields and in terms oi particles. As the field operator (11.142) does not commute 
with the phonon number operator, one cannot simultaneously assign precise values 
for those two quantities. To speak of a well-defined field, we must place ourselves 
in situations where ^(x) or'c does not fiuctuate much; this implies that the density 
operator is not diagonal in n and that n is large and fluctuates. Conversely, if n is 
well defined, or, more generally, in states like the canonical equilibrium state which 
are diagonal in n, the field vanishes on average and fluctuates; such states contain 
off-diagonal elements when one writes them down in the ^-representation in terms 
of the "position" variable for each oscillator or of the fields. 



Summary 153 

Summary 

At sufficiently low temperatures substances usually show crystal order, with 
their nuclei arranged on a regular lattice. The geometric and mechanical prop
erties of solids depend on this structure and its defects; the electromagnetic 
and optical properties depend mostly on the electrons, and the acoustic and 
thermal properties on the lattice vibrations. The microscopic theory associates 
these three elements with each of the three stages of the Born-Oppenheimer 
method. It explains the crystal structures by connecting each phase with a 
minimum of the effective internuclear potential or, more generally, of a vari
ational grand potential. The theoretical analyses can be simplified by replacing 
the constituent particles of the solid by entities which have a collective nature 
and interact weakly, the quasi-particles. 

The Hartree approximation allows us to treat the electrons like a gas of 
fermions with each of them subject to a potential produced by the other elec
trons and the nuclei. Because of the periodicity of this potential, the spectrum 
of the single-electron states consists of continuous bands, inside which each 
state is characterized by its quasi-momentum, and which are separated by 
forbidden bands. The band structure of a crystal reminds one of that of the 
atomic spectrum of its constituents, each shell giving rise to one or more 
bands, the width of which increases with energy. The single-electron wave-
functions, or Bloch waves, have a double nature: itinerant, due to their re
semblance to plane waves, and bound, as they are superpositions of localized 
Wannier orbitals. 

The incomplete or complete filling of the allowed bands exhibits at the 
macroscopic scale the itinerant or bound nature of the electrons, and deter
mines whether a solid is a metal or an insulator. The characteristic electron 
temperatures, the Fermi temperature in a metal or the width of the forbid
den band in an insulator, are sufficiently high so that the equilibrium state at 
room temperatures hardly differs from the ground state. The elementary exci
tations, which behave as independent quasi-particles for both equilibrium and 
dynamic properties, are the electrons at the Fermi surface for metals, the 
conduction electrons and the holes for insulators. An insulator is modelled 
as a classical gas of positive and negative charge-carrier quasi-particles. Its 
conductivity increases with increasing temperature, as the number of quasi-
particles; that of a metal decreases. 

The macroscopic electrostatic properties, such as the screening effect, the 
surface charge, the spontaneous potential difference between different sub
stances, or the polarization in a dielectric, follow from the self-consistency of 
the Hartree potential. Adding impurities to an insulator with a narrow forbid
den band makes it into a semiconductor, by increasing either the number of 
conduction electrons (n-type) or the number of holes (p-type). The sensitivity 
of semicondutors to outside influences, such as an electric potential, illumi
nation, or heating, leads to many effects having industrial applications. In 
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particular, the properties of a junction between p- and n-type semiconductors 
make it possible to manufacture photocells, rectifiers, and transistors. 

The vibrational modes of the nuclei in a crystal are quantum waves; they 
are equivalently described as a gas of bosons, the phonons, the energy of which 
is proportional to their quasi-momentum. The number of phonons is not con
served. Their contribution to the specific heat dominates over that from the 
electrons, except for metals at low temperatures. At high temperatures, it sat
isfies the Dulong-Petit law. 

Exercises 

l l a Point Defects in Crystals 

At absolute zero the N atoms in a crystal are arranged on a regular lattice. 
The effective potential which is produced by the system of atoms and is act
ing on one of them has a minimum at the site occupied by that atom at 
equilibrium, but it can also have other secondary minima, that are less deep, 
at interstitial sites which at zero temperature are unoccupied. By providing 
an energy s one can let one of the atoms migrate from one of the N lattice 
sites to one of the N' interstitial sites: in this way one produces a pair of 
defects, a so-called Prenkel pair. More generally, by heating the crystal one 
can produce a fairly large, although small compared to N, number of Prenkel 
defects, and the disorder increases together with the internal energy. A sim
plified model assumes that the energy of any configuration where n atoms 
are displaced is equal to ns. Determine the average number (n) of defects at 
a temperature T; for a numerical application, take e = 1 eV, and for T room 
temperature. Calculate the contribution from these defects to the specific 
heat of the crystal. 

Another kind of defect, the so-called Schottky defect or vacancy, corre
sponds to the migration of an atom from a lattice site to the crystal surface, 
with an increase of energy equal to e. Evaluate the contribution of Schot
tky defects to the temperature dilatation coefficient of the solid and to the 
specific heat. One may assume that the number of different configurations 
formed by placing n atoms at the surface is small compared to the number 
of ways of creating n defects. One may also assume (in the grand canonical 
ensemble) that the crystal is in equilibrium with its vapour and that the 
chemical potential in the vapour is small compared to e. 

Hints: 

One can treat this exercise (like Exerc.Sa) by various methods using one or another 
of the canonical ensembles. We shall, as an example, use the microcanonical en
semble, but one could as an exercise try to find the same results in the canonical 
or grand canonical formalisms, bearing in mind that all ensembles are equivalent 
in the limit where the sample is large (§ 5.6.3). 
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The micro-states are characterized by specifying whether each of the N lattice 
sites and each of N' interstitial sites is or is not occupied by an atom; the sites are 
distinguishable, but the atoms are not. In microcanonical equilibrium a number of 
n = U/s atoms are displaced from n among the N lattice sites to n among the N' 
interstitial sites. There are therefore 

W ^ ' ^ ' ' 
n\{N -n)\ n\{N' -ny. 

equiprobable micro-states, and the entropy is 

S = klnW 

~ k[N\nN + N'hiN'-2nlnn 

-{N-n) ln{N - n) - (iV' - n) ln(iV' - n)], 

where we have used Stirling's approximation for the factorials. 
Expressing S as function of U, N, and N', we get the temperature 

Ĵ  _ 5 5 _ fe {N - n){N' - n) 
T ~ dU ~ E n2 

and hence the equation for n: 

n -e/kT 
— e (N - n){N' - n) 

or, when the number of defects is small: 

n ~ VAWe-^/2 '=^. 

We calculate the specific heat, using either the formula C = TdS/dT or the 
formula C = dU/dT = E dn/dT. 

In the canonical ensemble one calculates approximately 

l l n ^ ^ I ^ e - -/3n£ 

P 

noting that only the largest term in the sum contributes in the case of a macroscopic 
system (Exerc.5b). In the grand canonical ensemble one factorizes the contributions 
from the two kinds of site, and writes down the condition that their chemical 
potentials are equal. 

Similarly, whatever method one uses, one finds that there are n = N/ 
(er^ + I j ~ Ne~'^^ Schottky defects. A less simplistic theory for these kinds of 
defects is presented in Prob.8. 

l i b S e m i c o n d u c t o r s in t h e Extr ins ic a n d Sa tura t ion R e g i m e s 

Show by studying the extrinsic and saturat ion regimes (§ 11.3.4) and making 
the effective mass approximation tha t the number of conduction electrons in 
a neutral n-type semiconductor at equilibrium is a monotonically increasing 
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function of the temperature , but tha t the chemical potential has a maximum. 
Discuss the limiting cases. 

Hints: 

Since the valence band remains empty, the condition for electric neutrality can 
be written as Nc = ATjfl — /(ea))) o"" in terms of the dimensionless variables 

r = fcr/(ec - ed), A SE (/̂  - ed)/(£c ^ Ed), and u = 4ft̂  [27rmc(ec - Ed)] "^''^Ni/Q, 

) V^ L 
This equation determines A(r), that is, /x and Nc = Ni(l + e ''^), as function of T 
for a given doping v. Using \/r and r as variables and differentiating, we find that 
X/T decreases with r , therefore, that Nc increases with temperature from 0 to iVi. In 
the saturation regime, reached when 1] = VT~ ' e ' ^ <C 1, we have Nj — Nc ~ V^I> 
and A decreases as —rln(l/j7) so that fx decreases with T. At low temperatures, 
for e ' ^ ^ 77 S> 1, we have A'c ~ NITJ~ ' and 2A varies as rln?; , so that \x first 
increases, starting from (EC +ed) /2 , and then decreases. It passes again through its 
original value when A = 5, that is, when r is a solution of 

or T = Au ' , where A varies between 1 when î  <C 1 and 0.75 when f S> 1. The 
value ^ = Edj or A = 0, corresponds to a half filling, Nc = Ni/2. When we have 
strong doping, u > 2.92, the maximum of fi lies in the conduction band, and fi 
crosses £c for the two solutions for T of 

1 + eV-r 
2 r Vy^ ^ f l - ^ ) c n - 0 . 7 7 . /̂  Jo ev + i \ v^y ^ V2/ 

When 1/^3, there is even a temperature range, satisfying r; S> e '^ , where the 
behaviour is metallic, as we have jj, > Sc and kT <C yu — EC. In that region where 
A — 1 ^> T, the chemical potential, given by e '^(A — 1) ' = i^/TTv/A, increases, 
and Nc/Ni is small as e"'^/'^. 

l i e p -n J u n c t i o n at Zero T e m p e r a t u r e 

Solve the coupled equations which determine at T = 0 the charge density, 
field, and electrostatic potential near the surface a; = 0 of an n-type semicon
ductor, which is positively charged and occupies the a; > 0 region; assume 
tha t external charges in the region a; < 0 force the potential to be a constant 
as a; ^ +00. What is the thickness /n of the charged zone and the poten
tial difference between the interior and the surface of the semiconductor, for 
a donor density fd = 3 x lO'̂ ^ m~^, a dielectric constant e = 15£o, and a 
surface charge density ^^ = 3 x 10^^ C m"^? What is the chemical potential? 
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Hence derive the charge distribution and the shape of the field in a p-n 
junction which globally is uncharged, at T = 0, and find an expression for 
the maximum field strength as function of the doping densities. How do the 
thicknesses /„ and Ip vary with doping? 

Hints: 

At T = 0, a donor site is full or empty, according to whether its local energy is 
lower or higher than /x. Thus, the electrons which are missing from the donor sites 
produce between the surface a; = 0 and the plane x = In, that is, in a layer where 
e j — e${x) > n, a. constant volume charge density g = ev^ = Qs/ln- When x > In, 
the charge density (11.99) vanishes, as n j = î a, n = p = 0. Hence we get, because 
eV^* = -Q, 

$ix) = #„ - - ^ (/n - xf, 0 < X < In. 
ZSin 

In the interior of the sample, x > In, $ = ̂ n is constant (see Figs.11.14 and 11.15). 
Outside it, a; < 0, # varies linearly. The field, 

E{x) = - ^ = - - ^ (In-X), 0 < X < In, 
dx eln 

is continuous and thus equal to —Qsjs for a; < 0, and vanishing for x > In- Because 
there are surface charges present, the value oi fj, at T = 0 inside the sample is 
£(i — e^n + 0, immediately above the donor levels, whereas it is 5(^0 + £d) when 
there are no charges. This change, ^(ec — ea) in the chemical potential is due to its 
great sensitivity to external perturbations for T = 0 when fi lies inside a forbidden 
band. 

For a p-n junction one joins this solution up with the inverted solution on the 
p side, taking the values gs on the n side and —QS on the p side, and requiring that 
the chemical potentials axe the same, /i = e j — e$n = £& — e^p, and also that ^(x) 
and E{x) are continuous. Using the fact that In = Qs/evd, 'p = Qs/eva., we find 

*„-*p = ^^^^ = f (/n + p̂) = f f^ + ̂  
e 2e ^ ' 2ee yv^ Vg. 

and hence QS, In, and Ip as functions of e^ — Eg. and the doping densities. The field 
E(x) varies linearly in the regions {—Ip, 0) and (0, In)- The maximum of its absolute 
magnitude is reached at x = 0, where 

E{0) = - ^ 2(gd - £a)t^d^'a 

e(^'d + î a) 

It increases with doping, and so does the displaced charge QS, whereas the total 
thickness of the barrier decreases; but In increases with Va for fixed u^. 
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l i d E i n s t e i n M o d e l 

We model the quantum vibrations of a crystal by assuming tha t the restoring 
force which pushes each nucleus back to its equilibrium position is indepen
dent of the position of the other nuclei. Evaluate the specific heat of the 
crystal as function of temperature . Compare it with the model of classical 
vibrations and with the results of the Debye model. 

Answer. Introducing the Einstein temperature 

where v denotes the oscillation frequency of each nucleus, we get 

3iVfc(0/r)2e®/^ 
C = 

( e 0 / T _ i ) 2 

The Einstein model gives the general behaviour of C{T) and the Dulong-Petit law, 
but it deviates from experimental data at low temperatures (Fig.11.20), as it does 
not reproduce the mode density (11.125) at low frequencies. In fact, Einstein's 
hypothesis is unrealistic for long wavelengths and it violates Goldstone's theorem 
(see the end of § 11.4.2); this is the result of the fact that the potential W in the 
Einstein model does not remain constant under a global translation of the crystal. 

l i e A c o u s t i c a n d Opt ica l P h o n o n s 

Find the vibrational eigenfrequencies and the phonon creation and annihi
lation operators for a one-dimensional model with two atoms per cell, with 
masses M' and M", M' > M", which oscillate, respectively, around the sites 
R'j = ja and R'J — [j + \)a, and which have a nearest neighbour inter
action governed by an effective potential \C{8R' — SR")^. To do this, let 
M'M" = M^ and M'/M" = e^", carry out the transformation (11.111) for 
each type of a toms, and end up with the diagonalization of a 2 x 2 matrix, 
after having changed the normalization of the conjugate variables TT̂  , ĵ[. and 
""fe' i'k ^y factors e''^"/^. Study the shape of the spectrum and the motions of 
the atoms in the acoustic and optical modes, at the centre and at the edge 
of the Brillouin zone. 

Answer: 

Using the notation ± to distinguish the two modes that we obtain for each value of 
k, with the upper sign corresponding to the acoustic phonons, and the lower sign 
to the optical ones, we have 

<̂ fc± = \ T7 I v coshu-I-sin |/ca/2| =1= y coshu — sin |fca/2| j . 
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The acoustic branch has the same shape as in the case of a monatomic chain, with 
a sound velocity w^^/k ~ •<JCa?/2{M' + M") and a maximum oife^ = yj2CjM' 
at the edge fc = ±7r/a of the Brillouin zone. The optical branch has a majdmum 
0.0- = Y^2C(M' + M><)IM'M" for fc = 0 and a minimum cjfe_ = ^ 2 C / M " for 
k = ±7r/a; the group velocity of a wavepacket vanishes in these extrema. 

The phonon annihilation operators are 

Cfc± 
1 

2'Jh. 
1 ± ? H ^ (?j^yM^ + 

y/M'^ 

sinh u + cos jfcoj . Inversely, the 
displacement operators of the atoms are given by 

6% 

6R' 

with 

7fc± 

y NM' ^ 
k 

y NM" ^ 
k 

Ck± + cLfci 

_ sinh u ^ 

L sinh u ^ 

L sinh u ^ 

L sinh u ^ 

r+ A ^̂ -

^ifeij;. 

^ikR'^ 

For an acoustic phonon (A; —> 0, whence J4 —> coshw, and index +) , the dis
placements of all the atoms are the same, 6R ~ SR , as (1 + sinhu/j4)e~" ~ 
(1 — sinhw/j4)e". For an optical phonon of zero momentum (index —), the two 
kinds of particle oscillate in opposite directions with a larger amplitude for the 
lighter species, M'6R' ~ —M"SR". At the edge of the zone (fc = TT/O, whence 
A = sinhu), only the heavier atoms oscillate in the acoustic mode; their displace
ments alternate in directions, SRj ~ —SRj_^_l. In the optical mode with k = n/a 
only the light atoms vibrate, 6R'' ~ —SR''_^I, again with opposite phases. 

l l f F e r r o m a g n e t i s m of M e t a l s 

The Ising model (Exerc.Qa), where the localized spins tend to orient them
selves parallel to each other under the action of their short-range interactions, 
gives a simple explanation of the ferromagnetism of certain substances. How
ever, this explanation is not suitable for the ferromagnetic metals, such as 
iron or nickel. In fact, the elementary magnetic moments are in tha t case 
at tached to the conduction electrons which are not localized; moreover, the 
direct magnetic interaction between the spins is negligible. We shall show 
how the Coulomb repulsion between the electrons in the metal , combined 
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with the exclusion principle, provides us with a mechanism which makes it 
indirectly possible to orient their spins, that is, to give rise to a ferromagnetic 
phase. 

We shall be interested in elements with 24 < Z < 30 electrons per atom, 
and we shall make the following simplifying assumptions. The M atoms of 
the crystal of volume i? are positioned on the sites of a simple cubic lattice 
with mesh size a, which are denoted by Rj (j = 1 , . . . ,M). We assume that 
24Ar of the ZM electrons are frozen in into the low-lying bands, and that the 
N = [Z — 2A)M remaining electrons are in a conduction band —A < e < A, 
the centre of which we choose as energy zero. We assume that this band 
contains three subbands 6 = 1,2,3 so that altogether it contains 6A/̂  single-
electron states, denoted by g = (p, 6, cr); p denotes the quasi-momentum and 
cr = ±1 the 2-component of the spin. We also assume that its density of 
states equals 

m 

and that the single-electron energies £, = Sp are independent of h. The other 
bands will play no role, since kT <C A. 

The A''-electron effective Hamiltonian H = HQ — BM + V contains: (i) 
the conduction-band Hamiltonian Ho, with eigenvalues ^ UqEp; (ii) the mag
netic energy of the spins in a possible field B, applied along the ^-axis, where 
M = —/XB X]i=i ^i denotes the ^-component of the magnetic moment; and 
(iii) the Coulomb repulsion between the conduction electrons, reduced by 
screening (§ 11.3.3). (This repulsion was not included in the self-consistent 
potential of the band Hamiltonian HQ.) The screening length is short, of the 
order of the lattice mesh size a, so that the only significant matrix elements 
of the effective potential V are, within the conduction band, between Wan-
nier orbitals Xb{'>' — Rj) localized on the same site. To simplify matters, we 
assume also that this matrix is proportional to the unit matrix in b, b' space, 
so that V has the form 

^ = " S 5Z 5 ] n{Rj,b,(T)niRj,b,a'). 

We have denoted by n{Rj, b, a) the occupation number operator in the Wan-
nier orbital Xb(r — Rj) for spin cr; the positive constant u, which is the 
diagonal matrix element of the Coulomb interaction between Wannier waves 
of extension a, is of the order of magnitude of e'^/Airsoa, that is, of eV, and 
the summation over cr and a' indicates the fact that V is spin-independent. 

The problem will be solved by a mean-field variational method, similar to 
the one of § 11.2.1. Taking into consideration that it is practically impossible 
to work with the exact grand canonical density operator £) = Z^^ exp[—/3H+ 
aN], the latter will be approximated by a simpler trial density operator, V = 
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y~^exp[— J2n yp,<T^q]-! where rig denotes the occupation number operator 
for the single-electron state q = {p,b,cr). The j/g, which are independent of 
the band index b, are adjustable parameters which will be best determined by 
looking for the minimum of the trial grand potential A = {H)—iJ,(N)—TS{T>), 
where ( ) denotes an average value with respect to V. 

1. Find expressions for Y, S{V), (HQ), N±, M = (M), and (V) in terms 
of the parameters / , = (rig), which are equivalent to the yg-, N± = {N±) 
denotes the number of electrons with spins cr = ±1 . Derive, without solving 
them, the equations determining the y, and the / , . Show, in particular, that 
yp^a has the form f3{ep — x^) where the remaining two parameters Xa- should 
be determined by coupled equations to be written down in terms of X'(e). 
Interpret the result by representing the electron system as a mixture of two 
Fermi gases with a = ± 1 , each of which is subject to a uniform mean potential 
produced by the other. 

2. Show that for Z = 11 the parameters Xj^ and a;_ are each other's op
posite and find /i. Write down the equations determining x = ^{x+ — x^) 
and M for temperatures T ^ A/k. Solve these equations for the case when 
there is no field. Show especially that at zero temperature the metal is fer
romagnetic, that is, has a non-vanishing spontaneous magnetization Mg/i?, 
provided u exceeds a certain magnitude UQ to be determined as function of 
A. Show also that for a fixed u exceeding UQ there exists a critical temper
ature, the Curie temperature T^., above which there is no ferromagnetism. 
Determine the spontaneous magnetization Ms/fi and the Curie temperature 
in terms of U/UQ and sketch the Ms(T)-curve. Are the solutions the same for 
B = 0 and for \B\ -^ 0? 

3. Show, still with N = 3Af, that in the regions where there is no fer
romagnetism the metal is paramagnetic and determine its susceptibility x-
Sketch x ( r ) for u > UQ and for u < UQ. Compare the result with Pauli pa
ramagnetism (u = 0). For u > UQ, determine the behaviour in the vicinity 
of the Curie temperature: (i) of the magnetization as function of the field 
5 for T = Tc and -B —> 0; (ii) of the susceptibility in the paramagnetic 
phase as function of T — Tc -^ 0 and in the ferromagnetic phase as func
tion of Tc — T —> 0 (compare the results); (iii) of the specific heat in zero 
field; sketch the C(T)-curve. Compare the results with the Landau theory 
(Exerc.ed). 

4. Cobalt is a ferromagnetic metal below 1404 K. Its mass number is 59, 
its density 8.71 g cm~^, and its atomic number Z = 27. Assume that it can 
be described by the present model, with a density of states at the Fermi 
surface equal to 'D{e-p)/n = 0.47 eV~^A . Calculate the mesh size a, the 
band width 2A, and the interaction strength u which follow from these data. 

5. Assume now that the number N of electrons in the conduction band 
is arbitrary, but fixed as T varies. Write down the equations determining the 
Curie temperature. Take as parameters x = \{x+ — x^), which is small, and 
z = |(a:;++a;_), and do not specify X'(e) until the end of the calculation. Show 
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that for given values of A and u the temperature Tc has a maximum for a half-
filled band and tha t the substance is not ferromagnetic at any tempera ture if 
N exceeds limits which should be determined. Experiments show tha t from 
among the successive elements in the atomic table, chromium (Z = 24), 
manganese {Z — 25), iron {Z — 26), cobalt {Z = 27), nickel {Z — 28), copper 
{Z = 29), and zinc {Z = 30), only Fe, Co, and Ni are ferromagnetic with 
Curie temperatures equal to 1043, 1404, and 631 K, respectively. Discuss these 
facts, assuming tha t all these elements have the same model Hamiltonian, the 
same density of states T>{e), the same interaction u, and the same number of 
a toms per unit volume, so tha t they differ solely in the number of electrons 
in their conduction bands. 

Solution: 

1. As in § 10.3 we find 

I n F = ^ ln( l + e-^«), fg 
dyg evi + l' 

S = kTrV lnY + J2 VqUq . ^ [ l n ( l + e--) + ^ 

{Ho) = ^ eq{nq) = 3 ^ £pfp,<7, 
q p,a 

P 

By separating the terms with a = cr' from those with a = —a we can rewrite the 
potential V as follows: 

V = •uiV' + 2u ^ n{Rj,b,+)n{Rj,b,-). 

j,b 

The factorized form of "D does not give rise to any correlations between electrons 
with opposite spins so that 

{V) = uN ^ 2 u ^ {n{Rj,b,+)) {n{Rj,b,-)}. 

j,b 

The state 27 treats the sites Rj and the subbands 6 in the same way; one should 
thus expect that (n{Rj,b,a)) is independent of Rj and of b, and therefore equals 
Na/'iM; hence 

^ 2i; 
ly) = uN+^N+N-. 

To prove that result, we use (10.22) and the change in base (10.36), which can now 
be written as 
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{r\p,b} 1 ^ e - - ^ / ^ , ( . - i l , ) , 

leading to 

n{Rj,b,a) = 'c [Rj,b,ayc{Rj,b,a) 

1 V e'('''-'')-* /̂'̂ ?t ^, 
M b,<y 

The average over V then gives, as expected, 

{n{Rj,b,a)) = ^ ^ fp,a 
3A/" 

Looking for the minimum of A with respect to the fq leads to 

kTyp^a = £p + H^Ba + zt + —-; N^a - 1^, 

an equation which is coupled with the expression for N±, or, equivalently, 

r ''""^'^ e /3(e- i ) + r 

One can easily check that the equilibrium of a gas without interactions is found for 
u = 0. 

If one treats the electrons with spin —a as a fixed continuum of density 
N-u/n, as we did in (11.11) for the whole set of electrons, the expectation 
value of n{Rj,b, —a) is equal to N-a-a /SO = N^c^/iM. The form of V implies 
that in this approximation the electrons with spin a have single-particle energies 
£p + fJ-sBcT + u + 2tiJV_o-/3A/'. Writing down the associated Fermi factor with the 
same chemical potential for the two gases we find again the coupled equations for 
Na and Xo-. 

2. For Z = 27 we have N = 3jV, and the conduction band is half filled. The 
equation 2{N+ + iV"_) - 6jV = 0 leads to 

-I 

deVis) 

deV{e) 
1 1 

- 1 

de Vie) 
1 1 

g^(e-cc+) _|_ J e'^(^+'^-' + 1 



164 11. Elements of Solid State Theory 

where we have successively used the hole-particle symmetry and the relation ©(e) = 
2?(—e). The square bracket has the same sign as x+ + x_; it vanishes only when 
x-l- + x_ = 0. Hence, it follows that fj. = 2u, giving us a chemical potential which is 
independent of T and B. The increase of ;U with u reflects the fact that the repulsion 
between electrons tends to make it easier for them to be released to an external 
system. 

The coupled equations for X<T and No- lead, after subtraction, to 

-MB-B-
NflB 

• M , 

M = -^B(iV+-iV-^) 

IIT3 I l,B I ds V{s) 
e0(e+x) _j_ I g!3{£-x) _|_ I 

or, if we use the Sommerfeld expansion, which assumes that \x\ < A, and integrate 
over e. 

M = 
SNfiBX 

2A 3A^ 
--( (f) 

If there is no field, the equation for x becomes 

3u 
X = zr-r X 

2A 3Zi2 3 \ A ) 

If w < Ko, where UQ = ^A, the only solution is a; = 0, and hence M = 0, whatever 
the temperature: ferromagnetism is not possible. li u > UQ, and, more generally, if 

? + T(f)'<'. 
there exists, apart from the x = 0 solution, two opposite solutions, given by 

leading to a non-vanishing spontaneous magnetization, even though B = 0: 

N ^ 
^^^n"^ 

2A 
u (f)' 

When we have only one solution, x = 0, .A has its minimum for a; = 0. When 
there are three solutions, the two non-trivial solutions appear, as one lets u increase, 
or T decrease, starting from the point a; = 0. Moreover, A{x) is symmetric in x 
when S = 0. Hence, it follows from continuity considerations that A{x) can only 
have a maximum at x = 0, and two minima of the same depth. As we are looking 
for the absolute minimum of A(x), we must eliminate the solution a; = 0, and the 
other two give us solutions with a non-vanishing spontaneous magnetization. The 
substance is therefore ferromagnetic. When u > UQ = ^A, this behaviour occurs 
only if T < Tc, where the critical temperature is defined by 
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TT/S 
VZ^ I 

u 

if T > Tc, the only solution is the trivial a; = 0 solution. The curve Ms{T) = 
•Kkfi-BNy/Tc — T'^ is one quarter of an ellipse, and behaves as \/Tc — T near the 
Curie point. 

For B = 0 the Hamiltonian is invariant under rotations, and for T < Tc the 
spontaneous magnetization can be in any arbitrary direction: the invariance is bro
ken (§ 9.3.3). However, our approximation has given us only two particular solutions 
where Ms is directed along ±z, since T> introduced a selected direction which pre
vented us from finding the general solution. When B j^ 0, one of the two minima 
of ^{x) becomes deeper than the other one due to the term —BM. The presence 
of a field, even an infinitesimal one, thus selects that solution M which is oriented 
in the same direction as B. 
Note. If we wish to avoid the continuity argument and show directly that, when we 
find three solutions, the point a; = 0 must be eliminated, we can use Sommerfeld's 
formula, for kT ^ ,d — |a;o-|, to calculate 

A{x+,x-) 
9Af E i 2 _ gg 

2 ' ' ' ' 4Z\2 4 ^'-T<'^)^('+i) 4A 

+ Y, {mB<7 + u-tx)N^ + ^ ^ N+N-, 
2 u 

Na 
9A/; 
AA 

3^% 1 ^ T^ fkT 
1 Xa 

For S = 0 and with x+ 

A{x) = -MA 

9M u 

4A «o 

—X- = X, fi = 2u, this expression becomes 

9 v^ STT^ /kT\^ 

x^ _ TT̂  / f c r \ 

3̂ 2 " T l ^ J 

3Af 4 

X 

3ZV2 "-^ u 3 [ A ) 

The last term vanishes in each stationary point; hence, A{x) < A{0) for a non-
trivial X ^ 0 solution. Our calculations assume that |a;| < A, but one can check 
that the minimum of A{x) is always reached for |a;j < A; ii u > | u o = A, we 
have X = ± / i at T = 0, and in that case the spins of all the conduction electrons 
are pointing in the same direction: the spontaneous magnetization, (I-QN/Q, is a 
maximum. We shall restrict ourselves to u < A, a. condition which is realized for 
all elements studied. 

3. When B ^ 0, we find, after eliminating M, that x is determined by 

«0 

u 

TT^ (kry 
3/i2 i \ A ) 

UQ 
MBB-

If w < woj or if u > uo, T > Tc, x tends to 0 proportionally to B, as B 
same is true for M, and we find 

0; the 
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M 
Q 

NfJ-B 
Qu 

N 2 

: + MB-B] 

- ^n\kT/Af 

^u"^^ 
UQ 

u — UQ |7r2M(fcT//i)2 
+ 1 

u+\-K'^u{kT/AY' UQ 

The susceptibility is positive: the metal is paramagnetic. It decreases with increasing 
temperature, which reflects the increase in spin disorder with temperature when B 
is small, and fixed. When u < UQ, this decrease occurs starting from a finite value, 
and X is larger than the Pauli susceptibility, which we get for u = 0. When u> UQ, 
T > Tc, the susceptibility. 

N 2 
^ niu - UQ) ̂ '^ 

'UQ T^ 

u T^ - Ti 

diverges as T ^ Tc + 0. 

At T = Tc we find 

and as a result the magnetization, 

n n \ u J (2B)^/^, 

- ( - u J 

varies more slowly than B, as B3: the susceptibility diverges. 
If XQ is the value of x for B = 0, which was calculated sub 2, we find that 

Sx = X — XQ is for T < Tc given by the equation 

-{xQ + Sx)—^ (2XQSX + Sx ) = — ( J - B B , 

whence, as B —> 0 and replacing XQ by its value, we obtain 

M -Ms 

n 
N 

fi{u — UQ) 

NUB 
Qu 

2 
MB 

[6x + IIBB] N 2 o •JUQA^ 

2UX'Q 
+ 1 

wo 
2u T} - T 2 (-?) 

The susceptibility is thus again positive as in the paramagnetic phase. It increases 
with the temperature while Ms decreases, and tends to infinity as T —> Tc — 0. In 
both phases x behaves in the vicinity of Tc as |T — Tc|~ , but its coeificient on the 
ferromagnetic side is smaller by a factor 2. 

The specific heat at constant N, which is here equivalent to at constant ^l, 
equals 

,dS_ 
dT P dp' 
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The entropy depends on the temperature directly through yq = /3(ep — Xu) and 
indirectly through the x^; this gives us 

C dp 
df. 

-^i^T^y^Tt (-P---)-/? dyq 

. dXrr 

1 r^ 
i^k^Y, j deV{s){e-Xa) 

d o dxa 
ds e/̂ C -̂̂ "-) + 1 

In the paramagnetic phase T > Tc we have Xa = 0 and this expression reduces to 

Co - J deV{e)s'f\e) 

,2 [_ (̂,) _ i^\kTfs"^e)] 

2 Zi 

This result is the same as for a gas of non-interacting electrons. In the ferromagnetic 
phase {u > UQ, T < Tc) we have x+ = —x- = x and, using the ±£ symmetry, 

Differentiating the equation which determines x as function of T we find 

2xdx 27r̂  k^TdT 
+ 0, 3Z\2 3 A^ 

and hence, replacing x by its value. 

Cfa 
9Af 

2TA f 
J-A 

de 1 / i2 
(e - s)^ - (e - x) — (fer)2 

a; 

X | 5 ( £ - x ) + ^ ( f c r ) 2 5 " ( £ - a ; ) 
6 

4zi £{(• Z\2 
(e - a;)^ - (e - a) ^ (fcT)2 | 

2A ^ 

2 

2j-, 

kT 
A 

-i—i"y 
-'Mf)X€-) 
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Apart from the linear contribution we get for T < Tc an extra term which is 
associated with the spin order. It is negative when T < Tc/VS and slightly reduces 
the slope at the origin. It is positive for Tc/V^ < T < Tc and gives rise to a 
discontinuity at T = Tc, corresponding to 

Cim-C^r. = n'Nk { ^ ) \ 

The specific heat decreases abruptly when T crosses Tc. It also has a slope discon
tinuity: 

dCfm dCpm 97r̂  Nk^ (kTc\'^ 
dT dT 2 (f) 

The entropy is continuous at To; its derivative is positive and decreases abruptly. 
Experiments confirm these predictions (Fig.9.10); we must remember to add the 
phonon contribution to the electron specific heat. The shape of the predicted 
anomaly differs here slightly from the one provided by the Ising model (Exerc.9a): 
especially, the value of the discontinuity in C is less simple than in the case of 
localized spins. 

All results obtained here in the vicinity of Tc are in agreement with Landau's 
theory. 

4. The number of conduction electrons per unit volume is 

^ = § = 3 X 6 X 1 0 ^ 3 ^ l l l ^ i ^ ! = 2 . 7 x 1 0 - m - 3 , 
n n 59 X10-3 

so that a = {n/M)^/'^ = 2.2 A. The bandwidth follows from P(eF)/ i? = 9A/'/2J?Zi, 
whence we find 2A = 1.7 eV, and for the limiting interaction UQ = ^A ~ 0.57 eV. 
The band being half filled we precisely satisfy the conditions of the questions sub 
2 cind 3 so that 

•,_-m_T^ fkTc\^_7r^ f 1.38 X 10"^^ x 1404 Y _^^ .,„-2 
u - 3 { A ) - 3 VO.5 X 1.7 X 1.6 x l O ' ^ V ~ "" ' 

and hence 

u ~ 1.07rto ^ 0.6 eV. 

5. In terms of the variables z, x, N, and M, the coupled equations for Xcr and 
No- can, in the low-temperature expansion, be written as 

uN „ uM 
z = fi~u-~-p, X = -HBB 

^'^ 2 

3A/-' •̂  ^ ' ^ " " 3AA/iB' 

1 / , , M(T\ 
( i V - — j = - J ^ deVie) + '^ikTfv'iz + ax). 
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In the vicinity of the Curie point x is small, for B = 0, and we find 

N 
J —, 6 

{n-u- z), 

Ms_ 

MB 
— x = xV{z) + \x^V"{z) + \-K^(kTfxV"{z). 
u 6 6 

The two equations which connect N and z determine /i as function of T and N. 
The equation for x has either the trivial, paramagnetic, x = 0 solution, or the 
ferromagnetic solutions given by 

^x^V"{z) = V{z)~^ + li,\kTfv"{z). 
u 6 6 

Since T)" < 0, those solutions exist, provided the right-hand side be positive, which 
implies that 

uViz) >3Af, T< T., l^knf = ^ ^ ^ 
z^z{Tc,N) 

If it exists, Tc is determined by coupled equations for z, Tc, and N. 
Since kTc ^ ^ we can use Sommerfeld's expansion to determine z. Let us put 

ZQ ^ s-p — u — UN/3JV for the value of z at zero temperature, which is given as a 
function of the band filling by 

^ = /_>-<')-3^ hs-Hiy 
Hence we find 

so that the Curie temperature is determined by 

V C'Tcf 
V / - _ \ 2 

1>{zo) 
3Â  

or, finally, 

If u < Wo, the metal is never ferromagnetic. If u > UQ, the maximum value of 
Tc is reached when ZQ = 0, that is, for the half-filled band which we studied above. 
If |zo| increases, Tc decreases, until it vanishes when 

zo = ± A ^ l 
UQ 
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These values correspond to 

» = w [ : ± ( i + g ) ; r tto 

U 

The metal can thus never be ferromagnetic, whatever the temperature, if N lies 
outside that range, the centre of which corresponds to half filling the conduction 
band. 

Under the conditions in the statement of the problem, the region where the 
metal can be ferromagnetic at low temperatures is given by 

This excludes all elements bar those with Z = 26, 27, or 28, in agreement with the 
experimental evidence. For Z = 28 we find for ZQ the equation 

N-3 _ 7 „_ _ 9̂ 0 3 fzo\'^ 
^ r - ^"^^ - 2^"2 U j ' 

whence ZQ = 0.23/i. Prom this we get for the Curie temperature 

AV-3,1^^^ ^ ^ _ ^ _ u o , ^e40K, 
k n ]j A^+z^ \ A^ 

in agreement with the experimental value for Ni. For ^ = 26 we find ZQ = —Q.23A 
and the same Curie temperature, whereas the experimental data for Fe give a higher 
value, albeit lower than for Co. Even though the model is coarse, it reproduces the 
actual facts qualitatively correctly, namely, the maximum of Tc in the middle of the 
band for Co, and the presence of ferromagnetism only for the elements next to it. 

Note. The mean field theory used here neglects the effects of fluctuations which 
tend to hinder the estabUshment of ferromagnetism. To obtain realistic values for 
Co and Ni we have deliberately underestimated the band width 2A, which is in 
actual fact of the order of 10 eV. Moreover, the shape of the conduction band is 
more complex. The elements with 24 < Z < 30, considered here, are in the periodic 
table of elements situated in the middle of the fourth row, 18 < .^ < 36, which 
corresponds to filling the 4s, 3d, and 4p shells. These shells give rise to many bands 
which more or less overlap, and which change their shape when they are being 
filled. As a result, the density of states is not symmetric, and this is shown by the 
difference between Fe and Ni; it varies, like u, from one element to another. Finally, 
our model would give an exactly empty band for Cr, and an exactly filled band 
for Zn, which would therefore be insulators; in reality, the density of states at the 
Fermi level, although smaller than for the elements in the cobalt region, does not 
vanish, and Cr and Zn are metals. 

The fluctuations do not only reduce the Curie temperature, they also change the 
critical behaviour: the results of the question sub 3 give curves which are roughly 
correct, but they do not agree with experiment as T -^ Tc. 



12. Liquid Helium 

"Les soleils mouilles . . . 

Ch. Baudelaire, Les Fleurs du Mai 

"II est de forts parfums pour qui toute matiere 
Est poreuse. On dirait qu'ils penetrent le verre." 

ibidem 

"La Science, la nouvelle noblesse! Le progres. 
Le monde marche!" 

A.Rimbaud, Une Saison en Enfer 

In the present short chapter we shall give a sketch of the remarkable prop
erties of helium at temperatures below a few K. The specific effects which 
occur then have been, and are still, the subject of many investigations. Their 
thorough study goes beyond the framework of the present book, but their 
scentific interest justifies at least a short account. Helium in its two isotopic 
forms ^He and '*He has the peculiar property of remaining liquid down to 
zero temperature at ordinary pressures, whereas all other simple substances 
crystallize. Nevertheless, because of the small mass of the atoms and the low 
temperatures, the translational degrees of freedom are frozen in and cannot 
be treated classically: we have quantum fluids which are different for the two 
isotopes, as ^He is a fermion and *He is a boson (§ 12.1). 

Helium 3 is a Fermi liquid at low temperatures: its equation of state 
(§12.2.1) and its specific heat (§12.2.2) are governed by Pauli's exclusion 
principle. We shall also see that the disorder due to the two spin states of 
each of the atomic nuclei in the solid phase makes this solid phase within 
a certain range of pressures less stable than the liquid when one lowers the 
temperature (§ 12.2.3). 

Helium 4 resembles a Bose-Einstein gas, even though the interactions be
tween the atoms play an important role. The gregarious nature of the bosons 
shows up in their condensation at low temperatures which gives rise to a new 
ordered state of matter (§§12.3.1 and 12.3.2). As a result, helium 4 shows 
around 2 K a phase transition, from the ordinary liquid phase to a new super-
fluid liquid phase which can flow without viscosity and which in some respects 
looks like a wave (§ 12.3.3). This is not just a laboratory curiosity, as the 
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phenomenon is related to the superconductivity of certain substances, which 
lose their resistivity below a certain temperature, and which have started 
to become the subject of industrial applications. We shall restrict ourselves 
to qualitative discussions, as the theory of superconductivity and of super
fluidity requires that one takes into account interactions between particles 
or quasi-particles by using the techniques of the many-body problem, which 
are too complicated to be included in the present book. However, as an ex
ercise (Prob.l4) we shall show how the Landau model gives a rudimentary 
explanation of the superfluidity of helium. A useful introduction to this vast 
subject can be found in the book by D.R. and J.Tilley {Superfluidity and 
Superconductivity, Adam Hilger, Bristol, 1986). 

12.1 Peculiar Propert ies of Helium 

12.1.1 Phase Diagrams 

Among all substances helium has one remarkable special property. At not 
too high pressures it does not solidify at low temperatures. 

Natural helium consists practically 100 % of the ^He isotope. Its phase 
diagram (Fig. 12.1) shows that one can only obtain solid helium for pressures 
above 25 atm. One also sees that helium has two liquid phases which are 
separated by a transition curve around 2 K. 

There is also a lighter stable isotope, ^He, which is present in natural he
lium as a trace (1.4 x 10~^), and the phases of which have also been studied, 
after it has been isolated and purified. Roughly speaking its phase diagram 
(Fig.12.2) resembles that of '*He: the stability region of the solid phase is 
again bounded on the low pressure side, in contrast to the usual phase dia-

A ^/atm 

Fig. 12.1. Phase diagram of He 
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A 3>/atm Fig. 12.2. Phase diagram of-^He 

grams where we have a solid-gas sublimation line passing through the origin. 
However, the melting curve shows a minimum and, in the range of tempera
tures of the order of kelvins, there exists only one liquid phase, in contrast to 
the case of '*He. The difference in the atomic mass is insufBcient to explain 
these qualitative differences which show directly the need to appeal to the 
Pauli principle to understand the properties of helium in the kelvin range of 
temperatures . 

New effects appear in He when one lowers the temperature to the millikelvin 
region: one has found two other liquid phases, predicted by theory, which show 
unusual properties (end of § 12.3.3). The scale of Fig.12.2 is too small to show these 
phases. 

12.1 .2 Q u a n t u m Liquids 

The reason why the low pressure and low temperature phase is not a solid 
for helium is a quantum, phenomenon connected with the small mass of its 
atoms. Let us remind ourselves of the discussion in § 11.1.1: we find the s tate 
of the crystal for the case of nuclei with an infinite mass, at low pressures 
and low temperatures, by looking for the minimum Wm of the total effective 
interaction potential W{{Rn}) between the nuclei, which is reached when 
they occupy the sites {Rn} of a certain lattice. The order of magnitude 
of Wm/N is tha t of the minimum of the effective potential W between two 
atoms. For the inert gases this is very small (see Fig.9.1 for the potential W for 
argon) and especially for helium where the electrons are very strongly bound 
to the nucleus; we get in this case for W^/N an estimate of —2.6 x 10^^ eV 
per a tom. 
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However, in order to take into account the lattice vibrations which are 
quantized as a system of harmonic oscillators (§ 11.4.1), we must add to Wm 
the zero-point energy and replace W^ by the ground state energy (11.109): 

k 

We see from (11.114) that the phonon energies hiOk decrease with the inter
actions, but increase when the lattice consists of light atoms. We should thus 
expect that the second term in (12.1) can be significant for solid hydrogen or 
helium. Let us use the Debye model (11.125) to estimate its value; this gives 

2 

1 1 /"OO 

- ^ awfc = - / deV{e)s 

- H m - ^ l ^ ^ ^ ^ = 8 ^ ^ ^ - (12-2) 

For He ©D is of the order of 20 K; this gives a zero-point energy of 2 x 10^^ eV 
per atom, which practically completely cancels the weak binding energy of 
the lattice (—2.6 x 10~^ eV per atom). For H the binding energy of two 
atoms is large (4.7 eV) so that we have to deal with H2 molecules; those are 
lighter than He and have a fairly large zero-point energy, but the attraction 
Wja between H2 molecules is much larger than for He; as a result, at ordinary 
pressures and low temperatures, hydrogen is a molecular crystal in spite of 
the zero-point fluctuations. 

The combination of two effects, the small value of the minimum of the 
potential between atoms (inert gas) and the large zero-point energy (small 
mass), thus makes helium an exceptional substance in which the binding 
energy in the solid state is very small. One can thus understand that this 
binding energy may be smaller than that of the liquid state. In fact, even 
though in the liquid state the average potential energy is higher, the zero-
point energy is smaller, as the amplitudes of the displacements are larger. 
This therefore explains why at low pressures, the liquid state is the stable one. 
Naturally, at higher pressures, the solid state is the stable one: looking for 
the minimum of the grand potential gives us the phase diagram, as in §§ 9.3.2 
and 11.1.2, and denser states are preferred when the pressure (and hence fi) 
increases, because of the presence of the term —fiN in A = U — TS — iiN. 
The model studied in Prob.13 confirms these qualitative indications. 

Nevertheless, in ^He and ^He in the hquid state below a few K, quantum 
effects play an essential role. Let us, first of all, note that ^He, which contains 
an odd number of fermions, behaves like a fermion, as the exchange of two 
atoms changes the sign of the wavefunction, whereas a ^He atom, which 
contains an even number of fermions, behaves like a boson. To understand 
why helium at low temperatures is a quantum liquid, and not an ordinary 
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liquid, let us remind ourselves of the condition (10.49) and (10.50) for the 
classical approximation, 

3/2 

72 l i i j «'• ^''-'^ 
N / 2 7 r r \ 

At the density of liquid helium, about 0.1 g cm~^, the left-hand side is of the 
order of 1 at a tempera ture of about 5 K. Use of quantum statistics, Fermi-
Dirac for ^He and Bose-Einstein for ^He, thus becomes necessary at low 
temperatures . In what follows we shall neglect the interactions between the 
atoms, which is hardly justified at liquid densities. Nevertheless, the principal 
characteristics of ^He and ^He will be rather well explained in this approxi
mation. 

The Pauli principle for the nuclei also plays a role at higher pressures in the 
dynamics of the lattice of solid helium. In fact, because they interact so weakly and 
their masses are so small, the atoms oscillate with amplitudes which are significant 
compared to their distances apart. The theory of phonons (§ 11.4.1) must thus be 
changed, as now the wavefunctions of the oscillators centred on neighbouring lattice 
sites overlap. 

12.2 Helium Three 

12.2 .1 E q u a t i o n of S t a t e 

We describe ^He at low temperatures as a Fermi-Dirac gas, neglecting the 
interactions between the atoms. The grand potential is then given by (10.47), 
where the number of single-particle states A/'(e) with energies below e is given 
by (10.45), so tha t 

- P I 7 = - ^ ^ i ^ r . e / ( e ) . 3 / ^ (12.4) 

3n^h^ Jo 

-)3/2 /"oo 

'o 

Hence, we get, through differentiation, the number of particles, 

the internal energy, 

U = - ^ A ^ Ipn, (12.6) 

and the entropy, 

(U -A-^N) = i ( - ^ A - / . i v ) . (12.7) 



176 12. Liquid Helium 

At high temperatures and low densities these expressions are the same as 
those for a classical perfect gas, but they are different in the quantum region. 
In particular, at sufficiently low temperatures we get, by eliminating ji from 
(10.65) and (10.73) and using (10.43), (10.45), and (10.58), 

A 
2Q{2m) 3/2 

(fc0F) 
5/2 . 57r2 / T V 

+ (12.8) 

If we take the mass density of helium to be 0.082 g cm~^, the experimental 
value at ordinary pressures and very low temperatures , we find tha t the Fermi 
temperature ©p, defined by (10.58), is 5 K, which is 10 000 times lower than 
the electron Fermi temperatures in metals. Therefore, whereas we can treat 
the electron cloud in a metal as a Fermi gas at all temperatures , for ^He 
the expansion (12.8) becomes valid only well below the Fermi temperature 
0 F = 5 K. 

In tha t low-temperature region the Fermi fluid shows a behaviour which 
is very different from that of a classical gas. In particular, the equation of 
state obtained by eliminating /x from (12.4) and (12.5) becomes, in the (12.8) 
and (10.58) low-temperature approximation, 

4 * 6 9 7 r ^ 
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(12.9) 

As we are neglecting the interactions, we can expect only qualitative 
agreement of this equation of state with experimental da ta for ^He below 5 K. 
Nevertheless, the order of magnitude of the density following from (12.9) is 
correct since at atmospheric pressure (12.9) gives a density of 0.033 g cm~^ 
as against the measured density of 0.082 g cm"^. The shape of the isotherms 
is also predicted by (12.9) with a reasonable accuracy. In § 12.3.2 we shall see 
tha t such, at least qualitative, successes are due to Pauli 's exclusion principle 
which reduces the effects of interactions. 

The Landau theory enables one to obtain a quantitative agreement with most 
experimental data for He, by taking interactions into account in a simple manner. 
The idea is the same as in § 11.2.1, where we replaced the interactions between the 
electrons in a solid by an effective self-consistent potential. Here He is considered as 
a gas of non-interacting quasi-particles, each of which represents a "dressed" atom 
in the average potential of those surrounding it. Since most properties depend only 
on what happens in the vicinity of the Fermi surface, as shown by Eqs.(10.65)-
(10.68), we need only find out how the density of states 'D(e) is changed by this 
effective potential near e ~ ep. As for the electrons in a solid, this change can 
be represented by a simple change in the mass m of the atoms to an effective 
mass m*. The ratio m*/m varies with T and P , typically between 3 and 5. This 
increase in the mass is a consequence of the fact that an atom partially drags its 
neighbours along. It significantly reduces the Fermi temperature, and makes (12.9) 
a quantitative relation. 
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12.2.2 The rma l Proper t ies 

The relation (12.6) between the internal energy and the pressure is the same 
as for a perfect classical gas. Nevertheless, because the equation of state has 
a different form, the internal energy per atom is no longer only a function of 
the temperature, but it depends also on the density: the Joule law does not 
hold for the Fermi-Dirac gas. 

The specific heat at constant volume is the derivative of the internal energy 
(12.6) with respect to T, for constant N and f2. It is shown in Fig.12.3: at 
temperatures well above the Fermi temperature, in practice above a few K, 
we recover the value ^Nk of a perfect classical gas. At low temperatures the 
specific heat decreases, and tends to zero, as it should, at zero temperature 
(§6.5.2); its behaviour, given by (10.75), 

a ~ In^Nk-^, (12.10) 

is linear. Experiments on liquid ^He confirm these predictions about the spe
cific heat, which is again remarkable in view of the fact that we have neglected 
the interatomic interactions. Nevertheless, we should calculate ©p using the 
effective mass of the atoms, which is increased through the interactions. 

Finally, the entropy (12.7), which at high temperatures is the same as 
expression (8.15) for a classical perfect gas, also tends linearly to zero at low 
temperatures, as 

S ~ l-TT^Nk^. (12.11) 
2 (yp 

We thus check the Nemst principle for liquid ^He: the vanishing of S at zero 
temperature comes about because the ground state, obtained by populating 
all single-particle states up to the Fermi level, is non-degenerate. 

CJNk 

^ Fig. 12.3. Specific heat of ''He 
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12.2.3 Solid-Liquid Transition 

One consequence of the form (12.11) of the entropy of liquid ^He at low 
temperatures is a rather surprising feature of the phase diagram given in 
Fig.12.2. If one cools liquid ^He down at a pressure of axound 30 atmospheres, 
it starts by solidifying, which is normal. However, if one continues the cooling, 
it again becomes liquidl As cooling a system means that we bring it into states 
which are more and more ordered, this means that at low temperatures, in 
the region of the pressures considered, liquid ^He is more ordered than solid 
^He. This looks paradoxical, as the atoms are regularly arranged in a solid, 
but not in a liquid. 

To understand this effect, let us consider solid ^He: its Debye temper
ature being 20 K, the lattice vibrations are frozen in below 1 K, and the 
corresponding entropy is zero. However, the existence of a spin | for the nu
clei is an extra disorder factor, as each of them can independently be in two 
spin states. The entropy of the crystal thus remains constant and equal to 

Scr ^ Nk In 2 (12.12) 

at temperatures in the kelvin range. The nuclear spins start to align them
selves and the crystal entropy starts to decrease only at temperatures below 
10^^ K: the energy of the interaction between the magnetic moments fj, of 
the nuclei is, indeed, of the order of (/^o/47r)(;U^/r^) ~ 10^^^ eV ~ 10~^ K, 
because these magnetic moments are so small. 

We bear in mind (§8.3.1) that at low densities and high temperatures, 
when the classical approximation is justified, the entropy also contains a 
spin contribution, equal to (12.12). However, at low temperatures, when the 
effects of the Fermi statistics become important, the entropy of the fluid, given 
by (12.11), tends to zero, even though we are taking the nuclear spin into 
account. The lack of spatial order in the liquid is compensated by an ordering 
of the nuclear spins, which is much larger than in the solid phase, so that at 
zero temperature the liquid is more ordered than the solid. To produce a less 
qualitative theory and to explain the shape of the phase diagram we must, for 
given temperature and chemical potential, evaluate the grand potential for 
the two phases, the solid and the liquid one; the equilibrium phase is the one 
which makes the grand potential a minimum. An equivalent method, which is 
used in Prob.l3, consists in comparing, for given temperature and pressure, 
the free enthalpies in the two phases. This theory has been worked out by 
Pomeranchuk in 1950; remarkably he predicted the liquefaction by cooling of 
^He around 30 atmospheres long before it was carried out experimentally. 

An interesting application of this effect is the Pomeranchuk cooling 
method. If we compress liquid helium three, at a temperature below that 
of the minimum of the melting curve (0.32 K), it tends to solidify. As the 
solidification proceeds, the representative point of the system in the T, V 
plane moves along the melting curve (Fig.12.4); the pressure increases as the 
proportion of solid increases, while the temperature decreases. To better un-
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A gP/atm Fig. 12.4. Pomeranchuk cooling 

0.1 0.2 0.3 

derstand this phenomenon we note that the transformation takes place while 
the entropy remains practically constant, as the system does not exchange 
heat during the compression. Since the compression increases the proportion 
of the (denser) solid phase, it tends to increase the spin disorder, which is 
larger in the solid than in the liquid phase; this increase must therefore be 
compensated by a decrease in the disorder of the translational degrees of 
freedom - the lattice vibrations in the solid and the translations of atoms in 
the liquid - hence by a cooling. Order is transferred from the spins in the 
liquid to the crystal vibrations, the amplitude of which thus decreases. 

The Pomeranchuk cooling method is very efficient. It is used in laborato
ries, like adiabatic demagnetization (§ 1.4.4), to reach very low temperatures, 
of the order of mK, in macroscopic samples. 

The coupling between the nuclear moments connected with the spin of 
^He and an external field produces interesting magnetic effects. In particular, 
if all spins are polarized, everything happens as if the atoms had no spin. The 
density of states is divided by 2 so that the Fermi level increases for a given 
density of atoms; the Pomeranchuk effect disappears (Prob.l3). 

12.3 Helium Four and Bose Condensation 

12.3.1 Bose Condensation 

The ^He isotope of helium, which is by far the more common one in nature, 
differs from ^He by its nuclear mass and the absence of spin. However, the 
most important difference at temperatures of a few K, where the translational 
degrees of freedom must be treated quantum mechanically, is that the ^He 
atoms have a boson nature. 
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The grand potential is, in the approximation where we neglect the inter
actions, given by (10.29), that is 

A = A;T ^ In [l - e'(pV2m-^)/*Tj _ (̂ ^2.13) 

p 

When the chemical potential is fixed at a negative value (§ 10.5.2), we can use 
(10.47) and (10.45) to write expression (12.13), in the large volume limit, in 
the form 

^ M 3 / ^ r . . . . . , 3 / . _ ^ ^ , (,2.14) 
pOO 

/ def{e)> 
Jo 

where /(e) is the Bose factor, 

/ ( - ) = e ( e - . ) A ^ - l - ^''-''^ 

Hence we get the internal energy 

U = IVa, (12.16) 

and the relation between the number of particles and the chemical potential 

* = E / ( £ ) - f ^ r •*'/(») ̂ "'. '•<0. (12.17) 
p 

The high temperature limit is the same as for a perfect gas or for helium 
three. At temperatures of a few K, where one can no longer neglect the 1 
in the denominator in (12.15), the equation of state and the thermodynamic 
properties are considerably changed. In particular, a new effect occurs, when 
one cools down helium at constant density. 

Equation (12.17) defines the chemical potential fi as function of density 
and temperature for /x < 0. Figure 12.5 shows this relation between TV and 
// at various temperatures. For a given value of T, N remains bounded as 
jLt increases up to its bound JJL = —0. When the temperature decreases at 
constant density, // increases. For a certain temperature Tx, which is related 
to the density N/f2 through (see formulae at the end of this volume) 

O Air^h^ Jo e-/''^^ - 1 V 27r^^ / ^ ' 

/i becomes equal to zero. One can thus find /j. from (12.17), for given N/O and 
T, only if T > Tx{N/Q). The above equations (12.14) and (12.17), which have 
been derived for // < 0, are therefore no longer valid at temperatures T <Tx 
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cooling 

Fig. 12.5. Relation between chemical po
tential, density, and temperature for a 
Bose gas 

for the density considered. We must, in particular, reconsider the solution of 
(12.17) for /i values close to zero. We have assumed that, as i? —> oo, we could 
replace the discrete sum over all plane waves p by an integral; this is justified 
as long as the integrand is continuous, since we are then dealing with the 
definition itself of a Riemann integral, but not as /i ^ 0, when the integrand 
is no longer bounded. In that case we must analyze the contribution from 
the levels with the lowest (discrete) energies, corresponding to small values 
of p, before letting the volume tend to infinity. If we use periodic boundary 
conditions, the plane wave p = 0, with zero energy, has an average occupation 
number equal to 

Ân /(O) -ti/kT _ I 

kT 
(12.19) 

By itself this single-particle state can make a significant contribution to the 
density N/Q of the fluid: it is sufficient for /i to go to zero in such a way that 
|/x|J? remains finite as fi tends to infinity. Whereas normally each single-
particle state is on average occupied by a finite number /(e) of particles, a 
macroscopic number of bosons is concentrated into a single state p = 0, that 
of the lowest energy. This spectacular consequence of the gregarious nature 
of bosons is called Bose condensation (F. London, 1938). 

The occupation factors of the lowest excited states with energies Sp — 
p^/2m (X fi~'^l^ are also large, but only of order kT/sp oc i?^/^. Let us show 
that their contribution to the total density is not pathological. If we split off 
from the sum (12.17) the term p = 0, there are no problems in taking the 
limit as i 7 ^ o o , / x - ^ —0, and we can easily prove that 

lim sS ' /M^M d^p 
e/3pV2" 

In fact, the integrand is a decreasing function of the components of p; this en
ables us to bound the sum by larger and smaller values through two integrals 
which tend to each other and to the integral on the right-hand side. 
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Altogether, equation (12.17) which connects the density with the chemical 
potential is for T <Tx replaced by 

~ = f ^ + 2.61 P ^ ) , fi ^ -0, ^if2 finite. (12.20) 

The first term is the density NQ/Q of the condensate, corresponding to the 
particles which have accumulated in the zero momentum state . The second 
term, the density of particles in the other states, is independent of the tem
perature: therefore, if at a given temperature we increase the density, start ing 
from the critical value 2.Ql{mkT/2-nh )^/'^, the average occupation numbers 
of all states with p f̂  0 remain unchanged, and all extra particles accumulate 
into the p — Q state. 

The Bose condensation is associated with the convergence of the integral (12.17) 
as ^ -̂ ^ 0, that is, of J d"p/e(p) around the origin of p. It would not occur for n < 2 
dimensions with a spectrum e(p) oc p , nor for three dimensions with a spectrum 
e{p) oc p™ with m > 3. Moreover, we see that the conservation of the number of 
bosons plays an essential role. For a gas of photons or phonons, where the number 
of quasi-particles is not conserved, fi is always equal to zero. The number of bosons 
in the state with the lowest energy eo(> 0) is then large as l/f3eo at all tempera
tures, without any qualitative changes as happens here with NQ/Q. 

The boundary conditions also play an important role. In the above case of 
periodic boundary conditions, the Bose condensation occurs in the zero momentum 
state which has a constant wavefunction, so that the spatial density NQ/Q of the 
condensate is uniform. If non-interacting bosons are enclosed in a cubic box of edge 
length L with rigid walls, the single-particle ground state has a wavefunction 

Mr) = (I) sm —j- sm —j- sm — , 
Li LJ Lj 

and an energy EQ = TT h /2mL . The Bose condensation occurs when eg ~A* ̂  i?~ 
in this state •tpo which will then acquire a macroscopic average occupation number 
NQ. AS a result, the condensate has a density NQ\'tpo{r)\ which varies widely in 
space, over macroscopic distances of order L. This great sensitivity of the equili
brium state of the gas of bosons to external influences, such as the surface condi
tions, also exists in liquid helium (§ 12.3.3), but it is less pronounced, because of the 
interactions between the atoms. In particular, the condensate there is uniform, but 
not necessarily with zero momentum: the wavefunction ipp{r) = exp[i(p- r)/h]/Vn 
of the macroscopically occupied state varies, depending on the circumstances, even 
though |V'p('')| always remains constant in space. 

The fact that at equilibrium the density depends on the boundary conditions, 
at macroscopic distances from the walls so that the system is not extensive, is a 
specific pathological property of a gas of non-interacting bosons at temperatures 
below Tx. For most systems, on the contrary, the density is not affected by the 
presence of a wall, except over finite distances from it, which are small compared to 
L. As an exercise, one could check, using (11.15), that in a box with rigid walls the 
density vanishes at the walls, but becomes practically constant at a distance from 
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the wall which is independent of L, both for a gas of fermions at all temperatures, 
and for a gas of bosons at temperatures T > T\. 

Note that the single-particle state p = 0 makes a contribution kT ln(l — e**' ) 
to the grand potential which must be added to the integral (12.14). This term looks 
negligible, since it is not extensive; even in the limit as /̂  —> —0 with fj,Q finite it 
behaves as —kT In i? which is small as compared to Q. However, its derivative 
with respect to /i will not be negligible, as it represents the number NQ = kT/\^\ 
of particles in the condensate which is extensive when |/i| oc Q~ . Exercise 12c 
shows that notwithstanding the problems we have with the extensivity of the Bose 
gas in phase II, the thermodynamic relations derived here in the grand canonical 
ensemble remain valid for the canonical ensemble. 

12.3 .2 B o s e - E i n s t e i n P h a s e Trans i t ion 

The Bose gas thus shows a phase transition: there are two regions where the 
thermodynamic functions have different analytical forms. In region I, where 

27rh' ( N y/^ 

we have fi < 0 and the density is given by (12.17). In the low-temperature 
or high-density region II where T <Tx, the chemical potential is practically 
equal to zero and is connected with the density through (12.20). The transi
tion temperature (12.21) of the non-interacting Bose gas equals Tx = 3.1 K 
for a density of 0.14 g cm^^ which is tha t of liquid helium four. We saw 
in § 12.1.1 tha t helium four also has two distinct liquid phases I and II, in 
contrast to helium three, with a transition temperature of the same order of 
magnitude, Tx = 2.18 K. The existence of this transition is thus an effect 
not of the at tractions between the atoms, as for the gas-liquid or liquid-solid 
transitions, but of the indistinguishability of the atoms and of their boson 
nature. 

The properties of helium four in the two phases I and II and near the 
transit ion are more or less well described by the model where one neglects the 
interactions. In fact, the role of the interactions is here more important than 
in helium three. In a fermion liquid the antisymmetry of the wavefunctions 
implies that they vanish when two particles with the same spin are at the 
same point; the probability for two fermions to be close together is thus 
reduced by the Pauli principle. Even in the absence of any repulsion between 
them (Exerc.lOg), fermions have little chance to lie near one another. We 
thus understand why the presence of short-range interactions is less effective 
than for distinguishable particles, while longer range forces can rather well 
be taken into account by an average effective potential. This is true both for 
^He as for the electrons in a solid: in those two cases the distances between 
particles are sufficiently small tha t one expects major qualitative effects to be 
produced by the interactions, like in classical liquids; nevertheless, the Fermi 
gas model and the Hartree approximation have been sufficient for us to obtain 
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theoretical results in good agreement with experiments. In nuclear physics 
we similarly understand the success of the shell model where the protons and 
neutrons in a nucleus are, in spite of their strong interactions, described as 
a gas of fermions in a self-consistent potential which replaces their mutual 
interactions. On the contrary, the interparticle interactions profoundly change 
the properties of Bose liquids, even more than of classical liquids, because 
of the positive correlations due to the Bose statistics (Exerc.lOg). Those 
reinforce the effect of the short-range forces which we cannot legitimately 
neglect here. 

In particular, for the non-interacting Bose gas model, the equation of state 
in the phase I is given by (12.14) and (12.17); in the phase II it can be written 
as (see formulae at the end of this volume) 

A (2m)3/2 f°° e^/^de , (mkT\^'^ 

o Gn^h^ 
The pressure thus remains constant for a given temperature T, when the 
density increases beyond the value 2.61{mkT/2Trh )^/^. The compressibility 
is infinite and the isotherms are horizontal lines in that region; in fact, the 
condensate, consisting of zero momentum particles, does not contribute to the 
pressure nor to the energy. On the other hand, in helium II the interactions 
prevent the condensate to be independent of the non-zero momentum atoms 
(Exerc.l2d) and the equation of state depends on the density. In the phase 
diagram of Fig. 12.1 helium II occupies a region in the T, V plane whereas for 
a non-interacting Bose gas, the phase II would be represented solely by the 
line (12.22); the region to the right of it would correspond to the phase I and 
the region to the left of it would be forbidden. Morover, the slope of this line 
is positive, in contrast to that of the line separating He I and He II. Note 
also that there exists a triple point between He I, He II, and vapour, and a 
coexistence line between He I and vapour in the phase diagram of Fig.12.1, 
whereas these two phases cannot be distinguished for the Bose gas. 

The specific heat of the phases I and II can be calculated by differentiation 
of the grand potential, given, respectively, by Eqs.(12.14) and (12.22). In 
particular, in the phase II the entropy and the internal energy, equal to 

S = l.MkQ- (^^-^j = 1.28fc(iV-7Vo) - 1 ^ , (12.23) 

are just proportional to the number of non-condensed particles. The specific 
heat at constant volume follows, if we use (12.18): 

a = f X 1 ^ MÂ  - N^) = l-937Vfc (^^^ . (12.24) 

The calculation is less simple in the phase I (Exerc.l2a) and it gives a curve 
Cv{T) which has a discontinuous slope at the transition temperature. The 
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A CJNk Fig. 12.6. Specific heat of the Bose gas 
(dashed line) and of He (solid line) 

general shape is similar to the experimental curve (Fig.12.6). It was the char
acteristic shape of this curve which suggested the name A point for the liquid 
helium transition. As one might expect, the specific heat of helium tends to 
zero at low temperatures in agreement with the Nernst principle, and to the 
classical value |fcT at high temperatures. On the other hand, it becomes in
finite at the A point; moreover, it behaves in helium II not as T^/'^ like the 
specific heat (12.24) of the Bose gas, but as T^ like that of the phonons in 
a solid, (11.129). The theory of liquid helium, which needs the interactions 
between the atoms to be taken into account (Exerc.l2d), is difficult. A simple 
model, due to Landau, consists in treating the excited states of the fluid as 
a gas of quasi-particles, non-interacting bosons which have a semi-empirical 
spectrum looking like that of the phonons in a solid. This model is studied 
as a problem (Prob.l4). It gives a specific heat in excellent agreement with 
experimental data in the phase II, except near T ~ T\. 

The phase transition of the Bose gas and the A point of helium show 
characteristics which are very different from those of gas-liquid or liquid-solid 
transitions. In the latter cases, which are first-order transitions (§6.4.6), the 
density is discontinuous and there is a latent heat (an evaporation or melting 
latent heat), except at the critical point of the gas-vapour transition (§ 9.3.2) 
which is a second-order point. For the Bose gas or for helium, where we 
have so-called second-order transitions (§6.4.5), the density and the internal 
energy change continously through the A point. Only the higher-order deriva
tives of the thermodynamic functions show discontinuities. Moreover, the line 
separating He I and He II in the phase diagram is not a coexistence line, as 
for first-order transitions: at no time does a sample of liquid helium sepa
rate into two phases which occupy different parts of space. The change from 
He I to He II corresponds to the appearance, in the bulk of the sample, of a 
condensate with a density which is zero at the A point and which increases 
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progressively as the temperature decreases. In the non-interacting model the 
density of the condensate, given by (12.18-20), is thus 

No _ N 3/2' 
(12.25) 

where T\ is the function (12.21) of the density. As the temperature decreases 
from T\ to 0, it rises from 0 to the total density of the fluid. In helium II 
the condensate density is drastically reduced by the interactions between the 
atoms: it is only of the order of 0.1 of the total density at zero temperature . 

Another example of a second-order phase transition is that of ferromagnetism 
(Exercs.9a and l l f ) . Such transitions are characterized by the existence of an or
der parameter which is zero above the transition temperature and becomes non-
vanishing below it (§ 9.3.3). In ferromagnetism this is the spontaneous magnetiza
tion when there is no field. For the Bose condensation this role is played by NQ/O, 
given by (12.25). In general, the appearance of an order parameter is accompanied 
by the spontaneous breaking of some invariance: the continuous translations in a 
crystal (§ 11.4.2), the change in the spin orientation for ferromagnetism. This effect 
is not obvious in the A transition of helium. One can show that the invariance in
volved here is the conservation [H, iV] = 0 of the number of particles, which implies 
that in the equilibrium state the mean value (cp) of the annihilation operator Cp of a 
helium atom with momentum p must vanish, if the invariance is unbroken. We have 
identified this operator (§ 11.4.2) with a field operator, in the representation where 
the gas of bosons is interpreted as a quantized field. One can show (Exerc.l2d) that 
when T < Tx everything happens as if that invariance has been broken, with (cp) 
as the order parameter. The phase II of helium thus shows an analogy with the 
classical limit of a field (§ 11.4.4). This classical field at the point r is 

fir) = Yl ^P('-) ^P) ' (12.26) 

and it is proportional to the wavefunction il'p{r), if the Bose condensation occurs in 
a single state p. In particular, if p = 0, we can according to (11.155) identify |v'('')| 
with (c'J)(co)/i7 ~ NQ/Q, that is, the density of the condensate (Exerc.l2d). 

In general, the statistical fluctuations at thermal equilibrium become important 
in a second-order transition point, or critical point. This effect is illustrated in 
Exerc.l2b and Exerc.l2c, where we estimate the fluctuations in the density NQ/O 
of the condensate in grand canonical and canonical equilibria. 

12 .3 .3 Superf luidi ty and S u p e r c o n d u c t i v i t y 

Helium II has a number of extraordinary properties: it is superfluid, tha t is, 
it flows with an apparently zero viscosity. For instance, a dewar filled with 
liquid helium below 2 K empties by itself: the film of helium which is formed 
by capillarity along the wall acts as a siphon, and the helium easily flows 
through it, notwithstanding its very small thickness (Fig.12.7). 
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Fig. 12.7. Spontaneous leakage of helium from a dewar 

It shows a very large thermal conductivity - of the order of 1000 times that 
of copper at room temperatures. A visible consequence is that it does not boil 
since vapour bubbles cannot be formed inside a liquid, the temperature of 
which becomes so easily uniform. One can thus directly observe the A transi
tion: when liquid helium is cooled down, it stops boiling when it passes from 
phase I to phase II; the latter vaporizes slowly through surface evaporation 
rather than fast through boiling like phase I. 

Helium also shows remarkable thermomechanical effects. When it flows 
out of a vessel though a porous medium, the remaining liquid heats up. 
Conversely, a local heating within helium II near a tube filled with porous 
matter produces a helium jet which may reach a height of several tens of cm. 
This is called the fountain effect (Fig.12.8). 

Finally, several experiments have exhibited macroscopic wave properties 
of helium II. For instance, the rotation of helium in a cylindrical vessel is 
quantized. Such a flow does not resemble that of a normal fluid, but rather 
the propagation of a cylindrically symmetric quantum wave behaving as e'""'', 
where m = 0, ±1 , ±2, • • • is associated with the discrete values mh of the 
angular momentum. One even observes interference effects. Such phenomena 
clearly exclude the possibility that helium II might obey the normal laws of 
hydrodynamics. 

One can understand all these properties, if one uses the model of a non-
interacting Bose gas with a finite fraction (12.25) of the atoms condensed in 
one single-particle state. This fraction tends to 1 at zero temperature, the 
ground state being the one where all particles are piled up in the lowest 

illumination 

Fig. 12.8. The fountain effect 
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single-particle quantum state. Amongst the excited, non-equilibrium states 
of the Bose gas, some are obtained by placing all N particles in another 
single-particle state, for example, in a plane wave with wavevector k (when 
the fluid has a total momentum Nhk) or in a cylindrical wave m (when the 
total angular momentum is Nmh). Such states resemble non-viscous flow and 
the second one exhibits moreover an angular momentum quantization. This 
picture persists to some extent when one takes the interactions into account 
and when one goes to finite temperatures , two efliects which reduce the frac
tion of condensed atoms. In particular, there remains a condensate below 
Tx, characterized by a function (12.26). This condensate does not contribute 
either to the entropy or to the internal energy. Moreover, it is not spatially 
separated from the remainder of the fluid. All particles of the condensate are 
in the same quantum state, with zero wavevector at equilibrium, and thus 
behave like a wave which occupies the whole of the available space. The state 
of the condensate, for instance, its wavevector, is reversibly, tha t is, without 
dissipation, changed when one acts upon the liquid. 

This picture gives us an intuitive explanation of the various properties of 
helium II. Its absence of viscosity and its large thermal conductivity are a 
first result: the condensate wave (12.26) directly puts the various regions of 
space into contact, and tends to equalize their velocities and temperatures . 
The non-viscous flow is, in fact, the propagation of this wave. The thermo-
mechanical effects come about because the condensate has zero entropy: that 
part of the fluid which flows across a porous channel mainly contains the 
condensate, and therefore carries order with it so that the remaining liquid 
becomes more disordered and heats up. In final reckoning, the wave properties 
of He II are a direct macroscopic manifestation of quantum mechanics: the 
number NQ of particles in the condensate is large so tha t we see on a macro
scopic scale the form of the wavefunction of the single-particle s tate '4}{r) into 
which the iVo particles have been condensed: the density, the momentum, or 
the angular momentum of 'ip{r) are multiplied by NQ. 

A less qualitative explanation of the superfluid properties of helium II 
is given by Landau's model, where the interactions between the atoms are 
taken into account through describing the elementary excitations as quasi-
particles. Problem 14 shows tha t this model leads to a satisfactory theory 
of flow in liquid helium, with a hydrodynamics which is very different from 
tha t of other fluids; it explains the thermomechanical effects, and also the 
existence of a limiting velocity below which helium II flows without viscosity, 
but above which the fluid again becomes normal even when T <T\. 

The macroscopic quantum properties of helium involve the quantity (12.26), 
which can at each moment be interpreted as a "classical" wave. The equivalence 
which we have established (§§ 11.4.2 and 11.4.4) between a gas of bosons and a 
quantized field, which enabled us to identify the particle creation and annihilation 
operators as field operators, is therefore particularly suitable for describing helium. 
In the gas state and the liquid phase I, the particle aspect dominates. However, in 
phase II it is better to regard the system as a quantized field with small statistical 
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fluctuations; the mean value (12.26) of this field obeys a classical field dynamics 
which we observe as macroscopic waves. 

Unusual properties, similar to the superfluidity of helium II, are found in a 
large number of solids which become superconductors at sufficiently low tem
peratures. The most spectacular aspect of superconductors is the apparent 
absence of electric resistivity, an effect which looks like the absence of vis
cosity in helium II. Superconductivity was discovered experimentally in 1911 
by Heike Kamerlingh Onnes (Groningen 1853-Leiden 1926), three years after 
he had succeeded to liquefy helium for the first time. Kamerlingh Onnes also 
showed in 1913 that superconductivity disappears when the material is put 
in a magnetic field larger than a certain critical value which depends on the 
temperature, an effect which is similar to the disappearance of superfluidity 
in helium when the flow velocity becomes large. For a long time superconduc
tivity was observed only in metals at temperatures below about 10 K. The 
necessity to use liquid helium to maintain such low temperatures has so far 
limited practical applications of superconductivity. The most noteworthy ap
plication is the construction of coils carrying large currents to produce strong 
magnetic fields, for instance for the Tore Supra apparatus which is used in 
fusion studies, or for high-energy particle accelerators. However, the recent 
discovery by K.A. Miiller and J.G. Bednortz (1986) that certain ceramic ox
ides can be superconducting at much higher temperatures, reaching 100 K, 
has been the revival of a large research effort in that direction. 

Apart from their lack of resistivity, superconductors have many other 
properties reminding us of superfiuidity. These effects appear suddenly below 
a well-defined critical temperature, which is characteristic of the substance. 
The specific heat has at the transition point an anomaly similar to the one 
at the A point of helium. Another feature of superconductivity is the Meiss-
ner effect: an applied magnetic field does not penetrate into the interior of a 
superconductor. This expulsion of the magnetic field explains why a super
conducting sample can remain suspended in air above a magnet (levitation). 
Because of the absence of resistivity a current induced in a superconducting 
ring remains fixed for ever and ever; it flows in the skin of the wire. Moreover, 
the magnetic flux across the ring is quantized, an effect comparable with the 
quantization of the angular momentum of rotating helium. The unit of flux, 
h/2e, is found by noting that, because of the Meissner effect, fioj = cuxlB is 
zero in the bulk of the ring; as j is proportional to the velocity {p+2eA)/2m 
of the condensed electron pairs, we find that the circulation §{dr • A) along 
the ring, equal to the fiux, is proportional to the change in the phase of the 
wavefunction over one loop, which is a multiple of 27r. Another macroscopic 
wave effect is the Josephson effect; it shows up, for example, by the appear
ance of alternating currents when a continuous voltage is applied to a ring 
consisting of superconducting sections separated by junctions, through which 
the electrons can pass because of the tunnel effect. 
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Theoretically, superconductivity remained for a long time a mystery: its ex
istence in metals was only explained in 1957 by John Bardeen, Leon N. Cooper, 
and J. Robert Schrieffer (BCS theory), and at the moment this is written, there 
is as yet no satisfactory theory for the high-temperature superconductivity. The 
analogy with the Rose condensation is based on the fact that bound electron pairs 
can condense. Such pairs effectively obey Bose-Einstein statistics, but the main 
difHculty lies in understanding why two electrons in a metal can form a bound 
state notwithstanding their Coulomb repulsion. The mechanism is the following. 
Because of interactions between conduction electrons and lattice vibrations, which 
were derived in § 11.4.2 but neglected in Chap.11, a phonon can be emitted by an 
electron and be absorbed by another. Such exchanges give rise to an effective at
traction between a pair of electrons. By itself this attraction would not be sufficient 
to bind the pairs, but it is reinforced by the Cooper effect which is an unexpected 
consequence of the Pauli principle: the sudden jump of the occupation factor at the 
Fermi surface changes the dynamics in such a way that even a very small attraction 
is sufficient to bind a pair of electrons, with momenta p and p" which have abso
lute magnitudes close to pp and which are practically oppositely directed, and with 
spins coupled into a singlet state. The bound pairs behave as a field Cj,/p./Cp//p." 
which here plays the same role as the field c_/_|_ // of a boson. The condensation 
manifests itself by the appearance of a non-vanishing average for this composite 
two-electron field operator, just as the superfluidity of helium was associated with 
a finite value of (12.26). 

The electrons in superconducting metals are not the only fermions which can 
form boson-like pairs near the Fermi surface. This is an important feature in nu
clear physics where both the protons and the neutrons tend to be bound in pairs 
in the interior of atomic nuclei. It also occurs in helium three at extremely low 
temperatures, below a few mK. The existence of a small attractive paxt in the in
teratomic interactions, reinforced by the Cooper effect, results in a pairing of He 
atoms and their condensation. This entails the superfluidity of He, even though 
we are dealing with a Fermi and not a Bose liquid. Moreover, the pairing occurs in 
a p, rather than an s wave, and the spins of the atoms are coupled in the triplet 
state; this entails anisotropy. In fact, there exist two superfluid phases: the A phase 
(Anderson-Brinkman-Morel) and the B phase (Balian-Werthamer) which are qual
itatively distinguished from one another through a different anisotropy. 

Summary 

The ^He and ^He isotopes of helium are quantum fluids at a few K. Helium 
three, which is well described by the Fermi gas model, has a linear specific 
heat, and it returns from the solid to the liquid state when it is cooled at 
suitably chosen pressures. Helium four, which can roughly be described by the 
Bose gas model, has a phase transition leading from the normal liquid to a new 
low-temperature liquid phase, called helium U, where a macroscopic fraction 
of the atoms are condensed into the zero-momentum state. Its specific heat 
is infinite at the critical point. Helium U is superfluid, and has macroscopic 
quantum properties, similar to those of superconducting materials. 
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Exercises 

12a Specif ic H e a t of t h e B o s s G a s 

Express the specific heat at constant volume and its derivative with respect 
to T in the form of integrals, for the two phases of the non-interacting Bose 
gas. Hence, show tha t there is a discontinuity in the slope of the C{T) curve 
at the point T = Tx- Find the correction to the perfect gas expressions for 
T:$>Tx. 

Answers: 

We write B = fi{2mk) ' /ATT h and introduce the integrals 

r , s _ f X^ dx din 
nl. n - 1 

(when n < —1 we replace the lower limit on the integral by e and subtract the 
divergent part, a polynomial in 1/e, before letting e —> 0, or, equivalently, define 
In through analytic continuation in the complex n-plane). We find for T > T\ 

N = BT^/^Iy^, U = BkT^/^l3/2, 

whence we get by taking the derivative of U with N constant 

C _ 5 h/2 3 da _ 5 ^3/2 9 •'̂ 1/2 

' 1 / 2 ^ "-f ^ - '1/2 ^ - ' - 1 / 2 

I^d£_ W _ 9 -fi/2 27 (^1/2) 1-3/2 

Nk dT 2NK - 4 7_i/2 4 {l_^f^f ' 

As T —> T\ + 0, a —> —0, the formulae from the end of the volume give 

h/2 - r(§)c(f) ~ 2.31, Is/2 ~* r(|K(f) - 1.78, 

3/2 whence we get, using the fact that N = BT^' / i /2(0), 

C -^ 1.93Nk, Tx-^ -^ -0.78Nk. 
dTx 

When T < Tx, (12.24) gives in the limit as T -^ Tx - 0 

C -^ 1.93Nk, Tx^ ^ 2MNk. 
dTx 
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As r —> oo, we use the relation 

/„ « r(n + l)e" [1 + 2-"-!"" e 

which gives 

2 8V2^Sr3/2 m 
We show the function C{T) in Fig. 12.6. 

12b Crit ical F l u c t u a t i o n s 

1. Evaluate the statistical fluctuation AM of the total magnetic moment 
of a ferromagnetic sample in zero field in the approximation of Exerc.9a, and 
show that it diverges at the Curie temperature . 

2. Show tha t the fluctuations AUQ and AN in a non-interacting Bose gas 
in grand canonical equilibrium diverge as T —> Tx+0, and remain macroscopic 
for T < Tx. 

Hints: 

1. According to Exerc.4a we have AM^ = OkTx- Hence, AM'^ r^ Nfj,^Tc/{T -
Tc) for T > Tc and AM"^ ~ 2NIATC/{TC - T) for T < Tc. 

2. Prom (10.32) we have An^ = iVo(l + NQ) ~ | a p ^ when a -> - 0 . Alter
natively, we can start from the probability law p{no) oc e""° for the occupation 
number no and derive from it the moments A'o and AUQ . In the condensed phase no 
is badly defined since Ano ~ NQ. Prom (4.38) and using the notation of Exerc.l2a 
we have 

^ - 2 " ^ ^-V2 

O.eSAT I ^ \ \ar'/^ + \a\ 2 

12c B o s e C o n d e n s a t i o n in a Canonica l E n s e m b l e 

1. Express the canonical parti t ion function and the canonical averages 
(no) and (TIQ) in the form of integrals, using the grand potential. 

2. Show tha t the canonical and the grand canonical ensembles are equiv
alent, as far as the thermodynamic quantities are concerned. 

3. Est imate the fluctuation Ano in the number of particles in the con
densate in canonical equilibrium for T < Tx and for T > Tx- Discuss the 
result. 
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Solution: 

1. In order to extract the term in N from a sum such as Tre ^^^"'^UQ with 
s = 0,1 or 2, we note that 

27ri / 

a+iTT 
aze ^ = opf ]^i, 

27ri , 
J a —ITT 

where the choice of a ( < 0) is immaterial. The result is, for s = 0, the canonical 
partition function 

^ /.a+iir 
Z^ = — dze-''^ ZG{Z,P), 

whence we get, if we use the expression for the grand potential found in § 12.3.1 
and the notation of Exerc.l2a, 

. /.a+iTT r 2 1 
^JV = ^ / dz e^v[-zN + -BT^'^I^,^{z)-\n{l-e')y 

The last term is the contribution from the zero-momentum state which is needed 
when a —> 0. To find Zjv(fio) and Zjv(riQ), which correspond to s = 1 and s = 2, we 
multiply the integrand by l/(e^'^ — 1) and (e~^ + l ) / (e~^ — 1) , respectively; these 
factors are for z = a the averages (no) and (ng) in the grand canonical ensemble. 

2. The exponent in Zjv is stationary when z — a, where a is defined as the 
solution of 

- iV + B T = ' / % 2 ( a ) + ^ 3 ^ = 0. 

This equation is the same as (12.17) or as (12.20), depending on whether N is 
smaller or larger than BT ' / i /2(0). The saddle-point method (Exerc.5b) then 
indicates that the integrand is concentrated near the point z = a. with |2; — a| = 
0 ( 1 / A / J V ) for T > Tx {-a finite), or near the point z = 0 with z = o[l/N) for 
T < Tx, that is, \a\ = 0{1/N). The result is that, if we restrict ourselves to the 
extensive parts, F — Na/P is the same as the grand potential A in the two cases. 

By itself this identity is not sufficient to guarantee the equivalence between 
the canonical and grand canonical ensembles, since the Bose gas is not extensive 
in its phase II. The contribution kT ln(l — e") to A, even though negligible in 
the thermodynamic limit, is sufficiently singular at a = 0 for its derivative with 
respect to fj. to give (no) = Â Oi a finite part of N (see end of § 12.3.1). On the 
other hand, Exerc.l2b has shown that AUQ/NQ equals 1 when T < Tx in the 
grand canonical ensemble, in contrast to the usual behaviour like 1/\/N of all 
relative fluctuations in extensive systems (§5.7.1). Nevertheless, these difficulties 
only involve the condensate. The question sub 3 will show that, if we give the total 
number of particles, exactly in the canonical and on average in the grand canonical 
ensemble, those particles will split up between the condensate and the states with 
non-vanishing momenta, on average in the same way in the two ensembles, even 
though the fluctuations around (no) are large in the second ensemble. Moreover, 
the condensate contributes neither to the pressure, nor to the energy or the entropy. 
Hence, in the thermodynamic limit all macroscopic properties, such as the equation 
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of state or the thermal properties, are independent of the ensemble, notwithstanding 
the violation of the extensivity. 

3. In order to be able to subtract (no) from (TIQ) for T <T\ we must calculate 
the first two terms in the expansions of Zjv, Zj^inf,), and Zi^{nQ) for large N, 
since the dominant terms cancel one another. To do that, we put z = x/N, as the 
integrals are concentrated in the region z = 0{1/N) for T < Tx, and we expand in 
powers of 1/N, using the expansions (see Exerc.l2a): 

-^3/2 (2) 

1 
1 - e ^ 

e-^ + 1 

/3/2(0) + ^ 7 V 2 ( 0 ) ^ + - ^ + C . g ; ) , 

N 
X 

+ o{i), 
N' 

1 - e^ e-^ - 1 
+ 0{1), 

1 - e^ (e-^ - 1)2 

Writing 

x^ N' 

3 Ar3/2 ' 

3/2 

and restricting ourselves to the first two orders in N ^' , we find 

(N 

^"<"»>"ii/?«""h'"-'»'1 
ZNino) 2m I dx 

l + rii-xf^ 

The integration path over x can be deformed into a loop, clockwise encircling the 
real semi-axis x > 0, and we get 

2jv « C 

Zjv(no> « NC, 

ZM{nl) « iV^C 

rja 

a + 

„._^r(_l) 

which finally leads to 

(no) r^ Na = N 
3/2' 

iVo, 
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Anl r. 5 ^ ^ ^ ^ o . 7 7 ( i V - i V o ) < / ^ 

We find for (no) the same expression (12.25) as was found in grand canonical 
equilibrium. However, the relative fluctuation AUO/NQ is small as N ' whereas 
in the grand canonical ensemble we had AUQ/NQ ~ 1 so that NQ/Q was badly 
defined. Here Ano —» 0 as T —> 0, as should be the case, since then NQ tends to 
JV which does not fluctuate. At the A point, AUQ/NQ ~ QMN^f^N^ ' diverges, 
since NQ vanishes as iN{Tx ~ T)/2Tx. 

For T > Tx the weight of the integrals which determine Zji^, (UQ), and (TIQ) 
is concentrated near the point z = a within a range of order N ' , where a is 
determined hy N = BT^'^I-^/2{^)- Hence, we have 

1 2 " " " -^ 1 
("o> = -—z—r. ("o> ( e - " - l ) 2 ' 

whence An^ = NQ{NQ + 1), as in the grand canonical ensemble. The fluctuations 
in NQ which are finite as N -^ oo, diverge as NQ^ asT ^ TX + Q- When T > Tx 
the two ensembles are equivalent, not only for thermodynamic quantities but even 
for the fluctuation AUQ, in contrast to the case T < Tx-

12d R o l e of t h e In terac t ions in t h e B o s e Trans i t ion 

1. Use the formalism of § 10.2.3 to prove, by writing the matr ix elements 
between states with 1 , 2 , . . . , TV particles in the Fock base, tha t , in terms 
of the creation and annihilation operators of plane waves with momentum 
hk, the Hamiltonian H — HQ + V oi & system of spinless indistinguishable 
particles of mass m, contained in a box with periodic boundary conditions 
and with binary interactions governed by a potential F ( | r — T"'|), is given by 

k 

V = ^ I (fr(fr'V{\r~r'\)i)\r)i}\r')^{r')i}(r) 

kik2ksk4 

{kik2\V\ksk4) = —6ki+k2,k3+kiVi\k4-ki\), 

V{k) = I <frV{r) cos{k-r). 



196 12. Liquid Helium 

2. Wi th the aim of determining approximately the grand potential of a 
gas of weakly interacting bosons, use the variational method (§4.2.2) and 
take a trial density operator of the form 

T> = exp 5 3 Xk^k^k + ycl + y*co 

If we get a value y 7̂  0, it will indicate the appearance of a spontaneous 
breaking of the invariance [-ff, A'̂ ] = 0 (§ 12.3.2). Determine z as function of 
the undetermined parameters xu and y such tha t V is normalized. Express 
the averages of CQ, C\, 'c\'ck (for fc ^ 0), and cJc"o over V, as functions of Xk 
and y; these averages will be denoted by (p, </?*, fk, and /o + Iv'P, respectively. 

3. Express the trial energy, TrVH, the trial entropy, —kTrVlnV, and 
the trial grand potential A in terms of fk and (p. Write down the equations 
in fk and 93 which, for ^ ( 0 ) > 0, determine the minimum of A and show 
tha t , depending on the values of T and fi, they take on two forms which are 
different according to whether {^{r)) = fj-Jil (or A/Q/J? = |(^|^/J7) vanishes 
or is non-vanishing. Compare this with the transition of a non-interacting 
Bose gas. 

Results: 

Noting that when the operator T? is expressed in terms of the boson operators 
^ ='cfc — 6k,oy/xo, it describes independent particles, one finds that 

.|2 

k 

kk' 

k 

- fcr^[(l + /fe)ln(l + /fe)-/fcln/ ,] . 
k 

The equations dA/dfk = dA/dip = 0 become either 

k' 

which characterize phase I, or 
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h' 

which characterize phase II. These self-consistent equations can be solved by iter
ation, if the potential is sufficiently weak. If ^ is negative, or slightly positive, only 
the solution with <̂  = 0 exists, as V is positive. The A transition occurs at the point 
where 

k' 

For larger values of//, that is, for higher densities or lower temperatures, the solution 
with V' 7̂  0 gives the minimum of A, and the fluid is in phase 11. In contrast to 
what happens for the non-interacting gas, the Bose factor fk remains bounded for 
fe = 0 in phase II, with the condensate density NQ/O being given by \ip\ jQ rather 
than by fa/O. The chemical potential is then finite and equal to 

^ Q ^ 
\v{Q) + F(fc') /.' + no)f, 

h' 

instead of being nearly zero as —UT/NQ. Like the pressure 

V = - ^ = fcr^ln(l + / . ) + (y) , 
h 

it varies in phase II with the density, and the occupation factors fk depend on the 
condensate density. 

Notes: 

The existence of the thermodynamic limit (§ 5.5.2) requires that A/Q be bounded 
from below^ For this to be the case, it is necessary that the coefficient of the term 
with \if\ , V(Q), be positive. It is also necessary that the term with fhfk' be positive 
for any fh > 0. If these conditions were not satisfied, the system would collapse 
onto itself, and would not be extensive. 

Even if the interactions are weak, they couple the condensate to the rest of 
the system and this changes the properties of the fluid qualitatively. In particular, 
they cure the pathologies of the Bose gas, such as the absence of extensivity, the 
singularity of its phase diagram, or its infinite compressibility below Tx. 

The variational method used above introduces if = (CQ) as the order parame
ter for the A transition. The invariance which is spontaneously broken in phase II 

is characterized by the group of the unitary transformations e'''' which leave H 
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invariant; this is a group which here plays the same role as the rotations for the 
ferromagnetic transition. In particular, in phase II where this invariance is broken 
there exists a continuous set of solutions, the order parameters of which follow one 

from the other through the transformation e~'"''^oe''' ' = e '̂̂ co- However, in the 
present case experimentally one cannot observe a change in the phase oi tp = (CQ) 
directly, in contrast to a change in the orientation of the spontaneous magnetiza
tion in the case of ferromagnetism. A more detailed discussion of the two problems 
will help us to understand the origin of this difference. In any realistic situation, 
the Hamiltonian of a magnetic system is not exactly invariant under rotation. It 
contains weak perturbations from the walls of the sample, from defects or from 
external fields, which do not commute with the generators of the rotation group, 
that is, with the components of the angular momentum operator J. Even if such 
perturbations are too small to produce any sizeable effects in the paramagnetic 
phase, they play a decisive role in the breaking of rotational invariance below the 
Curie temperature TQ (§ 9.3.3) and are essential to validate effective field approxi
mations of the type of Exerc. 9a. Indeed, when they are present, such an approxi
mation provides a satisfactory value for the magnitude M of the spontaneous mag
netization Af = Tr DM ~ Tr D M, but it does not create any preferred direction; 
the actual orientation of M is selected by the weak perturbations. Likewise, the 
phase separation in the liquid-vapour equilibrium is governed by the gravity field 
(§ 9.3.3). 

The situation is different if we study a model of ferromagnetism in which the 
Hamiltonian H is exactly invariant under rotation. Since the exact canonical density 

operator D oc e^^ commutes with the components of J , the rotation characterized 
by the vector a; transforms the exact magnetization Mex into 

Tr D e^'<" •^^/'^ M e'(" •^'/'^ = Tr e'̂ '" ••')/'* D e"'^" •^'>'^ M 

= Tr DM = Mex. 

As the exact spontaneous magnetization Mex is thus invariant under rotation, 
it must vanish at any temperature, in contrast to its Weiss field approximation 
M = Tr /DM. Strictly speaking, the invariance is not broken, and M cannot be 
observed directly. The suppression of the weak perturbations had a dramatic effect, 
bringing the magnitude of the magnetization down from M to 0. Nevertheless, the 
order parameter M still governs, but indirectly, other quantities. In order to exhibit 
qualitative differences between the paramagnetic and ferromagnetic phases, we must 
resort here to rotationally invariant quantities, such as the two-point correlation 
K{r,r') s (QMir) • QM{r')\ between the local densities of magnetization at two 
points r and r' which are distant from each other. One can show that such quantities 
are not affected by the presence of weak perturbations, in contrast to (£IM(I')) which 
below TQ is equal either to Mjfi or to 0. Moreover, they are approximately given 
by the effective field method. In the model of Exerc. 9b, we can even check that the 
exact expression for the correlations is given by this method, whereas {QM) vanishes 
when there is no magnetic field. More generally, in any model with a rotationally 
invariant Hamiltonian, the two-point correlation function if (r, r) tends to 0 above 
TQ and to {M/i2) below TQ, if Ir —r'| tends to infinity. The direction of M remains 
irrelevant but its magnitude comes out as a measure of the long range correlations, 
while the spontaneous magnetization Afex vanishes. Thus, the long range order 
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exhibited by the correlations below TQ characterizes the ferromagnetic ordering 
in a better way than does the spontaneous magnetization: it occurs even in the 
absence of perturbations which explicitly break the invariance under rotation. 

Exactly the same situation prevails for the condensation of Bose liquids (or for 

superconductivity), if we replace the rotations by the transformations e'"'' , J hy N, 
M by \(p\, and the orientation of M by the phase of ip. Here, the Hamiltonian always 
commutes with N, even if realistic perturbations of various kinds are included. 
Hence, the order parameter cannot be observed directly, as the exact equilibrium 
value of (co) is zero both above and below T\. (For superconductivity, the order 
parameter is the expectation value of a product of two annihilation operators for 
fermions, as indicated neaj the end of § 12.3.3.) The above effective field theory 
yields in contrast (CQ) — y?; it would be valid as a first approximation for unphysical 
models involving perturbations that do not commute with N. However, even in the 
absence of such perturbations, it remains a convenient approach, providing sensible 
approximations for quantities such as K(r,r) = {if>'{r)il){r')), where ip'(r)'4>(r') 
commutes with N. Using (10.23) and the results of question 2, we thus find 

|2 

"f-'^-'Ir-iir^^'-'^'"''"'-
and \ip\ jfl conies out as the limit oiK(r, r') as |r —r'| —> oo. The order parameter 
(p/\'f} is not directly meaningful; its phase is unphysical, but its modulus character
izes the so-called off-diagonal long range order (ODLRO) exhibited by K{r, r') in a 
Bose liquid below Tx (or in a superconductor). The expression "off-diagonal" refers 
to the fact that the operator ip{r) relates states with different particle numbers. 
Higher order correlations involving the same number of creation and annihilation 
operators, such as 

{ip^(ri)%p\r2)ip{r3)tp{r4,)} ~ K{ri,r3)K{r2,r4) + K{ri,ri)K{r2,r3) - —^ 

are evaluated in the above approximation by means of Wick's theorem (Exerc. lOg). 
Below Tx, they do not tend to zero when all points get far apart from one another, 
but to a limit obtained by replacing each operator ipir) by the order parameter 
(fi/VO (and i^^r) by ip*/y/n). When some points remain at finite distances apart, 
the limit is less simple. For instance, if we let ri = r^ = r and r2 = r4 = r and 
substract n{r)n{r') — n(r)S [r ~- r'), we get the "diagonal" correlation C(r — r') 
between the particle densities at r and r', defined in Exerc. lOg, which tends to 0 
as \r — r I —> oo, both above and below Tx-

A slightly different long range order occurs in the condensation of a non-
interacting Bose gas (§ 12.3.2). Just as in the calculation leading to (12.20), we 
find in that case below Tx 

No 1 /• d^fee'" •('•'"'•) Kiry) = J2{f^\r){r'\k)U='^ + j ^ l 
^l3h^k^/2m . 
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and again {tjj^ (r)ip{r')) tends to NQ/Q as [r — r-'l —> oo. However, higher order 
correlations behave at large distances in a pathological manner: for instance, 

{ij}^ {r])''p\r2)ip(rz)ii>{Ti)) = K{rx,rz)K{r2,ri) + K{Ti,ri)K{r2,1-3) 

tends to 2 N^/O'^, not to NQ/O^; the density correlation C ( r - r ' ) tends to N^/n^, 
not to 0. 

This exercise is a first step towards a theory of helium II starting from the in
teractions V between the atoms. The next step consists in extending the variational 
space so that the trial density operator has the form 

T) = expj - 2_^ Xk'cj^'ch-\-z 

where the ^ are defined by the Bogolyubov transformation 

The variational parameters to be determined by looking for the minimum of A are 
here the Xh, Vk, and w, which generalize the earlier parameters xu, Vk = 0, and 
y = —WXQ. One can easily check that the operators c^, c j satisfy boson operator 
commutation relations; hence V again describes a set of independent quasi-particles 
with an energy spectrum Xk/f3. These quasi-particles are related to the original he
lium atoms through the Bogolyubov transformation, which in the present exercise 

breaks the particle number invariance associated with e '̂'' , but not the transla-
tional invariance. The effective quasi-bosons which describe He II in this approach 
can be identified with the phonons in Landau's empirical model (Prob.l4), which 
thus receives a certain justification. Quantitative fits with experiments have been 
obtained by more refined theories, which rely on series expansions of the difference 
between 2? and the exact state in powers of the residual interaction between the 
quasi-particles. 
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"Dans cette edition, j ' a i tache d'inserer toutes les acquisitions 
nouvelles dont la Physique s'etait enrichie; on pourra remar-
quer avec satisfaction que les nouvelles richesses acquises par 
la science ont toutes trouve leurs places dans les grandes divi
sions deja etablies. Tel est le caractere d'une science faite. La 
progression rapide avec laquelle la physique se complete tous 
les jours pent faire regarder I'epoque de sa stabilite entiere 
comme peu eloignee de nous." 

J.-B. Biot, Precis elementaire de physique experimentale, 
1823 

"Une circonstance eminemment propre a etablir cette inega-
lite d'echanges, et en rendre les consequences evidentes, c'est 
d'exposer un corps, la nuit, a I'aspect libre d'un ciel serein, 
en I'isolant d'ailleurs, aussi bien que possible, de toute cause 
de rechaufFement. Car alors, tout ce que ce corps rayonnera 
de chaleur vers les espaces celestes sera perdu pour lui; et, si 
ce qu'il regoit du contact de Pair et des corps environnans ne 
suffit pas pour compenser cette perte, sa temperature devra 
s'abaisser. . . . On fait ainsi, en grand, de la glace au Bengale, 
depuis un temps immemorial." 

J.-B. Biot, ibid. 

In statistical physics as well as in thermodynamics, the study of electromag
netic radiation plays a prime role. It is of direct scientific importance, as 
this radiation is the simplest example of a macroscopic quantum system, side 
by side with solids. It is of indirect scientific importance because of its many 
applications in bo th observational and theoretical astrophysics. It is of techni
cal, and even day-to-day, importance, as radiation is one of the most common 
forms of energy transfer. Finally, it has been of historical importance. Around 
1900 physics seemed to be a completed science, and thermodynamics of radi
ation appeared one of the few open problems, an irritation, but a minor one. 
However, it eventually turned out to be the source of both quantum mechan
ics and modern statistical mechanics - at tha t t ime only kinetic gas theory 
existed. In the present chapter we shall indicate a few chronological land
marks showing how, historically, the various ideas developed in inverse order 
of the logical exposition which we follow. Moreover, we have already (§ 3.4.4) 
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underlined the, a prion surprising, contribution of the study of radiation to 
the birth of the concept of entropy. 

Even if there is no matter, that is, nuclei or electrons, present, an en
closure contains energy. In fact, thermal fluctuations in the walls produce in 
them random currents which in tiu:n produce a random electromagnetic field 
inside; the energy density is proportional to the mean square of the field. We 
thus expect thermal phenomena to occur even in a vacuum due to the pres
ence of electromagnetic fields. In § 13.1 we shall show that after quantization 
these fields can be described as systems of a new type of particles, the pho
tons. Formally, the question is similar to the quantization of the vibrations in 
a solid (§ 11.4), and here again we find two equivalent descriptions, in terms 
either of oscillating fields or of particles (§13.1.4). The statistical mechanics 
study of the energy distribution of the radiation in an enclosed space thus 
reduces to that of the thermal equilibrium of a gas of non-interacting photons 
moving within that space (§ 13.2). It produces results which have been con
firmed experimentally with a remarkable accuracy. We conclude the present 
chapter by giving the main empirical laws governing the exchange of radi
ation between different bodies (§ 13.3). This is a subject in non-equilibrium 
thermodynamics; as is usual in such a case, the use of balance equations pro
vides us in a seemingly simplistic way with important results, and it helps us 
to deal with numerous practical applications (§ 13.3.4). 

13.1 Quantizing the Electromagnetic Field 

We want to study the properties of electromagnetic radiation contained in 
an enclosed space in thermal equilibrium. To do this we must first learn to 
treat this radiation quantum mechanically. As in the study of a quantum 
mechanical vibrating string (§ 11.4.4), a model which shall be our guideline 
at the beginning of the present chapter, we first analyze the solutions of 
the classical wave equations which here are the Maxwell equations. Then 
we quantize the system by replacing the physical observables by operators. 
Reinterpreting the results then leads us to the introduction of the photon, an 
elementary particle which describes the quantized electromagnetic radiation. 

13.1.1 Classical Modes in a Cavity 

We start with constructing the classical modes for the oscillations of the 
electromagnetic field within a cavity. We are dealing here with those solutions 
of the Maxwell equations (1864) 

curlJ5-h—- = 0, d ivB = 0, (13.1) 
at 
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1 f)P^ 
eodivE = Q, — curl B - £ 0 ^ 7 = 3, (13.2) 

Mo ot 

which, as functions of the t ime, behave sinusoidally. As usual, such solutions 
can be shown to consti tute a complete base, so tha t any arbitrary time-
dependent solution of (13.1) and (13.2) is a linear superposition of modes. In 
SI units we have fio = ATT x lO"'^ and eoA'oc^ = 1, where c is the velocity of 
light. 

We shall consider an enclosure with the shape of a parallelepiped, with 
edgelengths L^, Ly, and L^, and we assume tha t its walls are perfectly con
ducting. The right-hand sides of equations (13.2), the sources producing the 
fields, are therefore zero inside the enclosure. In the conductor, the charges 
satisfy the equations d i v j 4- dg/dt = 0 and j = ^E, with 7 —> oo, which 
entails tha t ^ = 0, and hence B = 0, since B is a sinusoidal function of t ime 
satisfying dB/dt = 0. The fields inside the enclosure are produced by surface 
charges and currents along the interior walls of the enclosure. According to 
equations (13.1) the tangential components of E and the normal component 
of B are continuous across such a wall; they must therefore vanish when we 
approach the interior surface of the enclosure. We must thus in the paral
lelepiped solve the Maxwell equations (13.1) and (13.2) when there are no 
sources and when we have the boundary conditions Et = 0, B^ = 0. 

We can satisfy the two equations (13.1) by expressing the fields E and B 
in terms of electromagnetic potentials through 

dA 
E = - V # - — , B = curl A . (13.3) 

This choice is not unique, as the fields remain unchanged when we make the 
substi tution 

A, ^ h A + VA, ^ - ^ , (13.4) 

where A is an arbitrary function of the space-time coordinates {gauge invari-
ance). We take advantage of this fact and choose A such tha t dA/dt = <f 
so tha t in the new gauge we have # = 0. Equations (13.2) then reduce for 
0 < X < L^, Q < y < Ly, Q< z < L^ to 

d'^A 
AivA = 0, c^ curl curl A - h — ^ = 0, (13.5) 

at'' 

with at the walls the boundary conditions 

At = 0, curlyl l^ = 0. (13.6) 

We thus obtain the general solution of the Maxwell equations in a cavity 
with perfectly conducting, tha t is, perfectly reflecting walls, in the form 
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^ = - E ^ ^ « ( ^ ) ' -S = E ^ , W c u r l y l , ( r ) , (13.7) 
9 9 

where ^q{t) denotes a function of the t ime which is proportional to cos(c<;gi + 
ipq), and where, for each mode characterized by the index q, Ag{r) denotes 
a stationary wave which is a solution of 

divAg = 0, c'^V^Ag+uj'^gAq = 0, (13.8) 

and of (13.6). The explicit solution of (13.8), (13.6) is obtained for a par-
allelepipedal box by separating the variables and Fourier transforming. We 
introduce the wavevector 

Trrrix 
'^x — J- 1 

rUx, my, ruz 

l^y — J- , 

= 0, 1, . . . . 

"-z -
Trm^ 

L, 

(13.9) 

For a given wavevector (13.9) there are, in general, two modes, characterized 
by their polarization vectors Ci and £3, which are unit vectors perpendicular 
to fc and to one another. Each mode g, which is thus characterized by the 
indices q = (mx,Tny,mz,a-) has a frequency 

w„ ck , . 

where k is the length of the vector (13.9). The index a = ± 1 denotes the two 
possible polarizations. The corhponents of Aq have the form 

/ Q 

A^ = i --rEx coskxX sinkyy sink^z, (13.11) 

in the general case where none of the indices mx,my,mz equals zero. The 
two modes ei and £2 then describe stationary waves with a wavevector which 
is directed obliquely in the parallelepiped. The electric and magnetic fields, 
given by (13.7) and (13.11), are at each point at right angles to each other 
for a given mode. 

There are also modes for which nix = 0, with my and mz non-vanishing. In 
that case only one polarization £ is possible, in the x-direction, and we have 

Al = - ^ sinkyy sinkzz, A^ = A^g = 0. (13.1l') 
v i ? 

There are no modes with more than one vanishing wavevector component. The 
various solutions (13.11) and (13.ll ') are orthonormal, that is. 

/ 
d'rAg{r)-Ag,{r) = V " (13-12) 

However, their closure relation is complicated and non local, because they form a 
complete base only for vector fields E satisfying the constraint d i v ^ = 0. 
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To study the thermodynamics of radiation in the limit of large volumes, 
we need the mode density, 

where Vq is given by (13.9) and (13.10): the number of modes with frequencies 
between v and v + dv is equal to V{v)dv. In evaluating Vi^v) as J7 —> 00, the 
summation over the integers m becomes an integration, which leads to 

.H^2i^ / .3..(.-g) = ?^ . ,13.13) 
"Ca; t'^y i'^z -^U 

The special features occurring when one of the indices m is zero do not play 
any role in this limit. More generally, one can show that (13.13) remains 
valid for any shape of the enclosure and any boundary conditions, in the 
limit of large volumes. The conclusions which we shall reach in § 13.2 about 
the thermodynamic properties of radiation in a cavity are thus of a very 
general nature, independent of the nature and shape of the enclosure. 

13.1.2 Quantized Radiation Spectrum 

In classical electromagnetism, the physical system consisting of the interior 
of the cavity is characterized at any time by the values of the electric and 
magnetic fields at each point, with constraints imposed by the two Maxwell 
equations div B = 0, div E = 0, and by the boundary conditions. It follows 
from (13.7) that this is the same as taking the coefficients $,q as dynamic 
variables, since the vector potentials Aq{r) of all the modes q = {k,a) are 
given once and for all and since they form a base for expanding any field. 
The time-dependence of the fields is governed by the other two Maxwell 
equations, which reduce to the equations of motion d^^q/dt^ + u^g^q = 0 (see 
also (13.17), (13.18) below). The need to describe the system by an infinity 
of dynamic variables ĝ is the consequence of the fact that the number of 
degrees of freedom of the field, that is, the components of E and B at each 
point r , is infinite. We must bear in mind that although the electromagnetic 
field is a wave, in §13.1.1 we were still talking about a classical wave: the 
components of E and B commute, and the energy can change continuously. 
The analogy between (13.7) and the expansion of a quantum wavefunction 
in terms of a base of stationary waves is purely formal. 

To change to a quantum field theory we note that each variable £,q behaves 
classically as the position variable of an harmonic oscillator with frequency 
Uq. Although this amplitude ^, of the electromagnetic field (13.7) in the 
mode g is a more abstract dynamic variable than the position of an ordinary 
mechanical harmonic oscillator, the quantization proceeds in the same way, 
as we shall see in full detail in §§13.1.3 and 13.1.4. However, in order to 
describe the quantized electromagnetic field in thermal equilibrium, we need, 
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in fact, only its energy spectrum. We shall be satisfied here with writing the 
lat ter down, proceeding by analogy. 

Let us consider the oscillator q with angular frequency Wg. In quantum 
mechanics, its energy takes on the discrete values (n , + |)7la;q, characterized 
by the quantum number Ug which can be equal to 0 , 1 , 2 , . . . . By changing 
the energy origin we drop the constant \TiWq, and we a t t r ibute in this way 
to the mode q a set of eigenenergies nghwg. The modes q can be separately 
excited, and they aie independent degrees of freedom. The complete system, 
tha t is, the electromagnetic field in the enclosure, is thus a set of an infinite 
number of independent harmonic oscillators labelled by q. As a result, the 
eigenstates of the Hamiltonian of the field are characterized by the set {rig} 
of quantum numbers. Suitably choosing the origin of the energy, we find tha t 
the eigenenergy of the quantum micro-state {ug} is equal to 

E{{ng}) = Y. Tighwg, Q = {k, a), (13.14) 

where the summation is over all the modes q, which are characterized by the 
wavevector (13.9) and by one or other of the two polarization values, while 
u}q is given by (13.10). 

13 .1 .3 F ie ld Opera tors 

For the complete quantization of the electromagnetic field we need to con
struct an algebra of observables, t ha t is, of operators which represent the 
various physical quantities such as E, B, A, or ^g, and to write the Ha
miltonian in terms of these operators in order to produce the dynamics. 
For completeness, we work out this programme below, to help improve the 
understanding of the photon concept (§ 13.1.4), and as a first step towards 
quantum field theory or towards problems involving the interaction between 
mat te r and radiation. For an introduction to the latter we refer to the two 
books by C.Cohen-Tannoudji, J .Dupont-Roc, and G.Grynberg, Photons and 
Atoms, Wiley, New York, 1989 and 1991, and for the former to C.Itzykson 
and J.-B.Zuber, Quantum Field Theory, McGraw-Hill, New York, 1980 and 
to J.Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon 
Press, Oxford, 1989. 

Let us start by constructing, as we did with (11.137) for the vibrating string 
model, a classical Hamiltonian for the electromagnetic field in the enclosure. We 
are therefore looking for a function H oi a set of conjugated variables ^g, -Kg whose 
equations of motion, which are equivalent to the Maxwell equations, can be recog
nized as the Hamiltonian equations (2.64), namely, 

d^ _ dH_ dKq^ _ dH 
dt d-Kg' dt d(g 
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Moreover, the value of H, which is constant with time, should be the energy of the 
field. We shall therefore rely on the fact that the energy density of an arbitrary 
electromagnetic field inside the enclosure is equal to 

whereas its momentum density is equal to 

£O[EXB] = 4 ^ . (13.16) 

where N is the Poynting vector. The flux of N through a closed surface represents 
the radiated power. Using the equations div E = d ivB = 0 in the enclosure and 
the boundary conditions on E and B, we can account for the spatial dependence 
of E and B thanks to an expansion over the modes, defined by solving (13.8) and 
(13.6). At a given time we thus paiametrize the electromagnetic field by 

E = -—'ST-KqAq, B = V^gcurl^,, (13.17) 

g 9 

where ^q and Ttq represent the instantaneous amplitudes of the magnetic and the 
electric fields over the various modes. We have seen in § 13.1.2 that the Maxwell 
equations dE/dt = c curlB, dB/dt = —curlE are equivalent to Eqs.(13.7) where 
the evolution of ^g(t) is generated by d^q/dt +(jJq£,q = 0. In terms of the variables 
^q, TTg, the dynamics of the field (13.17) can thus be expressed by the equations of 
motion 

d^q _ 1 dizq _ 2 
TT, 

dt £0 dt 
-eouj^iq. (13.18) 

On the other hand, let us write down the total energy of a field in terms of the 
variables ^q, -Uq which parametrize it. We get this by integrating (13.15) over r. We 
use (13.12) for the term in E . For the term in B we get from equations (13.6), 

,2 

yqq' 

(13.8) and an integration by parts, 

/ d r [cvivl Aq • cnvl Aqi^ = — I d r (Ag • V A^i^ ~ '~2'^1 

so that the total energy of the field is equal to 

Q 

We check immediately that equations (13.18) are the Hamiltonian equations cor
responding to H, provided we regard ^q, Wq as pairs of conjugate variables. Thus, 
expression (13.19) is the classical Hamiltonian we were looking for, which governs 
the dynamics of the variables ^g, izq, and hence of the field (13.17). We also see 
that H describes a set of independent classical harmonic oscillators q and that eo 
plays the role of the mass and SQi^q = EQC k that of the restoring constant. 
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The quantization now proceeds as in § 11.4.4, by treating |g and TTQ as oper
ators satisfying the canonical commutation relations (11.138). Expression (13.19) 
becomes the Hamiltonian of a set of quantum mechanical harmonic oscillators, with 
eigenenergies given by (13.14), apart from an additive constant. 

More precisely, we find from (11.138) that the operators 

1 /-^ , . iTTo A 

V2fc V A / £ 0 < ^ / 

and cjj satisfy the same commutation relations (10.21) as boson annihilation and 
creation operators. The eigenvalues of cjcq, which can be identified with the op
erator Uq describing the number of photons in the mode q, are thus the integers 
nq = 0 , 1 , . . . . If we use (13.20), we can write the quantum Hamiltonian derived 
from (13.19) in the form 

= ^ huq^l'cq, (13.21) 

9 

which shows that, indeed, its eigenvalues are (13.14). 
As we have already seen in § 11.4.4, when changing from classical to quantum 

mechanics, we had to change the Hamiltonian by adding a constant to it. This 
constant is, for each mode, proportional to the commutator [^ij,7rgl = ift, and it 
vanishes when we go to the classical limit. Moreover, this constant is irrelevant, as 
only energy differences can be measured. However, its subtraction was necessary, 
as the sum J^ ^hu>q over all modes would produce an ultraviolet divergence. 

The field observables E{r) and B(r) , which at each point are given by (13.17), 
and also the vector potential ^(7-), become operators in quantum electromagnet ism. 
Their algebra can be conveniently formulated by expressing them in terms of the 
operators (13.20), as follows 

B{r) = curl 2(7-), (13.23) 

A{r) = ^^qAq{r) = ^ V ^ A " (^«+^9) ^^W- (13-24) 
2eoujq 

In particular, the components of E{r) do not commute with those of A(r ), so that 
we cannot specify exactly the electric and magnetic fields at the same time, since 
their commutatorSQ \E°'{r), B'^{r')\ = ihSapydS {r — r')/dr!y does not vanish. One 
should note that the classical wavefunctions Aq{r) associated with each mode do not 
become either operators or kets in the quantization process, but their coefficients 
^q in (13.7) become the operators ^g in the expansion (13.24). 
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As an exercise, one could repeat the above considerations, imposing periodic 
boundary conditions, as we did in §11.4.1 for the case of crystal vibrations. The 
main changes are the following. The components of fc ( / 0) take on the values kx = 
27rnix/L,..., with mx = 0, ± 1 , ± 2 , . . . , instead of (13.9). Each mode is described 
by a complex vector potential 

A W = ^ e e " - - ' , q = (fe,e), (13.26) 

V Ji 

with two possible polarization vectors for each fe, which satisfy the relations 

ei-fe = e2-k =el-£2 = 0, C i -e i = £2-e2 = 1- (13.27) 

By letting e be complex we are able to describe modes with a circularly or an 
elliptically polarized wave. The operators ^q and 7?g are no longer either Hermitean 
or independent: if —q = (—fe,e*) denotes the mode A^q{r) = A^{r), we have 
^q = £,-q, TTJ = 7?-g, and the commutation relations become K9,7r^,| = 6qqi- In 

the term with c|Ag in (13.22) and (13.24) we must replace Aq{r) by A^ir). The 
energy retains its form (13.14). However, whereas there was no simple expression 
for the total momentum of the field for the case of perfectly conducting walls, since 
each mode (13.11) was a superposition of plane waves with wavevectors ±fexj iky, 
±kz, we get here an interesting expression. We start from the momentum density 
(13.16), which can be split into two contributions 

£0 [EX B] = eo [E X curl .A] = EQ E"VA" - eo{E • V)A. (13.28) 

The integral of the second term vanishes, as one can see through integrating by 
parts; if we use successively (13.22), (13.24), (13.26), and (13.27) we get from the 
first term after integration and quantization 

P = -J2^Ug' J d^rA^*VA^, = -i^ng^,kS^,,e*q-eg> 
q,q' 9,9' 

= - i ^ ^J?gfc, 
1 

or, finally, using (13.20) and the fact that —q = (—fe,e*), 

P = ^ hk'cl'cq. (13.29) 

In agreement with §2.1.5, the momentum, operator (13.29) is the generator of the 
translations of the field. 

Similarly, when we evaluate the total angular momentum of the field, 

J = eo d^r [r X [E X B]], (13.30) 

using (13.28) produces two terms. The first one, according to the above calculation, 
is changed by subtracting [Sr x P] when we shift the origin of the coordinates by 
6r; it can thus be interpreted as an "orbital angular momentum". The second one, 
which through integrating by parts can be written as 
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5 = - £0 / d^r [rx{E- V)A\ = £O d^r [^ x ^ ] , (13.31) 

is independent of the origin of the coordinates and is thus intrinsic in nature. Let 
us remind ourselves of the interpretation of angular momentum as the generator of 
rotations (§ 2.1.5). The splitting of J into two terms thus simply shows up the fact 
that a rotation of the field has two effects: rotating the system of spatial coordinates 
and rotating the components of the vector field. Following a calculation similar to 
the one which led to (13.29) gives the explicit form of (13.31) after quantization: 

S = - X I ""l^q'^kk' [£« X £q'] 
1,1' 

= -iU^ cl\,S^^, [e* X Eg,]. 

Let i« be a unit vector in the direction of the propagation of the wave (13.26), and 
let u and v be two unit vectors which with w form a direct trihedral, and let us 
choose the two complex polarization vectors associated with k such that 

ei = £2 = —F (u + iv). 
v 2 

We characterize the mode q = (fe, a) by the number a which takes on the value +1 
for £i and —1 for £2- By looking at the classical fields E{r) and B{r) associated 
with a single mode q, we see easily that cr = +1 describes a left-handedly circu
larly polarized plane wave and cr = — 1 a right-handedly polarized wave, and that 
\£l X fill = iw. We can therefore simplify the expression for the intrinsic angular 
momentum of the field as follows: 

S = X hcrw'cl^g, w = - . (13.32) 

Q 

We have now quantized the electromagnetic field in vacuo. The problems of 
emission and absorption of radiation by matter involve the dynamics of the field 
and its coupling with charged particles. We know (see Eq.(2.65)) how to write 
down the dynamics of spinless non-relativistic particles in a classical field which is 
assumed to have been given, but the treatment of emission and absorption makes it 
necessary to quantize at the same time the particles and the field. For the particles 
it is sufficient to replace in the Hamiltonian (2.65) the variables r , and pj by 
conjugated operators. For the electromagnetic field we need to start by choosing 
a gauge, as the Hamiltonian is expressed in terms of the potentials rather than of 
the fields E and B. The most convenient gauge here is the Coulomb gauge which 
is characterized by divA = 0. The scalar potential, which does not vanish when 
there are charges, must then satisfy the equation SQV^ = —Q- The solution of this 
equation determines $ as a function of the particle coordinates J-J and makes, after 
quantization, a contribution —V# to the field E(r), with 

(̂r) = X 
ATTeo\r - Ti 
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which must be added to (13.22). The field operators are, as before, the ^q, rrq, 
or the 'cq, 'cq. In contrast to the vector potential (13.24), the scalar potential $ is 
independent of the field operators; it is an operator only through the coordinates 
9i of the particles with charges Cj. The Hamiltonian H of the system of particles 
and field contains four contributions: (i) the contribution (13.21) of the free field; 
(ii) the Coulomb potential 

W = - ^ V .^""'^i ,; (13.33) 
i>j 

(iii) the kinetic energy, changed by replacing pj by pi — ejA(rj), 

i 

(iv) when the particles have a spin s,, the coupling between the associated magnetic 
moment and the field, which is proportional to (B(ri) •'sij. The coupling between 
the field and the matter enters (13.34) through the vector potential A(ri), which is 
obtained from (13.24) by replacing the coordinate r by the position operator T-J of 
the ith particle, and which thus contains simultaneously the field operators 'cq and 
'cq and the particle operators Aq(ri). One can check that the equations dX/dt = 
\X, TiA /ih which describe the evolution of the observable X in the Heisenberg 
picture (§ 2.1.5) are for X = E{r) or B{r) the same as the quantum version of the 
Maxwell equations (13.1) and (13.2) where the particle observables occur on the 
right-hand sides, for X = ?j the same as the formula Uj = fpj — e^A(7'i)l /mi for 

the velocity, and for X = mivi the same as the quantum version of the Lorentz 
force, 

mi -^ = Ci {Si(?i) + 5 [»i X B(9i)] - i [B(9i) X 9i] } . 

13 .1 .4 P h o t o n s 

Although expression (13.14) for the levels of the quantized field would suffice 
to study its thermodynamics, it is useful to change the language for describing 
these levels. As we did in § 11.4.2 for lattice vibrations or in § 11.4.4 for vi
brations of a string, we base ourselves upon the analogy between (13.14) and 
the energy of a system of bosons, and also upon the equivalence between the 
formal structure of the algebra of the operators (13.20) and tha t of the boson 
annihilation and creation operators. Jus t as quantized mechanical vibrations 
can conveniently be described as phonons we shall interpret the oscillations 
of the quantized electromagnetic field in terms of a new type of bosons, the 
photons. Historically (§§13.3.1 and 11.4), photons preceded phonons: after 
Planck's break-through in 1900, the photon idea was introduced by Einstein 
in 1905 in his interpretation of Wien's radiation law (13.48) as being produced 
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by a set of particles; it was then used by him to explain the photoelectric ef
fect. Proceeding by analogy, Einstein assumed in 1907 that the energy levels 
of any harmonic oscillator should be quantized, which led him to an expla
nation of the specific heats of solids; the theory of phonons was worked out 
by Debye in 1914, when the old quantum theory was still in its infancy. 

Let us establish the correspondence between the two equivalent and com
plementary languages for describing an electromagnetic field in quantum 
physics, either in terms of waves, or in terms of photons. We rely on the sim
ple arguments of § 13.1.2, and shall below make our statements more rigorous 
by using the results of § 13.1.3. Let us start from the oscillation eigenmodes 
which we constructed in §13.1.1. Each mode q = {k,<j) can be interpreted 
as one of the single-particle states of § 10.2.1 (Table 13.1). In fact, the values 
(13.9) of the wavevectors are the same as for a particle in a box with rigid 
walls (Eq.(10.8)) provided we identify the photon momentum p with hk in 
agreement with de Broglie's relation. The polarization, which takes on two 
values a = ± 1 , plays the role of an internal quantum number of the photon; in 
what follows we shall show that it is equivalent to a spin. The vector potential 
(13.11) or (13.26) of the mode q plays the role of a photon wavefunction in 
the ket g, and the classical wave equation (13.8), which determines it, is the 
analogue of the single-photon Schrodinger equation. Equations (13.10) and 
(13.14) indicate that we should assign to a photon in the mode q an energy 
proportional to the wave frequency, 

= huj„ Tick cp. (13.35) 

again in agreement with the Planck-de Broglie relation e = hv. The relation 
e — cp between energy and momentum shows by the way that a photon 
must be considered as a relativistic particle with zero rest mass. In particle 
language, this property is the counterpart of the fact that electromagnetic 
waves propagate with a velocity c independent of the frequency, a velocity 
which can be identified with that of the photons. 

Table 13.1. Equivalence between a single-mode q = {k, a) of an electromagnetic 
wave and a single-photon state 

Classical electromagnetic mode 

Vector potential Aq{r) of a mode 

Wavevector k 

Circular polarization 

Frequency u> = 2-KV 

Wave velocity c = a>/fc 

Single-photon state 

Photon wavefunction 

Momentum p = Tik 

Spin helicity cr = r t l 

Photon energy e = %u 

Photon velocity c = e/p 
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Table 13.2. Equivalence between electromagnetic waves as quantum oscillators and 
many-photon states 

Micro-state of the quantized field 

Hilbert space of vibration states 

Oscillator quantum numbers 

Energy of independent harmonic 
oscillators 

E g nqhWq 

Field operators 

Canonical equilibrium 

Set of photons 

Fock space of photons 

Occupation numbers {riq} 

Energy of non-interacting photons 

Photon creation and annihilation operators 

Grand canonical equilibrium with ^ = 0 

We must stress tha t the equivalence between modes and single-photon 
states associates a classical concept with a quantum one. In wave language, 
the Aq{r) are classical stat ionary waves, obtained as solutions of the classical 
Maxwell equations; nevertheless, the same quantities play for the photons 
the role of a base in the Hilbert space 5 ^ of the single-particle states. In 
the first case, a linear superposition such as E g ^q-^g(^) or as (13.7) can be 
interpreted as a classical electromagnetic wave; in the second case, it plays the 
role of a single-photon wavefunction (provided it is normalized). The indices 
q = (fe,cr) which characterize a mode in the classical or in the quantum 
picture become for a photon its quantum numbers. 

Let us now tu rn to a quantized electromagnetic field, which is the equiv
alent of a set of an arbitrary number of photons (Table 13.2). The Hilbert 
space of the field can be interpreted as the Fock space of the photons. A quan
t u m micro-state describing oscillations of the electromagnetic field, charac
terized by the set {rig} of the quantum numbers of the harmonic oscillators, 
can be viewed as a state constructed by put t ing a number Uq of photons 
in each single-particle s tate q. The possible values of the occupation num
bers Uq = 0 , 1 , 2 , . . . correspond to Bose-Einstein statistics. The expression 
(13.14) for the energy of the set of harmonic oscillators can be understood as 
the energy of a set of photons, which do not interact with one another, since 
their energies are just simply added together. 

Expression (13.21) for the Hamiltonian confirms this result, since the operator 
cr^q has as eigenvalue the number nq of photons in the mode q so that each q pho
ton contributes hu>q to the energy. Nevertheless, in contrast to the case of lattice 
vibrations (§ 11.4.2) where the anharmonicity of the interatomic forces produces 
terms in the Hamiltonian which describe interactions between the phonons and 
processes where several phonons are created or annihilated, expression (13.21) here 
is exact. This property is connected with the linearity of the Maxwell equations in 
vacuo, which implies that the oscillations of the free electromagnetic field are purely 
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harmonic and that the modes are independent. After quantization, the indepen
dence of the photons occupying the various modes corresponds to the superpo
sition of the classical electromagnetic waves. For the examples considered in the 
earlier chapters - conduction electrons, holes, phonons, helium atoms - treating 
the particles or quasi-particles as being independent was a more or less justified 
approximation. Here, there is rigorously no interaction between the photons. 

The correspondence p = Tik between momentum and wavevector has been in
troduced above only through a simple analogy. Its rigorous justification is based 
upon expression (13.29) for the operator P, the total momentum of the electromag
netic field which we derived from the momentum density (13.16). This equation, in 
fact, expresses simply that each photon in the mode q = {k,a) with wavevector k 
contributes hk to the total momentum P. The ratio c between the radiated power 
and the momentum density (13.16) has a direct interpretation in the language of 
a kinetic theory of photons: a first factor c arises from the energy e = cp, and a 
second factor c from the velocity of the photons crossing a surface element. 

Similarly, expression (13.32) for the intrinsic angular momentum of the field 
can be understood by assigning to each photon q = (k, a) an intrinsic angular 
momentum with component along fe equal to ha = ±h. As a result the photon has 
a spin equal to 1, with the peculiar feature that from amongst the three permitted 
values m = 0, +1, -^1 for the component of the spin 1 along k, called the helicity, 
only two, m = ± 1 , can physically be realized. This feature may come about because 
the photon is a relativistic particle with zero rest mass so that a change of frame does 
not aflfect its helicity. The two possible helicities m = +1 and m = ~1 correspond, 
respectively, to left-handedly and right-handedly circularly polarized waves. 

The field operators 'cq and cj , linearly related through expressions (13.22), 
(13.23), and (13.24) to the quantized fields E{r) and B{r) and the potential A{T), 
are the photon annihilation and creation operators. Let us now assume that the 
density operator describing a state of the field is diagonal in the occupation num
bers nq in the photon Fock space. This will be the case for the thermal equilibrium 
state, studied in § 13.2. This is also the case for states describing a given number 
of photons in the limit of classical particles {nq) <C 1, when their Bose statistics 
becomes irrelevant. Under those conditions we have (cq) = (cj) = 0, and hence 
the mean values {E{r)) and (B(r)) of the electric and the magnetic fields vanish. 
Inversely, the state describing a classical electromagnetic field in terms of photons 
must include coherences such that (cg), (cj), and hence the (rig) > |(cg}|^ are large, 
since the average values of E(r) and of B{r) must be large and their relative fiuc-
tuations small. We discussed this point in § 11,4.4 for the vibrating string problem, 
and noted that the classical wave limit and the classical particle limit are not the 
same; indeed, these two limits are even the opposite of each other. 

The interaction of the electromagnetic field with mat ter , in particular 
with the walls of the enclosure, produces energy exchanges which, according 
to (13.14) involve changes in the quantum numbers riq of the oscillators. 
Such changes in the quantum state of the field are in the photon language 
simply expressed as the creation or annihilation of photons by the walls. This 
is clear in expression (13.34) for the interaction between the electromagnetic 
field and a system of charged particles: the vector potential (13.24) is the sum 
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of a term which creates a photon and a term which annihilates a photon, and 
hence W does not commute with the occupation number operators n, . 

Quantum theory has made it possible to combine and transcend the two 
old ideas of optics which seemed to be irreconcilable: Newton's corpuscular 
concept (1675) and Fresnel's wave concept (1819). We sketched the history 
of this synthesis in § 10.1.2. However, we have had to pay for this: the photon 
only resembles a particle when it takes the form of a more or less - but 
never completely - localized wavepacket, whereas the electromagnetic waves 
E{r) and B{r) which are represented by operators always show statistical 
fluctuations. The arguments of the present section have shown that the two 
languages are equally valid for describing the same reality. They also made 
it possible for us to understand through the example of the photon why 
elementary particle physics and quantum field theory are one and the same 
discipline. 

13.2 Equilibrium of Radiation in an Enclosure 

For reasons which will become clear in § 13.3.2 electromagnetic radiation in 
thermal equilibrium is traditionally called black-body radiation. We shall here 
use the methods of statistical physics to study it, in either the quantum-field 
or the photon language. 

13.2.1 Extensive Quantities 

Let us assume that the walls of the enclosure which may contain an electro
magnetic field, the micro-states and eigenenergies (13.14) of which we have 
determined, are maintained at a temperature T. The currents produced by 
the thermal motion of the charged particles which make up the walls produce 
random fields inside the enclosure. Conversely, electromagnetic fields inside 
the enclosure produce currents in the walls and thus can exchange energy 
with the charged particles making up these walls. There is thus a coupling 
- relatively weak, if the enclosure is large - between the interior electromag
netic field, that is, the photon gas, and the matter of the walls: the latter 
can exchange energy with the field by changing the quantum numbers rxg, 
or, what amounts to the same, by creating or absorbing photons. This will 
ultimately lead to a thermal equilibrium macro-state of the electromagnetic 
field. 

This state is characterized by two extensive variables, the volume and the 
internal energy, which is the expectation value of (13.14). This is obvious in 
the wave description of the field. In the particle description, we might also 
wonder about the number of photons Y^rig. However, that is not a constant 
of the motion; for the system of the enclosure together with the walls, the 
total energy is conserved, but not the number of photons which does not 
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commute with the couphng term (13.34) of the total Hamiltonian. We are 
therefore in the second situation of § 10.5.2 where equilibrium is described 
either as canonical or as grand canonical with a zero chemical potential for 
the photons. 

The partition function is thus given by (10.29) with Sg = hojq = cp and 
fi = 0, which in the large volume limit gives us the free energy 

F r= kTY^ ln(l-e-'^^') 
9 

where the factor 2 comes from the summation over the polarizations a. Inte
grating by parts we get (see formulae at the end of this volume) 

37r2(;ic)3 

Qir'^ikTY 
45(7ic)3 

/ 
Jo 

(13.36) 

We could also have obtained the same result directly by using equation 
(10.47) and expression (13.13) for the mode density, which implies M{e) = 

Prom (13.36) we get the entropy 

(13.37) s = dF 
45(7ic)3 ' 

and the internal energy per unit volume 

U 

n 
F + TS 

n 
TT^ikT)^ 
15(ftc)3 ' 

(13.38) 

The latter is very small at room temperatures (6 x 10~^ J m^^) but it in
creases rapidly with temperature due to the power law T^. The radiation 
energy becomes appreciable in astrophysics in stellar interiors and even con
siderable in cosmology in those stages where the Universe still had a very 
high temperature: when T = 10^^ K, the photon energy density in mass 
units reached U/f2c'^ = 10^^ kg m~^, and it was still 10^ kg m~^ three min
utes after the Big Bang, when T was 10^ K. Then, during lO'' years, as long as 
the Universe was a homogeneous magma with a temperature above 3000 K, 
it was "radiation dominated", that is, the major part of the available energy 
was in the form of radiation, whereas it is now "matter dominated" (§ 13.2.2). 
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The pressure due to the radiation, 

^ dF U 
^ = - 5 ^ = 372' (13-39) 

has the same characteristics. It contributes to the stellar equilibrium by op
posing - but , in general, less strongly than the kinetic pressure due to the 
mat ter - stellar collapse under the effect of gravitational forces (Exerc.6e). 
Expression (13.39) differs by a factor ^ from (10.72), which is the equation 
valid for gases of non-interacting particles with kinetic energies p^ /2m. This 
difference is due to the relativistic nature of the photon, which has an energy 
cp (Exerc.lSa). 

We can obtain (13.39) also by using the kinetic theory methods of § 7.4 and 
interpreting the pressure as the consequence of the collisions of the photons with a 
wall. Striking a balance as in § 7.4.1 or as in the coming § 13.3.1 we see, first of all, 
that the volume occupied by photons with momentum p which will reach a surface 
area AS during a time interval At is equal to AS c cos 6 At, where 9 is the angle 
between p and the normal to the surface area (Fig.7.3). The average number of such 
photons at thermal equilibrium is thus equal to 2h~ ASc cos 6 At d p fp, where 
the factor 2h~^ d^p is the number of modes per unit volume with momenta within 
d p . Let us assume to fix ideas that the wall is perfectly absorbing. The photons 
which hit it will per unit time and per unit area give off to the wall an amount of 
normal momentum equal to 

' c J p c o s ^ e , ^ = ^ . (13.40) ^•^ / ^^"» "^P^^f^ - en-

(The integration over 6 from 0 to ^^r gives a factor ^ whereas in the calculation 
of the energy this integration gives a factor 2.) These photons are at equilibrium 
replaced by other photons which are emitted by the wall and which have on average 
an opposite momentum. The pressure force (13.39) means that an amount equal to 
U/30 of momentum is transferred per unit time to unit area of the wall. 

In wave language the pressure V can be understood, like in classical electro-
magnetism, as the average of the radiation pressure exerted on the walls by the 
electromagnetic waves in the enclosure. We know, in fact, that an electromagnetic 
wave exerts a radiation pressure on material bodies; for instance, the solar radiation 
pressure orientates the comet tails in a direction away from the sun. The fact that 
the result is the same as the earlier one comes about because the pressure of a wave 
is connected with its momentum (13.16) which in turn is connected through (13.29) 
with that of the photons. 

Radiation in equilibrium within a large enclosure is homogeneous, isotropic, 
and unpolarized. One can also show tha t it is independent of the shape of the 
enclosure and of the conditions at the walls (§§5.5.2 and 10.3.3). 

The absence of polarization is the direct consequence of the fact that the two 
polarization modes have the same energy and thus are equally densely populated. 
The homogeneity, which can easily be ascertained from (13.26) for the case of 
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periodic boundary conditions, is less obvious inside the enclosure with perfectly 
reflecting walls that we considered in § 13.1.1. In fact, for a given mode (13.11) the 
energy density (13.15) shows oscillations of the form sin kxX in each of the three 
directions. The energy density at equilibrium is obtained by adding together the 
contributions from all modes with a weight proportional to the Bose factor, and 
it has certainly spatial variations. Nevertheless, provided L S> hc/kT the modes 
(13.9) are so closely bunched that changing mx, my, rriz by one or a few units 
practically changes neither the wavevector nor the occupation factor of the mode. 
For calculating the energy density we can therefore take an average over such neigh
bouring modes. Provided we are well away from the boundaries of the enclosure, 
this averaging has the effect of replacing the oscillating factor sin kxxhj 2- T^o see 
this, let us consider a position with an abscissa ^ which is at a finite distance from 
the centre of the enclosure (^ = |a; — ^L] <C L); for a momentum kx the energy den
sity of the mode oscillates either as sin fcx| or as cos kx^, depending on whether 
TTlx =^ kx Lj-K is even or odd, so that an average over two neighbouring modes is 
sufficient to give a constant contribution in ^. This argument, which can be gener
alized to any point away from the wall, shows that the energy density is practically 
independent of the coordinates. It is valid even when we restrict ourselves to a given 
direction of fe and this also proves the isotropy. 

13.2 .2 P lanck's Law 

To describe the characteristics of equilibrium radiation in more detail we 
introduce the black-body radiation density u{i') which for photons plays the 
same role as the Maxwell distribution for the molecules of a classical perfect 
gas. It is defined as follows: u(z^) du is the average energy per unit volume at 
equilibrium of the photons with frequencies between u and u + dv. Because 
the radiation is homogeneous, we only need divide the energy which the 
enclosure contains in the frequency range v,v -\- dv by its volume. To do this 
we multiply the Bose factor 

^hv/kT _ I' 

which is the average number of photons occupying a mode with frequency 
V = ijj/2'K, by the energy fiw = hv of that mode, and by the number of modes 
in the range v,v -\- dv. The latter is given by expression (13.13). We get the 
same result by noting tha t according to (10.38) the number of modes with 
their momentum inside a volume d^p equals 2Q d^p/h^, where we have taken 
into account that there are two polarizations, whence, integrating over the 
directions and replacing p by hv/c, we find 

V(v)dv = -^A-Kp^dp = —^v^dv. (13.41) 
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We thus get altogether 

u{v) dv 
Sirhv^ du 

c3 (e'^,./fcT „ 1^ (13.42) 

This is Planck's radiation law, which characterizes the way the energy of the 
electromagnetic field is distributed over the wave frequencies for given T. The 
result depends only on the temperature and can be represented (Fig.13.1) by 
curves u{i>) which are obtained one from the other by simple magnifications, 
proportionally to T for the abscissa v and to T^ for the ordinate n. The 
radiation energy density increases rapidly with temperature for any fixed 
frequency. At the same t ime, its distribution as function of the frequency 
changes, with the maximum shifting to higher frequencies when the temper
ature increases. This maximum, which is determined by the equation 

hUn 

kT 1- e-h>^r./kT' 

tha t is, by the relation 

kT 
2.82 

h ' 
(13.43) 

Planck 

6000 K 

0 2 4 6 

Fig. 13.1. Planck's radiation law 
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varies linearly with the temperature . This property, which was discovered 
empirically, is Wien's displacement law. At a temperature of 8500 K, the 
maximum is in the middle of the visible spectrum (A ~ 6000 A). The area 
under each curve represents the total energy density (13.38), and increases 
with the tempera ture as T^. 

We shall see in §§ 13.3.1 and 13.3.4 tha t experimental checks of Planck's 
law are very accurate, but indirect. It would be extremely difficult to carry 
out calorimetric measurements inside an empty enclosure. 

Observations in the microwave, centimeter or decimeter wavelength, range 
have enabled us to establish that we receive from the interstellar medium an 
isotropic radiation, the so-called cosmic background radiation. This discovery 
by Arno A. Penzias and Robert W. Wilson in 1965 is of great importance in 
cosmology. Recent satellite measurements have confirmed that the strength 
of the cosmic background radiation at the various frequencies follows with 
a remarkable precision Planck's law with a temperature of 2.74 K; however, 
one still continues to speak of the "3 K radiation". Everything takes place, as 
if, apar t from the radiation emitted by the stars, the Universe were a cavity 
containing electromagnetic radiation at equilibrium at tha t temperature . 

The cosmic background can be explained as follows. During the formation of 
the Universe, that took 10 years, its constituents were in thermal equilibrium 
with a temperature which during the expansion of the Universe decreased from 
10 to 3000 K. At the end of this period the matter had not yet been condensed 
into galaxies and stars; the atoms were ionized, as the characteristic ionization 
temperature is 3000 K, so that there was a permanent absorption and emission of 
photons and the radiation was in equilibrium with the matter. After the atoms were 
formed and they condensed into galajcies and stars, the light practically ceased to 
interact with the atoms and there remained a fossil radiation with a wavelength 
which due to the Doppler effect has increased while the Universe expanded. More 
precisely, let us consider a photon which is presently reaching us. It was emitted with 
a frequency VQ at the epoch where radiation and matter got separated, and it was 
at equilibrium at a temperature TQ ~ 3000 K. Such photons thus had a distribution 
which was Planck's law UQ{VQ,TQ). However, if the Universe is homogeneous and 
its expansion is a uniform one, the source which had emitted the photon is moving 
away from us with a velocity proportional to its distance from us, which is equal 
to about the present radius R of the Universe. Hence, the photon reaches us with a 
frequency v = VQRQ/R because of the Doppler effect. In other words, its observed 
wavelength has grown proportionally to the size of the Universe. In addition, the 
number of photons with initial frequencies VQ has remained constant, but they are 
now distributed over a volume which is expanded by a factor {R/RQ) . The actually 
observed distribution u{i') thus satisfies the relation 

u{u)dv _ f R \^ uo{iyo,To)di'o 
hv \ RQ J hvQ 

which enables us, bearing in mind the form (13.42) of UQ, to identify u(i') with a 
Planck distribution characterized by an effective temperature T = TQRQ/R. Obser
vations confirm this theoretical result, already predicted at the end of the forties. 
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The value T ~ 3 K indicates that the radiation was decoupled from the matter 
when the Universe was 1000 times smaller than now. An estimate of the expansion 
velocity, which is characterized by the Hubble constant, that is, the ratio of the 
recession velocity of an object to its distance, gives an age of the Universe of the 
order of 20 x 10® years. 

Clearly the above arguments apply only to the cosmic background radiation 
and are not germane to the radiation emitted by the stars and the galaxies at a 
more recent epoch. The latter is also distributed according to a law which is close 
to Planck's law, but with a temperature equal to that of the emitting object. We 
also note that the effective temperature of 3 K of the cosmic background radiation 
is not a genuine temperature, as the photons of this radiation no longer interact 
either with one another or with charged particles; there is no mechanism to bring 
them into equilibrium, and their distribution only is a memory of their initial state. 
However, it turns out that one obtains the same result if one assumes that the 
expansion of the Universe is adiabatic (Exerc.l3b). 

13.3 Exchanges of Radiative Energy 

Emission or absorption of radiation by mat te r covers a large variety of phe
nomena which are specific for the substance; using non-equilibrium statis
tical physics to study them lies outside the framework of the present text. 
Here we shall simply review the general thermodynamic properties which 
follow from the First and the Second law of Thermodynamics. Like all other 
non-equilibrium effects considered in this book our guiding principle will be 
balance methods. 

13.3 .1 B l a c k - B o d y R a d i a t i o n 

In § 7.2.3 we saw that one can observe the equilibrium Maxwell distribution of 
the molecules of a perfect gas by letting molecules escape from their enclosure 
through a hole in the wall. In exactly the same way, the most direct method 
for experimentally checking Planck's formula is to analyze through a balance 
method the radiation escaping from a hole in the wall of the enclosure inside 
which the photons are in thermal equilibrium. The hole must be sufficiently 
small not to disturb the equilibrium state inside the enclosure, but sufficiently 
large to enable us to describe the escaping field in terms of photons: the 
wavepackets which represent the photons must be sufficiently localized so tha t 
their wavelength is small compared to the size of the hole. Let us calculate the 
energy carried away by photons with frequencies between v and v + du, which 
during a t ime interval dt escape through the hole of area dS, inside a solid 
angle d^u> around a direction which makes an angle 6 with the normal to the 
wall (Fig.13.2). Planck's formula (13.42) gives us the energy per unit volume 
u{u) dv, for the frequencies considered, of the photons propagating inside the 
enclosure in arbitrary directions with velocity c. The photons which leave the 
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^S ^^%-13.2. Emission of radiation through a hole 

' 3̂ ^ 

enclosure in this way are contained in an oblique cylinder of base dS, slant 
height cdt, and height cdt cos6, that is, of volume cdt cos6dS; moreover, 
they must propagate in directions within the solid angle d^u, which gives 
us, because of the isotropy of the radiation, a factor d^u/A-K. Altogether, the 
power radiated through the area dS within the solid angle d^a; and within 
the frequency range v,i> + dv is thus given by the relation 

d'^u 
6W = u{v)c cosedS -—dv. (13.44) 

47r 

Hence we can measure u{v) directly by spectrometry. Such experiments have 
made it possible to check Planck's law with a large accuracy, at least in those 
temperature and frequency ranges where u{v) is not too small. 

Experiments also check the angular distribution, with cos^, of the emitted 
radiation, which simply reflects the fact that the power emitted through the 
hole in a given direction is proportional to the apparent area cos 6 dS rather 
than the area dS of the hole itself. This is known as Lambert's law. 

Finally, the total power emitted into the exterior half-space per unit area 
of the hole, called the emittance, equals 

/

/.oo /.7r/2 

SW ^ — u{v)dv j cosOd'^u}, 
or, after integrating and using (13.38) for the integral of u{v), 

R = aT^\ • (13.45) 

This expression is Stefan-Boltzmann's law (1879) which was found originally 
in experiments and by thermodynamic arguments. Stefan's constant, 

' ' '^^ = 5.67 X 10-« W m-2 K - ^ (13.46) 
60;i^c2 

is small, but the T^ dependence implies that the emitted power soon becomes 
large when the temperature increases: at 3000 K, R equals 460 W/cm^. Note 
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tha t the energy per unit volume (13.38) of a photon gas in equilibrium can 
also be expressed as 

^ = -aT^ = -R. (13.38') 
U c c 

On the other hand, measuring the radiation emitted through an opening 
in a cavity makes it possible to determine the temperature inside the cavity. 
One measures in this way the temperature of Maxtin-Siemens furnaces in 
s teelmating by collecting the light which passes through a small hole in the 
door. Such a measurement can involve either the total emitted intensity, or, 
more simply, the mean frequency of the emitted radiation (optical pyrome
ters). We have already seen tha t Wien's displacement law (13.43) states tha t 
the frequency of the maximum in the emission varies linearly with tempera
ture. 

We have found Planck's law a^ a direct consequence of statistical mechanics 
applied to the Bose gas of the photons. In fact, historically one first measured the 
radiation curves as function of frequency and temperature and their theoretical 
interpretation posed serious problems during the last decades of the nineteenth 
century, at a time when physics seemed to be a completed discipline. Treating 
the electromagnetic vibrational modes by classical statistical mechanics, the only 
one available at that time - Planck's formula dates from the end of 1900 - had led 
to the Rayleigh-Jeans formula (1900), 

u^^)du ^ k T ^ ^ ^ . (13.47) 

Lord Rayleigh (Langford Grove 1842-Witham, Essex 1919) derived this formula 
by using the equipartition theorem (§8.4.2) to attribute an energy ^kT to each 
degree of freedom; he found (13.13) for the number of modes in the range v,v + dv, 
and noted that each mode has two degrees of freedom (conjugated variables ^ 
and •K). By comparing it with the exact formula (13.42), one sees (Fig.13.1) that 
expression (13.47) is correct at low frequencies: classical statistical mechanics is, in 
fact, applicable to harmonic oscillators in the limit of large quantum numbers riq, 
and the occupation numbers (cqCq) = riq are large for the low frequency modes, 
those for which /ii/ <C kT. This makes it possible for (cq) to be large, which is a 
necessary condition for being able to treat the electromagnetic field as a classical 
field (§§ 13.1.4 and 11.4.4). 

On the other hand, at high frequencies (Fig.13.1) we can replace the Bose factor 
in (13.42) by a Boltzmann factor and we get Wien's formula (1893), 

Sirhv -hv/kT , uyv) dv ~ q— e ' dv. (13.48) 

This can be interpreted as another classical limit, where one treats the photons as 
classical particles which obey Boltzmann statistics, as their density is low (§§ 10.3.4 
and 13.1.4). Wien had derived the formula using arguments involving the Doppler 
effect and thermodynamics. It explained the displacement law, î m oc T, since 
(13.48) gives Vra = 3kT/h, and the difference between that relation and (13.43) 
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could not be detected at a time when the constants k and h had not yet been 
determined. 

The crisis of 1900 was provoked by the contradiction between formulae (13.47) 
and (13.48) for black-body radiation. They agreed with experiments in different 
frequency ranges, and were both based upon theoretical arguments which looked 
reasonable. Rayleigh's theory seemed to have the better theoretical foundation, but 
formula (13.47) was certainly wrong, since it led to a total radiative energy density, 
U/ fi, which is infinite! 

Planck wrote down Eq.(13.42) in 1900, guided by the need to interpolate (13.47) 
and (13.48), and found excellent agreement with experimental data. However, the 
theoretical justification for his theory (see § 3.4.4) had hardly any basis. It fell to 
Einstein (1905) to open the door to modern theories by showing that Planck's law 
was the result of quantizing as in (13.14) the energy levels of the oscillators. The 
final identification of the energy quantum with a particle, the photon (§ 10.1.2), 
thus played an important role in the germination of the ideas which would lead 
to quantum mechanics. Rather paradoxically, the black body, historically the first 
example of quantization, is far from being the simplest one, as it also involves field 
theory and statistical physics. 

13.3 .2 A b s o r p t i o n and E m i s s i o n 

A class of phenomena which are of great practical importance is connected 
with the emission and absorption of radiation by material bodies, tha t is, 
with the interaction between photons and electrons or nuclei. We have already 
seen the role played by the walls in the establishment of equiUbrium radiation 
inside an enclosure. However, the situations of interest are, in most cases, non-
equilibrium: illumination by an electrical lamp, heating by infrared radiation, 
or solar radiation. Electromagnetic radiation is even one of the most common 
mechanisms for energy transfer between material bodies. Microscopic studies 
are based upon the coupling (13.34) between the quantized field and the 
particles which constitute the system under study, molecules in a gas or 
condensed mat ter ; this coupling leads to emission or absorption of photons 
while at the same time inducing a transition between two energy eigenstates 
of the system of particles. Here we shall restrict ourselves to a macroscopic 
approach which will not enable us quantitatively to explain all effects, but 
which gives us relations between them and which shows how one can analyze 
them in terms of a few empirical coefficients. 

Historically, this approach has preceded the study of black-body radiation, the 
importance of which it has helped to show. Already in 1801, half a century before the 
energy concept itself was worked out, the astronomer Sir William Herschel (Hanover 
1738-Slough 1822) started a quantitative exploration of what we would now call 
the transformation of the solar radiation into heat and the energy distribution of 
the former as function of frequency. To do that he placed a small thermometer at 
various positions in a spectrum obtained when analyzing the light from the Sun; by 
extending his measurements beyond the visible he discovered by the way infrared 
radiation. The observations and experiments carried out during the whole of the 
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Fig. 13.3. Exchanges of radiation with a body 

nineteenth century were accompanied by technical discoveries such as Edison's lamp 
(1878) and the Dewar vessel (1892) and resulted in posing the problem of explaining 
theoretically the thermal equilibrium of radiation. 

Let us start by enumerating the various processes involved (Fig.13.3). 
When a body receives radiation, the latter can be absorbed in the mat ter 
in regions close to its surface. Depending on the nature of the material, it 
can be reflected following Snell's (Descartes's) laws, or scattered in ajiy di
rection, or transmitted across the substance, if the lat ter is transparent. In 
addition, a body can spontaneously emit radiation with a more or less high 
frequency. The energy flux corresponding to each of these various effects, 
tha t is, the power crossing unit area, is characterized by a coefficient to be 
defined; we shall regard the existence and the magnitude of this coefficient as 
an experimental fact, although one can determine it theoretically, by a rather 
difficult analysis of the interaction between the radiation and the substance 
considered. 

The absorptivity A{v, 0, ip, T) of a body at a temperature T, subject to 
parallel monochromatic radiation of frequency u, incident at a direction {9, (p) 
which makes an angle 6 with the normal to the body (Fig. 13.3), is defined as 
the fraction of the power of that radiation which is absorbed by the body. It 
depends on the nature of the body and its temperature . 

Similarly one can define the reflectivity, the scattering coefficient into 
any direction different from {6,ip + IT), and the transmittivity as functions 
of the direction of incidence and of the frequency of the incoming radiation. 
An obvious balance, based upon the First Law, shows that 1 — A represents 
the sum of the reflected, scattered, and t ransmit ted fractions of the incident 
radiation. Hence, a good reflector such as polished metal, a good scatterer 
such as snow, or a transparent material such as glass in the visible, have a 
very small absorptivity. This is the reason why clean snow melts very slowly 
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in the sun and why a brightly painted carriage, as well as its chromium and 
its windows, warms up less than a dark carriage. 

On the contrary, a perfectly absorbing body, for which A reaches its max
imum value 1, cannot reflect, scatter, or transmit radiation. Such a body is 
said to be "6Zacfc". Let us, in particular, consider the closed enclosure with 
a small orifice from which radiation emerges, that we studied in § 13.3.1 in
dependently of possible incident radiation. If a ray of light hits the orifice, it 
has practically no chance to come out again, as during the large number of 
reflection or scattering processes which it will undergo at the interior walls 
of the enclosure (Fig. 13.4) it will be completely absorbed. The time for the 
absorption will even be very short, since the velocity of light is large. This ex
plains why we have called a closed enclosure a black body. Another example 
of a black body, at least in the visible, is a mat black object which absorbs 
all the light it receives without reflecting or scattering it. 

The emission of radiation by a body in thermal equilibrium is charac
terized by its luminance or radiance L{v, 0, (p, T) which, like its absorptivity, 
depends on its nature and on its temperature. The definition oi L is such that 
the power emitted by a surface element dS, into a solid angle d^u around 
the direction {6, (p), between the frequencies i^ and u + dv, is equal to 

^W^emitted = 1(^,9, (p,T) COsO dS d^iJ dv. (13.49) 

One can measure L by photometry using filters to select the wanted frequency. 
The factor cos 6 was introduced into (13.49) so that cos 6 dS is the apparent 
surface area of the emitting surface. Comparing this expression with (13.44) 
we see that the luminance of a black body simply equals 

Lo{u,e,ip,T) = u ( i / ,T ) -^ . (13.50) 

If a body satisfies Lambert's law, its luminance is independent of 6 and (p. 
By themselves, the concepts of absorptivity and luminance are useful only 

when the phenomena which are thus described are independent. This is often 
the case in practical situations. In particular, absorption is a linear effect 
when the powers involved are not too large: when one adds radiation of dif
ferent frequencies or different directions of incidence, the powers absorbed by 
the substance can be added. Similarly, in many cases, the radiative energy 
emitted by a body is not changed by the radiation received by it. Neverthe-

Fig. 13.4. The orifice of an enclosure as a black body 
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less, there are exceptions where the luminance, as defined by (13.49), would 
depend on the received radiation and thus lose its interest. For example, in 
a laser or in a fluorescent lamp primary radiation stimulates new radiation, 
with the same or a longer wavelength, which would be absent, if the ac
tive material were left to itself. In what follows we shall restrict ourselves to 
processes where the emission is not aifected by absorption. 

13.3.3 KirchhofF's Law 

It is easy to calculate the energy exchanges through radiation between two 
bodies, maintained at different temperatures Ti and T2, when one knows 
their luminances and the coefficients characterizing their behaviour when they 
receive radiation. The Second Law puts restrictions on the possible values of 
these quantities, as it states that the global received energy balance must 
always be positive for the colder body. We shall apply it here in the limiting 
case where the two bodies have the same temperature; this will give us a 
remarkable relation between the luminance and the absorptivity. 

Let us assume that the body under consideration, with a temperature T, 
luminance L, and absorptivity A, is enclosed within a large volume at the 
same temperature. There is therefore around that body equilibrium radiation 
at the same temperature T, and no energy exchange can take place between 
the body and its surroundings. In fact, in the opposite case, one could produce 
work starting from a source at a single temperature, for instance, by using 
the radiation pressure of the extra radiation in one direction or the opposite. 
This argument shows, moreover, that we must have detailed balance: the total 
power passing through any surface, for any direction of the radiation, and 
for any frequency must be zero. Let us work out this balance across a surface 
element dS placed just at the exterior of the material under consideration. 
The only radiation passing through dS in the incident direction is that which 
comes from the walls of the enclosure. The power that it transports, which 
is the same as if the material were replaced by a hole, is given by (13.44), 
where we use (13.50), 

SW^ec = Lo{v,T)cos6dSd^u}dv. (13.51) 

In the opposite direction dS is crossed by the emitted radiation (13.49) and 
also by the radiation which is reflected, scattered, and possibly transmitted 
through the material, if it is transparent. 

Let us first restrict ourselves to a material which neither scatters, nor 
is transparent. The power reflected into the solid angle d^w around {6, ip) is 
equal to the product of the power (13.51) received in the direction (9, (p + n) 
and the reflectivity R{i',d,T), whence 

SWren = R{u,e,T)6W,ec 

= [l-A{u,e,T)]SWrec- (13.52) 
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We have assumed for the sake of simplicity tha t the absorptivity, and thus 
the reflectivity, does not depend on the azimuthal angle ip. Writing down the 
balance SWrec = ^W'emitted + ^W r̂efl we get for any direction (^, ip) 

5Wabs = A8W,,, = 5W^emitted. (13.53) 

This proves Kirchhoff's law (1859), 

'^^^ - ^'^^-^^ - r.'^^-^^ (13.54) 

It expresses tha t the ratio of the luminance to the absorptivity of a body in 
thermal equilibrium at a temperature T is equal to the black-body luminance at 
the same temperature , provided the body neither scatters, nor is t ransparent 
or fluorescent. 

If the body considered scatters light, the energy balance can no longer 
be drawn up for each direction {6,ip), or, more precisely, for each pair of 
directions {6,(p) and {6,(p + TT), since part of the radiation which is leaving 
comes from scattering. However, one can still write down for any surface 
element dS and for any frequency range diy tha t the absorbed energy equals 
the emit ted energy, as for (13.53), but after integrating now over the solid 
angle d^u: = sm0d6d(p. This gives a less detailed law than (13.54): 

d^u [L{u,9,if,T) - A{u,e,ip,T)Lo{iy,T)] cose = 0. (13.55) 

Nevertheless, more elaborate arguments show tha t Kirchhoff's law (13.54) 
remains valid for a very large class of substances, even scatterers which satisfy 
a symmetry condition for scattering. 

To see this, let us write down the thermal equilibrium balance, 

^W'rec = SW,^M,ei + 6W,,fi + 6Wsc, (13.56) 

across the surface dS. The last term is added to those which we considered earlier 
to prove (13.54) for a non-scattering substance; it involves a scattering coefficient 
D{i',9,(p,6',(p',T) which we simply write as D{M —> oj'), and which is defined as 
follows. Consider a beam incident from a direction ui = {6, (p) with unit flux and 
frequency v. The energy scattered by the surface dS into the solid angle d u>' around 
<»)' = {0',ifi') equals D(a) —> u)')dS d w'. For that unit flux, the power received by 
the surface dS, which makes an angle 0 with the beam, equals dS cos 6 so that 
energy conservation gives us the relation 

cos9[l-A{ij)- R{u!)] = d^J D{u, ^ J) (13.57) 
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between the absorptivity, the reflectivity, and the scattering coefficient. Let us re
strict ourselves to a substance where the reflecting and scattering properties are 
invariant under a reversal of the direction of propagation of the radiation. This 
means the symmetries £)(u; —» a; ) = D{u} —> u;) and R{6, if) = R{d, ip + TT). 

Under those conditions we obtain the power scattered into the direction u> by 
evaluating the integral over all incident directions u>" of the received radiation, the 
power of which equals Lo{i',T)d iv" dv in the incident soUd angle d M" and the 
chosen range of frequencies. We have therefore 

SWsc = dSd^Ljdv / d^J' D{J' ^ijj)Lo{v,T). (13.58) 

Using (13.51), (13.49), and (13.58) we get from the balance (13.56) 

Lo cose = L cos61 + ii(6l, (̂  + 7r)Lo cos6> + Lo I d^J' D{J' ^ ui). (13.59) 

If we now use the symmetry oiD and R and Eq.(13.57), we have proved Kirchhoff's 
law (13.54) for any direction. 

If we now consider a transparent substance, we must add to the right-
hand side of (13.56) part of the light received at other points of the body, 
which has passed through it. An extra complication comes from the fact tha t 
absorption occurs all through the body. An argument similar to the one which 
we have just used, nevertheless, shows tha t Kirchhoff's law remains valid, not 
only after integration over all directions and over the whole of the surface of 
the body, but even in detail. Finally, if the body is fluorescent its luminance 
is not sufficient to characterize its radiation, which now depends also on the 
received radiation; the energy balance, which is global, does not give much 
information, and Kirchhoff's law is violated. 

13 .3 .4 A p p l i c a t i o n s 

Together with conduction, to be studied in Chaps. 14 and 15, and convection, 
which is produced by fluid motion, radiation is one of the three simple forms 
of energy t ransport . Many problems of energy exchange by radiation can be 
solved by striking balances (Exerc.l3d, e, f, 15f, Probs. 15, 16) but we must 
take care to state which is the system we are analyzing. If we are dealing with 
a balance of energies exchanged hy a substance, we write down that its change 
in temperature per unit t ime is the ratio of the total power it receives and its 
heat capacity. If we are dealing with a balance through a surface, we write 
down tha t the total flux which passes through it vanishes in a stationary 
state, a special case of the conservation laws to be studied in Chap.14. 

Kirchhoff's law has many important practical applications, as it helps us 
to determine the radiation emitted by an arbitrary body. In fact, one can 
relatively easily measure the absorption coefficient A, or calculate it theo
retically, and hence, using Kirchhoff's law, one can derive the characteristic 
features of the emission. 
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Let us assume, for instance, that the body is perfectly absorbing, that is, 
"black". Prom. (13.54) it follows that its luminance equals LQ: all black objects 
emit the same radiation as the one which is found inside a closed enclosure 
at the same temperature. This property justifies to call this radiation the 
radiation of the black body. At very low temperatures, for instance, the black-
body radiation at 3 K in interstellar space, black bodies emit at radar (cm) 
wavelengths according to (13.54). At room temperature, a "black" body still 
looks black, as it mainly emits in the far infrared; when we heat it up, it emits 
in the nearer infrared, and it is still "black as in a black hole". However, it 
starts to emit in the visible towards 1000 K, where it looks dark red, for 
instance, a heated iron bar. 

The stars absorb practically all the radiation they receive and are thus to 
a good approximation black bodies (Exerc. 15f); their colour, red, yellow, or 
white, gives us immediate information about their surface temperature. More 
precisely, accurate measurements of the temperature of the surface layers of 
a star are made by an analysis of the observed spectrum and by comparison 
with a Planck curve. The Sun emits as a black body at 6000 K; this is the 
reason why it looks like a flat disk, since according to Lambert's law the 
emission from a surface element on the Sun is proportional to its apparent 
area. We can thus understand why the solar radiation has been a prototype 
for the study of the black body. Deviations from Planck's law, which are small, 
are only due to absorption by the corona and the terrestrial atmosphere. The 
emission at the level of the solar surface is strictly according to Planck's law, 
as the photons do not interact - the Maxwell equations are linear - and the 
solar surface is a perfect absorber. 

More generally, estimates of the absorptivity of an object enable us to 
determine its temperature through measuring the radiation it emits. For in
stance, near room temperature, one can evaluate from a distance the temper
ature within about half a degree by measuring the intensity of the millimeter 
wavelength radiation: infrared detectors. 

Let us now consider the emission of radiation by an arbitrary, not black, 
body. Rather paradoxically, Kirchhoff's law implies that such an emission is 
always lower than the black-body emission at the same temperature. A simple 
observation shows that a substance must absorb light in order to be able to 
emit in the visible: if one heats transparent glass, a material which absorbs 
badly in the visible, to 1000 K, one does not see it emit, whereas charcoal 
or iron brought to the same temperature emit red light. Similarly, the flame 
of a gas stove, of matter which does not absorb in the visible, is weakly 
luminous, notwithstanding its temperature. It becomes luminous and yellow, 
if one introduces a bit of salt into it, as sodium has two strong absorbing 
lines in the yellow. 

Therefore, if we want to augment the radiation of a body in a certain 
range of frequencies or a given direction, we should increase its absorptivity 
at those frequencies and in that direction. We could, of course, also increase its 
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temperature to increase the factor LQ in (13.54), but that has the drawback of 
increasing the emitted radiation globally, and thus decreasing the efBciency, 
if we are interested in mainly emitting in a given range of frequencies. 

These arguments play a role in the design of radiators; one must increase 
not only their temperature, but also their absorbing power in order that they 
can efficiently heat through infrared radiation. For instance, for that purpose 
one should paint them with substances which are mat and absorb in the 
infrared. 

Similarly, lighting by incandescent lamps requires high temperatures 
(2500 to 3000 K) which one can reach by using tungsten filaments (Coolidge, 
1906); but the efHciency in luminous energy remains small, as an important 
fraction of the radiation is emitted in the form of heat, in the infrared. Using 
Planck's law shows (Prob.l6) that only 8.5 % of the energy is emitted in the 
visible at 2700 K. To improve the yield one has tried to make the filament 
blacker, and to use substances which have a large absorptivity in the visible 
and a small absorptivity in the infrared. This is not a very efficient procedure, 
however, and the main technical advances have been related to increasing the 
temperature. In fact, the fraction emitted around 2700 K by the black body 
in the visible increases relatively by 15 % per 100 K. Moreover, it is not only 
that fraction which characterizes the optical efficiency, since the eye is not 
uniformly sensitive over the whole of the visible range. One should weight the 
emitted energy by the physiological sensitivity curve of the eye which has a 
maximum in the yellow and vanishes at the red (and blue) limit. At the tem
peratures of interest, the light emitted by the black body is still dominated by 
the red. It becomes progressively whiter as the temperature increases, which 
helps to improve the optical efficiency. One can characterize this efficiency 
by using photometry, through measurements where the energy is weighted 
by the sensitivity curve. The main unit, the lumen, is by definition a lu
minous flux equivalent to 1/683 W for yellow light at 5550 A; the unit of 
illuminance, the lux, is 1 Im m~^, and the unit of luminous intensity, the 
candela, is 1 Im sterad"^. An ordinary electric bulb consuming 75 W emits 
900 Im, which corresponds to a yield of only 1.8 %. Nevertheless, increasing 
the temperature is counteracted by the evaporation of the filament. To re
duce the latter one fills the bulb with an inert gas (Langmuir, 1909). In iodine 
lamps one manages to have the evaporated tungsten being condensed again 
on the filament (Prob.l6). Much higher yields are obtained using the lumines
cence of a vapour, for instance, sodium vapour, through which an electrical 
discharge passes, or by using fluorescent lamps: an electrical discharge in mer
cury vapour enclosed in a tube produces, without thermal equilibrium being 
established, ultraviolet radiation; that is absorbed by a fluorescent powder 
covering the interior of the tube which re-emits in the visible. The wall of 
the tube remains cold; Kirchhoff's law (13.54) does not apply to it, as the 
emitting substance is fluorescent and it manages to emit more strongly in the 
visible than a black body at the same temperature. Of course, Kirchhoff's law 
integrated over all frequencies does apply so that the total emission of the 
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fluorescent tube is less than tha t of a black body: the large power emitted in 
the visible is compensated by a nearly complete absence of infrared radiation 
and by ultraviolet absorption; the luminous yield is thus excellent. 

If, on the contrary, one tries to avoid losses of heat by the radiation, one 
gains an advantage by using badly absorbing, clear, or reflecting materials. 
This is the reason why the walls of dewar flasks, more commonly known as 
thermos flasks, which are used to maintain a liquid (for instance, a liquefled 
gas or hot coffee) at a low or at a high temperature are silvered. These 
thin metallic layers are strongly reflecting and thus radiate very little, which 
greatly reduces the heat exchanges (Exerc.lSe). Similarly, chromium-plating 
kettles has the effect of keeping liquids inside them hot for a longer t ime. 

The problem of the absorption of solar energy is subject to the same 
kind of considerations. This absorption will be small for strongly reflecting 
or scattering substances, such as white clothes or snow. If, on the other hand, 
one tries to increase it, one should use materials with a selective absorbing 
power, which as a consequence do not radiate strongly. For instance, glass in 
greenhouses (Exerc.lSf) lets the visible light pass through, but not infrared; 
as a result, the energy emitted by the Sun in the visible reaches the soil, 
but the energy emitted in turn by the soil, which would have the effect of 
cooling it if it were not for the greenhouse, is emitted in the far infrared 
and remains t rapped in the greenhouse. The improvement of solar collectors 
would similarly benefit from the use of specially chosen materials to take care 
of the limitations imposed by Kirchhoff's law. 

da„ 

Fig. 13.5. Energy balance in a solar furnace 

In this context one might ask the question of what temperatures one could 
reach in a solar furnace (Fig.13.5) by concentrating the received radiation as much 
as possible. Let dao be a surface element of the sun, which is sending to the optical 
system a beam d JIQ, which is absorbed by the surface element dcrj of the receiver 
at an incident direction {6, ip) and within a solid angle d wi. The power transported 
by the beam is LQ{V, TQ) dcjQ d u>o du, where TQ is the solar temperature (6000 K). 
For the sake of simplicity, let us assume that the radiation propagates according 
to the rules of geometric optics, or, what amounts to the same, that it is described 
by the motion of photons according to classical (relativistic) mechanics. It follows 
from Liouville's theorem (§ 2.3.3) that d r d p is conserved in this motion; as the 
velocity remains equal to c and the longitudinal momentum p to hv/c we find that 
dao d u>o = dai cos 9d'^u!i. The power absorbed by the receiver, at a temperature 
T, is thus at most, if we bear in mind that there may be losses, equal to 
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/ 
Lo{i^,To) A{i',9,(p,T) cos9dai dPjiidv. 

The receiver heats up until a permanent regime is established, where its losses 
through radiation balance the absorption of the above energy: 

/ 
LQiy^To) A{i',6,ip,T) cos6da^d i^idv 

/ Lo{iy, T) A{iy, e, ip, T) cos e da d^i^ dv, (13.60) 

an equation which determines T. In the second integral the integration domain over 
a and ui is larger than in the first integral, so that La{v,T) is necessarily smaller 
than La{v, TQ). The efficiency of a solar furnace is maximal when the receiver is not 
larger than the solar image {a minimum) and when it is illuminated at the largest 
possible solid angle (wi maximum), but, of course, one can expect to reach only 
temperatures below 6000 K. 

Summary 

The quantized vibrations of the electromagnetic field are equivalent to a gas 
of bosons, the photons, non-interacting relativistic particles with zero rest 
mass, which can be created or annihilated by matter ('§ 13.1.4). The thermal 
equilibrium of the radiation in an enclosure is characterized by the Planck 
distribution (13-42) of the energy as function of the frequency. The total 
energy and the pressure of the radiation vary as T^. 

A nearly closed enclosure emits as a perfectly absorbing black body. Black 
bodies are those which radiate the most strongly, according to (13.44) o,nd 
(13.45). Kirchhoff's law (13.54) which connects the luminance with the ab
sorptivity helps to determine the radiation from other bodies, and has many 
practical applications. 

Exercises 

13a P r e s s u r e and Internal E n e r g y 

1. Consider a gas of non-interacting particles whose energies are related 
to their momenta through e = ap^; r equals 2, if £ = p"^/2m and it equals 
1 for zero rest mass particles such as phonons, photons, or neutrinos. The 
particles may be fermions or bosons, with arbitrary spin, and possibly in the 
classical limit. The spatial dimension d may be 1, 2, or 3. Show tha t in grand 
canonical equilibrium the pressure is proportional to the internal energy per 
unit volume. 
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2. Prove this result also, using kinetic theory and leaning on §§ 7.4.1 and 
13.2.1. 

Solution: 

1. The number of states A/'(e) with energies below e = ap^, which is given by 
(10.40), (10.44), equals 

AT = ( 2 s+ 1 ) ^ j d''pe{e-ap'-) 

where K = {2S-\-1)-K '"^/h a '^T{d/2-\-\) is a constant. For one or two dimensions, 
fi is the length or the area of the box. The factor / in (10.47) depends on e only 
through X = /3e; it also depends on a. The grand partition function thus has the 
form 

lnZG(/3,a) = Knp-'^''' j dxx"'"'f{x,a). 
Jo 

/»oo 
d/r 

Using the relations U =-d\n ZQJdfi and :P = In ZQ/PO we find 

d n' 

which has (10.72) and (13.39) as special cases. 
2. The speed of the particles is de/dp so that the normal component of the 

velocity at the wall is arp^~ cosO. The momentum transferred to the wall equals 
\p cos 6\, both for an incident particle and for a particle leaving the wall, independent 
of whether the collision is elastic or inelastic or whether the particle was reflected, 
absorbed, or emitted. Denoting by ifi{p) d r dp the mean number of particles per 
unit single-particle phase space volume, with <p(p) = (2s + l ) / / / i , the total mo
mentum received by an element of area AS of the wall during a time interval At 
equals 

2 AS At / d!" p arp^ ^ cos 6 if{p) pcosO, 
Je<h-K 

where the factor 2 comes from the distinction between particles moving towards or 
away from the wall, which all have the same equilibrium distribution ip{p). More
over, the energy per unit volume equals 

— = I d'^p ap''ip{p). 

As the angular average of cos 9 equals l /d, we find again V — {r/d){U/Q). 
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13b D e n s i t y of P h o t o n s in t h e 3 K R a d i a t i o n 

1. Calculate the average density of photons in equilibrium radiation at an 
arbitrary temperature . Compare the value obtained for the 3 K radiation with 
the baryon (neutron and proton) density, estimated to be 1 per m^. Compare 
also the energy densities of radiation and of mat ter . Are there temperatures 
where we can t reat the photon gas as a classical gas? 

2. How do the pressure and the photon number change under an isother
mal expansion? And how under an adiabatic expansion? 

3. Assuming tha t the photons have undergone an adiabatic expansion and 
have remained in equilibrium since they were decoupled from the mat ter , 
when they had a temperature of 3000 K, find the expansion of the Universe 
since tha t t ime. Are our hypotheses correct? Wha t would have happened, if 
the photons had had a rest mass? 

Answers: 

1. The photon density is 

(AT) ^ A / 
n h^ J 

2.404 r̂ v 
^cp/kT _ I T^2 \fic / 

(see formulae at the end of this volume). For T = 3 K, we find 0.5 x 10® photons 
per m , much larger than the baryon density. However, the energy density of the 
photons, 6 X 10~ J m ' , is much smaller than the energy density of the baryons, 
vru? jQ ~ 1.5 X 10^^ J m~ . The average momentum (p) of a photon is U/c{N) = 
2.7fcr/c, whereas the mean distance between the photons (d) is of the order of 
hc/kT; the product (p) (d) is thus of the order of Ti, that is, never much larger than 
h so that the gas is never classical. 

2. V does not change, but N increases as i7 in an isothermal expansion, whereas 
V decreases as T (x O^ ' while N remains constant in an adiabatic expansion. 

3. In the adiabatic expansion, O oc T"2 so that the radius of the Universe in
creases by a factor 10 , the same result as in § 13.2.2. The hypothesis about thermal 
equilibrium is incorrect as the photons do no longer interact. The fact that the ex
pansion of the Universe produces simply a change in the temperature in the Planck 
law is due to the fact that the occupation factor only depends on the combination 
u/T and to the conservation of the photon number. If the photons had had a fi
nite rest mass, m, the expression -^JC^PQ + rn^c^/kTo occurring in the Bose factor 
at the initial time would have been transformed into -Jc^p^B?/Bj^ + rri^c^/kTa, 

which is not of the form yc^p"^ 4- rn?d^ jkT. The present distribution of the cosmic 
background radiation would not have looked like an equilibrium one. 

13c N e u t r i n o s in C o s m o l o g y 

According to present-day cosmological theories the Universe contains neutri
nos with a distribution which is the same as if they were in equilibrium at 
2 K. Neutrinos are fermions with a zero rest mass and spin | , but their helic-
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ity, the component of the spin along the direction of propagation, takes only 
one value. Associated with the electron and the positron we have a neutrino-
antineutrino pair, produced, for instance, in the reactions p+ + e^ ^ n + 
Ve, n ^ p+ + e~ + Ve; there are also two other neutrino pairs which are, 
respectively, associated with the n, p and t, t leptons. Up to a certain t ime i i , 
about 1 s after the Big Bang, the mat ter of the Universe was so dense tha t 
the neutrinos were in equilibrium with the baryons and the leptons - through 
reactions such as the above ones - which themselves were in equilibrium with 
the photons, for instance, through the reaction e~ + 6+ ti; y. The interaction 
between the neutrinos and mat te r is much weaker than tha t between photons 
and mat te r so tha t the t ime ti was much earlier than the t ime io; of the order 
of 10^ years, when the photons were decoupled from the mat ter ; the density 
had, in fact, to be much higher, and one can estimate the ratio RQ/RI between 
the corresponding dimensions of the Universe to be 5 x 10®. 

1. Wha t was the energy distribution at the t ime i i as function of the 
frequency for each type of neutrino? What was the relation between the 
chemical potentials /xi(ve) and /xi(ve)? 

2. Since the t ime i i the neutrinos interact no longer with anything, but 
their distribution changes due to the expansion of the Universe and the 
Doppler effect, as happened for the photons after to (see § 13.2.2). Show 
tha t the present energy distribution is the same as if the neutrinos were in 
equilibrium at a t ime i i at a temperature T and a chemical potential n, to be 
expressed as a function of the values Ti and fii at t ime i i . Does the expansion 
of the Universe change the total entropy of the neutrinos? 

3. Assuming tha t the numbers of neutrinos and antineutrinos are the 
same and tha t T ~ 2 K, estimate their present density and compare their 
energy density with tha t of the photons of the 3 K radiation. Wha t were the 
temperature Ti of the neutrino gas at ti, and its effective temperature Tg 
at the moment to of the decoupling of the photons? Compare that with the 
tempera ture TQ of the photon gas at to (see § 13.2.2). 

Answers: 

1. By multiplying the density of states and the Fermi factor, we get 

u{iy) dv c3]^e(?ii/-Mi)/fcTi ^ i j 

The equilibrium Ve + Ve ^ y implies that /^(ve) + ^(ve) = /i(Y) = 0. 
2. A neutrino created with frequency v\ is observed with the frequency v = 

viRi/R; the number of neutrinos per unit volume, udv/hty must be divided by 

(iZ/-Ri) . These changes retain the shape of M(î ), provided we replace Ti by T = 
TiRi/R and /^i by /i = ix\R\/R. The total entropy (10.37) remains unchanged 

under the transformation Ti|—> T, /ii|—+ /x, ^i|—> O = QI(R/RI\ ^ pi\~^ p = 
PiRi/R. 
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3. The symmetry between neutrinos and antineutrinos imiplies that their chem
ical potentials are equal; since they are also the opposite of one another, they must 
vanish. 

(iV) 

n 

u_ 
n 

6_ I (fip 

6_ I 
^cp/kT _^ I 

cpd p 
gCp/kT _|_ I 

5.41 /fcry 

7r2 [he) 

40 (ftc)3 " 

0.4 X 10^ m~^. 

3 x 10"^* J m"^, 

which is comparable to the value 6 x 10 J m for the photons. 

TR 
Ti 

TR 

Ri 
I O ^ O R 1 Mev, To = 

To 
2000 K. 

The higher temperature of the photons, TQ ~ 3000 K at time to is due to the re
heating of the radiation and the creation of photons produced by pair annihilations, 
e~ 4- e —> y, between the times t i and tg-

13d P l a n e t a r y T e m p e r a t u r e s 

Determine the temperature TQ of the surface of the Sun, assuming that it 
radiates as a black body and knowing tha t the power we receive outside our 
atmosphere is 1.4 kW m~^; the Sun-Earth distance is 8 light-minutes and 
the solar radius is RQ = 109 Ear th radii. 

Assuming tha t the planets behave as black bodies exposed to the solar 
radiation, calculate their temperature . Compare the results with the da ta 
from Table 13.3. 

Table 13.3. Measured planetary temperatures 

Temperature 

(illuminated 

side) 

Relative 

distance 

to the Sun 

Mercury 

600 

0.4 

Venus 

740 

0.7 

Earth 

295 

1 

Moon 

400 

1 

Mars 

250 

1.5 

Jupiter 

120 

5.2 

Saturn 

90 

9.5 

Uranus 

65 

19.2 

Neptune 

50 

30 

Hints: 

The total power emitted by the Sun is 4'!rRQaTQ, or, at a distance D and per 

unit area. 

<^TQRQ 

J D 2 • 
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Hence we find that TQ = 5700 K. The power reaching the Earth's surface does not 
exceed 1 kW m^ due to the absorption of some of the ultraviolet and infrared 
solar radiation by the atmosphere; 18 % of the power radiated by the Sun is in the 
UV and 35 % in the IR. 

By expressing that the power received by a surface at right angles to the solar 
rays equals the power emitted by that surface at a temperature T we get for Mercury 
and the Moon 

On the other hand, if the planet rotates so fast that its temperature is practically 
uniform, like the Earth, a factor 4 appears since the energy received is proportional 
to the apparent surface irR , whereas the emitted energy is proportional to the 
Earth's surface ATTR , whence 

The discrepancies between the results obtained and the observed data are due to 
the fact that the planets are not black bodies. In particular, their atmospheres can 
reflect or absorb, and reemit, part of the received radiation, selectively depending 
on the frequency. The very high temperature at the surface of Venus, for instance, is 
due to an important greenhouse effect: the atmosphere is opaque to the IR. A more 
precise calculation can be carried out considering balances at different altitudes and 
using Kirchhoff's law. 

13e D e w a r Flasks 

1. For industrial purposes and also for many physics experiments it is 
necessary to keep liquefied gases, such as N2, O2, H2, or He, as long as possible 
at low temperatures . Similarly, domestically, one wants to keep drinks cold or 
hot for several hours. In an ordinary receptacle most of the heat losses are due 
to conduction through the wall. Write down the heat flux #1 through a wall 
of thickness I and heat conductivity A, assuming tha t its interior side is at the 
temperature Ti of the liquid, and its exterior side at the temperature Te of 
the atmosphere (see Chap.14). Calculate this flux for Te = 300 K, Ti = 77 K 
(liquid nitrogen), I = 2 cm, A = 1 W m^^ K~^ (glass or porcelain). How long 
will it take 1 kg of liquid nitrogen with a vaporization heat of 5.6 kJ mol^^ 
to evaporate, if the area of the wall is 0.1 m^? 

2. An interesting idea for improving the insulation is to use a double wall. 
The air separating the two walls has a low conductivity, but it still t ransports 
heat through convection. One can suppress this convection by filling the gap, 
for instance, with expanded polystyrene, with A ~ 0.01 W m^^ K^-'. More 
efficiently, Dewar had the idea to pump the air out; to maintain a good 
vacuum he put charcoal inside the double wall which adsorbs gases strongly 
at low temperatures (Exerc. 4b). The only energy flux passing the double 
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wall is then due to radiation from the two sides. Calculate the flux #2 in the 
case where the sides behave as black bodies. 

3. Considerable progress was made by silver-plating the surfaces facing 
one another. Calculate the flux #3 , assuming a reflectivity R equal to 98 %. 

Results: 

1. The heat loss is 

It will take 3 min to evaporate 1 kg of nitrogen. 
2. By writing down the energy balance across a surface situated between the 

two walls we get 

^2 = (^{Te - T^) -^ 500 W m 
-2 

3. The flux emitted by each wall, which is given by Kirchhoff's law, equals AaT , 
where A = 1 — R. We must add to this the fluxes in both directions associated with 
successive reflections, namely 

^3 = AaT^{l -R + R^ -...) ' AaT^{l -R + R^ -...) 

n4\ 1 — -R _ ^ , , , - 2 = a{n'-T-^)^ 
+ R 

5 W m " 

which decreases the rate of nitrogen evaporation to 1 kg per 100 hours. 
Another way of calculating this is to write down the relations between the two 

fluxes $' and $" which are, respectively, directed from the exterior towards the 
interior, and conversely: 

* ' = AaT^ + R$", 

$" = A<JT^ + R$', 

$3 = $' - # " = A(T{Tt - T^) - R^3. 

Silver-plating helps us to gain a factor #2 /^3 — 100. In practice, one can then no 
longer neglect the losses at the orifice of the flask, due to conduction along the wall 
from the exterior to the interior, to convection in the neck, or to conduction across 
the stopper - which is the weakest point of a thermos flask. 

13f G r e e n h o u s e Effect 

1. Est imate the temperature reached in a stationary regime by the soil, 
assumed to be a black body, under the influence of solar radiation. Take the 
flux of tha t radiation to be equal to # = 0.8 kW m^^ and assume that the 
Sun is 30° above the horizon. Neglect heat losses of the soil due to conduction 
and to convection in the air. Wha t happens when the Sun is in the zenith? 
Wha t , when the sky is cloudy; assume tha t the light is scattered isotropically 
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without absorption by the atmospheric water droplets. Wha t happens if the 
soil has an absorptivity A? 

2. One puts glass or plastic sheets over the soil. These are assumed to be 
perfectly transparent in the visible, which is 60 % of the solar energy reaching 
the soil, and perfectly absorbing in the infrared, which is 40 % of the solar 
energy. Est imate the temperature Tj of the glass and the temperature T of 
the soil. 

Answers: 

1. The balance between the absorption and the emission of the soil gives 
^cos6l = o-T^j whence T = 290 K. When the Sun is in the zenith, T = 345 K; 
when the sky is cloudy, half of the radiation from the Sun goes towards the soil 
and the other half upwards, so that T = 245 K. The results are independent of A. 
In practice the values are lower, as there is heat exchange with the air and cooling 
during the night. 

2. The glass emits as a black body at room temperatures, since u{i') is significant 
only in the infrared, where glass is absorbing. Putting the flux just below it equal to 
zero in a stationary regime gives aT^ = $ cos 6, or Ti = 290 K. The soil receives the 
radiation from the glass together with the visible radiation from the Sun. Hence, 
aT^ = <TTI* + 0.6#COS6I = 1.6* cos 6*, or T = 325 K instead of 290 K. Moreover, the 
greenhouse reduces heat losses from the soil due to air convection (Prob.l5). 
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"Notre nature est dans le mouvement; le repos entier est la 
mort." 

Pascal, Pensees 

"Un desequilibre atroce, d'autant plus douloureux que j 'ai 
connu le calme, la foi sereine : I'inerte n'existe pas." 

Roger Martin du Gard, Jean Barois 

"On peut dire qu'on n'a fait, depuis Descartes, que changer ce 
qui ne change pas: conservation de la quantite de mouvement, 
conservation de la force vive, conservation de la masse et celle 
de I'energie; il faut convenir que les transformations de la 
conservation sont assez rapides." 

Paul Valery, Variete V 

"La symetrie plait a I'ame par la facilite qu'elle donne 
d'embrasser d'abord tout I'objet." 

Montesquieu, Essai sur le gout 

So far we have studied mainly stable or metastable equilibrium situations. 
Dynamics have only incidentally been involved, when we studied the ap
proach to equilibrium (§4.1.5), simple applications to a perfect gas (§7.4), 
and energy transport by radiation (§ 13.3). Nevertheless, there exists a great 
variety of non-equilibrium phenomena and many are of considerable practical 
importance: heat transfer, diffusion of charge carriers in a conductor, of neu
trons in a nuclear reactor, or of a solute in a solvent, mechanical dissipation, 
the dynamics of chemical reactions, and so on. Such effects, in particular, 
determine the efficiency of all industrial techniques as well as the way elec
tronic devices operate. Their theoretical study is, however, difficult. Whereas 
for the description of mat ter at equilibrium we have at our disposal a sys
tematic and unified approach based upon the formalism of the canonical 
Boltzmann-Gibbs distributions, the methods used to study the dynamics of 
non-equilibrium processes on the microscopic scale are manifold and very 
varied, depending on the context. We shall hardly enter this field of physics 
which is so enormous. Nevertheless, on the macroscopic scale there are sev
eral useful guidelines which help us in analyzing the most diverse problems. 
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We shall review those in the present chapter (§§14.1 and 14.2), afterwards 
connect them with the underlying microscopic physics (§14.3), and finally 
show how they can be applied in practical cases (§14.4). However, we shall 
not be able to justify them in as complete a manner as we were able to do in 
Chap. 5 and 6 for the principles of thermostatics - the term we use, in order 
to avoid misunderstandings, for equilibrium thermodynamics. 

Thermodynamics proper, that is, the study of the evolution with time of 
the processes which in an isolated system would lead to equilibrium is based 
upon a few principles that are more or less related to those of thermostatics, 
but that are sufiiciently different for it to be a separate discipline. We shall 
here once again meet with the two basic ingredients of statistical mechanics. 
On the one hand, the microscopic conservation, invariance, and symmetry 
laws should be rigorously taken into account (§§ 14.3.1 and 14.3.2) and they 
give rise to several laws of thermodynamics (§§ 14.1.3 and 14.2.4). It is true 
that when we go over to the macroscopic scale, certain microscopic symmetry 
laws will be broken. For instance, the irreversibility of most processes on our 
scale is in contrast to the invariance under time reversal of the microscopic 
equations of motion. However, even in such cases the microscopic symme
tries have a counterpart in the macroscopic dynamics (§§ 14.2.4 and 14.3.5). 
Notwithstanding their simplicity the conservation and symmetry laws are an 
effective aid for solving many concrete problems. In particular, in §§ 7.4 and 
13.3 we have seen the power of simple counting and balance techniques which 
were sufficient to understand and analyze phenomena such as the effusion or 
viscosity of gases or the exchange of energy by radiation. 

The second aspect of statistical mechanics, its probabilistic nature, shows 
up at the macroscopic scale through the entropy which is a measure of dis
order. In situations close to equilibrium, to which we shall restrict ourselves, 
the entropy can be evaluated at each moment as if the system were at equili
brium. It plays a central role in writing down the equations of thermodynam
ics close to equilibrium (§ 14.2.1) and its increase with time has important 
consequences for the macroscopic equations of motion (§ 14.2.5). 

Understanding the microscopic significance of the entropy and the reasons 
why it increases has been a major problem ever since statistical mechanics 
was born (§ 3.4.3). We have seen (§§ 5.3 and 6.1) how in thermostatics the en
tropy of a macroscopic equilibrium state can be identified with the statistical 
entropy S{D) — —kTrDln D, that is, with the lack of information associ
ated with the macro-state which describes this equilibrium on the microscopic 
scale. In non-equilibrium thermodynamics information theory will again pro
vide us with a solution for this conceptual problem, but the microscopic 
definition of the entropy will now be more subtle. In fact, the macro-state D 
evolves for an isolated system according to the Liouville-von Neumann equa
tion \hdD/dt — \H, D] which is governed by the Hamiltonian H; however, the 
associated statistical entropy S{D) remains constant with time. It can there
fore not be identified with the thermodynamic entropy. This difficulty which 
is the irreversibility paradox will be elucidated in §§ 14.3.3 to 14.3.5. To do 
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that we shall associate with D a macro-state DQ which at all times contains 
only the information relating to the macroscopic variables. This will enable 
us to define a relevant statistical entropy S{Do) which we shall identify with 
the macroscopic entropy. This quantity measures the disorder existing on 
the microscopic scale when only the thermodynamic variables are given. The 
analysis of non-equilibrium processes in statistical mechanics thus involves a 
so-called mesoscopic description in terms of the density operator DQ, which 
is intermediate between the macroscopic description of thermodynamics and 
the most detailed microscopic description which uses the density operator D. 

Even though we shall restrict ourselves to processes close to equilibrium, 
our field of studies remains broad and it covers the most diverse objects 
and phenomena (§ 14.1.2). We shall show that, notwithstanding this variety 
of problems, their statement in mathematical terms obeys common general 
principles. In our analysis we first of all split the system into subsystems with 
macroscopic states which at all times are characterized by the same parame
ters as in equilibrium (§ 14.1.1). We define in this way intensive variables, such 
as the local temperature, the local chemical potential, or the hydrodynamic 
velocity (§ 14.2.1). The system reacts to the non-uniformity of such variables, 
which tend to return to their equilibrium values; this gives rise to exchanges 
of energy, matter, or momentum between subsystems. We consider regimes 
where the resultant fluxes are sufliciently small to be linearly related to the 
differences between intensive variables (§ 14.2.2). The response coefficients 
introduced in this way govern the macroscopic dynamics, and the principles 
of thermodynamics provide relations (§ 14.2.4) and inequalities (§ 14.2.5) be
tween them. The scheme given in § 14.2.6 summarizes this unified approach 
and we shall illustrate its power in § 14.4 by examples of characteristic appli
cations, ranging from heat propagation to diff̂ usion, and from electrodynamic 
phenomena to the derivation of the hydrodynamic equations. 

14.1 Conservation Laws 

We start by giving a brief survey of various effects from the domain of ther
modynamics, and then we shall introduce fluxes, which are quantities char
acterizing the speed with which exchanges between subsystems take place. 
These fluxes obey conservation laws, valid under all circumstances, even far 
from equilibrium; we thus obtain a flrst set of equations for thermodynamics. 

14.1.1 The Problematics of Thermodynamics 

As we started to do in Chap.6, we shall distinguish henceforth thermostat
ics , which enables us to determine which equilibrium state an isolated system 
reaches at the end of its evolution, from thermodynamics, which governs the 
evolution with time itself. This terminology still remains, however, inadequate 
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as the two disciplines cover not only thermal, but also mechanical, chemical, 
or electrom^agnetic phenomena. Prom the beginning of the nineteenth century 
thermostatics and thermodynamics developed in parallel. The study of heat 
flow (Fourier, 1811) marks the start of the latter discipline which is earlier 
than that of the former discipline (Carnot's law, 1824; energy conservation, 
1842-47). However, the working out of the general principles of thermody
namics proper only dates from the first half of our century. In both cases the 
aim is to explore from a general point of view the macroscopic consequences 
of the conservation and symmetry laws, on the one hand, and of the existence 
of disorder on the microscopic scale, on the other hand. In particular, this 
enables us to obtain relations between various properties of systems, either 
at, or off equilibrium. 

In order to be able to place all problems of thermodynamics within a single 
framework we proceed as in thermostatics (§ 6.1.2). We start by dividing the 
system under consideration into macroscopic and homogeneous subsystems 
a, 6, c, . . . , and we characterize at any time the macroscopic state of the 
system by independent variables Ai{a), where the index i denotes the nature 
of the quantity Ai, such as the energy E or the number A'' of particles of a 
given type. The aim we have here in mind is to study how the Ai{a) vary 
as functions of t, whereas thermostatics uses the maximum entropy principle 
to determine the value of Ai{a) at equilibrium, when all possible exchanges 
between the subsystems have taken place. 

We restrict ourselves to the evolution of quasi-equilibrium systems; we 
have already met with an example (§ 7.4.5) in the framework of the physics 
of gases: even though globally the gas may not be in equilibrium, we con
sidered regimes in which it was locally at equilibrium, as we can subdivide 
it into volume elements each of which is at all times close to equilibrium. 
More generally, we are interested in macroscopic systems consisting of weakly 
coupled parts a, b, c, . . . . I f there were no coupling, each part would get 
to equilibrium, independently of the others, and its macroscopic state would 
then be characterized as in thermostatics (§§4.1.4 and 6.1.2) by giving the 
extensive variables. We assume that the same Ai{a) variables also suffice to 
characterize at all times the macroscopic state of the system when it evolves 
close to equilibrium. 

When we were dealing with true equilibria in thermostatics, we took the 
Ai{a) to be conservative variables. We could, however, extend the results to 
metastable equilibria, provided we included among the Ai{a) nearly conser
vative quantities. We shall see (§ 14.3.5) that in thermodynamics proper the 
existence of conservation laws allows the Ai{a) to vary over macroscopic times 
scales, and our formalism will again apply to nearly conservative variables 
which themselves evolve slowly. For instance, we can include among the Ai{a) 
an order parameter such as the magnetization in a ferromagnet, or a number 
of unstable particles such as neutrons. Nevertheless, we shall for the sake of 
simplicity usually refer to the Ai(a) variables which at any time characterize 
the macroscopic state as the "conservative" variables. 
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We shall transpose the analysis of §6.1.3 to dynamics; we distinguished 
there two stages when looking for the maximum of the statistical entropy 
which determined the equilibrium macro-state. On the one hand, there exist 
within each subsystem mechanisms (§4.1.5) for approaching equilibrium and 
we assume these to be much more efficient than those which, on the other 
hand, tend to move the whole system towards global equilibrium. Under such 
conditions each subsystem can during its evolution adjust itself near an equi
librium macrostate characterized by the A,(a) variables. However, due to the 
coupling between the subsystems a, b, ... , the Ai (a) are no longer constants 
of the motion, in contrast to what would be the case if each part were iso
lated. If the coupling between the subsystems is weak, the characteristic time 
associated with bringing about global equilibrium is much longer than the 
time corresponding to bringing about internal equilibria. This introduces two 
time scales where the one is considered to be macroscopic and the other to 
be microscopic. In such a regime, called either a quasi-equilibrium or a local 
equilibrium regime, we can, if we observe phenomena on the macroscopic time 
scale, assume that each of the subsystems a, 6, . . . is at all times nearly in 
equilibrium. However, the parameters characterizing its macroscopic quasi-
equilibrium state change - slowly - because there is a tendency to move 
towards global equilibrium; thermodynamics is interested in just this evolu
tion. 

As in thermostatics (§6.1.2) and even more often here, the slow macro
scopic variables Ai{a) cannot always easily be identified, for instance, when 
we are dealing with hysteresis effects. Only comparisons with experiments en
able us to know whether the macroscopic description which we have adopted 
is a proper one and whether there are additional hidden variables which we 
need introduce. 

14.1.2 Different Kinds of Processes 

The abstract formulation which we have just given covers, in fact, a large 
variety of situations and actual phenomena. 

(a) This variety is, to begin with, connected with the nature of the quan
tities involved. Thermal or mechanical phenomena are associated with trans
fers of energy, chemical or diffusion phenomena with transfers of neutral 
particles, and electromagnetic phenomena with transfers of charges. All this 
is the dynamic counterpart of properties studied in thermostatics where, how
ever, the substances almost always were fixed in space (Exerc.4e and 7b are 
exceptions). For instance, for a fluid in equilibrium the conserved extensive Ai 
variables were the energy, the number of particles, and the volume. In ther
modynamics we must in addition include among the state variables Ai{a) the 
components of the momentum, which are conservative quantities on the same 
footing as the energy, as soon as we are interested in a fluid, or a solid, in 
motion. Transfer of momentum between one part and another of the system 
then plays an essential role. 
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(b) A second classification of thermodynamic processes is based upon the 
spatial organization of the parts of the system. In most cases of interest the 
interactions which couple the subsystems are short-range ones, so that trans
port takes place gradually between subsystems which are close to one another 
in space. The simplest problems involve two or just a few homogeneous sub
systems which are in contact with one another and each of which is practically 
at equilibrium, or even a single homogeneous system interacting with an ex
ternal reservoir. The prototype of this situation is thermal contact (§§5.1.2 
and 6.3.3) between two homogeneous substances which can exchange heat 
through their common boundary and the evolution of which with time one 
now tries to find. (Note that the dynamics of heat exchange through radiation 
which we studied in § 13.3 do not enter the general macroscopic framework 
which we give here, as one of the subsystems - the photon gas - remains far 
from equilibrium due to the absence of interactions between photons.) Simi
larly, in a sufficiently slow osmosis process the two solutions which exchange 
particles through a semi-permeable partition can be considered as subsystems 
a and b which are practically at equilibrium; an analogous situation occurs in 
electrochemistry, or when a liquid evaporates into its undersaturated vapour, 
or again when we are dealing with the adsorption or desorption of a gas by 
the walls of the container which encloses it. The friction of two solids, each 
of which is treated as being at equilibrium, produces transfer of momentum 
from the one to the other, if their velocities are different. It can similarly be 
useful to consider, as is often done in thermostatics, that two fluids separated 
by a mobile piston can exchange volume when their pressures are different, a 
transformation which occurs in a quasi-equilibrium regime if it is sufficiently 
slow. 

A situation which is slightly less simple but which often occurs is the one 
where the subsystems a,b,... form a continuum in space. That was the case in 
§ 7.4.6 for a gas the temperature or the velocity of which changed from point 
to point. As we discussed in § 7.4.5 we are dealing with local equilibrium if we 
can divide the system into volume elements w which are (i) sufficiently large 
for each of them to remain practically at equilibrium over macroscopic times 
under the action of collisions between the molecules, but (ii) sufficiently small 
so that the intensive variables which characterize this local equilibrium, such 
as temperature, chemical potential, velocity, pressure, are practically con
stant inside each of them. For this reason the establishing of a hydrodynamic 
regime, that is, a regime with transport in local equilibrium, requires not only 
that typical times, but also the typical lengths for the establishing of equili
brium are small as compared to the transfer times and to the distances over 
which the state of the matter changes. Here again there are many and impor
tant examples: heat flow in a solid or a fluid with a non-uniform temperature 
(Fourier's law), diffusion of neutrons in a nuclear reactor, doping, that is, mi
gration of impurities in a heated solid (Exerc.l5a). The electrical current is 
a transport of charged particles - ions in an electrolyte, electrons in a metal. 
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conduction electrons or holes in a semi-conductor - under the action of a spa
tial variation in the chemical potential; this variation is itself proportional to 
the macroscopic electromotive force. In the mechanics of continuous media 
one can similarly divide the solid or fluid matter into macroscopic homoge
neous volume elements. For instance, in the flow of a fluid in the laminar 
regime, the various layers move at different velocities, which causes trans
port, from one layer to another, of momentum parallel to the flow; Newton's 
law defining the viscosity and the hydrodynamical Navier-Stokes equations 
pertain to this situation. 

Continuous media can be described in mechanics in two different ways. 
In the so-called Lagrangian description, the subsystems a, b, ... are volume 
elements of the matter which follow the latter during its motion and change 
its shape with it; each subsystem is closed, that is, it does not exchange matter 
with its neighbours. This description is not very adequate at the microscopic 
scale or when diffusion takes place. We shall in all what follows systematically 
adopt the so-called Eulerian description, where the subsystems a, b, . . . are 
volume elements w which are fixed once and for all. Each subsystem is open 
since the particles in it change with time, entering or leaving uj. It has thus 
a more abstract nature than the Lagrangian description since we are dealing 
with a region in space and not with a material object. 

Finally, we have already met with quasi-equilibrium phenomena where 
the weakly coupled subsystems a, b, . . . were superimposed upon each other 
in space. We saw, in particular, that it is useful to analyze in this way the 
chemical reactions in gases or dilute solutions (§§6.6.3 and 8.2.2): the sub
systems a, 6, . . . in that case represent the sets of molecules of the various 
kinds, and the Ai variables include the numbers of elementary constituents 
- atoms, ions, or radicals - which can be transferred from one set of molecules 
to another. This "chemical" situation is found also in all cases where a set 
of particles of a given kind - a subsystem - can be transformed into another 
one, as in the problem of ortho- and parahydrogen (§8.4.5); the reactions 
which produce these transformations should, however, be less efficient than 
the thermalization phenomena so that each population remains close to ther
mal equilibrium. An important example is that of semi-conductors (§§ 11.3.4 
and 11.3.5). Thermal equilibrium can rapidly be established both amongst 
the conduction electrons and amongst the holes in the valence band; however, 
the processes which annihilate or create a pair of positive and negative charge 
carriers are less efficient. A semi-conductor sample can thus present a quasi-
equilibrium state for each of the populations a and b of the electrons and of 
the holes, with independent chemical potentials, although this sample is not 
at equilibrium as far as the numbers of charge carriers of the two species are 
concerned; if they are, for example, in excess, the ensuing recombination pro
cess enters the general framework of "chemical" reactions in a homogeneous 
phase. 
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(c) A last classification of the processes is related to their temporal organi
zation. We have already noted (§§ 7.4.5 and 7.4.6) the existence of stationary 
phenomena where the macroscopic s tate of the system does not change with 
t ime, although remaining permanently in a non-equilibrium state: viscous 
flow, heat t ransport , or electricity t ransport through a conducting medium. 
This can occur only if the system is not isolated but weakly coupled to several 
exterior reservoirs - for example, two thermostats at different temperatures , 
or particle or momentum sources - which prevents the establishment of global 
equilibrium. In this case, transport of energy, particles, and so on, takes place 
across the system from one reservoir to another, in a local equilibrium sta
tionary regime, without any possibility of global equilibrium being reached. 

It is clear tha t thermodynamics also applies to more general forced 
regimes, where the system responds to a varying external perturbation which 
prevents it from remaining at equilibrium; this perturbat ion should change 
sufficiently slowly so that the local equilibrium of the subsystems a, b, . . . 
be practically reached at all t imes. For instance, the propagation of sound or 
of electromagnetic waves in a medium falls into this category; it, moreover, 
presents us with a wave aspect. Amongst the phenomena produced by the 
response of a system to an external perturbation, resonances are the most 
striking ones which show up best in a periodic regime (Exerc. l4b). All the 
same it is important to note that here we t ry only to describe processes which 
are sufficiently slow for the substances to have t ime to adjust to the external 
action. High frequencies give rise, for instance, to memory effects which fall 
outside the framework of thermodynamics of systems close to equilibrium, 
but which can be studied in statistical mechanics. 

Finally, if an isolated system is initially not in global equilibrium, it will 
re turn to it through a local equilibrium regime, provided the departure from 
global equilibrium is not too large. This re turn to global equilibrium is a 
macroscopic relaxation process. Because the microscopic mechanisms under
lying response and relaxation are the same, these two regimes are related to 
one another, even for processes far from equilibrium (Exerc. l4b). 

In § 1.4.5 we gave an example, namely, that of magnetic resonance - electron 
paramagnetic resonance or nuclear magnetic resonance. Equation (1.44) governs the 
dynamics of the total magnetic moment M in a field B if we can neglect the spin-
spin interactions and the interactions of the spins with the other degrees of freedom. 
These interactions are responsible (Exerc.2a) for the relaxation of the magnetic 
moment towards the direction of the fixed field B and towards the equihbrium value 
(1.37). An experimental study of the relaxation thus gives us information about 
the interactions which operate within the substance and is a valuable investigative 
method. Nuclear magnetic resonance of the hydrogen nuclei and their relaxation, for 
instance, enable us to measure the hydrogen density in a biological tissue; chemistry 
similarly uses this effect to determine the structure of molecules. The principle of 
the measurements is simple. We observe the magnetization as function of time in the 
presence of a fixed field B and a varying field at right angles to B. If this variation is 
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periodic with a frequency which sweeps the Larmor frequency, we observe resonance 
and its shape is related to the relajcation (Exerc.l4b). We can also observe the 
relaxation directly, if we change the field suddenly. 

In the case where the spin-spin interactions are more efficient than their inter
actions with the other degrees of freedom the relaxation takes place in two stages. 
The first stage leads towards a state of equilibrium of the spins by themselves, 
which is characterized by a spin temperature. This can differ for several hours from 
the temperature of the rest of the substance and can even be negative (Exerc.la). 
The other interactions - called the "spin-lattice" interactions, because they include 
the interactions of the spins with the phonons, that is, with the lattice vibrations -
eventually lead to a complete relaxation with an equalization of all temperatures. 
Spin echo experiments (§ 15.4.5) rely on the existence of different relaxation times 
for spin-spin and spin-lattice processes. 

14 .1 .3 R e l a t i o n s B e t w e e n F l u x e s , Currents , a n d D e n s i t i e s 

We want to determine the change with t ime of the macroscopic variables 
Ai{a). Their temporal evolution will be controlled by the dynamics of trans
fers from one subsystem to another of each of the conservative quantities Ai. 
We thus define the flux, 

^iia^b) = -^i{b—^a), (14.1) 

associated with the quantity i as the amount which is transferred from a to 
b per unit time. When a, b, . . . denote discrete subsystems, the exchanges 
take generally place between neighbours because of the short range of the 
interactions, so tha t the fluxes (14.1) only exist if a and b are close to one 
another. 

The conservation laws for each of the quantities i, such as the energy, the 
particle numbers, or the momentum components, enable us to express the 
change with t ime of the Ai{a) quantities for each subsystem a as function 
of the fluxes towards the subsystems b with which a is coupled: using the 
definition (14.1) of the fluxes we have the macroscopic balance 

dAjja) 

dt 
+ J2 ^M ^ &) = 0. (14.2) 

The conservation equation (14.2) assumes tha t the system is isolated from 
the exterior. If it interacts with external sources - for instance, if one of its 
subsystems a exchanges heat with a thermostat - we should either include 
those sources amongst the subsystems b in (14.2), or isolate their contribution 
in the form of an extra term. 

dAi{a) 

dt 
-\- y ^ # i ( a —> b) — #j(sources —> a). (14-3) 
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In the example of a thermostat , and if Ai is the energy, the right-hand side 
of (14.3) is the heat flux given up by the thermosta t to the subsystem a. 

A similar situation occurs in neutron t ransport problems for the particle 
number Ai'. if the medium in which the neutrons move and are diffused ab
sorbs them, it gives rise to a violation of the conservation, but if its effect 
is known, we can consider it as a source and introduce its, negative, contri
bution into the right-hand side of (14.3); the same applies when we wish to 
take the finite lifetime of the neutrons into account. More generally, a nearly 
conservative variable which evolves slowly according to known laws obeys a 
balance equation of the type (14.3). The source term, which may be positive 
or negative, in that case does not describe a coupling with the exterior, but 
accounts for creation or decay processes associated with the violation of the 
conservation law. 

In the case of chemical kinetics and similar reactions - electron-hole anni
hilation in a semiconductor, for instance - we take for the Ai the numbers Nj 
of molecules of the various species (§6.6.3). (Chemists usually take the num
ber of moles.) It is convenient to parametrize these numbers by the degrees 
of progress M^''^ of each of the possible processes (6.74), namely 

E"! ('^^Xj^^O 

for each k. The dynamics are then characterized by the reaction speeds, which 
are the time derivatives of the degrees of progress M^''^; these speeds can be 
identified with the chemical fluxes #fc. We adopt the sign convention tha t ^ j . 
is positive when the reaction (6.74) is proceeding from left to right, tha t is, 
(6.75) or (6.76) from right to left. The changes in the numbers Nj can then 
be calculated exactly as we did in (6.77) for the infinitesimal displacements 
dM^^^ of each reaction in the vicinity of chemical equilibrium. At all t imes 
we thus find 

^ + 5 : . ^ ^ , = 0 . (14.4) 
k 

The dynamical equations (14.4) take into account all the conservation laws 

characterized by the values of the stoicheiometric coefficients v, which ap

pear in the various possible reactions (6.74). 

In the point of view, which is suitable for reactions in the gas phase or in 
solution, where we treat each set of molecules Xj as a different subsystem j , the 
Ai{j) variables are the number of atoms of each species in each of the subsystems, 
for instance, iV(H/H20), iV(H/H2), Ar(0/H20), and iV(0/02) for the reaction 
2H2 4- O2 —> 2H2O, which is the irreversible version of the equilibrium (6.75). The 
flux #H of H from H2 to H2O satisfies the law (14.2), which here expresses the 
conservation of the total number of H atoms; the same is true for #o- Moreover, 
the identity Ar(H/H20) = 2JV(0/H20) implies that $ H = 2$o- These relations 
are clearly equivalent to (14.4). 
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When the macroscopic state variables vaxy continuously, the division of 
space into volume elements ui, which are sufficiently large for the mat te r to be 
almost at equilibrium within each of them and sufficiently small so tha t the 
mat te r inside is almost homogeneous, enables us to regard w as infinitesimal 
on the macroscopic scale even though its dimensions remain large compared 
to all typical microscopic lengths. The subsystems are then volume elements; 
we characterize them by the three spatial coordinates r which vary continu
ously and we get rid of the elementary volume by redefining the variables, no 
longer as the extensive quantities Ai{a) themselves, which are proportional 
to u!, but as their values per unit volume, denoting them by Qi{r) = Ai{a)/u!. 
Depending on what we are dealing with, gi{r) will thus be an energy, particle, 
charge, (one of three) momentum (component) density per unit volume. Of 
course, the hypothesis of local equilibrium implies tha t Qi changes slowly in 
space and t ime. 

Similarly, the flux (14.1) between two neighbouring volume elements is 
proportional to the area which separates them when we go over to the con
t inuum limit and when the transfer takes place locally. More precisely, the 
flux across a fixed surface a with an oriented normal n , which is a scalar, 
can be derived from a vector field Ji{r,i) as follows: 

#i(<j,0 = j da {n-Ji{r,t)). (14.5) 

The vector Ji, which points in the direction of the flow of the quantity i at 
the point r , is the current density associated with tha t quantity. It has three 
components for the energy, the number of particles of a given kind, or the 
charge, and 3 x 3 components for the momentum, as i itself has in that case 
three possible values. Although properly speaking the flux is (14.5) we shall 
often employ the usual terminology of "flux" to denote the current density 
Ji. 

The conservation law (14.3) applied to a flxed volume il bounded by a 
surface cr with external normal n gives according to (14.5) 

d 

dt 
I d^reiir,t)+ I da {n-Ji{r,t)) = 0. 

From Green's formula it then follows tha t 

0 / d^r 
Jn 

— Qi{r,t) +div J i{r,t) 
in 

for any volume J?, so that we find at any point 

^ + d i v J i = 0 
at 

(14.6) 
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This form of a conservation equation for an inhomogeneous system, in terms 
of a density Q and a current density J , is often called the continuity equation 
associated with the conserved quantity i. 

As in the case of (14.3) the existence of exchanges with the outside, added 
to the exchanges between neighbouring elements which are described by the 
currents J j , is taken into account by means of source terms to be added to the 
right-hand side of (14.6). If, for instance, i denotes a momentum component 
Poc, the conservation law describes the change with t ime of the momentum 
contained in an infinitesimal volume; this change is due, on the one hand, 
to the fact tha t particles enter and leave the volume concerned, and, on the 
other hand, to the forces exerted on the particles inside that volume. Indeed, 
the change in the momentum of one single particle during a t ime dt is equal 
to the impulse / dt tha t is receives, where / is the total force exerted on tha t 
particle. Thus, if there are forces applied from the outside, such as electrical 
or gravity fields, we must add to the right-hand side of (14.6) the contribution 
per unit volume from those forces. Their work also contributes to the right-
hand side of the local energy balance (14.6). On the other hand, we shall 
see tha t the viscosity forces, which are due to the short-range interactions 
between particles, are included in J , . More generally, the introduction of 
source terms is necessary for systems which are not isolated or for which the 
conservation laws are violated in a controlled manner, as we have indicated 
above in the example of neutron t ransport . 

The local conservation laws (14.2) or (14.6) of non-equilibrium thermo
dynamics, which are the dynamic form of the First Law, are more detailed 
than the global conservation laws of thermostatics. Those, in fact, concern a 
complete, isolated system for which it follows from (14.1) and (14.2) that 

I Y^ Ma) = 0. (14.7) 
a 

Moreover, in thermostatics we are only interested in comparing values at the 
initial and the final t imes and we use in tha t case only the integral of (14.7) 
rather than (14.7) itself. 

The local character of the conservation laws (14.2) or (14.6) gives rise to some 
difficulties when the system contains parts which interact with one another through 
macroscopic-range forces. In particular, the attribution of the energy associated 
with the interaction field to some specific parts of the substance becomes ambiguous, 
if charged or magnetized substances are present. We have seen in the thermostatics 
framework (§ 6.6.5) how one can, depending on the procedure, arrive at different, 
but, of course, equivalent, formulations. 

We shall return in §§ 14.3.1 and 14.3.2 to a justification of the local con
servation laws in the framework of statistical mechanics. 
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14.2 Response Coefficients 

We have introduced the macroscopic, local, extensive Ai variables (or the 
corresponding densities Qi) and the fluxes $i (or the current densities Ji) 
which characterize the rates of exchanging the Ai quantities, and we have 
written down the conservation laws which connect them. The fluxes are pro
duced by the deviations of the system from equilibrium; we shall see that 
these deviations are measured by the affinities. We shall write down the em
pirical equations which relate the fluxes to the affinities and we shall study 
their general properties. This will eventually lead to a systematic method for 
applying thermodynamics to some problem or other. 

14.2.1 Local Equations of State 

We know (§ 6.2.2) that the global equilibrium of an isolated system is deter
mined by writing down that the intensive quantities 7̂  of the same nature 
are equal for all subsystems which can exchange the quantity A^. In the local 
equilibrium regime each subsystem a is at any time almost at equilibrium. 
It is thus natural to start by introducing its intensive variables 7, (a) which 
are calculated as if the subsystem did not interact with its neighbours. The 
situation is then the same as in Chap.6: the exchanges are inhibited and all 
Ai(a) variables are quenched. 

This enables us to define the instantaneous thermodynamic entropy of the 
system as the sum of the thermostatic entropies of each of its parts: 

S = J2 SaiiMa)}). (14.8) 
a 

In this definition we have neglected the coupling and the correlations between 
the subsystems; this is legitimate if the coupling is weak and the fluxes small, 
which are the conditions necessary to ensure quasi-equilibrium. The Ai{a) 
variables take the values which are observed at the time considered, so that 
S will depend on the time. As in equilibrium, the entropy (14.8) is additive. 
The intensive variables which are conjugate to the conserved quantities Ai 
are, for each subsystem, given by 

dSa dS 
dAi(a) dAi{a) 

these relations are the equations of state. They are the same as (6.6) at 
equilibrium; the only difference with thermostatics consists in the fact that 
the 7J of neighbouring subsystems can here be different, whether exchanges 
are permitted or not. 

For instance, if Aj is the energy, 7£;(a) = 1/T{a) = kp(a) is the local tem
perature which can vary from one part to another. For the number of particles 
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of a given kind, 7JV = —IJ-/T ~ —ka is similarly related to the local chemical 
potential n{a). Let us look for the interpretation of the intensive variables 
7Pa which are associated with the momentum components P^ (§4.3.3 and 
Exerc.4e). To do this, we consider a system of mass M at equilibrium and 
at rest in a given Galilean reference frame and let SQ{UQ) be its entropy as 
function of the internal energy C/Q; its total momentum is equal to zero. Let 
us assume that this Galilean frame moves uniformly with a velocity u with 
respect to a second frame which is taken to be fixed. With respect to this new 
frame the system is still in equilibrium, but with a momentum P = Mu, an 
energy UQ + P^/2M, and an unchanged entropy. This statement is intuitive, 
but we shall derive the result from statistical mechanics in § 14.4.4. As func
tion of the constants of the motion, that is, the total energy U and the total 
momentum P , we have thus for the entropy 

S{U,P) = SoiUo) = ^o(u-^y 

so that the intensive variable 7Pa which is the conjugate of P^ is given by 

ds ds ( p„\ 1 ,,^^^, 

It is thus directly related to the velocity u of the system with respect to 
the fixed reference frame. In non-equilibrium thermodynamics we shall be 
dealing with the local velocity, which for the subsystem a is equal to u{a) = 
P{a)/M{a) by virtue of the Galilean invariance. 

When the subsystems form a continuum with slowly varying densities 
gi{r, t), the summation over a in (14.8) is replaced by an integral over space 

S = I d^rsi{giir,t)}), (14.11) 

where s denotes the entropy density, that is, the entropy per unit volume 
of thermostatics. Because of the extensivity of substances at equilibrium the 
latter - the entropy per unit volume - is a function of the densities £>, of 
the conservative quantities. The volume elements are fixed, but the particles 
can enter or leave them so that each of them is an open system. The local 
intensive variables are thus, at all times, defined as the functional derivative 
of 5, 

7.(̂ ) = Pf\ = J^y (14.12) 
dQi{r) 6Qi{r) 

which is equivalent to the identity 

dS = I d^r 7i(r) d0i{r) (14.13) 
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for arbitrary changes dgi{r) of the densities at each point. In this way we can 
describe substances the temperature or the chemical potential of which are 
functions of the coordinates; this we had not done until now. 

For chemical type of reactions in the gas phase where we introduce sub
systems which are superimposed upon one another in space (§14.1.2) the 
thermodynamic entropy is again the sum of those of each of the species of 
molecules (§8.2.2) so that (14.8) remains valid. 

We shall not follow here the tradition of thermodynamicists which consists 
in exchanging the roles of the energy and the entropy. We submitted to 
that practice for the study of systems in equilibrium (Chaps.5 and 6) even 
though the energy plays the same role as the other constants of the motion 
and though the entropy follows from statistical physics as the most natural 
thermodynamic potential. However, now there is a risk of misunderstandings 
and it is better to use the natural variables 7 and afterwards to translate the 
results in terms of the traditional variables T, fi, or u. 

The equations of state (14.10) or (14.12) give us a set of relations which at 
each time connect the Ai (or Qi) variables with the 7, variables for the same 
subsystem (or at the same point in space). These relations ajre the same as 
in equilibrium and once we know one equilibrium thermodynamic potential 
- it does not matter which one - we can write them down. The instantaneous 
quasi-equilibriura state can thus be characterized by giving the variables of 
one kind or of another kind, for which it now remains to obtain the evolution 
equations. 

14.2.2 Responses of the Fluxes to the Affinities 

When the system reaches global equilibrium the ji variables of the same na
ture associated with two subsystems which are in communication with one 
another are equal (§ 6.2.2). The deviation from equilibrium is thus character
ized by the affinities which are in general defined as the differences, 

ri{a,b) = ^i{b)-ji{a), (14.14a) 

between the intensive variables of neighbouring subsystems. For the chemi
cal reactions (6.74) the equality of the 7̂  at equilibrium is replaced by the 
conditions (6.78) which are linear relations between the chemical potentials 
fj-j = —T'jj of different species X^. It is thus natural to introduce for each 
possible chemical reaction (6.74) a chemical affinity 

^̂  - E -r (- f)' (14.14b) 

which is the counterpart of the definition (14.4) of the chemical fluxes ^fc. 
These affinities measure in how far the equilibrium conditions (6.78), that is, 
-Tfc = 0, are violated. Finally, in the case of a continuum, a difference between 
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neighbouring volume elements becomes a gradient and the affinity about i is 
defined as 

Vji{r,t). (14.14c) 

Again, it describes the local deviation from equilibrium where •yi{r,t) would 
be uniform in space. All affinities (14.14) are directly connected with differ
ences or gradients of the temperature, the chemical potential, the velocity, or 
the pressure: depending on which exchanges we are considering, ji is l /T , or 
-fi/T, or -u/T, or V/T. 

Let us consider an isolated system; we thus include in it the sources, for 
instance, the thermostats, with which the system studied is possibly coupled. 
In global equilibrium two subsystems a and b which are in contact do not 
exchange anything and all fiuxes ^i(a —> b) vanish; moreover, their affinities 
ri{a,b) vanish for all quantities i which may be exchanged. The existence of 
non-vanishing affinities is a perturbation of the relative equilibrium situation 
between a and 6, and the system "responds" to it by the creation of fluxes 
which tend to reestablish equilibrium. These fiuxes which are created between 
a and b are functions of the variables 7i(a) and 7i(6); they vanish at the same 
time as the affinities 7i(fe) — 7i(a). In order to simplify the discussion we shall 
assume that the latter, and hence also the fluxes, are sufficiently small that 
a linearized approximation is justified. We thus define the linear responses 
Lij{a,b) through the relations 

$i{a^b) = ^ Xi,(a,6)r,(a,6), (14.15) 

which express the fluxes as functions of the affinities for each pair of subsys
tems. These responses are empirical coefficients from the macroscopic point 
of view but, in principle, can be calculated in statistical mechanics. They 
depend on the two subsystems a and b and their coupling and are functions 
of the intensive variables 7i, which in the linear approximation considered 
should be regarded as being practically the same for a and b. As both the 
fluxes (14.1) and the affinities (14.14a) are antisymmetric in the exchange 
of a and b we have Lij{a,b) = Lji{b,a). Of course, the more difficult the 
exchanges, the smaller the coefficients L are, and some of them vanish if the 
corresponding transfer is forbidden. For instance, if a and b cannot exchange 
particles, the flux ^N{O- ~^ b) is always zero, so that the coefficients Lj^j{a, b) 
vanish. The existence of coefficients Lij with i ^ j reflects the possibility 
that one kind of affinity can produce a flux of another kind, for instance, a 
temperature difference producing an electric current. In the applications to 
chemical type of kinetics the indices i and j in (14.15) include the indices k of 
the possible reactions, the chemical affinities (14.14b) appear amongst the J ) , 
and the chemical fluxes $k amongst the #i; if there are several homogeneous 
phases, they are referred to by the subsystem index a. 
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Two complications appear for continuous inhomogeneous systems. On the 
one hand, the fluxes Ji, like the afiinities (14.14c), are vectors. The response 
coeflicients L which connect the components of the one to the components of 
the other are thus tensors with two indices a and (3, one of which is associ
ated with Ji and the other with V'fi. On the other hand, if we want to study 
a substance which moves macroscopically, as in the dynamics of deformable 
soUds or in hydrodynamics, we must take into account non-vanishing equili
brium currents. In fact, in an equilibrium situation where the three constants 
of the motion Pa have non-zero average values, the material shows a uniform 
motion with velocity u. There exist therefore between the given subsystems, 
which are here a set of fixed volume elements, fluxes of particles, energy, and 
momentum, and the corresponding currents J^ can be calculated starting 
from the properties of the matter at rest. For instance, the particle current 
JjY equals QNU; the other equilibrium currents are given in a classical fluid 
by (14.116). In a non-equilibrium state we must thus single out for each 
current Ji{r,t) a contribution Ji{r,t). The latter is calculated for the case 
where there are no gradients, as if the intensive variables 7J were uniform, 
everywhere taking their value "fiir, t) at the position and the time under con
sideration, for instance, Jj^{r,t) = QN{r,t)u{r,t). The difference Ji — Ji, 
which vanishes with the affinities, is related linearly to them through the 
response coefficients L. Altogether, the linear response equations have here 
the general form 

(14.16) 

which includes terms of zeroth and first order in the affinities. The response 
coefficients L"- depend on the values of the intensive variables 7J at the point 
r and the time t. 

We now have the complete set of equations which can be used to find a 
practical solution of any problem of macroscopic transport or relaxation: the 
equations of state (14.9) or (14.12) couple the conserved quantities with their 
conjugated intensive variables; the conservation equations (14.2) or (14.6) 
give us the change in time of the conserved quantities as function of the 
fluxes; finally, the linear response equations (14.15) or (14.16) express the 
fluxes as functions of the affinities, that is, as functions of the local inten
sive variables. This set of equations refer to an isolated system; if there are 
couplings to the outside, the exchanges with the sources of heat, work, or par
ticles can suitably be taken into account as in (14.3), and one should write 
down response relations like (14.15) for the fluxes coming from these sources. 
We can also use the right-hand side of (14.3) to deal with a small violation 
of a conservation law. 

In what follows we shall illustrate by examples the abstract general 
method which we have just sketched and which we shall summarize in § 14.2.6. 
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The principal problem which remains to be solved, apart from the mathemat
ical treatment of the equations which we have found, is the determination of 
the response coefficients L. Experiments give us empirical results; moreover, 
the principles of thermodynamics which we shall now enounce help us consid
erably to simplify that determination with the aid of theoretical arguments. 

Whereas the conservation equations are valid in any regime, even far from 
equilibrium, the equations of state, which define the intensive variables, are 
only of interest in quasi-equilibrium regimes. The response equations pre
suppose, moreover, that the affinities are sufficiently small to justify a linear 
approximation. Experiments show, nevertheless, that one hardly exceeds the 
linear domain in practice: Ohm's law, the Navier-Stokes equations, Fourier's 
law, or the equations of chemical kinetics remain valid for electric fields, ve
locity gradients, temperature gradients, or chemical affinities which are quite 
large. 

As we have already mentioned, there does not exist a standard termi
nology to denote the entities occurring in non-equilibrium thermodynam
ics. Depending on the context, the affinities are also called thermodynamic 
forces or tensions. We must watch out and not confuse them with the 
forces Xa which appear in thermostatics in the definition (5.11) of work; 
the "thermodynamic forces" Fi or Vji only appear when there is no equi
librium. Chemists often use the name affinities for the —TFk, which are 
associated with the use of the energy rather than the entropy as funda
mental thermodynamic potential, rather than the quantities (14.14b). Sim
ilarly, one sometimes calls the linear response equations (14.15) or (14.16) 
complementary equations, or laws, to contrast them with the equations of 
state (14.9) or (14.12). In their continuous version (14.16) they are also 
called macroscopic diffusion or transport equations, as they characterize the 
way each of the conserved variables A diffuses from one element to the 
neighbouring one due to spatial variations of the intensive variables 7. Fi
nally, it is important to distinguish between the linear responses of fluxes 
to affinities which are introduced here and the linear responses to static 
(Exerc.4a) or time-dependent (Exerc.l4b) external perturbations, which also 
play an essential role in many practical applications of statistical mechanics, 
for instance, the reaction of an electric circuit to a periodic potential applied 
to its terminals. This absence of systematic conventions and terminology re
flects the unclear origins of thermostatics and the fact that too great an 
accent was put on mechanical and energy concepts; undoubtedly it is also 
a consequence of the long period elapsed between the start of the practical 
and intuitive use of non-equilibrium thermodynamics, at the beginning of the 
nineteenth century, and the working out of its general principles, which was 
first done by De Bonder in 1927 for chemical kinetics. 
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14.2 .3 S o m e C o m m o n Transport Coeff ic ients 

All dynamic effects in a quasi-equilibrium regime, from thermal to mechan
ical properties of continuous media, from chemistry to electromagnetism in 
mat ter , can be described in the above framework. However, experimental 
results are usually expressed in terms of variables such as the temperature 
or the flow velocity, ra ther than in terms of the variables, bet ter suited for 
a theoretical analysis, which occur in our general equations. It is therefore 
expedient to relate the t ransport coefBcients used in practice to the response 
coefficients L occurring in the general theory. 

A simple example is heat diffusion across a solid which is governed by 
Fourier's law (1811) 

JE ^ - A V T . (14.17) 

This empirical law defines the heat conductivity A as the coefficient of pro
portionality between the thermal gradient and the heat flux, which is given 
by (14.5) in terms of the current density JE', the solid is at rest and the 
t ransported energy here consists only of heat. A comparison with (14.16), 
where 7 B = 1/T, leads to the following identification: 

L%% = ^a/sAT^. (14.18) 

The heat flow equation is obtained by eliminating the fluxes from (14.17) and 
the energy conservation equation (14.6), and then using the definition of the 
specific heat per unit volume, C, which gives us 

^ = div(Avr) = diy(^^VeE^ = ^ W - (1̂ -̂ )̂ 

This equation covers different situations, for instance, t ransport problems 
where the mat te r is coupled to two thermostats at different temperatures, or 
relaxation problems where we are trying to find out how long it will take an 
isolated sample with a non-uniform temperature , which is thus removed from 
equilibrium, to re turn to it. 

At the start of the nineteenth century heat flow was an open problem which 
appeared so important that the French Academic des Sciences made it the subject 
of a competition. Joseph Fourier (Auxerre 1768-Paris 1830) was the Prize winner, 
after several years of trying. First of all, he found the equations for the problem, 
but he still needed to solve, assuming that \/C is constant, a partial differential 
equation, the heat conduction equation 

des A 2 ri 
-Q^-^V SE = Q, 

with appropriate boundary and initial conditions. An unavailing attempt led to the 
invention of Fourier series. The final solution was obtained thanks to the discovery 
of the Fourier integral transformation. 
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Diffusion is a formally analogous phenomenon, in which the energy is 
replaced by particles of a given kind. It consists in the macroscopic drift 
of those particles under the action of a spatial variation of their density. 
Different materials can be involved: a solute in a liquid solvent, impurities in 
a solid - with applications to "doping", where the motion of these impurities 
is only significant at rather high temperatures - gas mixtures, neutrons in 
substances which make up a nuclear reactor, and so on. In the case of a gas 
with only one kind of particles, the density also tends to become uniform, 
but the mechanism of that effect, which is called self-diffusion, is less simple, 
as it involves a global motion of matter (§14.4.6). In the case of diffusion 
proper, macroscopic velocities are negligible, as is the momentum density 
Qp; the temperature, moreover, is uniform so that the only relevant response 
coefficient is Ljvjv- In general, diffusion obeys Pick's law (1855; Adolf Fick 
was a German physiologist), an empirical law stating that the current of the 
particles considered is proportional to the gradient of their density: 

'AT -DVQN. (14.20) 

The proportionality coefficient, D, the diffusion coefficient, can be expressed 
as a function of ijviv by comparing (14.20) and (14.16) and using the equa
tions of state. To do this it is sufficient to know dgN/d-yN = —TdgN/dfi for 
constant JE = '^/T; the methods of §6.3.5 give us dgN/d/j, = Kgff, where K 
is the compressibility (6.42) of the gas of diffusing particles, and hence we 
have 

L%% = 6c.pDKg],T. (14.21) 

The diffusion equation following from the particle conservation law (14.6) 
and (14.20) has the same form as the heat equation (14.19). 

Similarly, osmotic diffusion, and the flow of a fluid across a porous wall, 
which belong to the category of transport phenomena between two discrete 
subsystems, are governed by Darcy's law (1856; Henri Darcy was an engineer 
in charge of the city water system in Dijon). The flux passing through per 
unit area is proportional to the pressure difference, a variable which is related 
to the affinity JV, that is, to the difference between the values of —fx/T. One 
usually writes the coefficient in the form Kg^/If], where I is the thickness of 
the wall and 77 the viscosity of the fluid; this defines the permeability coefficient 
K of the porous medium. 

The oldest historical example of transport phenomena is undoubtedly 
Newtonian viscosity (14.134) which connects the constraints on a fluid flowing 
in the cc-direction - with a velocity Ux which varies with z - to the velocity 
gradient du^/dz (§ 7.4.6). As we shall see in § 14.4.6, the viscosity coefficient 
r] is related to Lpp which is the tensor describing momentum transport. 

In chemical kinetics and similar reaction phenomena it is natural to ex
press, as in the case of diffusion, the variables 7JV = —l^/T associated with 
the various kinds of particles in terms of the corresponding densities gN- The 
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affinities Fk, defined by (14.14b), then become functions of these densities. 
Taking into account the conditions of the reaction, for instance, constant 
pressure and constant temperature, we are thus led to a law for chemical 
kinetics in terms of directly measurable quantities, where (14.15) provides 
the fluxes or reaction speeds #fc as functions of the partial densities of the 
different constituents, and where (14.4) relates in turn the time-derivatives 
of the densities to the fluxes. 

All those examples describe direct effects where an affinity Fi produces 
the flux #j of the same nature. However, if, for chemical type kinetics, several 
reactions are coupled, the flux <?fc for each one may depend through (14.15) on 
the affinities Fi for the others. More generally, in what follows we shall meet 
with other indirect effects in which an affinity produces not only a flux of the 
quantity to which it is conjugated, but also a flux of another quantity. For 
instance, a temperature gradient can produce in a fluid not only heat flow, but 
also matter transport as the particles can move in bulk when the substance 
is not in equilibrium. This phenomenon, thermal diffusion, is associated with 
the off-diagonal matrix element LNE of the linear response matrix. When 
thermal diffusion is allowed, the expression for the heat conductivity becomes 
complicated (see Eq.( 14.89)) as A is defined in conditions when heat flows 
without matter being transported. 

In § 14.4 we shall return to the above transport phenomena which we 
shall study more systematically together with other examples, such as electric 
conduction, thermoelectric effects, or hydrodynamics. In all cases, whether 
we are dealing with macroscopic transport or with relaxation phenomena, 
we must determine the relations between the directly observed quantities of 
interest and the conservative variables, or their conjugate variables, and make 
clear what quantities remain fixed during the process under consideration. 

14.2.4 Curie's Principle and Onsager's Relations 

The elements of the linear response matrix L are functions of the intensive 
variables which locally characterize the state of the substance. From a macro
scopic point of view we are dealing with phenomenological coefficients which 
must be determined from a comparison with experiments. Nevertheless, be
fore any measurement, thermodynamics provides a certain amount of infor
mation which partially lifts the arbitrariness of these coefficients. We shall, 
first of all, use symmetry and invariance properties which are important as 
they enable us to reduce the number of independent matrix elements. We 
shall state here the general principles, postponing to § 14.4 their application 
to specific examples. Pierre Curie (Paris 1859-1906) was the first to stress 
the importance of the symmetry principle after he discovered piezoelectricity 
- the indirect effects which relate to each other electric fields and mechanical 
constraints in materials such as quartz - and after he studied magnetism. 

Let us assume that the substance has symmetry properties under some 
spatial transformation, for instance, rotational invariance or parity invari-
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ance, tha t is, symmetry with respect to a point. We should consider it to be 
an active transformation (§2.1.5), operating on the substance itself, but it 
is also equivalent to a passive change of coordinates under which all equa
tions must remain unchanged. As far as the equations of state are concerned, 
they are obtained by taking derivatives of the entropy; the symmetries of the 
substance are thus reflected in writing down the invariance of the entropy as 
function of the various densities Qi. For instance, for an isotropic fluid these 
densities are QE, QN, and the three components of gp, Qpx, Qpy, and QPZ ; the 
first two are scalars, tha t is, quantities which are invariant under rotation, 
and the last three form a vector: under a rotation they transform by com
bining linearly. The entropy density s is a scalar and the only scalar which 
can be built from the vector QP is Q\, = J ] a SPaQPa so tha t s is a function 
of the three variables QE, QN, and g%. We shall similarly use the Galilean 
invariance (§ 14.4.4) and the invariance of the entropy under a change in the 
energy zero (§ 14.4.2) to set constraints on the form of the function s{{gi}) 
for a fluid. 

The relations between invariances and conservation laws are fundamen
tal, but subtle. We shall, in fact, see in § 14.3.1 tha t the conservation laws 
themselves follow from the symmetry properties of the microscopic equations 
of motion. 

The consistency of the response coefficients with the symmetry properties 
provides valuable information about them, as we shall see in the examples 
of § 14.4. We shall here illustrate this point on one example, namely, tha t 
of an isotropic substance, for the response coefHcients Lf- associated with 
scalar variables i and j , for instance, the energy or the number of particles. 
Under a rotat ion (14.16) must remain invariant; the quantities J j and V7J 
which occur in it transform as vectors. As a result, Lf- must transform as a 
tensor with two indices, tha t is, as a vector for each of the indices a and /3. 
If, moreover, it is only a function of scalars (such as the temperature or the 
chemical potential) and independent of any vector (such as the local velocity) 
Lff itself must be invariant under rotation. As we shall see in what follows 

this implies tha t L"- must be of the form Lij6ap so tha t for the variables i,j 
considered the response equation can be writ ten in the form 

Ji ^ J2 Lii ^-Tj- (14.22) 

To prove this it is sufHcient to write down the invariance of L^'f^ under an 
infinitesimal rotation around an arbitrary direction 6, which gives us 

0 = ^ {e^s,L]f+e,s,Lt;ry 

aa When ^ = a, we find that L"'^ = 0 for a / /3; when S y^ a, we find that L'^'^ = L 
for a / /3. Hence, the isotropic tensor L"'^ must be proportional to the unit matrix 
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A similar calculation enables us to check that the only isotropic tensor with 
three indices is proportional to the completely antisymmetric unit tensor 

ea/37, with £123 = 1 = -£213 = • • • , (14.23a) 

and that the only isotropic tensors with 4 indices are proportional to 

SapSjS, Sa-ySiSS, SasSffj- (14.23b) 

Curie's symmetry principle can be used in the same way for other invariances. 
For instance, a crystalline substance, even though it is not isotropic, is invariant 
under certain symmetries and rotations of a discrete group which characterizes its 
structure (§ 11.1.2). A study of the transformations of the L"- under the action of 
this group is an efficient way to simplify the description of transport properties by 
reducing the number of independent coefficients, as we did in § 6.6.4 for thermostat
ics. In particular, in a cubic crystal and in the case where the quantities i and j are 
scalars, L". may a priori depend on the three basic vectors of the crystal lattice 
but it must remain invariant under any permutation or sign change of them. This 
again leads to the relation (14.22): notwithstanding the anisotropy the transport of 
scalar quantities in a cubic crystal takes place as in an isotropic substance. On the 
other hand, in single crystals which have less simple crystal structures transport 
properties such as the electric conductivity can be anisotropic and thus involve 
several response coefficients. As a further example, piezoelectricity cannot exist in 
substances which have a centre of symmetry; for practical applications such as the 
generation of regular oscillations by resonance in watches, one uses a single crystal 
of quartz, which involves a helical microscopic structure with a given parity. 

Another symmetry principle for the response coefficients L is known as 
the Onsager reciprocal relations. Below we shall give its general form. The 
simplest situation concerns the special case of scalar quantities i and j which 
remain invariant under t ime reversal, such as the energy, the number of par
ticles, or chemical variables. In such a case we have 

Lij ^ Lji. (14.24) 

These relations which can be proved start ing from statistical mechanics are 
an important general property of the thermodynamics of non-equilibrium 
processes. They have been referred to as a Fourth Law of thermodynamics. 

Onsager's reciprocal relations concern the off-diagonal elements of the Lij 
matr ix which describe indirect effects in the approach to equilibrium. In this 
way a temperature gradient produces energy flow, but it can also produce 
a flow of particles, even though the variable —f^/T which is conjugated to 
the number of particles is uniform. Inversely, even when the temperature is 
uniform, a gradient of the chemical potential, or, what amounts to the same, 
of the pressure or of the density, can produce a heat flow at the same t ime 
as a particle flow. Denoting by JE and J^ the energy and particle current 
densities, those four effects are for an isotropic substance described by the 
t ransport equations 

JE = i ^ B v f - j 4-LBiv V ( - ^ ) , (14.25a) 
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'N — ^NE V ( ^ ^ ) + L i V i v V ( - | ) . (14.25b) 

In this case the Onsager relations state that 

LEN = LNE- (14.26) 

The two reciprocal effects, namely, particle t ransport produced by a temper
ature gradient or heat t ransport produced by a mechanical gradient, are thus 
related to each other. Similarly, for coupled chemical reactions with fluxes 
$k, ^i, ••• and affinities Fk, Fi, . . . , we have Lki = Lik-

Another classical exajmple of an application of the Onsager relations concerns 
the thermoelectric effects, either in a homogeneous substance or in a circuit with 
junctions. For instance, the heat which is produced at a junction when a current 
passes through it (Peltier effect) is related (§ 14.4.3) to the electromotive force 
generated in a thermocouple by a temperature difference (Seebeck effect). These 
effects, discovered in 1834 by Jean Charles Peltier (Ham 1785-Paris 1845) and 
in 1821 by Thomas Seebeck (Talhnn 1770^Berlin 1831), were studied by William 
Thomson (later Lord Kelvin) in 1854 from a thermodynamic point of view. One 
had to wait to 1931, however, before Lars Onsager (Oslo 1911-Miami 1976) gave a 
correct proof of the second relation written down by Thomson - the first one gave 
the energy conservation. The most general proof of the Onsager relations was given 
in 1945 by Hendrik B.C. Casimir (The Hague 1909). 

The Onsager relations are useful for reducing the number of independent trans
port coefficients for various phenomena, from chemistry to mechanics of solids or 
of anisotropic fluids; they cover many indirect effects which mix heat, magnetism, 
and electricity. They follow from the symmetry of the microscopic equations of 
motion when we reverse the sign of the time in them. In general, they remain in
variant; however, we can for the sake of greater generality consider cases where 
they are changed. For instance, when there is an external magnetic field present, 
time reversal leaves the equations of motion unchanged only if one at the same 
time reverses the magnetic field. We shall denote by H the Hamiltonian which 
is transformed in that way (see the end of §2.1.5). To write down the Onsager 
relations in their general form, we must also find the behaviour of the quantities Qi 
and 7i under time reversal. The energy, particle, or charge densities are even, that 
is, they remain unchanged under a change in the sign of t; for them we thus have 
QJ = Qi. On the other hand, the momentum density changes sign with the time, 
so that Qf,^ = —QPa, the same is true for the electric current, angular momentum, 
or magnetization densities. We write, in general, Qi = siQi with £j = ± 1 . When 
an index i refers to a chemical affinity, Sj equals -f 1. The value of the entropy is 
independent of the direction of the time so that we have 7̂  = ei'fii the tempera
ture and the chemical potentials remain unchanged and the velocity changes sign. 
The response coefficients L"r are functions of the set of intensive variables {7fc} at 
the point considered; they also depend on the temporal evolution governed by the 
Hamiltonian H. To indicate those dependences we write them as L'^-{{'yk},H). 
The general reciprocal Onsager relations can then be written in the form 
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Lf{{ik},H) = £ie,Lf«({£fe7fe},-ff^)- (14.27) 

These relations are valid both in the case of a continuum at a given point and for 
the responses Lij(a, b) defined by (14.15) for a pair of discrete subsystems a and b; 
in that case we have also clearly Lij{a,b) = Lij{b,a). 

In this general form the Onsager relations connect the transport coefficients of 
two systems which differ from one another in the direction of the local velocities, 
through changes in the 7^., and in the direction of a possible applied magnetic 
field, through H. If there is no magnetism and if the substance is at rest, the same 
system occurs on both sides of (14.27) which then simply expresses the symmetry 
or antisymmetry of the linear response matrix elements. The interchange of the 
indices i and j , as of a and (3, in (14.27) reflects the fact that, if one reverses the 
direction of the time in the equations, the causes and effects interchange. 

14.2 .5 D i s s i p a t i o n 

The rate of change of the entropy of a subsystem a is given by 

dSg _ -^ dSg dAi{a) _ -^ . dAi{a) 

dt ^ ^ dAAa) dt ~ ^ ^^^"^ dt 

i,b 

where we have used, successively, the definition (14.9) of the intensive vari
ables 7 and the conservation laws (14.2). 

Let us write the right-hand side of (14.28) as a sum of two contributions, 
one antisymmetric and the other symmetric under an interchange of the 
subsystems a and b. The first contribution, 

#s(a ^ «>) = ^ E h(«) + ^̂ ('')] ^̂ (« -^ '')' (14.29) 
i 

which is antisymmetric thanks to (14.1), can be interpreted as an entropy 
flux from a to b, which is the opposite of the flux from 6 to a as should 
be the case. This definition of entropy flux is also justified by the fact tha t 
when 7i(a) = 7i(?>) expression (14.29) reduces to the change in the entropy 
of 6 in a reversible transformation where a gives off to b the quantities <Pi. 
In particular, if a and b only exchange heat energy, and if tha t exchange is 
reversible, the temperatures of a and b are very close to one another and 
(14.29) expresses tha t the heat flow ^E equals T ^ g . 

We should, however, not push the analogy of # 5 with the fluxes # i of 
conservative quantities too far. As the entropy has a nature which is different 
from tha t of the extensive variables, its flux plays a role which is different 
from tha t of the fluxes associated with those variables, which entered the 
conservation equations (14.2). In fact, on the right-hand side of (14.28) there 
occurs a second contribution which is symmetric under an interchange of 
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a and b: if we use the definition (14.14) of the affinities and the definition 
(14.29) of the entropy flux, we can rewrite (14.28) in the form 

^ + ^ *^(a -^h) = \ Y . ^^(«'^) *^(« -^ ^)- (14-30) 
h i,b 

The left-hand side reminds us of the conservation laws. However, there oc
curs here a right-hand side which is a sum of terms. Each of these terms 
is symmetric under an interchange of a and b and can be interpreted as a 
rate of entropy production at the interface between a and b, associated with 
the irreversible transfer of the quantity i. The symmetry of ^Fi^iia —» b) 
under an interchange of a and b implies that the same term appears also 
in the entropy balance for the subsystem b so that the entropy created at 
the a, b interface is divided equally between these two subsystems. On the 
other hand, because it is antisymmetric, the term #5 on the left-hand side of 
(14.30) does not contribute to the global entropy balance of a and b since the 
contributions #5(0 —> b) and ^s{b —^ o) are the opposite of each other: the 
entropy fluxes #5 cancel one another pairwise in a global balance. We shall 
use the term dissipation in the general meaning of entropy production - and 
not in the often used restricted meaning of energy degradation, for instance, 
transformation of heat into work. 

In its dynamic form, the Second Law can be expressed through the 
Clausius-Duhem inequality 

Y^ ri(a,b)$iia^b) > 0, (14.31) 

which must be satisfied whatever the affinities. The fluxes are functions of 
the latter and the Second Law indicates thus that they cannot be arbitrary 
functions: the right-hand side of (14.30) must under all circumstances re
flect the existence of positive dissipation. The Clausius-Duhem inequality is 
more detailed than the Second Law in its thermostatics version: in fact, it 
must be satisfied at all times and for any pair of subsystems a, b, whereas 
in thermostatics one is only concerned with comparing the initial and the 
final entropies of an isolated system which both initially and finally is at 
equilibrium. Nonetheless, the Second Law of thermostatics is more general 
inasmuch as it makes no assumptions about the intermediary states, whereas 
(14.31) is only concerned with systems which evolve in a quasi-equilibrium 
regime: at all times an infinitesimal irreversible transformation takes place, 
while the subsystems a and b remain always close to equilibrium. 

This analysis is valid for any evolution in a quasi-equilibrium regime. If 
the regime, moreover, is linear, we can use (14.15) to express the dissipation 
(14.30) in terms of the local intensive variables 7 in the form 

^ + ^ #5(« ^ ^) = ^ E ^^(«'^) ^^^ ^^(^'^)- (14-32) 
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The dissipation is then a quadratic form of the affinities ri{a,b) = 7i(&) — 
7j(a). According to the principle (14.31) it must be positive whatever the 
affinities. The symmetric part, Lij +Lji, of the linear response is thus a posi
tive matrix in i, j . Thermodynamics thus imposes constraints on the transport 
coejficients by predicting that they must obey a certain number of inequal
ities. We shall, in particular, see that the fact that the diagonal elements of 
the L matrix are positive implies that quantities such as thermal or electrical 
conductivities, diffusion coefficients, or viscosities, also must be positive. Of 
course, if Lij has an antisymmetric part, the fact that the dissipation is posi
tive does not give any information about Xy — Lji. By virtue of the Onsager 
relations (14.27) this may occur if i and j do not behave in the same way 
under time reversal, or if there is a magnetic field present. 

For an isolated system the summation over the subsystems a in (14.30) 
or (14.32) leads to the cancellation of the entropy currents, and for the ex
pression of the total dissipation we are left with 

^ = Yl riia,b) $i{a ^ b) = Yl ri{a,b) Lij rj{a,b). (14.33) 
i^a>b i,j,a>b 

One should, however, note that if the system considered is coupled to sources, 
we must in the global balance (14.33) include possible exchanges of entropy 
with these sources. Moreover, if we bear in mind that the dissipation (14.31) 
is associated not with a subsystem, but with a pair of subsystems, the inter
faces between the system proper and its sources are places where entropy is 
produced, if the affinities do not vanish there. 

For a given value of the transfers $i, (14.31) and (14.33) show that the 
increase in the total entropy of an isolated system, which measures the irre
versibility of the transformation, is small like the affinities /^(a, b). In order 
for a transformation to be almost reversible it is thus necessary that the in
tensive variables of the parts of the system between which exchanges take 
place be almost equal. However, the form (14.15) of the response equations 
itself entails that the fluxes are then small and that the transformation is very 
slow. Significant jumps, or gradients, in the temperature, the chemical po
tential, or the pressure are necessary to reduce the duration of the processes. 
However, the price which we must pay for that greater speed is an increase 
in the dissipation, hence a loss of efficiency. The art of the engineer often 
consists in looking for compromises, aiming to face up to this contradiction 
between reasonably high efficiency and reasonably short delay of the process. 

We now extend the preceding ideas to continuous systems. If we use 
(14.12) and (14.6), we see that in the case of continuous variations in space 
the local entropy density s{r, t) per unit volume evolves as follows: 

ds •r-^ doi sr-^ 
dt = ^ ^ ' ^ = - E ^ ^ d i v J , . (14.34) 
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Using the identity —7 divJ = —div7J + ( J • V)7 and the same procedure as 
above, we can separate the right-hand side of (14.34) into two parts, which 
leads to 

dt 
+ div K ] ^iJi = ^ (V7i • Ji). (14.35) 

In the case where the fluxes Ji vanish together with the affinities V7i, (14.35) 
is the required entropy balance, its right-hand side defining the dissipation, 
as in (14.30). However, when the response equations (14.16) contain terms of 
zeroth order, we expect that the contribution from the equilibrium currents 
J° to the right-hand side of (14.35) should be eliminated through integration 
over the volume so that the total entropy would remain constant if Ji = Ji-
For this it is necessary that ^ (V7J • Ji) be the divergence of a vector field, 
which we shall then include in the definition of the entropy flux. In fact, we 
shall show in (14.149) that for a fluid 

^ ( V 7 , . J 0 ) ^ - d i v ^ « , 
i 

where the index i takes 5 values, referring to the energy E, the particle 
number N, and the momentum P, and where P , T, and u are the pressure, 
the temperature and the local velocity at the point r , expressed in terms of 
the 7i as if the substance were at equilibrium. It is thus natural to define the 
entropy current density through 

Js = Y. ^i-^i + ^ ^- (14.36) 
i 

This expression is the continuous analogue of (14.29). The extra term it 
contains has again the same form •jnJn and refers to the volume. In fact, 
one can identify V/T with the intensive variable jp = dS(E,N,P, n)/dn, 
which is the conjugate of the volume, while u plays the role of the current 
associated with the volume J? of a fiuid element, since its fiux across the 
surface of that element is the rate of expansion dH/dt of the fluid when it is 
followed in its macroscopic motion. 

Substituting the definition (14.36) into (14.35) we get the local balance 
equation for the entropy 

Ij+div J5 = Y. (V7e-(Ji-4)). (14.37) 
i 

In the linear regime (14.16) and (14.37) give 

a,l3 
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The Clausius-Duhem inequality here impUes that (14.38) is positive, whatever 
the V7i. It thus imposes constraints on L^, considered to be a matrix in i,j 
and also in the tensorial indices a, /3 relative to the three spatial directions: 
the symmetric part of that matrix must be positive. 

The right-hand side of (14.37) or of (14.38) can be interpreted as the rate 
of dissipation at the point r: the entropy production occurs in the hulk of the 
substance. To illustrate this point let us consider heat transport in a perma
nent regime, from a thermostat a at a temperature T^ to a second thermostat 
6 at a temperature Tf, <Ta, across a bar of length I and cross-section cr which 
consists of matter with a conductivity A. We assume that there are no jumps 
in the temperature at the contacts between the thermostats and the bar so 
that there is no entropy production at those contacts. If an amount of heat Q 
is transported from the one source to the other during a time t, thermostatics 
gives us the global entropy balance over that period: the entropy of the ther
mostat h has increased by Q/Tf,, that of a has decreased by Q/Ta, while that 
of the bar has not changed - as its state remains unchanged in a permanent 
regime. However, the detailed balance (14.37) of thermodynamics shows that 
entropy is created, not in the thermostats, which evolve reversibly, but in the 
conductor according to 

^ + d i v J s = ( ^ ( ^ ) - - ^ i ^ ) - (14.39) 

In a permanent regime we have ds/dt = 0 and VT is given by (14.17). The 
heat flux JE equals Q/ta in the propagation direction, which we take to be 
the a;-direction; it is uniform: energy conservation. On the other hand, the 
entropy flux defined by (14.36), Js = JB/T, increases from Js/Ta to Js/Tb 
from the left end of the bar at x = 0 to its right end at a; = /. According to 
(14.39), in the section of the bar between x and x + dx an amount of entropy 
is created, equal to 

' ' "^dt 
dx T{x) t 

during the time dt; this section receives at its left-hand side an amount of 
entropy 

Js{x)adt = —— — dt, 
1 (x) t 

and gives off to its right-hand side a larger amount, 

Js{x-]-dx) a dt = — r-x — dt. 
^ ' T{x + dx) t 
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The entropy flux leaving the section is larger than that entering it, because 
this flux carries permanently the created excess. The integral over dt and over 
dx of the dissipation yields again the total increase in the entropy Q/Th—Q/Ta 
given by thermostatics. However, our arguments show what is the dissipa
tion mechanism and where it is localized: an entropy flux Js/Ta leaves a, 
accompanying the heat flux JE', it is directed towards b, while gradually in
creasing like JE/T as the temperature decreases. This increase is produced 
by the irreversibility of the processes taking place in each volume element 
of the conducting substance. The final balance is supported by the sources; 
however, b has received more entropy than a has given up only because there 
was dissipation all along the bar. 

In (14.30) as in (14.37) the dissipation terms have the form of the product of an 
affinity with the corresponding flux: these quantities thus appear as conjugates for 
the dynamics of the system, in the same way as the intensive 7 and the extensive A 
variables in the case of equilibrium. There exists, in fact, a formal analogy between 
(14.33) and the expression for the change in the entropy between equilibrium states. 

d5 = ^ 7j(a) dAi{a), 

which is equivalent to (14.9). Similarly, in the case of a continuum (14.37) resembles 
(14.13). We note, however, that dS is a total differential, which implies that the 
partial derivatives d"/i/dAj and d-yj/dAi are equal; this is not true in general for 
(14.33). The analogy becomes less superficial in the particular cases where there is 
a "dissipation potential", a function of the fluxes (or of the affinities) from which 
we can find the affinities (or the fiuxes) through differentiation, in the same way 
as the knowledge of a "thermodynamic potential" produces through differentiation 
the pairs of conjugated Ai, 7^ variables. 

14.2 .6 S u m m a r y : Macroscop ic A p p r o a c h 
t o D y n a m i c P h e n o m e n a 

The principles s tated in §§ 14.1 and 14.2 provide us with a general frame
work in which a large number of problems from irreversible thermodynamics 
and, more generally, of macroscopic dynamics, enter. One meets with such 
problems in all branches of science and technology: t ransport of heat, mat
ter, or electricity, hydrodynamics, chemical or nuclear kinetics, astrophysics, 
energetics, physiology, and so on. The questions which we put , the models 
which we construct to explain actual facts, the chosen level of our description, 
either macroscopic or microscopic at a more or less finite scale, are clearly 
specific for each problem and present a great variety. However, we find in 
many cases a number of common stages through which the solution of the 
problem passes, and a general scheme of equations (Fig. 14.1). 
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Fig. 14.1. The general scheme of equations for a thermodynamic problem near equili
brium. The local extensive variables Ai{a) and the densities gi{a) are related to the 
local intensive variables 7J through the entropy of thermostatics. They are related 
to the fluxes <fj(a —» 6) or to the current densities Ji{r) through the conservation 
laws. The affinities ri{a,b) are differences between the 7i(a) variables or gradients 
of the 7i. In a linear regime, the fluxes are linear functions of the affinities, and the 
dissipation dS/dt is a bilinear form of fluxes and affinities. The coefficients obey 
constraints imposed by the symmetries and by the Clausius-Duhem inequality 

Analyze, virhile building a model, the system under study in terms of 
subsystems which are nearly at equilibrium and between which exchanges 
can take place (§14.1.1). These subsystems may be discrete, they may 
be volume elements of a continuum, or they may be superimposed upon 
one another in space (§ 14.1.2). 
State which are the conserved quantities and the variables tha t at any 
t ime characterize the state of each of the subsystems (§§14.1.1 and 
14.1.2). 
Determine the relations between conjugated variables, such as E and 
l / T , or N and —^/T. These relations are in a microscopic approach 
obtained through differentiation of a part i t ion function. When they are 
given by experiments, check tha t they are compatible with the existence 
of a thermodynamic potential, such as the entropy as function of the 
extensive variables, from which they can be produced through differenti
ation (§ 14.2.1). This step ensures tha t the Second Law of thermostatics 
is satisfied. 

Write down the conservation equations which connect the rates of change 
in the conservative quantities of each subsystem with the fluxes between 
the subsystems (§ 14.1.3). Include source terms, if the system is not iso
lated or if the conservation laws are not rigorous. This step corresponds 
to the First Law and its extensions. 
Express the fluxes in terms of the affinities - the deviations between 
intensive variables - through response relations, for which the linear ap
proximation usually is sufficient (§14.2.2). The coefficients, which are 
intrinsic to the substance, may be empirical and given by experiments, 
or they may be calculated using a microscopic theory. 
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- Reduce the number of independent coefRcients by using symmetry and 
invariance properties, and the Onsager relations (§14.2.4). Check also 
the constraints provided by the fact that the dissipation must always be 
positive (§ 14.2.5); this property is the dynamical version of the Second 
Law. 

- Identify the quantities of interest which can be actually observed in terms 
of the natural variables of thermodynamics. Write down the transport 
coefRcients usually employed in terms of the responses of the general 
theory (§14.2.3). 

- Specify the conditions for the process considered: the regime - of station
ary transport, of relaxation, or of response to a perturbation (§14.1.2) 
- whether the system is open or not, isolated or not, the boundary and 
initial conditions, the fixed quantities. 

- Solve either algebraically or numerically the coupled equations, namely, 
the equations of state, the conservation equations, and the response equa
tions, under the conditions of interest. This stage, which is the object of 
macroscopic sciences, is often the most difficult one. 

- Compare the results with facts, possibly improve them by including new 
variables and starting again, and so on. 

Most of these points will be met with again in the applications studied 
in § 14.4, and the reader will recognize them when he analyzes the approach 
to many other problems. They will, however, appear in an arbitrary order 
imposed by the inner logic of the problem considered. The present general 
scheme is useful as a guide to a macroscopic phenomenology. It gives us 
guidelines to prevent the macroscopic theory from being incompatible with 
information coming from microscopic physics, for instance, when the sym
metry principles force one or other of the coefficients to vanish, or when the 
Second Law imposes some inequality. It also enables us to connect with one 
another phenomena which are apparently independent, as we shall see later 
on for diffusion and electrical conduction, or for the thermoelectric effects. 

Let us, however, remind ourselves that the method described here is only 
suitable for processes which are sufficiently close to equilibrium. In that case 
a purely macroscopic description is often sufficient even though interesting 
extra information could be provided by a simultaneous more microscopic 
study. If we are far from equilibrium, there is no general method; one may 
proceed either by empirical methods which are more or less reliable, or by 
more fundamental microscopic approaches which, however, because of their 
complexity have a restricted range of applicability. 
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14.3 Microscopic Approach 

The point of view of statistical physics is needed for many purposes: to de
rive from microscopic physics the various properties posed above as general 
principles, to understand the significance on the microscopic scale of the new 
quantities which we introduced, such as the fluxes and the currents, and to 
express them in terms of the particles which make up the matter, and also 
to calculate the transport coefficients using microscopic dynamics. It is also 
indispensable for demarcating the domain of validity of thermodynamics, the 
neighbourhood of equilibrium, and, m.ost of all, for going beyond that do
main. For instance, we must have recourse to statistical mechanics whenever 
we want to make a theory about processes where some macroscopic quantities 
change rapidly, either in space - shock waves - or in time - electrodynamics 
at high frequencies (Exerc.l4b). We shall restrict ourselves to giving below 
a few hints about the justification of the laws of thermodynamics and to 
present in Chap.15 Boltzmann's and Lorentz's microscopic approach to the 
dynamics of almost perfect gases. 

14.3.1 Invariance and Conservation 

We want to use statistical physics to justify the local conservation laws which 
we gave as principles in § 14.1.3. To do this, we shall need to identify, in terms 
of the elementary constituents, those quantities which occur in the local laws. 
For instance, to prove the conservation (14.6) of the energy, we must express 
the density QE and the current density JE at a point r as functions of the 
microscopic variables, namely, the positions rj and the momenta p • of the 
various particles. The main difficulty comes from the fact that QE and JE 
should be local quantities defined at a point r, whereas the potential energy, 
even though it has a short range, is non-local and depends on the coordinates 
rj and r^ of particles in pairs. An extra complication arises in quantum 
mechanics: in a definition such as (14.49) which we shall give for the particle 
flux at the point r , the positions TJ and the momenta p- = mVj of the various 
particles should be replaced by operators which do not commute. To simplify 
matters we shall restrict ourselves to proving the local conservation laws in 
classical statistical mechanics. 

We have already indicated that the existence of an invariance in the 
dynamics implies that of a conservation law (§ 2.1.5). We have thus associated 
with each invariance or symmetry a global conservation law. For instance, 
invariance of the equations of motion under translation in space leads to 
conservation of the total momentum; invariance under translation in time 
leads to conservation of the energy, and invariance under rotation to that 
of the angular momentum. In the Hamiltonian formalism this is just the 
result of the fact that H commutes with the infinitesimal generator of the 
invariance considered. The local conservation laws (14.6) also follow from the 
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same invariances, combined with the short range of the dynamic effects. For 
instance, if the number of particles is conserved, we have globally dN/dt — 0; 
moreover, particles situated in a given volume element at t ime t remain in 
each other 's neighbourhood at t ime t + dt. Due to this weak non-locality in 
the evolution, dg^ /dt does not vanish, but can on the macroscopic scale be 
expressed in the form of transfers between neighbouring volume elements. 
Our aim in what follows is to justify the form —div J for such transfers and 
to construct a microscopic expression for the flux J. 

In the classical Lagrangian formalism (§ 2.3.3) the connection between invari-
ance and conservation is the subject of Noether's theorem (Amalie Emmy Noether, 
Erlangen 1882-Bryn Mawr 1935), which provides us with a systematic method 
for constructing conserved quantities and their associated fluxes and which can be 
proved as follows. For a global conservation law we start from the fact that the ac
tion is the time-integral (2.60) of the Lagrangian L{q, q, t} and that it is stationary 
along a trajectory, and we assume that the equations of motion remain unchanged 
under some change in the coordinates gj. which depends on a continuous parameter. 
We therefore carry out an infinitesimal change in coordinates, 

Sqk = egk{q,q,t}. (14.40) 

The velocities are changed from q^. to gj. + Sq^ where 

The equations of motion oi q -\- 8q are the same as those of q, if the Lagrangian 
L{q,q,t} remains invariant under the transformation (14.40) or, more generally, if 
its change under that transformation, 

has the form of the total derivative with respect to the time of some function A; 
in fact, dA/dt does only contribute boundary terms to the action, Ait-^) — A{t2), 
which do not affect the equations of motion. Using the Lagrangian equations (2.61) 
we find from (14.42) that 

e dt 
dL 

. k 
T. wJ"- f , (14.3, 

and, if we use (14.40), we find the conservation law 

~^^— Qk — A = constant. (14.44) 
k ^^ 

As exercises one could check the conservation of energy for a time-independent 
Lagrangian (in which case 6qk = qj^{t + e) — qk(t) = sqk and A = L) and, in the 
case of a Lagrangian for interacting particles of the form. 
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the conservation of total momentum (when 6rj = a and SL = 0) and the conser
vation of angular momentum, (when 6rj = [ai x rj\ and 6L = 0). In a Galilean 
transformation the positions rj in the fixed frame become rj — ut in the frame 
moving with velocity u and the change in the Lagrangian, 

6L = - ^ m[rj-u)+\Nmu^, (14.46) 

i 

is again a time derivative; the conservation law (14.44) associated with this Galilean 
invariance expresses that the velocity of the centre of mass remains constant. 

The extension of Noether's theorem to establishing local conservation laws is 
easy in field theory where the action is the integral of a Lagrangian density l(r, t) 
over time and space. For instance, in the case of a vibrating string, the Lagrangian 
(11.136) is given by a Lagrangian density 

l{x,t) = \ 1 (^^ - (^y 
c'2 \dtj \dxj 

(14.47) 

The dynamical q variables are now the values of the field ip at each point and 
the set of space-time coordinates play here the same role as the time did earlier. 
Accordingly, the equations of motion become partial differential equations, and 
the conservation equations which generalize (14.43) do involve not only a time 
derivative, but also partial derivatives with respect to the spatial coordinates; this 
gives them the required form (14.6). In the example (14.47), the invariance under 
translation in time corresponds to Sip{x, t) = edip/dt, which leads to the variation 
61 = edl/dt. If we then use the equations of motion (11.134) to get an expression 
for this variation, as in (14.42) and (14.43), we find 

d ( dl ^ \ ^ d ( dl . \ dl ^ 

Jt\j^^'')^Wx\mp^'') = ' Jt^ S^ == e^, 
which gives us the energy conservation in the form (14.6); the energy density and 
flux can, respectively, be identified with 

. 91 , T 1 (^\\(^ 
c2 (ir-(s)' 

dl . dip dtp 
•^'^ ^ dV^'^ = - ^ di ^ -

If the field ip is given through a probability law, these expressions should be replaced 
by their expectation values. 

The same method, when applied to an electromagnetic field in vacuo, gives, for 
instance, the local energy conservation equation (14.6), with the expectation value 
of (13.15) as the energy density g'^ of the field, and with the expectation value of 
the Poynting vector (13.16) as the radiative flux J ^ = (TV). If, however, the elec
tromagnetic field is coupled to particles which have a charge q, the quantities which 
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are conserved no longer pertain solely to the field, since its energy, momentum, or 
angular momentum can be exchanged with those of the particles. In particular, one 
checks easily that the right-hand sides of the Maxwell equations (13.2) give, as in 
(14.3), rise to a source term in the energy balance equation for the radiation: 

doT + div(JV) = - ( ( £ - J e i ) ) . 
dt 

This term, which involves the electric current density Jgj = QJN of the particles, 
can be interpreted as work done by the latter; it occurs, of course, also in the energy 
balance equations for the particles themselves, with the opposite sign. 

14.3.2 Microscopic Expression for the Fluxes in a Fluid 

The above method cannot be applied as systematically to the problems in which we 
are interested. As an illustration we shall deal with the case of a classical fluid the 
dynamics of which is produced by the Lagrangian (14.45). The global conservation 
laws deal with the number of particles, the momentum, and the energy; we wish to 
associate with them local conservation laws (14.6), for which we shall try to identify 
the densities gj^, QP, and QE, and the currents Jjv, Jp, and J^ in terms of the rj 
and pj variables of the N particles. If we could write down the Lagrangian (14.45) 
as the integral of a Lagrangian density with the same properties as the Lagrangian 
of a field, this construction would be automatic, but this is impossible because of 
the finite range of the interparticle potentials. We must thus have recourse to a 
direct analysis. 

Note, to begin with, that the dynamics of a macroscopic variable {A) = Tr DA, 
which is the average, at time t, of a function A of the coordinates Vj and the 
momenta p , , can be produced in two ways, corresponding in quantum mechanics 
to the Schrodinger and the Heisenberg pictures (§ 2.1.5). On the one hand, one can 
consider ^ to be a random variable which is fixed in time: the density in phase 
then changes acoording to the Liouville equation (2.68). On the other hand, one 
can keep the state fixed - and we shall do this here - and A, like the TJ and the p,-, 
evolves according to the Hamiltonian equation dA/dt = {A, H}, or the Lagrangian 
equation (2.61). Note that r denotes the fixed point in space for which we are writing 
down the conservation law, whereas the particle coordinates rj are functions of the 
time. 

The local conservation (14.6) of the number of particles can then be checked 
easily by writing 

QN{r,t) = { V 6^rj-r)) = f d^p f{v,p,t), (14.48) 

JN{r,t) = l^Vj6^{vj-r)\ = f d^p v f{r,p,t), (14.49) 

where we have used the notation vj = rj = Pj/m and the definition (2.81) of the 
reduced single-particle density f{r,p,t). In fact, the time-derivative of gj^ is 
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To justify the local momentum conservation we start by defining, through 

gp{r,t) = ( E ^J *^ ('•j ^ ' ' ) / ^ / ' ^ ^ P P / ( ' ' ' P ' t), (14.50) 

the components gp^ (/3 = 1,2, 3) of the momentum density at the point r, which 
is a vector. We want to express the time-derivative of gpjj as the divergence with 
respect to r of some vector, in order to prove the continuity equation (14.6) for the 
momentum and to construct the current J pa- We find 

d 

0 

where /,• is the force. 

\ jot •'" j I 

(14.52) 

exerted on the j'-th particle by the other particles. The first term in (14.51) can 
immediately be written as a divergence with respect to r. Using (14.52), the sym
metry between particles j and k, and the notation r ' = rj. — Vj, we transform the 
second term to read 

\ hk I 

There now remains only to express the difference between the two 5-functions as a 
divergence with respect to r; to do this, we use the identity 

6 (rj — r j —6 (rj — r — r) = ~ j dX —— 6 (r — TJ — Ar j 
Jo "-^ 

= V / dXr'a^ S^(r-rj-\r'). (14.53) 
^ Jo ^'^°' 

From (14.51), (14.52), and (14.53) we then get the conservation equation 

-^^ gpp+ div JP0 = 0, (14.54) 

with the components of the momentum current density 
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= / d p —^ f(r,p,t)- - / d pd p d r 

X f d x " ^ ^ f2{r~\r,p,v + r'-\v\p'). (14.55) 

In (14.55) we have introduced the two-particle reduced density /2 , defined by (2.82), 
which is equivalent to 

/ 2 ( T - , P , T - ' , P ' ) = 22 (^^('•j - '•)*^(Pj -P)^^(»"fc - »"')^^(Pfe ~P')) • 
j^k (14.56) 

In § 14.4.5 we shall see how Jp, which governs the change with time of the momen
tum density, can be interpreted in terms of the stress tensor in the liquid. 

We can also use Noether's method to obtain the same results (14.50), (14.54), 
and (14.55) for the local momentum balance. Under an infinitesimal, uniform trans
lation Srj = a the change 6L in the Lagrangian vanishes and that invariance im
plies the conservation of the total momentum. Let us carry out a transformation 
Srj = a{rj,i) where now the vector a is a field a{r, t) which depends on the position 
and time. The variation of the action is an integral over r and i, with an integrand 
which contains terms proportional to a and its partial derivatives. We know, how
ever, that 6L vanishes when a is uniform and independent of the time so that only 
the terms in da/dt and dajdrj^ can remain. The variation of the action 6S must 
therefore necessarily have the form 

SS jd\dt E^PM. '*)^^+E^: 
/3 a/3 

da/3 
(14.57) 

which defines the coefficients gp and J p. The actual calculation of these, starting 
from (14.45), gives the same expressions (14.50) and (14.55) as above. (The eval
uation of Jp involves o,{rj) — a(»'fe) which, as in (14.53), can be transformed into 
an integral of the gradient 9a^(r-,t)/97'a.) It is then sufficient to integrate (14.57) 
by parts and after that write down that 6S vanishes for any a{r,t) to get the 
momentum conservation equation (14.54). 

In expression (14.55) the force exerted by particle k on particle j has been 
transferred to the point r, lying between rj and rj., where we want to strike the 
momentum balance. Similarly, in order to write down the local energy conservation 
we define the energy density by distributing the potential energy over the segments 
connecting the particles in pairs, the point r being a barycentre of rj and rj,. We 
thus write 
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QEir,t) = (y2 £ ^ ' ( ' - J - ' ' ) + ^ 5 ] y " ' d A l ^ ( / ) x ' ( A ) 5 ^ ( 7 - - 7 . , - A r ' ) \ 

= j d\^ f{r,p,t) + \ j d\d^p'd\' 

X / dXW{r')x{X)f2{r + v'~Xv',p,r-\r',p) , (14.58) 

where we have used the notation of (14.55). The weight x = dx/d\ is produced by 
some function x(A) which increases from x(0) = — 5 to x( l ) = 5 ̂ '̂ '̂  which satisfies 
the relation x ( l ~ A) = —x(A); for instance, a uniform distribution corresponds to 
x' = l i X = A— 2, and a distribution at the two ends to 2%' = ^(A) + 5(1 — A), 
X = 0. Through a calculation analogous to that of Jp one can prove the equation 
of continuity (14.6) for the energy and construct the energy flux, 

^-^ 2m 
i 

j,k 

/ dA W{r') x'(A) (vj - Xvj + Auj.) 5^ (r- - rj - Xr') 
Jo 

2 

/ 
d^P ^ V f{r,p,t) 

+ - / d pd p d r I dX f2{T — Xr ,p,r + r — Xr ,p ) 

x { p ^ ( r ' ) x ' [ ( l ^ A ) . + A . ' ] - ^ ^ ( . ' . [ ( l - x ) . + ( i + x ) « ' ] ) } . 

(14.59) 

The fact that there is still some arbitrariness in the definitions of QE and JE is 
connected with the fact that we had to assign to the point r properties connected 
with particles at the points rj and r^. In the case of long-range forces, such as 
Coulomb forces, the natural choice is to assign half of the potential energy to the 
point rj and half to the point r^, by taking 2x' = S{X) + S{1 — A), x = 0 in 
the energy density (14.58); however, the flux (14.59) contains even in that case 
contributions coming from the segment which joins rj and rf.. Nonetheless, in the 
case of short-range forces, r is small in (14.55), (14.58), and (14.59) so that only 
particles close to r contribute to the densities and the fluxes at that point. In this 
case /2 is, close to equilibrium, hardly at all afliected if we simultaneously translate 
its two arguments over a distance of order r smaller than the range of the forces, 
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and it therefore hardly at all depends on A. As a result it does not matter how we 
choose X S'Hd we find altogether 

JE'^ / d^P | - " / + ^ / d^pd^p d^r (14.60) 

, , jr / I 1 ' I 1 ' 1 ' 1 l\ tjrl '\ '"' dW , I , 
X /2 (»•+ 2'' ' P + 2P " ' " - a*" ' P ^ 2? j " ^ ( ^ ) ~ P" " ^ ('• •") 

The conservation of angular momentum is connected with the invariance under 
rotation. The Lagrangian (14.45) is invariant under an infinitesimal global rotation 
Srj = [a; X rj]. As in the case of the translation in (14.57), the change in the action 
under a transformation Svj = [cj{rj,t) x rj], where the infinitesimal rotation vector 
Lj is replaced by a field <j{r, t) which varies in space and time, has the form 

SS = 
/ 

d^rdt eLj{r,t) 
dw^ {r, t) 

di E :̂ L-y 
dcj-y 

Bra 
(14.61) 

since 8L vanishes when a; is uniform and constant. After we have identified the 
coeflicients gi and JL in (14.61) we shall obtain the local angular momentum 
conservation law by requiring that 8S vanishes for any choice of w: 

d_ 
at gLj + div JL^ 0. (14.62) 

However, the variation 6rj in the trajectories under a "local rotation" i>}{r, t) is 
nothing but a special case, with {u- r) = 0, of the variation Srj = u{rj, t) under a 
"local translation", which produces the change (14.57) in the action; to see this we 
only need to identify u{r,t) with [u}(r,t) x r\. As a result, we expect, in contrast 
to what occurs in the case of the global laws, that the local angular momentum 
conservation law (14.62) is a consequence of the local momentum conservation, just 
as the form of the densities and the fluxes which occur in it. As a matter of fact, 
the calculation of (14.61) follows that of (14.57) closely; the only new feature is the 
use of the invariance of the Lagrangian under a global rotation for writing down 
that the term in u> vanishes. The result can be written as 

SS I d r dt 
du>-

2 ^ QP0 sp-is -gf n+ 2_^ Jp0 sa-ys 
PJS a0j6 

dra n (14.63) 

where £a/3-y is the completely antisymmetric third rank unit tensor (14.23a). Com
paring (14.61) with (14.63) we find the required expressions, 

OLf = 2 ^ SfSp r* 0PI3, J L-Y = 2^ ^T*^ ''* "^P/^' 
SI3 60 

(14.64) 

without having had to use the specific form of gp or of Jp. If we use (14.64) and 
(14.54), we then find from the local angular momentum conservation (14.62) that 
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a/3 

which means that the Jp tensor is symmetric: 

Jpf} - -Jpa JP3 = JL- (14.65) 

Even without having evaluated Jp we could thus have expected to find a symmetric 
tensor if the Lagrangian is invariant under rotation. One can check this directly from 
(14.55). 

On the other hand, a Lagrangian invariant under translation, but not under 
rotation, such as, for instance. 

•̂  = 2 X I "^'^'"ja, 2 
ja 

which describes non-interacting particles with a mass tensor with difierent eigen
values ma, again gives rise to a momentum conservation law (14.54); however, in 
this case the current, 

Jpf) = ('^ Pjl3VjcxS^{rj -r) \ = / d^p ^ — f{r,p,t), 

is not symmetric in a and (3. The fact that there is no invariance under rotation 
leads in this case to an extra term in (14.63) proportional to o) which remains 
even when u is uniform. An example of such a situation is provided by conduction 
electrons in a semiconductor with an energy spectrum (11.58). 

Note also that the property (14.65) is based upon the fact that the molecules 
which make up the fluid have no structure and are assumed to be frozen into 
their ground state, so that they can be modelled as interacting point particles. 
In the case of molecules which can rotate we must add to the Lagrangian (14.45) 
terms depending on the internal degrees of freedom. Their contribution to the 
angular momentum is small as compared to that from the motions of the molecules. 
However, if we want be rigorous, we note that the orientations of the molecules 
are coupled to their relative positions by the interactions, and invariance of the 
Lagrangian under rotation requires not only that we shift the molecules over Svj = 
[a> X Tj], but also that we let them rotate over ui around their centre of mass. This 
gives extra contributions to the angular momentum density and current (14.64) and 
involves a weak violation of the symmetry (14.65). Let us finally remember that 
we have only studied a classical liquid. For helium at low temperatures, which is a 
quantum fluid, the quantization of the angular momentum gives rise to particular 
kinds of effects which can be observed in macroscopic hydrodynamics (§ 12.3.3). 

The proof of the conservation laws, starting from microscopic dynamics, is gen
eral and can be applied even to situations which are far from local equilibrium. In a 
regime where the local equilibrium is practically reached at all points and all times 
we can make a major simplification by taking into account that the densities Qi 
suffice to characterize the state of the system. For instance, in a classical liquid in 
local equilibrium the distribution of the momenta p , is practically Maxwellian and 
depends only on QE: 8N: and gp - or on T, /u,, and u; the one- and two-particle 
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densities / and ji occurring in the various expressions (14.48), (14.49), (14.50), 
(14.55), (14.58), or (14.59) for the densities and the currents then take their equih-
brium forms, which follow from the grand canonical distribution described by T", ji, 
and u. Far from equilibrium the dynamics does not depend only on those variables 
and we must follow the evolution of / and J2 for the evaluation of the densities and 
the currents. 

We have found the microscopic expression for the currents Ji for a sub
stance where the various quantities i = E,N,P change continuously from 
one point to another. For systems where exchanges occur between homoge
neous macroscopic parts , the fluxes $i occurring in (14.2) are expressed as 
the surface integrals (14.5). As a result, at the microscopic scale the fluxes $i 
across a surface a can be writ ten as functions of the dynamical variables of 
particles situated near the surface cr, in a layer with a thickness of the order of 
magnitude of the range of the forces between the particles. For instance, the 
integration of (14.55) over a closed surface a leads to the flux of Jp entering 
a\ using (14.54) we find tha t this flux is the time-derivative of the momen
tum inside a. It thus contains, apart from a contribution associated with the 
momenta of the particles leaving or entering <J, the macroscopic force exerted 
by the outside on the inside. As one might have expected, (14.55) expresses 
this force as a surface integral of pressure forces applied at the points r of a, 
and it shows tha t only particle pairs with one particle inside and the other 
outside a contribute to the pressure force. 

14 .3 .3 Re levant E n t r o p y 

Let us now look for the microscopic meaning of the conjugate macroscopic 
quantities Ai{a) and 7i(a) , and also tha t of the entropy S of non-equilibrium 
thermodynamics which we introduced in § 14.2.1 by extrapolating the laws 
of thermostatics. We shall work in the quantum framework and divide the 
system into discrete subsystems. These involve independent degrees of free
dom and the Hilbert space of the global system is the direct product of the 
spaces relating to the subsystems. We shall proceed as in the theory of canon
ical equilibria. To do this we work at a fixed t ime and assume tha t the only 
quantities which are known at tha t t ime are the values of the relevant vari
ables Ai{a). To fix the ideas we can imagine that those variables represent 
the energies of various bodies in thermal contact. Wha t density operator DQ 
must we assign under those conditions to the system in order to make rea
sonable predictions about the other quantities, which are irrelevant at the 
macroscopic scale? The answer to this question comes from the maximum 
statistical entropy principle (§4.1.3): the least biased density operator DQ is 
the one for which the uncertainty in the sense of information theory is the 
largest, when we take into account tha t the Ai{a) are given. 
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We identify these data with the statistical expectation values of some 
observables Ai{a), which are operators acting in the Hilbert space associated 
with the subsystem a, so that DQ is constrained to satisfy the conditions 

Ti DoMa) = Ai{a). (14.66) 

If, for instance, Ai{a) is an average particle number, Aj^{a) is the operator 
with as eigenvalues the number of particles in the volume of the subsystem a. 
In the case of an energy, A^ia) represents that part of the Hamiltonian which 
is associated with the region a. The complete Hamiltonian contains, apart 
from J3^ AE{a), coupling terms Vab between the subsystems, with negligible 
expectation values. The macroscopic additivity of the energy is satisfied in 
this way, but the coupling terms, albeit small, will be essential for producing 
the fluxes and for determining the dynamics of the system. 

As in §4.2.1 the maximum of S{D) under the constraints (14.66) is 
reached for a generalized canonical distribution 

DQ = — exp ^ - 7i(a)l i(a) (14.67) 

Anticipating the result we are looking for, we have introduced Boltzmann's 
constant k in the definition of the Lagrangian multipliers 7i(o)/fc. Those 
multipliers are determined by the conditions (14.66) which give us 

- f c - 4 ^ 1 n Z = Ai{a), (14.68) 
dji{a) 

and the maximum of the statistical entropy is, according to (4.7), equal to 

S{Do) = klnZ-J2 kjiia) ^r-y^ In Z. (14.69) 

Considered as a function of the Ai{a) variables, (14.69) defines the relevant 
entropy relating to those variables (Exerc.3c): it characterizes the missing 
information when we know only the macroscopic variables Ai{a). Mathemat
ically speaking, changing through (14.69) from k In Z, as function of the 7, 
to S{Do), as function of the A, is a Legendre transformation (§6.3.1). The 
symmetry of this transformation implies that (14.68) is equivalent to 

^ S{Do) = ii{a). (14.70) 
dAi{a) 

When the Ai{a) variables are the constants of motion of the subsys
tem a, Z can be factorized into contributions associated each with a sub
system, and calculated exactly as in equilibrium. As a result, the statistical 
entropy (14.69), the sum of the thermostatic entropies of the various parts, 
can be identified with the thermodynamic entropy of §14.2.1. A comparison 
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of (14.70) with (14.9) then enables us to identify the multipliers 7i(a) with 
the macroscopic local intensive variables. 

The microscopic justification which we have just given for the local equa
tions of state is a general one and can be applied to any set of observables 
Ai{a). At any time it associates with the Ai{a) variables a set of conjugated 
7i(a) variables as well as a relevant entropy. The latter depends on the choice 
of variables; it becomes smaller when we enlarge this choice, as in that case 
the system is better determined. At the same time we have solved a statistical 
inference problem: what expectation value should we assign to an irrelevant 
quantity B, if we have the Ai{a) as data? The answer is: Ti IDoB. 

Even though it provides us with the equations of state of § 14.2.1 this 
construction remains a formal one. The 7j(a, f) variables are defined at all 
times starting from the Ai{a,t) through a definite procedure based upon 
information theory. However, their relevance to dynamics is not yet clear: we 
must still close the thermodynamic equations by completing the square of 
Fig.14.1 and show by using a microscopic theory how the ji{a,t) determine 
the fluxes and, hence, the dynamics of the Ai{a, t). 

14.3.4 Macroscopic, Microscopic, 
and Mesoscopic Descriptions 

On a macroscopic scale the evolution is characterized by the changes in the 
Ai{a,t) quantities. On a microscopic scale it is governed, in the case when 
the system is isolated, by the Liouville-von Neumann equation (2.49) for 
the density operator -D(i), completed by assigning to the system a density 
operator D{0) at the initial time i = 0. The solution of this problem is given 
by (2.27) and (2.50), that is, 

D{t) = e-'^*/' 'D(0) e'^*/''. (14.71) 

In general, the initial data are the values of the relevant macroscopic Ai{a, 0) 
variables. As a result we must choose for -D(O) = Do{0) the canonical form 
(14.67) and use (14.70) to determine the multipliers 7i(a, 0) in it in terms of 
the Ai{a,0). 

With increasing t there is no reason that (14.71) should retain the spe
cial generalized canonical form (14.67). Nevertheless we shall now see that 
a density operator £)o(i) of that form appears naturally. The macroscopic 
quantities Ai{a,t) can be derived from D{t) through 

Ai{a,t) = Ti D{t)Ai{a). (14.72) 

Let us assume that at time t we throw out all information except that con
tained in Ai{a, t); using the procedure of § 14.3.3 we should then assign to the 
system a density operator Do{i) of the form (14.67), with parameters 7i(a, t) 
characterized by the data 
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Ai{a,t) = Tr Do{t)Ai{a). (14.73) 

This leads us to associate with D{t), which evolves according to (14.71), a 
density operator DQ{t) which accompanies it all the time while retaining a 
canonical form. The state Do{t) defines the mesoscopic description of the 
system, which is intermediate between the macroscopic and the microscopic 
descriptions, and which is also called the contracted or reduced description. 
It has the interest of involving directly the thermodynamic variables 7i(a, t). 

As far as the macroscopic quantities Ai{a) are concerned, the three de
scriptions are equivalent, since (14.72) and (14.73) are satisfied. The macro
scopic description gives no information about other quantities B which are 
irrelevant on the macroscopic scale, whereas (B) can be evaluated as well from 
D{t) as from Do{t). However, the result is not the same. In fact, according to 
the definition oi Doit) itself, the mesoscopic description gives for (B) predic
tions which are the least biased ones that we can make at time t by induction 
from the values of the Ai{a,t) at the same time. The mesoscopic density 
operator Do{t) thus takes into account only the instantaneous macroscopic 
information. In contrast, the microscopic description through D{t) takes the 
history of the system into account, as the mean value of (B) which it gives 
depends not only on the Ai{a,t), but also on the Ai{a,0) through (14.71). 

A statistical entropy balance shows that D{t) contains more information 
than Do{t). In fact, we have seen in §3.2.3 that S[lD{t)] remains constant 
in time when D{t) evolves according to (14.71): the information existing 
initially about the Ai{a) is transferred to other variables, but its total remains 
constant. In contrast, the mesoscopic description retains the full information 
about the Ai{a), but it loses all information about the other quantities. This 
loss can be expressed by the inequality 

S[Do{t)] > S[D{t)] = S[Do{Q)], (14.74) 

which is a consequence of the definition itself of DQ through the maximum 
entropy principle. As S{Do) can be identified with the macroscopic entropy, 
the dissipation is equivalent to a transfer of information to irrelevant degrees 
of freedom, where this information becomes inaccessible. 

We now have to face the problem in the following terms. We want to ob
tain the equations of motion for the Ai{a,t) or, what amounts to the same, 
for the mesoscopic density operator Doit) which through (14.67) and (14.70) 
is characterized by giving the Aiia,t). To do this we have available the mi
croscopic Liouville-von Neumann equation which governs the evolution of 

Dit) = Doit) + Diit). (14.75) 

However, Dit), which contains all the information about the evolution of the 
microscopic quantities, is too detailed to be manageable. We therefore want 
to eliminate its irrelevant part Di it) in order to write down the evolution of 
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Do{t) only. This procedure, which is called the reduction or contraction of 
the description, is the object of the projection method,^ which is a powerful 
tool of non-equilibrium statistical physics; we shall be satisfied to just sketch 
the basic ideas of this method. 

14.3 .5 T h e P r o j e c t i o n M e t h o d 

Our final aim is to justify the macroscopic equations of motion. In particu
lar, the theory should show how the reduction of the description through the 
elimination of Di has as a result a qualitative change in the dynamics. The 
origin of some of the differences between the microscopic and macroscopic 
scales are easy to understand. The probabilistic na ture of microphysics is not 
obvious at our scale if the statistical fluctuations of the Ai{a) remain small 
at all t imes. This can be seen rather generally for time-dependent macro
scopic systems, as in thermostatics; a notable exception is turbulence where 
small initial fluctuations can with t ime develop to such an extent that they 
prevent deterministic predictions on a macroscopic scale. The non-linearity 
of thermodynamics, which is in contrast to the linearity of the Liouville-von 
Neumann equation, comes from tha t of the relations between the Ai and the 
7J . Other differences, however, are less simple to explain. The irreversible 
nature of the macroscopic equations is in contrast to the invariance of the 
underlying Liouville-von Neumann equations under t ime reversal. Moreover, 
the macroscopic motion in a quasi-equilibrium regime is Markovian, tha t is, 
Ai{a,t + dt) depends only on the Aj{a,t)\ in fact, it is given by differential 
equations which are of first order in t, and the system retains no memory 
of the past, except through the conservation laws. In contrast, the form of 
(14.71) shows tha t the elimination of Di gives us a mesoscopic density op
erator Do{t + dt) which depends a priori not only on Doit), but also on 
the previous history of the system which is memorized in Di{t). Statistical 
physics must thus show tha t in the limit where the macroscopic processes are 
slow and where the systems are large, this memory effect disappears; in other 
words, the information lost between times 0 and t to the irrelevant variables 
does not affect the later macroscopic evolution. 

In order to get an idea how statistical mechanics approaches this problem we 
must work in the Liouville representation which was sketched in §§ 2.1.7 and 2.2.7. 
It consists in considering the matrix elements Amn (or Dnm) of the observables 
A (or of the states D) as the coordinates of a vector characterized by the pair 
of indices m, n. This enables us to introduce "operators in Liouville space" or 

^ S. Nakajima, Progr. Theor. Phys. 20 (1958) 948; R. Zwanzig, L Chem. Phys. 
33 (1960) 1338; Ann. Rev. Phys. Chem. 16 (1965) 67; H. Mori, Progr. Theor. 
Phys. 33 (1965) 423; H. Grabert, Projection Operator Techniques in Nonequilib-
rium Statistical Mechanics, Springer Tracts in Modern Physics, Vol. 95 (1982); R. 
Balian, Y.Alhassid, and H.Reinhardt, Phys. Repts. 131 (1986) 1. 
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"superoperators" which hnearly transform the observables into one another (or 
the states into one another) by operating on the pair of indices. For instance, the 
operation which, for a given H, associates [H, D]/ih with D can be thought of as 
the action CD of the Liouvillian C on D, so that we can write the Liouville-von 
Neumann equation as 

f = £ B . i [H,D]; (14.76) 

the superoperator £ has two pairs of indices and operates as follows: 

^mn,m'n' •* \-^7nn'^m'7i ^mn''^•m'n)' 

In this language an expectation value Tr DA = X^^„ AmnDnm occurs as the 
scalar product of two vectors with coordinates Amn and Dnm- The relation which 
associates a density operator Do with each D according to the rules given in § 14.3.4 
can in the Liouville representation be represented as a Nakajima-Zwanzig projection 

Do = VD, Dx = QD, (14.77) 

where the projector "P and also its complementary projector Q are superoperators. 
We shall not need to write down their explicit form, which clearly depends on the 
choice of the observables Ai{a) as well as on DQ, and thus on the time. 

The evolution of DQ and of Di is, according to (14.76) and (14.77), governed 
by coupled equations. The equation for DQ is equivalent to the Ehrenfest equations 
for the relevant variables, 

^ ^ i ^ = ^Tr[H, Do] Ai{a) + ^ [H, Di] Ai{a), (14.78) 

and we can write the equation for Di as 

dP 
dt 

^^QCQDi = Q(^CVDO-^^ = A. (14.79) 

Let us for the sake of simplicity assume in the following that all the operators Ai{a) 
commute with one another. The first term of (14.78) then vanishes, since in that 
case DQ commutes with the Ai{a). In the second term all parts Hi, of H commute 
with Ai(a) and hence do not contribute; we can thus replace H by X/a>6 ̂ abj 
where Vab is the interaction between the subsystems a and 6. As a result we can 
identify (14.78) with the conservation equation (14.2) and we now get a microscopic 
expression, 

^i{a ^ 6 ) = ^TrDi [V^b,Ma)], (14.80) 

for the fluxes. Using (14.79) to calculate Di then will give us the fluxes. Since the 
right-hand side A of Eq.(14.79) itself depends on the fluxes through dDo/dt we 
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should, in principle, proceed iteratively. We shall not give these calculations here, 
but we shall in Chap. 15 study a similar example, the Chapman-Enskog method. 
Here we shall restrict ourselves to a formal solution, exhibiting the qualitative 
features of the results. Noting that (14.79) is a linear equation for Di we introduce 
its resolvent kernel yV{t,t ); this is the superoperator which is defined for t > t' as 
the solution of Eq.(14.79) without the right-hand side and with the initial condition 
yV{t,t) = Q{t). The right-hand side A{t), defined by (14.79), is proportional to the 
deviation of dDo/dt as compared to the Liouville-von Neumann equation; it can be 
expressed as a function of the intensive or extensive macroscopic variables 7i(o, t) or 
Ai{a, t). We thus obtain the solution of (14.79) with the initial condition -Di(O) = 0 
as 

Di{t) = / dt'W{t,t')A{t'). (14.81) 
Jo 

We have altogether formally achieved the required elimination of Di, and (14.80) 
and (14.81) express the fluxes at time t as functions of the ji(a,t') variables at 
earlier times i . As we have not made any approximations we have not yet obtained 
the equations of thermodynamics where the fluxes depend on the aflinities, and 
hence on the 7, at the same time. 

The superoperator W, called the memory kernel, describes, according to 
(14.79), an evolution produced by the effective Liouvillian QCQ which operates 
in the space spanned by the projector Q. According to (14.77) it is, like Di, as
sociated with the irrelevant quantities, whereas V and DQ are associated with the 
relevant quantities, the Ai{a). As a result, W characterizes the evolution of the irrel
evant variables. According to Eqs.(14.80) and (14.81) the relevant variables are at 
all times t' < t coupled to the others through A{t'); the latter, irrelevant variables, 
evolve from t' to t and are then recoupled back to the relevant quantities through 
the fluxes (14.80). The macroscopic equations of motion (14.80) and (14.81) thus 
describe a retarded transfer of information amongst the relevant variables, carried 
out through their coupling with the other variables, which evolve according to the 
memory kernel W. 

If we have made an adequate choice of relevant variables Ai{a) we expect that 
the remaining, microscopic, non-conservative variables change very rapidly with 
time. We shall show that this enables VV to be significant only during a short time 
interval t — t'. This kernel, which is a solution of Eq.(14.79) without its right-hand 
side, is a sum of exponentials e"^' ' associated with the different eigenvalues of 
QCQ - we neglect here the slower i-dependence of Q. The frequencies uj which 
contribute to (14.81) are very numerous and they can be replaced by a continuum 
for a macroscopic system. Moreover, their characteristic values O are very large as 
W describes microscopic motions. These features are illustrated by the example 

/ 
d^ eMt-t') 1 ^ ^ ^-n\t-t'\ 

which enables us to understand that the characteristic memory time 1/i? of W is of 
the order of the characteristic microscopic periods (see also the note in Exerc.l4b). 



14.3 Microscopic Approach 289 

Let us therefore assume that our system has a short memory, that us, that the 
contribution to the integral (14.81) is concentrated in a time interval of t'-values 
close to t, where A{t') is dose to A{t). With this approximation we find that 

Di{t) = lC{t)A{t), ^ = I dt'W{t,t'), 
Jo 

(14.82) 

where the integral which defines the superoperator /C is only over the neighbour
hood of t. Equations (14.80) and (14.82) then determine the fluxes solely from the 
macroscopic variables 7^(0, t) at tim.e t. 

In this way statistical mechanics has justified the scheme of thermodynamics 
close to equilibrium provided the short-memory approximation is valid for the kernel 
W. This property is connected with the possibility to separate the variables into 
two families, the relevant variables which evolve slowly and the others with short 
characteristic times. In fact, the existence of a quasi-equilibrium regime involving 
two time scales, a microscopic one characterizing the approach to local equilibrium 
for the irrelevant variables, and a macroscopic one governing the changes in the 
macroscopic quantities Ai{a), is the result of the conservation laws. Those, in fact, 
force the Ai{a) variables to evolve only under the influence of the macroscopic fluxes 
from one subsystem to another. Such transfers axe hindered by the weakness of the 
couplings, a bottleneck which makes the characteristic times for the evolution of the 
Ai macroscopic. 

In the projection method it is interesting to identify the respective roles of the 
two parts, DQ and Di , of the density operator. Local equilibrium is described by DQ, 
which is the dominant contribution to D. However, the deviation Di from the local 
equilibrium is, according to (14.80), solely responsible for the macroscopic dynamics 
and the approach to global equilibrium of an isolated system. This deviation is itself 
determined by (14.82) in the case of a short-memory kernel, and i3i(t) then depends 
only on Do{t), independently of the initial conditions, which it soon forgets. The 
very processes involved in the approach to global equilibrium thus prevent the 
establishing at all times of an exact local equilibrium, for which we would have 
Dx{i) = 0. In return, this small local disequilibrium Di is necessary in order to 
instigate exchanges between the subsystems. The small deviation Di between the 
microscopic description D and the naesoscopic description DQ is therefore essential 
since it determines the fluxes while being completely determined by DQ, even though 
the local equilibrium state is characterized by Do alone. We shall again encounter 
these rather subtle features in the Chapman-Enskog method in Chap.l5. 

Altogether, we have achieved our goals: (i) to show how from microphysics 
one can derive the equations which relate the various thermodynamic quan
tities to one another according to the scheme of Fig.14.1 and § 14.2.6, (ii) to 
understand what approximations are involved in the justification of thermo
dynamics, and (iii) to find, at least formally, explicit microscopic expressions 
for the thermodynamic equations. The conservation laws follow exactly, ei
ther from §§14.3.1 and 14.3.2 or from (14.78). The equations of s tate also 
can be derived exactly using the approach of § 14.3.3, but the latter should 
rather be regarded as a microscopic definition of the 7i(a) variables and of 
the thermodynamic entropy S{Do). The only approximation made has been 
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the replacement of the exact, retarded equation (14.81) by the instantaneous 
equation (14.82); substituting this result into (14.80) provides a formal ex
pression for the fluxes as functions of the 7i(a) variables, whereas the exact 
expressions (14.80) and (14.81) depend in principle on their past. 

The closed set of equations thus obtained have the form expected from 
macroscopic phenomenology. They are valid in any quasi-equilibrium regime, 
which microscopically means a short memory for the kernel W describing the 
motion of the microscopic, irrelevant variables other than the Ai{a). If we are 
sufficiently close to equilibrium we can maJce a second approximation by ex
panding (14.80) and (14.82) in powers of the affinities. Thus, if the fluxes 
are sufficiently small linearization gives us a microscopic basis for thermody
namics in the linear regime. The expressions which we obtain in this way for 
the response coefficients L should enable us to prove their properties which 
we postulated in §§ 14.2.4 and 14.2.5, especially the Onsager relations and 
the Clausius-Duhem inequalities. We shall not carry out this general task, 
but we shall work out the above ideas in Chap.15 for the special case of the 
kinetic theory of gases. Note that, starting from the microscopic dynamics 
(14.76) which is invariant under time reversal provided H^ = H, we have 
been able to find irreversible macroscopic equations. The key to this qualita
tive change is provided by the short-memory property of W which, through 
(14.82), has made it possible to close the macroscopic equations of motion; 
the fact that Di{t) then depends only on Do{t) is reflected by an irretrievable 
loss of information to the irrelevant variables. 

Let us, in conclusion, stress the generality and the flexibility of the con
traction of the description and the projection method which implements it. 
The choice of the relevant quantities is, in fact, a priori left to our own dis
cretion. With each choice we associate a relevant entropy and get different 
dynamic equations which are more or less detailed, depending on the number 
of relevant variables which we have kept (§ 15.4.4). The most adequate choice 
is that which separates the slow from the fast variables; the short-memory 
approximation, which is necessary to simplify the equations of motion, is then 
legitimate. 

14.4 Applications 

In order to illustrate the general methods of thermodynamics (§ 14.2.6), com
plemented by hints from statistical physics, we shall analyze a few simple ex
amples: diffusion, conduction, hydrodynamics. The study of most substances 
can be approached in a similar way with a few complications which are prin
cipally due to the larger number of macroscopic variables. 
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14.4.1 Particle and Heat Diffusion 

Various problems can be modelled as follows. An inert, fixed medium con
tains particles which can move in it by colliding with the constituents of the 
medium. The system studied, which disregards the scattering substratum, 
consists solely of these mobile particles, the density of which may change 
from one point to another. We assume that the collisions are elastic so that 
the energy of the moving particles is conserved, but not their momentum. 
This assumption is justified provided the particles are much lighter than the 
centres by which they are scattered. 

Such a situation occurs in the case of neutron diffusion in the various 
substances which make up a nuclear reactor: the density of these neutrons is 
so small - only lO^cm"^ in the core of the reactor - that they can be treated 
as a classical gas without interactions; however, they collide with the nuclei of 
the material they pass through, which are much heavier (§15.2.5, Prob.17). 
The diffusion of impurities in a solid, which in general is slow but which can 
become appreciable at high temperatures (Exerc.l5a, Prob.19), is a similar ef
fect. In the case of a liquid solvent the model represents, provided this solvent 
is modelled as being fixed, diffusion of the molecules of a solute, which tends 
to make their density homogeneous. The conduction of electricity and of heat 
falls into the same framework (§§11.3 and 15.2, Prob.18). In that case the 
charge and energy carriers, namely, electrons and holes in semiconductors, 
electrons in metals, interact with the crystal lattice imperfections, which 
arise either from the displacements of nuclei from their equilibrium posi
tions (phonons), from crystal defects, or from impurities. The existence of 
long-range Coulomb interactions, however, complicates matters and we shall 
discuss this in § 14.4.2. If the inertia of the substrate is small, which often 
is the case for neutral or ionic solutions, it easily collects energy and plays 
the role of a heat bath, so that the following considerations would be valid 
in such cases only for uniform T. 

In the general case the macroscopic state of our system is characterized 
by giving locally two macroscopic conservative variables, the energy and the 
number of particles. (For a semiconductor we must introduce both the num
ber of conduction electrons and the number of holes.) They are associated 
with two local intensive variables, 'JE = '^/T and 'yjsr = —fj,/T, and two fluxes, 
JE and JN- A priori, the response coefficients form four 3 x 3 matrices, but 
invariance under rotation (14.22) reduces them to four scalars. We wrote 
down in (14.25) the transport equations connecting the fluxes and the affini
ties and we have seen that Onsager's relations give us the equality, (14.26), of 
LEN and LME- This reduces the number of independent coefficients to three. 
Finally, the Clausius-Duhem principle (14.32) can be expressed through the 
inequalities 

LNN > 0, LEELNN > {LEN) . (14.83) 
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The diffusion coefficient D is defined by (14.20) for processes where the 
temperature is uniform; this connects it, according to (14.25b), to LJ^TN 

through the relation 

L> — — LNN 
T~"" dQN 

(14.84) 

or through (14.21). If the diEusing particles behave as a classical perfect gas, 
their density gjv depends on /* only through the factor e^/*'^ of (7.32). As 
a result, the gradients of the density and of the chemical potential are, for 
constant T, related to each other through 

kT 
V/i = — VQN, (14.85) 

QN 

and (14.84) reduces to 

D = — LNN- (14.86) 

More generally, it follows from (4.35) and (4.38) that dgu/dfi is always pos
itive so that (14.83) and (14.84) imply that D is positive. 

The thermal conductivity is defined by Fourier's empirical law, 

JE = - A V T , Jjv = 0, (14.87) 

where it is important to note that the mean particle flux vanishes. On the 
microscopic scale the number of particles passing through a surface element 
in one direction or the opposite one are equal, but the particles moving in 
one direction carry more energy than those moving in the opposite one. The 
equation of continuity for the particle number then implies that the densities 
QN remain constant with time at each point during the process (14.87). It 
follows from (14.25b) that the chemical potential varies in space in order to 
prevent a flux Jjv to occur: 

0 = LiveV (^) + LjvivV ( - | ) , (14.88) 

and this variation determines that of gijv-Eliminating V/U between (14.25a) 
and (14.88) enables us to express JE in terms of V( l /T) and, hence, to 
express the conductivity (14.87) in terms of the transport coefficients L, 

A = - J - {LEELNN - L%j^). (14.89) 

It follows from (14.83) that A is positive. 
The fact that heat transport may here be accompanied by transport of 

particles is reflected in the difference between the expressions (14.18) and 
(14.89) for the conductivity. The first expression is adapted for an insulating 



14.4 Applications 293 

solid where heat on the microscopic scale corresponds to lattice vibrations -
or to motion of phonons, but as their number is not conserved there is no 
associated QN density. On the other hand, in a metal the, much more efficient, 
heat conduction is produced by the motion of the electrons and it satisfies 
(14.89). 

We have indicated in § 14.2.4 tha t the coefficients LEN and LJVB govern 
indirect thermo-mechanical effects which are symmetric with respect to one 
another: the flux of heat produced by a gradient of the chemical potential, 
or pressure, at uniform temperature , and the flux of particles produced by a 
temperature gradient. These effects, which are easier to observe in a charged 
substance (§ 14.4.3), are related to one another through the Onsager relation 
LEN = Lj\fE-

14.4 .2 E l e c t r o d y n a m i c s 

When the moving particles are charged, the above ideas can be adapted to 
electric t ransport . In order to simplify the discussion let us assume tha t there 
is a single kind of carriers with a charge q, which is equal to —e = —1.6 x 
10~^^ C for the electrons in a metal or a strongly doped n-type semiconductor, 
or to + e for the holes in a strongly doped p-type semiconductor. In the 
case of an ionic solution or of an intrinsic semiconductor we should add 
the contributions of the different carriers. The electric charge and current 
densities, ^ei = Q6N, Jei = QJN, are related to each other through the 
conservation law of carriers. We note that we are dealing with macroscopic 
quantities and tha t their microscopic deflnition makes it necessary to use 
averages, as we saw in § 11.3.3 in the case of the electrostatic charge density. 
The long range of the forces on the microscopic scale implies that on our 
scale there still remains a macroscopic electric potential $(r) produced by the 
averaged charges; its expression as function of Qe\ and of the external sources 
was given in § 11.3.3. In turn we must add the self-consistent macroscopic 
potential q^{r) to the single-particle Hamiltonian of the carriers. We shall 
take into account the force qE which is produced in this way. However, we 
shall disregard magnetic effects, neglecting the B field. We shall also ignore 
the dynamical effects associated with the polarization of the medium; in order 
to take these into account we would need to introduce a polarization density 
in addition to the two densities QE and QN to which we restrict ourselves. 

The electric conductivity a is, for a substance which is at a uniform tem
perature and macroscopically neutral, defined by Ohm's empirical law 

Jei = aE = - o - V # . (14.90) 

On the microscopic scale one also defines the electrical mobility (11.72), which 
is the mean drift velocity acquired by the carriers in unit field. This quantity, 
/Xei) is directly related to the conductivity through the equation 

a = qgNfJ-ei- (14.91) 
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It is customary to use the same symbol fi for the mobihty and for the chem
ical potential; we distinguish them through the index for /iei- As we did in 
the case of the diffusion coefficient, we want to connect the conductivity to 
the coefficient Ljviv of (14.25). To do this, we must analyze the effect of the 
presence of the potential # ( r ) on the equations of thermodynamics, and es
pecially the spatial variations produced in the chemical potential fx. We shall 
proceed in the same spirit as in § 14.3.2 where we studied the local symmetry 
properties. We first exhibit the invariance associated with the addition of a 
constant q^ to the single-particle Hamiltonian; afterwards we shall let # vary 
in space. In thermostatics the entropy density S{QE,QN,^) has an evident 
invariance property: it is connected to s{gE,8N) when there is no potential 
through 

S{QE,QN,^) = S{Q'E,QN), QE = Q'E+I^QN- (14.92) 

As a result we see that the local equation of state (14.12) which defines (i 
depends as follows on the electric potential # : 

M = 1^{QE,QN,^) = - T ~— S{QE,QN,^) 
OQN 

= ti{Q'E,QN) + q^- (14.93) 

This result was microscopically obvious in the grand canonical ensemble 
where nothing is changed when we simultaneously shift the single-particle 
energies and the chemical potential by q^. It remains valid at each point 
for the local chemical potential, provided the electric potential ${r) changes 
slowly on the microscopic scale. The first term ^' = fJ.{Q'E,8N) in (14.93) 
depends only on the local temperature and on the local density, but not 
on the potential $. For instance, if the carriers behave as a classical gas -
semiconductors - the reduced chemical potential /j,' varies with gj^ according 
to (14.85) whatever t h e changes in ^ ( r ) . 

This result has important consequences. The general theory indicates that 
whatever its physical origin, a change in JJL produces a flux, equal at uniform 
tempera ture to 

JN = - — LNN^IJ" 

We shall see later that ijvjv is independent of the potential ${r). Using 
(14.93) we obtain the flux produced, at uniform temperature , by simultaneous 
changes in the density and the potential, in the form 

1 9M ' 
J-iNN 

T~"" dQN 
VQN+^LNNE. (14.94) 

We have thus split the total particle flux into two contributions. The first 
one represents the diffusion current, the physical interpretation of which is 
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the tendency of the system to make its density QN uniform. The second one 
represents the current produced by the forces applied to the volume element 
d^r which would, in the absence of a scattering medium, tend to accelerate 
the particles into the direction qE; the friction by the medium leads to a final 
drift velocity fie\E. These two effects are governed by the same microscopic 
mechanism, which is reflected in that there occurs only a single response 
coefRcient in (14.94). A comparison of the first term of (14.94) with Pick's law 
(14.20) has already provided us with the relation (14.84) between the diffusion 
coefRcient D and LJSIN. On the other hand, the electrical conductivity (14.90) 
is defined in a neutral substance, which implies a uniform carrier density QM, 
so that it is given by the second term in (14.94). Hence, we find for the 
conductivity u 

c^ = l^^ivjv- (14.95) 

Diffusion and conduction are thus related phenomena since they are gov
erned, according to (14.84) and (14.95), by the same response coefficient, 
LMN'- different causes produce the same effects, if the deviation from equili
brium which they bring about is measured by the same Vfi. In the first case, 
when there are no applied forces, # vanishes and V/i is given as function 
of the density variations by (14.85) for a perfect gas; in the second case the 
density is uniform and we get V/i = gV# from (14.93). If the carriers consti
tute a classical gas this connection is reflected by Einstein's relation (1905) 
between the diffusion coefficient and the mobility, 

kT kT 
D = ^ a = — Mel, (14.96) 

where we have used (14.86), (14.91), and (14.95). 
In the context of electromagnetism fi/q is often called the electrochemical 

potential. However, one should take care not to confuse it with the electrical 
potential # with which it is connected through (14.93). In particular, in a 
substance in electrostatic equilibrium (§ 11.3.3) the current vanishes, fi is 
uniform, but this is not true for #; the density ĵv follows the changes in 
# according to (14.93) which, if we take (14.85) into account, implies for a 
classical gas that 

QN{r) oc exp 
kT ' 

in agreement with (7.32). This equilibrium state can, if we use (14.94), be 
interpreted as the result of the cancellation of the diffusion current by the 
current which would be induced by the electrostatic forces, if they were op
erating in a homogeneous medium. Einstein used such a balance argument 
to derive the relation (14.96). More generally, if ^{r) changes from one point 
to another, we can interpret qfJ.{r) — qiJ-{r') as the electromotive force which 
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tends to create a current from r to r ' . If there is a macroscopic charge den
sity present, or a tempera ture gradient, this electromotive force is different 
from the potential difference q^{r) — q^{r') so tha t Ohm's law (14.90) is 
no longer valid; we must go back to the general response equations (14.25) 
together with (14.93). Such situations often occur in semiconductors, but not 
in a metal where the screening confines the charges to the surface so tha t 
V^jv = 0 inside, and where thermal gradients are small. 

Let us complete the study of the effects of an electrical potential on the various 
equations of thermodynamics. If $ is an external potential, we should associate with 
the change (14.92) of the energy density a change in the energy flux, J^ = J'E + 
q$Jj^. The local energy conservation law then remains valid, even when the applied 
potential ${r) varies in space. This is easily checked microscopically by adding q${r) 
to p /2ra in equations (14.58) to (14.60). (The momentum conservation would make 
it necessary to introduce into the right-hand side of (14.6) a source term —qgjsjV^, 
but it is anyway violated by the collisions with the scattering centres.) If the applied 
potential depends on the time we must add to the right-hand side of the energy 
conservation equation a source term qgj^d^/dt; even the total energy is then no 
longer conserved, since the Hamiltonian is time-dependent. However, the potential 
#(r , t) contains, in general, a self-consistent part produced by the charges situated 
at other points r' and depending on the time, because these charges change. If we 
include the whole of g^ in the energy density and flux at r we must again introduce 
a source term in the evolution equation for QE; the effect of this term is cancelled in 
the calculation of the change in the total energy by the fact that the latter is then no 
longer equal to f d r QE, but to / d r (QE — \qQN^)i because otherwise we would 
have counted the potential energy twice. Another way of proceeding consists in 
dividing the interaction potential energy between r and r evenly between those two 
points when we define QE, as we did on the microscopic scale in (14.58) with x = 0; 
we must then change the definition of the flux JE according to the macroscopic 
version of (14.59), and the local energy conservation law remains satisfied without 
sources; but the price we pay is the introduction of non-local terms in JE-

We must still determine the response coefficients Lij when there is a potential 
^{r) present, assuming that we know the coeSicients L^j when there is no such 
potential. Note, to begin with, that the Lij depend on $, but not on its gradient so 
that we can calculate them, assuming that # is uniform. It then suflices to start from 
Eqs.(14.25) which relate the fluxes J^ to the affinities V'y'i in the absence of $, and 
to make the change of variables T = T' , fx = fx' + qf, JE = JE + 1^-^N: -^N = J'N' 
to get the relations between the J j and the V7i. The resulting coefficients are the 
required response coefficients Lij. We find in this way how they depend explicitly 
on ${r): 

LNN = -f^Wi (14.97a) 

LNE = LEN = L']S,E + q^L'jyj^, (14.97b) 

LEE = L'EE + ^q^L'NE + Q^^^L'r^N- (14.97c) 

We check that Ljvjv is independent of $, as we assumed when we wrote down 
(14.95). Moreover, it follows from (14.97) that the presence of an electrical potential 
does not affect the thermal conductivity (14.89). 



14.4 Applications 297 

14.4.3 Thermoelectric Effects 

The indirect response coeiEcients L^E = LEN are involved in the thermo
electric effects which connect the two kinds of conservative quantities, charge 
and heat. The Seebeck effect (1822) is the production of an electromotive 
force by a temperature gradient. It introduces the thermoelectric power or 
Seebeck coefficient e of a substance, a quantity which is defined as minus the 
electromotive force produced in an open circuit by unit temperature gradient: 

- j = - e VT, Jjv = 0. (14.98) 

In this definition the electric charges and currents vanish so that the electro
motive force can be identified with the spatial variation of fi/q. We are in the 
same circumstances (14.88) as in the case of heat transport, but now we are 
interested in V/i; using (14.93) and (14.97) we thus obtain 

1 /LNE _ A ^ J _ f ^'NE 

In order to use this property for applications and to observe it in a per
manent regime one must construct a circuit containing two kinds of different 
conductors, in order to prevent the electromotive forces produced by the 
sections of the circuit which are subject to opposite temperature gradients 
from cancelling one another. This gives us the principle of thermocouples 
(Fig.14.2). At the two junctions, which are at temperatures Ti and T2, both 
the chemical potential and the temperature between the conductors A and 
B are continuous. On the other hand, we have seen in § 11.3.5 that the elec
tric potential # is discontinuous; its macroscopic jump, which is created by a 
double layer of charges, has just the effect of making the chemical potentials 
at both sides of the junction equal to one another. However, the temperature 
and the chemical potential vary, according to (14.98), along the conductors. 
This produces at the points 3 and 4 of the simple circuit shown in Fig. 14.2 
an electromotive force, 

# 3 - ^ 4 = - [(^3 - ^1) + (^1 - ^2) + (M2 - M4)] 

- eB(Ti - T) + eA(T2 - Ti) + eB(T - T2) 

= ( e s - e A ) ( T i - T 2 ) , (14.100) 

Fig. 14.2. Thermocouple 
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which is proportional to the difference between the temperatures of the two 
junctions. A voltmeter, with a large resistivity in order tha t the current is 
practically zero, makes it possible for us to determine this electromotive force, 
which is equal to the potential difference between the ends, and thus to 
measure temperature differences after calibration. The effect can be amplified 
by placing several similar circuits in series; it enables us to obtain a high 
sensitivity and great convenience. 

The best known thermal effect of electricity is clearly the Joule effect 
(1841) which is connected with the passage of a current in uniform conduction 
regime where the temperature , electric field, and carrier density are uniform 
and the substance is neutral on the macroscopic scale. By eliminating V/i 
between Eqs.(14.25) and using (14.93) we see tha t in this regime the particle 
flux is accompanied by an energy flux, 

JE = -^LENV^ = ^ ^ J e i . (14.101) 

Even though this energy flux is an indirect effect connected with the coeffi
cient LEN, the divergence of (14.101) is given by the term in q$ in (14.97b), 
the only one which varies from one point to another. Energy conservation 
then gives an expression which does not involve LEN-

^ - - d i v J s = - ( V ^ - J e i ) = ^ . (14.102) 

In the model considered the charge carriers do not exchange energy with 
the medium; the conduction is not a stationary regime, and the Joule power 
(14.102) produced at every point contributes to an increase in the energy 
of the carriers with t ime and thus to a rise in their temperature . However, 
in practice (§ 15.2.4) the inelasticity of the collisions enables the carriers to 
exchange energy with the lattice, and hence the heat (14.102) is carried off 
when the conductor is maintained at a constant temperature . Note that the 
heat produced depends only on cr, tha t is, on the direct response coefficient 
LNN-

If (14.97) is taken into account, the entropy flux (14.36) reduces to 

Js — —JE - Tf, JN = 7f^ (IJ-LNN - LEN) V # 

- ^ ( M ' ^ W - i U ) V#, (14.103) 

and its divergence vanishes. The local entropy balance (14.38) gives us the 
dissipation rate 

g == f,LNN{V^r = ^ J l (14.104) 
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Fig. 14.3. The Peltier eflect 

A B 
(T) 

where we have used (14.95). In fact, this dissipation of entropy is the basic 
phenomenon in the Joule effect; it is a consequence of the irreversibility of 
the charge t ransport , and the heating (14.102) follows from quasi-equilibrium 
thermodynamics. 

The inverse indirect phenomenon of the Seebeck effect is the Peltier effect 
(1834), which involves the coefficient LEN- It is also easily observed only when 
one uses two different conductors: when an electric current passes through 
a junction between A and B, one observes locally a heating or a cooling, 
depending on the direction of the current. Let us assume tha t the junction 
and its surroundings are maintained at a temperature T. The current passing 
through the conductor A is accompanied by an energy flux (14.101). However, 
whereas the electric current is conserved, the energy flux (14.101) in B differs 
from tha t in A. The local energy balance then implies that the thermostat 
which maintains the junction at the temperature T provides it with a power 

W = 
LEN \ ( L 

QLNNJB \QLNN/X 

•lEN 
(14.105) 

which is proportional to the strength / of the current passing through the 
junction and which changes sign when the current changes sign. Bearing in 
mind the continuity of fi across the junction and expression (14.99) for the 
Seebeck coefScient, we find for the Peltier coefficient, which is the power 
absorbed for unit current from A to B, 

W ( LEN fJ'\ ( LEN M 

I \qLNN q/s yq^NN q, 

= r ( e B - e A ) . (14.106) 

This relation between two reciprocal thermoelectric effects is, in fact, a 
consequence of the Onsager relation LEN = LME, as the response which oc
curs in the thermoelectric power is XiVE, whereas tha t which occurs in the 
energy flux is LEN- Note tha t it was useless in these two cases to analyze in 
detail what happens at the junctions: it has been sufficient to consider the 
bulk t ransport in the two substances together with the continuity property 
of the chemical potential, even though complicated effects occur at the junc
tion - notably, the electrical potential has a discontinuity which is connected 
with a localized charge distribution. Note also tha t , in contrast to the Joule 
effect which accompanies it in the conductors A and B, the Peltier effect is 
reversible: the entropy exchanges of the junction with A and B and with the 
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thermostat are balanced, without dissipation; they merely change sign when 
the current changes sign. The Peltier effect is used in laboratories to deposit 
or take away at a given point a well defined amount of energy. Its practical 
use - for instance, to make small refrigerators - is impeded by the difficulty 
of finding substances with a large Peltier coefficient and a small resistivity as 
well as a small heat conductivity - to avoid a loss of efficiency through heat 
leaks. Moreover, one must restrict oneself to small intensities, as the Peltier 
effect is proportional to I, whereas the Joule effect is proportional to P. 

As an exercise, one could analyze another thermoelectric effect, the Thomson 
effect, which occurs when an electric current passes through a substance in the 
presence of a temperature gradient. As in the Peltier effect, but here for a sin
gle substance, we have locally the creation or absorption of an amount of heat, 
proportional to IVT, in addition to the Joule heat. 

Let us finally stress tha t all the foregoing only concerns regimes where 
there is local equilibrium. In the case of effects which involve fast variations 
in space or t ime one tends to use empirical laws which define non-local or 
retarded, or, what amounts to the same, wavelength- or frequency-dependent, 
t ranspor t coefficients. For instance, the static permitt ivity e, introduced in 
§ 11.3.3, or the conductivity a of (14.90) are replaced by functions of the 
frequency - complex permitt ivity or impedance - for rapidly oscillating phe
nomena. These go beyond the framework of thermodynamics as they imply 
either situations far from equilibrium or memory effects. Their s tudy needs 
an appeal to statistical mechanics (Exerc.l4b and Chap.15). 

14 .4 .4 Local Equi l ibr ium of a F lu id 

Prom now on we shall be interested in a fluid consisting of one kind of 
molecules, to be treated as point particles, which evolves near equilibrium. 
We may be dealing with a gas - we shall come back to that case in Chap.15 
- or with a liquid, if the interactions between the molecules are strong. Our 
aim is to derive the equations of hydrodynamics and heat t ransport , start
ing solely from the general principles of thermodynamics, and to identify the 
usual t ransport coefficients in terms of the theoretical coefficients L y . In par
ticular, we shall classify the equations of fluid dynamics either as conservation 
or as response laws, and we shall make a systematic use of invariances and 
symmetries to reduce the number of independent Lij coefficients to three. We 
shall always regard the transformations as passive (§ 2.1.5), tha t is, operating 
on the coordinate frame rather than on the system itself. 

We start by writing down the constants of the motion. As in the case of 
the systems studied in § 14.4 J they contain the number of molecules and the 
energy but we must also include here the three components of the momentum 
P. The presence of these new conserved quantities makes it possible tha t 
quasi-equilibrium regimes are established where the fluid is macroscopically 



14.4 Applications 301 

in motion. This is not the case when particles interact as in § 14.4.1 with 
a scattering medium, since colUsions with scattering centres quickly bring 
the momenta Pj of the particles to an isotropic distribution if there is no 
external force present; then the system of molecules within a macroscopic 
volume element cannot retain over a macroscopic time interval a global drift 
velocity, unless there is an external force. 

A local equilibrium state is characterized by giving at each point the five 
densities of the conservative quantities, the particle density g^, the energy 
density QE, and the momentum densities Qpa, for each of the three compo
nents Pa {a = X, y, z). Thermostatics teaches that all equilibrium properties 
can be derived by giving the entropy density s as function of these five vari
ables. Especially, the partial derivatives of this function with respect to QE, 
QN, and gpa define the local intensive variables ji = l /T , —fi/T, ^Ua/T. 

We already started to use the Galilean invariance in (14.10) to identify 
u with the local mean displacement velocity of the fluid. More precisely, 
Galilean invariance implies that the thermodynamic potentials depend only 
on two independent variables and not on the five variables associated with 
E, N, and P. For instance, the entropy density has the form 

2 

s{gE,QN,ep) = s[eB - ^^ ,gjv,Oj, (14.107) 

which is valid for any fluid, whether it is a gas or a liquuid, classical or quantal. 
In practice, we characterize the local equilibrium state by the temperature T, 
the mass density 

g = mgN, (14.108) 

and the velocity u = gp/mgN. Knowing the free energy per unit volume 
F{T, gi^f) then gives us the equations of state in the frame moving with a 
velocity u, using the invariance (14.107) of s, just as (14.92) enabled us to 
take advantage of the invariance under a change in the energy origin. Here 
we find T = T', fj, = fi' — g'^/2mg%, where /i' is the chemical potential in the 
frame moving with the fiuid at velocity u. Altogether we can, if we introduce 
the internal energy density gu, write the equations of state in the form 

(14.109a) 

gp = gu, (14.109b) 

(14.109c) 

We have used the Gibbs-Duhem relation (6.9) or (5.79) to get expression 
(14.109c) for the equilibrium pressure V. 

Qu '-

QE = 

V --

= F-T — 
dT 

= gu + \QU'^. 

-Tis-y^ 

= F + Ts, 

/x = ;u ' -

-jigi ] = Ts-

dF 
^^ = » ogN 

• \mu^, Q 

- Qu + iJ-'gN-
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To justify (14.107), starting from microscopic physics, we use a technique which 
is of interest also for applications to other invariance problems. In the present case, 
when we make a Galilean change in the frame of reference, the coordinates and the 
momenta of the paxticles transform as 

rj = rj—ut, pj = Pj — mu. (14.110) 

The relative velocity u of the two frames is arbitrary; as the transformations 
(14.110) form a group, it is sufficient to use the Galilean invariance for an infinites
imal u and then to proceed by integration. The total momentum and Hamiltonian 
operators then transform as 

p' = P-muN, H' = H-{u-P). (14.111) 

In the case of a finite transformation we must add to the energy a term ^mu N. 
Let us assume that the system is in generalized canonical equilibrium, where we 
have given the expectation values of H, N, and P, with Lagrangian multipliers (3, 
—a, and —A (§4.3.3). In another Galilean frame its density operator is the same, 
but the equilibrium state which it describes is characterized by new multipliers /3 , 
—a , —A'; the partition function may a priori also be changed. Using (14.111) we 
identify the two expressions 

n - i -pil+aN+ix-'p) _ ^ -l3'H'+a'N' + {\'-'p') 
Z ~ Z' 

which, to iirst order in u, gives 

13 = 13', a = a -m{u-X'), A = A ' + / 3 u , Z = Z'. (14.112) 

Since Z{(3,a,X) is invariant under the infinitesimal transformation (14.112), it sat
isfies the equations 

The solution of these partial differential equations shows that Z depends on a and 
A only through the combination a + mX /2/3 so that we can express Z{f3, a, A) in 
terms of the grand canonical partition function, obtained for the case when A = 0, 
as follows: 

Z{p,a,X) = ZG{p,a+'^y (14.114) 

We can derive (14.107) from (14.114) using equation (4.14) which gives the en
tropy in the canonical formalism. We could also have noted that s is the Legendre 
transform of fc In Z per unit volume with respect to /3, a. A, so that (14.113) is 
equivalent to 

ds ds , , 
m -w—QN + ^ — ffp = 0, 14.115 

OQP OQE 

which has (14.107) as a solution. 
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Here the response equations (14.16) involve non-zero equilibrium currents 
J ° , calculated for the case when there are no gradients of T, fi, or u. Let us 
begin by calculating them for a fluid at rest [u = 0). The rotational invariance 
implies tha t J% and J%, which are vectors, vanish (§ 14.2.4); on the other 
hand, Jpg, which is a tensor with two indices, invariant under rotations, 
should be proportional to the unit tensor Sap- In order to determine its 
coeflicient we note tha t the flux of Jpa through a surface with a normal 
in the a direction represents the momentum which passes perpendicularly-
through it per unit t ime. For a fluid at rest in equilibrium this momentum 
transfer must be balanced by the force exerted by the walls; this enables us to 
identify Jp'i = VSap with the hydrostatic pressure V given by (14.109c). We 
confirm this result below, when we start from the microscopic expressions for 
the currents in a classical liquid and evaluate them at equilibrium. We shall 
thus prove the equivalence between the three definitions of the pressure: 
(i) the force exerted by the fluid on a wall, (ii) the momentum current density 
J^p within the fluid in equilibrium, and (iii) the intensive variable conjugate 
V to the volume in thermostatics. 

Coming back to a fluid in motion we again use a Galilean transformation. 
According to equations (14.121) which are proved below we thus obtain the 
equilibrium currents in an arbitrary frame of reference: 

J^^UQN, J% = U{QE + V), J^"0=Uc,Uf}g + V6c0. (14.116) 

In the case of a liquid at equilibrium and at rest the one- and two-particle 
densities / and /2 which occur in the microscopic expressions of § 14.3.2 for the 
densities and the fluxes have, respectively, the form Qi>fg{p) and Q2{r')g{p)g{p'), 
where g{p) is the Maxwell distribution (7.17) and r' is the distance between the 
two points in /2 . As a result the only non-vanishing currents are given by the 
diagonal elements of (14.55) which are equal and reduce to 

4« = ,NkT-\ I d\'r' ^ ,2(/). (14.117) 

On the other hand, the grand potential (9.4) of the liquid depends on the volume 
Q only through the integration domain. A change of coordinates, rj = sjL, where 
L = n^'^ gives us 

'kT In. 
. N •' 

where the integrations are over unit volume; the volume f2 appears both explicitly 
and through Wij = W(\si — Sj]L). There are two terms, corresponding to these two 
functional dependences, in the derivative of A with respect to the volume which 
gives us the pressure: 

rn = -ol^ = ̂ kTf I(Y^ ±W[W^S,\L)). (14.118) 



304 14. Non-Equilibrium Thermodynamics 

In order to write down the first term in (14.118) we have used the fact that ^ 
appears solely through the combination jQ oc e^' Q; for the second term we 
noted that Zfid/dfi = Ld/dL and recognized the fact that the result was a grand 
canonical average. Taking also into account that dA/dfj, = —N, returning to the TJ 
variables, and using the definition (14.56) of/2 and its equilibrium form Q2g{p)g{p ) , 
we obtain from (14.118) the equilibrium pressure in the liquid as 

kT ^ ^ f ct'r'r' ^ Q2{r'), (14.119) 

which is just the same as (14.117). 
This proof was based upon the definition of the pressure as the intensive variable 

which is the conjugate of the volume with respect to the energy in thermostatics. 
Another proof, based upon the virial theorem (9.17), relates Jp to the pressure V 
defined as the force per unit area from the wall. In fact, in (9.17) the total force Fi 
exerted on the i-th particle consists, on the one hand, of the contributions —ViWij 
from the other particles, j , and, on the other hand, of the contribution from the 
external forces, which is localized near the walls, and the average of which defines 
V- The summation in (9.17) over all particles i then provides us with 

3NkT = - ^ {{Fi-vi)} = \n j d^r'r' ^ Q2{r') + j d^aV{n-r), 

where we have used the symmetry between pairs of interacting particles to write 
down the first term; the second term, which is the flux of Vr leaving the volume 
i?, equals J d r div{Vr) = SOV and we find again that (14.117) equals V. 

14.4 .5 Conservat ion Laws in a F lu id 

The rates of change of the densities QE, QN, and gp are connected with the 
corresponding fluxes through the conservation equations (14.6). We shall give 
for these a more familiar form which has a simpler interpretation, by writing 
them in terms of intrinsic quantities, independent of the motion, for instance, 
the internal energy density gu given by (14.109b) instead of gs-

A first remark is based upon the microscopic expressions (14.49) and 
(14.50) of the mass current mJN and the momentum density gp. As the 
velocity and the momentum - in the absence of a magnetic field - are pro
portional to one another, these quantities are equal: 

mJN = Qp- (14.120) 

Let us then express, as we have done in (14.109) for the variables which 
characterize local equilibrium, the current densities in a fixed frame of ref
erence, at the point VQ and at t ime ioi as functions of the current densities 
at the same point, but measured in a Galilean frame moving with a velocity 
tto = w(ro,io)) in which the fluid is locally and macroscopically at rest. As 
gp vanishes in tha t local frame, the same is t rue for Jjv- We shall denote by 
Ju and by VS = Jpg the energy current and the momentum current in the 
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frame moving with the fluid a t t h e p o i n t 7*0. I n t h e case of a fluid w h i c h is 

g loba l ly a t e q u i l i b r i u m , Ju v a n i s h e s a n d VS is e q u a l t o VSais a s we s aw in 

§ 14.4.4 . W e sha l l s h o w t h a t t h e c u r r e n t s in the fixed frame a r e g iven b y 

^ (14 .121) 
Jpfi = UaUpQ + Vp. 

To do this we write down how the densities and currents t ransform under an 
a rb i t ra ry Galilean t ransformat ion, corresponding to a velocity u which once again 
we assume to be infinitesimal. It follows from (14.111) t h a t 

Q'E = QE -{u- Qp), Q'N = QN, Q'P = Qp-muQM-, (14.122) 

and t h a t s = s, 7-" = P . As far as the fluxes are concerned, t he global mot ion u 
has two effects. On the one hand , the t r anspor ted quanti t ies , t he energy and the 
m o m e n t u m , are changed according to (14.122). On the other hand , the J j define 
fluxes across surfaces which are fixed in t he original frame, whereas the J'^ re la te t o 
surfaces bound to t he frame which moves wi th the velocity u. Altogether , we get 
to first order in u 

J'E = JE - 2_^ '^fiJpp - '^QE, JN = JN - U0N, 
0 (14.123) 

Jpp = Jpfj - mUfjJN - u Qpj). 

We can check t h a t the t ransformat ion (14.122), (14.123) keeps the conservation 
equat ions intact , as it should, if we take into account the fact t h a t this t ransforma
t ion is accompanied by a change of coordinates, r' = r — ut; t he par t ia l derivatives 
dg'^/dt mus t be evaluated a t constant r , and not a t constant r. 

We need to write down the t ransformat ions (14.122) and (14.123) for a finite 
velocity it, which we shall set equal to UQ at the point rg and a t t ime ig- To do this 
we must , as in (14.112), consider these equat ions as par t ia l differential equat ions 
for t he components of u, for instance, 

dQE 9J^ a c 
= -QPf}< -^ — --JPIS ~ SEOap, 

yu, •/3 dun 

and integrate t hem from 0 to UQ. Integrat ion of (14.122) leads again to (14.109b). 
Integrat ion of (14.123), wi th JE = Jut ^N = 0, J p g = V'S in the frame wi th 
velocity UQ, gives (14.121), and also (14.120). 

T h e forms (14.109b) and (14.122) of t he densities and the currents are not 
only valid close to equilibrium, bu t follow from the general expressions (14.48)-
(14.50), (14.55), (14.58), and (14.59) which were at t he microscopic level established 
for any form of t he one- and two-particle densities / and / 2 . To see this , it is 
sufficient t o prove t h a t those expressions t ransform as (14.122) and (14.123) under 
an infinitesimal Galilean t ransformat ion. In fact, t he only change produced by a 
change u in t he frame velocity is the replacing of p by p — mu, which makes this 
check an easy one. 



306 14. Non-Equilibrium Thermodynamics 

The variables in terms of which one usually writes down the equations 
of hydrodynamics are, on the one hand, the local temperature T, the mass 
density g, and the velocity u, and, on the other hand, the internal energy flux 
Ju and the stress tensor —V^. We have used these variables in (14.109) and 
(14.121) to find expressions for the various quantities occurring in our theo
retical scheme, and there remains for us to rewrite the general conservation 
and response equations in terms of them. Let us begin with the conservation 
laws, which are exact under all circumstances. 

The conservation of the number of particles, i = N, gives us the mass 
conservation equation, which is often referred to by the name "equation of 
continuity", 

^ + div^w = 0. (14.124) 
at 

This relation involves only the local equilibrium variables g and u, since the 
particle flux only depends on those, in contrast to the other fluxes. 

If we use (14.109), (14.121), and (14.124) we find from the momentum 
conservation law, dgpp + divJp/3 = 0, the equation of motion 

We recognize here, after multiplication by d^r, the fundamental equation of 
dynamics applied to the infinitesimal, but macroscopic fluid element d^r. In 
the language of hydrodynamics this is considered as a piece of continuous 
matter which, when it passes the point r at time t, moves with the veloc
ity u{r,t). As for all other equations that we shall write down, we used for 
Eqs.(14.124) and (14.125) the Eulerian description (§ 14.1.2), where r denotes 
a fixed point for fields such as u{r,t), g{r,t), VS, and so on. Let us follow 
a piece of fluid, of volume d^r and mass gd^r, in its macroscopic motion. 
At the time t, its velocity is u, and the first two terms in (14.125) can be 
interpreted as its acceleration. We must then identify 

a 

as the /3-component of the force exerted at the macroscopic level on this 
volume element by the remainder of the fluid. As a result — P | dxdy is the 
force exerted in the /3-direction by the layers of fluid situated above z on the 
surface element dx dy of the fluid situated below. We can thus, apart from the 
sign, identify the components VS of the momentum flux in the local frame 
with those of the stress tensor of the mechanics of continuous media. 

It is interesting to note that the equation of motion of macroscopic hy
drodynamics has here been obtained by solely using the microscopic particle 
number and momentum conservation equations in connection with transla-
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tional and Galilean invariance. If the fluid is subjected to external forces 
such as gravity, their value per unit mass occurs on the right-hand side of 
(14.125). In macroscopic dynamics, this just expresses the relation between 
the acceleration and the force for a volume elemnt. In the microscopic ap
proach of § 14.3.2, the external potential contributes to equation (14.51) for 
dgp/s/dt. Its gradient equals minus the applied force; since d/drj in quantum 
mechanics is represented by ipj/h, the total external force is represented by 
the commutator 

so that F can be interpreted as measuring the lack of translational invariance 
of the Hamiltonian, if we bear in mind that P is the generator of transla
tions (§2.1.5). This produces a violation of the momentum conservation law 
(14.54), and the external force per unit mass here enters as a source term 
taking care of that violation, as in (14.3). 

The energy conservation equation dgs/dt + div JE — 0 can, in turn, be 
rewritten as 

^ + div {ugu + JU) + Y: n £ f = 0' (14.126) 
a/3 

where we have used (14.109b), (14.121), (14.124), and (14.125). If the last 
term were not there, this equation would express the conservation of internal 
energy, the internal energy flux in the fixed frame being the sum of one 
part, UQjj, associated with the overall motion, as in (14.124), and of another 
part, Jjj, which can be interpreted as a heat flux. The last term reflects 
the existence of energy transfer between the internal energy and the motion, 
which is interpreted as work done by the stresses on the volume element. The 
use of Galilean invariance has, by providing a natural decomposition of the 
densities and the fluxes, enabled us to identify the various kinds of energy 
exchange inside the fluid. The kinetic energy ^gu^ occurring in (14.109b) has 
been split off, and the balance (14.126) involves in each point heat and work 
done by the internal forces in the fluid. Here again, the effect of an external 
potential would be expressed by a source term added to the energy balance 
(14.126). 

We have so far ignored conservation of angular momentum. In principle, 
we should have introduced the three components of the angular momentum 
density, gi, and their associated quantities, the intensive variables and the 
fluxes, in addition to the densities g^, gN, and gp, and should have written 
down the corresponding dynamic equations. However, we saw in § 14.3.2 from 
a microscopic study that for the simple fluid discussed here those quantities 
can be derived trivially from the ones we have considered, as gz, and JL are 
given by (14.64); the intensive variable which is the conjugate of gi is —ui/T, 
where u) is the local angular velocity, or vorticity, given by 
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u> = | c u r l t x , (14.127) 

and it also is not an independent variable. Moreover, we saw that a conse
quence of the angular momentum conservation was the symmetry (14.65) of 
the Jp tensor, which implies the symmetry of the stress tensor 

V^ = P f . (14.128) 

This property, which must be added to the conservation laws (14.125) and 
(14.126), follows from the microscopic expression (14.55) for Vg. Provided 
it is satisfied, the dynamics of the fluid rotations follows from the equations 
which we have writ ten down for the energy, the number of particles, and the 
momentum. 

14.4 .6 E q u a t i o n s of H y d r o d y n a m i c s 

We still have to close our set of equations by finding an expression for the 
non-equilibrium fluxes J j . We achieve this task approximately in the frame
work of quasi-equilibrium, to wit, we assume tha t the time-dependences are 
suSiciently slow and the gradients sufl&ciently weak that (i) memory effects 
are negligible, and (ii) the linear response equations (14.16), characterized 
by empirical coefficients L, are valid. This linear regime in local equilibrium 
defines the so-called Newtonian fluids, which are characterized by their inde
pendent response coefficients. As each of the fluxes Ji — J^ and each of the 
gradients V^i in (14.16) has three components, the response matr ix forms 
a priori a 15 x 15 matr ix connecting the former to the latter, where each 
matr ix element is a function of the five local s tate variables. We shall show 
tha t there is, in fact, far less arbitrariness, by using all available information 
and, especially, invariances. 

Let us first of all note that the particle flux JN reduces to the equilibrium 
contribution J ^ = u{r)gj^{r) and therefore does not contain any additional part 
of first order in the affinities. The coefficients Ljvi which are associated with it are 
therefore all equal to zero. This is also consistent with the equation of continuity 
(14.124) for Q, which solely involves the local equilibrium quantities g and u, without 
any non-trivial flux. 

The Onsager relations then imply that matrix elements of the kind L"!^, which 

are either equal to or the opposite of the corresponding elements L^?-, must also 
vanish. As a result, a spatial variation of —/i/T, without variations in the other 
intensive variables 1/T and ~u/T, will not produce any flux. 

The remaining 12x12 matrix connects the components of Jjg — J ^ and Jp — Jp 
with those of the gradients of 1/T and —u/T. In order to reduce that matrix we 
shall again use the Galilean invariance. Let us consider a fixed point TQ, a given 
time to, and the Galilean frame UQ = uo{ro,to) in which the fluid is locally at 
rest. Let us assume that we know the response matrix in that frame, that is, the 
matrix connecting the fluxes to the affinities, all evaluated in the vicinity of ro and 
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expressed in that Galilean frame. It will be easy afterwards to obtain the response 
equations in the fixed frame, which is independent of the point ro considered: to do 
this we shall use the transformations (14.121) for the fluxes and the transformations 
(14.109) for the affinities to go back to the fixed frame. The latter transformations 
can be simplified as follows. The temperature is an invariant. The transformation 
from fi' to fi, given by (14.109b) is useless, as V7;v^ does not occur in the response 
equations. Finally, denoting hj r' = r — {t — io)"0 and u'{r',t) = u{r,t) — UQ the 
position and the velocity field in the Galilean frame which follows the motion of 
the fluid at point ro, the affinities V7P in that frame can be written, at the point 
ro, as 

r!y \ T J dr-y \ T ) T driy \ T J dr-y \ T J T Or-y' (14.129) 

where we used the fact that u{ro,to) = UQ; going from one frame to the other has 
thus resulted in an elimination of the temperature gradient. 

We must thus connect the components of the fluxes Jjj and Va — S^j^V in 
the local frame with those of the affinities V( l /T ) and ( —l/T)Vu in that frame, 
and this defines the responses in the local frame: L^E (a 3 X 3 matrix), L^p (a 
3 x 9 matrix), Lp^ (a 9 x 3 matrix), and Lpp (a 9 x 9 matrix). To simplify these 
matrices let us use Curie's principle (§ 14.2.4). The properties of the fluid must be 
invariant under rotation. Let us classify the various quantities according to their 
tensorial nature, that is, according to how their components transform into one 
another under rotation. Some of them, which are invariant, g, T, ..., are scalars; 
others, which are vectors, u, Jfj, V ( l / r ) , . . . , have one index on which the rotations 
operate; still others, Vg, dua/dr^j, ..., are tensors with two indices. The responses 
LEE which connect two vectors are second rank tensors, the responses LEP and 
LpE are third rank tensors, and the responses Lpp form a fourth rank tensor. 
These various responses are, in principle, functions of the five state variables g, 
T, and u at the point considered. Our choice of frame made u equal to zero so 
that each of the components of the various tensors L, written down in the local 
frame, is, in fact, only a function of the two variables g and T. As the latter are 
scalars there is no available vector to construct the tensors L; hence they must be 
invariant under rotation: otherwise a simultaneous rotation of the affinities and the 
fiuxes would change the relation connecting them. However, we have seen in § 14.2.4 
that the only second rank invariant tensor is ^^^g, apart from a scalar factor. The 
response L%„ of J ^ to 9 ( l / T ) / 5 r ^ thus reduces to Ljjdap, where Ljj denotes a 
scalar function of g and T. Similarly (see Eqs.(14.23)), the only available invariant 
third rank tensor to construct LEP and LpE is the completely antisymmetric tensor 
Sa/Sy Finally, for the fourth rank tensor Lpp we have available only the invariant 
linear combinations SapS^g, Sa-ySpg, and SasSj3j. The isotropy of the medium thus 
considerably reduces the possible forms of the responses Lij in the frame in which 
the fluid is locally at rest. 

Invariance under reflection in space then gets rid of the responses L%p in 
that frame. In fact, if we use the earlier result which requires that those responses 
must be proportional to Sap-y, we find using (14.129) that the energy flux must 
be proportional to curl u. However, when we change the direction of the axes, the 
components of the energy flux change sign, whereas those of the derivatives of u 
remain unchanged. Therefore, the proportionality constant can only be zero, and 
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the responses LEP must vanish in the frame fixed to the fluid. The Onsager relations 
then show that the responses Lp^ are also equal to zero. 

Finally, we have seen from the angular momentum conservation that the tensor 
V'g —VSaff was symmetric. Thus, among the three invariant tensors (14.23b) which 
can connect it with (14.129) only S^/SS^SJ with a scalar coefficient denoted as /, and 
SafSffs + ScgSpy can remain. Instead of the latter it is convenient to introduce the 
combination with zero trace, 

2 [SafSfSS + SasSpy) - 35^/3^761 

with a scalar coefficient denoted by L. 

Altogether the response equations thus involve only three independent 
coefficients Lu, I, and L, which are functions of the two variables g and T -
instead of 15 x 15 functions of five variables, which we thought of a priori. 
The affinities have been reduced to V ( l / T ) and to (14.129), and the fluxes 
by use of (14.121) to Ju and Vg — VSap. We are left with only diagonal 
coefficients and the linear response equations can be writ ten as 

Ju = Lu'^(^), (14.130) 

p0-rS^0 = -^6^0diYu-^A^p, (14.131) 

where the tensor A, with zero trace, is defined by 

These equations, combined with the conservation equations and with equa
tions (14.109) which connect the internal energy density gu and the pressure 
V at thermal equilibrium with the state variables g and T, enable us to dis
cuss all mechanical and thermal problems about the fluid considered under 
circumstances where the gradients are not too large; the fluid is then entirely 
characterized by four functions of two variables, namely, a thermodynamic 
potential, such as the free energy, and the responses Lu, I, and L. Notwith
standing tha t there are here five conservative variables instead of two, the 
number of independent t ransport coefficients remains the same as in § 14.4.1, 
but their natures are quite different. 

Thanks to the simplifications brought about, notably by the Galilean in-
variance and the Onsager relations, the experimental variables occur here 
directly in the conservation and response equations. The connection between 
the general theory and the usual description of t ransport phenomena will 
therefore be particularly simple. Especially, going from the fixed frame to 
a local frame attached to the fluid has changed the affinities according to 
(14.129) so that the gradient of the thermostat ic, natural , but unusual vari-
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able —u/T has been replaced by — ( l / r ) V w . On the other hand, thermal and 
mechanical effects have been decoupled in (14.130) and (14.131). Moreover, 
there are no diffusion phenom.ena: since we have simply Ljvi = Lijv = 0 for 
the particle flux J jv = Qp/in, a gradient of the chemical potential jj, does not 
produce any flux. Finally, note tha t the chem.ical potential has been elimi
nated: the final equations only involve directly Q, T, and u. We have stressed 
several times in the present book the importance of the chemical potential, 
or of the multiplier a , a quanti ty which plays a similar role for particle ex
changes as the temperature for energy exchanges, and which has to be used in 
diverse problems: the physics and technology of semiconductors and metals, 
chemical equilibria and reactions, adsorption, equilibria between phases, and 
so on. No doubt the fact, tha t the oldest sciences of mat te r - mechanics and 
thermodynamics of monatomic fluids and of solids - happened not to need 
the chemical potential, was the reason why fi is not systematically introduced 
in elementary thermodynamics books and why the terminology is so vague: 
"chemical potential" is doubly inappropriate, "Fermi level" is specialized to 
just fermions, and the natural variable —JJL/T = —ka does not even have a 
name. 

Let us connect the coefficients Lu, I, and L with the usual transport 
coefficients of Newtonian fluids. The heat conductivity A is defined empirically 
by (14.87) for a fluid at rest {u = 0). The equation of motion (14.125) then 
implies tha t the pressure is uniform. As the temperature varies from one point 
to another, this implies that the density must also vary, in such a way tha t 
the pressure gradient remains zero. The energy flux JE, given by (14.121), 
reduces to the heat flux Ju and when we write 

Ju = - A V T = LuV^, (14.133) 

we find tha t A = Lu/T'^. 

Note the simplicity of this result as compared to expression (14.89) which is, for 
instance, valid for heat conduction in metals. In fact, (14.89) accounts for dissipative 
diffusion effects, which here do not appear, as the fluid contains only one kind of 
molecules. A metal, on the other hand, contains mobile electrons interacting with 
a substratum, the lattice imperfections, which is practically at rest. In the two 
cases heat conduction on the microscopic scale appears as a superposition of two 
opposed fluxes which transport the same number of particles, but not the same 
energy: the flux from the hot region is made up from particles with a higher energy. 
However, whereas in a simple liquid thermalization is due solely to the collisions 
of the molecules with one another, in the case of the electron gas one must include 
collisions with the substratum, which take place at different energies for the two 
fluxes. The phenomenon thus involves effects of relative diffusion of the light and 
the heavy particles, which the extra term in (14.89) takes into account. 
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Newton defined at the end of the seventeenth century the shear viscosity 
T] for a laminar flow with velocities u{r) which are parallel to the a;-direction 
and which are functions of the height z. Newton's equation, 

-K = V ^ , (14.134) 

connects empirically the velocity gradient to the force per unit horizontal area 
which is exerted in the a;-direction by the layers of the fluid situated above 
z on the lower layers. We identified this force with —V^ when we interpreted 
the momentum conservation equation (14.125) as the macroscopic equation 
of motion for a fluid volume element. A comparison of (14.134) with (14.131) 
and (14.132) gives us 

V = ^ - (14-135) 

Such a flow also gives rise to a stress V^ = V^ in the vertical direction, acting 
on the surface elements perpendicular to the flow. 

Finally, the volume viscosity rj^ is associated with the extra pressure SV 
created by a compressional motion of the fluid, and an empirical law indicates 
that this is proportional to the compression rate, 

5V = rj,(-j^ ^ \ =-7?.div«. (14.136) 

We have used the form 

dua 1 dfi 
'd^ " "372 'dt "'̂  

for the velocity fleld in a uniform compression. Comparing (14.136) with the 
general form (14.131) of the response laws, where A = 0, we find 

V. = ^ - (14.137) 

When the motions are sufficiently smooth in space and sufficiently slow 
in time so that we can not only use linearized response equations, but also 
neglect dissipative effects, we are dealing with a so-called perfect fluid, and 
the dynamics are completely given by the conservation laws. The latter reduce 
in that case to the equation of continuity (14.124), the Euler equation (1757), 

^ + {u-V)u+-Vr - 0, (14.138) 
at Q 

and the energy conservation equation 
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^+diy(ugu) = -Vdivu, (14.139) 
at ^ 

which expresses the reversible transformation of the work done by the hydro
static pressure into heat. 

In the hnear dissipative regime, the combination of the conservation equa
tion (14.125) and the response equation (14.131) gives us the Navier-Stokes 
equation of hydrodynamics which, if we neglect a possible dependence of rj 
and 77v on the temperature and the density, can be writ ten as 

^ + (u-V)u+-Vr = -V^u+- C^+Vv) Vdivtt. (14.140) 
ot g Q Q \6 / 

These equations were for an incompressible liquid arrived at towards 1825 by 
Henri Navier, ingenieur des Fonts et Chaussees (Dijon 1785-Paris 1836), who al
ready described the fluid using an atomistic model, and in 1845 by Sir George 
Gabriel Stokes, mathematician and physicist (Bornat Skreen, Ireland 1819-Cam-
bridge 1903) whose treatment of the fluid as a continuum at that time seemed to be 
more realistic. This change, over twenty years, of the view taken of the microscopic 
nature of matter illustrates the eclipse of atomism during the nineteenth century; 
we have already several times indicated that the dominant trend between 1830 and 
1890 brought scientists and philosophers to the idea that matter was continuous. 

Recall that, in contrast to what happened in § 14.4.1, there is here no speciflc 
transport coefficient of the nature of Ljviv associated with making the density of 
the fluid, originally inhomogeneous, uniform. In fact, the self diffusion effect which 
describes this approach to a uniform density is here a relatively complex process. 
Let us assume that initially the temperature is uniform, the velocity zero, and the 
density varying in space. This is reflected by the existence of a gradient in the 
chemical potential. However, we have seen that the responses associated with the 
affinity V{—^/T), and especially the direct response LJVAT of the particle flux to this 
affinity, are zero. Initially no particle flux is therefore created and, more generally, 
no dissipation is produced immediately. Nonetheless, the system will start to evolve 
through the indirect effect of the conservation equations, since Eq.(14.125) at the 
initial time gives us 

§ + ̂ VP = 0, 
at g 

where the pressure follows the variations of the density. Motion starts, first in the 
form of the propagation of a wave through the coupling with the continuity equation 
(14.124). It is the final damping of this wave as a result of the viscosities which will 
ultimately lead indirectly to the dispersion of the non-uniformity of the density. 

The situation is different in a fluid containing several kinds of particles. An 
analysis similar to the one we have just given shows that for a binary mixture there 
appear new independent response coefficients which describe the relative diffusion 
of the two components and the indirect thermomechanical effects associated with 
the coupling between thermal phenomena and diffusion. In particular, we find again 
Pick's law for the relative diffusion, in agreement with § 14.4.1 where, in fact, gas 
diffusion ocurred with respect to a fixed diffusive medium made of heavier particles. 
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We still must write down the entropy balance, which makes it necessary 
to introduce an entropy flux Js- Equation (14.35) would suggest that one 
should choose for this Yl liJti if there were no equilibrium fluxes J^. To 
guess the actual form of Js, already anticipated in (14.36), we approach 
this situation by first sitting in the Galilean frame which, at the point r 
considered, accompanies the fluid motion, and where we put 

J's = Y.^iJ'i = ^J^- (14-141) 
i 

The other terms, i ^ E, vanish, as J ^ = 0 and 7p oc « ' = 0. In order to 
get back to the fixed frame, as we did in (14.121) for the fluxes Ji, we note 
that the entropy density s is invariant under a Galilean transformation; the 
entropy flux is thus changed only because the surface it passes through is 
moving, and hence we find that 

Jg = J'g+su = -= Ju + su. (14.142) 

The entropy flux Js defined by (14.142) is the sum of a flux, su, associated 
with the motion of the fluid as a whole, and the term Ju/T. This confirms 
the interpretation of Ju as heat flux which followed from (14.126). Quite 
remarkably, whereas the entropy (14.107) is a function of all variables E, N, 
and P, its flux contains only one non-trivial contribution, associated with 
the internal energy. 

Using the equations of state (14.109), the conservation equations, and the 
definition (14.142) we find, in agreement with the general equation (14.37) 
for the dissipation, the local entropy balance 

'' d iv J , = (v(^).Ju 
dt "̂  \ \T 

5 : ( - f l ! ) ( ^ . " - ^ M . ("..43) 
a/3 

In the linear regime Eqs.(14.130) and (14.131) give us 

ds ,. , , / _ 1 \ ^ . / I ^^ 
g^+diY Js =Lu[V-j +ll-diYU 

-Ef^ 
a/3 

y ^ a / 3 ) . (14.144) 

The Clausius-Duhem inequality which expresses that, whatever the gradients 
on the right-hand side of (14.144), the dissipation must be positive then means 
that the three responses Lu, I, and L are positive or zero; necessarily the same 
must then hold also for the conductivity A and the viscosities rj and r]^. 
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Equation (14.144) clearly separates the roles of the three response coeffi
cients in dissipation, and it associates the irreversibility with two causes: the 
t ransport of heat due to temperature gradients, and the existence of motions 
which make div u or Aap non-vanishing. One easily checks tha t a translation 
or a rotat ion of the system as a whole, where dufj/dva = ea/37<^7 implies that 
div M = 0, Aafi = 0, do not give rise to dissipation. The mechanical dissipa
tion terms can also be found from the work done by the stresses on a volume 
element of the fluid; this work is obtained from the last term of the internal 
energy balance (14.126) and from expression (14.131) for the stresses, and is, 
per unit volume and unit time, equal to 

-V div« + i, (div«)' + ^ Y . (^"^) ' • (14-145) 
a/3 

The first term, —Vdf2/ndt, is nothing but the mechanical power which is 
produced reversibly by the hydrostatic pressure forces, and it contributes to 
—divJs- The others are positive work done by the viscous stresses, which 
is irreversibly transformed into heat 6Q in the volume element; we check by 
comparison with (14.144) tha t 6Q = TdS. 

We shall give below a direct construction of the entropy current (14.142), which 
we derived from the Ansatz (14.141). At the same time, we shall establish the more 
general form (14.36) or (14.151) of Jg, which can be extended, for instance, to the 
dynamics of fluid mixtures or of solids. According to the general method of § 14.2.5 
the entropy flux must have the form 

Js = Y. 'yi-^i + ^' (14.146) 
i 

where the vector X must satisfy the equation 

diYX = - J 2 ( V 7 i - J ? ) - (14.147) 
i 

To check these points we must show that the right-hand side of (14.147) is, indeed, 
the divergence of a vector field, construct the latter, and then compare (14.146) 
with expression (11.142) which had been introduced heuristically. The existence of 
X is not obvious, as the J j , defined by (14.116), change from one point to another 
in a local equilibrium situation. Separating in each J^ the contribution QiU, due to 
the displacement, from the contribution coming from the equilibrium pressure, we 
find 

[u-V) E JiQi / , 7i (" • V) ft -h — divw. 
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The second term is equal to (u • V)s, if we use the definition (14.12) of the ji 
variables. In order to rewrite the first term, we use the Gibbs-Duhem relation, 

^ liQi = « - y = X ] '^'^^'i' (14.148) 
i i 

which finally gives 

- ^ (V7i • J?) = (« • V) I + I divu = div ( | « ) . (14.149) 
i 

We have thus proved (14.147) and found X. To identify (14.146) with (14.142) we 
examine the effect of a Galilean transformation on J^ JiJi- Whereas, according to 
(14.148), Y^ jiQi remains invariant, we easily check, using (14.109) and (14.121), 
that the combination 

J2 ^i i-'i ~ ^i-") = J2 ^i-^'i = ^JU (14.150) 
i i 

is the one which is invariant. Using (14.148) to rewrite the left-hand side of (14.150) 
we finally find 

v-> P 1 
Js = 2L, '•'̂ •̂ ^ + T " " jiJu + su, (14.151) 

i 

in agreement with both (14.36) and (14.142). 

The equations which we have constructed are the just same ones which are 
introduced and worked out in hydrodynamics. Our aim, however, was not so 
much to reach this result, as to demonstrate the power of the general approach 
of non-equilibrium thermodynamics. We have in this way seen why in a simple 
fluid processes which a priori could be imagined, such as the existence of 
indirect responses connecting thermal and mechanical effects, or the presence 
of a diffusion coefEcient in a Fick-type law, are precluded. In fact, one can 
generalize easily the above methods to other, less simple substances, mixtures 
of fluids, crystalline solids, liquid crystals, and so on, or to other, chemical, 
magnetic, electromechanical, . . . , phenomena, and this leads to an enormous 
richness of results. In all such cases, the methods of thermodynamics are 
essential to build a sound phenomenology, as they restrict the number of 
independent parameters which one is allowed to consider in a given situation 
and which then can be determined empirically or by a microscopic theory. 
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Summary 

The macroscopic study of a system evolving close to equilibrium states can be 
based upon the systematic approach of irreversible thermodynamics, the prin
ciples of which are summarized in § 14-2.6: identifying the processes involved 
- relaxation towards equilibrium, transport, forced regime, chemical kind of 
system, and so on; analyzing the system in terms of weakly coupled sub
systems, each of which is practically at equilibrium; finding the macroscopic 
state variables and the conserved quantities; writing down the conservation 
equations, the local equations of state, and the equations describing the linear 
response of the fluxes to the affinities; using symmetry and invariance laws 
and Onsager relations and checking that the dissipation is positive; finally, 
solving the coupled evolution equations which we have obtained. 

These elements, postulated by non-equilibrium thermodynamics, can be de
duced from the microscopic equations of motion and the methods of statistical 
mechanics, provided the evolution is sufficiently slow. The proof of the con
servation laws gives us the microscopic interpretation of the fluxes. The study 
of the dynamics involves, together with the microscopic description through 
a density operator D which evolves according to the Liouville-von Neumann 
equation, a mesoscopic description through a simplified density operator DQ 
which follows D in its motion and which contains only information about the 
macroscopic, relevant variables. The relevant statistical entropy S{DQ), which 
is the missing information associated with these variables, can be identified 
with the entropy of thermodynamics; its increase reflects a leak of information 
towards the other, irrelevant variables. The reduction, or contraction, of the 
description from D to DQ is the subject of the projection method; it associates 
the macroscopic quasi-equilibrium regime with a short-memory approximation 
for the dynamics of the irrelevant microscopic variables. The linear regime 
corresponds, moreover, to a weak coupling between subsystems. 

The use of symmetries and invariances enables us to analyze the structure 
of the macroscopic dynamic equations, to reduce the number of independent 
response coefficients, and to connect various effects with one another. We 
illustrated the general method by studying in that spirit diffusion, heat or 
electric conduction, thermoelectric effects, and hydrodynamics. We proved, 
especially, the macroscopic laws governing the thermal and mechanical be
haviour of Newtonian fluids, starting solely from the general principles of 
non-equilibrium thermodynamics. 
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Exercises 

14a Design of an Isotope Separation Plant 

The balance method, though simple, is quite efficient. This was illustrated on 
the m^icroscopic scale by studying effusion (Exercs.Tg and 8a), an elementary 
mechanism which enables us to separate the uranium hexafluoride molecules 
with 238u Qj, 235^ according to their mass. Effusion is often called "gas dif
fusion" which should not be confused with the diffusion of § 14.4.1. Studying 
a macroscopic balance will enable us, moreover, to understand the design of 
plants using this process. One passage of the gas through a porous barrier 
can only increase its molecular concentration C in ^ssy ĵy ^^ most 4.3 x 10~^ 
(Exerc.Vg) so tha t one needs a large number of stages. The Eurodif plant in 
Tricastin (Rhone valley) which t reats one third of the world nuclear fuel and 
feeds a hundred 1000 M W power stations has 1400 stages. We denote them 
by p, with -M < p < P and M = 600, P = 800. Each stage is a tower 
of height between 16 and 23 m, containing from top to bo t tom a diffuser, 
a heat exchanger, and a compressor. The gas, with a concentration Cp in 
^^^U, arrives at the bo t tom of the diffuser (Fig. 14.4) and circulates there at 
a pressure close to one atmosphere in vertical porous ceramic tubes, num
bering several thousand. The pressure at the outside of the tubes is about 
five times lower and the gas passing through their wall leaves enriched in the 
lighter isotope ^ssy ^j^-j^ ^^ average concentration C'^. This gas is sucked 
up and then compressed by the compressor at the bo t tom of the p-th stage 
to be sent to the p + 1-st stage. The work done by the compression heats 
the gas by a few tens of degrees (Exerc.8a); this heat is carried away by 
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Fig. 14.4. Sketch of a diffuser: (a) incoming mixture; (b) departing enriched gas; 
(c) departing depleted gas. We show only two tubes: the mixture ascends in one of 
them and descends in the other; in reality the cylindrical diffuser contains several 
thousands of them 
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Fig. 14.5. The enrichment (solid Unas) and depletion (dashed lines) cEiscades. The 
input (a) and outputs (b) and (c) in Fig. 14.4 are schematically indicated here by 
the points below, to the right of, and to the left of each difFuser, respectively 

the water flowing in the exchangers, and then ejected into the atmosphere 
by two coohng towers which dominate the site. Meanwhile, the flux in the 
tubes decreases graduaUy as the gas diS'uses through their walls and as the 
richness in ^ssy of the remaining gas decreases. The flow flrst is upwards and 
then, in fewer tubes, downwards, and the gas which leaves is depleted with a 
concentration Cp. Calculate the molecular fluxes #p and #p of the departing 
enriched and depleted gases in terms of the incoming flux #p , assuming t ha t 
C'p/Cp = Cp/C; = A = 1.002. 

The enriched flux ^^ leaving the p-th stage is sent to enter the p + 1-st 
stage and this gives rise to an enrichment cascade (Fig.14.5). The depleted 
gas coming from the p- th stage is recycled in the preceding p — 1-st stage, its 
concentration C' being equal to Cp_i; to do tha t it is sent to the compressor 
of the p — 2-nd stage where it mixes with the flux ^p_2 to form the #p_ i flux. 
This gives rise to a depletion cascade (Fig.14.5). The whole chain is fed at the 
p = 1 stage by a flux $ which has the natural concentration C = 0.7%. A flux 
$' of enriched uranium with a concentration C", which will be used in power 
stations, leaves the P = 800 stage. The waste, a flux $" of depleted uranium 
with concentration C", leaves the stage —M + 1 = —599. Evaluate C' and 
C", and also # ' and # " as functions of # . Calculate the fluxes ^p passing 
through the various stages. Especially, compare the maximum flux with the 
incoming flux # . Wha t is the total flux passing through the compressors, per 
unit flux leaving the last enriching stage? Est imate the work consumed per 
kg of enriched uranium produced in this way. 

Solution: 

The conservation of total flux and of the U flux in each diffuser gives us 

* p = 

and hence 

^; 
Op Op Op 

Prom this we get 

$p 

A + l 

*. 

Op 

Op 

= 

= 

Op 
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The concentrations, at each stage and at the ends of the cascade, are equal to 

Cp = Cp—i = Cpj^i = C\ , 

C' = CA^ ~ 3.5%, C" = C A " ^ " ^ ~ 0.2%; 

in reality C' is equal to 3.2%. For the fluxes we get from the equation 

$' _ $" _ $ 
C-C" " C -C ~ C - C" 

the relations 

* ~ 6$', $" ~ 5* ' . 

The balance at the entry to each stage can be written as 

except for p = \, where we must add ^ , for p = P, where #p^-i = 0, and for 
p = ~M + 1, where $'_j^ = 0. Hence we get the equation 

(A + l)#p - $p-i - A^p+i = 0 , p / 1, 

the general solution of which is the sum of two exponentials x^ of p, with either 
a; = l o r a ; = A^ . Using the boundary conditions at p = 1 and at the ends of the 
cascade, we get for p > 1 

(A^+i-p - i ) (A^+i - 1) (A + 1) / p ^ , „ 
1-p {XP+M+I - l ) (A - 1) 

and for p < 1 

) . , 

*« = -̂^ . j \ , . ^ '- -$ ~ 850 ( 1 - A - ^ - P ) #. f p [XP+M+\ - l ) (A - 1) 
( l - A - ^ - p ) 

The flux is a maximum for the input stage p = 1 and equals there $i ~ 600<f. 
The injected flux $ represents only a tiny part of the fluxes which pass through 
each of the 1400 stages, except for the end stages, since the cycling and recycling 
make it necessary that the gas passes to and fro very many times along the cascade, 
especially near the centre. The total flux handled by the compressors is equal to 

*tot = y ^ ^p 
(A+i)#' r . , , . . . Â  

A - 1 
(M + 1) 

k - M - l 
2.6 X 10*^$'. 

At each compression, the work done equals kTN In V/V' where T = 80 °C and 
where V/V' = 5 for the compression of the enriched gas; that of the depleted gas 
is small so that one only needs to take into account half of <ftot- This gives us 
50 X 10 J, or 7 MWh per kg. Our estimate agrees with the actual figures, since 
the effective consumption is 9 MWh per kg. 

Note. According to the theory just given the stages should all differ from one an
other. In practice they are of three sizes: (a) 23 m, 150 tons, a 3.3 MW compressor; 
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(b) 19 m, 80 tons, 1.6 MW; (c) 16 m, 30 tons, 0.6 MW. One plays with small viola
tions of the relations C'p/Cp = Cp/Cp and Cpj^_i = C' i) which we assumed above 
to hold, to replace the ideal $p curve which we evaluated by an, approximate, step 
curve taking on only three values. The stages are combined in groups of 20; the 40 
groups on the enriched side contain 16 groups (a), 14 groups (b), and 10 groups 
(c), whereas the 30 groups at the depleted side contain 20 groups (a), 6 groups (b), 
and 4 groups (c); these numbers have been chosen so as best to approximate the 
<?p curve which we determined above. 

14b R e s p o n s e t o an E x t e r n a l P e r t u r b a t i o n 

Many macroscopic - electromagnetic, electronic, mechanical, acoustic, ther
mal, . . . - or microscopic effects - magnetic resonance, lasers, Josephson 
effects in superconductors, elementary excitations in various substances, 
neutron or light scattering, collisions in atomic, nuclear, or particle 
physics, . . . - can be described as the reaction of a system to an external 
perturbat ion. The result is then a function of the t ime t, depending on the 
strength of the perturbat ion at earlier times t'; in the linear regime this 
dependence is characterized by a response function x ( i — t'). In statistical 
mechanics such a situation is described as follows. A system with Hamilton-
ian HQ, initially at t ime t = —oo in canonical equilibrium DQ OC exp(—/^ilo), 
is subjected to a weak time-dependent perturbat ion so tha t the Hamiltonian 
has the form JJQ + SQ.-BaAa(i), where the B^ play the role of the "force" 
observables X of § 5.2.3 and the AQ those of the "position" variables ^. The 
final outcome is then the mean value {A) of some observable A, or more 
precisely, AA = {A) — {A)Q, {A)Q = TrlJo^l, which we want to determine as 
function of the t ime for a given perturbat ion strength \{t). As we are dealing 
with a linear regime, it will be sufficient to take only one term BX{t). 

1. We expect to find, for small A, a relation between the input A and the 
output A of the form 

/

+ 00 

dt'xAB{t-t')Xit'), (14.152) 

-cx> 

where XAB, which defines the retarded response of A to the perturbat ion B, 
should depend solely on the t ime difference t — t' and should vanish when 
t' > t. Determine x by solving the Liouville-von Neumann equation to first 
order. Write x in the base in which HQ and DQ are diagonal with Em and Pm 
as their eigenvalues. 

One should take care not to confuse the linear responses of thermody
namics (§ 14.2.2), which relate the fluxes to the affinities, with the linear 
responses introduced here, which describe the effects of a time-dependent 
per turbat ion applied to the system. Whereas thermodynamics deals onl^ 
with quasi-equilibrium states, the present theory can be applied even if A 
and hence A vary rapidly, on microscopic t ime scales. As shown by (14.152), 
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we integrate the influence of the perturbation over the past history. The re
sponse function x thus takes memory effects into account, in contrast to the 
response coefficients L. However, the present theory is restricted by the fact 
that the state D{t) differs only sUghtly from the initial global equilibrium 
state DQ, even though its variations are fast. In thermodynamics, the small 
difference was between D{t) and its associated local equilibrium state Do{t) 
(§14.3.5). 

2. Especially because of the practical interest in periodic perturbations 
- for instance, an alternating electric potential - it is convenient to perform 
a Fourier transformation, 

A(w) = f dte''^'\{t), \(t) = ^ [ dioe-''^*\{uj), 

XAB = j dte^^'xABit) = X A B - i x ' A s M -

What are the expressions for AA(t) and for its Fourier transform? Determine 
XAB and also 

XAB = ^ [XABii^) - XBAi-i^)] • 

Study the symmetry properties of x, X, x'l x"- Show that causality is reflected 
in the fact that x{^) is the limit as ^ ^ w-l-iO of a function x{z) defined in the 
upper z-half-plane, analytic, without singularities, and bounded at infinity. 
Show how one can get this function from x"('^)- We shall see below that x" 
is the dissipative part of the response. 

3. Assume that xC'̂ ) is a smooth function, or that x has a finite range in 
t. What is the expression for AA in the limit where the perturbation changes 
slowly? What are the expressions for the responses x or x in that limit? 
Compare with thermodynamics. _ 

4. In the case of a sinusoidal input X{t) = A cos uiot the output is AA = 
a cos(a;of — ip). Determine its amplitude a and its phase shift if. Is it possible 
that a system operates as a perfect filter, that is, that the output a{iJo) 
vanishes for all frequencies WQ/STT over a certain range? Is it possible for 
a{(jiJo) and ip{ujo) to be constant over a certain range? Or for ip{u)o) to be 
constant for all frequencies? What is the result AA(t) for a perturbation 
strength A(̂ ) = A cos wo ê'"'* and how can we interpret xi^) for complex z in 
the upper half-plane? 

5. Depending on the problem, the responses x can be determined either 
theoretically or empirically - for instance, the impedance in an electrical 
circuit. In both circumstances, it often happens that they show resonances, 
which are sharp peaks and which are associated with poles z = fi — iF oi 
x{z), when that function is analytically continued into the lower half-plane. 
Assume that x is given by the one-resonance approximation, 
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, . _ Qe '" Q e - ' " 
XAB[Z) - ^ _ ^ ^ j p z + Q + ir' 

we need the two terms because of the symmetry x(a;) = %*(—w), the parame
ters which occur are real, and we assume tha t F <^ Q. How do the amplitude 
a and the phase shift ip of AA{t) behave when WQ sweeps the vicinity of Q 
in the case of a sinusoidal per turbat ion A(i) = A cos u>atl This behaviour 
enables one to observe a resonance in a forced oscillation regime and to de
termine its position i? and its width F. One can also observe_^it in a relaxation 
regime. In tha t case one subjects the system to an impulse A(i) = X6{t); how 
does AA{t) behave for t > 0? One can also remove (A) slowly from its equili
brium position, then let it go at i = 0, using a perturbat ion X{t) = Xe^^Ol—t) 
with 7 —> 0; how does AA{t) behave in tha t case? 

6. Express the change dU/dt in the energy U = {HQ + BX{t)) with time, 
to second order in A. Calculate the total energy received by a system when it 
has been subjected to a perturbat ion X{t) which is localized in t ime so tha t 
HQ returns to its initial value. Show, by expressing this energy in terms of 
x'ssi^)' ^^^^ it i^ always positive. Calculate, within the same regularity hy
potheses as under 3, the change in energy with t ime in the case of a sinusoidal 
per turbat ion X{t) — X cos uiot and interpret x"-

7. Express this energy dissipation X'BB> °^ more generally, X A B ( ' ^ ) ' ™ 
terms of the Fourier transform of the time-dependent correlations ipAsii^) 
and ipBAi^), which are defined by 

iiABit) = TiDoe'^'o'/'' Ae-'^^o^/^B - {A)o{B)o. 

This is Kubo's relation or the fluctuation-dissipation theorem. Wha t happens 
to it in the classical limit? Wha t happens, as ?i. ^ 0 and i = 0? Use it to 
find the noise ( /( t)7(0)) due to fluctuations in the current I{t) in an open 
electrical resistor R; this is the Nyquist theorem. 

Solution: 

1. We can write the Liouville-von Neumann equation as 

a form suggested by the solution for D{t) when there are no perturbations. The 
right-hand side is small and to first order we can replace in it D by DQ whence we 
find after integration that 

5 « So + ^ r dt'X{t') Je-i-^o(t-t ')/ ' ige'•^' '(*-*')/^So] . 
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We took into account the fact that HQ and DQ commute. If we now use the cycUc 
invariance of the trace, we get 

(̂ > 

where 

/

+ 00 __ 

dt'xABit~'t')X{t'), 
-oo 

XABit) = ^ TrDo p ^ ° * / ' ^ 2 e - ' ^ o * / a J ] 

= ^ E ( P - - P - ) ^ - n • B " - e ' ( ^ - - ^ " ) * / ^ (14.153a) 

mn 

2. Fourier transforming x ^^^ ^ gives us 

and the Fourier transform of AA{t) is XAB{^)^{^)' We have 

mn 

XAsi'^) = TT y ^ (Pm - P7t)^Tnn-Bnrn S{Em - En + tlul). (14.153c) 

mn 

Responses to Hermitean perturbations must be real, which is reflected in the general 
equations 

XAsit) = XAtBt(^)*> XAB{-^) = XAtBt('^)*' 

X'AB{-<^) = XBAi^^) = x'yitstC'^)*' 

II I \ II I \ II I \* 

XABK-^) = -XBAK^) = - x ^ t B t l ' ^ ) • 

When the perturbation ^ BaXa{t) includes several terms, each Ba need not be 
Hermitean; for instance, if Bi = B^, we must have Ai = A2. If HQ is invariant 
under time reversal, we have 

X ^ T B T W = Xj3t^t{*)> X^TBT(C^) = XBt^t('^). 

so that the retarded responses satisfy the same Onsager relations, with an extra t-
or cj-dependence, as the responses L of thermodynamics. If J4 or S commutes with 
Ho, XAB vanishes. 

Causality means that AA(t) at time t only responds to values of A(t ) at earlier 
times t' so that x(*) vanishes for t < 0, as is shown by the factor 0{t) in (14.153a). 
The function 

/>oo 

XAB{Z) = / dte""* XABit) 
Jo 
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is then analytic for Imz > 0, and it is the analytical continuation of XAB{'^)-
Inversely, 

t / — O O 

vanishes for < < 0, as the contour can then be closed by a large semi-circle in the 
upper cj-half-plane. The definitions of x and x gi^^ 

XAB{Z) = - / - ^ ^ XAB{^), Im^ > 0, (14.154) 
</ — O O 

so that knowledge of x " is sufficient to determine x! • This integral relation, called 
a dispersion relation, or a Kramers-Kronig relation, is often useful, for instance, to 
determine the high-frequency behaviour of x-

3. If A(t) changes slowly, X{ui) is concentrated at small values of a) and we can 
replace x(a;) by x(0), which leads to 

^A{t) = i-XAB(0)A(t). 

The average value {A) follows the perturbation at the time t itself, without any 
memory effect. We have found again the behaviour of quasi-equilibrium thermody
namics. The instantaneous response is equal to 

>^^B(0) = Y. Em-Er.+iO = Lo ^^^(*-*^' 
mn ^ 

as in (14.81), (14.82). Because of the term iO in the denominator the terms with 
Pm = Pn do not contribute. These results can also be derived directly from (14.152), 
when A(t') varies slowly over the range of x(* ~ ^ )• 

4. The Fourier transform of AA{i) is 

TTA [S{U} - U)O)XAB('^O) + 5{ui + a)o)xAs(-i^o)l , 

so that 

AA(t) = Re [xAB(cc'o)Ae^''"o*], (14.155) 

and hence a = A|x(<i'o)jj <̂  = argx('^o)-
The distribution x('*') is the boundary value at z = ci; + iO of an analytic function 

x(z); on the other hand, when one gives an analytic function on a continuum of 
z-values, it is determined everywhere. Hence the vanishing of a(a;o) over some range 
of frequencies implies that x = 0- causality forbids the existence of perfect filters. 
Similarly, a and if can be constant over some range of frequencies only if xi^) is 
everywhere a constant, so that this occurs only when no incoming signal is deformed. 
Finally, if x{^)^~^'^ has an imaginary part which vanishes for all a;, it again is a 
constant. 

In the case when A(t) = A cos ujote'' , there is no Fourier transform \{UJ) and 
we go back to (14.152) for the evaluation of AA{t): 
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AA{t) = I dt' f ^ XABH e-'"(*-*')A cos u^ot' e^*' 

= Re [xAB('^0+i7)Ae-"^' '*+^*]. 

The integral over u> was evaluated by closing the contour at infinity in the upper 
half-plane. The response x{^)> where z lies in the upper half-plane, can thus directly 
be interpreted, as it gives the amplitude and the phase of the output, for an incoming 
signal proportional to cos ujQte'* . 

5. The contribution from the second term in x is negligible for [LJO — / ? | <C 2J? 
so that we have 

^ <f> ~ a - a r g ( a j o - f i + i r ) . (14.156a) 
V ( a ; o - / 2 ) 2 + r 2 

It is well known that the amplitude of the outgoing signal as function of CiiQ has a 
very sharp maximum sA, UJQ = fi with a width of the order of F; the phase shift 
increases fast over that width from a -- n to a. Measuring either the amplitude or 
the phase shift enables us to determine J? and F. 

After an impulse we get, using the fact that \(UJ) = A, 

AA{t) = XxAB(t) = - Re du> - ^ 
n J w -

i a —ia;i 

n + iF 

= -2XQ sm{m-a)e~"e{t). (14.156b) 

The variable A relaxes towards its initial value over a time of order XjF, while 
oscillating with a frequency Q jl-n. For the relaxation after a progressive deviation 
we have A(a') = A/(7 + io;) and 

AA(t) = J - / ^ e-'"*XAB(-) 
ZTT J 7 + lo; 

i,f?i—ia 
= AeT*XAB{i7)e(-t) - 2 A Q e - " R e ^ ^ .^^ _̂  ^^ ^(<). (14.156c) 

The first term describes the slow process which, as under 3 moves (̂ 4) away from 
its equilibrium value to lead, at i = 0, to AA ~ —2\Q cos a / i? , in the case when 
7 <S r ' <C 1 ;̂ the second term is a relaxation of the form 

AA ^ - ' ^ cos(m-a)e{t), 

which is comparable with the relaxation after an impulse, apart from a phase shift 
jTT and a factor O. This factor, which reduces the higher harmonics for a system 
such as a vibrating string having a series of resonances On = nO, is partly respon
sible for the difference in tone between a piano where the string relaxes after having 
been hit and a harp or a harpsichord where the string relaxes after having been 
plucked. 

6. In the case of a time-dependent Hamiltonian the Liouville-von Neumann 
equation gives us 
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It therefore suffices to use the response of B to itself to first order to obtain the 
evolution of the energy to second order: 

dU_ ^ dX 
~dt ~ dt 

{B)o+ I dt'xBB{t-t')\{t'] 

{B)o + ^ - ^ / ^ e "^*XBB(w)A(a;). 
dt ^ '" 2n 

Extending this result to a Hamiltonian HQ + ^ BaXa{t) would involve a double 
summation over a in the second term, as in (14.157a) below. 

If the Hamiltonian returns to its initial value, AA or AU also returns to zero to 
first order in A as t —> +00. We can use a Fourier transformation to get to second 
order for the energy 

d t ; ^ + T ^ ^ / dtdu;'dw{-iu') 

= ^ / da;a;A(-<x))xBB('^)A(a;). 

Using the definition of x " and the symmetry property XBB{~^) = xhsi^) ^^ ^^'^ 

i 7 ( + o o ) - C / ( - o o ) = - / dc^a>XBBH|A(a;)|^ 
^ Jo 

or more generally 

U{+oo)-U{-oo) = - V / d ' ^ ' ^ x ' ' t o HA:(a;)A^(a;) . (14.157a) 

Expression (14.153c) shows that x'L^ai'^) has the same sign as u> so that any 
perturbation in a closed cycle increases the energy of the system. More precisely, 
we have 

[ / ( + 0 0 ) - C / ( - 0 0 ) = - ^ y^ (pm-Pn)(En-Em)\B, 
2% —' 

2 
mn I 

•K\\{[En-Em]in)f, (14.157b) 

where pm oc e~" "* decreases with increasing Em, so that each term is positive. 
In the case when A(a;) = 7rA[5(w — WQ) + 6(}JJ + ti'o)] > one obtains, separating 

the terms in x ' and x"i 

dU , „ , , 
—- = -(j3)oAtt)o sin t<.'ot 
at 

+ A a;o sin uj^t [XBB( '^O) sin u)Qt - XBB( '^O) COS LJot\ 
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= -{B)oXu!o sin wot - ^ \ uiQ |XBB('^O)I sin(2wot - (f) 

+ ^X^uJoXBBi^o)- (14.157c) 

The last term describes a linear increase in the energy so that x (i^) is proportional 
to the energy dissipation in a system subject to a perturbation of frequency UJJ^'K. 
The preceding terms describe oscillations in JJ with the imposed or twice the im
posed frequency; their time-average vanishes. Both the energy dissipation and the 
amplitude of the energy oscillations are sharply peaked at a resonance. 

Expression (14.157c) for the dissipation can be interpreted in terms of Fermi's 
Golden Rule which gives the probability Qm that a system in a state m makes per 
unit time a transition to one of the states n of energy Em + huiQ as the effect of a 
perturbation B\ cos ujQt: 

Qm{LJ0) = ^ ^ X I 1^™"!^ S{Em-En + nLJo). (14.158) 
n 

For transitions involving energies i:hu>o we then get by striking a balance 

dU 
dt fuiJO 22i ^"^ [Qm{i^o) - Qm{-Uo)] = \ \ UQXBB{^O)-

1. We can calculate ^ in the same way as % iii the first section, and we find 

'^AB{i) = y P m y l m n B „ ™ e ' ( ^ ' " - ^ ' ^ " ' * / ' ' - ( y l ) o ( B ) o . 
ran 

Its Fourier transform equals 

i>AB{<^) = 27rft 22 PmAmnBnmS[Em - En + hw) -2Tr{A)o{B)oS{u}). 

mn 

On the other hand, as hoj = En — Em, the factor pn of X ^ B ( ' ^ ) equals pmQ~ ^ 
so that 

XAB{^) = 4 ( l -e^ ' ' "^ ) ^AB{^) = ~ (e'^'^'^-l) ^BA{~^). 

Thanks to the presence of the term with {A)Q{B)Q in tj), this function tends to zero 
at infinity; in the Fourier transform the contributions with ^(u;) cancel each other. 
This enables us to write the fluctuation-dissipation relation or Kuho relation in the 
form 

V'AB(CC') = j r f ^ Xksi^), (14.159) 

even in the vicinity of a; = 0, where x" —+ 0. 
In the classical limit we find 

^ A B ( ' ^ ) = i^BAi-^) = X'ABC'^)-
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At f = 0 the Kramers-Kronig relation then gives 

Vi4B(0) = ^ J d ^ ' ^ xksi'^) = -fcTxAB(O). (14.160) 

In the case of a classical system the correlation or the fluctuation ^(0) in equilibrium 
is proportional to the response x(0) to a static perturbation (Exercs.4a and 5d). 

When we apply at the ends of a resistor R a periodic potential difference 
V cos ujQt, the dissipated Joule power equals V /2R. This potential plays the role 
of \{i) and in the Hamiltonian it is coupled to the charge Q transferred from one 
end of the sample to the other. We can thus identify Xooi'^) with 1/Rui. This 
result can also be obtained by noting that the relation V{t) = RI{t) means that 
X/Q([i') = 1/ii; as I{t) = —dQ{t)/dt it follows that I{uj) = iujQ{ijj) and hence that 
XQQ{<^) = ~i/Ri^ which implies that X'QQ{<^) = 0, Xooi'^) = iZ-Rci;. As a result 
we have X//('^) = (JJ/R and hence ipir{<^) = 2kT/R. Altogether we find from the 
Kubo relation the Nyquist theorem 

mm) = h j '^ ''''^' T = T ̂ ^'^-
The noise is "white noise" with a very short memory; in other words, its Fourier 
transform is a constant. Its amplitude is proportional to the temperature and to 
the conductivity (Exerc.5c). 

Notes: 

In studying under 3 slow processes and under 4, 5, and 6 periodic processes, 
we have implicitly assumed that x(t) tends to zero as t —> oo, or that x"{^) is a 
regular function of ui. However, for a finite system the spectrum of HQ is discrete, 
so that (14.153a) defines x ( 0 ^^ ^^ enumerable sum of periodic terms; one can 
show that such a function, which is called almost periodic, returns for sufficiently 
large t to values close to its initial value and, hence, cannot tend to zero. A finite 
system thus has an infinitely long mem,ory. Strictly speaking, one cannot apply here 
the concepts of thermodynamics, and AA(t) retains a recollection of past history 
even in the case of a very slowly varying perturbation A(t). The difficulty crops 
up in a different form for the Fourier transform where (14.153c) gives x"{^) -̂̂  ^ 
sum of Dirac distributions, and not as a regular function. The response (14.155) 
or (14.157c) to a periodic perturbation is therefore pathological in the case of a 
finite system: it diverges if hcjo equals a difference En — Em between two levels of 
HQ. In other words, a finite system leads to infinitely narrow and sharp resonances. 
According to (14.156) it relaxes without damping {F = 0). 

Nevertheless, for the macroscopic systems studied in statistical physics, the 
spectrum of HQ is extremely dense: we have seen that typical distances AE between 
neighbouring levels decrease exponentially with the particle number. As a result, the 
recurrence times after which x(*) returns to the neighbourhood of its initial value 
are huge, of the order of 1/hAE, much larger than the duration of our experiments 
or even than the age of the Universe. On a reasonable time scale, AA{t) therefore 
follows A(t) without any memory effect, as long as A(t) evolves slowly. On the other 
hand, even the smallest uncertainty in the frequency UJQ suffices to smooth (14.155) 
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or (14.157c), which means that in the expressions (14.153) for the response we can 
replace the sums by integrals. Once we have made this change, the distribution 
x"{'^) becomes a continuous function, and x(*) becomes a function which tends to 
zero as t —» oo; this makes the results obtained above valid. 

In atomic, nuclear, or particle physics the number of elementary constituents 
is often small, but the objects studied are not confined to a finite volume so that 
we are dealing with continuous spectra; this thus makes x ('^) ^ regular function 
and enables it, for instance, to show resonances with a finite width F, as under 
5. In this case, it is the possibility for radiating or for emitting fragments into the 
surrounding space which leads to irreversibility and dissipation. The finite lifetime 
of excited atomic states can then be identified with the relaxation time r~ in 
(14.156c). On the other hand, recent experiments where an atom was confined to 
a small cavity have shown that the levels again become discrete: preventing the 
photon radiation to escape suppressed dissipation, and one observed, for example, 
undamped oscillations between atomic levels. 

14c D e s o r p t i o n 

We want to study the dynamics of the degassing of an adsorbing wall in 
the very schematic model of Exerc.4b. We assume tha t the wall, on the one 
hand, and the gas, on the other hand, are at equilibrium with, respectively, 
the variables a' and a, and f3' and (3. Show that the four response coefHcients 
associated with particle and energy exchanges axe related to one another. If 
the gas is at a temperature T and a pressure V, write down the evolution 
equation for the number of adsorbed molecules and discuss the effect of V 
and T. 

Hints. The particle and energy fluxes $N and $E from the wall to the gas are con
nected through $E = —u$]\[, which leads to LEN = "WLJVAT, L^E = ~"ijV£; = 
u LjvAT (Onsager). It then follows from (14.15) and the equations of state of the 
gas and of the wall that 

-hLpj]^ In 
n Vo{T)\ 

dt '"""" " \ N -n V J ' 

where Vo{T) = kTe~^' X^ . The approach of n to the Langmuir equilibrium 
value is slow because of the logarithmic behaviour of the flux. 
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" . . . des centaines de mille d'Egyptiens dont les costumes 
blancs ou bigarres de couleurs vives papillotaient au soleil, 
dans ce fourmillenient perpetuel qui caracterise la multitude, 
meme lorsqu'elle semble immobile. . . . Aussitot qu'Aharon 
eut fait le geste, surgirent des millions de grenouilles; mues 
comme par des ressorts, elles bondissaient entre les jambes, 
a droite, a gauche, en avant, en arriere. A perte de vue, on 
les voyait clapoter, sauteler, passer les unes sur les autres." 

Thiophile Gautier, Le Roman de la Momie 

"A notre avis, le caractere metaphysique le plus profond de 
la theorie cinetique des gaz, c'est qu'elle realise une transcen-
dance de la qualite, en ce sens qu'une qualite n'appartenant 
pas aux composants appartient cependant au compose. C'est 
contre cette transcendance que protestent sans fin les esprits 
logiques." 

Gaston Bachelard, Le Nouvel Esprit Scientifique, 1934 

Whereas there exists a unified microscopic approach for equilibrium prob
lems, the methods used in non-equilibrium statistical physics are varied and 
often adjusted to the questions tha t are treated. We have given the main 
features of two examples, the projection method (§ 14.3.5) and the response 
theory (Exerc. l4b). We have also used rough balance methods in §§ 7.4, 11.3, 
and 13.3, where we met with kinetic theory in an elementary and qualitative 
form. Here we return to this kinetic theory in a more detailed manner^. It 
applies to systems such as classical gases, charge carrier gases in semicon
ductors and metals, or neutrons in a nuclear reactor, all of which can be 
described as sets of particles interacting through forces with a range, short 
as compared to their distances apart . This makes it possible to distinguish 
at the microscopic level two time scales, the very short duration of each col
lision and the t ime between successive collisions of a particle. The lat ter is 
itself much shorter than the characteristic evolution times of non-equilibrium 
thermodynamics. We shall construct and study the kinetic equations which 
satisfactorily describe the dynamics for times, long compared to the duration 
of the collisions. One gets these equations by striking the balance of the dis-

An extensive bibliography can be found in James A.McLennan, Introduction to 
Nonequilibrium Statistical Mechanics, Prentice Hall, Englewood Cliffs, NJ, 1989. 
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placements of particles in the single-particle phase space, under the effects of 
their collisions and of their free motion between collisions. 

We start by studying the Lorentz gas where non-interacting particles col
lide with scattering centres which are fixed at random positions (§ 15.1). This 
simple model is suitable for a microscopic study of phenomena such as dif
fusion or conduction (§15.2.1); it can easily be generalized for a treatment 
of the motion of charge carriers in a semiconductor (§ 15.2.2) or in a metal 
(§ 15.2.3), of energy exchanges through collisions between electrons and im
perfections in a crystal (§ 15.2.4), or of the physics of neutron flow in matter 
(§ 15.2.5). We then study the Boltzmann equation (§ 15.3) which describes in 
a realistic manner the properties of non-equilibrium classical gases if inter-
molecular collisions are taken into account. When there are several kinds of 
molecules, the Boltzmann equation also provides us with a microscopic ap
proach to the mutual diffusion phenomenon (§ 15.3.4). We take up the theory 
of an important limiting case, Brownian motion, that is, the random mo
tion of a heavy particle plunged into a medium consisting of light particles 
(§15.3.5). 

When analyzing the solutions of the kinetic equations near equilibrium 
by the so-called Chapman-Enskog method (§15.1.5) we shall for classical 
gases obtain a microscopic justification for the general principles of thermo
dynamics which we stated in Chap. 14. At the same time, we shall express the 
transport coefficients, such as the thermal conductivity or the viscosity for a 
Boltzmann gas, in terms of the cross-section for scattering of molecules by 
one another (§ 15.3.3). However, the kinetic equations cover a domain much 
wider than that of transport in a local equilibrium regime (§ 15.1.4). In fact, 
they also enable us to study situations far from equilibrium: hyperfrequencies 
and micro-miniaturization in electronics, shock waves and boundary layers 
in aerodynamics, neutron physics, and so on. One thus needs to use them in 
the many cases where the macroscopic phenomenology of thermodynamics 
does not work for applications to pure science or to technology. 

We end with a discussion of the irreversibility paradox in the framework 
of kinetic theory (§15.4). The key to this problem lies in the existence of 
several, more or less detailed, descriptions of the same process, ranging from 
the microscopic to the macroscopic scale, and passing through one or more 
mesoscopic descriptions (§§ 15.1.2 and 15.4.1). The entropy appears then, not 
as a unique function of the state of the system, but as a relative concept; its 
growth reflects an increase in disorder or a loss of information, not in an abso
lute sense,but at the level of the chosen description (§§15.4.2 to 15.4.4). The 
thermodynamic entropy is a special case, associated with the macroscopic 
description. This relative nature of the entropy may appear surprising; for 
that reason we discuss it using the example of spin echo experiments which 
exhibit the subtle nature of macroscopic irreversibility (§ 15.4.5). 
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15.1 The Lorentz Model 

15.1 .1 G a s e s w i t h Sca t t er ing Centres 

The first examples of systems, the properties of which we are going to study 
start ing from the microscopic structure, are sets of classical non-interacting 
particles with a dynamics controlled by collisions with scattering centres, 
considered to be exterior to the system, which therefore is not isolated. 
Such a model satisfactorily represents a semiconductor : we have shown in 
§ 11.3.2 tha t the negative and positive charge carriers, tha t is, electrons in the 
conduction band and holes in the valence band, behave like two classical gases. 
We saw tha t the definition itself of these charge carriers takes into account the 
Coulomb potentials between the elementary constituents of the crystal, tha t 
is, the electrons and the nuclei which are in fixed positions on a regular lattice. 
We can thus regard the carriers as practically non-interacting; there remains 
only the slowly varying mean electric field produced by possible macroscopic 
charge densities. However, this description rests on band theory and assumes 
tha t the potential seen by the electrons is periodic. The presence of crystal 
defects, of impurities, or of phonons, tha t is, displacements of the nuclei, 
is a per turbat ion of the periodic reference potential. Our model represents 
this per turbat ion by an effective potential, which is localized at each of the 
imperfections and which can scatter the charge carriers. The collisions of 
the carriers by the imperfections are the microscopic mechanism underlying 
the electrical resistivity. In a perfect crystal, the carriers would be freely 
accelerated by the applied field, just like electrons in a vacuum. 

The neutrons circulating in one or other of the par ts of a nuclear reactor, 
for instance, in the uranium bars, also constitute a classical gas with a very 
low density, typically lO^cm"^. Their interactions with one another are neg
ligible, but this is not t rue for their interactions with the material they pass 
through, which can be thought of as a system of scattering centres. 

In the Lorentz model one assumes the scattering centres to be infinitely 
heavy compared to the non-interacting particles in the gas under consider
ation. Moreover, they are randomly distributed in space. These assumptions 
are well justified for the two examples studied above. The large mass of the 
scattering centres justifies the assumption tha t they are fixed: their energies 
are of the order of kT so tha t their velocities are low; after a collision, their 
recoil velocity remains small. Finally, we neglect the effects of the internal 
s tructure of the scatterers so tha t we may consider the scattering of each 
particle to be elastic. 

The fact that the scattering centres are placed randomly rather than on a 
regular lattice guarantees that successive scattering processes do not produce any 
coherence effects. In fact, the interaction of the carriers with a periodic lattice 
potential gives rise to bands in a semiconductor, but does not produce any friction. 
The latter phenomenon, necessary to account for the electric resistivity, appears on 
the macroscopic scale when the scattering centres are distributed irregularly. 
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Hendrik A. Lorentz (Arnhem 1853-Haarlem 1928) who gave his name to the 
space-time transformation associated with a change of frame in special relativity 
(1903) also made major contributions to statistical mechanics: electron theory of 
metals, interaction of matter with radiation, kinetic theory. The model defined here, 
which he introduced to describe the electrons in a metal, is actually only applicable 
to the carriers in semiconductors, substances which were poorly known at the time. 
In metals one must make changes to account for the Pauli principle (§ 15.2.3). 

Apart from its intrinsic interest, a study of the Lorentz model will prepare 
us for an investigation of the Boltzmann equation for ordinary classical gases, 
which is more complicated but based on the same ideas. 

15.1 .2 Success ive Contrac t ions of t h e D e s c r i p t i o n 

We must in the whole of this chapter distinguish carefully several levels of de
scription. The most detailed microscopic description rests upon the use of the 
phase density D, which represents the state of the system in the iV-particle 
phase space and which evolves according to the Liouville equation (§ 2.3). At 
the other extreme, the empirical macroscopic description, or hydrodynamic 
description, which is suitable for the near-equilibrium regime involves solely 
two variables at each point: the energy and particle local densities QE and 
Qisf. Following the general ideas of § 14.3.4 we shall below introduce the as
sociated mesoscopic description; to do this we assign at any time a phase 
density DQ to the system, equivalent to D as regards gE{f,t) and QNif,t), 
but containing no more information. 

However, as the gas is not dense, it is natural to work at an intermediate 
level, tha t of Boltzmann's description which plays the role of a macroscopic 
level as regards D, but of a microscopic level as regards QE and g^ (Fig.15.1). 
At the Boltzmann level, we discard any correlations which might exist be
tween particles; this is legitimate as one may expect these correlations to 
remain weak at low densities. A state is then characterized by the single-
particle reduced density f{r,p) which at any time t is defined by (§2.3.5) 

fir,p,t) = (Y.^'l'--''MS'\P-Pj{t)]\ (15.1) 

the quantity / d^r d^p represents the number of particles situated on average 
in the volume element d^r d^p of the single-particle phase space and can be 
derived from the phase density D through (2.81). In what follows (§ 15.4.1) 
it will be useful to associate with / a mesoscopic phase density DB which 
differs from D by suppressing all correlations which D might contain. The 
macroscopic densities QE and QN can be expressed in terms of / as follows: 

QN{r,t) = J d^pf{r,p,t), gE{r,t) = j d^p f{r,p,t) e. (15.2) 



15.1 The Lorentz Model 335 

Microscopic 

Density in phase D 

Boltzmann 

D. 

Single-particule reduced density /(i" > P) 

Macroscopic 

Do 

Hydrodynamic densities p, (r) 

Fig. 15.1. Levels of description of a gas. The arrows indicate how the various den
sities follow from one another. Two successive projections (§ 14.3.5) lead from D to 
D B then to DQ 

The reason for restricting ourselves for g^ to the kinetic energy e = p^/2Tn 
and neglecting the interactions of the particles with one another and with the 
scattering centres is our low density assumption: even though these interac
tions are essential in controlling the dynamic processes, they hardly at all 
contribute to the energy, since the duration of the collisions is very short and 
between collisions the energy is purely kinetic energy. At any given time the 
fraction of particles which are interacting with a scattering centre is small, 
and the contribution to QE from their potential energy is negligible. 

Altogether (Fig. 15.1), start ing from the microscopic description in terms 
of D, two successive contractions, leading through (15.1) to / and then 
through (15.2) to the Qi, eliminate the non-relevant variables. At each stage 
the maximum statistical entropy principle enables us to reconstruct meso-
scopic phase densities Ds and DQ which, respectively, contain no more in
formation than / and than the Qi. By construction the associated statistical 
entropies S{DB) and S{Do) satisfy at all times the inequalities 

S{D) < 5 ( D B ) < SiDo). (15.3) 

The description which is best suited for a gas on the microscopic scale 
is Boltzmann's , which has already eliminated the correlations between parti
cles. However, before we use it, we must write down the evolution equations 
for f{r,p,t) or, what amounts to the same, for DB- TO do this we could 
s tar t from the Liouville equation for D and thence, using a method similar 
to the one of § 14.3.5, derive the dynamics of f{r,p,t). It is more expedient 
to establish the equation of motion for / directly by noting tha t there are 
different time scales associated with the three levels of description. In fact, 
since the scattering centres have a short range 6, a particle never interacts 
with more than one centre at the same time and it moves freely between 
them. Each encounter with a scattering centre behaves as a collision with a 
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duration which is short compared to the average time r between colUsions. 
The microscopic Liouville equation (2.68), or the equivalent equations (2.89) 
for the reduced densities, involve time intervals dt which are short compared 
to the duration of a collision. In contrast, the time scale suited to the Boltz-
mann description is intermediate between the duration of a collision and the 
interval r between collisions. The macroscopic dynamics, on the other hand, 
is associated with a time scale long compared to r . In the equation of motion 
for df/dt which we want to find, dt does not indicate an infinitesimal time, 
but a time interval which is long as compared to the duration of a collision. 
We must therefore study the way / changes, comparing the situations before 
and after the collisions which take place during the time dt. 

15.1.3 Evolution of the Single-Particle Reduced Density 

For simplification, let us assume that each scatterer has spherical symmetry. 
The classical trajectory of an incident particle is then characterized by its 
impact parameter b, that is, the distance from the centre of the scattering 
potential at which this trajectory would pass by, if it were not scattered 
(Fig.15.2). Conservation of the energy e, which is equal to p^/2m outside the 
range of the potential, implies that the initial momentum p and the final 
momentum p' have the same absolute magnitude. The global effect of the 
scattering is thus a deflection of the trajectory over an angle 9, defined by 
cos 6 = {p • p')/pp'. The magnitude 9(b) of this angle is a function of the 
impact parameter, and it depends on the form of the potential. 

However, the range of this potential, a few A for a defect in a solid and 
a few fm for a nucleus scattering a neutron, is very short, not only as com
pared to the macroscopic distances involved in local equilibria, but also as 
compared to the mean free path, which is 10^ to 10'* A, and even as compared 
to the distances between the particles or the scatterers. Over such distances 
the reduced density / is practically a constant so that we are not so much 
interested in the deflection angle as function of the impact parameter, as 
in the distribution of the angles of deflection for the case of a uniform flux 
of incident particles. More precisely, the scattering is characterized by the 
differential cross-section da{p,6); this quantity is defined as the number of 

p' Fig. 15.2. Collision with a scatterer 



15.1 The Lorentz Model 337 

particles scattered per unit time into a solid angle d^u; around the direction 
of p ' , in the case of an incident beam, parallel to p, with a uniform unit flux 
density. Equivalently, da{p,0) represents in a plane at right angles to p the 
area b db dip covered by those incident trajectories which after scattering will 
point in a direction within the solid angle d^u) = sin 6 dO dip. This interpre
tat ion justifies the expression "cross-section". It also gives us for a given 9{b) 
an expression for da/doj, in the form 

da 

duj E bkdbk 

sin e de 
(15.4) 

where the bk are the values of the impact parameter for which 6{bk) = 0; 
we have 6 > 0 , 0 < ^ < 7 r , 0 < ( ^ < 27r, the incident azimuthal angle is 
either equal to tha t of p', ip, or to ip ± TT, and (15.4) contains both kinds of 
contributions. 

The classical approximation which we have just used is, in fact, valid only 
(§ 7.1.3) over distances which are much larger than the de Broglie wavelength h/p. 
Usually, the distances between the scattering centres easily satisfy d ^ h/p, but 
this is not the case for the size 6 of each centre. For instance, in a semiconductor at 
room temperatures when the effective mass of the carriers is m/10, typical values of 
h/p are 50 A, whereas S is of the order of a few A. Similarly, neutrons are scattered 
by nuclei with a size of the order of fm (10^ m), whereas, depending on their 
energy, their thermal lengths XT lie between 10~ and 10~ m. Hence, while 
it is legitimate to use the classical formalism on the Boltzmann scale where the 
characteristic distances are d or the mean free path I, the idea of a trajectory has 
no meaning for the description of a collision on the scale 6; the above analysis in 
terms of an impact parameter is not correct. All the same, the concept of a cross-
section remains valid for quantum scattering even though da/duj is no longer given 
by (15.4). In what follows we shall therefore assume that the cross-section da/duj 
which characterizes the microscopic scattering has been provided either by quantum 
theory or from experiments. We must use this quantum mechanical quantity to write 
down at the Boltzmann level the classical equation of motion for f{r,p,t). 

If, for instance, one takes hard spheres of radius 5 as a model for the scattering 
centres, for pS ^ h the classical expression (15.4) gives an isotropic cross-section. 

The total cross-section, obtained by integrating (15.5a) over all possible scattering 
directions gives us the total number of particles scattered per unit time for unit 
incident flux. In the present case it is equal to at = 1^6^, that is, as one might have 
expected, the area of the circle, in which form the scattering sphere is seen by the 
incident particles. For smaller values of pb the calculation of da/dw needs the solu
tion of the scattering wave equation. In the limit as p6 '^h we find 

2i;4 da ^ ^2 , P S 

du> 
6^ + ^ ('2 cos e - ^ V (15.5b) 

still isotropic, but with a four times larger coefficient. 
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We look for the change df(r,p) in the single-particle reduced density over 
a time dt which is long as compared to the duration of a collision, but short as 
compared to r . To do this we strike a detailed balance between the number of 
particles entering and leaving the volume element d^r d^p of single-particle 
phase space. If there are no collisions, the value of p remains constant for 
each particle, and the flow in phase space is simply produced by the uniform 
motion of each particle with a velocity v = p/m in r space. The corresponding 
contribution to df /dt is then obtained in the same way as the conservation 
(14.6) of the number of particles or, as in (2.88), from the Liouville theorem. 
This gives us an equation of the form 

^ + ( t , . V . ) / - J ( / ) , (15.6) 

where the left-hand side describes the dynamics of non-interacting particles, 
while the right-hand side describes the effect of collisions. To simplify the 
notation we shall in what follows write v = p/m and e = p^ /2m even though 
the only independent variables are the components of p. This will also allow 
our equations to remain valid for charged, or relativistic, particles, in spite 
of changes in the relations between v, p, and e (§ 15.2.1 and Exerc.l5d). 

In order to write down the collision term I we note that J ( / ) d^r d^pdt 
is the average increase during a time dt in the number of particles situated 
in the volume element d^r d^p of the single-particle phase space, due only 
to collisions. Since / is a function which changes slowly on the scale of the 
scatterers, we can choose the dimensions of the element d^r large as compared 
to the range of the potentials and as compared to the de Broglie wavelength. 
A classical or quantum collision has the effect of changing the momentum 
of a particle, while leaving the particle inside d^r. We must thus consider 
two kinds of processes, both produced by those scatterers which are situated 
inside d^r. On the one hand, one of the particles with a momentum p inside 
d^p is scattered into p', which lies outside d^p, and this reduces fd^rd^p 
by unity. On the other hand, inversely, a particle situated inside d^r with a 
momentum p', acquires as the result of a collision a momentum p inside d^p, 
which increases / d^r d^p by unity. 

Let us evaluate the first effect in terms of the cross-section and the density 
£>sc of the scatterers. The flux density of the f d^r d^p particles considered is 
V f d^p. In unit time, therefore, each centre scatters a number v f d^pdcr{p, 6) 
of those particles into the solid angle d^u}, in agreement with the definition 
of da itself; the number of centres involved equals gsc d^f- Writing d^p' = 
d^Lj' p' dp' and d^p = d^w p^ dp for the volume elements in momentum space, 
we thus find the total number of particles lost from d^r d^p during the time 
dt 

vfir,p,t)d'pg,,d^rdt J ^ ^ ^ ^2^', 

which gives a contribution 
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to X{f). 
To calculate the second effect we note that scattering conserves the abso

lute magnitude of the momentum so that the extra particles liable to appear 
in the region (PrcPp are those within the volume element d^r which have 
momenta p' with absolute magnitude between p and p + dp and arbitrary di
rections. The number of such incident particles is f{r,p') d^r d^u)' p^ dp, and 
ultimately one must integrate over the direction d^w' of p'. Prom those we 
must count the ones which will be scattered into the solid angle d^iv around 
p; their current density is v' f{r,p')d^u}' p^ dp so that the number of such 
particles scattered by each centre into d^(jj equals 

dhJ 

where we have again used the definition of the cross-section. Note that the 
angle 9 for the deflection from p' to p is the same as for the deflection from 
p to p' and that the cross-section occurring here is the same as the one 
corresponding to the direct process. This property, often called the detailed 
balancing principle or microreversibility, will enable us to regroup the two 
terms and will have important consequences. Integrating over the direction 
of p ' and summing over the £isc d^r active scattering centres, we find the total 
number of particles gained in d^r d^p during the time dt: 

vd^pescd'rdt J ^^^f(r,p',t)d-'u,'. 

Combining all this, we find finally for the collision term of (15.6) in the 
Lorentz model 

J ( / ) - J d^p' Weip) 8{e - e') [f{r,p', t) - f{r,p, t)], (15.7) 

where we have used the relation 

S{P-P') = ^S{8-e') 
m 

to introduce explicitly the conservation of kinetic energy, 

2m 2m' 

and where we have for p = p' defined the function 

W e i p ) ^ ^ , , . . ' ^ , (15.8) 
m^ dcu 



340 15. Kinetic Equations 

which depends on the absolute magnitude of p and the angle 9 between p 
and p'. 

The particular form (15.7) of X(/) in the Lorentz model shows a general 
property of the collision term: it is local and instantaneous. It involves the 
reduced density at the same point and the same time as the ones ocurring 
on the left-hand side of the transport equation. These two characteristics 
result from the approximations which we have made when working at the 
Boltzmann scale, both regards the time interval dt, assumed to be long as 
compared to the duration of a collision, and as regards the dimensions of 
the volume element d^r, assumed to be large as compared to the range 8. 
However, each collision can considerably change the momentum, with the 
energy fixed. This is reflected by the integration over p' occurring in X(/), 
which is often called the collision integral. 

The expression 

d^p'We{p)8{e-e') 

can be interpreted as the transition probability per unit time for a particle to 
go from an initial momentum p into the volume element d^p' as the result 
of collisions. The probability for the inverse process is the same, due to the 
reversibility of the microscopic collision equations. Using this interpretation 
we could have easily striken the detailed balance leading to the form (15.7) 
of the collision term. Our approach, moreover, provided us with the explicit 
expression (15.8) for the transition probability. 

15.1.4 Ballistic and Local Equilibrium Regimes 

The dynamics of the Lorentz gas is governed by the kinetic equation (15.6), 
(15.7) which is an integro-differential equation. This equation is valid at low 
densities where the correlations between the particles remain negligible and 
where therefore the reduced Boltzmann description is adequate. The evolu
tion of the various macroscopic quantities will follow once we know f{r,p, t); 
for instance, the densities QN and QE are given by (15.2) at any time. 

On the microscopic scale, the conservation laws are valid for each collision 
in which neither the number of particles, nor their energy is changed. This is 
reflected by the identities 

/ d^pl = 0 , / d^ple = 0, (15.9) 

which must be satisfied by the collision term. In fact, the two integrals (15.9) 
represent the rate of increase, due only to collisions, of the particle and en
ergy densities at the point r. One can easily check that they vanish for the 
collision term (15.7) of the Lorentz model: the first identity follows from the 
antisymmetry of the integrand under an exchange of p and p ' ; the second in 
addition uses the relation 
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e8{e-e') = \{e + e')6{e - e'). 

Integrating the kinetic equation (15.6), possibly multiplied by e, over p 
and using (15.9), we find the macroscopic conservation laws 

^ + d i v J ; v = 0, ^ + d i v J s = 0, (15.10) 

provided we define the densities by (15.2) and the fluxes by 

JN = j d^pvf, -^E = j d^pvfe. (15.11) 

These expressions are special cases of (14.48), (14.49), (14.58), and (14.59) which 
were established for the dynamics produced by the Liouville equation for the density 
in phase D. Passing to the kinetic equation (15.6) for the reduced density / is 
accompanied by the total disppearance of the contributions from the potentials 
in the definitions of QE ŝ nd J^. It is therefore consistent to use the Boltzmann 
description for the collisional dynamics of the gas and at the same time to treat 
the latter as being perfect when we calculate QE S'lid J^-

The evolution of / is governed by the interplay of the left- and right-
hand sides of the kinetic equation (15.6). On the one hand, the drift term 
{v • V ) / vanishes for a spatially uniform distribution / ; on the other hand, 
the collision term vanishes, 

I{fo) = 0, (15.12) 

for a local equilibrium distribution which has the Maxwellian form (7.31) at 
each point: 

/ o ( r , p ,< ) = _L e«('••*)^^('•'*)^ (15.13) 

The parameters l/k(3{r,t) and a{r,t)/f3{r,t) can be interpreted as a local 
tempera ture and a local chemical potential; for spin-s particles, we must 
include in (15.13) a factor 2s + 1. More generally, (15.12) is satisfied for a 
reduced density / which is isotropic in p at each point of space. Of course, a 
global equilibrium distribution for which / is bo th uniform and isotropic in p 
is stationary. However, if initially / has a local equilibrium form /o , it evolves 
due to the drift term {v • V ) / and it loses this special form with time; as a 
result, the collision te rm star ts again to play a role. The existence of strong 
heterogeneities reinforces the effect of the drift term; a large deviation from 
local equilibrium, or local isotropy, makes the collision term the dominant 
one. 
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To estimate the relative orders of magnitude of the two effects we note 
that the characteristic length associated with (v • V ) / is the distance over 
which / changes significantly, and this can be a macroscopic length. The 
correponding time is the one needed for a particle with a typical speed v 
to feel a spatial variation of the properties of the gas. This time can be 
macroscopic; over a time shorter than it the evolution of / is governed by the 
collision term (15.7). The order of magnitude of the latter is characterized 
by the total transition probability per unit time, 

Wip) = J d^p'Weip)S{£-e') = VQ,,CT, = ^ , (15.14) 

which we have evaluated in terms of the cross-section, starting from the 
definition (15.8) of We{p). The total cross-section at, which is the integral of 
da/dw, is of the order of magnitude of the area •KS'^ of a scattering centre, 
and may depend on p. The length 

I = (15.15) 

can be interpreted as the mean free path between two successive collisions of 
the same particle, which we have previously introduced in § 7.4.5. The time 
T(P) , defined by (15.14), is thus the average time between successive collisions. 
For the charge carrier gases in semiconductors the speed v is of the order of 
4 X 10^ m s~^\ if the scattering centres have an effective radius ^ of 7 A, 
and if their number is one in a cube with 70 A edgelength, we find a mean 
free path / ci 0.2 |xm and a time r ~ 0.5 x 10~^^ s. The large value of W 
in macroscopic units implies that the collision term I{f) modifies / rapidly, 
over a time of the order of T, as long as the two terms of (15.7) do not cancel 
each other. 

This discussion shows up two extreme regimes for the dynamics of / . In 
the ballistic regime (§ 7.4.4) the left-hand side of (15.6) dominates and the 
collisions play only a minor role, notwithstanding the large value of W. This 
occurs as long as the sample is small as compared to the mean free path; for 
instance, the base of a transistor (§ 11.3.5) is rather thin and collisions are not 
sufficiently efficient to produce even local equilibrium. This occurs also when 
the sample is subject to external perturbations which vary rapidly, over times 
comparable to r, which again prohibits relaxation to local equilibrium (Ex-
erc.l5b). Conversely, in the local equilibrium regime or hydrodynamic regime 
which we shall study in §15.1.5 the two terms of I ( / ) nearly cancel each 
other, as / remains close to a local equilibrium distribution at all times. The 
drift term (w • V ) / controls the evolution, but the collision term continues to 
play a role. In fact, if 

/ = fo + fi (15.16) 
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deviates little from a local equilibrium distribution (15.13), I{f) reduces to 
I ( / i ) by virtue of (15.12) and the smallness of / i is compensated for by the 
large value of W. 

In the local equilibrium regime the densities (15.2) associated with /o 
can be evaluated exactly like the expressions (7.32) and (7.44) which we had 
found for the gas in global equilibrium, since those expresions followed simply 
from the Maxwellian form of /Q . In terms of a{r, t) and j3{r, t) we have thus 

1 „ f2wm\^^^ 1 . , ^ , , , 
^iv = T:^ e" —— , QE = w;s QN. (15.17) h^ [TJ ' '" - ^ 

Inverting these relations we can equally well characterize the local equilibrium 
state by the densities QM{r,t) and QEif-^t). Thus we recover microscopically 
the local equations of state of § 14.2.1 which connect the Qi and the 7^. The 
entropy density, given by (7.29) and (7.41) equals 

s = QNk{l~a). (15.18) 

If initially / has an arbitrary value, far from equilibrium and without any very 
large spatial variations, the dynamics is dominated by the collision term which is 
much larger than («• V ) / , at least for sufficiently short times. To simplify the study 
of the corresponding transient regime let us assume that each scattering process is 
isotropic so that Wgip) is independent of the angle 6, as in the examples (15.5). 
Using the definition (15.14) of W, the collision term then reduces to 

Af) = W{{f)-f), (15.19) 

where (/) denotes the average of f{r,p,t) over the directions of p: 

/ 
{f{r,p,t)) = / ^ f{r,p,t). (15.20) 

Over times which are sufiiciently short so that we can neglect {v • V ) / as compared 
to I{f), the kinetic equation 

f - -V^( / - ( / ) ) 
has as its solution 

f{r,p,t) ~ ( / (r ,p,0)) + [f{r,p,0) - (f{r,p,0))] e'^'. (15.21) 

In a time of the order of the time between collisions T the distribution becomes 
isotropic at each point. After a few collisions the particles lose any memory of the 
direction of their momentum in any volume element of dimensions larger than the 
mean free path. This reduces the collision term until it becomes comparable with 
the drift term. The evolution then proceeds in a local equilibrium regime, where / 
is almost isotropic in p at each point, on a macroscopic time scale which is long as 
compared to T. 
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The Lorentz model, in fact, is pathological: its microscopic conservation laws 
include not only those of the number of particles and the energy, (15.9), but also 
the conservation of any function of the absolute magnitude of p, which remains un
changed in the collisions. The local conservative variables therefore do not reduce 
to (15.17), as we tacitly assumed. In actual fact, the distributions which are locally 
isotropic in p play the role of the local equilibrium distributions; we should have 
denoted those by /o in (15.12), (15.16), and in §15.1.5. The distributions which 
are independent of r and isotropic in p play the role of global equilibrium distri
butions for the Lorentz dynamics (15.6), (15.7). The evolution toward a true local 
Maxwellian equilibrium requires energy exchanges with the scatterers (§ 15.2.4). 

The analysis of the microscopic evolution has shown up a double role 
played by the collisions. The high frequency of the latter, which is reflected 
in the large value of the transition probability per unit t ime W occurring 
in the collision term, results in establishing on a microscopic t ime scale r 
a local equilibrium where X ( / ) becomes small. The evolution then proceeds 
on a macroscopic t ime scale, with the state at all t imes remaining close to a 
local equilibrium. In Chap. 14 we noted that this involves, on the one hand, an 
efficient mechanism for the evolution toward equilibrium inside any subsystem 
and, on the other hand, a coupling between subsystems which is sufficiently 
weak to allow a slow evolution of the system as a whole. The collision term by 
itself here plays these two roles: its effectiveness is very large in the transient 
regime when it brings every macroscopic volume element to local equilibrium, 
but it becomes small as regards the coupling between these volume elements 
as soon as / gets close to an /o form. The collision term alone controls the 
rapid relaxation toward a local equilibrium; the interplay of the collision term 
and the drift term on the left-hand side controls the slow relaxation toward 
global equilibrium, or the t ransport in a permanent regime. 

15.1 .5 T h e C h a p m a n - E n s k o g M e t h o d 

Start ing from the kinetic equation (15.6), (15.7) of the Lorentz model in a 
local equilibrium dynamic regime, we look for a justification of the various 
evolution equations postulated by macroscopic thermodynamics (§14.2.6). 
Also we want to calculate the response coefficients which we introduced em
pirically in § 14.4.1. We have already established the conservation laws (15.10) 
and the equations of state (15.17). However, the latter were wri t ten down, 
not start ing from / , but starting from a reduced density /o which has the 
special form (15.13). Near local equilibrium we want to split / at all times, 
according to (15.16), into a part /o corresponding to local equilibrium and 
a small correction / i . However, such a splitting is a priori not unique. To 
determine /o unambiguously from / , we must at every point write down two 
constraints to determine a{r,t) and fi{r,t). However, the densities QN and 
QE follow from / through (15.2). It is therefore natural to require tha t / and 
/o be equivalent for the calculation of these local densities, tha t is, to force 
/ i to satisfy the constraints 
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/ d^ph{r,p,t) = 0, j d^ph{r,p,t)e = 0. (15.22) 

Equations (15.2), to which / i does not contribute, and (15.17) then define 
a and (3 at each point and at all times: thus, the equations of state are 
automatically satisfied just by the way they are constructed. As to the fluxes, 
the situation is the opposite; the isotropy of /o implies tha t /o does not 
contribute to (15.11) so tha t 

' N j d^pvh, JE = j d^pvhs. (15.23) 

Our aim is to determine the dynamics of /o , tha t is, of the local equilibrium 
Majcwell distribution which follows f in its motion under the constraints 
(15.22). 

The method of Chapman and Enskog (1912-17) which is based upon the split
ting (15.16), (15.13), and (15.22) of the reduced density and which we shall work 
out below is nothing but an adaptation of the projection method (§ 14.3.5) to kinetic 
theory. Here, the reduced density / which is governed by the kinetic equation (15.6) 
replaces the density operator D which is governed by the Liouville-von Neumann 
equation, and the decomposition (15.16) replaces (14.75). The densities QNi'i'it) 
and p£;(r,t) are the macroscopic variables Ai{a,t), defined by (14.72). The con
straints (15.22) which express that / and /o give us the same densities pjv '^nd 
QE play the role of the constraints (14.73) on DQ; the maximum statistical entropy 
condition, which led in § 14.3.3 to the determination of DQ in the local equilibrium 
form (14.67), here imposes upon /o the Maxwellian form (15.13). Finally, a{r,t) 
and f3{r,t) are the multipliers 7,(0, i) of the general theory. We shall see that 
the Chapman-Enskog method proceeds by determining the dynamics of /o and / i 
through iteration. This procedure will, in fact, amount to implementing a short-
memory approximation which is similar to that of (14.82) in the general projection 
method. That is the reason why it will end up with instantaneous equations which 
connect the fluxes with the affinities, as postulated by thermodynamics. 

To simplify the discussion of the dynamics in the local equilibrium regime 
we restrict ourselves to an isotropic cross-section da/doj as would be the case, 
according to (15.5), for scattering by hard spheres in the limits p6 ^ h oi 
pS -C h. Equation (15.19) shows tha t the kinetic equation (15.6) can then be 
writ ten in the form 

^ + ( t , . V ) / = W{{f)-f). (15.24) 

The coefficient W{p), defined by (15.14), is large in macroscopic units. We 
shall therefore solve (15.24) in two stages, first neglecting the deviation / i = 
/ — /o from the local equilibrium state (15.13) and treating /o as a quantity 
of zeroth order in 1/W, and then determining / i , considered to be of first 
order in 1/W. In each stage we must take two precautions. First of all, we 
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must satisfy to each order the conservation equations (15.10). Secondly, we 
also wish to retain the equations of state (15.17) to each order, which is 
guaranteed by (15.22). 

Therefore, we replace / by /o + / i in (15.24) and expand. To lowest order 
in 1/W this equation reduces to 

0 = W{{fo)-fo), (15.25) 

that is, to (15.12), which is automatically satisfied. The fluxes (15.23) are of 
order 1/W so that to zeroth order the transport coefficients vanish and the 
conservation equations simply become 

Hence, if we take the equations of state (15.17) into account, it follows that 
da/dt = 0, dp/dt = 0. The definition (15.13) then shows that /o does not 
change with time to lowest order. One should note that the dynamics of /o did 
not follow from the kinetic equation (15.24) itself, but from the conservation 
laws which are consequences from it, a fact which we shall also find in the next 
order. The absence of transport is not as surprising as it might seem at first 
sight, if we remember the double role played by the collision term (see the end 
of § 15.1.4): in the limit as PF ^ oo each volume element immediately reaches 
local equilibrium, while at the same time the coupling between neighbouring 
volume elements vanishes, so that the spatial variations in a{r, t) and /3(r, t) 
do not entail any flux generation. 

The fluxes appear in the next order. The smallness of their magnitude, 
which is proportional to 1/W, is in accordance with experiments: as we have 
often noted in Chap.14, the smallness of the coupling between different vol
ume elements entails the slowness of the transport of conserved quantities. 
Let us therefore write (15.24), and also the constraints (15.22) and the con
servation laws, to next order. For (15.24) we retain the terms of zeroth order 
in 1/W, which involve the zeroth and first orders of /o and / i . The left-hand 
side must be evaluated using /o, but we have seen that consistency with the 
conservation laws implies that to the order considered we put dfo/dt = 0. 
The right-hand side must be evaluated, if we take (15.25) into account, using 
/ i ; the constraints (15.22) on / i are satisfied if we put (/i) = 0, so that to 
the order considered equation (15.24) gives 

{v-Vr)fo = -W/l-

This equation, which expresses the competition between the drift and the 
collision terms in the local equilibrium regime, can be directly solved as 

/ = /o + /i ~ fo-^ {v-Vr)fo. (15.27) 

Prom (15.27) we can check that our assumption (/i) = 0 was consistent. 
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Using the value of / i from (15.27) we get, to order 1/W, an approximate 
value for the fluxes (15.23): 

'JV J Sp ^ {v • V/o), JE = - J d'p^iv- V/o)£; 

The isotropy of /o and W enables us to integrate over the direction of p , and 
using the relation 

d M VccVfj = — SafiV 

where the factor of 6a/3 is found by summing over a = /3, we get 

JE 
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(15.28) 

Using the explicit form (15.13) of /o and the relations between the multipliers 
a and /3, on the one hand, and the intensive local variables fj, and T, on the 
other hand, we find 
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W 

(15.29) 

If one substi tutes these results into the conservation laws (15.10) and uses 
the equations of state (15.17), one obtains the equations of motion for £>jv 
and QEJ or for jj. and T. Using (15.13) one could then, to order 1/W, find 
dfo/dt, and substi tute it into the kinetic equation to continue the iteration 
to the next orders in 1/W; however, the first order suffices, if we want to find 
the linear response coefficients. Note tha t this method does not provide us 
with a simple series expansion, as the coupling between /o and / i through 
the conservation laws changes /o at each iteration. 

Equations (15.29) prove the phenomenological relations between the affini
ties and the fluxes from §14.4.1. In particular, they imply Ohm's, Pick's, 
and Fourier's laws and this provides us with a microscopic justification of 
the near-equilibrium thermodynamics for the Lorentz gas. At the same time 
they give us an expression for the macroscopic response coefficients in terms 
of the microscopic scattering cross-section. In the particular case of isotropic 
scattering which we are considering, we find, in fact, from (15.14) and (15.29) 
tha t 
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LNE = LEN = irr I P^dpfo -^^^^, (15.30) 

where at is the total scattering cross-section. The microscopic results (15.30) 
also allow us to prove here the principles of thermodynamics. We easily check 
the Onsager relation LNE = LEN for this problem. Finally, L^N and LEE 
are clearly positive; the same is true for LNNLEE~L^^, as a consequence of 
the Schwartz inequality. This proves the positivity of the response matrix, and 
hence of the dissipation, that is, the increase in entropy with time (§ 14.2.5). 

We can easily finish the calculation of the response coefficients when the 
cross-section at, and hence the mean free path / = l/gscO't) are independent of 
p. To simplify the notation we introduce the mean time r between collisions, 
weighted by fov^: 

^ I d'pfov'rjp) _ 2Z / ^ y / ' _ _8/_ . . , „ . . 
^ ~ / d^pfov^ 3 {irkT) 3nv' ^ ' 

where T{P) = l/v = 1/W{p) was defined by (15.14), and where v denotes the 
mean particle speed at thermal equilibrium. Using (15.2) and formulae from 
the end of the book we then get from (15.30) 

j^ivjv = — 6NT, LEE = — Qwk T , 
TO m 

LNE - LEN = —QNkT^. (15.32) 
TO 

The Chapman-Enskog method shows that the condition for the existence 
of the local equilibrium regime is tha t the t ime between collisions T be small 
as compared to the characteristic times for the macroscopic evolution. This 
requires either each collision to be efficient, tha t is, the cross-section to be 
large, or a large density of scatterers. If these conditions are fulfilled, the 
technique used here enables us to contract the description from the dynamics 
of the reduced density / to tha t of the macroscopic densities QN and QE of 
§ 14.4.1, and thence to justify the empirical approach of thermodynamics. 

Like the projection method, the Chapman-Enskog method has a remarkable 
characteristic. One is interested only in the evolution of macroscopic quantities, or, 
equivalently, of the mesoscopic reduced density /Q. However, even though / i has 
been eliminated, it is just this deviation / i from the local equilibrium which governs 
the dynamics of the local equilibrium quantities. 

A surprising fact, called Hilbert's paradox, remains to be explained. The general 
solution, f{r,p, t), of the microscopic transport equation depends on an initial con
dition f{r,p,0), which is a. function of 6 variables. However, the iterative solution 
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which we were able to construct, using the Chapman-Enskog method, is completely 
determined, once we give the initial condition for /Q. One sees this from the result 
(15.27), where / i , to order l/PF, is given explicitly in terms of /o at the same 
time, and where /o evolves according to the conservation equations governed by 
the fluxes (15.29). To higher order, these same characteristics are retained so that 
the Chapman-Enskog solution f{r,p,t) is obtained as a power series in 1/W, the 
convergence of which can be proved, and which depends solely on /o(' ' ,P, 0). In 
fact, we noted when discussing (15.21) that a correct mathematical analysis of the 
kinetic equation (15.6), (15.7) requires that we take for the densities /o not the 
local equilibrium distributions (15.13), but, more generally, isotropic functions of 
p. As a result the Chapman-Enskog solutions depend only on a function of 4 vari
ables, T and p. It therefore appears as if we have lost some of the solutions of the 
original equation! However, experience tells us that the local equilibrium, regime is 
general. In order to understand the significance of the particular solutions which we 
have obtained and which have forms close to /o we must find the relation between 
the particular Chapman-Enskog solutions and the general solution and answer the 
question why in actual cases only those solutions are observed. 

The key to this problem is the following. Let us assume that initially f{r, p, 0) is 
very different from a Chapman-Enskog form, due to a large anisotropy in p or very 
fast variations in r. The evolution then takes place in two stages. First, on a micro
scopic time scale of the order of the time between collisions, f rapidly approaches a 
form which is at each point isotropic in p, in accordance with (15.21). The details 
of f(r,p,t) are important on that time scale. However, subsequently we can forget 
about them, as the new initial condition, from which we start at the end of the first, 
transient stage, is a distribution close to the /Q type. The evolution on macroscopic 
time scales will then to a good approximation follow a local equilibrium regime for 
all solutions of the microscopic equation. The particular Chapman-Enskog solutions 
are thus the asymptotic form of the general solution for large times. Moreover, the 
behaviour of / as exp(—VFt) in the transient regime (15.21) could not have been 
obtained by the Chapman-Enskog method, which through its very construction 
produces only solutions which can be expanded in powers of 1/W. One can rigor
ously prove that any solution of equation (15.6) is the sum of a Chapman-Enskog 
type solution and a correction, possibly large initially, but decreasing exponentially 
as exp[—i/T(p)]. 

15.2 Applications and Extensions 

15.2 .1 Diffusion a n d C o n d u c t i o n 

The Lorentz model is sufBciently realistic to describe semiconductors in the 
exhaustion regime (§ 11.3.4) where there is practically only one kind of car
riers, with charge q = ± e , and the number of which is conserved. For those 
substances (14.86), together with (15.32), gives us the diffusion coefficient 

D = —kT, (15.33) 
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in terms of the t ime between collisions, or in terms of the mean free path , 
through (15.31), or, alternatively, in terms of the cross-section and the density 
of scattering centres through (15.14). According to Pick's law, D governs the 
average motion of the carriers toward the less dense regions. 

One also finds from (15.32) the thermal conductivity (14.89), 

A = 2QNk^T—, (15.34) 
m 

the electrical conductivity (14.95), 

o- = QNq^ —, (15.35) 
m 

and the thermoelectric coefBcients (§ 14.4.3). 
These expressions, obtained towards the start of the twentieth century by 

Drude and Lorentz, and others, in order to explain the properties of metals, 
were the first successes of statistical mechanics applied outside its original 
field, the physics of gases. In particular, it follows from (15.34) and (15.35) 
tha t the ratio of the thermal and electrical conductivities, 

- = — ; ^ = 1.5 X lO^^T in SI units, (15.36) 
a q'' 

is independent of the substance, and varies proportionally to the temperature . 
This property, the Wiedemann-Franz law, had been known experimentally 
since 1853 and was thus proved by statistical mechanics. However, the nu
merical coefficient occurring in (15.36) is smaller than the one experimentally 
found for metals. In fact, we shall see in § 15.2.3 tha t the theory of Drude 
and Lorentz, although conceived originally for metals, could not be applied 
to them, but only to semiconductors. 

Our evaluation of the conductivity leaves somewhat to be desired, since it is 
implicitly based upon the macroscopic arguments of § 14.4.2. The physical origin of 
the conduction is an external electric field applied to the substance, and we have 
not included that into our considerations. We must therefore repeat the earlier 
calculations and include into the microscopic kinetic equation an extra term coming 
from the electric potential in which the carriers are moving. That will allow us to 
justify expression (15.35) for the conductivity on a completely microscopic basis. 
Denoting the external potential by V{r) = q${r) and using the same collision term 
as in the simplified Lorentz model (15.24) we can write the kinetic equation as 

% + {v-Vr)f-{VrV-V„)f = W{(f}-f). (15.37) 

The extra term on the left-hand side was obtained as in (2.88). It describes the 
drift of the particle momenta due to the applied force —W. Its presence, while 
leaving the conservation laws (15.10) unchanged, changes the expressions (15.2) and 
(15.11) for the energy flux and the energy density, as well as expressions (15.22) 
and (15.23) which follow from them. One can easily check, by integrating (15.37) 
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over p after multiplying by p /2m + V{r), that the only change we must make in 
all the equations is the replacement oi e = p /2m by 

. - ^ + V M . (15.38) 

The same substitution must, of course, be made in the reduced local equilibrium 
density /Q, (15.13), since /3 is associated with the total, kinetic and potential, energy 
of the particles. The effect of this is to change ^i, = a/(3 in expressions (15.17) and 
(15.18) for the particle and entropy densities to 

^i'{r,t) = tx{r,t)-V{r), (15.39) 

in agreement with the macroscopic definition (14.93) of p, . 
The solution of (15.37) by the Chapman-Enskog method now gives us, instead 

of (15.27), 

/ i = - i ^ ( ' ' - V O / o + ^ ( V ^ - V p ) / o = -^{v{V.fo+/3foVrV}) 

= ^ / o ( « - { - V a + eV/3}). (15.40) 

In deriving (15.40) we have taken into account, when differentiating /Q with respect 
to r, that not only a and f3, but also s has a spatial dependence (Eqs.(15.13) and 
(15.38)). Equation (15.40), as well as Eqs.(15.29) and (15.30) which follow from 
it, are formally the same as when there is no V, provided V is introduced in the 
definition (15.38) of e. Altogether, the form of the response equations remains the 
same, but the response coeffcients (15.32) are changed to 

LNN = — QNT, 
m 

LNE = LEN = -QNTi2kT + V), 
m 

LBB = —eNT{6k^T^+4kTV + v'^). (15.41) 

These expressions are in agreement with the general form (14.97) which we found 
by macroscopic arguments. The fact that neither LjvjV; nor LJ^J^LEE " ^EN '^^' 
pend on V justifies expressions (15.35) 2ind (15.34) for the electrical and thermal 
conductivities. We must, however, rely on the following remark. The conditions for 
the applicability of Ohm's law, namely, uniform temperature and electrical neutral
ity in a homogeneous substance, imply that p, , which is a function of Q]y and T, 
must be uniform, and hence, if we recall (15.39), that 

( - ^ ) i v y = ^E; (15.42) 

the response equation Jjy = Lj^i^V{~p/T) then gives us Ohm's law with (15.35) 
for the conductivity. 

The elimination of ^ by using the equation of s tate (15.17) with a = Pfj,' 
and (15.39) gives, for the case of a uniform temperature , the following particle 
flux 
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JN - L^.i^E^k^ = ̂ (E-^Vgr.). (15.43) 

The two terms in (15.43) represent, respectively, the contributions associated 
with the electric force and with the inhomogeneity. We saw in § 14.4.2 tha t 
the proportionahty of their coefficients is the Einstein relation (14.96). 

The electric mobility, defined by (14.91), equals here 

It is the average velocity acquired by a particle of, positive or negative, charge 
q being subjected to unit field. It is directly observed in electrophoresis: if 
some ions of charge q and mass m initially form a drop in a colloidal medium, 
the latter plays the role of the scattering centres of the Lorentz model and the 
ions can diffuse and migrate under the influence of an electric field, according 
to (15.43). One can show (Exerc.l5c) tha t the drop spreads rather little as 
compared to its average displacement with a velocity given by (15.44). This 
phenomenon is the basis of a method of analysis which enables one to separate 
ions according to their mobility by the simple application of an electric field. 
Its applications are essential in biology. For instance, one can separate and 
dose in this way albumin and globulins from blood serum, which have difl'erent 
mobilities. 

Electrophoresis is also commonly used to read the genetic information contained 
in the deoxyribonucleic acid (DNA). DNA has the famous double helix structure. 
One of the two strands (1) is a long polymer chain along which four bases, denoted 
by T, C, A, and G, are positioned in succession, in a well defined order which 
determines the genetic information. Our aim is to determine the sequence. The 
second strand of DNA contains the same information, but in a complementary 
form. In fact, chemical bonds can occur, on the one hand, between the T and A 
bases and, on the other hand, between the C and G bases. The strands (1) and (2) 
are thus complementary sequences, where, on the one hand, T and A and, on the 
other hand, C and G, face one another so that the strands may be bonded all along 
their length. 

We start from a solution containing the DNA which we want to analyse. Molec
ular biology methods allow us to synthesize chains which are complementary to 
the strand (2), that is, which are analogous to the strand (1), by using (2) as a 
matrix along which the complementary bases will order themselves. To do this, one 
incorporates in the solution the elementary constituents, T, C, A, and G, a poly
merization enzyme, and radioactively marked special molecules for the beginning of 
the chain. One of the latter fixes itself to start with at the beginning of the strand 
(2) of the DNA. Starting from this initial element, the bases which are drawn from 
the solution place themselves successively face to face with their complements in the 
strand (2) of the DNA. Through chain polymerization one has thus reconstructed 
a copy of the strand (1) with a radioactive marker at its beginning. However, we 
also have an elementary constituent T , similar to T, which can replace the latter 
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during the chain polymerization process, while blocking it. If we put a little T ' in 
our solution, the copy breaks off randomly at one or other of the T sites of the 
strand (1) of the DNA which we are trying to analyze. We thus produce a batch 
of molecules, marked radioactively at their beginning, with different lengths which 
reflect accurately the positions of the T bases along the strand (1). Let us call this 
the T batch. Incorporating in the solution inhibitors C , A', or G' instead of T ' , we 
similarly produce C, A, and G batches. 

We then analyze the four batches through electrophoresis: each of them is placed 
at one end of a strip of gel, a porous material in which the molecules can diffuse, 
and between the two ends of this strip we apply a potential difference during a cer
tain time interval. The charge and mass of the molecules are proportional to their 
length, but their mobility is in this case not given by (15.44); the diffusion mecha
nism is different because of the compact nature of the gel and the great length of 
the molecules. However, one can show that the mobility decreases, logarithmically, 
with increasing size of the molecules. The partial copies of the strand (1) migrate 
therefore the further, the shorter they are. One determines the distances travelled 
by the various radioactive fragments by photographically detecting the radioactiv
ity of the strips at each point. For each of the four strips, for instance T, we thus 
obtain a series of spots, each of which visualizes the size of one type of molecules 
in the T batch, that is, the position of one of the T bases in the strand (1) which 
we analyzed. By arranging the spots in the inverse order to the distance travelled 
and classifying them according to the T, C, A, or G batch to which they belong, 
we can thus read directly the sequence of the bases of the original DNA. This proce
dure, which is convenient and efficient, is universally used in biology laboratories. 
By a single experiment it enables one to determine the sequence of several hundred 
bases. 

In semiconductors the mobilities at room temperature are of the order of 
0.1 m^s~^V~^. They increase as the temperature decreases, following (15.44) 
and also because the density of scatterers decreases, which increases the mean 
free path. In metals, they are smaller by two orders of magnitude. The cor
responding drift velocities of the charge carriers are very small as compared 
to their thermal random velocities, which are of the order of 10® m s~^ in a 
metal , and about half tha t in a semiconductor. 

15.2.2 S e m i c o n d u c t o r s 

The Lorentz model has the merit of explaining the conduction mechanism in 
a way which is less qualitative than the arguments of § 11.3. However, coming 
from the pre-quantum electron theory, it has more or less serious defects. We 
shall discuss it in order to find ways of improving it for applications to some 
substance or another. 

One of the major approximations made consists in treating the charge 
carriers as a classical gas, which is justified as long as their density is low. The 
theory therefore needs to be profoundly altered for metals, where the Pauli 
principle plays an essential role (§ 15.2.3). Nevertheless, we have seen at the 
start of § 15.2.1 tha t the model can be successfully applied to semiconductors, 
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at least under circumstances when the number of majority charge carriers is 
conserved and tha t of the minority carriers is negligible. Another example 
of systems which behave like classical gases is provided by dilute solutions 
(Exerc.Qf) and it is natural to t ry to apply the Lorentz model to dilute 
solutions of electrolytes. However, in tha t case we must take into account 
at least two kinds of ions, positive and negative ones, and above all, the 
properties of the solvent. In fact, the model assumes tha t the charge carriers 
move in a medium consisting of scattering centres at large distances from 
one another and practically fixed. Neither the one nor the other of these two 
assumptions is satisfied since the solvent is a liquid, the molecules of which 
are relatively close to one another and have masses of the same order of 
magnitude of, if not smaller than , those of the ions. A microscopic theory of 
electrolytes, even a rather rough one, therefore calls for complicated methods. 
The simplest case is tha t of insulators or semiconductors, for which rather 
simple changes are sufficient to make the Lorentz model realistic. 

We must first, of course, attribute to the carriers the effective masses which 
govern their dynamics (§ 11.3.2). In the charge balance we must include the donor 
and acceptor centres and the carriers which are trapped in them, and we must add to 
the external electrical potential the self-consistent potential produced by the charge 
distribution. We must also take into account the polarization effects of the medium 
(§ 11.3.3) which reduce the electrostatic forces, to first approximation dividing them 
by the dielectric constant. The electron spin introduces a factor 2 into (15.13). 

The major change concerns the presence of two kinds of carriers. Let us first 
give a macroscopic analysis. We saw in §§ 11.3.2 and 11.3.4 that a semiconductor 
behaves as a mixture of two very dilute classical gases, one consisting of the, nega
tive, electrons in the conduction band, the other of the, positive, holes in the valence 
band. At equilibrium the density of each of them depends solely on the temperature 
and the doping, in the case of a neutral substance; if the semiconductor is charged, 
it also depends on the local density of the total charge or, what amounts to the 
same, on the diflference n' = fi — V between the local chemical potential and the 
macroscopic potential V = —e$. In a local equilibrium regime we must, instead of 
a single carrier density pjv, introduce the two local densities n and p of the con
duction electrons and the holes, as well as the densities n j and pa of electrons and 
holes bound to donor and acceptor centres, respectively. We wrote in (11.101) the 
equilibrium expressions for these various quantities; this gives here, in particular, 
rise to the introduction at each point of two chemical potentials Hn and ^p which 
are associated, respectively, with the filling of the conduction band with negative 
carriers and the valence band with positive carriers. Their difference (/[in — /Xp)/r 
which vanishes at equilibrium defines a chemical kind of affinity (14.14b); when 
it is positive, there is an excess of holes and electrons with respect to the equili
brium density and the system reacts by a recombination process where the pairs of 
carriers with opposite signs annihilate each other with a release of energy. When 
this difference is negative, we have, on the other hand, pair creation, that is, the 
excitation of an electron from the valence band into the conduction band. The flux 
associated with the affinity {fin — l^p)/T is the recombination rate per unit time. 

Apart from this chemical kind of thermodynamic effect, the spatial variations 
of fin and fip give rise to the two affinities V{~fj,n/T) and V(—/^p/T), with which 
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two negative and positive carrier currents are associated. However, the continuity 
equations (15.10) for the two kinds of carriers contain source terms, equal to the 
rate of pair creation. If we add to all that the thermal effects and the possibilities 
for trapping in and releasing from the donor and acceptor sites, we expect from a 
macroscopic analysis a large number of response coefficients. 

At the microscopic level we explain the above features as follows. The two carrier 
gases are described by two reduced densities fni^tPji) and fp{r,p,t) which each, in 
local equilibrium, have a Maxwellian form (15.13) provided the Pauli principle does 
not come into play, which is most often the case. As in equilibrium, one must include 
in the energy e the local potential energy and change the signs of the energies and of 
/x for the hole density /p . The equations of motion for the quasi-particles (§ 11.3.2) 
show that /n and /p to first approximation evolve according to a kinetic equation 
like (15.6) with a collision term (15.7) describing the interaction of the carriers 
with the crystal imperfections. As a result, each of the populations thermalizes 
independently of the other, over a short time, of the order of the time T between 
collisions, and the number of each kind of carrier is conserved on that time scale. 
This enables us to understand why over longer times we observe local equilibrium 
regimes where the two electron and hole gases evolve almost independently, while 
being superimposed upon each other in space. 

However, there also exist microscopic processes, rarer than the simple scattering 
of carriers by lattice imperfections, which can be interpreted as the annihilation or 
the creation of a pair of carriers with opposite signs. In fact, when an electron in 
the valence band acquires through a collision an energy just above the width of the 
forbidden band it can maJie a transition into the conduction band; this manifests it
self as pair creation, to use the language of quasi-particles. The inverse process also 
exists and is described as pair annihilation. These two processes give in the kinetic 
equations rise to extra collision terms which couple /n and /p and which do not 
conserve the number of carriers. However, these terms, describing the probability 
for the transition of an electron from one band to another, involve matrix elements 
between wavefunctions of the valence and the conduction bands. We know that the 
corresponding Wannier functions Xv and Xc are orthogonal to each other, which 
considerably reduces these matrix elements and hence the corresponding collision 
term - we encountered a similar situation in § 11.3.4 where for a similar reason 
the valence band was not involved in the calculation of the binding energy of an 
impurity level around a donor centre. Moreover, the necessity to provide or to ab
sorb an energy of the order of the forbidden band width requires coupling with 
other degrees of freedom, for instance, with the phonons. This again reduces the 
probability for chemical type reactions, that is, pair creation or annihilation, as 
compared to the collision probability W = 1/T for a carrier. The typical charac
teristic recombination times are of the order of 10~ s, which should be compared 
with the order of magnitude of 10~ s for r; this justifies the use of the two gas 
model for intermediate times. 

Relaxation toward equilibrium also involves other microscopic processes, for 
instance, when an electron impinges upon an unoccupied donor centre and gets 
trapped. Those are processes which give rise to the evolution of the densities n j 
and Pa of electrons and holes bound to donor and acceptor centres, respectively. 
Finally, we shall see in § 15.2.4 that we must also include inelastic processes which 
are responsible for the thermalization. 
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Fig. 15.3a,b. Semiconductor close to equilibrium, (a) Ohmic conduction; (b) pair 
excitation 

In semiconductor technology (§ 11.3.5) one usually depicts the local energies of 
the band edges across the various parts of a device. At equilibrium, the chemical 
potential ^ is uniform and represented by a horizontal line whereas the band edges 
follow the spatial variation of the potential —e$. In this way, Fig. 11.15 gave a 
schematic picture of a p-n junction at equilibrium. In a local equilibrium regime 
the chemical potentials /in and fip, associated with the two kinds of carrier, may be 
split and they may vary in space. Figure 15.3a, for example, shows a regime where a 
globally neutral semiconductor conducts an electric current. The chemical potential 
varies parallel to —e# in order to ensure neutrality. However, as it is not constant, 
the charges move in the direction which would tend to reestablish a uniform fx, 
namely, to the left for the p carriers and to the right for the n carriers; this produces 
in a stationary regime a current proportional to V/ii, that is, proportional to V^, 
as in § 15.2.1, but now with both n and p carriers. 

Another situation of interest (Fig.l5.3b) corresponds to an excess of both kinds 
of carriers at the same time; this occurs, for instance, when the semiconductor is 
illuminated: the energy of the incident photons is absorbed and creates pairs. In 
the stationary regime which is set up, the carriers of either sign are practically in 
an equilibrium, which is controlled by the ordinary collision term, between elec
trons or between holes, and the distribution of each set of carriers is Maxwellian. 
However, the recombination coefficient is so small that the chemical potentials pn 
and fip get stuck at different values, the more different, the stronger the intensity 
of the illuminating flux in the range of frequencies associated with the width S of 
the forbidden band. The excess of carriers, produced in this way, gives rise to a 
pronounced photoconductivity effect, since the conductivity (15.35) is proportional 
to the carrier density. In § 11.3.4 we listed some technical applications of this effect. 

We also indicated in § 11.3.5 the use of p-n junctions as photocells. Figure 15.4 
shows this schematically. The two p and n layers are joined together along the plane 
of the junction which is subjected to solar radiation. The layer on the illuminated 
side is sufficiently thin to let the radiation pass through. When there is no light, 
the potential is represented by the dot-dash curve and the chemical potential is 
constant, as in Fig.11.15. Illumination creates pairs and produces a positive differ
ence fin — /ip between the chemical potentials in the junction region. For the case of 
an open illuminated circuit and a permanent regime, we have shown the potential 
by a full drawn curve and the chemical potentials by dashed curves. Far from the 
junction, recombination takes place locally and this reduces /in — fJ-p practically to 
zero; the carrier densities are close to their equilibrium values, and fi + e$ takes on 
both sides the same value as when there is no illumination. A more complicated 
situation occurs in the junction region. The difference /in — fJ-p remains rather large, 
since recombination does not occur immediately and locally: indeed, its character-
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Fig. 15.4. Photovoltaic effect 

e0 

istic time of 10~ s is rather long and the inhomogeneity causes the carriers to 
migrate during that time. As compared to the equilibrium situation there is on the 
p side an excess of holes which is more marked than the excess of electrons, since 
the latter are on that side the minority carriers. The opposite is true on the n side. 
As a result the double layer of charges in the vicinity of the junction is reduced by 
the illumination. This entails a reduction of the spontaneous potential difference; 
this reduction is equal to the difference between the chemical potentials and thus 
to the electromotive force from p to n which one would observe, if one closed the 
circuit. A complete theory would have to write down (i) the self-consistent electro
static equations, (ii) the continuity equations (15.10) for the two kinds of carrier, 
including their source terms which describe the pair creation by the light and the 
recombination, and (iii) the relations between the two carrier fluxes and the gradi
ents of the chemical potentials, in which the conductivities (15.35) are proportional 
to the local carrier density. 

If we consider very small samples, for instance, a transistor base (Fig.11.18), 
the thickness of which of the order of a micron is not large as compared to the 
mean free path of the carriers, or if we deal with applications to fast electronics, 
the quasi-equilibrium assumption is not justified; we may find ourselves in a regime 
intermediate between the local equilibrium and the ballistic regimes (§ 15.1.4). We 
must then go back to the microscopic kinetic equations and look for their solu
tions, without making the Chapman-Enskog approximation, which is inoperative 
here since it assumes that the collisions are sufficiently efficient to ensure local 
equilibrium. 

The study of semiconductors thus appeals to a rather complicated theo
retical arsenal. It is essential to note tha t the various points listed above are 
commonly used not only in pure science, but above all in applied science. As 
in the case of other up-to-date technologies, the mastering of the scientific 
facts and the use of advanced methods are indispensable for a solution of 
industrial problems which range here from the design of electronic devices to 
the capture of solar energy by photocells. 

15 .2 .3 M e t a l s 

We saw in §§ 10.4.3 and 11.3.1 tha t quantum mechanics is indispensable for a 
correct description of the behaviour of the electrons in a metal. In particular, 
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their contribution (10.75) or (11.52) to the heat capacity is negligible at room 
temperatures, whereas their contribution would be |-/Vfc if they behaved as 
a classical gas. Before the development of quantum mechanics, this posed a 
difficult problem: the classical contribution 3Nk from the lattice vibrations 
(§ 11.4.3) was, in fact, often in agreement with the experimental Dulong-Petit 
law and one could not understand why one should not add to that the contri
bution from the electron degrees of freedom. It took more than twenty years 
after the first successes of the classical electron theory of metals (§§10.4.1 
and 15.2.1) before Pauli and Sommerfeld in 1927 solved this paradox, thanks 
to the use of the, completely new, Fermi-Dirac statistics for the electrons. 
The introduction of quantum mechanics is equally indispensable for the un
derstanding of transport phenomena in metals. We shall therefore repeat the 
above approach, adapting it for the fermion gas of the electrons in the metal. 

First of all we note that several of the features of the Lorentz model are 
fairly well satisfied here. Solid state theory shows (§§ 11.3.1 and 11.3.3) that 
to a good approximation one can consider the conduction electrons as non-
interacting particles, provided one introduces a macroscopic electric potential 
to account for possible macroscopic charge densities, which are due to the lack 
of balance between the electron and nuclear densities. The scattering centres, 
that is, nuclei displaced from their equilibrium positions and defects, have a 
large inertia as compared to the electrons, which therefore are a quantum 
Lorentz gas. 

The use of a reduced density f{r,p,t) does not pose too many problems 
in quantum mechanics provided, as will be the case for transport problems, 
this function varies slowly (§ 10.3.4b). It is true that, because f and p do not 
commute, one cannot give the position of a particle in phase space with a 
precision better than a volume of size h^. Let us, however, divide the single-
electron phase space into volume elements much larger than h^. This con
dition enables us to define the single-electron quantum micro-states in the 
volume (fir d^p; their number is large and, if we take the spin into account, 
equal to 2d^r(fp/h^ (§2.3.4). We shall then, as in classical statistical me
chanics, define f d^r d^p as the average number of electrons within the region 
d^r d^p of phase space, that is, occupying the set of micro-states localized 
within that region. 

In thermal equilibrium the theory of § 10.3.3 can be applied to the volume 
element d^r, considered to be macroscopic. The average occupation number 
for each micro-state is the Fermi factor (10.31) so that at equilibrium / is 
given by 

Close to equilibrium we can treat the points r and p situated at the centre 
of the various volume elements d^r d^p :$> h^ as & continuum, provided the 
quantities involved vary little from one volume element to the next. We thus 
introduce the local equilibrium reduced density 
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h{r,P,t) = ^ g^(.,t).-a(.,f) + i ' (15-45) 

where a and /3 are slowly varying functions. The energy e, which in § 10.4.3 
reduced to the kinetic energy p^/2m, may also include a potential V(r) as 
in (15.38). However, it is necessary tha t this potential varies slowly, in order 
tha t we can neglect the discrete nature of the energy levels (§ 10.3.4b). To be 
more precise, the variations of a, (3, and V must be sufSciently slow tha t /o 
remains practically unchanged within a cell Sr d^p ^ h?, which means tha t 

AT | V ( / ? e - a ) | < 1. (15.46) 

Note the difference in normalization of the Fermi factor / , , which refers to 
a single micro-state, and of /o which is associated with the volume d^r d^p. 

Farther from equilibrium, provided the electron gas in the metal shows no 
other correlations than those following from the Pauli principle, we can still 
characterize the states by / ( r , p, t), which has no longer the form (15.45). The 
Fermi-Dirac statistics impose the condition tha t / < 2h^^. The densities and 
the fluxes can still be expressed by (15.2) and (15.11) in the non-interacting 
gas model. The next stage consists in obtaining the equation of motion for 
/ . We show in what follows tha t the microscopic dynamics of the gas of 
electrons in a metal remains to a good approximation described by the same 
kinetic equation (15.6), (15.7) as in the case of the classical Lorentz gas, 
notwithstanding the essential role played by quantum mechanics. 

A complete proof would need a more precise definition of / than we have just 
given. To do this one should use the Wigner representation (§ 2.3.4) and strike 
the balance of collisions in the slow variation limit of § 10.3.4b, while all the time 
satisfying Pauli's principle. Here we shall be satisfied with heuristic arguments. 

As regards the left-hand side of the kinetic equation (15.6) or (15.37), which 
describes the motion of a population of non-interacting electrons, possibly situated 
in a slowly variable potential V{r), we recall that it is the direct result of the clas
sical equations of motion of a particle. However, according to Ehrenfest's theorem 
(2.29) and the relation (2.78), the centre of a wavepacket evolves according to the 
classical equations provided its spread ArAp is large compared to h. A sufficiently 
slow variation of f{r,p,t) in phase space guarantees that / describes a population 
of electrons, each of which has such a spread. As a result, the two drift terms in 
(15.37) retain their classical form. 

The collision term (15.7), however, must in principle be changed in order that 
we can account for the Pauli exclusion principle. The electrons are fermions and 
one cannot put more than one in each of the single-particle micro-states. We did 
not take this into account in the evaluation of the second term 

/ 
d''p'We(p)S{£-£')f(r,p,t) (15.47) 
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of (15.7), which describes the scattering of electrons from the volume element 
d rd p around r,p to the volume element d rd p around r,p . Our balance re
mains correct when the final micro-states are not occupied; however, transitions 
are forbidden toward a micro-state which is already occupied. Denoting by Vq the 
probability that a single-particle micro-state q is occupied, we must thus weight 
the term, that describes the collisions from d rd p around r-,p to a state q in the 
volume element d rd p around r,p', by the probability 1 — Vq that the latter 
state is empty. The number of states q within that volume element is 2 d r d p'/h , 
and the average number of electrons contained in it is f{r,p',t)d rd p' so that, 
on average, Pq equals ^h f(r,p',t). The contribution (15.47) to the collision term 
must thus be replaced by 

- f dyW8{p)S{s-e')f{r,p,t)[l-^h^f{r,p',t)]. (15.48) 

The correction is far from negligible. In fact, if / is close to a low-temperature 
Fermi distribution, (15.47) would involve all the momenta p and p inside the 
Fermi sphere, whereas (15.48) contains only collisions where p and p are close to 
the surface of that Fermi sphere. The effect of the collisions is thus greatly reduced 
by the Fermi-Dirac statistics. 

At the same time, the first term in (15.7) must also be changed to 

/ 
dyWg(p)6{e-e')f{r,p',t)[l-^h^f{r,p,t)]. (15.49) 

In fact, no collision can induce an electron within the volume element d rd p' 
around r,p' to make a transition to one of the micro-states within d rd p around 
r,p, if the latter is already occupied. Altogether, combining (15.48) and (15.49), 
we note that the two corrections which we have introduced, although very large, 
cancel exactly, if we take the symmetry of Wg under an exchange of p and p ' [mi-
croreversibility) into account. The collision integral retains its form (15.7), notwith
standing the exclusion effects. This cancellation is an accident, due to the special 
properties of the Lorentz model. In general, the collision terms are not the same 
for a classical gas as for a gas of fermions (see Eqs.(15.74) and (15.157)). 

The difference between the dynamics of the electrons in a metal in a 
local equilibrium regime and tha t of a classical Lorentz gas comes from the 
fact tha t one must now look for solutions of (15.6) which are close to a local 
equilibrium /o of fermions, (15.45), rather than close to a classical /o , (15.13). 
To do this one needs change very little in the formalism of §§ 15.1.6 and 15.2.1. 
It suffices, in fact, to use everywhere the new definition of /o instead of the old 
one, especially in the densities and the fluxes; the equations of state (15.17) 
of the perfect gas must also be replaced by those of the Fermi gas, (10.42). 
In the Chapman-Enskog method nothing is changed until (15.28), but the 
new form of /o changes the expression for the gradients of /Q . Those can be 
expressed in terms of the derivative 

_ dfo _ 1 /-ir:r:n\ 
^ - da - 2h^ cosh'UPe-ay ^^ ' ^ "^ 
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whereas for the classical gas we had df^/da = /Q. We must thus in (15.29) 
and (15.30) replace /o by g. Similarly, when there is a potential V{r) present, 
(15.40) becomes 

/ - h + ^9{v{-Va + eVI3}), (15.51) 

which again justifies the V dependence (14.97) of the responses. 
A renaarkable effect appears. From the fact that g is localized in a region 

with a width of the order of kT around the Fermi surface e = a//?, only 
electrons with energies close to the Fermi surface, within a margin kT, will 
contribute to the transport. The electrons with lower energies are frozen in 
and can be neglected. Especially, the heat and electricity conductions are, like 
the equilibrium properties of the metals (Chaps.10 and 11) governed by the 
single-electron states close to the Fermi surface. When one applies an electric 
field, one slightly and anisotropically changes, according to (15.51), the pop
ulations of the single-particle states of momenta p with absolute magnitudes 
close to PF; this change, which, however, affects only a very small fraction of 
the electrons, produces an electric current. The large conductivity of a metal 
is not due to the acceleration, between collisions, of all the electrons in the 
electric field, as for the carriers in a semiconductor, but to a marginal effect 
on the electrons situated, in momentum space, close to the surface of the 
Fermi sphere: those electrons, close to the Fermi level, can be excited and 
can create a current while absorbing a very small amount of energy. On the 
other hand, the electrons with momenta well inside the Fermi sphere do not 
feel any effect, due to the Pauli principle, as the neighbouring states into 
which they might have been scattered are already occupied. To appreciate 
how weak a perturbation of the motion of the electrons the current is, recall 
that the Fermi velocity is of the order of 10® m s~^, whereas the mean drift 
velocity is only 10~^ m s~^ for a current density of 1 A mm~^. In the same 
units of velocity, the thickness of the Fermi surface at room temperature is 
of the order of 10^ m s~^. 

One can easily complete the calculation of the linear responses L and the 
corresponding transport coefficients, by taking the derivative of the Sommer-
feld expansion (10.64) which is valid in a metal at room temperature; this 
gives 

. - ^ ^ ( - M ) + ^ n - M ) . (15.52) 

In particular, the electrical conductivity (14.95), where 5 = —e is the electron 
charge, 

can be calculated using the first term in (15.52), which yields 
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2 47r ê  T 

o = T^-rPF—^t—^ = QNe^—. (15.53) 
M 3 mW{pF) m 

We have used the value (10.69) of the electron density and defined the time 
between collisions as 

(15.54) 
W^(PF) ' 

in agreement with the fact that the only active collisions are those of the 
electrons at the Fermi surface. The evaluation of the thermal conductivity A 
and of the thermoelectric power e, defined in § 14.4.3, is slightly less simple. In 
what follows we shall perform it in a more general framework; the expressions 
which we shall then obtain reduce for the Fermi gas considered here to 

A = ^ e j v f c ' T - , (15.55) 

TT̂  k'^T 2m ?|(#)1̂  <--) 3 e p j L 2 dp 

the derivative oi p/W(p) = m/gscO't, to be taken at p = pp, vanishes in the 
case of hard spheres in the two limits (15.5). We then find for the ratio of the 
conductivities 

A TT̂  fc^ 
- = -T = 2.5x 10"* T in SI units, (15.57) 

in excellent agreement with the experimental Wiedemann-Franz law, in con
trast to (15.36) where the coefficient was too small by a factor 7r^/6 for 
metals. 

The fact that the correct expressions (15.53), (15.55), and (15.57) hardly 
differ from the corresponding classical expressions (15.35), (15.34), and 
(15.36) explains why, by a happy coincidence, classical electron theory ap
peared satisfactory for explaining the electrical and thermal conductivities 
of metals. However, the thermoelectric powers in the two theories are very 
different; one sees easily tha t expression (15.56) which holds for metals gives 
much lower numerical values, which are in reasonable agreement with exper
iments, than the classical expression which is valid for semiconductors. In 
fact, according to (14.99), (15.32), and (15.41), the thermoelectric power of 
an n-type semiconductor, neglecting the holes, equals 

We have here for a direct application of the Lorentz model taken the energy 
origin to coincide with the bo t tom EC of the conduction band. As {sc — n)/kT 
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is of the order of unity, the ratio of (15.58) to (15.56) is of the order of e-p/kT, 
where e-p is the Fermi energy of the metal , tha t is, of the order of a factor 
100. In effect, semiconductors have much more pronounced thermoelectric 
properties than metals. Note finally tha t comparing <T or A with experiments 
is far less testing than such a comparison for A/cr or e; in fact, these lat ter 
quantities depend hardly or not at all on the mean time r between collisions, 
a microscopic quanti ty which cannot be estimated very accurately. 

For a more realistic theory of metals, when we take the hand structure (§ 11.3.1) 
into account, we must interpret p as the quasi-momentum and e as the associated 
energy. On the left-hand side of (15.6), as in the definition of the fluxes, the velocity 
V denotes VpS, if we use the equations of motion of § 11.3.2. Neglecting for the sake 
of simplicity the anisotropy of e and introducing the density of states V^e), we get, 
instead of (15.30), for the response coefficients 

^NN = 

^NE 6fe J LEN = ~ I ' ^ ^ ^ f f ^ ' (15.59) 

^^^ = 6fc y '^'~7r' 
2 2 

V e 

1 ^ ' 
Hence we get for the electrical conductivity (14.95), in the low-temperature approx
imation (15.52), 

o- = — LNN ~ -J — ^ v^T, (15.60) 

where we have again defined T by (15.54). In the box model, using (15.60) and 
(10.43), we find again (15.53). However, (15.60) shows better the fact that the elec
trical conduction depends only on the immediate neighbourhood of the Fermi sur
face. Expression (15.53) involved, by a false analogy with the conductivity (15.35) 
for semiconductors, the total electron density QI^. In fact, we see that this was 
solely because, by accident, in the box model, where e = p /2m, we have 

1 P ( £ F ) 2 ^ QN 
3 /? "^ m • 

In the calculation of the thermal conductivity (14.89) the dominant terms from 
LJ^IJ^LEE ~ ^EN cancel. One must therefore use the second term in (15.52). To 
do this it is convenient to rearrange the terms coming from (15.59) in the form of 
a double integral: 

, _ 1 h^ f , , , -Die) V(e') , v^ v'^ {e ~ e'f 

^ - T^L^ 36P J '^"^ -TT ir^^ WW 2 ' 

and to use the identity 

6{£ —/i)<5 {s — fj,) (e — s ) = 2S{s — fi)6{£ — n). 
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which yields 

A = ! ^ f c 2 r ^ 4 r . (15.61) 

Remarkably, the ratio A/cr continues to satisfy the Wiedemann-Franz law (15.57), 
notwithstanding the band structure. Experimental and theoretical studies of the 
Wiedemann-Pranz law are thus a useful investigatory means for showing more subtle 
effects than the ones we have considered, such as the lattice thermal conduction, 
or anisotropy or retardation effects in the collisions. 

Finally, in the calculation of the thermoelectric power (14.99) it is again useful 
to regroup the two terms in 

1 / LNE \ 1 h^ f ^ 27(E) V^ 

Only the second term of (15.52) contributes, and using the relation 

^"(£ - / * ) ( £ - / " ) = - 2 5 ' ( e - fi), 

we find 

^ = - - — #K^^1 . (15.62) 

For e=p /2m, expression (15.56) follows. 

15 .2 .4 T h e r m a l i z a t i o n of E lec trons in a C o n d u c t o r 

The electron theory of semiconductors and metals, based upon the Lorentz 
model, does not describe the thermalization processes where the carrier gas 
exchanges energy with the other degrees of freedom. We saw in § 14.4.3 that 
the explanation of the Joule effect requires the existence of such exchanges. 
Moreover, the Lorentz model does not enable us to understand why the re
duced density / can at local equilibrium tend to a Maxwell distribution for 
semiconductors and to a Fermi distribution for metals, whereas the sam,e 
kinetic equation governs the two cases. In fact, in this model the collisions 
with fixed and structureless centres conserve p and thus do not change the 
initial kinetic energy distribution over the particles, as is shown by (15.21). 
Nevertheless, in reality, even if the interactions between the carriers are neg
ligible, their interactions with the scattering centres, regarded as an external 
reservoir, may produce not only exchanges of momentum, as we saw, but 
also energy exchanges. Here and in § 15.2.5 we shall examine these mecha
nisms and the physical consequences of such exchanges, which involve either 
a change in the internal state of the scatterer, or its recoil. 

Once again, the electrons are scattered by the imperfections of the crystal lat
tice. The inertia of the scatterers is huge as compared to that of the carriers -
the mass of a nucleon is 1836 times the electron mass - so that their recoil energy 
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is negligible. In fact, when two particles with masses TTia <C rrn, undergo an elas
tic collision, the total momentum and energy are the same before and after the 
collision, 

Pa+Pb = PL+PLI ea + £b = s'a. + s'b; 

this produces an energy transfer 

e a - e L = ^ ^ ( { 2 p b ^ p L + P a } - { p L - P a } ) - (15.63) 

Close to equilibrium, £a and £}, are of the same order of magnitude as kT so that 
the relative change in Sa in a collision is of the order y'nia/mi,. Elastic collisions are 
thus inefficient for thermalization. However, we have left out of the construction 
of the Lorentz model the fact that scattering centres have an internal structure 
which may give rise to inelastic collisions with energy exchanges, notwithstanding 
the absence of recoil. 

As regards impurities and crystal defects, these inelastic processes are the ones 
which are mainly responsible for energy exchanges, since the effective masses of 
those defects are large and they hardly propagate, while a defect can have energy 
levels similar to molecular levels and the carriers can induce transitions from one 
such level to another. Another kind of imperfection is the potential created by the 
displacement of an ion in the lattice from its equilibrium position during the thermal 
vibrations of the lattice. Both classically and quantally, energy can in this way be 
exchanged between the carriers and the crystal lattice, the vibrational state of 
which is changed. We have indicated in § 11.4.2 that in quasi-particle terms such an 
interaction is described by the scattering of a carrier with the creation or absorption 
of a phonon which removes or supplies the momentum and energy necessary for the 
conservation. For instance, the process of the absorption of a phonon of momentum 
p = p — p hy a. carrier with momentum p increases the energy of the latter by 

e'— e = u\p'— p\ ~ 2up sin ^6, (15.64) 

where u is the, supposedly isotropic, sound velocity and 9 the deflection angle when 
p changes to p'. The relative change in energy resulting from (15.64) is of the or
der of the ratio of the sound speed, typically 5000ms~ , to the carrier velocity, 
which in semiconductors is of the order of 4 x 10 ms~ and in metals of the order 
of 10 m s " . In contrast to what happens to the momentum itself, the distribu
tion of which becomes isotropic after a few collisions, little energy is transferred in 
each collision so that the time scale associated with thermalization will be large as 
compared to r . 

Let us go back to the evaluation of the collision term T{f) which must now re
place (15.7). A complete detailed balance would depend on the kind of imperfection 
by which the charge carrier is scattered; the contribution from the absorption of a 
phonon of momentum p , for instance, is proportional to the density of phonons 
of momentum p" at the point considered, and it contains the constraint (15.64). 
Similarly, we shall in § 15.3.4 study the effect of the recoil of structureless scat-
terers with a large, but not infinite, mass. We shall content ourselves here with a 
more rudimentary and global approach, which follows from the interpretation of 
d p' Wg 6{e — e') as a transition probability (end of § 15.1.3). This quantity is here 
replaced by drp' Y{p,p), that is, the probability per unit time for a transition of 
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a charge carrier with initial momentum p to a final momentum p within a margin 
d p ' . The length of p ' is no longer constrained to be the same as that of p, but, in 
general, Yip^p^ will be localized in a narrow region e ~ e'. Treating the carri
ers as a classical gas, for the semiconductor case, and repeating the arguments of 
§ 15.1.3, we see that (15.7) is replaced by 

T{f) = f d^p' [Y{p',p)f{r,p',t)^Yip,p')f(r,p,t)]. (15.65) 

Of course, this collision term no longer conserves energy. Besides, Y{p,p') is no 
longer symmetric under an exchange of the initial state p and the final state p ' of 
the carrier. More precisely, recall that the processes which do not conserve energy 
operate only on a time scale which is long as compared to the collision time r . We 
expect that the medium also has a rather short proper thermalization time. It is 
thus natural to assume that the scattering medium is at therm.al equilibrium,, at least 
locally, at a temperature T. Let a denote the micro-states of one of the scatterers 
(impurity, defect, or phonon) considered and Ea the corresponding energy. The 
density Qsc{a) of scatterers which are in the state a is proportional to exp[—Ea/kT]. 
Consider the probability y{p,a;p ,a) for the transition per unit time from a state 
p, a for the carrier and scatterer to the state p',a'. Microscopic physics tells us 
that this processs and the inverse process have the same probability if we take the 
reversibility of the microscopic equations of motion into account. This property, 
the symmetry of y, which generalizes the symmetry of Wg{p), is a new form of the 
detailed balance principle or of the microreversibility. We find thus, assuming that 
y refers to unit volume, 

Y{p,p') = ^ gsc{a)y{p,a;p',a'), 

since the global transition probability for the carrier itself must be weighted by the 
density of scattering centres which are in each of the possible initial states a, and 
summed over all accessible final states a'. The thermal equilibrium of the scattering 
medium and conservation of energy imply that 

g«c(Q) ^ ^-{Ec,-E^,)/kT ^ ^(e-e')/kT^ 
Qsc{a.') 

Using, finally, the symmetry of y we find, for those p, p values for which Y ^ Q, 

5 ^ = e(^-^')/'=^. (15.66) 

We know that the condition (15.12) for the vanishing of the collision integral 
characterizes the local equilibrium states. In the original Lorentz model the absence 
of energy exchanges between carriers and scatterers gave for solutions of X(/o) = 0 
all isotropic functions of p, and not only the Maxwell distributions, so that there 
was no thermalization. Now, the condition that (15.65) be equal to zero means, in 
general, that for all pairs of momenta p, p which can be related through collisions, 
we have 

fo(r,p,t) e^' = fo{r,p',t) e^ ' = constant. 
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where we have used (15.66). As a result /o depends on p solely through the Maxwell 
factor. The system thus evolves to a local equilibrium 

Mr,P,t) = ^ ««('•')-^/'=^, (15.67) 

where the temperature is determined by the medium, since Y{p,p') gradually couples 
all the momenta. 

Let us estimate the characteristic time for thermalization by studying how / , 
initially arbitrary, relaxes locally to the Maxwellian (15.67). As we did when finding 
(15.21), we can then neglect the drift term. An expansion in spherical harmonics 
shows now again that, first of all, f becomes isotropic over a time of order r , defined 
by 

- = / dV Y{p,p'), (15.68) 

provided Y depends not too strongly on the angle between p and p'. After that the 
isotropic part of / at the point r, which we denote by ifi(e,t) e~^' , continues to 
evolve, by virtue of (15.65) and (15.66), according to 

^ ^ ( £ , t ) ~ ^ f de"y{e,e")[<p{e + e",t)-^{e,t)], (15.69) 

where we have written 

y{e,e") = r j d\' 5(e + e" - ^ Y{p,p'). (15.70) 

The function y satisfies the relations 

/ de" y{£,e") = 1, 

(15.71a) 

y{e,e") = y[e + e",~e")e-^""^^ J l + ' - ; 

it varies slowly with e, but is strongly peaked around a transferred energy e" ~ 0, 
so that its width, defined by 

A[e) = 1 I J II I lis ii'i 

2 I de y{e,e )e 

1 / 2 

(15.71b) 

is small as compared to kT and as compared to typical particle energies e. It is 
thus legitimate to expand (p{e + s",t) in (15.69) in powers of s", which, if we use 
(15.71), yields 

^ dcp _ A ^ 2 9 ^ ^ 2 / ' l ^ \ dip 
dt ~ de de ii-w)t <-") 
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We look for the time t after which the initially arbitrary function if becomes almost 
constant in a region of e of order kT. Even without solving (15.72), a homogeneity 
argument shows that this characteristic time for thermalization is of order 

t ~ r ( ^ ) ' . (15.73) 

As we had anticipated it is considerably longer than r , by a factor (kT/A) which is 
of order 10 for the case of electron-phonon interactions. Over this time range one 
is still far from equilibrium and macroscopic thermodynamics cannot be applied. 

Note that the result (15.73) could have been guessed by interpreting (15.69) as 
an equation describing the following stochastic process: in each time interval r a 
collision takes place, which makes the energy increase or decrease by an amount of 
the order of A. After A'' = t/r independent steps, the variance of the energy has 
increased by NA ; the calculation is formally the same as for (1.10) or in Exerc.l5a. 
This variance becomes equal to {kT) when t is of the order (15.73). 

In the case of a metal the collision term (15.65) must be modified as in § 15.2.3 
to take account of the exclusion principle in the final state (see (15.48) and (15.49)). 
We thus get 

X(/) = f d^p'{Y{p',p)fir,p',t)[l-^h^f(r,p,t)] 

-Y{p,p')f{r,p,t)[l-lh^f{r,p',t)]}. (15.74) 

The quantum corrections do not cancel each other here, as the kernel Y does not 
have the required symmetry. The condition I{fo) = 0 then gives for the electrons 
in a metal 

/o(r-,p,t)e^/'=^ _ /o(r-,p',t)e^'/^T 

l^lh3fo{r,P,t) l-^h^Mr,p',t) 
constant. 

We thus find here the Fermi factor dynamically, as a consequence of the particular 
form of the collision term (15.74), or, more precisely, as a consequence of the fact 
that an electron is forbidden to be scattered into a state which is already occupied. 

Once thermalization has taken place, according to (15.67) for semiconductors 
and according to (15.75) for metals, the approximation of replacing Y{p,p') by 
W0(p)6{e — £ ), which makes the collision terms (15.65) and (15.74) the same, 
is in general justified. Depending on the case, it leads to the local equilibrium 
regimes of §§ 15.1.5 or 15.2.3. However, for thermal phenomena, and especially 
for the Joule effect (§ 14.4.3), the increase in the kinetic energy of the carriers 
between two collisions due to the action of an applied field is, in a permanent 
regime, compensated for by a transfer to the other degrees of freedom, especially 
phonons, through collisions with e 7̂  e'. These exchanges are altogether important 
since an electron, moving in such a way that its electric potential changes by 1 V, 
gains a 1 eV energy which is comparable with the Fermi energy and large compared 
to kT. However, even though the inelasticity of each collision is very small, the high 
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frequency of the collisions makes such energy exchanges possible. In fact, these 
exchanges are, in general, followed by a release of energy to the ambient medium 
through conduction or radiation. 

15.2.5 Neutron Physics 

The design and operation of a nuclear reactor make it necessary to have a 
theoretical mastery and advanced practical experience of neutron distribu
tions in energy and space. A fissile nucleus, usually ^^^U, can split into two 
parts , for instance, -"̂ "̂Xe and ®^Sr, carrying away a large amount of kinetic 
energy, of the order of 200 MeV. This fission reaction is initiated by a neu
tron colliding with the nucleus; it produces 2 or 3 neutrons which in tu rn may 
produce a new fission, but which may also escape or be absorbed, tha t is, be 
lost. Moreover, the efficiency of nuclear reactions depends on the energy of 
the incident neutron. In order tha t a chain reaction proceeds regularly in a 
stationary regime it is essential tha t on average neither more nor less than 
one of the neutrons liberated by each fission gives rise to a new fission. This 
needs a detailed control of the reduced density f{r,p,t) of the neutrons. 

The Lorentz model is not sufficient for this since the recoil effects of the scatter
ing centres are important, even more than in § 15.2.4. Indeed, the neutrons can lose 
their energy only through such recoil. The neutrons produced by the fission of ^^^U 
nuclei start out with kinetic energies of the order of MeV. Like the other fission 
products they thermalize with the other elements of the core of the reactor, thus 
contributing to the heating of the circuit, usually a water circuit, which feeds the 
turbines; this contribution is small, of the order of 2.5% of the heat conveyed by the 
other fission fragments. However, the thermalization of the neutrons is important 
for another reason. On economic grounds the fuel usually consists of rods of slightly 
enriched uranium, containing only 3.2% of the U isotope. In such a medium a 
neutron can either produce another fission of a ^^°XJ nucleus, or it can be absorbed 
by a U nucleus. The fission cross-section, which characterizes the efficiency of 
a collision of a neutron with a U nucleus for producing fission, varies greatly 
with the neutron energy: it is about 2 b for 1 MeV neutrons, but reaches 600 b for 
"thermal" neutrons with energies of the order of ^ eV (1 b, barn, the standard unit 
for nuclear cross-sections, is equal to 10^ m ). On the other hand, the neutron 
absorption cross-section of the U isotope varies little: it varies from 1 to 3 b for 
the same change in energies. Under those conditions, because of the low density of 

U, it is necessary to slow down the neutrons since absorption dominates for the 
fast neutrons produced by fission, whereas thermal neutrons more easily initiate 
the chain reaction. 

The slowing down of the neutrons is mainly due to the recoil of the particles by 
which they are elastically scattered, and it is then described by the collision term 
(15.130). It starts in the uranium rods through elastic collisions with U nuclei 
which are the majority. However, due to the large mass ratio this process is not 
very efficient. In fact, the momentum pa, of 1 MeV neutrons is very much larger 
than the momentum pj, of the thermalized uranium nuclei; under those conditions 
Eq.(15.63) gives us for the energy loss of a neutron in a collision 



370 15. Kinetic Equations 

0 < £ 2 _ £ ^ ^ 4!!}:^ ^ 1.7%, (15.76) 

which has a small upper bound. This is the reason why it is necessary to separate the 
fuel elements by a so-called moderator in which the neutrons become thermalized 
through collisions without being absorbed. Having passed through the moderator 
they reach another rod with kinetic energies of the order of ^ eV, which enables 
them easily to produce new fissions. Usually the moderator is water which circulates 
between the uranium rods where the nuclear reactions take place, and which serves 
at the same time as the coolant. Even though the collisions with the scattering 
centres are elastic, the difference in mass between these centres, the H and O nuclei, 
and the neutrons is sufficiently small for their recoil to be large so that an important 
amount of kinetic energy is lost by a fast neutron during a collision. When the 
neutron kinetic energy is sufficiently small, part of it can also be given off to the 
water molecules in the form of vibrational or rotational energy. The neutrons acquire 
in this way "thermal" kinetic energies during times of the order of \is. Whatever 
the thermalization mechanism we must note that the perturbation introduced by 
the neutrons to the moderator is negligible, since the density of the gas of neutrons, 
10 cm , is very small as compared to that of water, 3 X 10 cm . The moderator 
can thus be regarded as being in thermal equilibrium so that the analysis of § 15.2.4 
remains valid and the slowing down can be described by the collision term (15.65), 
(15.66). Various approximation methods have been devised for the solution of such 
a kinetic equation for the reactor geometry (Prob.l7). 

After thermalization the neutron velocities have a Maxwellian distribution at 
the temperature of the water, and the macroscopic thermodynamic approach, based 
upon the diffusion equation (14.20), becomes adequate to describe the flux of ther
mal neutrons; note that neutron physicists call the quantity D/(v) the diffusion 
coefficient and denote it by D. The characteristic time which elapses before the 
neutrons react again with uranium is much longer, by one or two orders of magni
tude, than the thermalization time. 

Another important efî ect which must be taken into account is the absorption 
of neutrons in collisions with U nuclei in the fuel rods, and with Cd and B, 
contained in the control rods. By plunging the latter more or less deeply into the 
reactor core, one can fine control the neutron fluxes and hence the reaction rate. 
Strong absorption can also occur in the security rods which fall into the core in case 
of an incident. On the other hand, neutrons disappear and are created by fission 
reactions. All these effects are taken into account by modifying the kinetic equation 
in the fuel elements and in the control rods, through the addition of source or sink 
terms which do not conserve the number of neutrons. 

The absorption of neutrons by U is unlucky in so far as it reduces the number 
of neutrons available for maintaining the chain reaction. However, it is indirectly 
useful, since it leads to the production of Pu. Apart from for military purposes, 
the latter can serve as fuel in fast neutron reactors where it undergoes chain re
actions. The moderator is here useless since the absorption by ^38^ jg ^̂ ^ longer 
a problem. Indeed, reactors of this kind, the most powerful prototype of which, 
Superphenix in Creys-Malville produces 1200 MW electric for 3000 MW thermal 
power, function as superregenerators or breeders: the core is surrounded by a blan
ket of depleted uranium, the residue of the isotope separation (Exerc.Sa), so that 
the neutrons which escape again produce Pu. The same amount of natural uranium 
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thus provides 50 times more energy than in an ordinary reactor, and there are fewer 
waste products. 

Mastering the operation of a reactor thus requires a detailed study of 
the transport and the slowing down of neutrons on the microscopic scale. As 
in the case of microelectronics or solar collectors, nuclear energy technology 
appeals fundamentally to advanced methods from statistical physics. 

15.3 The Bol tzmann Equation 

Transport phenomena in classical gases are governed by collisions between 
molecules which Boltzmann's kinetic equation takes into account. The ideas 
and methods are the same as in the Lorentz model and we shall therefore not 
repeat the explanations of § 15.1. The main changes to be made are technical 
complications due to the non-linearity of the equation and to the existence of 
five conserved macroscopic variables, rather than two, namely, the energy, the 
number of particles, and the three components of the momentum. This gives 
rise to macroscopic motions. For the local equilibrium regime we shall here 
again justify the results of macroscopic thermodynamics and hydrodynamics 
(§ 14.4.6) and we shall express the response coefficients of the gas in terms of 
the microscopic cross-sections^. 

15.3.1 The Boltzmann Collision Term 

We shall, as in the case of the Lorentz gas, neglect in our description the cor
relations between the gas molecules and look for the dynamics of the single-
particle reduced density (15.1), working at the Boltzmann scale (§15.1.2). 
This is possible since here again the duration of the intermolecular collisions 
is short as compared to the average time r between collisions. In § 7.4.5 we 
estimated the latter to be 10~^ s for a gas under normal conditions, with a 
mean free path between 0.1 and 1 |xm. On Boltzmann's time and distance 
scales each collision is treated as an instantaneous and point collision and 
we shall get the equation of motion of f{r,p,t) as in § 15.1.3 by a detailed 
balance method. The left-hand side, including its drift term, is the same as in 
(15.6). The right-hand side 1(f) describes how many particles appear during 
a time interval dt in the volume element d^r d^p around the point r , p in the 
single-particle phase space and how many disappear, due to elastic binary col
lisions within the volume d^r. Those collisions change quasi-instantaneously 
and quasi-locally the momenta of two particles by letting particles enter into 
or leave from d^p. The result, to be derived below, is the following 

As reference book we mention C.Cercignani, Theory and Application of the Boltz
mann Equation, Scottish Academic Press, Edinburgh, 1975. 
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X 6^{p + P2-P3- P4:){fir,P3, t)f{r,P4, t) - fir,P,t)f{r,p2, t)}. 

(15.77) 

The various factors in this collision term have obvious meanings. The 
function W{pY,P2'iP3-iPi) represents, apart from a normalization factor, the 
probability per unit time that a pair of particles with momenta p^ and P2 
acquires momenta P3 and p^ through a collision. Below we shall express it 
in terms of the cross-section for elastic scattering of a pair of particles, a 
quantity which we shall define exactly and which can be measured or cal
culated in microscopic physics. Since the particles are indistinguishable, W 
is symmetric under the exchanges p^ ^^ P2 and p^ ^-^ P4', the factor | is 
associated with the indistinguishability of particles 3 and 4 over which we 
integrate. Moreover, W is invariant under rotation, under parity and under 
the Galilean transformation p i~^ p — mu, as is the interaction between the 
particles. Finally, W is symmetric under the exchange Pi,P2 ^^ P3,Pi ( "ini-
croreversihility") as the pair collision process is not altered by inverting the 
motion. The first term in X, associated with the scattering of two particles 
P3,P4 into p,P2 is weighted with the average pair density f{r,p^) f{r,p^ in 
the initial state; it describes an increase in f{r,p) when one of the particles 
in the final state has acquired a momentum p. Inversely, the second term 
corresponds to the scattering of a particle p by another, with arbitrary mo
mentum P2) into an arbitrary final state; again it is weighted by the average 
pair density f{i',p)f{r,p2) in the initial state considered and it describes 
a decrease in f{r,p). Conservation of energy and momentum in each elastic 
collision is explicitly expressed by the ^-functions which occur in (15.77); W 
is defined only for the momenta which are compatible with these conservation 
laws. 

The kinetic equation 

^ + (« • V ) / = I{f), (15.78) 

with the right-hand side given by (15.77), is the famous Boltzmann equa
tion (1872). It made it possible to formalize the kinetic gas theory, started, 
among others, by Maxwell in 1860, and it played an essential role in creating 
statistical mechanics: it provided a more efficient calculation method for the 
transport properties of gases than those of § 7.4.6 and it led Boltzmann a few 
years later (1877) to identify the entropy as a microscopic statistical quantity 
(§§ 3.4.2 and 15.4.1). 

The analysis of the scattering of two particles rests in classical mechanics upon 
the concept of the impact parameter and, more generally, both in classical and in 
quantum mechanics, on that of the scattering cross-section. We want to extend 
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interaction 

Fig. 15.5. Elastic scattering of two particles in the fixed and the centre-of-mass frame 
of reference 

the definition of cross-section, which we gave in § 15.1.3 for the special case where 
particle b was very heavy and could be replaced by a fixed scattering centre, to 
the scattering of two particles a and b with, at the moment, arbitrary masses 
ma and m.]-,; we thus analyze the kinematics of the scattering in a Galilean frame 
of reference with a velocity rem which is that of the centre of mass of the pair 
(Fig.15.5). Denoting by p ' the momenta in that new frame, which for each particle 
are related to the momenta in the fixed frame by p = mvcm + p ' , we have 

PI+P2 = P3 + P4 (ma + mb)t 'cm, 

; 
P i 

/ 
P2i 

t 
P3 -P4 i Ip'll IP3I (15.79) 

where the last equality expresses conservation of energy. The indices 1 and 2 refer 
to the particles a and b before the collision, 3 and 4 to them after the collision 
(Fig.15.5). The scattering of one particle by another does not involve more para
meters than the scattering by a fixed centre. These parameters are the energy in 
the centre of mass frame. 

£0 £l +£2 ^ ^{ma + mb) 

£ 1 + 2 2 
m a m b f i 2 _ mamy^V^^ 

2(ma-|-mb) 2(ma + mb) ' 
(15.80) 

and the deflection angle 0 between p'l and P3, which in the fixed frame is given by 

cos 6 
( r i 2 • K34) 

(15.81) 
"12 



374 15. Kinetic Equations 

We have denoted the relative velocity of the particles in the initial state by 

1712 = = p i , (15.82) 
ma m\, mamb 

and their relative velocity in the final state by 1134 {vyi = '̂ 34)-
The differential cross-section da is, as in § 15.1.3, defined for a uniform flux of 

particles directed toward each other; in classical mechanics the impact parameter 
is completely random. More precisely, working in the centre of mass frame of the 
two particles and denoting by j the relative flux density of particles b with respect 
to particles a, that is the product of the density of b and the relative velocity t)i2, 
the average number of particles of type b scattered into a solid angle d (JJ in the 
time dt is 

i^d^wdt, (15.83) 
dw 

which defines the differential cross-section dajdw as function of EQ and 6. This 
definition reduces to that of § 15.1.3 when the mass rua becomes infinite. The cross-
section is an area: the average number of particles deflected per unit time into d ui 
is equal to the average number of incident particles crossing per unit time an area 
da, in the centre of mass frame. In the case of indistinguishable particles, we must, 
apart from the simplification ma = mbi take into account that the defiections 9 
and TV ~ 0 must be regarded as the same process; besides, in quantum mechanics, 
it is impossible to distinguish the two final states p^,P4 and p^jp^. Therefore, if in 
classical mechanics we calculate a cross-section by taking the average over impact 
parameters, we must include both contributions; a correct quantum calculation 
does this automatically. On the other hand, even in the case of distinguishable 
particles, the definition (15.83) implies that the cross-section is symmetric in the 
exchange of a and b. 

If we take classical hard spheres as a model for the particles, and denote the sum 
of the radii of the two colliding spheres by 6, the calculation of the cross-section will 
be the same as in § 15.1.3, since we can essentially forget the motion of the particle 
a. In particular, from the fact that the cross-section refers to a relative unit incident 
fiux, it follows that the number of collisions per unit time for an impact parameter 
between b and b + db remains unchanged and equal to 2ivb db. The differential cross-
section is thus again equal to da = ^ \d a)|5 ; this number must be multiplied by a 
factor 2 for the case of indistinguishable particles. 

We now turn to the calculation of the number of collisions undergone during 
the time dt by the f d rd p particles situated within a single-particle phase space 
volume element; that will give us the second, negative, contribution told r d pdt. 
To be more general, we assume that these collisions take place with particles b which 
may be different from the particles a considered. Let us consider the collisions of 
one of the particles a with particles b of momentum P2, within d P2i the relative 
velocity is t)i2 = {p/vria) — (p2/'^b)j -̂iid the density of particles of type b is 
/b(r,P2) d P2 so that their relative flux density is 1112 fh(P2)" P2- The number of 
collisions undergone by each of the particles a under consideration of momentum p 
is thus 

dt I d^u, j d^P2Vi2fh{r.Pi) ^ , (15.84) 
da;' 
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OO' = S 

3 

Fig. 15.6. Collision between classical hard spheres 

where we have used the definition (15.83) of the cross-section; this gives us the 
following contribution to dfa/dt: 

-fa{r,p,t) / d u)d P2Vi2fh{r,P2,t) 
dui 

Using expression (15.81) for the angle 6 we can replace the integration over d w by 
an integration over V34, by writing 

d u> = d VZ4 —^ 6{v3A-vi2)-
"12 

It follows from (15.80) that 

6(^34 - 1)12) = * I -V34 - -1^12 = 0(£3 + £4 - £ - £2), 
i'12 \ 2 2 / m a + m b 

and from (15.82) and (15.79) that 

I d\,, = / (!^^^±^)^3 ,̂ 
J J \ mamb / 

/ m a + mbN^ ,3 ,3 r3/ . V 
I d p^d P46 (P3+P4-P- P2), 
\ mamu I 

I 
so that the contribution (15.84) of the losses of particles a through collisions with 
particles b can finally be expressed as 

/ 
d P2 d Pa d P4 5 (P3 + P4 - p - P2) '^(^3 + £4 - £ - £2) 

, 2 

m t 

Writing 

( — + ~ ) ' ^ / a ( r - , P , t ) / b ( r - , P 2 , i ) -\ ma m.b J dw 

Wip^,P2;P3,P4) ^ f — + — ) ' ^ , (15-85) 
\ ma mb / dui 
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we get the second term in (15.77). For indistinguishable particles we have ma. = m\,; 
moreover, we must introduce the factor ^ which occurs in (15.77) in order to avoid 
counting twice the same process when p^ and p^ are exchanged in the integration, 
using the definition of da/dui. 

We can similarly evaluate the number of collisions, within the volume d r and 
the time dt, between particles a and b of momenta P3 and P4, within d P3 and d p^, 
which produce an a particle with its momentum, in the centre of mass frame, within 
the solid angle d w^. Using the definition of the cross-section and the formulae for 
the change of frames, we find 

V34 fair,P3)d Pzfh{r,Pi)d p^^d rdt — d t^i 

= /a(P3) d^Ps fbiPi) d^PA d^'^ '^^j^^ {2^^'^ ~ 2^^V '^^"^^ 

= /a(P3) d P3 fhiPi) d Pid rdt — S(ei + £2 - £3 - £4) 

2 

X (5̂  (pi + P2 - PS - P4) ( 1 ) '̂ ^P2 d^Pi 
^ ' \ rria, mv. I ma. m.^,/ 

Among these collisions those for which pj is equal to p, within d p, are the ones 
which contribute to the increase in fad r dp. For indistinguishable particles their 
contribution gives just the first term in (15.77). 

We have thus justified the Boltzmann collision term (15.77). The function W, 
defined by (15.85) in terms of the differential cross-section for elastic scattering, 
is a function of the two variables eo and 6, defined through (15.80) and (15.81). 
One can easily check that it has the above mentioned symmetry and invariance 
properties. For classical indistinguishable hard spheres with diameter 6, 

W = % (15.86) 

is a constant. 

Boltzmann's equation has some simple properties which are a generaliza
tion of those of the Lorentz m.odel. The conservation laws for particle number, 
energy, and momentum for each collision entail the identities 

I (fipl = Q, I (fp I e = 0, (fpJp = 0, (15.87) 

which are satisfied by the Boltzmann collision term for any distribution / . 
One can easily prove these identities, using the explicit form (15.77) of I 
and the symmetry between the four momenta, which is fully reinstated by 
the integration over p. The particle number conservation, J d^pT — 0 thus 
follows from the antisymmetry of the integrand I under the exchange p, P2 <-̂  
PsiPi- Using tha t antisymmetry and the symmetry of Z under the exchanges 
p <-> P2 and P3 <-̂  P4, we have 

/ d^ple = \ I d^pX{e +62-63-64), 
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and this last expression vanishes, since it contains 

(e + £2 - £3 - £4) S{e H- £2 - £3 - £4)-

Similarly, the last identities (15.87) for the conservation of the momentum 
components follow from the symmetry of the integrand and the fact that they 
contain the factor 6^{p + P2 — P3 — Pi)-

The microscopic conservation equations (15.87) are local, which is a con
sequence of the fact that collisions change the momenta of the particles, 
but leave their positions practically unchanged. The macroscopic conserva
tion equations (14.6) follow directly from the Boltzmann equation (15.78) 
and the microscopic conservation equations (15.87), provided we define the 
densities by 

QN{r,t) = / (fpf{r,p,t), QE{r,t) = / d^pf{r,p,t)s, 

Qp{r,t) = J d^pf{r,p,t)p, (15.88) 

and the fluxes by 

JN{r,t) = / d^pvf{r,p,t), JE{r,t) = / d^pvf{r,p,t)e, 

JMr,t) = j d^pv^f{r,p,t)p0. (15.89) 

In fact, it is sufficient to integrate (15.78) over p, after having multiplied it, 
successively, by 1, e, and p: the right-hand side vanishes, the first term on 
the left-hand side produces dgi/dt, and the second term, which we can also 
write in the form div («/ ) , produces the divergence of J^. 

Like for the Lorentz model, expressions (15.88) and (15.89) can be ob
tained by retaining only the kinetic part of the Hamiltonian in the general 
forms of § 14.3.2. Using the Boltzmann equation to take account of the dy
namic effects of the interactions should thus be on a par with completely 
neglecting these interactions in calculating the densities and the fluxes. 

15.3.2 Densities and Fluxes in a Gas 

The Boltzmann collision term has another simple and important property. It 
vanishes, 

Ah) = 0, (15.90) 

for any local equilibrium distribution of the form 

/o = — e"('"'*)-^('''*)=+(^('"'*)-P). (15.91) 
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The existence of the five local conservative variables (15.88) implies here the 
presence of five associated Lagrangian multipliers, a, /3, and A. One can check 
(15.90) immediately: substituting (15.91) into (15.77) the combination 

fo{r,p) foir,P2) - foir,P3) foir,P4^) 

appears; it vanishes provided e + €2 = £3 + £4, p + P2 = Ps + P4 so that the 
integrand of I ( /o) itself vanishes. (In (15.91), as in (15.13), we dropped the 
spin factor 2s + 1.) We shall see in § 15.4.2 that, conversely, all solutions of 
(15.90) have in general the form (15.91). 

When / is arbitrary, far from the form (15.91), one can estimate the 
importance of the collision term by the order of magnitude of / / ! ( / ) , which 
has the dimensions of a time. Expression (15.84) and the definition of the 
cross-section a show that this time T is of the order of l/ag^v, that is, the 
average time between successive collisions of one of the particles. On a time 
scale small as compared to r or over distances small as compared to the mean 
free path I ~ 1/aQN, the collision term does hardly come into play and we 
are in the ballistic regime (§15.1.4). This occurs at very low densities, for 
instance, for transport properties in the upper atmosphere; the gas may also 
evolve far from local equilibrium in regions with large gradients such as shock 
waves within flows or boundary layers at their boundary. 

Inversely, transport phenomena with typical times large as compared to 
r and typical distances large as compared to I are studied in the local equili
brium regime by putting / = /o + / i , where / i is small as compared to /Q. AS 
in (15.22), in order unambiguously to associate to each / a local equilibrium 
distribution /o which accompanies it in its motion, we constrain / i to satisfy 

J d^ph{r,p,t) = 0, y d'p/ie = 0, J d^pfiP = 0, (15.92) 

so that the densities (15.88) can equivalently be expressed in terms of / or 
of /Q. This gives us the equations of state which connect at each point the 
densities Qi with the multipliers a, (3, and A of (15.91). Putting 

/3 = - ^ , A EE /?w, a = a'~^mu^P, (15.93) 

we can rewrite (15.91) in the form 

/o = - ^ e"'-'3(P-"")'/2'», (15.94) 

which enables us to identify u{r, t) with the macroscopic local flow velocity 
and fj,'{r,t) = a'/P with the chemical potential in the Galilean frame in 
which the fluid is locally at rest. Hence we find the explicit forms of the local 
equations of state for the gas: 
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QN 

1 „' /27rm\3/2 

Qu = \QNkT, Qp = QNmu, 

V = QNkT, s = gNk{^~~a'); 

OB = Qu + \mu^QN, 

(15.95) 

they are a special case of the general form (14.109) which we found macro-
scopically for any fluid. 

The fluxes (15.89) contain two contributions, associated one with /o and 
the other with / j . The first we identify with the equilibrium fluxes J^ for 
which we found the general form (14.116) from macroscopic invariance ar
guments. Their explicit form is here obtained by using (15.89) and (15.94) 
which give 

•^ N UQN 
m 

Qp, J% — -û ijv ( | A ; T + I m u ^ ) , 
(15.96) 

Jpji = mQNUaUp + QNkTSclB. 

These results are in agreement with expressions (14.116), if we bear in mind 
the form (15.95) of the energy density QE and of the equilibrium pressure V-
Similarly, the contributions from / i to the fluxes, 

JN = J d^Pvfx = 0, 

(15.97) 

have the form (14.121) which is valid for any fluid. They define the heat flux, 

Ju = f d^pv'fie', (15.98) 

and the stress tensor, 

V^ - V6^p + j d^pv'Jip'f}, (15.99) 

where we have taken the velocities v' = v u, the momenta p' = mv', and 
the kinetic energies s' = p' /2m of the particles in the local rest frame. As in 
all fluids we find QP = mJN, and VS is symmetric. Moreover, we get from 
(15.88), (15.89), (15.92), and (15.97) a new property, 

a a 

which is specific for dilute gases. 

0, (15.100) 
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Since we have again obtained the general expressions (14.121) for the 
fluxes we have at the same time justified the equations which follow from 
them, namely: the equation of continuity (14.124), the equation of motion 
(14.125), and the energy conservation equation (14.126). We have found here 
these properties as consequences of the microscopic conservation laws (15.87) 
and we did not make any approximations beyond the ones needed to derive 
the Boltzmann equation. 

We must still derive the response equations. To do tha t , we note tha t , as 
in the Lorentz model (§ 15.1.4), if the density is sufiiciently high, the collisions 
will in a microscopic time T lead to local equilibrium,. After tha t their effect 
is less and gives rise to a slow relaxation to global equilibrium in a linear 
response regime. As in §15.1.5, we can calculate tha t relaxation by pushing 
the Chapman-Enskog method to order / j . Recall tha t the lat ter consists in 
treat ing W as a quanti ty of order —1 whereas /o and / i are of order 0 and 1, 
respectively; moreover, in each stage of the iteration which follows from this 
idea, one must satisfy, on the one hand, the constraints (15.92), t ha t is, the 
equations of state (15.95) and, on the other hand, the conservation laws. 

However, in contrast to what happens for the Lorentz gas, here we get 
already a non-trivial macroscopic dynamics to lowest order. In fact, the Boltz
mann equation (15.78) reduces in tha t order to (15.90), the solution of which 
is a local equilibrium distribution. In conformity with the general Chapman-
Enskog strategy we must also write down the conservation equations to lowest 
order, where only the equilibrium fluxes (15.96) remain, since the contribu
tions (15.97) coming from / i are of higher order. As in (15.26), it is not the 
kinetic equation itself which produces the equations of motion for the densi
ties (15.88) or, what amounts to the same, for the intensive variables given 
by (15.95), or for /o given by (15.91), but the conservation laws, which are its 
consequences. Using the form of (15.95) and (15.96) and put t ing g = mgpf, 
we get the equation of continuity 

-^+dbfQU = 0, (15.101) 

the Euler equation 

-^ + {u-V)u+-VV = Q, (15.102) 

and the energy conservation 

- ^ - h d i v e c j M - F P d i v t t = 0. (15.103) 

The Chapman-Enskog approximation thus gives to lowest order the equations 
of a non-dissipative perfect fluid which we encountered already in § 14.4.6. In 
particular, Eq.(15.103) describes the reversible transformation of the internal 
energy of the gas into work done by the quasi-static pressure forces. 
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15 .3 .3 Transport Coefficients of a Gas 

If we want to work out the Chapman-Enskog method of § 15.1.5 to order / i 
we must follow a programme, the principles of which are relatively simple, but 
which gives rise to rather cumbersome calculations. First of all we must write 
down the left-hand side of the Boltzmann equation to order /o , taking care to 
satisfy the lowest order conservation laws; to do tha t we must start by using 
the equations of s tate to express the derivative dfo/dt, which will involve 
da/dt, df3/dt, and d\/dt, in terms of the derivatives dgi/dt; then we must 
eliminate these t ime derivatives by using Eqs.(15.101), (15.102), and (15.103) 
of non-dissipative hydrodynamics to replace them by the equilibrium fluxes 
J^; the left-hand side of the Boltzmann equation will then be expressed solely 
in terms of local equilibrium variables and their gradients. On the other hand, 
we must write out the right-hand side T{f) by expanding it to first order in 
f\. After tha t we must solve the equation obtained and express / i as function 
of fa and the affinities, taking all the t ime account of the constraints (15.92) 
which ensure tha t the relations between the local extensive and intensive 
variables remain unaltered. Finally, we must evaluate the dissipative parts of 
the fluxes using their expressions (15.97) in terms of / i and hence derive the 
linear responses. 

Let us start by using the conservation equations of non-dissipative hydrody
namics to transform the first term in the Boltzmann equation dfo/dt. It will be 
convenient to replace the local state variables Qi by Q, /3, and u so that we shall, 
instead of the energy conservation equation (15.103), use the equation for /3 which 
follows from it: 

^ + ( « - V ) / 3 - ^ d i v w = 0. (15.104) 

Starting from the form (15.94) for /Q and using (15.95) to express the intensive 
variables a ' , /3, and «, which depend on r and t, as functions of Q, (3, and u, we get 

da' , d/3 ^ ^ (J dv 
Idt ~^ ~di ' A'-m 
n dg f 3 '\dl3 ^„( , du\-\ 

^'[-e^t^KYp-'J-di^^V'--^^ dtJV 

Using the relation V = g/mfi and the conservation equations (15.101), (15.102), 
and (15.104) we then get 

+ ( ^ - £ ' ) ^ d i v « - / 3 ( p ' • {u-V)u) - ^{p' • V)V. 

Combining this with the second term (v • V)/o, which we transform in the same way 
as dfo/dt in terms of the gradients of g, /3, and u, we obtain after some calculations 
for the left-hand side of the Boltzmann equation 
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9/0 
dt + {vV)h = h 

\ ^ / a,l3 

(15.105) 

Note that Vg has been eUminated and that the gradients of the local velocity u 
only appear through the symmetric combination with zero trace 

\ (dup dua\ 1 , ,. 
(15.106) 

which was already introduced in (14.132). 
The expansion of the collision term (15.77) to order 1 in / i gives an expression 

of the form 

(15.107) Afo + fl) ~ -fo{r,p,t) I <fpiK:{p,pi)h{r,p^,t), 

where the collision kernel /C(p, Pi) is defined by 

'C(p,Pi) = - d^P2d^PAW{pi,Pi;p,p2)S{e + S2 - si - £4) 

X(5^p + P 2 - p i - - P 4 ) e ' ' ( ^ ' - ^ 4 ) + I / d^P3d^P4W^(P3.P4;P,Pi) 

X S{e + £1 - £3 - £4) ^ (p + Pi - P3 - P4) + 2 5 (p - Pi) / d P2 d P3 d P4 

X W^(P3,P4;P,P2) S{^ + £2 - £3 - £4) s\p + P2 " P3 " P4) e^(^'-^2\ (15.108) 

Using the Galilean invariance of W and the ^-functions which express energy and 
momentum conservation we can rewrite Eqs.(15.107) and (15.108) in terms of the 
p = p — mu momenta rather than the p. The velocity u which occurs in the 
energies e' = (p — mu) /2m in (15.108) will then occur only implicitly through the 
p momenta. 

Altogether, if we equate (15.105) with (15.107), the Boltzmann equation to first 
order of the Chapman-Enskog method gives us 

'C/i = / d P i /C(p ,P i ) / i (p i ) = h, 

where h{p) is defined by 

(15.109) 

(15.110) 
jS 

and where we wrote p = mv and e instead of p ' = mv' and e'. We shall henceforth 
use this simplified notation. Neither will it be necessary to write explicitly the 
variables r and t, which now only appear through the temperature, both explicitly 
and through /C. The quantities g and u have disappeared. 

The next stage consists in solving the linear integral equation (15.109) for / i . 
We shall do this formally in order to point out the properties of the solution / i . The 
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integral kernel K. has the following properties which one can check from (15.108). It 
is real and symmetric; to see this we use the microreversibility W{pi,pii;p,p2) = 
W^(p>P2iPliP4) ^'^'^ ^^6 relation s' — e^ = e'l ~ e'^ for the first term in (15.108). 
It depends only on the temperature, and on the interactions between the particles 
through the cross-section. It is invariant under rotations of the two momenta on 
which it depends. Moreover, the microscopic conservation properties (15.87) of the 
Boltzmann collision term imply that 

/C/o = 0, Kfoe = 0, Kfop = 0, (15.111) 

so that the kernel K, has a five-fold degenerate zero eigenvalue with /o, fos, and fop 
as eigenfunctions. This property implies that the inhomogeneous equation (15.109) 
has a solution only provided h is orthogonal to these eigenfunctions, or, if we define 
a scalar product by {/, g} = J dp fg, only provided 

{ / o , M = 0, {foe,h}=0, { /oP ,M= 0 . (15.112) 

Prom the explicit form (15.110) of h one sees that these conditions are satisfied; this 
was, in fact, just the reason why we determined the approximate left-hand side —foh 
of the Boltzmann equation in such a way that dfo/dt satisfied the conservation 
equations. Finally, /C is a non-negative kernel 

{/ , /C/}> 0, V / , (15.113) 

and all its eigenvalues, bar those associated with (15.111) are positive. 
To prove that we use the symmetry properties of W and find from (15.108) that 

{ / . ^ / } = g / rf^Pid^P2'^^P3'^^P4W^(P3'P4;PliP2) 

X S{ei + £2 - £3 - £4) S^{Pl +P2-P3- P4) 6-^(^1+^2) 

X [-^(Pl) + ¥'(P2) - APS) - ¥'(P4)]^ (15.113') 

where ip{p) = f{p)&^^. This expression is clearly positive or zero. Provided the 
scattering is not pathological, the function W is positive for all values compatible 
with energy and momentum conservation and the vanishing of (15.113') implies 
that 

fiPl) + f{P2) -'fi{P3) ~ APA) = 0, 

whatever the values of p i , P2, P3, P4 which satisfy the conditions £1+£2—£3 —£4 = 0 
and pi +P2 —P3 —P4 = 0; this problem is solved by the Lagrangian multiplier method 
and leads to 

V(P) = ^ + »?£ + (C-p), 

that is, 

/ (p) oc ( | + »7e + (C-p) ) /o . 

The only eigenfunctions of K. which are associated with the eigenvalue zero are thus 
those given by (15.111). All other eigenvalues are positive. 
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Let n be the projection operator onto the space associated with the non-
vanishing eigenvalues of K,. In that subspace the kernel K, can be inverted and 
this defines a kernel C characterized by 

CK = KC = n, cn = nc = c. (15.114) 
One checks easily that £ has the same properties as those we just listed for /C. 
Constructing C enables us to solve (15.109) and its general solution has the form 

•'̂ i = '^'^ ~ ( 2 ^ ) ^~^" {^ + V^ + i<^-P))- (15-115) 

This solution depends on 5 arbitrary parameters, associated with the eigenspace of 
K, and C corresponding to the eigenvalue 0. The constraints (15.92), imposed upon 
/ i , then enable us to determine these constants by writing 

{l, / i} = 0, {eji} = 0, {p,/i} = 0, 

which gives 

I = |^-/3£,£/i}, r, = ^-ph-pXh], C = {^^^f^Y (15.116) 

To obtain the responses of the gas to the perturbations V,S and Vu which occur 
in h, we must still substitute (15.115) for / i in expressions (15.98) and (15.99) for 
the fluxes. The result of this substitution is an integral over the momenta p and 
Pi of the kernel C As all expressions are written in the local Galilean frame, the 
integrand must be even under a sign change in p and pi- The kernel C itself is even, 
and the two parts of h defined by (15.110) have opposite parities; these two parts 
thus become decoupled. Only the second one contributes to the momentum flux 
and only the first one to the heat flux. 

We thus get for the momentum flux (15.99) 

76 

if we use the fact that (e, / i ) = 0, we see that the last term equals 

P"^ {2L1) J d^'pee-'^'i^ + ve) = ^ 5„/3 {e,£/i}, 

and combining this with the first term we find 

Pp-P^c^ = ~ ~^ Y^ {pccP/3 - lp^S^fl,Cp^ps^ A^s- (15.117) 
76 

Taking into account that ^ A-y-y = 0, we can make (15.117) more symmetric, 

subtracting ^p S^^ from p-ypg. The integral kernel C{p, pi), which is invariant under 
rotation, only depends on the lengths of p and pi and on the angle between them; 
after integration over p and pi, the coefficient of A^g will thus be a tensor with four 
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indices, a, (3,7, 6, which is invariant under rotation, symmetric under the exchanges 
a «-> /3, 7 <-> ̂ , afi <-> 7^, and with zero trace both over a = /3 and over 7 = 5. The 
only tensor which has those properties is 

2 [Sa-rS/iS + SasSp^y) - 3 Sal3S.yS, 

and the response relation (15.117) thus has the form 

V^-V6^0 = L ( - ^ / 1 , ^ ) , (15.118) 

a special case of the general law (14.131) which was expected on the basis of macro
scopic arguments. We also have obtained a microscopic expression for the response 
coefficient 

2 
L = -^:^ {PcP(3,^PaPf3}, a 7̂  /3- (15.119) 

Similarly we obtain the heat flux (15.98), following from the first term of h. 
Using (15.116) we find 

P N3/2 
Ju = {ev,Ch}-[£~) {ev,e-^^iC-p)} 

{ev,Ch}- ^C = \ i ^ - ^]i''^h 
2/32 ^ { ( ' 2/3 

Here again, the invariance of C under rotation enables us to justify the response 
relation 

Ju = Lu^Q), (15.121) 

in agreement with (14.133), and to express the response coefficient in terms of 
microscopic physics through 

ic j = ^ ^^(s - ^kT^ vc, C (e - ^kr) VaY (15.122) 

Altogether, we have, start ing from the Boltzmann equation and solving it 
in a regime close to local equilibrium, proved for gases all general properties 
of the responses which were established in § 14.4.6 on the basis of the pos
tulates of macroscopic thermodynamics, such as symmetries, invariances or 
Onsager relations. In particular, the Onsager relations, which imply the van
ishing of several coefBcients, derive here from microreversibility, which leads 
to the symmetry of the kernels /C and C under interchange of the momenta 
and which itself is the result of the invariance of the microscopic motion un
der t ime reversal. The absence of diffusion is connected with the vanishing 
of JjY, which follows from (15.92). The fact tha t the response coefficients 
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are independent of the velocities u follows, as on the macroscopic scale, from 
the Galilean invariance which here led to the disappearance of u in C. Fur
thermore, the fact tha t the kernel L is positive implies tha t the responses 
(15.119) and (15.122) are positive so tha t the evolution properly gives rise to 
dissipation. 

The explicit expressions (15.119) and (15.122) moreover supply us with 
a number of properties specific to low-density gases to which the Boltzmann 
equation is applicable. We found in connection with the vanishing (15.100) 
of the trace of Va — VSap, which is automatically t rue here, whatever the 
affinities, tha t the response / associated with a compression or dilatation rate 
was zero. Hence, the volume viscosity rj^ of a gas vanishes. This property, 
specific for gases of weakly interacting particles, does not hold for denser 
fluids for which the interactions between molecules contribute to the energy 
and momentum densities and fluxes. 

On the other hand, the two other responses, L and Lfj, which are given 
by (15.119) and (15.122) in the form of integrals over the two momenta of the 
kernel £ , depend, like it, only on the temperature and the scattering cross-
section for a pair of molecules. According to the general macroscopic theory 
of § 14.4.6, we also expected to find a density dependence. The fact tha t the 
viscosity rj = L/2T and the heat conductivity A = Ljj /T^ do not depend on 
the density, which is proved exactly here, had already been indicated by the 
rough microscopic calculation of § 7.4.6. These results are with good accu
racy confirmed experimentally. Because they are not intuitive, their original 
observation by Maxwell was a major success for statistical mechanics which 
was then in its infancy. 

In order to obtain more precise results and, in particular, to calculate how the 
two transport coefficients r/ and A depend on the temperature, we must work with 
special models describing the intermolecular collisions. Let us especially consider 
the model of classical hard spheres with a diameter 8 (Eq.(15.86)) for which W = 
26 /m is independent of the p. Prom dimensional arguments it follows that the 
kernel /C, defined by (15.108), is for u = 0 a distribution of the form 

where y? is a dimensionless function. The inverse kernel C is therefore equally a 
distribution of the form 

the coefficient {(3/m) comes from the fact that the kernels /C and C are each other's 
inverse in p-space and not in py/S/m-space. Evaluating (15.119) and (15.122) then 
leads to 
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where a and h are numbers which a detailed calculation based on the explicit form 
of (p gives; one finds that a = 0.358 and 6 = 0.678. We thus find for the viscosity 
and the thermal conductivity 

1 y/mkT , ^k VmkT / , . , „ o x 

in accordance with our estimates of § 7.4.6. Both increase with temperature as VT, 
and their ratio 

T] _ a m 

'X ^ 2b ~k 

is independent of the molecular radius. In order to compare this number with ex
periments, note that 

- = ^ (15.124) 

is the specific heat at constant volume, per unit mass, so that the theory gives the 
universal relation 

46 
A = — 7/Cv = 2.53r/cv. (15.125) 

For the inert gases, to which one may reasonably expect that the model of struc
tureless classical hard spheres, used here, would be applicable, the experimental 
values lie between 2.45 and 2.58. The agreement is not satisfactory for other gases: 
2.02 for H2 and 1.96 for air. Moreover, as early as between 1861 to 1873 exper
iments by Oscar Emil Meyer have shown that the viscosity increases faster with 
temperature than the \ / r law of (15.123). Such a behaviour can be understood 
by noting that the potential for the interaction between the molecules is less stiff 
than that between hard spheres; as a result, the molecules can get closer to one 
another as their energies increase, so that the average cross-section decreases with 
temperature. This fact is empirically reflected in a decrease in the denominator S 
in (15.123), which explains the increase of TJ/VT with T. 

The mathematical complications of solving the Boltzmann equation have led 
practitioners to replace the collision term by simple approximations, more man
ageable than the Boltzmann collision integral. For instance, one often uses the 
relaxation time approximation which is based upon the approximate collision term 

^ + ( ^ . V . ) / = I = - ^ ^ ^ , (15.126) 

where /o is the local equilibrium distribution around which one tries to construct 
a solution and where r has the dimension of a time. This expression occurred 
directly in (15.24) for the Lorentz gas when W = 1/T was independent of the 
angles. The time T can be interpreted as a microscopic relaxation time towards 
local equilibrium, since in the case when V / = 0 the solution of (15.126) tends 
exponentially to /o as e^ ' ^. It is of the order of the average time between successive 
collisions of one of the molecules in the gas. The approximation (15.126) satisfies 
the condition I{fo) = 0 for the particular local equilibrium distribution considered, 
but not for ajiy arbitrary /o, in contrast to the Boltzmann expression. On the other 
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hand, it violates the microscopic conservation equations (15.87) for arbitrary / ; 
however, these conservation equations are identical with the constraints (15.92), if 
one equates f — fa with / i . By imposing the conservation equations as conditions 
on /o and the constraints (15.92) on / i , we can thus use (15.126) effectively to 
simplify transport problems. For instance, as an exercise one could calculate directly 
the thermal conductivity and the viscosity, starting from (15.126), in the spirit of 
Exerc.lSb. The main interest of (15.126) lies, however, in studies of ballistic regimes. 

Let us illustrate the Chapman-Enskog method by applying it to the collision 
term (15.126). The kernel K defined by (15.108) can here be written as 

'C(p,Pi) = f , x^ ( P - P i ) -
Tfo\p) 

It has the same general properties as the ones we listed above, except the existence 
of zero eigenvalues (15.111) associated with the conservation laws, which we now 
have to impose, as they are not consequences of the simplified Boltzmann equation. 
The kernel K depends only on the temperature, as a result of the fact that /Q and 
1/T are both proportional to the density. The kernel C is equal to 

^ ( P J P I ) = Tfo{p)S ( p - p i ) . 

Using (15.119) we get for the viscosity 

»? = ^ = ^ ^ J d^pphlfoip) = QNTkT. (15.127) 

Similcirly, we obtain the thermal conductivity from (15.122): 

Lv 2r 
T2 3A;T2r 

J d'pMp)e{e-^y = l^NT^^. (15.128) 

Since r is proportional to 1/QJ^\/T, we find again the behaviour predicted by 
(15.123). Using (15.124), we get, instead of (15.125), 

5 |7?Cv = I.777CV. (15.129) 

The results obtained are qualitatively correct, notwithstanding the gross character 
of the approximation. 

15 .3 .4 Gas M i x t u r e s 

The use of the Boltzmann equation for a simple monatomic gas in a local 
equilibrium regime has given us important theoretical results, but rather too 
few numerical consequences to compare with experiments. In such a gas, in 
fact, only two transport coefficients, rj and A, come into play. The theoretical 
predictions given earlier are based on a rather badly known number, the 
molecular diameter 6. If one considers the lat ter as an adjustable parameter , 
the associated microscopic phenomenology will be hardly more predictive 
than the macroscopic phenomenology based upon adjusting two transport 
coefficients to experimental data . However, the Boltzmann equation becomes 
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an indispensable tool in other circumstances, especially, if one is interested in 
situations far from equilibrium, involving large gradients or fast variations, 
but also for less simple gases consisting of molecules which can absorb and 
emit energy, or angular momentum, or gas mixtures containing several kinds 
of molecules. In those cases, even close to equilibrium, there are many and 
varied macroscopic phenomena, and it becomes profitable to interconnect 
these through an economic microscopic theory. 

As an example of such phenomena we mention the Dufour effect (1872). 
Assume tha t we maintain a concentration gradient in a mixture, for instance, 
by connecting two reservoirs with each other which contain gas mixtures or 
liquid solutions with different concentrations. One notices, apart from the 
diffusion which tends to make the system homogeneous, a heat flow. This 
eflFect is a new instance of an indirect t ransport phenomenon, an energy flux 
being produced by a chemical potential gradient accompanying the concen
trat ion gradient. There exists also an inverse effect, thermal diffusion, which 
in liquids is called the Soret effect (1879). In tha t case, a tempera ture gra
dient produces in a mixture a flux of mat te r which difl'ers for each of the 
components, hence affecting the local concentration. The two effects are re
lated through an Onsager relation which has been checked experimentally. 
The Soret effect is interesting as it produces, starting from a homogeneous 
mixture, concentration variations thanks to a thermal gradient which par
tially separates the molecules. It is the basis of an isotope separation method 
of technological and medical interest. 

The solution of the Boltzmann equation for gas mixtures goes beyond the frame
work of the present book. We shall restrict ourselves to an examination of the form 
of the right-hand side for a few special cases. Consider a binary mixture of two 
kinds of particles, a and b. We must write down a balance equation for each of 
the reduced single-particle densities /a and /b . For /a the right-hand side contains, 
apart from the collision term (15.77) for particles a colliding with one another, a 
mixed term which we derived in § 15.3.1: 

I'ab = d^P2d^P3d^P4Wa,),{p3,P4;p,P2)S{e + S2 -S3 -Si) 

X 6^(p + P2-P3- P4) [/a(P3)/b(P4) " /a(p)/b(P2)] • (15-130) 

The momenta and energies p, P3 and e, £3 refer to an a particle of mass ma, whereas 
P2, P4 and £2, £4 refer to b; we have not indicated explicitly the r and t dependence of 
the distributions /a and /t,. The coefficient Wab = W b̂a is connected with the cross-
section for scattering of a particles by b particles, or vice versa, through (15.85). 
The collision terms Tab S'lid Tba, which couple the two Boltzmann equations for /a 
and /b , are responsible for the effects connected with the relative diffusion of the 
two gases in the mixture considered here. 

In what follows we shall assume that the a gas in which we are interested is 
much more rarefied than the b gas. For the latter, the collision term I^a î  negligible 
as compared to Xtbi ^^'i we assume that the term I^b has been sufficiently efficient 
to produce for /i, a thermal equilibrium Maxwell distribution, 
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where Q\, is the number of b particles per unit volume. In contrast, for the a gas 
we can restrict ourselves to considering only collisions with b particles so that the 
right-hand side of the Boltzmann equation reduces to (15.130) with /^ known. We 
want to analyze that equation for the a particles. Its collision term involves only 
the integral 

Y{p,p') = / d^P2d^PiWi,b(p',P4;p,P2)S{e + S2-£'-£4) 

x6^{p + P2-p'-P4)h{P2)- (15.132) 

Energy conservation results in 

e-^' /b(P2) = e-^^' /b(P4) 

for the equilibrium distribution (15.131). Prom this relation and the microreversibil-
ity of Wab it follows that Y satisfies (15.66). The collision term Tgi,, defined by 
(15.130), can then be identified with the one we introduced through (15.65) to 
describe the thermalization of a gas of neutrons or electrons. We there assumed 
that the particles in such a gas were scattered by exterior centres which could take 
up momentum or energy. The model of § 15.2.4 is recovered here as a consequence 
of the Boltzmann equation for two gases, of which one, b, which is much denser 
than a, is rapidly thermalized and after that plays for a the role of the scattering 
medium. 

The Lorentz model also follows from the Boltzmann equation, if one assumes 
moreover that the b particles have not only a much larger density, but also a m.uch 
larger mass than the a particles. In fact, the presence of the Maxwell factor /^ in 
(15.132) forces p2 to be large as \/m^kT. As a result 

£ 4 - 2 2 = ^ ( ( p - p ' ) • ( p ^ p ' + 2p2)) 

is negligible as compared to e — e' = (p — p' )/2ma in the integration domain, in 
the limit where m t ^ ma. The factor Wab in (15.132), defined by (15.85), only 
depends on the variables (15.80) and (15.81), which tend to e = e' and to the angle 
between p and p ' , respectively. The integration over the momenta in (15.132) then 
yields 

Y{p,p') = 6{e-e') f d^P2h{P2) 
J 

1 d(T(j>,e) 

il dw (15.133) 

= S{e-e')Wg{p), 

where we have replaced Wab in (15.132) by its expression (15.85) and used expres
sion (15.8) for We- The collision term (15.130) with (15.132) and (15.133) thus 
reduces finally to the Lorentz term (15.7) when the b scatterers are heavy. 
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Fig. 15.7. Brownian motion 

15.3.5 Brownian Motion 

Brownian motion corresponds to the opposite limit mb <C ma, where one is 
interested in relatively heavy a particles being scattered by b particles of a 
gas in thermal equilibrium and at rest. Brownian motion was observed for 
the first time in 1827 by Robert Brown, a naturalist, who in his microscope 
noted the erratic motion of grains of pollen, and later of dust particles, in 
suspension in his preparations (Fig.15.7). This effect was for a long time the 
subject of controversies, until Einstein in 1905 and Langevin in 1908 gave its 
theory. The b molecules of the fluid in which the Brownian particles move 
produce through their collisions the observed motions. Boltzmann's constant 
is involved in the effect; this enabled Jean Perrin in 1908 to determine directly 
and accurately the Boltzmann constant and hence the Avogadro number. 

When the a particles, the motion of which we are studying, are heavy, 
each collision which they undergo through interacting with the b particles of 
the scattering medium has only a small effect so that the magnitude of their 
momentum is relatively little changed. This is reflected in the fact that in the 
collision term (15.130) p and p^ lie close to one another. Below we shall prove 
that in the limit as my^/ma —>• 0, their difference becomes infinitesimal so that 
the integration over P3 disappears and the collision term gets a differential 
form. Brownian motion is thus governed by the Fokker-Planck equation in 
phase space: 

^ + ( « - V , ) / + ( ¥ ) - V p ) / = ^diY^v f + ^kTVlf, (15.134) 

where we have dropped the subscript of the distribution function /a of the 
Brownian particles. On the left-hand side we have included a term reflecting 
the action of an external force (p = —W, which might, for instance, be ex
erted by gravity, or by an electric field, if the particles considered are charged. 
Equation (15.134) was actually found by Kramers and by Chandrasekhar; the 
Fokker-Planck equation proper deals with the momentum distribution only, 
and it results from (15.134) by integrating over r, which results just in the 
suppression of the second term. 
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To derive (15.134) we start by rewriting the collision term (15.130) as an integral 
over the variables «cm, •wi2; and D34, defined by (15.79) and (15.82). After we 
integrate over t7cm and use (15.85), we find 

T- /" j3 ,3 3 da{€o,e) j / l 2 1 2 \ 
Ia.h = a vi2d «34mb j ^ S I 2^12 - 2'̂ 34 ) 

X [/(p + g)/b(P2 - g) - /(p)/b(P2)], (15.135) 

where SQ and 9 are defined by (15.80) and (15.81) in terms of 1)12 and 034, and 
where 

(t)34-Ul2J, P2 = p-rnblJ12. 
TWa + m b ^ ' rUa 

As /b is Majcwellian and m\^ <C ma, the integral (15.135) is over momenta P2 
and q which are small as compared to p, whereas, on the other hand, the relative 
velocities v-12 and vzi are dominated by the b particles. We expand f{p + q) in the 
square bracket of (15.135) in powers of qr and expand the /b around the Maxwellian 
distribution associated with the velocity v = V12 — ^34. We need retain only 
the terms which are even in v\2 and •U34, since the remainder of the integrand is 
invariant under a change in sign of the velocities. Apart from a factor mjj/b(mbf), 
the square bracket then gives to lowest order 

/02 „ ty f{ n 

-—2 [(p-'"34) --(p-1'12) ] / (p) H \o - («12 -"34)] / (p) 

H (p • •"34) ((l'34 - •«12) • V ) / 

+ 2 E (''34 - -12)„ (-34 - vu)^ Q ^ ^ . 
af3 

We need retain only the part which is symmetric under an exchange of 1112 and ^34 
as in the remainder of the integrand; this yields 

Taking into account the invariance of the rest of the integral under a simultaneous 
rotation of D12 and V34 we see that only the terms a = (3 contribute, and their 
values are the same. We thus get 

2ab ~ g / d^Vi2d^VZ4ml — ^ f-1^12 - 2' '34J /b(w.aWl2) 

X ( t -34- f l2 )^ [^div ( ^ / ) + V V ] , 

which can be identified with the right-hand side of (15.134), provided we put 
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6ml 

We have thus justified the form (15.134) of the collision term in the limit ma ^ 
rrn, and obtained an expression for the coefficient 7 in terms of the cross-section 
da/du for the scattering of b particles by a particles. In (15.136) the a particle is 
fixed, p and p ' denote the momenta of b before and after scattering, while da/du) 
depends on the energy e = p /2mb and the angle 6 between p and p'. In the case 
where the b particles are very small and where the a particles can be treated as 
hard spheres of radius S, the cross-section (15.5) equals ^6 and the coefficient 7 
given by (15.136) equals 

7 = I eb S^ y/27rmkkT. 

The local equilibrium regime for the Fokker-Planck equation (15.134) cor
responds to a reduced density / which makes v f + kTVpf vanish, tha t is, 
to a Maxwellian distribution at each point. The density may vary from point 
to point, but the temperature T is determ,ined by the scattering medium: the 
latter plays the role of a thermostat for the heavier particles in suspension. 
One can study this regime using methods similar to those used for the Boltz
mann equation; one also obtains interesting results in situations far from 
equilibrium. Given an arbitrary distribution / , one can, for instance, find 
from (15.134) the evolution of the expectation values of observables such as 

r) \= I d^rd^pfr], (r-^), (p), H 
In particular, one finds 

dt m (15.137) 

where only the first part of the collision term contributes to d{p)/dt. These 
equations are valid even for a single a particle, in which case / , normalized to 
1, describes the probability distribution for the position and the momentum 
of this particle. They show that the average statistical motion of a particle 
differs from the free motion through the presence of an effective friction force 
which is proportional to the velocity. The coefficient 7, calculated in (15.136), 
depends on the properties of the scattering medium, namely, the mass of its 
particles, their density, and the temperature , and also on the size of the 
scattered particles. It characterizes this mean friction force; the latter is due 
to the asymmetry of the effect of the collisions which are more efficient at the 
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leading face of the moving particle than at the back. One can easily measure 
7, which is equal to the ratio of the force (p to the velocity d{r)/dt in a regime 
where a uniform velocity is acquired as the result of an external force. 

The collisions with the medium have also another effect on the trajectory 
of a particle. They not only decelerate it, but their randomness tends to give 
it an erratic motion, characterized by the dispersion (r^) — (r )^ . Assume, 
for instance, tha t a particle is originally at rest at the origin; its probability 
distribution has the initial value 

/ ( T - , P , 0 ) = 6''ir)6'{p). 

If there were neither external potentials nor collisions, its s tate would remain 
unchanged; the collisions spread this distribution out progressively. There is 
no approach to equilibrium when there is no potential since the particle has a 
tendency to become uniformly distributed in space. We show in what follows 
tha t after a transition period of order m/j, during which the momentum 
becomes thermalized, the statistical fluctuation of r increases as \fi: 

(^2^ ^ ^ i . (15.138) 
7 

The collision term (15.134) thus plays two complementary roles: its first part , 
which has a form similar to the contribution from an external force, describes 
the deceleration of the particle; its second part , which depends on the tem
perature of the medium is, in contrast, associated with a random force which 
tends to agitate the particle and which causes its diffusion. The thermal-
ization of the momenta results in a competition between these two effects. 
The indefinite drift (15.138) of the position is the result of the absence of 
a restoring force which would counterbalance the tendency for diffusion in 
r-space. 

In order to prove (15.138) we integrate (15.134) after having multiplied it suc
cessively with r , (p • r), and p ; this leads in the case where there is no force (p 
and with / normalized to 1 to 

iiiP-r)} = ^ip')-^{ip-r)), (15.139) 

JAP') = -^^{p'}+ejkT. 
at m 

The solution of these equations for a particle which lies at r = p = 0 at i = 0 is 

(p2) = 3mfcr ( ' l - e - ^ T * / " ^ 

ZmkT r 
( (p . r ) ) = ^ ( l - e - ^ * / ' " ) , (15.140) 

^^2^ ^ 6fcT^_3mfcr (^_^-^tlm^ ( l - e - ^ * / ™ ) . 
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This solution shows a relaxation time of order m /7 . The limit of (p ) is in accor
dance with the equipartition theorem, and the behaviour of {r ) for t ^ m / 7 is 
given by (15.138). 

As an exercise one could construct the solution of the Kramers-Chandrasekhar 
equation in the absence of a field with the initial condition f{r,p, 0) = S {r)S (p — 
PQ). The result is 

Cexpi- [f^'(P + Po)^^^''? _ ( P - P p e ^'") 
2 

8mkT{T - t anh r ) 2mkT(l - e-^r^ f ' 

C'^ = ( 4 7 ^ m f c ^ ) S " ^ ( ^ - - t a n h r ) ^ / ^ ( l - e - ^ • " ) ^ ^ ^ r = ^ . (15.141) 

Starting from (15.141) one can easily check the various properties which we de
scribed earlier. This expression again shows the time m / 7 for the relaxation towards 
the local equilibrium regime. 

15.4 Microscopic Reversibility 

vs Macroscopic Irreversibility 

15.4 .1 T h e B o l t z m a n n D e s c r i p t i o n 

We relied in § 15.1.2 on the ideas of the projection method (§ 14.3.4) to define 
the Boltzmann description: at all times we retain only the information about 
the single-particle quantities, summarized by our knowledge of the reduced 
density f{r,p) at the t ime considered. In the iV-particle phase space we 
are thus led to associate with the density in phase D a simpler density, its 
projection DB, in the sense of § 14.3.4. The reduced macro-state DQ is the 
mesoscopic density in phase defined in § 14.3.4, for the contraction of the 
description to the single-particle quantities f{r,p). 

To construct it we must look for the maximum of the statistical entropy 

S{DTi) = -k ^ f dTN DB In DB (15.142) 
JV "' 

under the constraints tha t DB gives us the same values (15.1) for the reduced 
density, 

Xl / dr^DB J2 6\v-rj)8\p-p^) = f{r,p), (15.143) 
N '' j 

as D. As in § 2.3.6, DB denotes a set of functions of the 6A'' variables TJ, Pj, 
the number N being arbitrary; f{r,p) is for each value of r , p the expectation 
value of the observable ^ • 6^{r—rj) 6^{p—pj). One determines DB using the 
general method of Chap.4, introducing a continuum of Lagrangian multipliers 
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for each constraint (15.143), together with one multipUer associated with the 
normaUzation of I?B- This gives for the maximum-entropy distribution D B 
the usual exponential form, where each observable involved in (15.143) occurs 
with its appropriate multiplier A(r,p): 

£ 'B = ^ exp / d^rd^pX{r,p) ^ 6^ir - rj)6^ip - pj) 
i 

1 ^ 
= ^ exp ^ \{rj,p^). (15.144) 

This expression determines each of the A^-components of D-Q as a product of 
factors associated with each particle j . Its form implies that the reduced 2-, 
3-, . . . particle densities (2.82) can also be factorized so that the projection of 
D onto £>B has the effect of eliminating the correlations which might occur 
in D. 

To complete the determination of Z?B we must express its normalization 
in the form 

N '' 7 = 1 

which gives 

I n Z = p f d^rd^pe^^'-'P^ (15.145) 

and we must eliminate the Lagrangian multipliers from (15.143) and (15.144); 
we finally obtain 

N 

that is, 

f{r,p) = ^ e^(^'P). (15.146) 

In agreement with the scheme of Fig.15.1, § 15.1.2, giving / or giving £>B are 
equivalent. It follows from (15.145) and (15.146) that In Z is equal to the 
average number of particles. 

The above calculations are analogous to those we performed in § 7.2.4 
for the perfect gas in grand canonical equilibrium. Indeed, / there took the 
particular form 
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1 
h^ 

ga-/3pV2m. 

the density in phase (15.144) reduced to the grand canonical density of the 
perfect gas, and Z to its grand partition function. Expressions (15.144), 
(15.145), and (15.146) are their generahzations, defining a non-equilibrium 
macro-state where the particles remain uncorrelated. 

The Boltzmann entropy 5 B , which is the maximum of (15.142), follows 
directly from (15.144), whence 

SB = klnZ-k/j^ Hrj,Pj)\ 

Using (15.145) and (15.146) we get 

SB = k f d^rd^pf{r,p)[l-In h^fir,p)], (15.147) 

where / i^/ <C 1 in the classical limit with which we are here concerned. The 
Boltzmann entropy is a special case of the relevant entropies introduced in 
Exerc.Sc and §14.3.3; the quanties Ai{a) are here replaced by f{r,p), and 
the observables Ai{a) by J^ • 6^{r~rj) 6^{p — pj). This entropy characterizes 
the uncertainty associated with knowing only the expectation values of the 
single-particle quantities. 

It is natural to introduce also a local Boltzmann entropy density defined 
by 

SB = k J d^pf[l-ln{h^f)], (15.148) 

and the associated flux defined by 

JsB = k j d^pvf[l-ln{h^f)]. (15.149) 

In a local equilibrium regime where / has the form /o of (15.91) or (15.94), the 
entropy density (15.148) reduces automatically to the Sackur-Tetrode value 
(15.95) for the perfect gas at equilibrium. Taking into account the definitions 
(15.89) of the conservative fluxes, we find for the flux density (15.149) 

•^SB = kUQjsi — kaJ^ + kPJs + k 2 , ^aJpa 

V 
u + ^ 7 i . / i - (15.150) 

It can thus be identified with expression (14.36) for the entropy flux density of 
macroscopic thermodynamics. It is, though, important to note that far from 
equilibrium the definitions (15.148) and (15.149) which follow from statistics 
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continue to have a meaning whereas neither the macroscopic entropy, nor the 
local intensive variables, such as the temperature , exist. 

Historically, Boltzmann followed exactly the opposite road to the one we trav
elled. Knowing only the entropy of a perfect gas at equilibrium he associated by 
inference a number H with an arbitrary distribution / ; he defined it by — / / In / , 
that is, apart from multiplying and additive constants, by (15.147). He meant the 
symbol H to stand for the capital of r). He proved, as we shall do in what follows, 
that this number increases with time and he recognized that, at equilibrium, it was 
the same as the thermodynamic entropy (1872). This enabled him to extend the 
entropy concept to non-equilibrium distributions and after that, in 1877, to asso
ciate the equilibrium entropy through S = k\n.W with the microcanonical density 
in phase. It took more than half a century before the interpretation of entropy 
as lack of information was first guessed, then put into mathematical terms, along 
the approach of our Chap.3. Thus, Boltzmann's i?-theorem which stated the in
crease of the variable H has played an important role in the history of the entropy 
(§3.4): it helped to bring out the idea that a quantity H which is statistical by 
nature was, in fact, an extension of the macroscopic entropy concept introduced by 
thermodynamicists solely at equilibrium and close to equilibrium. 

15.4 .2 T h e i ? - T h e o r e m 

Let us strike the local Boltzmann entropy balance for the evolution of / gen
erated by the Boltzmann equation 

^ + ( « - V . ) / - ( V y - V p ) / = J ; 

we have for greater generality introduced an external potential V. After mul
tiplying by —k \a{h?f), integrating over p, using the definition (15.148) of 
S B , and noting tha t for any variation of / 

6{f[l-Hh^f)\} = -Hh^f)6f, (15.151) 

we obtain 

dSB 

dt + k j <fp{vVr)[f{l-Hh^f))] 

k(yv- j d^pVp[f{i--Hh^f))]) = -k J d^piHh^f). 

The left-hand side can be simplified, if we use (15.149) and integrate by parts; 
moreover, replacing the collision term by its form (15.77) we get 

dsB 

dt 
+ divJsB = -\k j d^p<fp2d^Pzd^p^\ri[h?f{p)\ 

X W{p^,Pi\p,P2)6{e + S2 -ez-Si)S^{p + p2 - P 3 - P 4 ) 

X [ / ( P 3 ) / ( P 4 ) - / ( P ) / ( P 2 ) ] , 
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where again we have not writ ten out explicitly the r- and i-dependence of 
the / ' s . Using the symmetry of W under the exchanges p <-* P21 (P)P2) *^ 
{P3iPi)i P3 •*"* PA W6 can rewrite the right-hand side as an average of four 
equal contributions in the form 

dsB 
+ d i v J s B = g^ / d^Pid^P2d^P3d^PiW{P3':Pi\Pi',P2) 

X ^(£1 + £2 - £3 - £4) ^^(Pl + P2 - P3 - Pi) 

X [ / (P i ) / (P2) - / (P3) / (P4) ] In J ^ H ^ y (15-152) 

Apart from factors which are clearly non-negative, the integrand of (15.152) 
contains an expression of the form {x — 1) In a; which is also non-negative for 
all X = f{P\)f{P2)lf{P3)f{PA)i s^nd hence the Boltzmann entropy satisfies 
the growth property 

- ^ + d i v J s B > 0. (15.153) 

For a gas enclosed in a box described by the potential V, the integral over 
the whole of space of div JSB vanishes, and hence 

^ > 0. (15.154) 
at 

This inequality is Boltzmann's H-theorem: the entropy of a gas without corre
lations, the distribution of which evolves according to the Boltzmann equation, 
increases with time. 

It is not impossible tha t dSs/dt = 0. However, for that to happen it is 
necessary tha t the integral of (15.152) over r vanishes; this implies, if the 
cross-section da/duj is everywhere positive, t ha t at each point r we have 

, / ( P i ) / ( P 2 ) ^ p 

/ ( P 3 ) / ( P 4 ) 

for all values of p ^ , P2, P3, P4 which satisfy the energy and momentum 
conservation equations. We shall prove in what follows tha t this property is 
satisfied only if / at each point has the general Maxwellian form /o of (15.91). 
Hence, the time-derivative of the Boltzmann entropy vanishes only if f is a 
local equilibrium distribution at each point at the t ime considered. The same 
proof also implies tha t , if the collision term is ineffective at a given point r 
for any p , the reduced density / has at tha t point a local equilibrium form,. 
We have already met with this property in § 15.3.2. 

The proof is similar to the one of (15.113). Associating, at the point r and the 
time t, Lagrangian multipliers /3, A with each of the conservation properties, we 
must write down the condition that 
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In ^ ^ ^ i | ^ +/9(ei + £2 - £3 - £4) - (A • [Pi + P2 - P3 - P4l) 

be stationary for arbitrary variations of the p. Hence we find for all p that 

V p [ l n / ( p ) + / 3 ^ - ( A - p ) ] = 0, (15.155) 

which means that the square bracket is a constant with respect to p. Denoting this 
constant by a — In h , we find that / has the form (15.91). 

It is easy to extend the i?-theorem to other collision terms. For the Lorentz 
model (15.7) we find 

dsB 
dt 

+ d ivJsB =-\k f d^p<fp'Wg{p)S{£-e') 

X [/(p) - / (p ' )] In j ^ y (15.156) 

and the right-hand side vanishes only if / is an isotropic function of p. A more 
interesting example is that of a gas of fermions with interactions between the 
particles which are weak and represented by a collision term. This is a rough model 
for liquid helium 3 or for nuclear matter; for the electron gas in solids the Lorentz 
model is generally to be preferred (§ 15.2). The Landau-Uhlenbeck collision term -
also named the Uehling-Uhlenbeck collision term - which describes such situations 
must, as in § 15.2.3, take the exclusion principle into account. In fact, two particles 
with momenta pi and P2 can be scattered into states with momenta p^ and p^ 
only if beforehand both these states are unoccupied. As in the terms (15.48) and 
(15.49) which described the scattering of a single fermion, we must weight here 
the transition probabilities by a factor [1 — 2̂ * /] for each final state; this factor 
describes the probability that it is empty. The Landau-Uhlenbeck collision term 
follows thus from the Boltzmann collision term (15.77) by replacing f{pz)f{Pi) '~ 
f{p)f{P2) by 

/(P3)/(P4)[1 - i ^ ' / ( p ) ] [1 - i / l ' / (P2)] 

- / (p)/(P2) [1 - ^h^fiPz)] [1 - hh^fiPi)]. (15.157) 

Moreover, the entropy of a gas of fermions, which have no correlations other than 
those coming from the statistics, can be written as 

S = 'k J d\d^p [/ In (i/iV) + ( ^ - / ) In (l - l^^^f)] • (15.158) 

This expression follows from (10.37) which we wrote down for the grand canonical 
equilibrium of non-interacting fermions. In fact, for spatial variations which are 
sufficiently slow (§10.3.4) we can treat d r as a large volume and f{r,p)d^rd^p, 
the number of particles in that volume with momenta within <vp, is equal to 
2/pd rd p/h , where fp is the Fermi factor (10.62), and where the factor 2 comes 
from the spin. Note that expressions (15.157) and (15.158) are valid only in situ
ations where we neglect spin effects; a more accurate theory must replace fp by a 
2 x 2 density matrix in spin space, and f{r,p) would be proportional to its trace. 
We can check that the Boltzmann entropy (15.147) is the classical limit of (15.158) 
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for h f <S 1 and that we also get the Boltzmann collision term from (15.157) in the 
same approximation. We define the Landau-Boltzmann entropy density and flux 
by modifying (15.148) and (15.149), along the same lines as in (15.158); the factor 
(15.151) coming from the variation of SB then becomes 

S [-/ In [Ih^f) + (A _ /) In (l ^ iH^f)] = m ̂ ^ 6f. (15.159) 

The extension of the i?-theorem to fermions can now be proved by multiplying the 
Landau-Uhlenbeck kinetic equation by (15.159) and integrating over p. We find an 
equation similar to (15.152) where the last two factors are replaced, respectively, 
by (15.157) and by 

j ^ /(Pl)/(P2)[l - ift'/(P3)] [1 - hh^'fiPi)] 

[1 - hh'fiPl)] [1 - i/iV(P2)]/(P3)/(P4)' 

The fact that ds/dt + divJs is positive for the Landau-Boltzmann entropy (15.158) 
is then clear if we replace everywhere In /i / by (15.159). The vanishing of the 
dissipation requires the same replacement in (15.155), which becomes 

i^vrf^^^^^^^-^^ 0; 

hence local equilibrium is characterized for fermions by a distribution of the form 

2 1 , .^ 
/ = r^ -R rr-^—' 15.160 

where 0, a, and A are functions off. Just as we found the Maxwell factor by starting 
from the Boltzmann equation and requiring that the collision term vanishes, the 
Landau-Uhlenbeck form (15.157) describing collisions between fermions leads to 
the Fermi factor. The latter is thus found as a consequence of the dynamics and 
the prohibition of a fermion to scatter into an already occupied state. We have 
already encountered this property when studying the thermalization of electrons in 
a metal, but the temperature in (15.75) was imposed by the scattering medium, 
mainly phonons in thermal equilibrium. 

Another kind of extension of the if-theorem concerns the kinetic equations 
where the particles interact with external scatterers which play the role of a ther
mostat at a temperature T. In this case, it is not the Boltzmann entropy S B which 
increases, but, as in similar situations in macroscopic thermodynamics, the free en
ergy F =^ U — TSB, calculated using rules adapted to the Boltzmann description, 
which decreases. This holds, for instance, when the collision term has the form 
(15.65), or the form (15.74) for electrons. Verifying this is similar to the calculation 
leading to (15.152) and for (15.65) it is based upon 

d8F 
dt 

+ divJF = ~\kT I d^pd^p'e~'^'Y{p,p') 

x l - ^ ^ KV(p)-e'^^'/(p')] <0 , (15.161) 
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where e = p^/2m + V{r), QF = QE — Ts, and where T = l/kp is the temperature 
of the scattering medium; (15.161) vanishes only if / oc e~^^. Similarly, the Fokker-
Planck equation (15.134) leads to 

dQF 

at 
•divJp = - 7 / d^p f[kTVp\n f + Vps]^ < 0, (15.162) 

and the right-hand side of this equation vanishes again only in the case of a local 
equilibrium distribution at the temperature imposed by the bath. 

15 .4 .3 Irreversibi l i ty of t h e B o l t z m a n n E q u a t i o n 

The historical importance of the iJ- theorem for the clarification of the en
tropy concept has been enormous (§ 3.4.2). For the first t ime a microscopic 
quanti ty emerged which increased with time. Nonetheless, we shall see in 
§ 15.4.4 tha t ^B is the same as the thermodynamic entropy 5th only in a 
local equilibrium regime. In a ballistic regime, we must resort to statistical 
mechanics even for macroscopic processes: the Boltzmann entropy ^ B , and 
not 5th, is the useful quantity. 

In particular, the i?-theorem has important implications for the asymp
totic behaviour of an arbitrary solution / of the Boltzmann equation as 
t —> DO. Consider a gas sample, confined in space by a potential V, for in
stance, a box potential. The average number of particles iV and the total 
energy U remain constant with t ime when / evolves. In this case the total 
momentum is not a constant of the motion because of the interactions with 
the walls and this changes the momentum conservation equation into 

^ - h d i v J p = -QNW, (15.163) 
at 

with a source term which describes the applied force localized at the walls. 
Let 5eq be the grand canonical equilibrium entropy, associated with the given 
values of N and U. By definition, 5eq is larger than the entropy of any macro-
state with the same energy and the same number of particles. It thus gives 
an upper bound for the Boltzmann entropy (15.147) at all times, 

SB{t) < 5eq. (15.164) 

The function 5B(i) which, according to (15.154), is non-decreasing and 
bounded thus tends as t —> co to a finite value 5(oo) which is smaller than or 
equal to 5eq. However, the vanishing of dS^/dt implies tha t the Boltzmann 
gas is in local equilibrium at all points. In general, if this condition is satisfied 
at a given moment, it will not remain so eventually, and as a result the en
tropy will again increase; we refer to the discussion of the self-diffusion effect 
in §14.4.6 after Eq.(14.140). The evolution thus goes on until 5 B is practi
cally equal to 5(oo) and the asymptotic behaviour of / for large t is thus a 
local equilibrium solution of the Boltzmann equation, without its right-hand 
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side. We construct in what follows all solutions such tha t / retains a form /o 
with t ime. It will follow tha t , if the gas is confined to a volume i?, the only 
possible solutions are the global equilibrium distributions. This finally proves 
tha t S{oo) ~ Seq and hence that any solution of the Boltzmann equation 
tends to the global equilibrium distribution associated with the constants of 
motion, the energy and the number of particles, which are determined by the 
initial conditions. 

If the gas is not confined, its entropy may increase without bounds at the 
same t ime as its density decreases, and we never reach equilibrium; besides, 
the equilibrium entropy itself increases without bounds as i? -^ oo. 

The distributions of the form /o which satisfy the Boltzmann equation are 
characterized by 5 functions, a', /3, A, of r and t which are solutions of 

Arranging this in powers of p we get a set of partial differential equations for a', /3, 
X, (p, the general solution of which in the case when there is no external force <p is 

a ' = ao " m(Ai • r ) — 2/32^ i 

(15.166) 

A = XQ + Xit + (3ir + (32tr + [uj X r]. 

The various parameters are independent of r and t; AQ, (3I, and ui describe, re
spectively, a uniform translation, a uniform dilatation with cooling, and a uniform 
rotation, while Ai and (32 describe a uniformly accelerated translation and a uni
formly accelerated dilatation; /?o and ag are associated with the initial temperature 
and the initial density at the origin. The evolution is reversible, without dissipation. 
For an arbitrary time-independent potential, we always have global equilibrium so
lutions where a = a'{r) + pV{r), P, and A are constants. However, in the case of 
some special forces we also find solutions /o differing from global equilibrium and 
depending on the time, for instance, for a harmonic central force, (p = —nr, where 
/o can represent a drop of gas which periodically extends and contracts. However, if 
the gas is enclosed in a box the solution should be given by (15.166) with as bound
ary conditions the vanishing of the normal component of the velocity u = A//3 at 
the wall. This condition implies that AQ = Ai = 0, I3i = P2 = 0. For a vessel of 
arbitrary shape it also implies that w = 0 so that the only possible solutions of 
the Boltzmann equation with the form /o are the global equilibrium distributions 
Q' = a = ao, /3 = ^Oi -̂  = 0 with a uniform temperature and a uniform density, 
the gas being at rest. 

A notable exception concerns the case where the gas is enclosed in a vessel 
which has axial symmetry, such as the cylinder of Exerc.7b, or a spherical shape. 
The solution (15.166) with u> ^ 0 then describes a gas in uniform rotation with a 
density which increases with the distance from the axis of rotation (Exerc.Tb). In 
fact, the angular momentum around the axis of symmetry is in this case a constant 
of the motion together with N and U. If its initial value is non-vanishing, the gas 
tends, as t —> 00, to a global rotating equilibrium state. 
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The preceding analysis can also be applied to a Landau-Boltzmann gas. Here 
the entropy (15.158) tends to a constant value and / to a Fermi factor /g. Notwith
standing this change, Eq.(15.165) remains valid as well as the conclusions we have 
drawn from it. 

The Boltzmann equation thus gives a new justification, based upon dy
namics, for the Boltzmann-Gibbs equilibrium distribution in the case of a 
gas, whereas the justification given in Chap.4 was mainly based upon statis
tical considerations. The global equilibrium macro-state appears not only as 
the most disordered and thus the most likely macro-state but also as the final 
state towards which any evolution will lead, starting from an arbitrary initial 
state. There is thus a convergence of the two approaches, the purely statistical 
and the dynamical approaches, to the theory of thermal equilibrium. 

The il-theorem clearly shows the irreversibility of the dynamics described 
by the Boltzmann equation: if one there changes t to —t and p to —p, the 
left-hand side of that equation changes sign, whereas the collision term T{f) 
remains unchanged. However, the Liouville equation which governs the exact 
evolution of the gas is invariant under time reversal; the statistical entropy 
S{D) remains constant in time, according to (3.29). In more detail, the re
duced single-particle density / , two-particle density /2, . . . , evolve according 
to a hierarchy of exact equations (§ 2.3.5). The first equation 

% + i'"-^)f = J d^r'd'p' {VrVi\r - r'\) .VpMr,p,r',p')), 

(15.167) 

has the same left-hand side as the Boltzmann equation, but its right-hand 
side changes sign with t and thus cannot be equal to the collision term! 

The irreversibility paradox (§§ 3.4.3 and 4.1.5) is based upon the apparent 
contradiction between these two kinds of behaviour. Admittedly the increase 
in the entropy which is reflected in the il-theorem looks like being in agree
ment with macroscopic experience. However, for an isolated gas, governed by 
a well defined Hamiltonian, the Liouville equation shows us that if D{t) is a 
solution, so is D^(—i), which is obtained by changing the signs of all momenta 
and the direction of the time, li D{t) gives us a reduced density f{r,p, t) with 
which we associate an increasing entropy ^ B , the solution Z)^(—i) will, sym
metrically, lead to a decreasing entropy 5 B SO that f{r, —p, —t) cannot be 
a solution of the Boltzmann equation, although it satisfies the exact equa
tion (15.167). Notwithstanding the existence of solutions D^{—t) of the exact 
Liouville equation, one never observes such a behaviour - bar exceptionally 
(§ 15.4.5); why is this so? The paradox is even more striking if one notes that 
the derivation of the Boltzmann equation in §§15.1.3 and 15.3.1 does not 
seem to be based upon any approximation, apart from the fact that we are 
dealing with a rarefied gas, so that its consequences should not contradict 
those of the exact Liouville evolution equation. 
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In fact, there was an approximation, albeit a fairly well hidden one. Recall 
the reasoning of §§ 15.1.3 and 15.3.1. The description of a single collision is 
rigorous. It involves a transition probability W0{p) or W^(Pi,P2iP3)P4) which 
is invariant under time reversal, that is, under substitution of —p' for p or 
—Pz,—P4 for Pi,P2- Moreover, we noted that this invariance, which consti
tutes the principle of detailed balancing or the '^microreversibility" of the 
Boltzmann equation, was essential in order that the transport coefficients 
derived from this equation satify the Onsager relations. The approximation 
which gives rise to the irreversibility was made in the next stage where we con
structed the collision term T{f) using W. In fact, we implicitly assumed that 
before the collision the particles are uncorrelated. Classically, this amounts 
to saying that all impact parameters have the same probability; quantum 
mechanically, it means that the incident flux is uniform. In the Boltzmann 
equation (15.77) the factor f{r,p^)f{r,p^), for instance, represents the prob
ability density that the two incident particles have momenta pg and p^. Its 
factorization reflects the absence of correlations; moreover, this form assumes 
implicitly that / varies little over distances of the order of the range 6 of the 
forces. This random collision hypothesis is traditionally called by its Ger
man name "Stosszahlansatz". Nevertheless, even if we assume that before 
the collision the two particles were actually statistically independent, their 
distribution during and after the collision contains correlations which are just 
connected with the kinetics of the collision itself. In the Lorentz model we are 
dealing with correlations between the position R of the centre of the scat-
terer and the coordinates r',p' of the emerging particle in phase space: the 
vector p' must be along r' — R for \r' — R\ » ^. In the Boltzmann equation, 
the positions and momenta of the emerging particles are also correlated, as 
by reversing their momenta they must collide. The Stosszahlansatz has thus 
introduced an asymmetry in time: particles which were uncorrelated before 
a collision become correlated afterwards. 

However, the reasoning which leads to the Boltzmann equation is valid 
notwithstanding this creation of correlations. Two particles which have al
ready interacted with each other have practically no chance of colliding again; 
they will collide with other particles so that the correlations which have been 
created are innocuous and the random collision hypothesis will remain justi
fied for each of the subsequent collisions. Little by little there is thus produced 
a set of complex correlations occurring in the two-, three-, . . . , N-, ... parti
cle reduced densities, but the Boltzmann equation is not interested in them. 
These correlations involve at the same time the momenta and positions of 
a large number of particles and this in an extremely subtle manner, as they 
retain a memory of all the collisions which the particles have undergone ear
lier. They involve very fine details, since a simple change, of the order of the 
range 6 of the forces, in the position of one particle would radically change 
them, for instance, by preventing a collision to occur. Nevertheless, they have 
no effect on the kinetic equations. As regards the Lorentz model, it derives 
from the hypothesis we made about a random distribution of the scattering 
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centres; taking an average over their positions amounts to taking an average 
over a uniform incident particle flux. As to the Boltzmann equation, one can 
show tha t it becomes exact for finite times and finite geometries in the hmit 
as QN —^ oo, provided that the particle mass tends to zero with a fixed mass 
density, and tha t the cross-section a tends to zero in such a way tha t g^a 
remains finite. This condition implies tha t 

I > QN^^^ > S, (15.168) 

which expresses the fact tha t the relative volume QNS^ occupied by the 
molecules is negligible, or equivalently, tha t the mean free pa th I is large 
as compared to the intermolecular distances. For the values realized in Na
ture, we should expect times long as compared to the age of the Universe 
before we see the appearance of deviations from the Boltzmann equation. 

Let us make a few extra remarks about the validity of the latter. It was 
derived on t ime scales long as compared to the duration 77 of a single collision 
so tha t T{f) must be identified with the average of the right-hand side of 
(15.167) over times long as compared to 77, under initial conditions without 
correlations, rather than with that right-hand side itself. Whereas (15.167) 
involves a true time-derivative, df/dt in the Boltzmann equation stands for 
a change in / over a t ime dt much longer than 77. On the other hand, ! ( / ) is 
the result of the elimination of the two-particle and higher reduced densities. 
The situation is the same as in § 14.3.5: this elimination is here realized by 
projecting the density in phase D onto the Boltzmann density DB, and the 
memory t ime is of the order of rj, the duration of a single collision. There was 
therefore no reason for being surprised tha t over times long as compared to 
77 we found an equation of motion for / which is qualitatively different from 
the exact equation, to wit, of first order in t, non-linear, and irreversible -
since all those characteristics are present in the general expressions (14.78) 
and (14.81). 

The difference in behaviour of the two entropies S{D) and 5 B simply re
flects the fact tha t D^ differs from D only through the suppression of the cor
relations between molecules. During the exact Hamiltonian evolution which 
is described by D, the total missing information S{D) remains constant. The 
quanti ty ^ B — S{D), which represents the information about the correlations 
contained in D, increases; this means tha t an ever increasing part of the total 
information is transferred to the correlations which are continuously created 
in D. In the Boltzmann description DB which is incomplete, this information 
is lost; the increase in ^ e with t ime reflects the fact tha t the reduced density 
f becomes more and more disordered as the order escapes towards the cor
relation degrees of freedom, in such a way that the total disorder S{D) does 
not increase. 

We still must understand why one never observes the inverse processes, 
even though they are allowed by the Liouville equation. Let C{{r,p},t) de
note the set of correlations between all the particles; the simplest of them 
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can be described in terms of the one- and two-particle reduced densities by 
/2 ( r ,p ; r ' , p ' ) — f{r,p)f{r',p'). Giving / and the C is equivalent to giving 
the density in phase D, vsrhereas D^ corresponds to / and C = 0. Let us 
assume that initially at i = —tg we have C{{r,p}, —to) — 0, and f{r,p, —to) 
is arbitrary; we can associate with the corresponding solution D{t) of the 
Liouville equation a solution f{r,p,t) of the Boltzmann equation and a set 
of correlations C{{r,p},t) which become more and more important. The 
entropy S{D) remains constant and close to the entropy 5B(—io) of the dis
tribution f{r,p,—to) whereas the Boltzmann entropy Ssit) resulting from 
f{r,p,t) is larger than either for t > —to- Let us now consider the solu
tion D'{t) = D^{—t) obtained by time reversal. Its initial conditions are 
f'{r,P,-to) = f{r,-p,to) and C'{{r,p},-to) = C{{r,-p},to) ^ 0; its re
duced density f'{t) does not obey the Boltzmann equation but an equation, 
obtained by changing the sign of the collision term. The entropy S{D') is at 
all times equal to S{D), but the associated Boltzmann entropy S 'B( / ' ) shows a 
pathological behaviour, since it decreases. To observe such a solution f'{t) we 
should realize the initial conditions /'(—fo) and C'{—to). However, the corre
lations C'{—to) are extremely complicated and subtle; they are very sensitive 
to the small initial correlations C{—to) which do not affect f{t); besides, their 
average over distances, large as compared to 6, is almost zero. Producing a 
gas showing these correlations is out of the question. Only a thought experi
ment, unrealizable in practice, which would consist in reversing suddenly all 
momenta would allow us to do this (see § 15.4.5). This practical impossibility, 
but not the properties of the system itself, prohibits the Boltzmann entropy 
from decreasing. 

Statistical considerations enable us better to estimate the extent of this 
impossibility. Recall that the quantity exp[5(-D)/fc] gives the order of mag
nitude of the number of micro-states involved in the macro-state D, in the 
classical limit where the volume drjv of phase space measures a number of 
quantum micro-states. If we want to see the Boltzmann entropy decrease, we 
should prepare a macro-state D'{—to) containing the correlations C'{—to); 
the entropy S{D') of this macro-state is smaller than the Boltzmann entropy 
5 B associated with the reduced density f'{—to). The fact that this difference 
in entropy is macroscopic implies that the number of micro-states described 
by D'{—to) is considerably smaller than the total number of micro-states 
characterized by giving only f'{—to), by a factor estimated to be 

exp{ [5B " S{D')] Ik]. (15.169) 

The number (15.169) is huge since macroscopic entropies are of the order of 
J K^^ while k = 1.38 x 10^^^ J K^^. Moreover, since 5 B is the maximum of 
the entropy when f'{—to) is given and since it is reached when C"(—io) = 0, 
the very large value of (15.169) shows that practically all micro-states asso
ciated with f'{—to) do not show correlations. The preparation of an initial 
macro-state has thus every chance of leading to an uncorrelated or little cor
related state, which then will evolve with an increasing Boltzmann entropy; 
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the very large relative rarity (15.169) of micro-states contributing to the cor
related macro-state D'{—to) implies that the latter cannot be constructed in 
practice. A violation of the irreversibility is thus not forbidden as a matter 
of principle, but because it is highly improbable. 

15.4.4 Boltzmann and Thermodynamic Entropies 

In § 15.1.2 we have shown that the macroscopic, thermodynamic or hydrody-
namic, description of a gas could be derived from the Boltzmann description 
through the projection method (Fig.15.1). We thus associate with any density 
in phase D or Z?B at all times a thermodynamic density in phase DQ which 
has the following properties: (i) all three give the same values for the local 
densities ^jv, QE, and gp; (ii) the entropy S{Do) is the maximum one. The 
second condition implies that DQ has the factorized form (15.144), (15.146) 
where, moreover, / is a particular local equilibrium distribution /o, given by 
(15.91) and quadratic in p. The first condition can be expressed by the con
straints (15.92) which must be satisfied by / i = / — /Q. The thermodynamic 
entropy 5th = S{Po) associated with /o is, according to (15.95), equal to 

5th = k J dVd3p /o ( r , p ) [ l - l n ( / i 3 /o ( r , p ) ) ] 

= k j dPr QN{r) {§ - In [QN{r)XT{rf] } , (15.170) 

where A|, = 2'irh'^P{r)/mk. As expected, it is just the sum of the thermostatic 
entropies of each volume element. Several entropies have thus been introduced 
for a given state of the gas, and we shall now compare them. 

In the local equilibrium regime where / i is small as compared to /o, the 
difference between 5 B and 5th is found by expanding 5 B in powers of / i , 
which gives 

5 B - ^th - y <frd^ph{r,p) In [/iVo(r",p)] 

\l (fr d^p 

The first-order term in / i vanishes by virtue of (15.92), and this allows us to 
check that 

5 t h - 5 B ~ I J d^'rd^p^ (15.171) 

is positive as it should be. Its value would follow from (15.115), but it is 
negligible to first order in / i , while to this order the change with time of 5 B 
or 5th is given by (14.144). We have thus 
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(15.172) d r I Y2 (^^)' + f (VT)̂  + ̂  E '̂/̂  
a/3 

As a result, in this regime and to this order, the H-theorem is the same as 
the increase in the thermodynamic entropy due to the irreversible thermal 
fluxes and viscous flows. We have thereby found a microscopic justification 
for the Clausius-Duhem inequality for gases. 

However, outside the local equilibrium regime the difi'erence S'th — ^ B can 
be macroscopic. Nothing even guarantees that 5th grows, whereas the H-
theorem ensures that ^B increases. Let us, for instance, imagine two drops 
of gas, each initially in local equilibrium, which are projected towards one 
another with large average velocities ±u, much larger than the thermal veloc
ities; let us assume that their densities are sufficiently low so that intermolec-
ular collisions are rare. This ensures that ^e grows only slowly during the 
whole process, including when the two gas masses pass through one another. 
Before the encounter, 5th — 5 B shows the same behaviour. However, during 
the overlap the local momentum distribution becomes a superposition of two 
Maxwellians centred on mu and —mu; it has thus rapidly moved far from a 
local equilibrium distribution. As a result, 5th has suddenly increased, but 
after the encounter each drop comes back practically to its earlier state so 
that 5th falls back to practically its initial value. The fact that we retained 
in the description only the variables £>jv, QE, and QP has thus given rise to a 
memory effect: the value of these quantities at time t + dt depends on their 
past history before the encounter, and not only on their values at time t. 
The two drops did not have enough time during their overlap to thermalize 
each other. They separate while creating order in the thermodynamic vari
ables at the expense of information hidden in the non-Maxwellian f{r,p). Of 
course, if the system is enclosed in a vessel, it will end up reaching first a local 
and then a global equilibrium regime (Fig. 15.8). However, the corresponding 
characteristic time is the longer, the lower the density. 

The hierarchy of entropies S{D), SB, 5th, S^q associated with descriptions 
becoming less and less detailed is shown in Fig.15.8. They correspond, respec
tively, to D, to f{r,p), to the local densities ft, and to the global conservative 
variables. As long as the gas is away from the local equilibrium regime, the 
usual macroscopic entropy 5th is of little interest because of memory effects 
which persist if we follow the evolution of the Qi densities only; the Boltz-
mann equation is best suited to describe the evolution. On the contrary, later 
on, the thermodynamic description becomes adequate while the Boltzmann 
description is uselessly complicated. 

This discussion shows up a general conceptual problem: there does not 
exist just one entropy, but several ones, depending on the choice of relevant 
variables, the dynamics of which one follows with time. For a gas, depending 
on the regime and the time scale, we have thus been forced to consider two 
levels of description, the thermodynamic level in terms of the densities QN, 
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Fig. 15.8. Evolution of the various entropies in a gas. The most detailed entropy 
S{D) remains constant. If the molecules are uncorrelated at the start, the Boltz-
mann entropy, 5B, parts company from S(D) and increases by virtue of the H-
theorem. The thermodynamic entropy 5th, which is larger than 5B, rejoins 5 B in 
the local equilibrium regime. Both tend to the global equilibrium entropy 5eq if the 
gas is enclosed in a vessel 

QE, and QP, and the more detailed Boltzmann description in terms of f{r,p), 
and we associated with each of them an entropy. We have seen also that the 
question of irreversibility should be put in different terms in the two cases. 

The choice of relevant variables can pose delicate problems. If we had 
tried to use the normal thermodynamic description in the above example, 
the impossibility to make reasonable predictions in agreement with experi
ments would have led us to introduce new variables which were hidden in 
the - too macroscopic - thermodynamic description. The relevant dynamic 
variables, for instance /(»",p) for a gas in a ballistic regime, can thus in
volve quantities which are not accessible to macroscopic experiments; they 
constitute in general the smallest set of variables necessary to represent the 
dynamics by equations without memory (§14.3.5). The same kind of ques
tion arose already in thermostatics as in the example of the specific heats of 
hydrogen (§8.4.5). In fact, the appearance of several specific heats could not 
be explained except by enlarging the set of variables needed to describe the -
metastable - equilibrium macro-state; these variables must include not only 
the number of molecules, the energy, and the volume, but also the propor
tion of para- and ortho-hydrogen, which is a hidden variable. The discussion 
of the Gibbs paradox (§8.2.1) also appeals to several entropies, which de
pend on the coarseness of the description and which may thus present a 
relative and anthropocentric character. When there is some natural choice 
of thermodynamic variables, for instance, the local conservative variables in 
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slow dynamics, the entropy associated with these variables will play a priv
ileged role. However, it is important to know how to extend the description 
by including new variables and introducing a different entropy when this 
is necessary; examples include gases in a ballistic regime, systems in which 
an order parameter appears, plastic substances, shape memory materials, or 
amorphous substances. 

As an example, slightly a caricature, but instructive, of a system where hidden 
variables play an important role, let us consider a perfectly elastic spring with a 
very great length L. Let ^(x, t) be the elongation which is a function of the abscissa, 
0 < X < L, and the time. We assume the spring to be enclosed in a "black box" with 
only its a; = 0 end being accessible. Let us try to describe the macroscopic state by 
a single variable, the displacement ^(0,t) of the free end, on which we can exert a 
force F{t). Let k denote the elastic constant and u the speed of the propagation of 
perturbations along the spring; we then have 

ir(t) = ^ f c » ) . (15.173) 
ox 

Starting at t = 0 from a situation where the spring is at rest, ^{x,t) is a function 
solely of a; — ut on a time scale t < 2L/u. As a result, we find from (15.173) that 

Fit) = l ^ ^ . (15.174) 

The force exerted is proportional to the speed, so that the system behaves as a 
perfect damper] Over short times, nothing thus distinguishes the end of the spring 
from the rod of a piston acting on a viscous medium. The apparent dissipation is 
due to the elimination of the degrees of freedom ^{x, t) for a; > 0 which play here 
the role of microscopic variables. However, we must, of course, reintroduce these 
hidden variables ^{x, t) to describe the dynamics of ^(0, t) when t > 2L/u; after 
that time the initial perturbation returns to the origin after having propagated and 
having been reflected at the x = L end. 

15.4 .5 Sp in E c h o e s 

Our discussion of the significance of irreversibility for a macroscopic evolu
tion applies to the relaxation towards equilibrium of most physical systems: 
usually the flight of order towards inaccessible degrees of freedom is final; this 
order which hides in the complex degrees of freedom does not give rise to any 
detectable physical effect and everything happens, exactly as if the disorder 
increases. There are, however, experiments, for instance, on spin systems, the 
so-called "spin echo" experiments, where order which is initially obvious is 
transferred to unobservable degrees of freedom; this order which seems to be 
lost can, however, reappear later on in easily accessible degrees of freedom, 
thanks to a manipulation which is equivalent to reversing the t ime in the 
equations of motion. We shall in what follows describe the simplest of these 
experiments. Their existence is conceptually important : it shows clearly tha t 



412 15. Kinetic Equations 

irreversibility is not an absolute concept, but is part ly subjective by nature , 
depending on the complexity of the systems and on the details and ingenuity 
of our observations. 

Let us consider a paramagnetic salt of the kind studied in Chap.l, in which 
the N elementary magnetic moments interact very little with one another or with 
the other degrees of freedom of the crystal. The microscopic dynamics of the non-
interacting spins in a magnetic field B is governed by Eq.(1.44) which can be written 

dt 
2m 

h 
\Bxiii (15.175) 

where /XB = eh/2m is the Bohr magneton and where /ij denotes the expectation 
value of the magnetic moment —fi^ffi of the spin SJ ; the factor 2 in (15.175) is 
associated with the magnetic moment of the spin of an electron and should possibly 
be changed, if the magnetic moment /Xj has an orbital origin (§ 1.4.6). Equation 
(15.175) describes the Larmor precession motion: each vector fii rotates around 
B with an angular velocity a; = 2ii^B/Ti, proportional to the magnitude B of the 
field; its length remains fixed and its end describes a circle in a plane at right angles 
to B. Moreover, the interactions of the spins with one another and with the lattice 
are responsible for their relaxation (§14.1.2). They are sufficiently weak for the 
relaxation time, say of 0.1 s, to be very long as compared to the duration of the 
experiment; during the latter we can neglect these interactions as compared to the 
dynamics described by (15.175). They are, nonetheless, involved in the preparation 
of the initial state, which is an equilibrium state in a magnetic field BQ along the 
a;-axis; this field forces the /i^ to take at t = 0 their equilibrium average value (1.37), 
that is, 

/LIB t a n h 
kT ' 

(15.176) 

and to be directed along the x-axis (Fig.15.9a). We assumed in the figure that So 
was sufficiently large that the spins were nearly perfectly ordered. 
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Fig. 15.9a-c. Behaviour of the individual magnetic moments and of the total mag
netic moment in a slightly inhomogeneous field B along the z-axis 



15.4 Microscopic Reversibility vs Macroscopic Irreversibility 413 

At time t = 0 we replace the field BQ by a permanent field B in the z-direction. 
The vectors fXi start to rotate parallel to one another in the xj/-plane with the 
Larmor angular velocity ui. We choose the field B sufliciently strong so that this 
velocity is large, say 10 rotations per second. (One can even easily obtain 10 s^ .) 
The total magnetization M of the sample rotates with the same velocity and can 
easily be detected by induction in a coil. However, the field B cannot be strictly 
homogeneous and some spins feel a field which is slightly stronger, and others a field 
which is slightly weaker. Since the angular velocity uji is proportional to the field 
Bi, the former spins will rotate a bit faster and the latter a bit more slowly than the 
average. With each revolution the spread will become more and more pronounced. 
The total magnetization gets progressively shorter, while rotating (Fig.15.9b). If 
the heterogeneity of the field B is of the order of 0.1%, one thousand revolutions 
are sufficient to lead to the spins pointing in all directions in the xy-p\a,ne. After 
that time, that is, after 0.1 ms, their orientations remain completely disordered and 
the substance no longer retains any magnetization (Fig.15.9c). The irregularities 
in the orientation of B can be neglected, as they do not have the same cumulative 
effect as the irregularities in its length. 

So far nothing unexpected has occurred. The process illustrates a new irre
versibility mechanism. On the microscopic scale, the motion is deterministic and 
reversible: reversing the magnetic field Bi seen by each atom would make its spin 
rotate the other way, according to (15.175), as if one reversed the time. However, on 
the macroscopic scale the disorder has increased, as shown by the demagnetization 
of the material. In fact, it is the slightly random nature of B in space which has 
been transferred to the spins through the lack of synchronism of their rotations. 
The macroscopic equation of motion for the case of a Gaussian distribution of B, 

f = ? t t [ B . M ] - ( ^ ) ^ B > , M , a 5 , m ) 

can easily be found, solving (15.175) and averaging over Bf, its last term describes 
the damping of M. We have a measure of the macroscopic irreversibility by looking 
at the time-dependence of the thermodynamic spin entropy, which follows from 
(1.17) for a homogeneous sample with total magnetization M = IX-QNQ, 

5 , . = . i v ( i ± ^ l n ^ + i ^ l n ^ ) ; (15.178) 

it increases as M decreases. On the other hand, the entropy 

i 

which is associated with the detailed microscopic description (15.175), remains con
stant. In fact, the expectation value /Hj = fJ-BQi of each magnetic moment conserves 
the value (15.176) during the precession. 

At a time to of the order of milliseconds the spins have thus been disoriented 
for a long time, the total magnetic moment is zero, and the signal which it induces 
has disappeared. The system seems fully disordered, "dead". Note, however, that 
the mechanisms for the relaxation through interactions have not yet had time to 
come into play and to thermalize the moments parallel to B. At that time, one now 
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Fig. 15.10. Rotation of the spins over TT around 
the X-axis: each moment /ij suddenly goes to 
its symmetric image fi[ 

appUes, without touching the field B, for a very short time r a field B' in the x-
direction. One chooses the values of r and of B' such that LJ'T = TT, where uj' is the 
Larmor frequency associated with B' . As a result of this pulse all the moments /ij 
suddenly make a semi-revolution around the x-axis (Fig.15.10). In this operation, if 
a moment /Xj was behind another moment ft2 by an angle 0 = {ui2 — u!i)to because 
wi < 0)2, its transformed moment ft'i gets ahead of fi2 by the same angle 0. One 
should bear in mind that the field B is still present. Starting from the time to the 
spins thus continue to rotate, always in the same direction, each one with its own 
local Larmor frequency u>i. However, because they changed position at time to, at 
time 2to they find themselves again all oriented in the a;-direction. During the time 
interval to,2to the total magnetic moment increases and the macroscopic entropy 
(15.178) decreases; the evolution is the symmetric counterpart of the one observed 
between 0 and to. The reappearance of the initial signal at time 2fo is the so-called 
"spin echo". Nothing prevents the production of successive echos, as long as the 
other relaxation mechanisms have not yet been effective. 

This experiment has a surprising characteristic. The order which seemed 
to have been lost during the first phase, reemerges during the second one. 
Irreversibility and increase of the thermodynamic entropy tu rn out not to 
be all-conquering and between the times to and 2to the system behaves as 
if the time were reversed. All this illustrates the relative na ture of the irre
versibility and entropy concepts. For a fresh observer the state of the spins 
at t ime to is disordered and this disorder is characterized by the thermody
namic entropy (15.178). However, the experimenter who has prepared this 
s tate knows tha t it contains correlations between the local field Bi and the 
orientation of the moment fi^. These correlations are complex and invisible 
in the thermodynamic description. However, in contrast to what happens for 
a gas, this information is not irretrievably lost; there exists in this case an 
operation, the rotation over TT around the x-axis, which enables us to bring 
back the order hidden in the correlations and to transform it into a macro
scopic order shown by the total magnetic moment. One sees thus tha t the 
disorder is not an intrinsic property of the objects. Its definition involves the 
observer in agreement with the points of view of information theory. 
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Summary 

In order to study the dynamics of gases of weakly interacting particles we work 
within the Boltzmann description which disregards the correlations between 
molecules. The kinetic equation (15.6) then deals with the reduced density 
f in the single-particle phase space. Its right-hand side, the collision term, 
can take on various forms depending on whether the particles are scattered 
by one another, (15.77), or by other scatterers which are fixed, (15.7), or 
which can absorb energy, (15.65), or whether they are scattered by other, 
light particles in equilibrium, (15.134), as in the Brownian motion, or whether 
Fermi statistics plays a role, (15.74) o,fid (15.157). One can find this term as 
a function of the cross-sections by striking a balance of the effect of collisions 
on the particle distribution f in phase space. It satisfies the microreversibility 
property and the microscopic conservation equations (15.9) or (15.87), and its 
vanishing characterizes the local equilibrium distributions (15.13) or (15.91). 

The kinetic equation describes a ballistic regime if the collisions are not 
very efficient and a local equilibrium regime in the opposite limit. In the 
second case it can be solved by the Chapman-Enskog method: we use the 
maximum, entropy method to associate with f a local equilibrium distribution 
/o which follows it in its motion and which is equivalent to it for calculating 
the conservative macroscopic quantities (15.2) or (15.88). This enables us 
to justify all macroscopic laws of thermodynamics and hydrodynamics and to 
calculate the transport coefficients. 

The Lorentz model, which describes collisions with fixed scatterers, is well 
suited for a study of the gases of carriers in semiconductors or metals, and 
also for neutron physics. In regimes close to equilibrium it can account for 
diffusion, thermal or electrical conduction, and thermoelectric effects; it en
ables us to connect these properties with each other and with the mean free 
path. It can also be extended to thermalization and be applied to processes far 
from equilibrium. For metals transport involves only the electrons which are 
close to the Fermi surface. 

For ordinary gases the Boltzmann equation gives us in the local equili
brium regime the transport coefficients, the viscosity and the thermal con
ductivity, as functions of the scattering cross-section of the molecules. These 
coefficients are independent of the density and increase as VT; the volume 
viscosity vanishes. 

Boltzmann's H-theorem expresses that the entropy associated with the re
duced single-particle density increases; it proves the relaxation of the system 
towards equilibrium. The distinction between three levels of description, the 
microscopic, Boltzmann, and thermodynamic levels, enables us to discuss the 
problem of the irreversibility of the macroscopic evolution for a gas with a mi
croscopic evolution which is reversible. The introduction of several entropies, 
each associated with a level of description, shows especially the relative nature 
of the entropy concept and even of the irreversibility concept. 
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Exercises 

15a Diffusion in Sol ids; D o p i n g 

If the tempera ture is sufficiently high, impurity a toms in a crystal can j u m p 
from one lattice site to another and thus migrate. This diffusion process is 
applied in industry for doping semiconductors (§ 11.3.4). One can study it ex
perimentally by letting marked radioactive atoms diffuse and observing their 
concentration at each point as a function of time; this gives some information 
about the structure of the material. A convenient method for marking the 
atoms is to irradiate at the initial t ime one point of the solid with a fast 
particle beam. 

To understand this effect we study the following one-dimensional model 
which simulates a copper wire heated to a few hundreds of degrees. Initially we 
mark the a tom Cu*, placed at x = 0. Each atom can perform jumps ± / along 
the a;-axis, where / is the cell size of Cu; the jumps are independent and the 
t ime between two successive jumps of the same atom is r . This t ime r , which 
at room temperatures is practically infinite, is a rapidly decreasing function 
of the temperature (Prob. l9) . Calculate the probability that the marked Cu* 
atom lies after a t ime t between x and x + dx {dx ^ I, t ^ T ) . Starting 
from a given distribution of marked Cu* atoms, localized near x = 0, find 
the concentration as function of x and t. Determine the diffusion coefficient. 

Solution: 

After a time t = nr, the Cu* atom has jumped nr times to the right and nj times 
to the left, where nr and ni = n — rir are random. The corresponding probability is 
(binomial law) 

p(nr,ni) 
1 

2" nr!ni!' 

one obtains it simply by counting the number of different ways of performing these 
jumps. It has a sharp maximum for UT ~ nj and with An = nr — ni -C n reduces 
in the Stirling approximation to the Gaussian law 

/ >, / 2 ^An^/2n 
p(nr,ni) ~ \ / — e ' . 

The distance travelled by x equals lAn and the number of possible values of An 
associated with the range x,x + dx equals dx/2l. The required probability p{x) dx 
is thus equal to 

p(x)dx = \ —-K- e ^ '^' dx. 

If the initial concentration is no<5(a;), where no is the number of Cu* atoms 
created near the origin, the concentration is nQp(x). Diffusion covers a region of 
magnitude lUtfr which increases as \fi. This random walk model gives the same 
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result as the macroscopic diffusion theory which is based upon the solution of the 
equation 

~ = - d i v J = DV'^Q. 
dt 

If we identify g with nop{x) we find 

D 
2T' 

Note. The manufacture of electronic devices requires a detailed control of the im
purity concentration at each point. In practice one starts from Si which is as pure 
as possible. Using masks one introduces on the surface of the required regions a 
controlled amount of n or p impurities, which one lets migrate towards specially 
selected positions in the interior of the material through heating for a carefully cho
sen period and at a carefully chosen temperature. This makes it possible to have 
in an extremely small volume a large number of different components which have 
predetermined functions, such as diodes, transistors, and so on. The progress of 
microelectronics thus relies on the mastering of doping techniques at smaller and 
smaller scales. 

15b I m p e d a n c e in t h e Lorentz M o d e l 

1. Use the Lorentz model with W assumed to be constant to write down 
the microscopic equation which describes a classical gas of charged particles 
in a uniform field in a permanent and uniform regime. Use this equation to 
derive directly the mobility, tha t is, the ratio of the mean drift velocity u to 
the field, and prove Ohm's law. 

2. Show tha t the result is the same as the one obtained by an elementary 
calculation where one assumes tha t each particle is accelerated between two 
collisions and tha t each collision makes the momentum distribution isotropic. 

3. Use the Lorentz model to find the equation which connects the electric 
current J{t) with a given time-dependent uniform applied field E{t). Inte
grate tha t equation with J5(—oo) = J(—oo) = 0. Wha t is the value of the 
impedance Z{u!), tha t is, the ratio of the Fourier transforms of E and J (see 
Exerc. l4b)? Compare this with the predictions of thermodynamics for a local 
equilibrium regime. 

4. Assume tha t we have an arbitrary applied field E{r, t) which is suffi
ciently small tha t it can be treated as a perturbat ion. Neglect the effect of 
the associated magnetic field. Expanding / in the vicinity of the unperturbed 
global equilibrium distribution /o , and Fourier transforming E and f — fa, 
which replaces t and r by w and fe, write down and solve the equation for 
f — fo- Use this result to.find the current as a function of the field, distin
guishing between the components E± and E\^ at right angles and parallel to 
k. Discuss its behaviour as w —> 0, A; —> 0. For what values of w and k do we 
get a local and instantaneous response in agreement with Ohm's law? 



418 15. Kinetic Equations 

Hints: 

1. Start from (15.37) with df/dt = 0, V , / = 0. Multiplying by p and integrat
ing, by parts, over p, we get 

—qEgjif = —WmJN = —Wmugpf. 

Hence we find the mobility (15.44) ii W = 1/r and the conductivity (15.35). 
2. The calculation follows Eqs.(11.70)-(11.73). 
3. Multiplying the equation 

by qp/m and integrating over p we find 

^-^E0N + WJ = 0. 
at m 

The density is constant as a consequence of the flux conservation equation. Inte
gration gives 

ft 
J{t) = aE{t)-a [ d t ' e -W-C*-* ' )^ , 

where a is the static conductivity Qj\fq /mW. The second term describes a retarda
tion effect which is not included in near-equilibrium thermodynamics. The complex 
impedance is equal to 

and the ballistic effects become sizeable when the frequency is not small as compared 
to T " ^ . 

4. Writing 

f{r,p,t) = fo{p) + —^ J da;d^fee-''^*+"(*-')/i(fc,p,a;), 

Eir,t) = j ^ J du;d^ke-'^'+'^''--^Ei{k,uj), 

we have, to first order, 

-iu^fl+i{vk)fi-Pq{vEi)fo = W{{fi}~fi), 

which is solved by 

l3q{vEi)fo + W{fi) 
h W -\iX) + \{v k) 
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Averaging over the orientation of p = mv leads to 

( / l ) 

i{v • k) 
W -iu} + i{v- fc) 

The current is given by 

V 
arctan rj, 

vk 
W -icj 

J{ui, k) 

Pi' f 
V-ii, J d PMP)V 

m{W - ic.i)2 + k^/l3 ^ 

f3muj{W - iu;)2 

Jo 

u + iW^̂  r;2 
-Ell 

^q^QN 

3 + 

1 

dxe -X 3 /2 

where the approximation leading to the last expression is valid for k <g Pm{W + 
oi ). The longitudinal part is singular, but bounded, as both oi —» 0, A; —> 0. Its 
coefficient is the same as that of the transverse part, if we first take fc —> 0, and 
then a; —» 0; however, it tends to zero, if we first take a; —» 0, and then A; —» 0, in 
which case it behaves as 

. 2 o '^ 

and thus is independent of the collisions. The local equilibrium regime holds pro
vided the response coefficients are constants as far as uj and k are concerned, and 
equal to q QJ^ /mW, which means that 

w < VF, k^ < PmW'^, k^ < PmWw. 

The temporal variations of the field must be slow as compared to r; its spatial 
variations must not only be slow as compared to the mean free path, but they 
also must be the smaller, the lower the frequency. The first two conditions were 
expected, but the third one is also necessary to ensure the validity of Ohm's law 
for the component of E parallel to k. 

15c D y n a m i c s of a Lorentz G a s Part i c l e 

Initially a particle with momentum PQ is placed at the origin. This particle 
is subjected to a uniform force field (p and moves in a scattering medium 
described by the simplified Lorentz model (15.37). 

1. Study the evolution of the expectation values of its coordinates (r) and 
(p) in phase space. Interpret the result for the evolution of {r). 
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2. Study, for the case where there is no external force, the diffusion, tha t 
is, the evolution of the dispersion of r . Do this by solving the equations which 
couple (T"^), ( P ^ ) , and {{p • r)). Compare the result with Brownian motion. 

3. Compare the result with the macroscopic Fick law. 

Hints: 

1. As in the case of the solution of the Fokker-Planck equation, we multiply 
(15.37) successively by r and p and integrate over both r and p, and then we solve 
the differential equations which we have obtained; the result is 

/ \ -Wt , <P (-, -Wt\ 

^ ' V m Wm J W Wm 

The collisions with the scattering medium are equivalent to a friction force —Wm{v), 
which is proportional to the average velocity. After a rather short time 1/W there 
is relaxation towards a uniform motion with a velocity ip/Wm, and the initial 
momentum has been forgotten after that time. 

2. Similarly, if there is no force <p we find 

2 

(p ) = PO, {(p-r)) = 777- (i-<^ ) , 

{r') = I f dt{{p.r)) - 2 °̂ L 
Wm 

m L Wm^ 

l ^ e - ^ * 
W 

After a time long as compared to \/W the position of the particle becomes less and 
less well defined; it is statistically spread out as Vt. The fiuctuations Ap and Ar 
increase with time; one can check that they satisfy the Schwartz inequality 

Ap''Ar''-[{{p-r))-{{p)-{r))f 

2po_ (^ - 6 - " " * ^ 
( 

Wt 

tanh\Wt 
> 0 . 

The motion of {r) and of (p) is the same as in Brownian motion (15.137), if 
we identify W with 7/m. This analogy is, however, superficial, since the scattering 
medium is fixed for the Lorentz model, while it consists of very light particles for 
the Brownian motion. There is now no thermalization of (p ), but (r- ) has the 
same form as (15.140) for times which are long as compared to the relaxation time 
1/PF, if Po has the thermal equilibrium value SmkT. 

3. The linearity of the equation of motion for / makes it possible for it to 
describe equally well a set of particles as the statistical distribution of a single 
particle in phase space, normalized initially to 6 {r)S {p — pg). For t 2> 1/W we 
find again the local equilibrium regime of § 15.1.5, but /o is replaced by 

/o 
27rpo 

S{p^ -po) QNir), / d^rgj^(r) = 1. 
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The analogue of (15.29) is 

1 ^ 
JN = i;QN - ^ ^ V ( - In ew)-

3 rw^W ^ ' 

Pick's law follows: 

with the diffusion coefficient 

vl 

The solution of this macroscopic diffusion equation with the required initial condi
tion is 

2 / f4 n-»\-3/2 ~r-'/4Dt 
QN = (47r£'i) ' e ' 

_2 and it leads to (r ) ~ 62?*, as under 2. We also regain this result by multiplying 
the diffusion equation for gjv by r and integrating over r. 

15d Hal l Effect 

A semiconductor, described as a gas of carriers with charge q in the Lorentz 
model with W assumed to be constant, is subjected to uniform static electric 
and magnetic fields. Assuming tha t a homogeneous stationary regime has 
been established find the relation between the current J and the fields. Write 
down the matr ix of the responses of J^ and Jy to E^ and Ey for the case 
where the magnetic field B is along the z-axis and the electric field lies in 
the a;y-plane. Check the Onsager relations. 

Each of the four sides ±x, ±y of a rectangular film in the a;j/-plane is 
connected with a terminal, and the film is subjected to a field B along the 
2;-axis. Wha t happens if one applies a potential difference between the ±x 
terminals, while keeping the ±y terminals open? What , if one then shorts 
the ±2/ terminals? How can one use the Hall effect to find the sign of the 
majority carriers? 

Solution: 

The distribution / is governed by (see note below) 

df 

at 
+ {v -Vr)/ + q{{E +[v X B]} •V^)f = W{{f)-f), 

where the first two terms vanish in a homogeneous stationary regime. Multiplying 
by —qv and integrating over p = mv we find 

WJ = l^E+^[JxB]. 
m m 
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Denoting the conductivity in the absence of the field hy a = q gj^T/m and T S 
l/W, we then find 

(T 

qr 

EyI - \S1B 1 ) \Jv 
Ex\ I m ^ I J-

2 2 o 2 . - l / 1 ^ B ' j )="(-^r(- i . v)( i 
^ m ' 

According to (14.27) the response matrix must remain unchanged if one transposes 
it and if one changes the Hamiltonian by time reversal, that is, if one changes B to 
—B\ one can check that this is the case for the above matrix. 

If the current Jy is zero, a jield 

Ey = — BEx = Jx 
m qoN 

is created in the direction at right angles to the current: at the ±j/ terminals we 
see appear a potential difference, the sign of which depends on that of the carriers. 
The field Ey is due to an accumulation of opposite charges on the ±3/ sides of the 
film. The relation Jx = aEx remains unchanged. If one shorts the ±3/ terminals, 
the field Ey vanishes; a current 

dy — OJx — n n TTTzr?: Cix 

m m'^ + q^r^B^ 

circulates in the film in the j/-direction, which is collected at the ±y terminals. The 
direction of this current depends on the sign of the carriers. 

The contributions from the two kinds of carriers must be subtracted from one 
another and the sign of the Hall eSect is thus governed by the majority carriers. 

Notes. In the above p = mv denotes not the momentum, but the kinetic momentum. 
In terms of the momentum p ' , which in contrast to p depends on the choice of gauge, 
the Hamiltonian can be written as 

1 2 
H{r,p') = ^{P~1^) + 9 * ' 

where we may take A = ^[B x r] and $ = —{r • E) to describe uniform fields. The 
velocity is given by p = mv = p — qA; it, and not p /m, occurs in the definition of 
the current J. The reduced density f'{r,p') = f{r,p) satisfies the equation 

^ + ( V p , i f - V . ) / ' - ( V . i f - V p , ) / ' = J{f). 

On the right-hand side the collisions conserve the kinetic energy and the angular 
integration is over p, rather than over p ' . On the left-hand side V r / ' contains not 
only V r / , which vanishes in a homogeneous state, but also contributions with Vp/; 
those must be combined with the third term to lead to the gauge-invariant equation 
for / which we started from without justification. 
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It is not consistent to assume, as we did, that df /dt = 0 since the Lorentz gas is 
heated following dgE/dt = {J • E). This, however, does not affect our calculations. 

If W depends on p, for instance linearly as in (15.14) for scattering by hard 
spheres, a will involve the average of W~ over /op according to (15.31). The 
Hall coefficient will involve the average oi W~ over fop which will introduce a 
numerical factor 37r/8 in front of r in the above calculations. 

15e Absorption, Stimulated and Spontaneous Emission 

Einstein established Planck's radiation law by a balance method similar to 
the one which leads to the Maxwell or the Fermi distributions starting from 
the Boltzmann or the Landau-Uhlenbeck equation (§ 15.4.3). The idea con
sists in deriving the equilibrium of the photons in an enclosure from that of 
atoms contained in that vessel, which can absorb or emit photons. To sim
plify the argument we assume that there exists only one mode, of frequency 
v, containing an average number /(z/) of photons. We also assume that each 
of the N atoms has two levels E-^ and E2 with E^ — Ei = hv. A more realistic 
discussion would introduce all the modes, with a quasicontinuous v spectrum, 
and levels E lying densely for the matter which can absorb or emit radiation. 

The probability per unit time that an atom in the state Ei is excited by 
absorbing a photon in the u mode has the form P12 = Af^v) where A defines 
the Einstein coefScient for induced absorption. Similarly one introduces the 
spontaneous emission coefficient B: the probability per unit time that an 
excited atom in the state E2 falls back into the state Ei while emitting a v 
photon is P21 = B; this process a priori seems independent of the state of 
the radiation in the enclosure. 

1. Using this hypothesis, write down the equations governing the evolu
tion of the numbers Ni and 7V2 of atoms with energies Ei and E2. What 
is the relation between iVj, N2, and /(;/) as t —> 00? What is the resulting 
temperature dependence of f{i/) in thermal equilibrium? 

2. The discrepancy between this result and experiments on thermal ra
diation led Einstein to suggest the existence of a supplementary process, 
stimulated emission: the presence of a ẑ  photon in the vicinity of the atom 
induces it to emit a new u photon. As in the case of induced absorption, the 
probability per unit time for this process has thus the form Pjj = B'f(y). 
Write down the equations governing the dynamics of the three processes. De
termine the new relation between Ni, N2, and f{i^) as i —> 00. What must be 
the values of the Einstein coefficients A, B, and B' in order that in thermal 
equilibrium /(i/) be compatible with Planck's law? Show that the relations 
obtained in this way result from the principle of detailed balancing. 

3. One lets impinge on N atoms a beam of photons with the same di
rection, the same polarization, and the same frequency. A model for this 
situation consists in assuming that the average number f{u) in a single mode 
is large. Show by solving the equations of motion for /(i/) for given Ni and 
N2 that the exit flux can be larger than the incident flux, provided one suit-
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ably chooses the populations Ni and A 2̂- This property, superradiance, gives 
the principle of lasers. 

Answers: 

1. We have 

dA î 
dt 

dN2 
dt 

If there is no other source for emission or absorption of v photons, we also have 
d/(i/) = dNi. As t —> oo we find that all solutions become stationary with 

N2 A 

If the gas is in thermal equilibrium, it follows from N2/N1 = exp[—(£^2 — Ei)/kT] 
that the number of photons in the mode 1/ in the stationary regime must be 

the A and B coefficients, which are related to quantum processes, can be expressed 
by (14.158) in terms of matrix elements of the transition operator between the 
initial and final states and are thus independent of the temperature. We find for / 
a Boltzmann distribution, an incorrect result for photons. 

2. We now have 

^ = ~Af{v)N^+[B + B'f{l.)\N2. 

In the stationary regime reached as t -+ 00, the vanishing of the right-hand side 
gives 

N2 _ Af{v) 
Ni B + B'f[uy 

If the gas is in equilibrium, we have thus 

•'̂ '̂'̂  " A^hv/kT _ B>' 

which reduces to the Bose factor, provided 

A = B = B'. 

The probability for the transition from a state with n photons and an atom of 
energy Ei to a state with n — 1 photons and the atom with the energy E2 is An. 
The probability for the inverse process is B + B (n — 1). Putting these two numbers 
equal to one another for all n gives A = B = B • The Bose distribution for photons 
thus arises here from the microreversibility of emission and absorption processes, 
which itself implies the existence of stimulated emission. 

3. Neglecting the time changes of JVi and N2, and the coupling between the 
photons and the other degrees of freedom, we find that the evolution equation. 
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di_ 
dt 

has the solution 

^^ A{N2~Ni)f + AN2, 

^ ~ V-̂ ° N^-N2) ^ Ni~ Ni~N2 

If Ni > N2, f tends to the stationary value N2/{N\ — iV2). However, if there 
is a population inversion in a non-equilibrium atomic state with N2 > Ni, f will 
increase exponentially, whatever its initial value. In practice, this increase is limited 
because photons are absorbed by other degrees of freedom and because the atoms 
are de-excited, especially by spontaneous emission to other modes of the same 
frequency which are neglected here. One thus ends up with a stationary state where 
the number of photons / in the v mode is saturated at a very large value. This is a 
good model for the behaviour of a laser where an inversion in population of some 
atomic levels can give rise to a luminous coherent beam with a very high intensity. 

15f H e a t Transfer in Stars 

1. The energy produced by thermonuclear fusion reactions in the core of 
the main-sequence stars such as the Sun is transferred by radiation, convec
tion, and conduction from the core to the surface, where it is emitted in the 
form of radiation. In such stars the dominant process of heat t ransport is ra
diation: the photons propagate and are scattered, absorbed, and re-emitted 
by the electrons and nuclei, mainly hydrogen, which are the constituents of 
the star. Assume tha t this process is governed by a Lorentz equation for 
the photons, in which the scattering cross-section does not depend on the 
frequency; this is t rue for the nearly elastic Thomson scattering of photons 
by electrons, where ffTh = |7r(e^/47r£o»wc^)^- Prove directly tha t the energy 
density QE and energy current density JE of the photons within the star are 
related by JE = ~DVQE, and find an expression for D. Assuming that the 
star has a sharp surface with radius i?, across which the photons pass sud
denly from a local thermal equilibrium (LTE) regime to a ballistic regime, 
use the Lorentz equation to show that the star radiates as a black body with 
temperature Ts = T{R). 

2. Denote the mass density by Q{r), and describe the mat te r as a fully 
ionized hydrogen plasma, behaving as a locally neutral mixture of classical 
perfect gases of protons and electrons. Denote by q{r) the heat power produc
tion per unit volume, which is significant only in the core of the star where 
the temperature is sufficiently high to induce fusion. Write down the equa
tions which determine the temperature T{r), the density g{r), the pressure 
V{r) and the luminosity L of the star in a stationary, LTE, regime. (The 
luminosity is the total radiated power.) Discuss which parameters govern the 
state of the star. 

3. Take as a model of the Sun a sphere with a uniform density, and with 
an active core of radius i?c = 0.1 RQ in which q is uniform. Determine T{r) 
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in terms of M©, L© and i?©. Using the data from the end of this volume, 
determine numerically the temperature at the surface and at the centre of 
the Sun. How long does it take for a photon produced at the centre of the Sun 
and diffusing through it to escape from its surface? Write down an additional 
relation expressing self-gravitational equilibrium in this model, and derive 
from it the luminosity of a star as function of its mass. 

4. Heat is produced in the core of the star by a sequence of nuclear reac
tions, typically 

p + p 
e+ -f-e" 

P+^R 

He + ^He 

-^ 

-~* 

-^ 

—> 

2H + e++v , 

Y, 

^He + Y, 

^He -1- 2p. 

Fusion of 4 protons into helium thus produces an energy of 27 MeV. We focus 
on the first reaction, with a cross-section (Ji{e) depending on the energy e 
of the two protons in the centre of mass frame. Denoting by f{r,p) the 
(Maxwellian) reduced number density of the protons, write down the number 
of fusions Tif of proton pairs per unit volume and unit time. Integrate over the 
centre of mass motion and over the angular variables. The cross-section (Tf{s) 
behaves as A e~^ exp [—(EB/E)^^^] , where A is a slowly varying function of 
e and where EB = Tr^arripC^ ~ 0.5 MeV; the small exponential factor, easily 
obtained by the WKB method, describes the quantum tunnelling through 
the Coulomb barrier which is needed to bring the protons close together, at a 
distance of the order of fermis where the nuclear forces begin to operate. How 
does the heat production rate depend on Q and on T? Show that the energy of 
the protons which contribute to fusion has a sharp maximum (Gamow peak). 
Show that the stationary state of the star is stable. 

5. Consider now a model of a white dwarf, with mass 0.6 M© and radius 
R, which has an interior part of fully ionized carbon with radius RQ, and an 
envelope with negligible relative mass and energy. Check that the electron gas 
in the interior is degenerate and non-relativistic, while the C nuclei constitute 
a classical gas (see Prob.9). Assume also for the sake of simplicity that the 
interior is homogeneous, with a uniform density. Determine RQ. White dwarfs 
are stars which have exhausted their nuclear fuel, and thus evolve slowly 
without heat creation. The main heat transfer mechanism in their interior 
is through conduction by electrons, which scatter on the C nuclei. Describe 
the Coulomb scattering classically and derive the Rutherford formula for the 
differential cross-section, 

2 da^ ^ o-R ^ / Ze^ \ 
dca ~ sin^(6'/2)' '^^ ~ {srreomvy 

To simplify the resulting Boltzmann equation, neglect the recoil of the C 
nuclei as well as the angular dependence of the cross-section and take aji as 
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an effective total cross-section. Hence estimate the t ime it takes for a heat 
pulse to spread out in the whole star and show tha t the internal tempera ture 
To is uniform. 

6. Take as a model of the envelope RQ < r < R oi the white dwarf a 
classical perfect gas of non-ionized atomic hydrogen. In it, the heat transfer 
is dominated by radiative processes (photoionization and bremsstrahlung) 
which produce an opacity K of the form 

^ ^ E = ^ ^ agT-'/^, a = 2.5 X lO^" SI, 
eg rrip 

where g and T are the mass density and the tempera ture at the point con
sidered. (Astrophysicists define the opacity of a medium as K = 1/lg where 
I is the mean free pa th for photons and g the mass density.) Write down 
the tempera ture and pressure gradients dT/dr and dV/dT as functions of 
T,V and the luminosity L, in a LTE, nearly stationary regime. Solve the 
equation for dV/dT, assuming tha t bo th the density and the temperature 
are negligible at the surface r = R, and relate g{r) to L and T{r). Find the 
dependence of T on r. In order to match the interior and the envelope in 
spite of the qualitative differences between the models which describe them, 
assume tha t V, g and T are continuous across the sphere r = RQ and drop 
in this question the assumption of a uniform density in the interior r < RQ. 
Prom the equations of s tate on both sides, find a relation between g{Ro) and 
T{Ro). Express the luminosity in terms of TQ, and make numerical estimates 
of To, of the effective surface temperature Tg associated with the emitted 
radiation and of the relative thickness of the envelope for a white dwarf with 
mass M = 0.6 MQ and luminosity L — 10^^ LQ. 

7. Write down the internal energy of the star, keeping only the ground 
state contribution UQ of the electrons and the perfect gas contribution Ui 
of the C nuclei. White dwarfs are formed by contraction of the less massive 
main-sequence stars when thermonuclear fusion reactions are achieved; at 
tha t initial stage they have a large luminosity, larger than tha t of the Sun, 
because the radiation and the contraction have produced heating (Exerc.6e). 
Using the above results, relate the age of a white dwarf to its luminosity. 

Answers and Hints: 

1. In the Lorentz equation (15.24) and in Eqs. (15.2), (15.23) we have here 
£ ~ cp = hv, V = cp/p and W = cfJTh n where n = g/m-p is the number of 
electrons (or protons) per unit volume. Here the Opacity is just crxh/Tip. In the 
LTE regime prevailing within the star, we have / i = —(v • V/o)/VF, which yields, 
by integration over p after multiplication by ve, the required diffusion equation 
JE = ~(c /iWY7QE- If we integrate the Lorentz equation over r in a thin shell 
lying astride the surface, we get from the dominant term J d^r div [vf) = 0; as 
a consequence, the non-equilibrium distribution / of photons just outside equals 
the equilibrium distribution /o(T's) for outgoing momenta, and vanishes for ingoing 
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momenta. Integration over p then yields for the radiated flux J^ = j c ^E(T 'S ) = 
o-Tg. Note that Jj5(r) ^ (7T*(r) within the star. 

2. The equation of state is at each point V = 2{Q/m-p)kT. The hydrostatic 
equiUbrium equation (Exerc.6e) reads 

^ = _ ^ ^ 4 . / dr r g{r ). 
Jo 

The above difTusion equation, where aT = ^CQE, takes the form 

4mpf7 d f r^ dT'^ , , , 
' - ' - q{r). 

The luminosity is 

L = 47rr-^JB(r) = 47r / dr'r''^q{r') = 4TvR'^aT'^{R), 
Jo 

for any r outside the core. The solution of these coupled equations depends only 
on the total mass of the star. However, the presence of nuclei other than hydrogen 
influences the processes of photon transfer and of nuclear reactions; it thus modifles 
D and q and can give rise to slight differences between stars. 

3. For r < RQ, the solution of the heat transfer equation is 

Matching it with the solution for Re < r < RQ yields 

33 

aT' ^ 0 - 4 ) - . --". 
and the constant C is determined by the boundary condition 

Numerically, this yields Tg — 5750 K and 

^ ' ^ \2RC ) 647r2i?|mp 

(^RQ ^ ^ 9(7ThA^0 ^ y4 
y2 iJc / 167rii|mp 

that is, r (0 ) ~ 5 X 10 K. The actual surface temperature is slightly higher, as 
the luminosity is reduced by absorption in the solar atmosphere. Our calculation 
underestimates the internal temperature by a factor 4, which is not too bad in view 
of the coarseness of our approximation. In actual fact the Thomson scattering is 
not the sole process for photon diffusion and absorption, so that the opacity is 
significantly larger than cr-rh/^^p; moreover, the density and hence W decrease 
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from the centre of the star to its surface, which hinders the diffusion of photons in 
the central part; both effects enhance the central temperature. 

The probability distribution of a photon which leaves the centre of the Sun at 
t = 0 spreads out as exp(—r /4Z)<) (§ 15.3.5 and Exerc. 15c). The expectation value 
of the time it takes to leave the Sun is 

d . r , 2 e- '- ' /^^* /•OO J / t oo -

/ dtt^ATT / drr^ — 
Jo dt jj^ (4, (47r£)t)3/2 

Even if we take only the Thomson scattering into account, this time is about 5000 
years; the length travelled by the photon in its Brownian motion is 3 x 10 times 
the Sun's radius! 

The equation of state and the hydrostatic equation are replaced in this model 
by 21[7 = 3 Vn = -EG, that is 

/ 
drr^T(r) = 

2^,^, _ GMQmpR% 

30k 

The average temperature within the star is proportional to its central temperature 
evaluated above. Hence we find the mass-luminosity relation, 

C^m^ 
P M \ 

400ft^c2o-Th 

where the numerical coefHcient 400 is a rough estimate, corresponding to (T) ~ 
0.4r(0) . 

4. As in Eq. (15.84) we find 

1 /• 3 3 
ni = - d pi d P2 •U12 o-f(e)/(»-,Pi) f{r,P2) 

- ?^ : / ds s e-^'^^a,{e). 
Jo ^-KikTfml Jo 

This quantity, and hence q, is proportional to g and rapidly increases with T. The 
integral can be evaluated by the steepest descent method (Exerc. 5b); the integrand 
is concentrated around the Gamow energy 

with a relative fluctuation (4fcT/27£B) > and we find 

%AQ'^ r / r^ \ 1/3-
Hf Ci — • j ^ ^ ^ ^ = ^ ^ ^ = e x p 

1/2 
' B 

^J&{kTfmley^ K^kTj 

The stationary state of the star is characterized by an exact balance between the 
luminosity L and the heat production, J d rq{r), which increases very rapidly with 
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T. If more heat is produced than radiated, the total energy U + EQ increases. 
However, the restoration of gravitational equilibrium, when 2Z7 = —EQ, implies 
an increase of EQ and a decrease of U, so that the star expands and cools down, 
thus reducing q. Conversely, if J d rq{r) < L, the evolution enhances q until a 
stationary regime is reached. 

5. Prom Exerc. 6e, we find 

3GM^ 1^^ 3 / 6M \ 

^^ = -5^Zr ^ "2^ = "10 [u^J '^' 
and hence RQ = 8600 km. In classical Coulomb scattering, the impact parameter b 

and the scattering angle 9, ip are related by 

6tan- = 
Ze^ 

2 Ai^eomv'^' 

and the Rutherford formula results from (15.4). The thermal conductivity is ob
tained from (15.14), (15.55) as 

A — . 

A heat pulse diffuses with a coefficient D = A/C, where C is the electronic specific 

heat per unit volume, 

2 EY fi ' 

The characteristic time R /2D is thus 

167rV3;i \m-p) 

small compared to the age of the star and to its cooling time determined below. 

6. The diffusion equation J^ = —{c/'iK,Q)VQE, together with L = AT^T^JE, 
CQE = 4(TT* and V = gkT/mp, yields 

dT 
dr 

SamlLV^ 
647r(7fc2,.2Tl7/2 • 

The hydrostatic equilibrium is 

dV _ 
dr 

GMmpP 
kr'^T ' 

expressed by 

The pressure, density and temperature at each point of the envelope are related by 

2 256TraGMk 17/2 k^ 2^2 
blam-pL rrip 

and the solution of the differential equation for T{r) is 

17k \r RJ' 
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Matching the degeneration pressure of the electron gas for r = iio — 0 with the 
perfect gas pressure of hydrogen for r = ito + 0 yields 

R2 

2mp 
kTo. 

10m 

Elimination of Q{RO) provides 

247r^h^GMa 7/2 _ , ^ R 2 ^ T . 4 
nk^am-pibm) 

i 7 from which one finds To ~ 1.7 x 10'K, Ts ^ 8900 Ka.ndR-Ro~ R/lb. 
7. The internal energy is 

3 /JW_\ 3 / M 
5 \2m^) ^ ^ ^ 2 \^12mp 

kTo. 

Since U\ <C UQ, the star slowly cools down (see solution of the last part of Prob.9), 
according to 

8mp dt ^ ' 

Integration and elimination of TQ (t) provides 

k^M / 4 2 5 o m ^ y ^ ^ 7/5 
~ 807r2 mp l̂  in^aG ) 

Assuming that most white dwarfs have masses of the order of 0.6 M©, their age is 
related to their luminosity by 

loglO^ = 7^ ' a; = l o g i o - ^ , 6/= 5 X 10^ years. 

Note. This result suggests a method for determining the age of our Galaxy. One 
represents the statistics of luminosities of white dwarfs on a plot with abscissa 
x; dividing x into equal intervals Ax, one estimates the number AN of white dwarfs 
having a luminosity in each interval, and one draws a histogram oi y = logĵ g AN 
as function of x. For 0 < x < 4.5, one observes a linear increase with a slope of 
about 0.7. This shape is explained by the above theory, which indicates that the 
number AN of white dwarfs in the interval x, x + Ax is 

AN=^(~ Iniol t Ax, 
dt \7 J 

where dN/dt is the rate of creation of such stars in our Galaxy at the time —t. 
If we reasonably assume that this rate has remained constant, we see that AN 
is proportional to L^ ' in agreement with observations. The shape of the age -
luminosity curve thus explains why there are, for instance, 60 times more faint white 
dwarfs with lO"^'^ < L/LQ < lO"^'^ than brighter ones with lO^^ < L/LQ < 
10^ . Observations show, however, a sudden drop of y for x beyond 4.5: no white 
dwarf with luminosity less than 2.5 x 10~ LQ has been seen, although much fainter 
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objects can be detected. Hence we get a strong indication that our Galaxy was 
formed at a time corresponding to that luminosity. A rather reliable estimate of 
the age of our Galaxy is thus obtained as 

(2.5 X lO^^f^'^e =± 10^° years. 



16. Problems 

"L'examen n'etait pas bien difficile; son cousin I'avait passe 
sans peine: on exigeait, croyait-il, un peu de calcul, la con-
naissance du frangais at une bonne ecriture." 

Anatole France, La vie en fleur 

"The answer is yes, but what is the question?" 

Anonymous 

"Oh! quelle est I'imagination malsaine, le cerveau deprave ou 
germent ces problemes revoltants dont on nous torture? Je 
les execre! Et les ouvriers qui se divisent en deux escouades 
dont I'une depense 1/3 de force de plus que I'autre, tandis 
que I'autre, en revanche, travaille deux heures de plus! Et 
le nombre d'aiguilles qu'une couturiere use en 25 ans quand 
elle se sert d'aiguilles a 0 fr. 50 le paquet pendant 11 ans, 
et d'aiguilles a 0 fr. 75 pendant le reste du temps, mais que 
celles de 0 fr. 75 sont . . . etc . . . , etc . . . . Et les locomotives 
qui . . . ! Odieuses suppositions, hypotheses invraisemblables, 
qui m'ont rendue refractaire a I'arithmetique pour toute ma 
vie!" 

Colette, Claudine a I'ecole 

"On donne un trapeze convexe ABCD . . . On le donne, le 
trapeze convexe, mais, sitot donne, on le reprend . . . 
On-do-nne-un-tra-pe-ze-con-ve-xe. 
Ondo-nuntra-pezecon-vexe." 

Jacques Audiberti, Monorail 

In this chapter we study in the form of problems a selection of different 
subjects. These problems, numbered 16.1 to 16.19, are all independent of one 
another; they each are applications of the main text and roughly speaking are 
placed in the same order as the preceding chapters. Some concern solid s tate 
physics, some classical or quantum fluids, and others astrophysics; several 
deal with phase transitions and some of the later ones are related to applied 
sciences. In most cases the statement of the problem is followed by more 
or less short hints for solving them and by comments. The most difficult 
questions are accompanied by detailed solutions. 
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16.1 Paramagnetism of Spin Pairs 

Consider two fixed electrons with spins Si and S2 • These electrons are placed 
in a magnetic field B which is parallel to the z-axis, whence we get a contri
bution Ho to the Hamiltonian: 

Wo = r {Slz+S2z)-

Moreover, they interact with one another according to a Hamiltonian 

Wi = 72(^1 ' ^2), 

where J is a positive, constant energy. One can easily use quantum mechanics 
to determine the eigenstates of the complete Hamiltonian Tio + Tii . Indeed, 
TCo and ?ii commute and the eigenstates are those oi S^ = S2 = -^h ; oi 

[Si + 5̂ 2) ; which has the eigenvalues 0 for the singlet state |s) and 2h^ 
for the triplet states | t_), |to), and |t+); and of Si^ + S2Z which has the 
eigenvalues —h, 0, +h for | t_), |to), |t_|-), respectively. One checks easily that 
the energies.of the eigenstates |s), | t_), |to), and |t+) are given, respectively, 
by 

E, = ~ , E_ = - - 2 / i B B , Eo = - , E+ = - + 2/XB5. 

Such a two-spin system will be called a spin pair. 

la. Write down the partition function Zx for a spin pair in equilibrium 
with a thermostat at a temperature T . 

b. Use Zi to find the average energy U\ and the entropy 5i of this pair. 
c. To what simpler expressions do Zi, C/i, and ^i reduce in the limit as 

J = 0 ? Give the physical reason for this. 
2. We consider a piece of matter containing N pairs. Each pair occupies 

a given position in the sample. The pairs are far enough from one another 
that we can completely neglect the interactions between the spins of different 
pairs. 

a. Write down the partition function Z of this system of N pairs. 
b. Use Z to derive the average energy U and the entropy S of this system. 
3. Show the behaviour of U{T), S{T), and S{U), first for the case 5 = 0, 

and then for increasing values of B. Determine for each curve the limiting 
values, the extrema, and the derivatives in those points, using either simple 
physical considerations, or the equations obtained under 2. Bear in mind that 
P — 1/kT can vary from —00 to +00 for spin systems. 

4a. Evaluate the average magnetic moment M of the system as function 
of B and T. 
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b. Use tha t expression to find the magnetic susceptibility x = (1/''^) 1™ 

M/B where fi is the volume. 
c. Compare x with the magnetic susceptibility xo of 2Ar non-interacting 

spins (limiting case J = 0) and give a physical interpretation of the result, 
in particular for the extreme limits when J/kT ^ 1 and when 3jkT <C — 1. 

5a. Sketch the M{B) curve for a temperature T ^ Jjk. How does this 
curve change with T? 

b. Let J = 10^^ eV. For what value of B is the average magnetic moment 
half its maximum value for the given conditions? 

c. Sketch the S{E) curve for the same conditions, and for various values 
o f T . 

d. Show tha t it is possible to find values Bx and B^ of the magnetic field 
such tha t an adiabatic change from B\ to B2 lowers the temperature to a 
very low value. Specify the possible values for B\ and S2 . Wha t is the lowest 
temperature which, in principle, one might obtain in this way? What physical 
effects prevent in practice the at ta inment of this minimum? 

Comments: 

There are two reasons which prevent us from reaching a temperature T = 0 (last 
question). Firstly, the entropy related to the other degrees of freedom of the system 
must be added to the entropy evaluated here. Secondly, the degeneracy of the |s) 
and the |t_) states when B = J/2^^ will in practice be lifted through interactions 
which have been neglected in the present model, such as dipolar interactions or 
interactions between pairs or between spins and nuclei. 

One often meets with spin-spin interactions of the Tii-type in the case of 
fermions. They originate from orbital (Coulomb) interactions and the Pauli ex
clusion principle and they are called "exchange interactions" (§ 10.1.4). For elec
trons in atoms, molecules, or magnetic solids J is typically of the order of electron 
Volts, which makes fields of the order of J/2fj,Q inaccessible in a laboratory since 
(leV)/2/iB ~ 10 T. Nevertheless there exist systems where the two electrons are 
sufficiently distant from one another that J is several orders of magnitude smaller, 
for instance, organic biradicals such as (2,2',6,6'-tetramethyl-piperidine-4-ol-l-oxy)-
carbonate for which J ~ 10~ eV, or two donors in a semi-conductor such as two 
phosphor impurities at a distance of 100 A in silicon for which J ^ 10""* eV. Such 
systems are well described by the model used here, but their use for obtaining low 
temperatures is purely hypothetical. 

When J < 0, the ground state of the model considered here is threefold degen
erate: the entropy does not tend to 0 in the low temperature limit, but to Nk\n3. 
The third law of thermodynamics is not satisfied. In this case also interactions ne
glected in the present model may lift this degeneracy and lead to a decrease in S 
at very low temperatures. 
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16.2 Elasticity of a Polymer Chain 

We shall try to explain the elastic properties of materials which on a micro
scopic scale consist of polymer macromolecules, such as rubber and natural 
or synthetic textile fibres. To do this we shall study the elasticity of a single 
such molecule which we describe by a simplified model. 

We give a schematic picture of a polymer molecule in the form of a long 
chain of N identical monomers (see Fig.16.1). These monomers form the links 
in the chain and have a fixed length a. We take the origin at one end of the 
chain and assume that the n-th link lies between the points r „_ i and r„ ; 
its state is characterised by its direction, a>„ = (r„ — r „ _ i ) / a . The relative 
orientation of two successive links can vary; to simplify the discussion we 
assume that the links can be treated like classical objects and that their 
orientation is completely random. All possible directions of Mm have thus 
the same probability. To calculate a sum over the configurations we must 
integrate over the aj„ with a weight cPuin-

At the end rjv = T of the chain we exert a force / in the direction of 
the 2:-axis. If we now include in the definition of the system studied a weight 
exerting the force / , as in Exerc.5a, we get the Hamiltonian Ti ~ ~{f • r), 
where we have neglected both the kinetic energy of the chain and the potential 
energy corresponding to the interaction between the links. 

Fig. 16.1. Model of a polymer molecule 
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1. Calculate the canonical partition function. To simplify the notation put 
X = (3 fa. 

2. If L is the average length between the ends of the chain, which is subject 
to a tension / and is in thermal equilibrium, find the equation of state for 
the chain, that is, find L as function of / and T . Sketch the isotherms L[f) 
for fixed T . 

3. What is the behaviour of the elasticity coefficient dL/df for small / ? 
And for large / ? How does the elasticity coefficient change with temperature 
in the linear region where L is proportional to / ? 

4. What is the behaviour of the coefficient of linear expansion a = 
L~^{dL/dT) for a given value of the tension / ? What important difference 
can you note between the polymer and ordinary solids? 

5. Either by imagining what the form of the expression for the entropy 
will be, or by evaluating it explicitly, find out what happens if one releases 
adiabatically the tension exerted on the polymer. Assume that the chain does 
not exchange any heat with its surroundings during this shift in equilibrium. 

6. Sketch how the specific heat at constant tension changes with temper
ature. What is the specific heat at constant length? 

7. Evaluate the mean square length \/{T'^) of the polymer molecule when 
there is no tension. 

16.3 Crystal Surfaces 

In this problem we shall study some geometric characteristics of the faces of 
a crystal in equilibrium with its vapour. To do this we describe the crystal 
as a stack of N cubes with edge length o which are arranged on a simple 
lattice. Each cube represents an atom of mass m and zero spin; we neglect its 
internal structure. The centres of the cubes can occupy sites with coordinates 
X = {q-\- \)a, y = {q' + | ) a , z — {q" + \)a, where q,q',q" G 2 . We take 
the energy of each isolated atom at rest to be zero. In particular, in the 
vapour, the energy reduces to the sum of the kinetic energies p^ /2m of the 
atoms. In the crystalline phase we neglect the motion of the atoms, but 
take their interactions into account. The atoms repel one another at very 
short distances and this repulsion is simply represented in the model by the 
impenetrability of the cubes which represent the atoms. At larger distances, 
the atoms attract one another and this produces the cohesion of the crystal. 
In the present model we shall represent this attraction by a potential energy 
—V which we associate with each pair of neighbouring cubes which have a 
face in common. It will be convenient in the evaluation of the energy of a 
configuration, characterized by having each site either occupied or not by a 
cube, to associate the energy —V with each face which separates two occupied 
sites; remember that such a face is common to two cubes. We neglect all other 
interactions between two cubes, for the cases when they touch just along an 
edge, at a vertex, or not at all. 
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In the numerical applications we take the atomic mass to be 100 g mol~^, 
the cell size a = 2.5 A, and the potential energy V = 0.2 eV. The fundamental 
constants are given at the end of this book. We are only interested in orders 
of magnitude. 

1. Bulk Properties of the Solid 

a. Show that the cohesive energy per unit volume, Q, defined as the ratio 
of the ground state energy of a crystal to its volume i? when i? --> oo, equals 
-SVa-\ 

b. Use this result to find the chemical potential HQ of a crystal at zero 
temperature (and zero pressure). 

c. At non-zero temperatures the crystal, still assumed to be infinite, con
tains a number of vacancies, that is, unoccupied sites. We shall assume that 
there are so few vacancies that they practically never touch one another. 
What is the energy needed to create a vacancy, assuming that the cube we 
remove is just annihilated? We consider a fixed volume i? = Afa^ which is 
cut from an infinite crystal in our imagination - to avoid boundary efifects 
- and which contains a large number of sites. A/"; each of these can become 
a vacancy. Let £ be the number of vacancies and N = Af — £ he the num
ber of the atoms which together occupy the Af sites. Give the energy of a 
configuration as function of £ and N. 

d. Assuming the vacancy density to be low, use the above result to calcu
late the grand partition function of the region J7 as function of /3 and a = PJJ, 
where /x is the chemical potential of the atoms. Find an expression for the 
pressure Ts as function of T and fi. 

e. Now write down the probability for a vacancy to exist at a given site 
in equilibrium at a temperature T and a pressure Vs- How does it vary with 
T and n ? 

f. Justify the hypothesis made sub d by giving a numerical upper bound 
for this probability at T = 300 K. 

In what follows we shall systematically neglect the possibility for the 
creation of vacancies in the bulk of the crystal. 

2. Saturated Vapour 

We assume that the crystal is surrounded by its vapour and that it can 
exchange atoms and energy with the vapour so that an equilibrium is reached. 
The system is controlled by fixing the pressure V and the temperature T of 
the vapour which is assumed to be a monatomic perfect gas. 

a. Give an expression for the chemical potential n of the vapour as function 
of T and T. Assuming that the chemical potential of the crystal remains fixed 
at its value ^o when the temperature and the pressure increase, and that the 
saturated vapour is in equilibrium with the crystal, find an expression for the 
vapour pressure Vo{T). This is the saturated vapour pressure. 
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b. Sketch the solid-vapour phase diagram in the T ,P-p lane . Evaluate the 
vapour presssure at room temperature , Po(300 K) . 

c. Give a justification for the assumption made sub a tha t the chemical 
potential may be replaced by fiQ. 

3 . S m o o t h Crys ta l Face 

We consider a very large crystal with one of its faces in the plane z = 0. 
The solid is in the z < Q region and the vapour in the z > 0 region. At zero 
tempera ture the faces are perfectly smooth so tha t the energy is a minimum. 

In what follows we reckon all energies from the energy of this configuration 
in which all the sites with z < 0 are occupied and all the sites with z > 0 
are empty. At a finite temperature T exchange of atoms and of energy with 
the vapour may create irregularities at the crystal surface. In this section 
we restrict ourselves to the two simplest kinds of surface defects: a surface 
vacancy represented by a missing cube with its centre in the z — — 2a-plane, 
and an adsorbed atom represented by an excess cube with its centre in the 
z ~ | a -p l ane . 

a. Give the energies for these two kinds of defects, reckoned from the 
energy of a perfectly smooth face as zero. 

b. The crystal is in grand-canonical equilibrium with its vapour at a pres
sure Vo{T). Let po, p_ i , and pi be, respectively, the probabilities tha t at a 
given point on the surface there is no defect, there is a surface vacancy, or 
there is an adsorbed atom. Find the ratios p-i/po and pi/po and show tha t 
p_i and pi are equal, assuming tha t there are sufficiently few such defects 
tha t they are almost never neighbours. Check this assumption by calculating 
p_i and p i for T = 300 K. 

c. At a fixed temperature T we change the vapour pressure to a value 
V which is different from (either larger or smaller than) Vo{T). The crystal 
surface again comes to equilibrium with the vapour, which entails a change 
in its chemical potential. Find the new probabilities p_i and pi as functions 
of the degree of supersaturation A = V/Vo{T) and give a numerical value for 
p i for A = 10. 

d. Wha t can one infer about the sublimation, tha t is, the evaporation, of 
the crystal and about the condensation of its vapour? 

4. G r o w t h of a S t e p o n a Face 

Adsorption of isolated atoms on a smooth surface thus cannot explain why 
a crystal will grow, if surrounded by its supersaturated vapour. The theory 
of crystal growth by Burton, Cabrera, and Frank^ s tar ts by assuming the 
presence of a monatomic layer, bounded by a step of height a on the face of 

1 Pliilos. Trans. Roy. Soc. A243 (1950) 299. 
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Fig. 16.2. A step with a kink 

the crystal. We indicate the cubes which reach the z = a-plane by hatching 
while leaving the bare, smooth face in the z = 0-plane white (Fig.16.2) 

a. Consider a step consisting of two straight sections (a; < 0, j / = 0 and 
a; > 0, y = a) , separated by a simple discontinuity or kink {Ay = a) at x = 0. 
Let A, B , C be sites with z = ^a which are, respectively, far from the step, 
at the step boundary, and at the corner of the kink (Fig.16.2). We assume 
tha t the surface is in contact with the supersaturated vapour which has a 
temperature T = 300 K and a pressure V = XVoiT) where we take A = 10. 
Neglect the formation of surface vacancies. Let PA, PB, PC be, respectively, 
the probabilities of the configurations with an extra a tom at A, at B, or at 
C (PA is idential with the probability pi of question 3c, if A >• 1 ). Write 
down the ratios PA/0- ~ P A ) ) PB/0- ~ PB)I •̂iKi P c / ( l — Pc)-, and use those 
expressions to find the numerical values of P A , PB, and pc-

b. In order to find out whether there are many kinks or not along a step, 
we first estimate the energy of a single kink. To do this, we must compare two 
configurations with the same number of atoms, but differing in the number 
of kinks (Fig.16.3): the first configuration (1) contains two opposite straight 
steps; while in the second configuration (2) each of the steps has a discon
tinuity Ay = + 1 at a; = 0. Find the energy difference between these two 
configurations. Hence find the energy to be associated with a single kink. 
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Fig. 16.3. Evaluating the energy of a kink 
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Fig. 16.4. A face of an NaCl crystal 

c. Consider a step parallel to the a;-axis on a face in equilibrium with the 
saturated vapour VQ{T). TO simplify the calculations we assume tha t this step 
contains only simple discontinuities {Ay = + 1 or Ay = —1). We also assume 
tha t these kinks lie far from one another and tha t they may be treated by the 
methods of statistical physics as independent objects with an energy equal 
to the value found sub b. Give a numerical estimate for the probability po 
tha t there is a discontinuity, with either Ay = + 1 or Ay = —1, at a given 
point of the step. 

d. An atom coming from the vapour has little chance to hit just the edge 
of a step when it collides with a crystal face, and even less chance to hit the 
corner of a kink. On the other hand, it is natural to assume tha t the atoms 
are very mobile on a crystal surface and tha t they move without changing 
their energy. Use the values, obtained above, for PAJ PBT PCi and po and the 
fact tha t pc, in particular, is very large, to imagine an efficient mechanism 
for crystal growth from the supersaturated vapour; assume tha t the degree 
of supersaturation is A = 10. 

The photograph shown in Fig.16.4 was taken by an electron microscope 
of a crystal face of NaCl. Can you interpret it? 

5. S h a p e of a S t e p 

We want to study the average shape of a step on the z = 0-face in the 
general case where this step is not parallel to the a;-axis and where the degree 
of saturat ion A = V/Vo{T) is not equal to 1. In the x,y-pla,ne the step 
goes from the point 0, 0 to the point Ka, Ma (Fig.16.5). To fix its ends. 
we assume tha t all sites in the column x = — | a , y < 0, z I a and all 

| o are occupied, like all 
I a (these regions 

sites of the column x = {K + ~)a, y < Ma, z — ^ 
sites far behind the step 0 < a: < KA, y < —La, z 

are indicated by heavy hatching) The, fixed, number L is chosen sufficiently 
large so tha t the step practically never approaches a j/-coordinate less than 
—La. We characterize the step by a function y{x) which is defined in discrete 
points. We thus neglect all configurations containing lateral protrusions (1), 
depressions behind the step (2), or higher islands in front of it (3). This 
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Fig. 16.5a,b. General shape of a 
step 
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is justified at low temperatures and for a step which does not have a large 
average slope {M < K) in which case such accidental occurrences are unlikely. 
We thus characterize each configuration by a set of K integers, nj., 1 < A; < 
K, such tha t each of them is the number of cubes stacked in the column 
X = (k ^ | ) a between y = —La and y = {—L + nk)a. Equivalently, this 
configuration is characterized by the set {mfc} of i f + 1 integers (Fig.16.6) 

Fig. 16.6. Coordinates labelling a step edge 
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mk = rifc+i-Tifc, 0 < k < K, ruk - 0, ± 1 , ±2, ••• ; 

each of these integers represents the algebraic value of the discontinuity at 
the point of the step with abscissa x ~ ka (at the ends we have UQ = L and 
nK+i=L + M). 

We shall now study the properties of the system It which is the region 
defined by 0 < a; < Ka, y > —La, 0 < z < a, and bounded in Fig.16.5 by 
the dash-dot line. This system 7^ does contain not only the atoms situated 
in the region, but also the faces in the x = 0, x = Ka, y = —La, and z = 0 
planes; one assigns to these faces an energy —V whenever they separate two 
atoms. The energy is reckoned from the energy of the region 72. without any 
atoms as zero. 

a. Prove that for a given configuration {ruk} the number N of atoms 
situated within the region 7?. equals 

K 

N = KL + Y^{K - k)mk. 
k=0 

b. Prove that for the configuration {mk} the energy associated with all 
the faces inside the region TZ equals 

E = -sTvy + ^ ^ K i - y j ' i + ^M') 

where Ylk^o I'̂ fel'̂  is the total length of the discontinuities. 
This form of the energy shows the advantage of using the K +1 variables 

{irik} rather than the K independent variables {«&}. Nevertheless, the eval
uation of the grand partition function for the region TZ is made more difficult 
because of the existence of a constraint, 

K 

^ m f e = M, 
k=0 

which expresses that the end-point of the step is Ma for x = Ka. (In principle, 
there are other constraints following from the requirement that nj, > 0, but, 
provided L is sufficiently large, they do not come into play and we may let 
mk vary from —oo to -f-oo.) In order that we can sum freely over all the K + 1 
numbers m,k{0 < k < K), we impose the constraint on their total sum only 
on average, in the form 

K 

Y,{mk) = (M), 
fc=0 
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and we introduce a Lagrangian multiplier 7 t o take this constraint into ac
count. The corresponding Boltzmann-Gibbs distribution thus gives us for 
each configuration {ruk} a probability which is proportional to Q'^N-fiE-fM^ 

c. Prove tha t the part i t ion function Z{a, /?, 7) associated with the above-
defined ensemble equals, apart from a multiplicative factor, the product of 
K -\-l functions Zk{a, (3,7), each of which is associated with a single abscissa 
X = ka where a discontinuity may appear. Give an expression for Zk- You 
may use the identity (^ > |?7|) 

+00 

E -^\m\-~r]m sinh^ 

cosh ^ — cosh 77 

d. Find (mfe), which is the average gradient dy/dx of the step in the 
X, 2/-plane at the point with abscissa x = ka, as function of a, /3,7. 

e. Discuss the concavity of the step in its dependence on the degree of 
saturat ion A. 

6. C o n d e n s a t i o n Is lands 

Consider an island composed of a condensed monatomic layer on top of a 
face which is in equilibrium with a slightly supersaturated vapour (A > 1). 
This island is bounded by a step which is in the shape of a closed curve. We 
shall study the geometry of such islands (Fig. 16.7). 

a. Use the result of question 5d to determine 7 and K as functions of A 
and T such that the step has an average slope of 45° at the point a; = y = 0 
and an average zero slope at the point a; = if, as shown in Fig.16.7. 

b. Find (M) , assuming tha t on the scale considered the edge of the step 
behaves as a continuum so tha t the summations over k reduce to integrals. 
This can be done start ing from question 6a. It can also be done without 
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Fig. 16.7. An island on a crystal face. In equilibrium its boundary consists of eight 
segments, each of which is characterized by the parameters K and M of Fig. 16.5a 
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J LJ j^-i: •—^ Fig. 16.8. Surface of an undersaturated crystal 
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calculations, if one first proves tha t the thermodynamic potential InZk is 
directly related to the shape y{x) of the step. 

c. Find the shape and the average size of an island for T = 300 K and A = 
1.02. How do these geometric characteristics vary with the excess pressure 
A? and with the temperature? 

Discuss briefly the microphotograph of a NaCl crystal face shown in 
Fig.16.8. 

Solution 

la. We get the ground state for a compact packing. In a large volume O there 
are then J\f = Q/a^ cubes which are occupied and SA/" faces - six faces per cube, 
each of which is common to two cubes - so that the (negative) cohesive energy per 
unit volume is g = —iVa" (numerically, Q = —6 kJ cm^ ). 

b. As T = P = 0, the equation dU = TdS - VdQ + fidN reduces to dU = ndN. 
We find U = -iVN, and hence /XQ = - 3 F . 

c. It costs an energy QV to suppress a cube, as six faces common to two neigh
bouring atoms disappear from the energy sum. A configuration with I vacancies 
thus has an energy -iMV + UV = -3NV + SiV. 

d. Prom the previous answer we find that one must assign an energy -j-3V to a 
vacant site and an energy —3V to an occupied one. The Af sites may be treated as 
being independent of one another, whence we find 

Zaia,f3) = (e-'^y+e'^^+Y. 

Hence we get for the pressure 

p , = ^ I n Z c = ^ l n [ e - ^ ^ / ' = ^ + e(^^+'')/ '=^]. (1) 

e. Prom the grand canonical Boltzmann-Gibbs distribution for a site we get 
for the probability that this site is unoccupied the expression e~ " / [e^ '̂  + 
g3/3y+Qj Ugjjjg (^i^ iQ eliminate the chemical potential we find for this probability 
for a vacancy 

exp 
3V + Vsa^ 

kT 

This probability increases with increasing temperature, or increasing energy, and 
decreases with increasing pressure, or decreasing volume. 
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f. At zero pressure when the probabUity for a vacancy is a maximuni, it equals 
e~ ' = 10~ at 300 K. This quantity, and hence the dilatation coefficient and 
the specific heat, is negligible. It is still only 10~ at T = 600 K. 

2a. Chapter 7 gives 

M = fcTln[nfeT)-^/^(?^)'^']. 

At equilibrium, the chemical potential of the vapour equals /io = —iV and hence 

^3/2 

\2Trh ) 

b. The expression for VQ{J^) gives both the diagram shown in Fig. 16.9 and the 
value 'Po(300 K) = 300 Pa. The curve rises very rapidly and already at 400 K one 
finds 2 X 10^ Pa = 2 atm. 

c. The low density of the vacancies entails, on the one hand, that the entropy 
per unit volume remains practically zero and, on the other hand, that the energy 
and the volume are practically proportional to the number of atoms. We thus have 
for the whole crystal 

dU ~ -SVdiV = TdS + ndN -VdQ ~ (fi-ra^)dN, 

so that /x ~ ;uo + Va . Microscopically, by inverting (1) one finds 

f, = -3V^ + 7'a3 + fcTln(l-e^(^^+^"')/'=^). 

If we insert this expression into (2) and put the chemical potentials and the pressures 
in the two phases equal to one another, we get the saturation curve VQ(T). However, 
the last term (which even at 600 K only equals 5 x 10~ eV) as well as the term 
Va (which equals 10~ eV at atmospheric pressure) are negligible compared to 
Ho = —0.6 eV along this curve, so that it can be obtained simply by replacing /x by 

M in (2). 
3a. As compared to a smooth surface, if we remove a cube from it, we get rid 

of 5 interaction faces, each with an energy —V, so that a surface vacancy has an 
energy 5V. Adding a cube means adding one interaction face, so that an adsorbed 
atom has an energy —V. 

^ h 

Fig. 16.9. Crystal-vapour phase diagram (the 
crystal phase is above and the vapour phase 

- • - T below the curve) 
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Note. The total energy of the crystal does not just consist of the volume terms 
calculated sub la and the above contribution from surface defects. In fact, consider 
as reference system a parallelepipedal crystal with edgelengths Lxa, Lya, Lza and 
perfectly smooth faces. In the a-direction it contains Lx—l lattice planes which each 
contribute —VLyLz to the cohesive energy. As the crystal volume is i? = L 
and the area of the faces S = 2{LyLz + LzLx + LxLy) the reference energy is 
not equal to QQ, but to QQ + aS, where a = V/2o ~ 0.25 J m~ . The surface 
contribution aS increases with increasing surface area and should be a minimum 
for equilibrium at zero temperature. This is the reason why crystal surfaces must 
then be perfectly smooth. 

b. According to the grand canonical Boltzmann-Gibbs equilibrium distribution 
the ratio of the probabilities p and p' of two configurations with energies s and 
£ + Ae and atom numbers N and N + AN, respectively, equals 

- - e . (Jj 

For the two kinds of defects discussed we have Ae + fj,AN = 2V so that pi/po = 
P-l/po = 6^^^/*=^. This is a small number, equal to 2 x 10"' ' for T = 300 K, so 
that po = i—Pl — P-1 — 1 and the required probabilities pi = j3_i equal 2 x 10^ . 
Moreover, this justifies the hypothesis which we have made implicitly that the sites 
may be treated independently of one another: there are practically never two defects 
which are side by side. 

c. According to (2) the degree of saturation equals 

VoiT) 

Substituting this new value of a into (3) and using the fact that po — 1, we get 
the probabilities p_i = e^ ' /A for the surface vacancies and pi = Ae~ ' = 
2 X 10~ for adsorbed atoms, respectively. 

d. If the vapour is supersaturated (A > 1,7-" > VoiT)), there axe A more ad
sorbed atoms than surface vacancies. This excess of atoms indicates a tendency for 
the vapour to condense on the smooth crystal surface. On the other hand, if there 
is undersaturation (V < Vo{T)) there is a tendency for sublimation. Nevertheless, 
the overabundance or shortage of atoms remains small in the present theory, which 
thus does not yet enable us to understand why the equilibrium with under- or su
persaturated vapour is unstable. In fact, there are configurations, to be considered 
later, which are more complicated than the surface point defects; they have large 
probabilities at equilibrium but are more difficult to produce. The equilibrium con
sidered here, smooth surfaces with point defects, is thus metastable: only the crystal 
alone is truly stable when A > 1 and only the vapour when A < 1. 

4a. The binding energies are, respectively, —V, —2V, and —3V in A, B, and 
C, whereas the chemical potential is —3V + feTln A. We thus find P A / ( 1 " PA) = 
Ae-2/3^;PB/(l - P B ) = Ae- '^^spc/Cl - p c ) = A. Hence PA :^ Ae'^WfeT ^ 
2 X IQ-'*, PB ~ A 6"^/*=^ :^ 4 X 1 0 - ^ and pc = A/(l 4- A) ~ 0.9. 

b. As far as the number of faces in contact is concerned, configuration (2) differs 
from (1) only for the faces in the a; = 0 plane: there is one less. The energy of (2) 
is thus higher than that of (1) by an amount V and we should attribute an energy 
^V^ to a kink. 
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c. For each kind of discontinuity the probabihty is proportional to e"'^ ' with 
a normalization factor Z = l + 2e^^^/'^ ~ 1. Hence, we findpD = 2e~^/^*^ = 4 % . 

d. For a vapour which is exactly saturated (A = 1) we have pc = 2' ^ ^ '̂*^ 
in the corner of a kink thus has an equal chance of being occupied as of being 
unoccupied; this means that there is no preference for the position of the kink, as 
one would have expected. However, if the vapour is supersaturated, a site in the 
corner of a kink has A times more chance of being occupied than being unoccupied 
when there is equilibrium with the vapour. The large value pc = 0.9 indicates that 
a step with a kink is unstable in the presence of supersaturated vapour: the kink 
has a tendency to move (leftward in Fig.16.2) so as to make the step progress. 
However, the atoms in the vapour must still reach C, which takes several stages 
and a certain amount of time, so that the step is actually metastable. In fact, the 
atoms from the vapour can only become part of the crystal after they have collided 
with the face; and there is practically no chance that the collisions will occur at 
a C, or even a B point, at the edge of the step. On the other hand, they easily 
end up in A sites. Thermal motion will see them depart again, but in the resulting 
metastable equilibrium there remains a proportion px = 2 x 10~ per surface site. 
Two-dimensional diffusion of these atoms sitting on the smooth face then allows 
them to meet with a step, most often in a B point, more rarely in a C point (in 4 % 
of the cases, as po = 4 %). We thus gradually reach an average value pg = 4 x 10^ . 
One-dimensional diffusion along the step finally lets the atoms arrive at C points 
where they have 9 chances out of 10 to become fixed. The efficiency of this process 
is based upon the fairly large number of kinks: 4 % of the sites along the step. The 
populations in A or B points would tend to get smaller, but new exchanges with 
the vapour and between one another maintain their populations at 2 x 10^ and 
4 X 10~^ while the step grows. An oblique step contains more kinks and thus grows 
more rapidly. It thus has a tendency to align itself parallel to an x- or 3/-axis. This 
is the microscopic dynamical process which explains why macroscopic crystals have 
simple geometric shapes. 

Steps may be formed spontaneously on a face as the boundaries of condensation 
islands - which grow and can join onto others. However, there is a mechanism which 
automatically creates steps. In fact, crystals contain screw dislocations; these are 
linear defects along which the lattice is distorted. In the centre of the photograph of 
Fig. 16.4 there is such a dislocation which is at right angles to the face; if we try to 
draw around it a square counterclockwise following the atoms in the lattice, we do 
not return at the starting point, as we would do in the case of perfect stacking, but 
we arrive in a site which is just above or just below it {Az = ±1). The existence of 
this dislocation implies the existence on the surface of a step which starts from the 
end of the dislocation. In a supersaturated situation this step advances with a speed 
which is practically constant and at right angles to its local direction. This entails 
that the step will wind itself up and produce the spiral shape which is shown. Note 
that the spiral is macroscopic on the atomic scale: we count 6 windings over 1 |im, 
which means that there are about 700 lattice cells between two successive steps 
in the photograph. We see also two other screw dislocations with the same sign 
of Az. We see, moreover, that the spiral flattens in the x- and j/-directions which 
are oblique in the photograph; this comes about because the rate of growth of the 
step is larger when it is not along those directions, as we noted above. We pass 
between the centre and the edge of the photograph through about twenty steps, 
which means that we go down by about 50 A. 
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5a. The number of atoms in 7?, is 

N = ni +n2 + • • • njc 

= (no + mo) + (no + mo + mi ) + (no + mo + mi + m2) 

H h (no H \-mK-i) 

K 

= KL + ^{K ~k)mk. 
fc=0 

b. There are in the region 7?., in the directions parallel to the z=0 and y=Q 
planes, as many faces with interactions —V as atoms present; this leads to a con
tribution —2NV. In each vertical plane a; = fe (0 < fc < K) which separates nj. 
and nj._|_i cubes, the number of faces contributing —V is the smallest of the two 
numbers nj, and n ,̂_)_i, that is, 

i(nfc + nfc+i) - i |nfc+i-nfcl = ^(nfc + n^+i) - i|mfc|. 

Summing over k we get 

K 

-^"^{n-k + rik+i) = -no + iV + - n j c + i = N + L+- M, 
fc=0 

which gives us the total energy of the configuration. 
c. Using the expressions for N, E, and M and summing over all configurations 

{mj.} we have 

( K \ K 

KL + J2iK ~ k)mu \~\0VY. 
fc=0 / A:=0 

/ \ • ' ^ 

" ^ f c l 

Apart from the factor 

exp [a/CL +/3VL(3K + 1)], 

this expression is the product of the partition functions 

Zfc(Q,/3,7) = Y^ expj {a + ZI3V){K-k)+{^fiV-'i^ ^ _ l ^ y | ^ | I 
771—— OO ^ '- -^ ^ 

which are associated with each abscissa {Q <k < K ) where the step may have a 
discontinuity. 
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Each function Z^ has the form 

+ 0 0 

n—— 00 

+00 

m=0 

1 
1 - e -

-(^+T))m 

i-n ' 1 

l - 2 e ^ 

+ e 

1 
— e" 

-n 

-(£-?))m 

1 
-«+»? 

sinh^ 
1 + e~2i — 6"^+'' — e^^^'' cosh^ — coshiy' 

so that 

lnZ(a,/3,7) = aKL + (3VL{ZK + \) + {K + l ) ln sinh/3V/2 

K 

- ^ ln[cosh(/3V'/2) - coshTjfc], 

% = 7 - / ? F / 2 - ( a + 3/3y)(i<:-fc) = 7 -/3V"/2 - (K - fc)lnA. 

d. We get (nik), according to the definition of Z^, through taking a derivative: 

(mfc) = -—InZk = —ln[cosh(/3y/2)-cosh77fc] 

sinhr/fc 
cosh{l3V/2) — coshrik 

e. The slope {m^.} is constant when A = 1 since TJJ. is then independent of k. 
Therefore, if the vapour is exactly saturated, the step connects its ends, assumed 
to be fixed, on average through a straight line. 

The function (mfc) decreases with increasing rj^ since its derivative is 

d{mi^) cosh(|9y/2)cosh7j^ — 1 

'̂ ''fc [cosh{i3V/2) - coshrik] 
2 • 

As 774. increases with k when A > 1 and decreases when A < 1, the step is convex 
{d y/dx^ < 0) when the vapour is supersaturated and concave [d y/dx > 0) when 
it is undersaturated. The straight-line steps are unstable when A / 1. This direction 
of the concavity indicates the tendency of a step, the ends of which are fixed, to 
advance when A > 1 and to retreat when A < 1. The curvature increases as |lnA|. 
Notes. The formalism used above assumes that |%| < fiV/2, which restricts the 
possible values of 7 to 

[K-k)\n\ < 7 < pV + [K-k)\n\. 

These inequalities must be satisfied for all 0 < fe < K, whence 

\2-^ - PV - K\aX\ < j3V~K\\n\\. 

The factor 7 must be adjusted such that M takes its desired value, but that is 
impossible if 
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V 

A;T|lnA| 

This restricts step lengths which are possible when the vapour is super- or under-
saturated. In fact, as | In A| increases, the curvature of the metastable steps which 
we have just studied increases, so that they cannot be very long. 

One should also note that the existence of accidents which have here been 
neglected - lateral protrusions of the step, depressions behind it, islands in front 
of it - is essential to explain why the step is not stable, but only metastable when 
A ^ l . 

Finally, we have (mj.) = 0 for a step parallel to the x-axis in equilibrium with 
its saturated vapour (A = 1), and hence % = 0 and 7 = I3V/2. The corresponding 
Boltzmann-Gibbs distribution gives for the probability of a discontinuity Ay = ma 

cosh(/3y/2) - 1 
smh(/3V/2) 

(-lf3V\m\) 

Using the fact that e~^ ' ~ 2 x 10~ <C 1 we find that the hypotheses used in 4c 
are justified and recover the value po = 4 %. 

6a. We must have 

smh{pV/2 + K\n\-j) 
(mo) - (.osh(/3V/2)-cosh(/3F/2 + i i ' l n A - 7 ) 

and 

0 = (m \ = sinhil3V/2 - 7) 

^ ''' cosh(/3F/2) - cosh(/3y/2 - 7 ) ' 

which implies that 7 = PV/2 and that 

sinh(i£:inA) 1 = 

K 

cosh(/3V/2) - cosh(Jf In A)' 

lncosh(/3y/2) 

In A 

b. Treating fc as a continuous variable we get 

^ = E ^ - ^ ) - - / " ' ' cosh(/3y!r2) '-cosh,. ' 
K 

where one must substitute for r/j. its value 

Vk = - lncosh(/3V"/2)-hfe InA. 

Using as variable t = coshiyj. we can integrate straight away and the result is 

M = — r rf^ = J - In '=o«h(^F/2) -- 1 - r cosh(/3V/2) - t In A cosh(/3y/2) - X ' 



452 16. Problems 

where X = cosh [in cosh(/3y/2)] = i [cosh(/3V/2) + {cosh(^F/2)}"^] so that, fi
nally, 

M = J - In 2cosh(^K/2) 
In A cosh{l3V/2) + 1' 

Note. We could have obtained this result without calculations. In fact, we note that 
In Zk depends on the variables a, /3, 7, and k only through /3 and the combination 
Tjfc. A first consequence of this is that 

^ I n Z f c = -{K-^k)^lnZk = iK^k){mk), 

which, after summation over k, gives us again the expression for N from 5a. We 
obtain a more remarkable consequence when we consider fc as a continuous variable, 
x/a. We then find 

5 , ^ InA 9 ^ InA , . InX dy 
-— In Zk = -^ Zk = (mfe) = — ; 
ox a oj a a ax 

after determining the integration constant at x = 0, we obtain 

y = - r ~ r ^^ ~^^ ^ = ^"• 
In A ZQ 

We can thus, when A / 1, apart from additive and multiplying constants, interpret 
the logarithm of the partition junction Zk{a, (3,7) as the equation of the edge of the 
step in the y{x)-plane. Explicitly, we have 

y ^ J _ j ^ cosh{f3V/2) -coshT/fc 

a InA cosh(/3F/2)-cosh770' 

which for k = K gives again M. Finally, integrating the equation for y{x) from fe=0 
to k=K shows that In Z{a, /3,7) is iteeZf directly related to the area behind the step, 
that is, to the number of atoms, N. We can find the thermodynamic interpretation 
of the multiplier 7 through identifying the Legendre transform 

- J f c T [ l n Z + 7 M ] = U~TS-fj.N = A 

with the grand potential, which is a function of T, fi, and M, so that 

dA 
- ^ ^ ^ - dM 

is the deformation energy of the edge of the step in equilibrium with a vapour with 
given T and V, when M changes by unity for fixed K. 

c. If we neglect e~^ ' ~ 2 x 10~ as compared to 1, we can replace K and M 
by 

whence we have 
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K + M = 
JV_ 
2 1nA 

200. 

The y{x)-cuTve determined above has a slope of 1 near x = 0 and soon turns 
down in such a way as to reach a rather long almost horizontal part; when x = Ka/2 
the slope 

{•mk) 
sinh(ir inA/2) 

cosh{l3V/2) - cosh(Jsr In A/2) 
0.1 

is already small, and 

M-y 1 
In 

cosh(^y/2) 
a In A cosh(/3V/2)-cosh(if lnA/2) 

3.5 

is small compared to M ~ 35. 
To describe an island we must join up 8 such step sections, derived from one 

another using the symmetry of a square (Fig.16.10). The island thus has the form of 
a square with rounded angles, with an edgelength 2{K + M)a ci 1000 A = 0.1 |im; 
this value is the same we found at the end of 5 as upper bound for K for a stable 
step - a limit reached for an edge bounding half of the island. 

As the supersaturation increases, the size of the island, which we can also write 
as Va/{fj, — no) decreases as /x —/XQ = kT In A. As the instability becomes larger and 
larger, the metastable islands become smaller and smaller. However, the shape of 
the islands, characterized by the ratio K/M = PV/{2 ln2)—1, does not change with 
pressure. In fact, Eq.(4) for the edge y{x) depends on the coordinates and on A only 
through the combinations x In A/o and y In A/a. On the other hand, increasing the 
temperature with A constant makes K/M decrease and also makes K+M decrease 
so that the islands become more rounded and they shrink when the temperature 
rises. At very low temperatures (PV 2> 1) they are nearly square. 

In the photograph (Fig. 16.8) we observe the various characteristics of the islands 
which we have studied here: square shapes with rounded angles and practically 
constant dimensions. The edges of the squares indicate the x- and jz-directions 
of the cubic lattice; the curved parts represent many discontinuities at a scale of 
a ~ 2.5 A. (In actual fact, the photograph corresponds to A < 1 and the closed 
curves are the boundaries of hollow dips in the face and not raised islands; the above 
theory gives the same shape for A as for 1/A, with convex steps being replaced by 
concave steps.) 

A^i_ s. 

\ 
/ v 

K / 
/ 

/ 

\ 

V 
\ Fig. 16.10. Geometry of an island 
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16.4 Order in an Alloy 

In this problem we consider order-disorder transitions in cubic alloys of the 
AB-type, such as CuZn. 

To do this we consider a set of N points which constitute the sites of 
a cubic lattice; this lattice is designated by (a). We also consider another 
set of N points constituting the sites of another cubic lattice, (b). The two 
lattices are such that each site of the lattice (a) is the centre of a cube of the 
lattice (b) and vice versa. We see thus that each site of (a) is surrounded by 
8 "nearest-neighbour" sites belonging to (b) and vice versa. We assume that 
the number N is sufficiently large that boundary effects due to the fact that 
the lattices are finite can be neglected. We also assume that a number N of 
A atoms and a number TV of B atoms are situated on the lattice sites of the 
(a) and (b) lattices so that they form an AB alloy which has equal numbers 
of the two constituent atoms. 

We could imagine that the alloy is perfectly ordered, that is, that the A 
atoms occupy the sites of one of the two lattices, say the (a) lattice, while the 
B atoms occupy the (b) lattice. We could also imagine a situation where the 
A and B atoms occupy the sites of the two lattices randomly: the alloy is then 
completely disordered. Between these two extreme cases there are intermedi
ate, partially ordered, situations. We shall study the order of this alloy as a 
function of the temperature. We assume that the lattice is incompressible so 
that the pressure does not play a role. 

We define a given configuration of the alloy, that is, a micro-state of the 
system considered, by placing on n well defined sites of the (a) lattice n A 
atoms and on N — n well defined sites of the (b) lattice N — n A atoms; the 
sites occupied by the B atoms are then also well defined. We now assume 
that the range of the interatomic forces is so short that the energy of each 
configuration depends solely on the binding energies of the nearest neighbours 
so that we only take those energies into account. All the A atoms, like all the 
B atoms, are indistinguishable from one another, and behave as structureless 
particles. 

We consider the set {A} of the configurations corresponding to a given 
value of n (0 < n < N) and we denote by Vx the statistical distribution such 
that all these configurations have the same probability. We define an order 
parameter A through the relation 

N 
n = y ( l + A), 

where a priori A Hes between - 1 and +1 . However, changing A to -A corre
sponds to interchanging the (a) and (b) lattices. We shall therefore restrict 
ourselves to values A > 0. Let riAa be the number of A atoms on the (a) 
lattice, TiAh the number of A atoms on the (b) lattice, riBa the number of B 
atoms on the (a) lattice, and UBY, the number of B atoms on the (b) lattice; 
we see immediately that 
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N 
riAa == '^Bb = n = —(1 + A), 

N 
nAb = "Ba = N-n = — ( 1 - A ) . 

We denote by N^A-, - ^ B B , and A^AB, respectively, the number of bonds be
tween nearest neighbours of the AA, BB, and AB type for a given configura
tion. 

1. Show tha t for a given value of A between 0 and 1 the numbers -/VAAJ 
A?BB, and JVAB are not determined by just giving A only. On the other hand, 
the averages N^A, NBB, and TVAB of the numbers ^VAA, - ^ B B , and NAB, 
respectively, evaluated over the macro-state Vx, depend solely on A. Evaluate 
these averages and show tha t 

NAA = NBB = 2 7 V ( 1 - A 2 ) , 

NAB = 4iV(l + A') . 

(One can calculate these values by finding the probability tha t two given 
nearest neighbour sites are bo th occupied by A atoms.) 

In order to prepare for the last question show that for A = 0 there exist 
micro-states which differ greatly from the average configuration, for instance, 
such micro-states tha t A^AB /N is very small. 

2. We denote by W A A the, negative, binding energy of two A atoms which 
are nearest neighbours; the energy —WAA is the energy one needs to break 
the bond and separate these two atoms, assuming tha t this is the only bond 
involved. Similarly, we denote by W B B and W A B the energies of the B - B 
and A - B bonds. We assume tha t those energies are known and tha t they are 
independent of the temperature . 

There are a large number of micro-states i of the system, with energy 
Ei{X), for a given value of A. Write down the canonical parti t ion function of 
the system in the form 

E-w-
What is the form of ^(A)? Can this function be calculated exactly? 

As it is impossible to use directly the Boltzmann-Gibbs distribution, we 
try to describe the system by the trial distribution Vx- We shall then de
termine the parameter A such as to simulate thermal equilibrium in the best 
possible way. Calculate the average energy U{X) associated with the trial dis
tr ibution Vx as a function of W A A , W B B , WAB, N, and A. Show that U{\) 
has the form U{X) = UQ — X^Ui, and write down expressions for Uo and Ui. 

3. Calculate the entropy ^(A) associated with the trial distribution Vx-
Sketch the behaviour of S{X). 
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4. Give a variational criterion for choosing amongst the distributions V^ 
tha t one which gives the best possible approximation for the canonical par
tition function Z. 

5. Use the above result to derive for each temperature T a value Ao(T) 
which approximately describes the equilibrium macro-state of the alloy as a 
function of the temperature . Distinguish the cases Ui > 0 and Ui < 0. Wha t 
can one say about the order in the alloy as function of temperature? Wha t 
happens at the temperature T^ — Ui/Nk1 

6. Use the same approximation to sketch for the case f/i > 0 the curves 
for the entropy and the specific heat as functions of the temperature . Indicate 
a simple physical measurement to obtain the experimental value of Tc-

7. Assume now tha t Ui is negative and consider what happens at zero 
temperature . Show tha t there are stable configurations which are not included 
in the above analysis. Comment on this result. 

Notes on Question 7. For 2VFAB > Ŵ AA + W'BB one finds the minimum energy 
configurations when the A and the B atoms are separated in space. The trial den
sity I^XJ because it is translationally invariant, is not adequate to describe these 
configurations which occur in it with a negligible weight. It therefore cannot de
scribe the transition which at low temperatures leads to an equilibrium macro-state 
such that in space the alloy is split into two phases in which either almost purely 
A or almost purely B atoms are each other's neighbours. Many alloys show this 
segregation effect; however, often the evolution towards equilibrium which requires 
a mass migration of atoms is so slow that the homogeneous mixture persists below 
the theoretical transition temperature. 

16.5 Ferroelectricity 

Barium t i tanate , BaTiOa, is a ferroelectric crystal with electrical properties 
which are similar to the magnetic properties of ferromagnetic solids. We shall 
study these properties here. 

First of all, let us look at the structure of this crystal. We shall hardly 
invoke this structure but it is the basis for the approximations we shall make 
and it enables us bet ter to understand the physics. The crystal has cubic 
symmetry. We can consider it as a stacking of cubes with a Ba"'""'" ion at 
each corner, an 0 ~ ~ ion at the centre of each face, and a Ti^+ ion at the 
centre of the cube. The t i tanium ions are small and can move freely to some 
extent, although the electrostatic forces will tend to keep them at the centre 
of the cube. The features of these attractive forces will be important in what 
follows. 

In the temperature range considered, between 0 and 200 °C, we can treat 
the motion of the t i tanium ions classically. 

We denote the local electrical field felt by a t i tanium atom by E and 
the charge of that ion by q. We consider a sample of volume i? containing 
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N titanium ions. We denote by P the polarization, that is, the total dipole 
moment per unit volume, and by EQ an external electrical field which may 
be imposed upon the sample. The local field E is the sum of the field EQ and 
the electrostatic field created by all the neighbouring ions. 

A rather simple electrostatic analysis which we shall use without proof 
enables us to relate the imposed field, the local field, and the polarization, 
where we retain solely the contribution due to the displacement of the tita
nium ions from their equilibrium positions; we find the relation 

P 
E = EQ + -—. 

660 

We remind ourselves that when an ion of charge q is displaced by an amount 
r from its equilibrium position, its dipole moment is qr. 

1. If we neglected all forces acting on the titanium ions, they would form 
a perfect gas of the same volume i7; what would be the canonical partition 
function Zo of this gas? 

2. Assume that the forces acting on a titanium ion which pull it back to 
its equilibrium position are weak. Due to the cubic symmetry, they can then 
be derived from an isotropic harmonic potential energy, 

4>o = la{x^ + y^ + z^), 

when the ion is at a position r with components x, y, z with respect to its 
equilibrium position. Calculate the partition function Zi of this sample, still 
assuming that E is zero and assuming that x, y, and z are small as compared 
to the interionic distances. For which values of (r^) would Zi go over into 
Zo? 

3. If the local field E is no longer zero, but is assumed to be the same for all 
ions and to be constant over the small displacements of the ions, calculate the 
new partition function Z2 after having found an expression for the potential 
energy of each ion. Treat the Ti sites as being independent and express Z2 
as function of the temperature and of E. 

4. Express the polarization P as a derivative of Z2, calculate it as function 
of E, and then calculate it as function of the external field EQ- Does it depend 
on the temperature? Show that in this model the crystal structure would be 
unstable at all temperatures if a is smaller than some value, which is to be 
determined. 

5. Assume now that the crystal potential is anharmonic and of the form 

(p = 4)0 + 01, 

where 0i is a homogeneous quartic polynomial in x, y, z. For symmetry 
reasons 0i is of the form 

01 = lbr' + lc(x' + y^ + z% 
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Calculate the part i t ion function Zz in this new case, as function of T and of 
the local electrical field E. 

Note. In the calculations we encounter integrals involving exponentials of polynomi
als. To calculate them, we shall assume that the coefficients b and c are sufficiently 
small that we can expand e~^'^'^ as a power series under the integral sign and retain 
in In Zz only the terms which are independent of and linear in h and c. Take into 
account that 

/ 
e ^ z dz 

r ( 2 n - l ) ( 2 n - 3 ) - . - 3 . 1 [^ (n > 1) 
(2p)" V P 

- , (n = 0), 
P 

or use the equipartition theorem (§ 8.4.2). 

6. Calculate the polarization for this case as function of E. Does it depend 
on the temperature? 

7. We define the dielectric susceptibility x oi the medium through the 
relation 

1 dP 
X = l i m — TTTT-

Eo^O £o oEo 

Calculate x and show tha t , if b and c are sufficiently small and satisfy a 
certain inequality, it is approximately of the form 

^ T - To ' 

provided To <T <^Ti; express Ti and To as functions of a, b, and c. 
8. Knowing tha t TQ = 118 °C, Ti = 150 000 K, and tha t the size of an 

elementary cube of BaTiOs is 4 A, evaluate a, b, and c using as units of energy 
and length the eV and the angstrom, and assuming tha t c = 0.8b. Remember 
tha t the electron charge is -1 .602 x 10"^^ C and tha t , if fcT = 1 eV, T = 
11 605 K. 

9. To study the ferroelectric properties of the substance we take as thermo
dynamic variable the polarization P. We then introduce the thermodynamic 
potential F{T, P), defined by 

p2 
F{T,P) = - kT In Z3 + f2{P-Eo) + n ^ , 

D£o 

where EQ = E — P / S S Q - Find the relation which connects EQ with the 
derivative V P F | T -

10. Calculate F{T, P) to first order in b and c, and show tha t it is of the 
form 

F{T,P) = F ( r , 0 ) + A ( T - r o ) P ' + / x ( P ' ) 2 + zy(p4 + p 4 + p4)_ 
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It will not be necessary to give a detailed expression for F{T,0). Express A, 
fi, and u as functions of a, b, and c. 

11. One says tha t there is spontaneous polarization, and the substance is 
then called a ferroelectric, when P can be non-vanishing although the exter
nal field Eo is zero. The expression found sub 7 for the susceptibility is no 
longer valid when there is spontaneous polarization. Calculate the sponta
neous polarization and determine its possible directions, depending on h and 
c. Write down x(T') in the various possible temperature ranges, for 6 > c > 0. 

12. Give a numerical value for the displacement of the Ti ions due to 
ferroelectricity at 0 °C; compare it with the mean square displacement due 
to thermal motion; the atomic mass of Ti is 48.1 g mol~^. Using the numerical 
values found sub 8, discuss the approximations used. 

13. Wha t do you think gives rise to ferroelectricity? How will it show in 
practice? 

CoTuments: 

We have used several approximations, which we shall now justify, in order to 
be able to treat the Ti ions as independent objects, each of them moving in an 
external potential, and thus to be able to factorize Z-^, 2%, and Z-i,. To begin with, 
the fact that each ion remains close to a crystal site enables us to regard all ions as 
distinguishable; the classical approximation is justified for kT ^ hy/a/m. 

We denote the ion situated near the origin by Ti(°) and the other ions by Ti*^"', 
1 < n < N. The effective potential seen by Ti^ ' represents the average of the 
interactions to which it is subject from the Ba, O, and Ti(") ions, and we must 
take into account that this potential is a self-consistent one, as we did in §§ 11.2.1 
and 11.3.3 for the electrons. In the above model ^ describes the action on Ti(0) 
due to the Ba, O, and Ti(») ions assumed to be fixed on the original lattice; in 
the language of § 11.4.1, it is the contribution to W{{Rn}), to second and fourth 
order in the coordinates x, y, z of T i ' ^ , evaluated by fixing the Ti^"' ions at the 
centres of their respective cells. However, one should add to t̂  the contribution 
associated with the displacement of the T i ' " ' ions. Related to the original lattice, 
the displacement r^"^ of such an ion is equivalent to a dipole qr^"''. Implicitly we 
have approximately evaluated the potential produced near the origin by these 
dipoles through replacing them by a uniform polarization P = Nq{r^"'')/Q with an 
isotropic cut-ofi' at short distances in order to take away the Ti(0) ion. This potential 
equals —q{P • •r)/3eo, and we have taken it into account by replacing the external 
field .Bo hy E = EQ + P/3eo- One can show that this continuous approximation is 
justified. 

Nevertheless, even though the single-ion effective Hamiltonian obtained this way 
is correct, the interaction between Ti^ ' and Ti^ ' , for example, is counted twice in 
the internal energy which one would find from Z2 or Zz, as it occurs once for Ti(o) 
and once for Ti(f) . To correct this error, we must subtract the total dipole interac
tion energy —OP /6£o- In this way we obtain the free energy F^ '(T, EQ) defined 
in § 6.6.5 by Eq.(6.92) and associated with the crystal, including its interaction with 
the external field EQ occurring in the Hamiltonian: 

F^°\T,EO) = -kThiZ3 + ~ P^. 
D£o 
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The same correction term was included in the definition of the thermodynamic 
potential F{T, P) which we used for question 9; this potential, which is the Legendre 
transform of F ' ^ with respect to EQ is associated with the internal energy (6.95) 
of the dielectric, if the energy of the field is not included. 

The double-counting error made in Z2 and Z3 has no consequences for the 
remainder of the problem. In fact, the expression for Z^ for a single site. 

^(0) ^ f d_rd_p ^^p [_^p2 /2^ _ ^ ^ ^ ^ ^ ( ^ . ^) 

shows that the polarization is correctly found by taking the derivative with re
spect to the total field E. The situation is the same as for the electrons (end of 
§ 11.2.1): counting in the internal energy the interactions between pairs twice and 
neglecting the self-consistency of the effective potential leads to a wrong expression 
for the thermodynamic potentials, but these two errors cancel when one takes the 
derivatives of the latter. 

We have seen (Exerc.lld) that when studying lattice vibrations it is incorrect 
to assume that the atoms are independent, as Einstein did; in that case the in
dependent entities were the phonons rather than the atoms (§ 11.4.2). Here, it is 
legitimate to treat the Ti ions as being independent since they move in the fixed 
lattice of the Ba and O ions. 

Interpreting the vector P as an order parameter with three components we see 
that the approximate expression. 

+ 

found in question 10, with 

b{p'f-c{P^ + P^ + P^)] 

^o - ' ^ °^ " « 1, m - '"' 
Ti 3 Nq^ ' 56-3c' 

has exactly the form used by Landau in his theory of phase transitions (Exerc.6d). 
One could use it to extend to ferroelectricity the results obtained in Exerc.6d for 
Ising ferromagnetism. 

16.6 R o t a t i o n of Molecu les in a G a s 

We shall s tudy the thermodynamics of the rotational degrees of freedom of 
the diatomic molecules of a HCl gas. We assume that these rotational degrees 
of freedom are completely separated from the translational degrees of freedom 
of the molecules, which can be treated as in Chap.7. If we thus forget about 
the kinetic energy we shall assume in the whole of this problem tha t the 
Hamiltonian of a single molecule reduces to the rotational energy: 
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^ = 2 J ' 

and tha t its micro-states axe characterized by two quantum numbers Z, m 
(integers with \m\ < I). We also assume tha t we can t reat the molecules as 
distinguishable from the point of view of their rotations. For an HCl molecule 
its moment of inertia is in energy units determined by 

£ = — = 1.3 X IQ-^eV. 
2 J 

Remember that room temperature of 300 K corresponds to an energy of 
i eV. Remember also tha t the eigenvalues of L^ are h l{l + 1). 

1. Give for a single molecule in canonical equilibrium expressions for the 
rotational parti t ion function Zi , the average energy Ui, and the entropy Si 
as functions of the temperature . You do not have to sum the series which 
occur. 

2. Now consider a mole of gas with N = 6 x 10^^ independent molecules. 
Write down its canonical parti t ion function Z and its rotational internal 
energy U and entropy S in terms of Zi, U\, and Si. 

3. Sketch the general behaviour of the function S{U). Discuss the sign, 
slope and curvature of this curve. 

4. Find the behaviour at very low temperatures ( T <c; 10 K) of the specific 
heat per mole C{T) associated with the rotation of the molecules. Give the 
numerical value of C{T) at T = 5 K. How does the function S{U) behave at 
the origin? Do we have to distinguish between the rotational specific heats 
at constant pressure and at constant volume? Why? 

5. Evaluate C{T) at room temperature (assume without mathematical 
proof tha t a series whose successive terms are very close behaves like an 
integral). Give its numerical value. Compare this with the result from classical 
statistical mechanics (equipartition theorem). 

6. Sketch in detail the function C{T) and indicate the numerical scales. 

Notes. We have given in Chap. 8 a rigorous derivation of the hypotheses on which 
this problem is based. The translational degrees of freedom, which can be treated as 
if the molecules were classical point particles, contribute additively to the entropy 
and the energy, and thus to In ZQ- The fact that the molecules are indistinguishable 
must be taken into account when we deal with the translations but it turns out 
(§8.1.3) that the internal degrees of freedom of the molecules give a contribution 
which is simply proportional to N, as if they were distinguishable. Also, the elec
tronic degrees of freedom and the molecular vibrations do not play a role except 
at very high temperatures and are frozen in at room temperatures (§§8.3.1, 8.4.1, 
and 8.4.4). 

The rotational degrees of freedom are not coupled to external forces, in particu
lar, not to the pressure since the molecular rotational energy is independent of the 
volume; the contribution from the rotations to the specific heat is thus the same 
for constant pressure as for constant volume; moreover, dU only contains the heat. 
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Detailed Solution of Question 6: 

The C(r)-curve leaves the origin at low temperatures with a horizontal tangent 
and tends to the constant C = Nk at high temperatures. On dimensional grounds 
we see that the scales are characterized by the quantities e/k = 15 K along the 
abscissa and Nk = 8.4 J K~ along the ordinate; in particular, the transition 
between the limiting cases of questions 4 and 5 occurs at temperatures of a few 
tens of degrees K. 

The specific heat contains not only a rotational but also a translational contribu
tion. The latter is at practically all temperatures given by the classical value ^Nk. 
The specific heat of a diatomic gas thus goes from a value f ATfc at temperatures of 
a few K to a value of ^Nk at room temperatures. 

If we wish to plot the C(T)-curve with some accuracy we must find correction 
terms at low and high temperatures. In the first case, keeping the terms / = 0, 1, 
and 2 in Z, we find 

InZ « iV ln ( l + 3e-^''^ + 5e-*'''^), 

and hence, expanding in powers of e~^^, 

C « 12Nk{l3efe-^'^^ ( l - ee^^''^ + 42e-*' '^). 

Successive terms indicate where the expansion can be used {kT < 0.8e) and indicate 
a rise and then a infiection of the C(r)-curve. To study the behaviour at high 
temperatures we need the calculation of the corrective terms in the approximation 
used under 5. Let us therefore turn again to the proof of that approximation. 
Putting 

fix) = - ^ e-'^-t^+i), 

we find that the problem consists in evaluating 

oo 

1=0 

in the limit as j3e is small. We note that the successive derivatives of / with respect 
to X are for fixed I infinitesimal quantities in /3e of increasing order, and that each 
of them can be calculated at the point l + lhy means of a Taylor expansion around 
the point I. The finite differences 

Apil) = f^'>\l + l)^ f^^Hl) 

can thus be written as series in / ' ' ^ with q > p, and we use this to derive by a step 
by step inversion the Bernoulli series 

/ (0 « Ao{l) - - A,{l) + - ^ p - - - ^ , 

which expresses the function / as a finite diiference expansion of increasing orders 
in /3e. The summation of f'{l) over I retains on the right-hand side only the extreme 
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terms [1 = 0 and / = oo), which leads to the Euler-Maclaurin summation formula 
(see end of volume): 

1=0 

This gives us an asymptotic expansion in powers of fie: 

1 1 1 . /3e^ , W / 3 £ , ( / 3 £ ) ' m ' ' \ 

>^'^ 

1 

lich leads to 

In Z « -N 

lence we get 

U « NkT-

1 
3 + 

ln/3£ 

Ne 
3 

f3e 
15' 

.fA 

45fcT 
Arfc + 45fcT2 • 

The curve (Fig.8.3) tends to its asymptote from above and thus has a maximum. 
As the two limiting expressions match each other, the full curve can be determined 
through interpolating. It lies between the specific heat of an harmonic oscillator 
which increases from zero to the classical value Nk (Einstein model, Fig.11.20, or 
molecular vibrations, Fig.8.4) and that of a two-level system which shows a peak 
(paramagnet, Fig.1.5). This also agrees with the intermediate nature of the energy 
spectrum. 

16.7 Isotherms and Phase Transition of a Lattice Gas 

We are going to study the effect of the intermolecular interactions in a fluid 
in order to understand the shape of its isotherms and the existence of a 
transition between the liquid and vapour phases. Figure 16.11 gives us a 
typical experimental diagram in the Wj'P-plane, where v — 1/g — Q/N is 
the reciprocal of the density and V the pressure. We want to explain this 
diagram qualitatively, start ing from a simplified microscopic theory. To do 
this we evaluate the grand parti t ion function ZQ{a,/3,12), using a model and 
approximations which we shall s tate as they become necessary. The molecules 
are t reated as structureless point particles of mass m; this is justified for 
monatomic fluids such as helium or argon up to temperatures of the order 
of 10® K, and remains valid in a large temperature range for simple fluids, 
at least as far as the equation of state is concerned. We assume tha t the 
tempera ture is sufficiently high and the density sufliciently low tha t we may 
treat the molecules as classical particles; we shall not be interested here in 
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3'/atm 

9 10 11 12 v/cm' 

Fig. 16.11. Isotherms of 1 g of CO2 

high pressures or low temperatures such that crystallization - or for helium 
superfluidity - effects come into play. Let ri,- • • ,ri,- • •, rj\i be the positions 
and Pi, • • • ,Pj, • • • ,Pjv the momenta of the particles. These particles interact 
with one another through an isotropic potential V{\ri — rj\) which is known 
either from experiments on molecular collisions or from a theoretical approach 
based on the structure of the molecules. We show in Fig.16.12 the behaviour 
of this potential V{r)\ it is practically infinite when the molecules are at 
the same position, strongly repulsive at short distances apart, and becomes 
attractive at larger distances apart: it changes sign for r = ro of the order of 
a few A, and for a slightly larger r it has a minimum of the order of 10~^ eV 
while rapidly tending to zero at still larger distances apart. 

1. Show that the grand partition function has the form 

ZG{a,(i,Q) = Y, C^^YN, (1) 
N 

Fig. 16.12. The intermolecular potential 
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where YAT is the multiple integral 

hij-' YN = — I d'^ri • • • d-'rN exp 
JV 

•/3 E n\ri-rj\) 
i,3 = l 

(2) 

and where ^ is a function of a and /3 which must be written down. 
As it is impossible to evaluate Yjv exactly we shall construct a model 

which retains the qualitative features of the problem and which is based 
upon the following trick. We replace the integral Yjv by a finite Riemann 
sum where each of the coordinates xi,yi,zi,- • •, XN, VNI ZN takes on discrete 
integer values, multiplied by a length I. Instead of letting I go to zero, we 
fix it at a finite value which we choose slightly larger than TQ and close to 
the minimum of the potential V{r). This choice enables us to carry out the 
calculations and it will be justified by the agreement between the results 
and experiments. Space is thus quantized into a lattice with each cell having 
a volume b = l^ and with Q = fi/l^ sites which are denoted by the index 
q= 1,2,•••,(5; the fluid is enclosed in a cubic vessel of volume fi. We assume 
that the replacement for each particle of an integration over the continuum 
r = {x,y,z) by a summation over the discrete points Rq = ixg,yg,Zq) of 
this lattice does not change the qualitative properties of (1), even though 
I is not small compared to the characteristic lengths of the potential. This 
approximation is commonly called the "lattice gas model". 

2. Prove that in this approximation the expression (1), (2) can be written 
as a sum 

ZGia,f3,n) = y (6C)"i+-+"« e - ^ ^ « " » , (3) E 
over occupation numbers ni , • • •,rig, • • •, UQ associated with the sites, which 
each take on the values 0 and 1. The function W of these occupation numbers 
is defined as 

1 ^ 
Wi{n}) = T^(ni , . - - ,n„- - - ,nQ) = x E V{\Rq--Rq>\)nqnq,. (4) 

What is the physical property which corresponds to the restriction of the 
permitted values to 0 and 1 for the occupation numbers? 

First of all, in questions 3 to 5 we try to estimate the role played by the 
short-range repulsions between the particles. To do this, we neglect the at
tractive forces by retaining solely that part of the potential which corresponds 
to distances apart less than ro (Fig. 16.13). We denote by Zi the approximate 
grand partition function and use the index 1 to indicate quantities corre
sponding to this approximation. 
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V Fig. 16.13. Model repulsive potential 

10-̂  eV L 
lA 

3. Evaluate for this case expression (3) for Zi and give the grand poten
tial, Ai, and the average number of particles on a particular site, {nq)i, as 
functions of a and /3. To simplify the notation retain (̂  as a parameter. 

4. Show that there is a formal analogy between the model we have just in
troduced and a system of non-interacting fermions, the energy characteristics 
of which must be given. Use this analogy to find again Zi and {nq)i. 

5. Use the results of 3 to derive the set of isotherms Vi{v,T). Discuss 
briefly the limiting cases of low and high densities. 

For the remainder of this problem we return to the realistic potential of 
Fig.16.12. Prom now on expression (3) for ZQ contains the attractive poten
tials between particles on neighbouring sites, q and q'. Notwithstanding the 
approximations we have made, it is still not possible to evaluate (3) exactly 
and we shall introduce a further approximation of a variational kind. We 
note that (3) has the same form as the partition function associated with 
a fermion density operator defined in the space of the occupation numbers, 
n i , • • •,rig, • • • ,nq; we shall model this one by a simpler density, 

r»o(W) ^ £>o(ni,--- ,n„--- ,nQ) = ^ ^n.+...„,+...n«^ (5) 

depending on an adjustable parameter A and normalized by a factor ZQ. We 
introduce the function, which need not be evaluated explicitly for question 6, 

{"} {n} 

+ ln(&C) E ^0 E "'• (6) 
{n} q 

6. Adapt the discussion of §4.2.2 to prove the inequality 

lnZG{a,l3,n) > ^ia,l3,f};X). (7) 

This inequality will be the basis of the final approximation. The trial 
density DQ which models best the properties of the system at equilibrium 
will be the one which leads to the smallest possible difference between !P(A) 
and In ZQ for given values of the thermodynamic variables a, fS, and i7. Using 
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(7) we find that the best possible choice for A is the one which makes !?(A) a 
maximum, and we therefore shall use the approximation 

lnZG{a,P,n) ~ max ^{a,/3,n;X). (8) 

In order to get an explicit expression for !f' we note that we can neglect 
boundary effects in the limit of large volumes, f2. Thus, except for a small 
number of sites q near the surface of the sample which make a relatively 
negligible contribution, the expression 

Q 

b Y^ V{\R,-R,,\) = -2a, (9) 
, ' = 1 

which simulates in our model the integral /^ d^rV{r), for the attractive 
part of the potential, is a negative constant which does not depend on the 
site q. 

7. Prove by a direct calculation that the function ^{a,P, Q; A) is equal to 

?{' ^ia,P,0;\) = - | l n ( l + A) + 

8. Write down the condition d^/dX = 0 which 3'(A) must satisfy at its 
maximum. Use this condition to derive the equation of state V{v,T), first in 
parametric form in terms of A and then explicitly. The distinction between 
minima and maxima of <Z'(A) will not be discussed until we come to ques
tion 10. 

9. Sketch the isotherms V{v, T) obtained in the previous question. Show 
that there exists a critical temperature Tc for which the isotherm has an 
inflexion with horizonal tangent at the point v^Vc- Evaluate for the case 
of the potential given in Fig.16.12 the order of magnitude of the critical 
temperature Tc, the critical molar volume NAVC, and the critical pressure V^. 
Use the numerical values indicated in Fig.16.12 and the data from the end of 
the book. 

Not all the isotherms constructed here are in agreement with experiments. 
Moreover, they contain parts which do not correspond with the problem as 
we set it, that is, with finding the absolute maximum of !P'(A). While the 
thermodynamic equilibrium state, characterized by T and fi, is described 
approximately by the absolute maximum of !P'(A), we shall assume that a 
local maximum describes a metastable state. 

10. Indicate the regions corresponding to stability or metastability in the 
v,'P-plane. 

11. In order to retain only those parts of the isotherms which correspond 
to thermodynamical equilibrium states Maxwell proposed the construction 
indicated in Fig. 16.14: we replace an oscillating part of the curve by a hori
zontal liquefaction plateau which, together with the original isotherm, bounds 
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9> Fig. 16.14. The Maxwell construction 

two equal areas. The ends L and V of the horizontal line correspond to the 
liquid and to its saturated vapour. Justify this construction, for instance, 
by tracing the variation of fj., V, and v along an isotherm. Identify in the 
V, •P-diagram the region where a homogeneous stable phase exists. 

12. Show tha t in the T, P-plane the liquid phase and the saturated vapour 
phase coexist along a certain curve, Vs{T); indicate how this curve can be 
determined in principle, without performing explicitly the necessary calcu
lations. Show tha t the function Vs{T) is an increasing function and tha t 
it terminates at the critical point determined in question 9. How are the 
metastable phases represented in the T, P-plane? 

13. Show that there exists a vaporization heat per mole, L, and tha t it 
satisfies the Clapeyron relation 

where the derivative is calculated along the saturated vapour curve and where 
NAVV and NAVI, denote the volumes of one mole of the fluid in the vapour 
and liquid phases. 

Solution 

1. The general expression of the grand partition function is in the classical limit 

N=0 '' 

After integrating over the p we get for each particle a factor 

which leads to expressions (1), (2) for ZQ. 
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2. In the lattice approximation the integration over each of the coordinates 
''1) •" • 1 '•JV gives a sum with a weight I for each dimension. We get for the integral 

^ 1 ,3JV V ^ 
N 

-P Yl Viln-vj 
(i>3) 

where the sum is over the positions r i , • • •, r-jv of all the particles which each suc
cessively will occupy all the sites Rq of the lattice. Instead of analyzing this sum 
in terms of particles, let us analyze it in terms of sites. First of all, we note that 
configurations where a site is occupied by more than one particle do not contribute 
to Yjv as the potential V{Q) is infinite and thus e~^ ' ' is zero. We can therefore 
restrict ourselves to configurations where N of the sites are occupied by a single 
particle and Q—N are empty. Let us associate with each site q an occupation num
ber nq which can take on the values 0 and 1. Each of the configurations considered 
is characterized by giving a set of numbers nq which are independent of one an
other, except for the constraint ^ Uq = N. In the summation over the positions of 
the particles, a given configuration will occur Â !̂ times, where the N\ correspond
ing terms in Y}v are obtained by performing all the different permutations of the 
indices \,- • • ,N oi the particles. Finally, in calculating the potential energy associ
ated with a configuration we have a contribution V{\Rq— -R„'j) if both sites q and 
q' are occupied, and zero otherwise. The first situation corresponds to nqn„i = 1 
and the others to nqn„i = 0, so that we have for the potential energy of a given 
configuration 

Q Q 

W{{n}) = Y, V{\Rg-Rg,\)nqng, = 3 Z ! V^d^g --R,'l)'^9 V 

( Q > 9 ' ) ( 9#9 ' ) 

We get thus 

YN = 6 ' ^ 5 3 e x p [ ~ T V ( { n } ) ] , (11) 

where the sum is over those configurations for which ^ rig = A'̂ . If we substitute 
(11) into (1), the constraint on the Uq is removed and we obtain (3). 

The restriction to the values 0 and 1 of the numbers Uq comes from the fact 
that the potential V is infinite at the origin. 
Note. If there were no potential, all values 0,1, • • •, -|-oo would be possible for the 
Uq and each configuration would occur A?^!/J^(ng!) times in the summation over 
the particle positions so that we would have 

- o ^ E n ^ ^ n iq. 
{n} q q 

We find again, even for finite grids, the well-known perfect-gas expression for ZQ, 
which we would not have obtained if we had restricted the values of the Uq to 0 
and 1. 
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3. As two different sites will always be at a distance apart which exceeds ro, W 
will be zero and the potential will not contribute to (3) - except implicitly through 
the restriction rig = 0 or 1 which accounts for the repulsive part of the potential. 
We have thus 

Q Q Q 

^1=E n (^^)"'=n E (^^)"=n (1+^0=(1+Kf. (u) 
{n} g = l 9=171=0,1 g = l 

Hence we get the grand potential 

OhT 
^l (M,r , /2 ) = - i l ^ l n ( l + 6C), 

where (, which is given by (10), is a function of /x and T, 

C = ^--^{2mnkTf/^. (13) 

By differentiation we get the average number of particles per site 

4. The sites q play the same role as single-fermion states which can be either 
occupied (rig = 1) or empty (rig = 0). The probability for a configuration {n} for 
non-interacting fermions is 

g = l 

where Sq is the energy of the single-fermion state q. Comparing (12) and (13) shows 
the formal analogy between the two probability distributions: our classical gas gives 
expressions which are the analogues of those for a gas of non-interacting fermions 
where all single-fermion states have the energy 

e = _ 3 f c T l n ( ? ^ 6 ^ / ^ ) (15) 

(one could also have assigned zero energy to those fermions, shifting at same time 
the chemical potential fi, since the only combination which occurs is b( = e^'^^^^^^). 

Expression (12) for Zi is therefore the grand partition function 

Zi = h+e-^^^-'')]'' 

for a gas of fermions and the mean occupation number (14) is the same as the Fermi 
factor 

e/3(e-M) 4- 1 • 

Note that the repulsive potential at short distances apart for classical particles 
simulates the quantal exclusion principle according to which a site can be occupied 
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by at most one fermion. One should not extend the analogy to thermal properties 
as the effective energy of the fermions is temperature dependent. 

5. The density equals 

Q = - -
n 1 + fec V 

and the pressure 

For fixed T we get by using these two expressions to eliminate jx or, what amounts 
to the same, eliminate ^ 

^ kT , V , ,^ , 
P i = — In - . 16 

6 V — b 

At low densities {v <^ b) we regain the perfect gas law 

^ kT 
Vi = —, 

V 

but the repulsive forces lead to an increase in the pressure which, for large v/b, 
equals 

^ kT ,^ b s 
V ^ 2v ' 

The pressure becomes infinite as « —> 6: one cannot exceed a volume 1/6 per particle. 
This behaviour (16) of the isotherms at low densities and high pressures agrees with 
experiment. 

6. Expression (3) for ZQ is formally the same as the grand partition function 
of a fermion gas, as in question 4. Nonetheless, the energy of a configuration {n} 
now includes not only the energy of the independent particles ^ £nq, but also 
the interaction energy W, expressed through (4) as a function of the occupation 
numbers. 

The density operator Do[{n}) represents in this language a system of non-
interacting fermions at equilibrium where all configurations have zero energy and 
where the multiplier a equals In A. The entropy of that state is —fcTrDo In DQ. 
The second term in "P" then represents the average —P{W)Q = —f3TrDo W and 
the last term represents a'{N)o = a'TiDoN, where a = ln(6^). Equation (4.10) 
of the main text, in which the trial density is Do, while the conserved quantities 
are the energy W and the number of particles with associated multipliers /3 and a , 
reduces to (7). 

7. The expression for ZQ is formally the same as (12) which was evaluated for 
Zi in question 3, apart from replacing b^ by A. We have thus ZQ = (1 + A)* .̂ At 
the same time the average {nq)o of nq over Do is given by (14), whence 

<"9)o = I T A - ^̂ '̂̂  
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Hence we get 

^ = - Tr Do In Do = / In ZQ - (In A) ^ n , \ 

Q ln(l + A) - ( I n A ) ^ ] , 

an expression which we could also have obtained by a straightforward calculation. 
To calculate the second term in 'f we note that since DQ is factorized, we have 

(ngn,/)o = (ng)o(ng/>o = ( 3 ; : ^ ) 

Hence we get, using the definition (9), 

Q ^ . - 2 

T^D^W = Y.D^{{n})\ Y. ^ ( K - V I K V = - X I T T A ) ' 
{ n } <!,<j' = l 

Altogether we get for 'P the expression 

^(.,/3,A) = ? { M l + A ) - ^ l n A + ^ ( ^ ) % ^ l n ( 6 C ) } , ( 1 7 ) 

where C, is the function of a and (3 defined in (10). 
8. The extrema of !? satisfy the equation 

0 

In 

= 

A 

h 

n 
+ 

^ b 

or 

A 
1 + A 

0, (18) 

which determines A as function of a and /3. 
The pressure is related to A = kT max <P' through the equation 

^ dA A kT ^ 

an n n ' 
where ^ is given by (17) and where A, a, and (3 are related through (18). Using 
(17) and (18) to eliminate a (or C) we get 

r = fHi^^)^~{j^y. (19) 
We obtain the density either by differentiating A with respect to fj, or directly by 
starting from (14'): 

(20) 

1 
V 

1 
72 

= -
1 
n 

= 

dA 
5/i 

('̂ g>o 
b 

1 

= 

[89 09 

1 A 
6 1 + A' 

da 
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Equations (19) and (20) give a parametric representation of the equation of state. 
We can eUminate A by writing (20) in the form A = h/{v - b), which gives us 

kT , V 
-— In 

0 V — 

a (21) 

9. The equation of state (21) is similar to the van der Waals equation and it gives 
us a similar family of isotherms in the vjP-plane (Fig.16.15). At high temperatures, 
low densities, or high pressures, we get again (15). However, the isotherms which 
we have now found do not decrease everywhere, as the derivative 

dV 
dv 

_ fcT / 1 _ \ \ 2a 
b \v ~ b V J v^ 

(22) 

can, for fixed v, become positive, provided the temperature is sufficiently low. The 
critical point is obtained from the condition that 

b {v ~ &)2 
6o 

vanishes at the same time as (22), while (21) is satisfied. This yields 

Fig. 16.15. The isotherms for the lattice gas 
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^c = 26, kTc = ^ , Pc = ^ ( 2 1n2 - 1). (23) 

For a fixed value oi v > b the pressure increases with increasing temperature so 
that the isotherms sweep the plane in a continuous way. When T > Tc, they decrease 
with increasing v; the critical isotherm for T = Tc has an inflexion point with a 
horizontal tajigent; when T < Tc the isotherms have a maximum and a minimum 
given by equating (22) to zero. The curve on which the maxima and minima of 
V{v) he is obtained by using (21) and (23) to eliminate T with dV/dv = 0: 

„ , . 2a(v — b) , V a ,„, , 

This curve is represented by the dash-dot line in Fig. 16.15; it has a maximum at 
the critical point. 

The value of / taken from Fig.16.12 is 4 A, so that b = l^ = 64 x 10"^° m^. 
Equation (9) gives 

o = - ^ [6;^(0 + 12V{lV2) + 8V{lV3) + • • • ] , 

where the numbers 6, 12, 8, • • • represent the number of sites on the lattice at 
distances I, iV^, /%/3, ••• from the origin. This yields a/b = 6.3xl0~ eV. Using 
(23) we get thus Tc ~ 400 K, Vc ~ 80 cm^ m o l ~ \ Vc ~ 150 atm, which all have 
orders of magnitude corresponding to typical experimental values. 

10. The form of the isotherms found above does not agree with experiments 
at temperatures below Tc, where the liquefaction plateau which we expected has 
been replaced by an oscillation. One even finds, for T < O.SlTc, negative pressures 
along these curves, which is in contradiction to the tenets of statistical mechanics 
[Z > 1) or of equilibrium thermodynamics. 

This is due to the fact that we have taken into account not only the absolute 
majcimum of !?(A), but also possible local maxima and minima which lead to par
asitic parts of the isotherms. When d^/dX = 0, which is expressed by Eq.(18), the 
second derivative of tf' equals 

6 9^^ ^ 1 r 2/3a 1 11 /3 , ,, 4 a p r 2/3a 1 1 ] /3 4 
0 dX^ (1 + A)2 L 6 (1 + A)2 A J bv^ ' dv' 

so that the increasing parts of the isotherms correspond to minima of ^ and must 
be discarded. 

The decreasing parts of the isotherms correspond to local maxima, that is, 
to stable or metastable equilibria. In the v, P-plane the dash-dot curve (24) of 
Fig.16.15 bounds to its right the gaseous phase, either stable or supersaturated 
metastable, and to its left the liquid phase, either stable or superheated metastable. 
Inside this curve there are no homogeneous stable or metastable fluid states. 

11. We must, for given fixed a and /3, study the way \1'{X) varies with A, in order 
to determine its absolute maximum. Its extrema are given by (18); the derivative 
of this equation with respect to A is 

1 ^Tc 1 
A T ( l -hA)2 ' 

which is positive everywhere when T > Tc and changes sign twice when T < Tc-
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Hence (18) increases when T > Tc and has first a maximum and then a minimum 
when T < Tc'. !P'(A) has a single maximum for T > Tc, and it has either a single 
maximum, or two maxima separated by a minimum when T < Tc. The latter has 
already been placed on the rising part of the isotherm; we still have to eliminate 
the lower maximum. 

To do this we fix T below Tc and let /j. change from —oo to +oo, while tracing 
the shape of tf'(A) and the values of V and v associated with its maxima and 
minima. The equations we need are thus (10), (18), (20), and (21) which we write 
in differential form: 

dfi / l 4Tc 1 \ , . 

dv = -'f, (26) 
kTX^dv (l ATc 1 \ 

Equation (27) is the same as (22); using (25), (26), and (27) along an isotherm we 
have 

vdV = dfj.. (28) 

We could also have obtained (28) directly by differentiating (17) and using the 
fact that d^/dX = 0, that (3V = m/dO = ^/O, that N = d^/da, and that U = 
d^/dp; hence we get d^ = d(/3Vn) = /STdn+Nda-Ud/S and H dP = N dfiior (3 = 
0. Equation (28) is not unexpected as it can be derived without approximation in an 
equilibrium state from the Gibbs-Duhem relation Ndfj. = OdV — SdT. Nonetheless, 
the above proof shows that it is valid here even on the non-physical parts of the 
isotherms. 

When V decreases from +00 to 6, A increases from 0 to +00, V increases, then 
decreases, and again increases along the isotherm, and /u follows the changes in 
V, starting from —00 and ending up at -|-cx). As the value of ^{X) in the sta
tionary points equals VQ/kT we must choose from among the one to three i;,'P 
points associated with the same value of /x the one which corresponds to the max
imum value of v. We shall make this choice graphically by drawing in the same 
diagram (Fig.16.16) the isotherm considered and the associated ii{v) curve, which 
satisfies (28). 

For values of /u less than the minimum /Lti of ^i[v) or larger than its maximum 
/Li2 there is only a single solution which of course we must keep. For intermediate 
values there are three solutions vi > vz > V2, where vi and V2 correspond to the 
maxima of ^{X) and vs to its minimum. As the values of fx are the same in the 
three points vi,t)2,i'3, equation (28) then implies the relation 

r^ dV 
/ dvv^ = 0, (29) 

and the analogous equation for V2 and v^. This equation (29) expresses that the 
total algebraic area between the isotherm, from the point v\ to the point V2, the 
straight lines V = VijV = 7^2, and the v = 0 axis must be zero (this area has been 
hatched from right to left in Fig.16.16 for the points V2 and V3). 
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Fig. 16.16. Variational proof of the Maxwell construction. If several values of v 
correspond to a given chemical potential ^x, we must choose the one which leads to 
the largest pressure V 

The two maxima of !P'(A) have the same height when 'P\ = Vi > Vz- The 
corresponding points (black circles v-^ and I>L in Fig.16.16) are obtained by using 
(29). Hence the Maxwell construction follows, which expresses the equality of the 
areas, hatched from left to right in Fig.16.16. Let /Us(T) be the value of the chemical 
potential corresponding to that situation and Vs the common value of the maximum 
Vi =7^2 = Vs- Algebraically, these values are obtained by writing down that in 
the points vy and vj^ the pressures (21) and the chemical potentials, given by (18) 
and (20), are equal, that is, 

Ms 

~- In 
b VL -

2^^ °̂ ft2 

a kT , Vy 
—- In 
6 -uv ~ 

a 

-fcrin(t;L -b) 
2a 

-kT ln{vv -b) 
2a 

(30) 

(31) 
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Using (30) and (31) to ehminate vi, and vy gives us i^s{T) as well as the value of 
VsiT) corresponding to the plateau produced by the Maxwell construction. 

In order to conclude the discussion let us invoke continuity, letting ^ increase 
from —oo to +oo for fixed T. We start with a single solution, v i , P i , situated on the 
right-hand part of the isotherm and rising from right to left along this part. When 
/u passes /ii , a supplementary pair, V2,T'2 and vsjVs, appears at the minimum of 
the isotherm. Condition (29) shows that Vi > P2 = Vz so that the point v\,V\ 
remains the correct one. Prom (28) it follows that vi dVi = V2 dV2 = vz dVz so 
that the point V2, V2 is the one which rises the fastest and the point vi, Vx the 
one which rises the most slowly (crosses in Fig. 16.16). The cross-over occurs at the 
value fi = Us which we have already determined, where Vi = 7^2 = 'Ps- Thereupon 
the representative point jumps from 1 to 2. Beyond ^s the point v'2 corresponds 
to the absolute maximum (open circles in Fig.16.16). After that, when fi passes 1x2 
the points v'l and V3 meet and disappear at the maximum of the isotherm and the 
point V2 continues alone to climb along the left-hand part of the isotherm. 

Altogether, the useful isotherm consists of the two extreme parts separated 
by the horizontal segment between vy and vj_,. When /j, passes Hs{T) the volume 
undergoes a discontinuity from vy corresponding to the saturated vapour to VL cor
responding to the liquid, while the pressure remains constant. As the temperature 
changes, the points vy and t»L describe in the •u,'P-pIane the saturation curve in
side which there cannot exist a homogeneous stable phase (dashed line in Pig.16.15). 
Qualitatively, the model therefore describes the liquid-vapour transition satisfacto
rily. 

12. Let us again trace the isotherms, letting /i increase from —00 to +00. As 
long as r > Tc the pressure increases from 0 to -l-oo and the volume decreases 
continuously from -|-oo to 6; there is only a single phase. When T < Tc the pressure 
first increases from 0 to a value Vs{T) corresponding to liquefaction and deter
mined by using (30) and (31) to eliminate «L Eind vy, we are thus in the vapour 
phase where the vapour becomes saturated at the pressure Vs- After that, at the 
same pressure, the density increases suddenly without the representative point in 
the T, P-plane changing; we switch to the liquid phase. Thereafter the pressure 
increases again. The 'Ps(r)-curve separates the representative regions of the two 
homogeneous, vapour and liquid, stable phases (which are continuously related by 
passing through temperatures T > Tc). This curve stops at the critical point, Tc,Vc-
The function Vs{T) increases, since the isotherms corresponding to decreasing val
ues of T, and especially their horizontal segments, move from up to down in the 
Vj'P-plane. 

Note. To find the exact shape of the saturation curve (Pig. 16.17) it is useful to 
rewrite equations (30), (31) which determine that curve, using (23), as 

V'L VI,-O \ 2 VyVi, J 

Tc _ t^yt'L 1 t̂ v -fe ,oo\ 
T - Ah{vy-V^) VL^b' ^^'^> 

2 1 n 2 - ^ l n - ^^"^ 
! l n 2 - l \ Tc ( « v - & ) ( « L - 6 ) 
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Fig. 16.17. The phase diagram in the Tj'P-plane. The full drawn curve separates 
the stable phases: the liquid L and the vapour V; the latter are continued towards 
the metastable regions bounded by the dash-dot lines: superheated liquid LS and 
supersaturated vapour VS 

Equations (33) and (34) together give us a parametric representation of the Vs{T)-
curve in terms of the variables vy and UL which are related through (32). If we 
want to determine how the curve behaves at its critical end, we can expand them: 

(35) 

vy — Vc 

Tc-T 

Tc 

~ «c — «L ~ be, 

e^ 

•" 1 2 ' 

while at the other end 

b 
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Tc 

VL 

2 

I n e ' 

Vc-V 
Vc 

21n2 Tc 
2 In 2 - 1 

(T = 0) we have 

- 6(1+ e), 

V 4 
Vc 21n2 

£ 

- 1 - I n e ' 

_ 
T 

T 

(36) 

In the Vj'P-plane (Fig.16.15) the metastable states are bounded by the satu
ration curve (dashed curve) and the curve (24) of the minima of the isotherms 
(dash-dot curve). We have already drawn the first in the T,V-plane (Fig.16.17). 
We get the second by using (21) and dV/dv = 0 given by (22) to eliminate v. This 
leads to the parametric representation 

kT 2a-
2a V — b 

v^ 
In- o (37) 

of the dash-dot curve which bounds the metastability regions in Fig. 16.17. This 
curve has two branches starting from the critical point, one above (for v > Vc) and 
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one below (for v < Vc) the saturation curve; these three curves bound two regions. In 
the VS region the stable phase is the liquid phase which we have already considered, 
but for the same values of T and V there can exist also a metastable supersaturated 
vapour phase. Similarly, in the LS region the same point represents a stable vapour 
phase and a metastable superheated liquid . The LS and VS metastability regions 
can be considered as the extensions on another sheet of the L and V stability 
regions. 

Note. Using expansions we can give more details about the curve (37). In the vicinity 
of the critical point, writing v = 6(2 + e) we get 

Tc-T e^ e^ Vc-V 21n2 e^ 31n2 + l e ^ 
Tc ~ 4 4 ' Vc '^ 2 1 n 2 - 1 4 2 1 n 2 - 1 6 ' 

so that the curve bounding the metastability region shows a cusp at the critical 
point with a tangent which is the same as that of the saturation curve (Fig.16.17). 
As V —> oo, we have 

As V 

V 
Vc 

V 
Vc 

1 
2 1 n 2 - l 

6, we have 

4 
2 In 2 -

i ^ 
\2Tc 

1' 
0. 

13. In the transition from liquid to vapour, at constant chemical potential, 
pressure, and temperature, there is an increase Av = iry — vi, in volume, per 
molecule, and an increase AS in the entropy. The latter is given by the relation 

where for 9 we must take its absolute maximum. Using the stationarity of S' with 
respect to A we need only consider the explicit dependence of (17) on T through /3 
and C(r,M) given by (10). We get 

, , Qa/ \ \'^l kTQ X f n 3 
S = k^ 62 

/ A y 1 kTQ A / fi__ _3_\ 
U + A J T ^ 6 1 + AV kT^^2T)' 

Using (20) and the relation '^ = VO/kT we can write this expression in the form 

vn na kn/ fi 3\ 
^ - ^ ~ 2V+Vlfcr + 2J' ^^^> 

so that we get for the entropy per molecule 

_ S _ Vv a fi 3 

At the vaporization this entropy increases by 

V. ^ a / 1 1 
I 1 \VY VI, 
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so that the change in state is accompanied by an absorption of an amount of heat 
per mole equal to 

L = TNA{SV-SI^) = ( ^ + ^ ^ ^ ) ^ A K - « L ) - (39) 

To prove the Clapeyron relation we note that the preceding calculation implies that 

d ,kT ^. dV , KM \ ' (40) 

where V{T, fi;\), expressed through (17), satisfies the relations 

dV _ I ^ _ 0 

dn ~ v' dX ' ' 

The derivative of V along the saturation curve is given by the formula 

dP _ dpy_ dVy_dfi dVy dX 
dT ~ dT '^ dfj. dT ^ dX dT 

(41) 
dTy_ J_dtJ^ _ dVi^ J^dfj^ ^ ' 
dT ^ v^jdT ~ dT ^ v-^dT' 

and we note that V, T, and fj, are continuous across the curve, but that this is not 
dV dV 

the case for the derivatives ^— or —-. Combining (40) and (41) we find 

(42) 

L = T A T A K - ^ L ) ^ . (43) 

16.8 Phase Diagram of Bromine 

Figure 16.18 represents the experimentally measured phase diagram of bro
mine: the temperatures are in degrees centigrade and the pressures on a 
logarithmic scale in mm Hg. 

We want to explain the general trend of the solid-gas (sublimation) and 
the solid-liquid (melting) coexistence curves using a rudimentary model. We 
assume that the three phases, solid, liquid, and gas, consist of Br2 molecules 
which we shall treat as point particles. In the gas phase these point particles 
are non-interacting and have three translational degrees of freedom - perfect 
classical monatomic gas approximation. In the solid phase the Br2 molecules 

^V^f 

dVs 

and hence 

dVs 

dfj, 

' dT" 

dy, 
' dT ' 
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3'/mmHg 

1 Atm 

Trc 
-50 0 50 

Fig. 16.18. The phase diagram of bromine. The triple point is given by Tt = —7.3°C 
and Vt = 43 mm Hg 

occupy the sites of a rigid lattice and have no degrees of freedom; we neglect 
the possibilities tha t they can vibrate around their equilibrium positions and 
that the size of the lattice mesh can change. 

The necessary numerical da ta have been given in Fig.16.18 or can be found 
at the end of this volume. The atomic mass of bromine is 80 g mol~^, its mass 
per unit volume in the solid s tate is 3.1 g cm~^, while tha t of mercury under 
normal pressure and temperature is 13.6 g cm"^. 

The parts I and II of this problem are independent of each other. 

I. S u b l i m a t i o n 

In the solid-gas equilibrium region the temperature is low. We may thus 
assume tha t the solid phase is represented by a single micro-state such that 
each lattice site is occupied by a single Br2 molecule which remains fixed to 
tha t site. We take the energy of that s tate as the energy origin and we denote 
by £ the energy necessary to remove one bromine molecule from the surface 
of the solid into the vapour. The indices "s" and "g" will refer to the solid 
and the gas. 
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1. What is the canonical partition function ZQ{P, N^) for the solid phase in 
the approximation considered? Give an expression for the canonical partition 
function Z^{P, N^, fi) for the gas phase. In the remainder of part I we neglect 
the volume of the solid as compared to the volume Q of the gas. 

2. Use the partition functions to find the chemical potentials /i^ and /i^, 
respectively. 

3. Write down the condition for solid-gas equilibrium and use that to 
derive an equation for the equilibrium 'P(T)-curve which separates the solid 
and gas regions in the pressure-temperature diagram. 

4. Calculate, as function of the temperature, the molar sublimation heat 
L, that is, the heat necessary to vaporize one mole of solid bromine which is 
in equilibrium with its vapour. 

5. Evaluate e in eV by fitting the theoretical expression found for V{T) 
under 3 to the experimental curve of Fig. 16.18. 

6. What effects should be taken into account in order to improve the 
agreement? 

II. Melting and Vacancies 

As the temperature increases one can no longer regard the solid as a perfect 
crystal where each lattice site is occupied by a single molecule. A real solid 
contains defects, especially vacancies, that is, unoccupied sites from where 
the missing molecules have moved to the surface of the solid. The creation 
of a vacancy needs an energy e' and induces a dilatation of the solid. We 
denote by v the volume occupied on average by each molecule in the perfect 
crystal. We assume that the vacancies do not interact with one another so 
that n vacancies have an energy ne' independent of their positions. The den
sity a of the vacancies, that is, the fraction of unoccupied sites in the lattice 
in thermal equilibrium is a function of the temperature and the pressure. It 
increases with temperature and we shall assume that the cystalline structure 
becomes unstable, which means the melting of the solid, when this density a 
of the'vacancies reaches a certain threshold OLQ = 10~^. To simplify the calcu
lations we choose to describe the equilibrium solid in an isobaric-isothermal 
ensemble. 

1. Give expressions for the isobaric-isothermal partition function Zi and 
the free enthalpy G of the solid. Neglect the degeneracy connected with the 
number of arrangements of the displaced molecules on the surface of the crys
tal, so that the micro-states are simply characterized by giving the position 
of the vacancies. 

2. Give an expression for the volume i? of the solid in thermal equilibrium 
at a pressure V. 

3. Evaluate the density a of the vacancies at equilibrium as a function of 
the temperature and the pressure. Use the criterion for melting given above 
to find a theoretical expression for the melting curve V{T). 
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4. Determine the value of e' in eV from a comparison with experimental 
data . 

5. At a tempera ture of 20°C bromine is liquid under atmospheric pres
sure. In the model considered what pressure (in atmospheres) is necessary to 
solidify it at the same temperature? 

6. We consider solid bromine at atmospheric pressure and a tempera ture 
close to the melting point. Calculate in the above model its coefficient of 
thermal expansion and its molar specific heat (at constant pressure). 

7. There may be other effects apart from the thermal excitation of vacan
cies. In particular, the dilatation of a solid is not solely due to the creation of 
vacancies which we have considered above, but also to the change in the size 
of the crystalline lattice mesh. On the other hand, the specific heat contains 
not only the contribution from the vacancies, but also one from the vibra
tions of the molecules about their equilibrium positions. We also note tha t 
the formation and annihilation of vacancies needs migration of molecules, a 
process which may take a t ime of the order of minutes. Can you suggest an 
experimental technique to check the results obtained in 6, tha t is, to measure 
separately the contributions from the vacancies and those from other degrees 
of freedom to the dilatation and to the specific heat? 

8. Which of the hypotheses used to formulate the above model for finding 
theoretically the solid-liquid equilibrium curve do you find most questionable? 
How would you set out to improve the model? 

Solution 

I. S u b l i m a t i o n 

1. In the model considered the soUd has only a single micro-state with zero 
energy so that 

ZUP,N') = 1-

The canonical partition function of the gas is 

ZUfi^N^O) = ^ 
Q _ /3e /2m7r \3 /2 -

2. The chemical potentials of the two phases are 

In Zc = 0, 
1 d 

'pom 
1 d 

f^' = - « S ^ 1 - ^ S = ^-kT^ " {2mi.kTf^ 
NSh^ 

We have used here in the limit of large JV 

^ In iV! ~ In JV! - In (Af - 1)! = In N, 
oN 

which amounts to using the Stirling formula for N\. 
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Note. In actual fact, if we do not neglect the volume of the solid which is assumed to 
be incompressible, f/ does not vanish. This is clear, when we try to derive ^^ from 
the free enthalpy G{T, N, V) = F+VO, which equals VNv, whence ^^^ = dG/dN = 
Vv. What is wrong with our calculation which uses a canonical ensemble? The free 
energy F{T, N, Q) is not defined, unless when O = Nv, in which case it is equal 
to zero; considered as a function of T, N, V it is nevertheless zero for all values 
of T, N, and V- These variables are not those naturally associated with F, and 
we must thus change variables in the usual way by substituting V{T, N, fi) into 
F{T, N, V) in order to find> and V from F{T, N, V). We thus obtain in the general 

dF 
'dN dV 

N 

dp 
ON 

9 F 
dV 

N 

dV 
an N 

whence we find again, using the extensivity, the Gibbs-Duhem relation 

OF 
dN 

dV 

ni 

dV 
dQ N 

h P —. 
N N 

If the solid is incompressible, dF/dV vanishes, but dV/dN and dV/dQ are infinite, 
which explains why we find ^ = Vv ^ 0. In practice the density of the solid is so 
high that Vv <C £ and v <^ O/N^, and the error made by putting /x̂  = 0 is 
negligible. 

3. Equilibrium between the two phases implies equality of temperatures and 
of chemical potentials. We can derive this property in the canonical ensemble by 
looking for the maximum of the total free energy F^ + F^ for variations in N^ and 
N^ such that dN^ + dN^ = 0; it is useless to invoke equality of pressure, as the 
volume of the solid is neglected . 

To characterize the solid-gas coexistence we thus get //^ = 0. If we use the fact 
that 

dn 
N^kT 

the solid-gas coexistence curve in the T, P-phase diagram is thus given by 

The validity of the perfect gas approximation for fi^ = 0 requires that e ^ kT. 
4. The sublimation heat L, which is the amount of heat one must supply to 

transform one mole of solid into gas at fixed temperature and pressure, is 

TAS = TNo ds^ ds^ 
dNe dm T,V 

where NQ is the Avogadro number. Using 

9 F 
' dT 

N,n 
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we get S^ = 0 and 

S^ N^ki^ + In n 
Nsh^ 

(2m7rfcT)^/^ 

jve 5 , £ — Lfi 

As 11^ depends solely on T and V it does not make any difference whether we take 
the derivative of S^ for fixed T and V or for fixed T and /̂ ^ and, hence, using the 
fact that /i^ = 0, we find 

No :kT + e 

Another method consists in writing 

L = AU + PAil = No 

where H is the enthalpy 

dNs dm T,T 

H= U+Tn= 

that is, 

H^ = 0, H^ 

| + ^a72J'"^-(^'^'^)' 
f d Q d \ 

iVS :kT 

We get again the above expression for L, which we could also have obtained from 
Clapeyron's formula, neglecting the volume occupied by the solid. 

5. Numerically, the theoretical expression for V{T) gives, with V in mm Hg, e 
in eV, and T in kelvins 

8.614 X 10*̂  10.58 + In 
y5/2 

Recording the values of T and V on Fig.16.18 from a pressure of 1 mm Hg up to 
the triple point we get values for e which increase regularly from 0.466 to 0.476 eV 
so that a value of 

£ = 0.47 ±0.01 eV 

is compatible with the experimental curve. 
6. Although the model is rather a rough one, it enables us to reproduce the 

experimental curve with a single adjustable parameter, e, the value of which can be 
determined with a reasonable accuracy. Nonetheless, if we keep s fixed to its value 
calculated for P = 1 mm Hg, we get at the triple point a pressure which is too high 
by 50 %. The deviation is therefore significant. To improve the theory we must find 
corrections to n^—f/ of the order of the margin of 0.01 eV found above for e. The 
effects which we can consider for this are twofold. One the one hand, in the solid 
phase the vibrations of the Br2 molecules about their equilibrium positions and 
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the creat ion of defects - vacancies - can modify /n* by an amoun t which increases 
wi th t e m p e r a t u r e . On the other hand , internal motions, ro ta t ions and vibrat ions, 
of each molecule contr ibute to F^ and to F^. If the mot ions were t he same their 
contr ibut ions to F^ and F^, and thus to //^ and ^^ would be equal and their effect 
could then not be seen on the 7-'(T)-curve. However, one should note t h a t in the 
solid phase t he presence of neighbouring molecules hinders t he the rma l excitat ion 
of molecular ro ta t ions . This leads to a contr ibut ion to t he difference fi^ — fi^ which 
varies wi th t empe ra tu r e and one should add it t o e. 

II . M e l t i n g and Vacancies 

1. For each micro-s ta te wi th n vacancies t he energy equals En = ne and the 
crystal volume On equals {N+n)v. We get the isobaric-isothermal par t i t ion function 
by summing the expression e:x.p[—P{En+'Pf2n)] over all possible micro-states and all 
possible values of the volume, which, if we take into account t he number of possible 
configurations for each set of n vacancies, leads to 

_ V ^ -^! ^-I3{£'+Vv)n-l3VvN 
* ~ Z^ (N- n)\n\ " 

1 + e-^(^'+^"' 

e 

N 
-PVvN e 

The free enthalpy of the solid is thus (see § 5.6.6) 

G(T,V,N) = -NkT Ink+ e-^^'+'^''^/'''^]+VvN. 

The approximat ion is valid only for n <^ N, which requires e + Vv S> kT. 

2. T h e average volume of t he solid in isobaric-isothermal equilibrium is given 
by the formula 

dV 
= Nv 

T,N 
^(e'+Vv)/kT + 1 + 1 

3. As t he volume On of a micro-state is connected with n by fin = {N + n)v, 
we get the value of a from the average volume fl: 

_ (n) _ n 1 
N Nv e(^'+Vv)/kT _^_i-

T h e melt ing curve is thus given by a{'P, T) = ao, or, using the fact t h a t UQ is small, 

-T, fcT , 1 e' 
V = — In . 

V ao V 
4. We have for the volume v 

0.16 1 29 3 
V = —T- = 8.5 X 10 m . 

3100 No 
Using the values for V and T a t t he tr iple point we have 
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e' = kTt In — - Vtv = 0.16 eV 

(the contribution from the second term is negligibly small). 
5. Bromine is solid at a temperature T, provided 

-r, JkT , 1 e' fc(T - Tt) , 1 _ 
V > — In = -̂ ^ ^ In — + -Pt, 

or, for T - Tt = 27 K, 

r > 300 atm. 

6. The expansion coeiRcient of the solid is 

1 ^ 
i? dT 

_ -{e'+Vv)/kT e' +Vv _ a , 1 
p ~ ^ /kr2 - T ' ' ' a ' 

where we have used the fact that a is small; this gives for a = ao and T = 266 K 

1 dn _5 
— —:; = 2.6 X 10 per degree. 

dG 
The entropy 5 = —-^ equals in the same approximation 

C AT U g ' + ^ ^ 

Hence we get the specific heat 

~ iVo«a I 
V 

which for a = CKQ gives 

d5 
^ ° ^ " ( ^ ^ ) ' = ^ o f c a ( l n i ) ' , 

C = 0.4 J K ~ \ 

7. As the formation and annihilation of vacancies is a rather slow process a rapid 
cooling down from a temperature T\ to T2 produces a quenching, that is, it freezes 
in the vacancies at the positions which they occupied initially; the density of the 
vacancies thus remains fixed at the value a.{T\) even though the temperature is T^. 
On the other hand, thermal equilibrium is established rapidly with regards to the 
other degrees of freedom, lattice vibrations and size of the mesh, which are strongly 
coupled to one another and to the outside, but weakly coupled to the vacancies. This 
enables us to produce samples which for a time of the order of minutes behave as if 
the temperature were T\ as far as the vacancies are concerned, but as if it were T2 
as regards the remainder of the sample. One can thus identify experimentally their 
respective contributions, provided one carries out the measurements sufficiently 
fast. 

8. The hypothesis which is the least well justified is to assume that melting takes 
place when a reaches a fixed threshold ag. It is true that the crystalline structure 
collapses when the vacancy density is too high. However, the correct criterion to 
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know whether or not the soUd is in a stable thermal equilibrium form for given 
values of T and V is to compare (using the general variational principle of §4.2.2) 
the free enthalpy G^(r, V, N) of the sohd with that of the liquid, G' ( r , V, N): the 
stable phase is the one for which the free enthalpy is the lower, that is, the entropy 
the higher for the given constraints on T and V and a fixed value of N. Moreover, 
the chemical potential equals 

_ dG _ G 
^ ~ dN ~ N' 

and the solid-liquid equilibrium curve is the one corresponding to fi^ = fj, in the 
r , 'P-plane. Naturally, this programme presupposes that G is evaluated for a more 
or less approximate model of the liquid which takes into account the spatial disorder 
and the correlations between molecules due to their mutual repulsions. 

Another hypothesis of the model which can be criticized is the assumption 
that the energy of n vacancies equals ne , independent of the positions of these 
vacancies. In actual fact, it needs less energy to create neighbouring vacancies. As 
soon as the number of vacancies becomes relatively large they tend to aggregate in 
groups, and to form bubbles in the solid which are the nuclei for the liquefaction. 
Taking this effect into account implies the calculation of corrections to G^ due to 
the interactions between vacancies. 

Similarly, G^ contains a contribution due to the lattice vibrations. 
Finally, we have assumed that the surface entropy can be neglected compared 

to the bulk entropy, that is, that the number of configurations due to the vacancies 
was equal to N\/n\{N — n)\. In actual fact, this number is larger, as the molecules 
which have migrated to the surface can take up different positions on the surface. 
There are N' ~ aN ' such positions, which leads to a supplementary combinatory 
factor which has a maximum of the order of 

( l iV ' ) ! ( i iV ' ) ! 

when half of the surface sites are occupied. The corresponding surface entropy 
is thus of the order of kaN ' I n 2. The hypothesis consisting in neglecting this 
contribution as compared to extensive terms of the order of kN is thus well justified, 
except for small size solid grains, of the order of tens of lattice constants in each 
direction, for which A'̂  ' would be of the order of unity. 

16.9 Whi te Dwarfs 

White dwarfs are stars which have the remarkable property that their size 
is small, of the order of a few Ear th radii, while their mass is comparable to 
tha t of the Sun. We shall study a model of them by first considering a gas of 
free electrons in the gravitational potential of the star, and then improving 
the model, making it more and more realistic. 
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1. Statistical Mechanics of an Electron Gas 

In the first two, preliminary, parts we study a system of fermions consisting 
of N non-interacting spin-| particles in a box of volume i7. We first consider 
electrons with a number per unit volume equal to N/il = 10^^ m^^. 

a. Give the numerical value of the momentum pp corresponding to the 
Fermi level, assuming the temperature of the system to be zero. Use this 
value to deduce that the electrons at the Fermi level are ultra-relativistic, 
that is, that pp ^ rrieC, where rrie is the electron rest mass and c the speed of 
light. Calculate the position of the Fermi level ep = kOp for T = 0. We take 
the rest mass energy of a particle as the zero of its kinetic energy so that this 
energy is Sp = \/'p'^(? + m^c^ — rru?. 

b. The system is at a non-zero temperature T (fcT = 10^ eV is the order 
of magnitude of the maximum temperature for a white dwarf). Show that it 
is legitimate to use the approximation T = 0 in calculating the pressure V 
and the average energy U of the electron gas. This pressure is often called 
the degeneration pressure. 

c. Compare the orders of magnitude of the characteristic energies of the 
electron gas, the Fermi energy, the average energy, U/N, of the electrons, the 
temperature kT, with the ionization energy of a hydrogen atom (13.6 eV). 

d. Write down the density of states at the Fermi surface and use its 
expression to find the specific heat of the electron gas at a temperature T. 
Compare this with the specific heat of a perfect gas at the same density. 

2. Statistical Mechanics of a Proton Gas 

Let now the fermions be protons of mass m-g ~ 2 x lO^me with a number per 
unit volume again equal to N/f2 = 10^^ m~^. Neglect again the charge. 

a. Show that at the same temperature T, such that kT = 10* eV, the 
proton system behaves as a non-relativistic Maxwell-Boltzmann gas. 

b. Compare the average energy U/N of the protons at a temperature T 
with that of the electrons at the same temperature. Compare the pressures 
exerted by the protons and the electrons on the walls of the box. 

c. What approximations can we make when we consider a system of N 
electrons and N protons without interactions at the above temperature T? 
What happens when we replace the protons by nuclei, keeping the charge 
density the same? 

3. Properties of White Dwarf Matter 

White dwarfs are stars with a mass M which is a fraction of the solar mass, 
MQ, and which in contrast to the Sun have already "burned up" most of 
their hydrogen, except at the surface. There is thus little energy production 
through nuclear reactions and their radiation comes simply from cooling off. 
Their luminosity is thus very low, about 10^^ to 10^* times that of the Sun. 
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Their interior consists of nuclei, from helium to iron, with varying atomic 
number A and charge Ze, where A = A/Z ~ 2, and electrons, all nearly 
in thermal and gravitational equilibrium. It follows from the results of the 
previous questions that the interior is completely ionized: it is a plasma, that 
is, a superposition of gases of electrons and nuclei. The average kinetic energy 
of the electrons is sufficiently high that one can neglect that of the nuclei. The 
latter ensure the electrical neutrality and determine the mass of the star. The 
density of electrons is such that they can be treated as a "cold" Fermi gas 
and that we can make for them the T = 0 approximation. We examine two 
limiting situations: one where all electrons in the star are non-relativistic and 
one where the electrons at the Fermi level are ultra-relativistic {pp 3> rriec). 
We begin with neglecting gravitational and Coulomb interactions and treat 
the electrons as a gas with uniform density Ugi = N/Q. 

a. Find for the non-relativistic case the kinetic internal energy density 
U/f2 and the pressure V of the stellar matter as functions of the electron 
density riei-

b. Do the same assuming that all electrons are ultra-relativistic. 
c. Give expressions for the density riei, the internal energy density U/fi, 

and the pressure V as functions of the dimensionless variable ip = pp/mgC 
which characterizes the Fermi momentum in the general (relativistic) case, 
where ip is neither small nor large as compared to unity. Check the preceding 
results. The integrals which appear can be evaluated by using the formula 

/ 
x^ \/x^ + ldx = {2x^ + x)\lx^ -(-1 - ln(a; + \/x^ + 1). 

4. Typical Sizes and Limit Mass 

We want to determine the equilibrium size of the star which we first assume 
to be homogeneous with a uniform density and to be electrically neutral. 
To do this we first of all consider a hypothetical situation where, with the 
mass M fixed, the radius i? takes on arbitrary values. We shall then vary 
i? to determine its equilibrium value R. The gravitational energy of the star 
is dominated by the mass of the nuclei, equal to Am^ = \Zm^\ we bear in 
mind that this energy equals —ZGM^I^R for a uniform density. 

a. Write down the relation between the stellar mass M, its radius -R, and 
the variable ip. What is the density QX for which (̂  = 1? 

b. Use the expression for the total energy of the star to find the equation 
from which we can determine ^p and hence the equilibrium radius R. Show 
more generally that, if a star is treated as a homogeneous sphere, its mass, 
its radius, and its pressure, as given by the equation of state, are related to 
one another. 

c. Discuss the equation for ^p first by finding the behaviour of i? as function 
of the mass M in the non-relativistic (£> <C Q\) and the ultra-relativistic 
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(g^ Qi) limits and after that by studying the variation of R and the stellar 
density with the mass M. 

d. Show that there exists a maximum mass Mi, the so-called Chan-
drasekhar limit, above which there can be no white dwarf. Estimate MI/MQ 

for A = 2 in the context of the approximations made; the solar mass M© is 
2 X 10^0 kg. 

e. Estimate the radius and the mass density Q oi a, white dwarf with a 
mass which is half that of the Sun. 

5. Mass and Charge Distributions 

We shall now take into account the compressibility of the star, dropping the 
hypothesis of a uniform density made in 4. We should write down the equili
brium conditions, including the effects both of the (Newtonian) gravitational 
field produced almost completely by the nuclei and of the Coulomb field due 
to the charges of the electrons and the nuclei. The star is spherically sym
metric so that quantities such as the mass density Q{r), the gravitational field 
W(r), connected to g through the equation V^W — ATTGQ, and the electron 
Fermi momentum TneCip{r) are functions of the distance r from the centre of 
the star. 

a. The energy of an electron contains, apart from the kinetic energy 
that we accounted for in part 3, a gravitational and a Coulomb contribu
tion. As the electrical forces are much stronger than the gravitational forces 
(e^/47reoG(2mp)^ ^ 3 x 10^^), there is a considerable tendency for the matter 
to remain neutral. This entails that, if we transport electrons from one point 
to another, they will drag along nuclei with on average a charge equal and 
opposite to that of the electrons. We shall therefore, in order to calculate the 
combined effects of electrostatics and gravitation, assume here that every
thing takes place as if the electrons had a mass ArUp/Z ~ 2mp instead of rrie. 
Use that hypothesis, which will be justified under 5d, to give an expression 
for the chemical potential /iei of the electrons in terms of (p{r) and W{r). Use 
this expression to find the differential equation which ip{r) must satisfy and 
which therefore, in principle, determines g{r). 

b. Show that the same result would have been obtained macroscopically 
by requiring that the pressure of the electron gas found in 3 should at each 
point in the star be balanced by the hydrostatic pressure. 

c. Discuss, without solving, the equation for (p{r). Show, in particular, 
that the star has a sharp surface beyond which the density is negligible and 
which determines its radius, and that all properties found under 4c and 4d 
for the stellar radius and mass remain unchanged, apart from some numerical 
factors which we shall not try to determine. 

d. Treating the nuclei as a classical perfect gas in the gravitational field 
W{r), show that they cannot be at equilibrium at the same time as the 
electrons under the hypotheses made above; to simplify the considerations 
assume that there exists only one type of nuclei of mass Arup and charge 
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Ze. It is therefore necessary to reconsider the hypotheses of 5a, allowing the 
possibility of violating the electrical neutrality. The charge density a(r) which 
thus appears produces an electrical potential ^ ( r ) . Write down the chemical 
potentials /Xei and /XN of the two gases (of electrons and of nuclei) in the 
potentials W[f) and (^[r). Use them to find the differential equations which 
determine the mass and charge densities, gir) and (y{r). Taking care of orders 
of magnitude, show tha t in the interior of a star with a sufficiently large mass 
these equations give the same distribution Q{r) as under 4c as well as a small 
charge density which is proportional to the density gir). For which densities 
will significant corrections appear? 

6. E lec tron C a p t u r e by t h e N u c l e i 

Due to the very large density of a white dwarf various nuclear reactions can 
take place. In particular, a proton from a nucleus can capture an electron, 
producing inside the nucleus a neutron and emitting a neutrino. The latter, 
which is very weakly coupled to the other particles, leaves the star rapidly 
and will be neglected in the thermodynamic balance. The nuclear reaction 
thus can be writ ten schematically as 

electron + (A, Z) -^ {A,Z-l). 

We write E{A, Z) for the binding energy of the ground state of the nucleus 
(A, Z) and s = E{A, Z - I) - E{A, Z), which has a typical value of 2 MeV, 
for its change through electron capture. 

a. Write down the equation satisfied by the chemical potentials of the 
electrons and the nuclei when they are in equilibrium under those reactions. 
Use this to derive the electron kinetic energy at the Fermi level in that equi
librium situation and the corresponding value of (p. Wha t happens \i ip is 
larger than this value? Or smaller? 

b . Discuss qualitatively the consequences of the nuclear equilibrium re
alized through electron capture for the composition of white dwarfs, for the 
relation between their masses and radii, and for their limit mass. 

7. Coo l ing of a W h i t e D w a r f 

For the less massive white dwarfs there are no longer any nuclear reactions 
and the star cools down while radiating. A thermal gradient is established, 
as in any star, from the centre to the surface, in a nearly stationary non-
equilibrium regime. Take the interior temperature T to be 10* K and the 
surface temperature Tg to be 10'* K and consider a white dwarf with mass 
M 0 / 2 in the approximation of 4 with Z = 8, J4 = 16. 

a. Est imate the specific heat of the stellar mat ter . 
b . Give the order of magnitude of the t ime it will take for the stellar 

temperature to drop by 10 %. 
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Hints and Notes for the Latter Parts: 

4. In the approximation where the matter of a star is treated as being uniform, 
the value R of its radius at equilibrium is found variationally by looking for the 
minimum of the total free energy U — 3GM /5R — TS as function of the trial 
parameter R, for given M and T (see Exerc. 6e on self-gravitational equilibrium). 
The contribution U — TS, evaluated neglecting gravitation, is a function of the 
particle number, of T, and of the volume, such that d{U — TS)/dfi = —V. We find 
thus at the minimum 

d / , , 3GM^ ^ \ Snv 3GM^ 
0 = ^ [U~ î̂ =— TS) = ~- + 

OR \ 5R J R 5R^ ' 

and hence the stellar radius can be found from the equation 

r = 
3GM^ 

207riZ4 • 

For a white dwarf, R is related to (p through the equation which gives an ex
pression for the stellar mass 

'p<PF 97r V a 7 

2/2 f 
'^U J 

J TK 

The free energy of the nuclei practically reduces to the gravitational energy, while 
the entropy of the electrons is negligible as compared to U/T, where U is the 
kinetic energy of the electrons evaluated under 3. Thus, we just have to look for 
the minimum of the total energy U — 3GM /5R as function oi (p oc R~ . Thence 
we obtain the equation 

2 
N 2 / 3 

R\ M "• ' 

Rl I \Mi 

3 
2v3^ ln(̂ -H V'l+V)+ f - ~ ^ j \ / l + V̂  = /{'̂ ). 

where 

Rl 

Ml 

Ql 

= 

= 

= 

3 ^ 5 ^ / 

4Ampme \ 

16(Amp)2 

M l 

l-Rl ~ 

^CG) " 

m" ̂  
AmpTngC 

37r2fi3 

7500 km, 

i 3.5 X 10^° kg 

~ 2 X 10^ g e m 

1.7MQ, 

In the non-relativistic limit (p ̂  1 or Q <^ QI, we have f{(p) ~ 4(^/5, whence 

i?i ~ 5 V M J ^ U^ J ^ '̂ 
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in the ultra-relativistic limit (/? 3> 1 or ^ ^ £>i we have / ( y ) ~ 1 — ip~ , whence 

> 2/3 
R L M\ ' 1 

The function f(}p) increases, whereas ip~ f{ip) decreases, and the density g = 
gup increases with tp. Therefore, the density increases and the radius R decreases 
with M. 

When (fi tends to infinity, M tends to Mi, the equilibrium radius R tends to 
zero and the density tends to infinity. A white dwarf with a mass larger than or 
equal to Mi would be unstable and would implode. The existence of a limit mass 
was proved by Chandrasekhar . 

The value M = 0.5MQ = 0.3Mi is reached for ip = 0.6 and we have R = 
l . l iJ i = 8000 km, a value comparable with the Earth radius and much smaller than 
the solar radius (700 000 km). The corresponding mass density is 4 x 10 gcm~ , 
whereas we have only 1.4 g cm^ for the Sun and 5.5 g cm~ for the Earth. These 
values are comparable with the data found observationally for white dwarfs. 

5. The solution of this part is based upon the same microscopic principles as 
we used for electrostatics in solids (§ 11.3.3). In the present case we must treat 
both the gravitational and electrostatic effects by a mean field method, replacing 
these binary interactions by a single-particle self-consistent potential (§ 11.2.1). As 
regards the single-particle properties, everything happens, as if the particles were 
independent, with a Hamiltonian which consists of the kinetic energy together with 
an effective potential which includes both a gravitational and a Coulomb part. 
Moreover, as this potential varies slowly in space, it is justified to treat it in each 
volume element as a constant (§ 10.3.4b). As a result, the Fermi factor is found at 
each point in space by adding to Sp — fj, the local potential, as we saw in § 11.3.3 for 
the case of the macroscopic electrostatic potential. We posed the question in such 
a way that this addition appears intuitively obvious. Nonetheless, as regards the 
global properties, the particles do not behave completely as independent entities. 
Especially, the gravitational energy of the star is not obtained simply by taking 
the sum of the potential energies of its constituent particles, since it is necessary 
to divide this sum by 2 (see end of § 11.2.1 and Prob.5). We have, of course, taken 
this into account when we wrote down the gravitational energy in question 4. 

a. The mass density g{r) is related at each point to the electron Fermi momen
tum through g(r) = gi<p {r). Prom it we can derive the gravitational potential 

W{r) I g{r')d^r' 

Within a volume element in which W{r) varies little, it simply produces a shift 
XmpW{r) in the single-electron energies Sp. Thus, if we define i^Q{r) by 

tJ-o{r) = fJ.el + >^rnpW{r), 

and introduce fiQ instead of ^gi in the Fermi factor, W drops out and the electron 
density is locally expressed in terms of no{r) just as if there were no gravitation. 
We have therefore, as under 3, 

^ S.Chandrasekhar, Phil.Mag. 11 (1931) 592. 
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Ho{r) = mec'^\\/l + ip'^{r) - 1 . 

Equilibrium is expressed by stating that T ~ 0 and ^el ^̂ re uniform in space. Then, 
by ehminating W{r) and fi^i from the above set of self-consistent equations, we find 
a differential equation for g{r) or for <p{r): 

meC^V^ V l + ifi'^+ 4TvGXmpe = 0. 

In actual fact, the white dwarf is not at thermal equilibrium since it radiates (see 
last question). In the stationary regime which it reaches and which is governed by 
energy exchanges, mainly through radiation, the temperature decreases from the 
centre to the surface. However, the present results are valid since we set T ~ 0. 

b. The Gibbs-Duhem relation 

ndV = Ndfio + SdT, 

which is valid for a volume element J7 if there is no potential, gives us 

VP 
V^o = -^"ip , 

and hydrodynamic equilibrium implies that W/g equals the force per unit mass 
—VW. This leads again to the equation V/fel = 0-

c. In terms of dimensionless quantities we can write the equation for (p = 
{Q/QI?'^^ in the form 

„2f d^ 2 d \ r ^ 15 3 „ 

The characteristic size and density R^ and Q\ are the same as for question 4. 
This equation must be solved for positive values of ^{r). Its solution depends on 
a dimensionless constant tpc which is the value of i/?(r) at the centre of the star. 
All properties of the white dwarf and, in particular, the mass distribution are thus 
determined by a single parameter, say, the total mass M or the central density QQ. 
We can integrate the equation for the function (^(r) as: 

| v / r T ^ = ^ - i | ^ ^ r^dr^\r) = 
5i?iM(T-) 

4r-2Mi ' 

where M{r) is the mass within the sphere of radius r, so that near the origin ip{r) 
behaves as 

f>{r) = ifo- g'^cV'l + '^if ; ^ j +• 

and decreases for any r while remaining positive. We could then imagine two sce
narios. If 1̂  becomes zero at some point R, the solution <^(r) is acceptable for r < R, 
but its continuation beyond R has no physical significance; the density vanishes at 
r = R and remains zero beyond that point. If ip remains positive up to infinity, the 
mass M{r) tends to the total mass M as r —> oo; the integro-differential equation 
for ifi gives in this case after integration 
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ip^ 5RiM 

2 4 r M i ' ' 

however, t he integral J . r dr ip , which mus t be propor t ional t o the mass M, 
1/2 

cannot t h e n converge since ip ex: r ' . T h e second scenario is thus excluded and 
the stellar mass is completely contained within a sphere of radius R. It equals 

IMiR^ ( dip"^ 

5i?i \ dr 

so t h a t tp oc ( i ? - 7 - ) ^ / 2 and the mass density tends t o zero at the stellar surface as 

/ \ 3 /2 / X 3 /2 

(hMRi\ ' L r \ ' (̂"̂ -̂ (̂̂ j ('-ij 
In fact, in t he surface region t he density is too low for us to t rea t the electrons 
as a "cold" Fermi gas; t he solution obtained is valid inside the region where T <C 
0 F = {meC /2k){g/gi) ' while the rmal effects would govern t he a tmosphere where 

T > 0 F -
For non-relativistic white dwarfs {QC <C e i ) t he fact t h a t the equat ion for tp is 

1 /2 
homogeneous implies t h a t all i ts solutions are of t he form p{r) = 'Pcfii'Pc I'/Rl) 
where fi{r/Ri) is a par t icular solution. Hence, the stellar radius and mass be-

— 1/2 3 /2 
have, respectively, like R oc Rupc and M a Mip^ . Similarly, in t he core 
of an ultra-relat ivist ic s tar , for values of r such t h a t g{r) S> gi, t he solutions 
are of the form 'Pcf2{'Pcr/R\)\ if <̂ c is very large, such a solution extends over 
t he larger par t of the s ta r so t h a t R oc Ri^p^ and M/Mi takes on a value 
M2/M1, practically independent of ipc; for slightly smaller values of (pc an ex
pansion shows t h a t M is smaller t h a n M2 by an amount of order (pc • We thus 
get again t he results of 4. A numerical solution of the equat ions gives the coeffi-

— 1/2 3 /2 _ 
cients R ~ 1.33iZii^c , M ~ OAMiip^ , pc ~ 6 )̂ in t he non-relativistic case, and 
R ~ 3.56Riipc^,M2 ~ 0.83Afi ~ lAMQ,gc ~ 54^ in the ultra-relativist ic case. In 
par t icular , we find a limit mass M2 for whi te dwarfs which is slightly smaller t h a n 
in the approximat ion of a uniform density. Al though the density changes consid
erably, the numerical results do not differ much from those which we obta ined in 
t h a t approximat ion . 

d. In each point r t he density ni^{r) of the perfect gas of nuclei is related to t he 
chemical potent ia l fif^ of t he nuclei th rough the equat ion 

2 3/2 
" • N ( ' ' ) = T-o (27rAmpfeTj exp 

/iN - AmpW{r) 

kf 

T h e equil ibrium of the nuclei requires t h a t T and /^N are uniform in space, which, to
gether wi th the equat ion 'V W = A-KGg, gives us an equat ion for g{r) = AmpnT<i(r). 
However, this equat ion does not have t he same solution as t he equat ion we got ear
lier for g(r) when we expressed the equilibrium for t he electrons in neut ra l stellar 
ma t t e r . 

See, for instance, S.Weinberg, Gravitation and Cosmology, Wiley, New York, 1972, 
p.308. 
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If there are two potentials, the Newtonian and the Coulomb potential with 
V^(/) = —cr/eo, the chemical potentials are, for the (cold) electron gas 

Mel = rUeC^ y/l + (p^{r) - 1 

and for the gas of nuclei 

+ meW{r) — e4>{r) 

/XN = kT In 
AmpkT ) 

+ AmpW{r) + Ze<f>{r). 

For equilibrium we have 

meC^V'^ J \ + ^P'{r) + 47rTneG^(r) + — a(r) = 0, 

9 Ze 
kTV In nN(r) + A-KAm-pGQir) air) = 0, 

£0 

with 

J_r!^V,.3r 

g(r) = Ampn^{r) + menei(r), 

(T(r) = Zenj<s{r) — enei(r). 

Using the fact that me <C Arup we get from the equations for g{r) and a-{r) 

e kT 9 
— cr{r) = 4:TrXmpGg{r) +-;=-'V ln£i(r), 
So Z 

kT . 
meC^V^ V'l + ip^{r) + A-KXmpGgir) + ^ V^ Ine(r) = 0. 

Z 

In the second equation, the ratio of the last term to the first one is of order 
3fcT/meC Z^p in the ultrarelativistic limit, which for T = 10 eV gives a small 
number of order 0.06/^1/3, and of order ikT/meC Z(p in the non-relativistic limit, 
which remains small as long as the density is sufficiently high for our approximation 
T <C ©F to be valid, that is, as long as ^ ^ 10^ QI/Z ' . Except near the stellar 
surface, where a correction due to the nuclei must be added to the thermal effects 
on the electrons, the second equation reduces to its first two terms; this justifies 
the results of 5c. Another result is that the last term in the first equation is small 
compared to the preceding one so that 

, , 47reo^"ipG , . 
'^{r) - Ye ^ '̂" •̂ 

The stellar interior has a positive charge: the nuclei are attracted to the centre by 
gravitation which has little effect on the, lighter, electrons. The charge which is 
thus produced, and not gravity, retains the electrons. However, neutrality is nearly 
ensured locally since the Coulomb forces are much stronger than gravitation, as the 
smallness of the ratio 
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Zn^jr) - n^ljr) ^ 47r£oA^mgG ^ ^ ^ ^^_36 ^ 
nei(r) ~ Ze^ ~ 

shows. The charge in the interior of a white dwarf of one solar mass is only 300 C. 
6. As in chemical equilibrium, we must have 

flel + K^,Z) = fJ,{A,Z-l). 

It makes no difference whether or not we include in this equation the gravitational 
and Coulomb terms as they are the same on the two sides. The kinetic contributions 
to the chemical potentials of the nuclei differ only by an amount kT hi[n{A, Z — 
l)/n(j4, Z)] which is negligible compared to the dominant contributions E{A, Z) 
from the energies of the nuclei at rest, so that in equilibrium n^i = e ~ Arrive , 
whence we have ^ ~ 5. When î  > 5 the electrons are captured until their density is 
reduced to a value Q2 = £>! 5 . When ly? < 5 nothing happens as the inverse reaction, 
which includes the production of anti-neutrinos, would require the presence of nuclei 
with a large neutron excess and these are just created only by the electron capture 
for dense white dwarfs. 

Electron capture affects only the heaviest white dwarfs for which i/Jc > 5. In 
this case the electron density at the centre decreases at nuclear equilibrium until 
<^(r) < 5 for all r. The sufficiently heavy white dwarfs thus contain neutron-rich 
nuclei, especially in the central region. The increase in the ratio A = A/Z implies 
a decrease in Mi oc A~ and in iZi oc A~ , and an increase in ^ oc A. For a fixed 
value of the mass, the radius is smaller and the density higher than when there is no 
capture; moreover, the decrease in the electron density reduces the kinetic pressure, 
which makes the star contract. The instability is thus increased. The limiting mass 
decreases for two reasons: on the one hand, M\ and M2 in the less coarse model 
of 5 decrease due to the increase in A; on the other hand, M can no longer reach 
the value M2, which corresponded to (/?c —> 00, as (̂  remains everywhere bounded 
by 5. Chandrasekhar has shown by a realistic calculation that, in fact, the limiting 
mass for stability of white dwarfs is 1.2 MQ. The radius itself remains bounded 
from below, due to the bound on ip. The most massive white dwarfs thus have a 
radius of 4000 km. 

7. The total specific heat of the star is 

--1 kn^^n + —©(epjfc T = ( 7^ +-^ 2 2 ' 
3 Amp \2Z meC' tp'' J 

where T>(£-p) is the density of states at the Fermi surface. We have made the low-
temperature approximation for the electrons, which is well justified as T/Op :^ 0.1. 
Nevertheless, the electron contribution dominates, by a factor 3, that of the nuclei, 
thanks, in particular, to the large value of Z. The stellar temperature decreases 
with time, due to the loss of energy through radiation from the surface, as 

f = ^ ^ ^ . 1 . 5 X 1 0 - - K S -

and thus decreases by 10% in 2 x l(f years. Even though they have hardly any 
energy source, the white dwarfs can retain their luminosity over very long periods. 
In fact, the statistics of white dwarfs as function of their luminosity L shows a clear 
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cut-off below L = 2.5 x 10~^ LQ which reflects the absence of very old, cooled 
white dwarfs. Prom that observation and from a theoretical study of cooling we can 
estimate the age of our Galaxy to be about 10 years (Exerc. 15f). 

In the above evaluation of dT/dt, we have implicitly disregarded the contraction 
of the star which results from the simultaneous shift in the self-gravitational equili
brium. A more correct calculation relies on Exerc.6e, question 3. For non-relativistic 
matter, the self-gravitational energy EQ and the internal energy U are related by 
2EQ +U = 0. Hence, when an energy —Ldt = dEQ + dU is radiated, EQ decreases 
by —2Ldt whereas U increases by Ldt. Let us denote hy U = UQ + Ui + U2 its 
three contributions written above, which depend on R and T asUo <x R" , Ui ocT, 
U2 oc T'^R^, respectively, while EQ CX R~^. Prom dR/R = - d E c / ^ G = -dU/U 
and dU = Ldt, we get 

{Ui + 2U2)^ =Ldt + {2Uo - 2 C / 2 ) ^ = -Ldt (l - ? ^ ^ L + i ^ ^ ^ ^idt, 

or equivalently CvdT = —Ldt. It was therefore legitimate to completely forget 
about the contraction of the white dwarf and the changes that it induces in U and 
EQ, since Ui <g UQ and U2 '^ UQ. Note, however, that dUo = 2Ldt UQ/U is not 
small as compared to dUx +dU2, but that it is nearly cancelled by the lowering 
dEQ = —2Ldt of the self-gravitational energy which accompanies radiation. This 
situation should be contrasted to the formation of stars, in which case the matter is 
dilute and behaves as a classical gas with U ~ CvT; loss of energy by radiation then 
results in a heating CvdT = +Ldt rather than in a cooling (Exerc. 6e). Compare 
this also with the stars of the main sequence such as the Sun, which remain in a 
stationary regime for periods of the order of 10 years, as the emission is exactly 
compensated for by the production of thermonuclear heat in the core (Exerc. 15f). 
When the nuclear fuel gets exhausted, the thermal pressure can no longer balance 
the self-gravitational attraction, the star contracts and heats up again. If its mass 
lies below 1.4 M©, it eventually ends up as a white dwarf; if its mass is larger, it 
implodes, its outer shells are expelled (supernova) while the residue may transform 
into a neutron star. 

A theoretical study of the temperature gradients within the star would involve 
a balance equation (Chap.15) describing emission, transport, and absorption of 
radiation inside the stellar matter. The solution of that equation determines the 
temperatures in the core of the star and at its surface, which we have assumed to 
be given (Exerc. 15f). 

16.10 Crystallization of a Stellar Plasma 

The central region of many white dwarfs, which are dense stars, is constituted 
mainly, one thinks, of carbon 12 nuclei and electrons, which together are 
electrically neutral and thus are a plasma. We take the order of magnitude 
of the tempera ture and of the mass density to be, respectively, To ~ 10* K 
and go ^ 10^^ kg/m^. We shall see tha t these data axe close to the conditions 
where the plasma may appear as a crystal of carbon nuclei embedded in an 
electron Fermi sea, thus producing a system which is similar to a metal. The 
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aim of the present problem is to study the conditions under which such a 
crystalhne s tate exists and to find its phase diagram. 

Note. All numerical values used can be found at the end of this book. The numerical 
results must be given in S.I. units, and you may use "astrophysical accuracy", that 
is, a single significant figure, everywhere. We shall use the following notation: m 
for the electron mass, M for the mass of a C nucleus, Z = & for the charge of a 

C nucleus, Q for the mass density, N for the number of C nuclei in the given 
volume Q, and JV' for the number of electrons in this volume. The three parts of 
the problem are independent, the answers to the questions can always be given in 
a few lines, the algebraic calculations are easy, and the numerical applications are 
essential, within the accuracy asked for. 

l a . Give a numerical value for the binding energy of a single electron by 
a carbon nucleus, using the hydrogen atom data. 

b. Use these da ta to conclude tha t for the temperature of the star all 
carbon atoms are completely ionized. 

2a. Prom 1 it follows tha t the electrons are a Fermi gas. Neglect the 
interactions of the electrons with one another and with the carbon nuclei. 
Give an expression for the Fermi temperature ©p as a function of the electron 
density N'/Q. 

b. Give a numerical estimate for 0 p . 
c. Use this value to conclude tha t the only part played by the electron gas 

is to ensure electrical neutrality at equilibrium. 
3. The above results allow us to describe stellar mat ter as a system of 

^^C nuclei embedded in a continuous uniform electron background which 
neutralizes the average charge. This mat te r is crystallized, if the carbon nuclei 
have equilibrium positions arranged on a regular lattice, around which they 
oscillate with an amplitude which increases with temperature . For the order of 
magnitude of the distance between neighbouring sites we take d = {Q/NY^^. 

When a nucleus suffers a small displacement r from its equilibrium posi
tion, the Coulomb forces due to its neighbours and the continuous background 
of the electrons bring it back to this position and we shall assume tha t this 
restoring force has the form F = ^ar/d^. For dimensional reasons a has the 
form 

a = A- , 
ATTEO 

where A is a numerical constant which we shall put equal to 1.5. 
There is an empirical criterion which we shall use to decide whether the 

crystalline phase is stable, the Lindemann rule: melting occurs when the 
mean square displacement A = -^/(r^) exceeds a certain fraction 7 of the 
intersite distance d. We assume here tha t this ratio will be 7 = 0.3, which is 
much higher than the values close to g found for ordinary crystals (§ 11.4.1). 

a. Considering each nucleus to be an isotropic three-dimensional harmonic 
oscillator of frequency w, which must be determined, write down its Hamil-
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tonian H, its energy levels, and its parti t ion function Zi{P,u)), expressing 
the latter in terms of hyperbolic functions. 

b . Use Zi{(3,w) to calculate A\ you may express (r^) as a derivative of 
In Zi by using the explicit expression for H. 

c. Use the Lindemann rule to write down the melting curve equation 
which in the T, £>-plane bounds the region where the plasma is crystallized. 
It will be convenient for what follows to write the equation for this curve in 
a numerical form: 

f{Ae<^T') = {Bgr, 

where / is a hyperbolic function, a, b, and c are rational exponents, and A 
and B numerical constants which m u s t be evaluated in the "astrophysical 
approximation". 

d. Characterize in the T, £i-plane the region where classical statistics can 
be applied: (ihuj <C 1. Sketch the melting curve in this classical domain. 

e. Indicate in the T, £i-plane the point corresponding to the limit Phw —> 
oo. Use continuity to outline the behaviour of the curve and indicate the 
nature of the phases in the various domains. 

f. In which phase is the mat ter of the star considered here? 
g. Assuming the plasma pressure V to be essentially tha t of the electron 

Fermi gas, outline qualitatively in the T, 'P-plane the bounds of the region 
where the plasma is crystallized. 

h. Wha t striking difference exists between the phase diagram obtained 
here for the crystallization region and the one of ordinary mat te r at labora
tory pressures and temperatures? Explain the origin of this difference. 

Answers to the Latter Questions: 

3c. The crystallization region corresponds to parameter values such that 

2MkT 2(a^)i/2 y'^ \M 

or, numerically, 

t a n h 2 0 ^ > (10 -1%)^ /^ 

d. In the classical region, characterized by /3hoj ̂  1, we can put the hyperbolic 
tangent equal to its argument and the melting curve is given by ^ = 10~ T . This 
approximation is valid when 20^/T < 0.5, or T < 5 x 10^ K, ^ < lO"̂ * kg m~^. 

6. In the limit as (3tiu! = 20y^ /T —^ oo, we have tanh ^P^ = 1 which gives 
(10~-^^e)^/^ = l,OT Q= 10^^ kgm~^, T -> 0. The corresponding point on the curve 
(Fig.16.19) lies on the ^-axis. Since the melting curve, which is known for small T 
and Q (classical limit), is continuous, it closes on itself, as indicated in Fig.16.19, 
which was obtained from a numerical calculation. 
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Fig. 16.19. Phase diagram of the ^^C-
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below the melting curve and the matter is thus a disordered dense classical plasma 
somewhat similar to a classical liquid. Nevertheless, we note that the uncertainties 
of the calculations and of the astrophysical data do not allow us to exclude the 
possibility of an error of a factor 10 in the (experimental or theoretical critical) 
value of QoT^ • Crystallization is thus not completely excluded. 

g. The electron pressure can be calculated as if the temperature were zero, as 
To/0F <C 1. It is given by the formula 

Pel = ( 9 - ^ ) ' / ' 
5m 

5/3 

Therefore, V is an increasing function of g and the melting curve in the V, T-
diagram shows essentially the same behaviour as in the g, T-diagram. The maximum 
pressure along this curve is 1.5 x 10 Pa as T —> 0. 

h. We note here that the crystal can melt at low temperatures and very high 
pressures whereas an ordinary solid remains crystallized at high pressures; the or
ders of magnitude clearly have nothing in common. In an ordinary crystal the forces 
between the ions or the atoms are strongly repulsive at short distances apart due 
to the Pauli principle which prohibits atomic shells to interpenetrate, so that at 
high pressures the crystal is an ordered arrangement of hard spheres. Here there is 
no repulsion at short distances to prohibit the nuclei to vibrate. Their zero-point 
motion at zero temperature gives A = \/3h/2'mu) which varies as d ' and exceeds 
d as d ^ 0. It is thus the quantum zero-point motion which prevents the plasma 
to order as a crystal. In the region where g > ^max the plasma becomes a Bose 
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liquid of caxbon ions embedded in a "degenerate" electron gas, that is, practically 
frozen in in its ground state. Increasing the pressure thus produces melting as the 
internuclear distances decrease more rapidly than the zero-point fluctuations. If 
Q continues to increase, the carbon nuclei touch one another and nuclear fusion 
reactions take place. 

16.11 Landau Diamagnetism 

The aim of this problem is to s tudy the m.agnetism due to the motion of the 
electrons in a metal subject to a uniform magnetic field B. 

We make some simplifications, some of which are rather crude, in order 
to get a model where the calculations become simple. 

We neglect the interactions of the electrons with the ions and with the 
other electrons, which we represent by a constant average potential . As this 
potential is equivalent to a change in the origin of the energy levels without 
any other consequences for the problem we can neglect it. Except in ques
tion 5, we neglect the effect of the magnetic field on the magnetic moment 
connected with the electron spin, retaining solely its effect on the orbital 
magnetic moment. Except in question 2, we treat the problem in two space 
dimensions. 

These approximations produce a model where the Hamiltonian of a single 
electron in the field B directed along the z-axis is 

'^ ^ 2^^ [^' ̂  ^̂^ ^ ^^^^' 2m 

the electron charge is —e, its mass m, and the vector potential has the 
components {Q,Bx). The metal is described as a square box with edge-
length L. 

We recall the solution of the relevant quantum mechanical problem. In 
the limit of large L the eigenvalues of h have the form 

s„ = (2n + 1)/UB-B, 

where n is a quantum number which is a non-negative integer (n = 0 , 1 , 2, • • •) 
and where fiB — eTi/2m is the Bohr magneton (elementary magnetic mo
ment) . Each level is degenerate: the degree of degeneracy g of the energy 
level e„ is independent of n and equal to 

eBL'^ 

' = ^^T' 
where the factor 2 represents the spin degeneracy. 

1. Consider a system of electrons in thermal equilibrium in the box and 
in the field B. Treat these electrons as independent fermions to be studied 
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using the grand canonical formalism, with a temperature T and a chemical 
potential /x. We use the notation ( = e^'^ and (3 — 1/kT. 

a. Find an expression for the grand potential A{^j,,T,B) = —kT IXIZQ, 

without summing over n. 
b. Write down the expression which gives the electron density per unit 

area, Q = Njl? as function of n and T, without solving it. 
c. Write an expression in the form of a simple integral for the grand 

potential ylo(/x, T) of an electron gas in two dimensions without a magnetic 
field. Check that it is the same as the limit as -B —̂  0 of the expression found 
in la. 

2. Consider a very thin metallic film in three dimensions in a perpendicular 
magnetic field. In this case the single-electron Hamiltonian contains not only 
the term corresponding to the x- and y-directions, which was analyzed in 
the introduction to this problem, but also the kinetic energy p\/2m in the 
z-direction. If / is the thickness of the layer, the wavefunctions must vanish 
for z = 0 and z = 1. 

Show that in a temperature region which you must find the grand poten
tial of the layer reduces to the grand potential A just calculated, provided 
one modifies the chemical potential )U in a way to be specified. As a numerical 
application give this temperature range for / = 50 A. 

3a. Show that the magnetic susceptibility per unit area is given by the 
expression 

B=0,fj.,T 

h. The parameter ( is small at high temperatures, for fixed values of the 
electron density and the field B. Evaluate A retaining only the lowest order 
terms in ^. 

c. Find the magnetic susceptibility x î i this approximation. Give x as 
function of g and T. Show that the system is diamagnetic. 

d. Calculate A to second order in B for arbitrary values of /i and T. You 
may use the Euler-Maclaurin formula from the end of this book. 

e. Use the expression for A to find the susceptibility % first as function 
of /i and T and then as function of Q and T. Compare the result with that 
found in c. 

4. We shall show that, at sufficiently low temperatures, the magnetic 
moment of the metal as a function of the field B displays oscillations. This 
is the so-called de Haas-van Alphen effect. To simplify the situation assume 
the temperature to be zero and use a canonical ensemble taking the electron 
number N to be fixed. The system is then in a macro-state characterized 
by the fact that its energy is a minimum. Amongst the single-electron states 
which may be filled to produce this macro-state, those with lower energies 
(n < v) are completely occupied and those with higher energies (n > u) 
are completely empty; the single-particle states of energy e^ are, in general, 
partially occupied. Let if be the average occupation number of those states. 
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a. Calculate </? and v as functions of N and B\ denote by £^(3;) the integral 
par t of a real positive number x. Sketch the behaviour of <̂  and v as functions 
of XjB for a given density Q. 

b. Calculate the energy XJ of the macro-state as function of B for a given 
density and sketch its behaviour. 

c. Show tha t at zero temperature the magnetization per unit area is given 

by 

M^-j,% (iV fixed). ^ 

Show tha t M oscillates as B changes and sketch these oscillations. 
d. Indicate without calculations in what ranges of temperature and mag

netic field one may expect to observe oscillations in M as important as at 

r = o. 
5. In order to include the effect of the coupling between the electron spin 

and the magnetic field, which we have so far neglected, we need to add to 
h a term fisBa, where S^ = \K5 is the spin component along the magnetic 
field. 

a. Find the new single-electron energies and their degree of degeneracy. 
Use them to find an expression for the grand potential. 

b. Give as in 3d an expression for the grand potential to second order in 
B and find as in 3e the susceptibility as function of Q and T, now including 
spin effects. 

c. Try to think of a kind of material in which the diamagnetism predicted 
in 3 would persist notwithstanding the spin paramagnetism. 

Notes: 

We obtain the eigenvalues of h for an infinite two-dimensional layer by noting 
that the operators px and J ' = x +py/eB have the same commutation relations 
as px and "x, so that h has the eigenvalues of a harmonic oscillator of frequency 
eB/m. In order to take care of the finite dimensions L x L, it is convenient to 
impose periodic boundary conditions along the j/-direction and to assume that a 
box potential along the s-direction forces the wavefunctions to vanish for a; = 0 and 
X = L. This fixes the eigenvalues py = qh/L, where q is an integer. For given q, h 
becomes a one-dimensional harmonic oscillator, centred at the point Xq = —qh/LeB 
and confined to the box 0 < x < L. The presence of this box has practically no 
effect on the eigenfunctions of the oscillator which are localized inside the box. The 
extension An of these functions is given by A^ = {{x — Xq) )) = {n + ^)h/eB. 
When 0 ^ Xq — An, Xq + An <S L, so that the boundary conditions produce hardly 
any changes in the eigenvalues and eigenfunctions. Beyond this the eigenvalues are 
shifted upwards due to the introduction of the rigid walls; if q is such that the centre 
Xq of the oscillator leaves the box, the lowest energy levels are above the potential 
minimum, that is, the value of the harmonic potential {x — Xq)'^e^B'^/2m at x = 0 
or X = L. To summarize, when nh <C eJ5L we get practically the oscillator levels 
with a degree of degeneracy equal to the number of 5-values such that 0 < Xq < L, 
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t h a t is, t o eBL /h, as we s ta ted in t he in t roduct ion of t he problem. The effect of 
t he upward shift of the levels introduces ex t ra levels in intervals between the en, 
bu t wi th a density which is small compared to the density of t he levels t h a t we 
have kept , as t he interval involved for Xq by these ex t ra levels is small compared to 
L; hence t he corresponding number of g-values is small compared to g. 

For quest ion 3d we use t he Euler-Maclaur in formula in the form 

/[(^+^)£] = I 1°^ fix)dx+^^f'{0) + O(e% 
n=0 

which provides —A/kTg for t he function f{x) = l n ( l + &^^ ^ j and for e 
2(i^B/kT. Th is gives us 

67rf t2( i+e-M/fcT) 

Hence we find 

2 2 
/Ltgm _ e 

37^^2(1+ e- '^/ '=^) 127rm(l + e-A'/fcT)' 

In zero field t he electron density is 

_2_ 
h? 

which we can use to el iminate fi, whence 

At low densities, g <C mkT/h , we find a Curie- type diamagnet ic relation, % = 
~-fi^g/3kT, as in quest ion 3c; however, in t he opposite limit, which holds for a 
meta l , the susceptibili ty tends to a constant . 

The calculation is similar for question 5b. It is convenient t o use here the Euler-
Maclaur in formula 

n=l •'0 

taking the new spec t rum 2n/LtBB and its degree of degeneracy, j S for n = 0 and g 
for n > 1, into account . Prom a simple comparison wi th t he earlier result we then 
get 

2/iBm , -TTh^g/mkT\ 

Paul i pa ramagne t i sm, which is three t imes as large as Landau d iamagnet i sm, dom
inates and produces a to ta l susceptibility which is positive. Note t h a t to higher 
orders in B the orbi tal and spin effects do not add simply. 
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Fig. 16.20. The ground state energy of a paramagnetic film as function of the field 

In a realistic material the potential due to the ions replaces the kinetic energy 
by the band energy. This means that the electron mass m is replaced by an effective 
mass m* in the orbital part of h, but not in the coefficient fj,^ in the coupling ii^Ba 
with the spins, whence we find 

X 127rm* ( l + e-/^/*^^) 

Conducting materials with a small effective mass, such as bismuth, are therefore 
diamagnetic. 

The result of question 4b is 

U SMB-B Y^ {2n + 1) + {2u + l)<fi 

n=0 

2m 

2m 

{2v + 1) 

e^B^Z,^ 

2-Km 

Bo 

(p{l-ip), 

K̂  + l ) § 

where Bo = girh/e. This function is shown in Fig. 16.20; it has singularities when 
BQ/B is an integer, since v = E{Bo/B). 

In question 4c we find 

M efJ'B 
2B 
'Bo 

i/(i/ + l) - ( 2 i / + l ) u = EiBo/B), 

which shows a saw-tooth shape with discontinuities when BQ/B is an integer (see 
Fig.16.21). These oscillations can be observed experimentally and are the so-called 
de Haas-van Alphen effect. Deviations from the model, extended to three dimen
sions, give information about the interactions between the electrons and the ions. 

The oscillations are due to the Fermi level passing successively through the 
discrete energy levels Sn- The phenomenon will continue without much change at 
non-zero temperatures as long as the Fermi factor has an abrupt change on the 
scale of the distance 2/UBB between successive levels £«, that is, as long as 

kT < /iB-B; 
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Fig. 16.21. The de Haas-van Alphen 
oscillations 

• S / B „ 

the peaks in the M{B)-curve will just be rounded off over an interval AB ~ kT/n^. 
However, this range of temperatures and fields, T ^ B, if T is in kelvins and B in 
teslas, is difficult to reach, but faint oscillations can be observed even beyond it. 

16.12 Electron-Induced Phase Transitions in Crystals 

Certain metallic alloys with a chemical composition A3B, for instance, the 
vanadium-silicon alloy VaSi, can be in two crystalline phases which have 
a slightly different structure, depending on temperature. The first of these 
structures, which will be called "cubic", is the equilibrium state of the al
loy above the temperature T^. where there is a phase transition between the 
two structures; in the case of VsSi, Tc = 21 K. The other structure, called 
"tetragonal", is the equilibrium state of the alloy below T^. The problem has 
the aim to explain the existence of this phase transition start ing from the 
particular form of the electronic density of states of the A3B alloys, which 
differs from tha t of the free electrons of an ordinary metal. 

The cubic structure consists of cubic cells of edgelength 2a (Fig.16.22 
shows two adjacent cells). The B atoms which do not play any explicit role 
in this problem are not shown; they are situated at the centre and at the 
vertices of the cubes. Each face of a cubic cell contains the centres of two 
A atoms. One can distinguish three kinds of positions for the A atoms, de
noted, respectively, by A x , Ay , and Az- The A x atoms form chains which 
are parallel to the X-axis. Similarly, the Ay and Az a toms form, respectively, 
chains parallel to the Y- and Z-axes. In each chain two consecutive atoms 
are separated by a distance a. 

The cell of the tetragonal structure (Fig.16.23) is obtained from tha t of the 
cubic structure by stretching the sides parallel to the X-axis and contracting 
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Fig. 16.22. The cubic structure of an A3B alloy 

those parallel to the Y- and Z-axes by equal amounts; the cell volume remains 
unchanged. Thus, the distances between the A x atoms is now ax = a{l+T]), 
whereas the distance between consecutive atoms in the chains parallel to the 
Y- and Z-axes is a y = a^ = a ( l —577). The positive parameter 77 measures 
the deformation of the tetragonal cell as compared to the cubic cell. In this 
problem we examine essentially situations where 77 ^ 1 (Fig. 16.23 shows for 
the sake of clarity a very large deformation). We assume nevertheless that 
the above formulae giving ax, ay, and az as functions of rj are exact, even if 
77 is not infinitesimal. 

Fig. 16.23. The tetragonal structure of an A3B alloy 

Sing le -e lec tron D e n s i t y of S t a t e s in t h e T w o P h a s e s of t h e Al loy 

1. First of all we consider a single chain of A/ atoms ( / = X,Y, 01Z) 
containing n atoms. The length of the chain will be Lj = naj, ai being the 
distance between successive atoms. We t reat this chain as a one-dimensional 
system of non-interacting electrons, with each electron being in a periodic 
potential V{x) of period a/. We are interested in the wavefunctions ^{x) 
representing single-electron states in the chain. We impose on the func
tions ^{x) the periodic boundary condition •P'(O) = ^{Lj). This allows us 
to simplify the t reatment by getting rid of the boundary effects due to the 
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ends of the chain. We thus extend the functions ^(x) which are defined for 
X e [OjL/] to the whole range x € —oo,+oo, through the periodicity condi
tion ^{x) = ^{x + LI). 

We assume that the relevant eigenstates of the single-electron Hamiltonian 
are of the form 

+00 

^,ix) = Yl V'ix-xo-saj)e"''''', (1) 
S——00 

where s is a (positive, negative, or zero) integer, XQ + saj are the abscissae 
of the centres of the atoms in the chain, extended to the interval —00, -l-oo. We 
are assuming that we know the function ip{x) which depends on the form of 
V{x), and g is a parameter which enables us to identify the eigenstate ^q{x). 

a. Show that when j is an integer the function (1) satisfies the relation 

^gix+jai) = e'«"^«Z^,(a;). 

What can one say about the probability density V{x) for the presence of an 
electron at the abscissa x in the pure state ^g? 

b. Show that the periodic boundary conditions imposed on the functions 
^q{x) determine n different functions ^q{x) corresponding to the following 
values of q: 

Ij = -j—, i = 0, l , - - - , n - 1 . (2) 

Compare this condition on q with the one found in § 10.2.1 for the momentum 
of a free electron confined to a segment of length Li. What physical meaning 
can you therefore attach to the parameter ql 

c. We assume that the energy e, of the eigenstate ^q{x) is 

e, = Ei cos{q-ai), (3) 

where Ej > 0 depends only on the distance aj between consecutive atoms. 
How does Sq vary when q runs through its n allowed values qj? 

d. Show that in the limit of large lengths (L/ 3> oj) the single-electron 
density of states 2>j in the chain is 

VET 
where we have taken the spin into account and where 6{x) is the Heaviside 
function which is zero when x < 0 and 1 when a; > 0. 

2. The alloy has in each of the X-, Y-, and Z-directions m similar non-
interacting chains of n atoms; we write mn = Af. An electron can occupy any 
single-electron state of the 3m chains and it can switch from one chain to 
another, in the same or in another direction. We assume that when it belongs 
to one chain it does not feel the potential from the other chains. We write 
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Vx{£) for the single-electron density of states relating to the set of m chains 
which are parallel to the X-axis. Similarly, "Dyis) and T>z{£) are the densities 
of states relating to the m chains parallel to the Y- and Z-ax.es, respectively. 

a. Compare the total number of single-electron states in the Sm chains 
with the total number of atoms in these chains. Give expressions for Vxi'Dy, 
and Vz as functions of EX,EY, and Ez, which are the coefficients Ej occur
ring in Eq.(3) with I ^X,Y, or Z. 

b. Consider the cubic phase and put Ex = E. Determine the single-
electron density of states 23c (e) for the system of the 3m chains of the alloy. 

c. Consider the tetragonal phase. What is the relation between the single-
electron density of states X't(£) relating to the STTI chains and the densities 
of states Vx and P y ? 

3. We assume that as a function of a/ we can express Ej in the form 

ET — E (. - a'-i^y ,5, 

where a is the distance between the A atoms in each of the chains in the 
cubic phase and where E was defined in 2b; a is a positive coefficient. 

Write down the coefficients Ex and Ey for the tetragonal phase as func
tions of a and the deformation rj which was defined in the introduction 
(Fig. 16.23). Draw graphs of I'c(e) and "Dtis) for given rj. 

Electronic Free Energy of the Alloy 

In this section we assume that Smwy = SJ^fj non-interacting electrons in 
equilibrium at a temperature T occupy the single-electron states of the alloy 
given by (1). The number 7 of electrons per atom is fixed, with 0 < 7 < 2. 
The other electrons occupy lower energy states; their only role is to ensure 
the electrical neutrality of the sample. 

4. We assume that the structure of alloy is the cubic one. 
a. Without performing the integrations, write down an expression for 

the grand potential Ac{T,fi), starting from T>c{£) and E; fi is the chemical 
potential. 

b. Write down the condition from which one can determine the value 
ndT) of fi for a given filling 7, starting from Vc{£), and E. You need not 
calculate fJ^dT) explicitly. 

5. Assume now that the structure of the alloy is the tetragonal one. 
a. Find, without performing the integrations, an expression for At{T,fi), 

starting from Vxie), X>y(e), Ex, and Ey. 
b. Write down the condition from which one can determine the value of 

IJ.t{T) of /i for a given filling 7, starting from X'x(e), 'Dy{e), Ex, and Ey. 
You need not calculate /it (2 )̂ explicitly. 

c. Show that 

E ^ f E 
""^^'^ = m HE-/> I-XorY. 
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Use this relation and the results from 3 to show that for a fixed value of the 
deformation 77 one can write the grand potential At (T, fi) in the form 

I3{lj,~e+Ear]) 

+ 2lnh + e'^'^''-'-^'°"iA\v^{e)ds. (6) 

6. We now assume that 77 <C 1. 
a. Show that to second order in rj we can write for At (T, /i) 

A ( r , / i ) = ^ ( T , / . ) + i a V J e^fV,{e)de, (7) 

where / ' is the derivative with respect to e of the electron Fermi factor 
/(r,M,£)-

b. Use this result to show that for a given number of electrons, 3A/̂ 7, the 
difference ^tiT) — ndT) is of second order in 77. 

c. Let Fc and Ft be the free energies of the 3^f•y electrons at a temperature 
T for the cubic and the tetragonal phases, respectively. Prove that 

Ft = F, + \aW I e^f'.V,{e)de, (8) 

where/^ = /'[T,/Xc(T),e]. 

Stability of the Two Phases at Zero Temperature 

In this section, we put the temperature equal to zero, and we retain the hy
pothesis that 0 < 7 < 1. Note that at zero temperature / ' = —6{£ — fx). 

7. Consider the cubic phase. 
a. Show without calculations that the value of the chemical potential 

fic{T — 0), which we shall denote by /i°, satisfies the relation 

- F < /i° < 0. 

b. Calculate /i° explicitly as function of F and 7. 
c. Calculate the energy Uc of the 3JV'7 electrons as function of F and 7. 
8. Consider the tetragonal phase with given ?/ (77 -C 1), and write f/t for 

the energj' of the 3AA7 electrons in this phase. Hence find from Eq.(8) for Ft 
the value of Ut — Uc as function of 77. What is the sign of C/t — C4? 

9. The total energy of the alloy contains, apart from the energy of the 
37V7 electrons, an energy U^ associated with the other degrees of freedom of 
the system. Assume that U^, which is a minimum when 77 = 0, as a function 
of 77 has the form 
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a. Compare the energy of the cubic phase with the energy of the tetragonal 
phase for a fixed value of r/ (r; -C 1). Discuss which of the phases is the ground 
state of the alloy, depending on the value of 7. Hence, find the condition on 
7 in order that the cubic phase cannot be the equilibrium state of the alloy 
at zero temperature. If that condition is satisfied we shall say that the cubic 
phase is unstable. 

b. Find the numerical value of 70, that is, the maximum value of 7 com
patible with the instability of the cubic phase when a = 2; E = 1 eV; C = 
20 eV; these values correspond to the VaSi alloy. Check that 70 <C 1. 

c. Compare the case 1 < 7 < 2 with the case 0 < 7 < 1 which was studied 
above, using the particle-hole symmetry. 

10. Assume that the value of 7 is fixed at 

7 = 0.770, (10) 

and consider the tetragonal phase with fixed 77 (jy <C 1). 
a. Calculate to first order in rj the number of electrons contained in the 

m chains in the X-direction. Do the same for the m chains in the Y- or Z-
directions. Show that the chains in the X-direction do not contain any elec
trons if 7] exceeds a value rjo which you should calculate using the numerical 
data of 9b. What is the position of the chemical potential Mt° = fJ.t{T = 0) with 
respect to the single-electron energy levels of the chains in the X-direction, 
when T] = r]o? 

b. Use the results of 9 to find out how the total energy of the alloy varies 
in the tetragonal phase when 77 increases, starting from zero. Show that, if 77 
is left free to change, the equilibrium of the alloy corresponds to the chains 
in the X-direction being without electrons. Assume that the results from 9 
retain their validity when rj < rjQ. 

11. Consider now a deformation r] > 770, retaining the value of 7 from 10. 
a. Show that in this case fi^ decreases linearly with 77. 
b. Calculate the energy Ut of the SAfj electrons in the tetragonal phase 

and show that Ut + Ud has a minimum for a value 771 of 77 which must be 
calculated numerically. Check that 771 > 779. What can one deduce about the 
equilibrium value of 77 at zero temperature? 

c. Compare the values of Vc{fJ.°) and •Z?t(Att)| _ . Explain how one can 
use measurements of the magnetic susceptibility or of the specific heat to 
determine experimentally which of the two phases of the alloy is realized. 

Stability of the Two Phases when T ^0 

In this section we assume that the temperature T is non-zero and we fix 
the value of 7 to be 7 = O.770. We assume that the deformation, 77, of the 
structure does not contribute to the entropy of the alloy. Thus, the total free 
energy F of the alloy is F = Ft + Fd, where F j reduces to the energy term 
Ud given in 9. 
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12. If r; <C 1, the total free energy F can be written as 

F = F^{T) + \K{T)rf. (11) 

a. Express K{T) in terms of C, a, E, and T, without performing the 
integrations. 

b. In agreement with § 4.2.2 we consider F as a trial free energy associated 
with the variational parameter r). Show that a necessary condition for the 
cubic phase to be the equilibrium state of the alloy at a temperature T is 
K{T) > 0. 

In what follows we assume that this condition is sufficient and, on the 
other hand, that, if K{T) < 0, the tetragonal phase is the equilibrium state 
of the alloy. We shall discuss these two hypotheses in the comments below. 

c. What is the equilibrium state of the alloy at T = 0? 
d. What condition determines the temperature T^ of the phase transition 

between the cubic and the tetragonal phases, if it exists? 
13a. Show that one can define a Fermi temperature, 0c for the electrons 

of the alloy in the cubic phase such that, if T <C ©c the behaviour of the 
electrons is close to their behaviour at zero temperature in that phase. 

b. Use the fixed value of 7 and the numerical data from 9b to calculate the 
value of ©c • Explain why this value is much lower than that for free electrons 
in a metal. 

c. Use the value of 7 and the relation between C and 70, found in 9b, to 
express C as a function of a, E, and ©c-

14. Consider a temperature Ti, such that k0c <C kTi <C E. 
a. Use the condition which determines the chemical potential /Xc(Ti) to 

show that 

g(S+^c(Ti))/fcTi _!_ /®£ ^ 2 1 
A V Ti • ^ ^ 

Write u^ = (s + E)/kTi, and use the approximation 

I e -" du ^ 
Jo Jo 

'du = ^ . 
2 

b. Use these results to show, by looking for a positive minorant of K{Ti), 
that the cubic phase is the equilibrium state of the alloy at the temperature 

c. Now find the order of magnitude of the temperature Tc for the tran
sition between the tetragonal and the cubic phases. Compare this with the 
experimental value of Tc given in the introduction. 

15. A computer calculation of K{T) gives us the curve shown in Fig.16.24. 
Examining for T <^ ©c the form of K{T) determined in 12a, justify the 

existence of a minimum in the iir(T)-curve. Remember that 

/ g{x)6"{x -xo)dx = g"{xo). 

Assume that ndT) « M° when T < ©c-
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Fig. 16.24. The shear modulus of the cubic phase as function of the temperature 

Comments: 

The simpUfied model presented in this problem is inspired by the theory worked 
out by J.Labbe and J.Priedel to explain the behaviour of a phase transition ob
served in solids such as VsSi, NbsSn, and VaGe. This transition from a cubic to 
a tetragonal structure is called a "martensite" transition - see Problem 19, where 
the extension of the crystal cell of steel in one of the three directions is caused by 
a completely different mechanism, namely, the migration of C atoms. In general, 
changes in structure of crystals are produced by forces between ions; the value of 
the free energy which is due to these forces depends on the temperature and the 
crystal structure; its minimum determines the latter, which thus depends on the 
temperature. Here we are in a remarkable situation where it is the contribution 
to the free energy not of the ions, but of a small fraction of the electrons which 
changes rapidly with temperature and with the lattice structure, even for small 
deformations, so that the crystalline phase transition is induced by the electrons. 

The determination of the most stable phase was done by comparing the free 
energies for a fixed number of electrons. We could also have proceeded more directly 
by looking for the minimum of the grand potential A, which is the sum of (6) and (9), 
as function of rj for fixed fj, and T. A systematic study which can easily be carried 
out in the framework of the model used here leads thus to the phase diagram in 
the ^, T-plane, or in the 7, T-plane: the absolute minimum of A indicates which 
is the stable phase and gives the deformation 77, if this is the tetragonal phase. 
A local minimum indicates a metastable phase. In particular, in question 12 the 
condition K > 0 only ensures the metastability of the cubic phase. To find a more 
conclusive result it is necessary to expand A (or F) up to fourth order in 77 in order 
to determine the presence of minima other than the one at 77 = 0 and to compare 
the value of A (or F) in these minima with their value at 77 = 0. In this way we get 
a transition temperature slightly higher than the one obtained in question 14, and 
the transition is a first-order one, with a sudden jump of the order parameter 77 at 
T = Tc. 

The expansion up to fourth order in 77 makes it necessary to use a more realistic 
form for the paxameter Ej than (5). Strong coupling band theory (§ 11.2.4) shows, 
in fact, that 

^ J.Physique (Paris) 27(1966) 153, 303. 
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Ex = E exp I — a 

of which (5) is an approximation vaHd for small deformations. 
In the problem we restricted ourselves to exploring the possibility of a transition 

from a cubic phase, stable at high temperatures, to an elongated tetragonal phase. 
It is easy to extend the results to a flattened tetragonal phase, by taking 77 < 0. It 
then turns out that this phase is the most stable one at T = 0 for very small values 
of 7; when we let 7 increase, it jumps to the elongated tetragonal phase, obtained 
in 11, and then to the cubic phase. 

One can also consider orthorhombic structures which correspond to different 
values for the three parameters ax, ay, o-z • The extension of the calculations of the 
problem shows that those structures can only be metastable, as their grand potential 
is larger than that of a tetragonal structure. Other kinds of lattice deformations 
which are produced by changing the angles of the cell, with aj being constant, are 
excluded since they do not affect the electron density of states. 

The model could also be used to evaluate various thermodynamic quantities, 
such as the specific heat or the magnetic susceptibility, or mechanical quantities in 
each phase - for instance, K = d F/drf = d A/dr) is the shear modulus in the 
cubic phase - or the latent heat for the transition from one structure to another. 
In particular, the agreement between experiments and predictions for the thermal 
properties of VaSi has justified the above explanation of the martensite transition; 
it had been observed by crystal diffraction and electron microscopy without people 
knowing the reason for the change in the geometry of the cell. 

16.13 Liquid-Solid Transition in Helium Three 

Helium has two natural isotopes, helium four (^He) with a nucleus composed 
of two protons and two neutrons, and helium three (^He) with a nucleus 
composed of two protons and one neutron. We shall here study the liquid-
solid equilibrium of helium threei^'Re) at low temperatures, first when there is 
no magnetic field present, and then in the presence of a magnetic field which 
has the effect of polarizing the spins of different ^He atoms in the same sense. 
In particular, we want to explain the difference between the two equilibrium 
curves represented in the temperature-pressure plane (Fig.16.25). 

P r e l i m i n a r y Ques t ions 

1. Consider N a toms with average positions at the lattice sites of a cu
bic crystal lattice. Assume tha t each atom can oscillate, independent of the 
other atoms, around its average position, in the three perpendicular direc
tions of the cubic lattice. The restoring force, which is proportional to the 
distance, is the same in the three directions. The characteristic frequency of 
the oscillations is v. 

a. Calculate the canonical parti t ion function Zi of the N a toms, which 
we assume first to be spinless, in equilibrium at a temperature T. Hence find 
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Fig. 16.25. The phase diagrams of unpolarized (a) and polarized (b) heUum three 

the internal energy Ui and the entropy Si of the N atoms at the temperature 
T. What happens to Ui and ^i as T ^ 0? 

b. Now assume that each atom has a spin | , and that there is no in
teraction between the spins of the different atoms/Indicate the form of the 
partition function Z2, the internal energy U2, and the entropy 52 of the N 
atoms which oscillate around the sites of the cubic lattice. Write S2 = S2/N 
for the value of the entropy per atom. What is the limit of S2 as T —> 0? 
Is this in agreement with Nernst's principle? Among the assumptions made, 
which is the one that may fail as T —> 0? 

2. We recall the definition of the free enthalpy or Gibbs function, 

G = F + rn, 

where F = U — TS is the free energy, V the pressure, and i2 the volume. 
a. Give expressions for the entropy S, the chemical potential /x, the vol

ume J7, and the internal energy U as function of G{T, V, N) and its partial 
derivatives with respect to the variables T, V, and N. 

h. Show that G = fiN. You may, for example, use the extensivity of G. 

Study of Unpolarized Liquid Helium Three 

In the liquid state, helium three consists of interacting ^He atoms. It is dif
ficult to take these interactions into account when calculating the properties 
of the liquid. To simplify the study of liquid helium three we consider this 
system as a gas of N non-interacting ^He atoms. At the same time, to sim
ulate roughly the existence of interactions, we assume that the ^He atoms in 
the gas have an effective mass m* which differs from the real mass m of the 
^He atoms. 

3. The total spin of the ^He atom is | . How can one justify a half-odd-
integral value for this spin? Which kind of statistics should one use to study 
a gas of N non-interacting ^He atoms? 

4a. Find the pressure V{N/D, T) of liquid helium three at very low tem
peratures as a function of m*, the density N/fi, and the temperature T. 
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Assume that T is low, but non-zero, and restrict yourself in the expansion of 
V as function of T to the first T-dependent term. 

b. Express P as a function of N/f2 and of the average kinetic energy u 
of an atom. You can either use the relations between V and u, on the one 
hand, and the grand potential A, on the other hand, or identify P with the 
kinetic pressure of a gas of non-interacting particles. Explain qualitatively 
the existence of a non-vanishing limit of P{N/f2,T) as T -^ 0. 

c. Find the entropy per atom in the liquid, si{f2/N,T) = Si/N. 
d. What is the behaviour of si as T —* 0? Discuss this result in the light 

of the Pauli principle. 
5a. Use the expression for V{N/fi,T) obtained in 4 to show that the 

Fermi temperature ©p of liquid helium three is of the form 

0 F ( P ) = aP^/s, 

where a is a constant. Give an expression for a. 
b. Calculate the effective mass m* of a helium atom as function of its real 

mass m by requiring that at atmospheric pressure Vo the Fermi temperature 
is 6>F(PO) = 8.2 K. Take for Vo the value 10^ Pa. 

c. Calculate the average volume vi{V) occupied by an atom in the liquid 
at a pressure V and for T — 0. What is the numerical value of wi('Po)? 

d. Give si as function of 0p and T. Calculate the numerical value, in 
eV K~^, of si at a pressure Vo and at a temperature TQ = 10~^ K. What is 
the shape of the adiabats in the T, P-plane? 

6. Give for T = 0 the free enthalpy d of the liquid as function of its Fermi 
temperature OY{V). Hence find G\ as function of ©FC^O) and VjVo- Justify 
the fact that G\ retains the same expression when T -C © F , if one restricts 
oneself to an expansion of G\ up to first order in T. 

Study of Unpolarized Solid Helium Three 

The ^He atoms occupy in the solid the sites of a crystal lattice which we 
assume to be cubic (in actual fact it is body-centred cubic). The binding 
energy of an atom in the lattice is —e with e = 0.58 x 10^^ eV. Moreover, 
each atom can independently of the others vibrate in the three directions of 
the lattice with a characteristic frequency v, such that hvjh, = 20 K. We 
assume the solid to be incompressible and unexpandable so that its volume 
is J? = Nvs,, where v^ is the unchangeable volume occupied by an atom and 
TV" the number of atoms of the solid. 

7a. Show that the partition function Z^ of the solid is Z^ = e^'^^ Z2, where 
Z2 is the partition function calculated in lb and where /3 = 1/kT. Find the 
average energy Ug = Us/N and the entropy Sg = Ss/N per ^He atom in the 
solid as functions of e and i^. 

h. Give the numerical value, in eV K~^, of Sg at the temperature TQ — 10~^ 
K. Compare the entropy of the solid with that of the liquid at the temperature 
To- Why is the solid less ordered than the liquid? 
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Assume in the remainder of this problem that the model considered for 
the solid remains valid down to T = 0 so that if there is no external field the 
solid remains in the disordered state studied above. 

8. Give the free enthalpy of the solid Gg as function of T, N, V, and 
Vg (i) for T = 0; (ii) at very low temperatures. In the expansion of Gg as 
function of T we restrict ourselves to the term linear in T. With which physical 
characteristic of the solid is this linear term connected? 

Study of the Liquid-Solid Equilibrium Curve 
in Unpolarized Helium Three 

The liquid and solid phases of helium three are at a temperature T in equi
librium for a pressure V\{T) (see Fig.16.25a). 

9a. Show that on the equilibrium curve we have Gi(T,'P\{T),N) = Gs{T, 
•Pi(r), N), where Gi and Gg are, respectively, the free enthalpies of the liquid 
and the solid for N atoms. 

b. Use the result of a to find the relation between the slope dVi{T)/dT of 
the equilibrium curve, the change in entropy, s\ — Sg, and the change in the 
volume occupied per atom, v\ — Vg, &i a. temperature T and at the pressure 
Pi(T) (Clapeyron's law). 

10. The value of the volume Vs is 3.94 x 10^^^ m^. We want to determine 
the equilibrium pressure 'Pi(O) at zero temperature. 

a. Prom graphs of G^iT = Q,'P,N) and of G\{T = 0,'P,N) as functions 
of V show that there exist two possible values for the solid-liquid equilibrium 
pressure. In the remainder of the problem assume that only the smallest of 
these has a physical significance. The model ceases to be valid at too high a 
pressure. 

b. Determine the numerical value of 'Pi(O). 
c. Remember that for given temperature and pressure the stable phase of 

helium three is the one for which the free enthalpy is the lowest. Show that 
at T = 0 the solid is stable when V > •Pi(O) and the liquid is stable when 
V < Pi(0). 

11. Consider a temperature T ^ 0 such that T <C 0F, where ©F is the 
Fermi temperature of the liquid. 

a. Use the results of 6 and 8 to show that the equilibrium pressure Vi (T) 
decreases when the temperature increases, starting from zero. Calculate the 
slope dVi/dT\T=o- What is the physical origin of this negative slope? 

b. Check that the value found for dPi/dT\T=o is compatible with Clapey
ron's law found in 9b. 

12. The •Pi(T)-curve shows, in fact, a minimum at T = Tm (see Fig.16.25a). 
a. Consider the variation of the entropies Si and ^s along the equilibrium 

curve to explain why there is this minimum (neglect all terms of higher than 
first order in T). Estimate T^ and Ti{T^). 

In the remainder of this question we consider the effect of an adiabatic 
compression. 
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b. We start at a temperature Ti < Tm and a pressure V < 'Pi(Ti) from 
the liquid phase and compress the system until the solid s tar ts to appear at a 
tempera ture T2. Compare T2 with Ti and discuss graphically the position of 
the point reached along the coexistence curve in this transformation; compare 
T2 with Tm for diflFerent initial states Ti , V-

c. Consider now the case when T2 < Tm- If we continue to compress 
the system adiabatically we follow the coexistence curve, creating a certain 
amount of solid. Wha t is the effect of this transformation on the temperature? 
Write down the equations which allow us to calculate as function of T the 
number of atoms produced in the solid phase - you get the total entropy of 
the mixture by adding the entropies of the liquid and of the solid. Wha t is 
the final point of this process? 

S t u d y of Po lar ized H e l i u m T h r e e 

We consider very low temperatures and we apply a magnetic field of sufficient 
s trength to align all the spins of the ^He atoms in the saime sense. We neglect 
the (constant) interaction energy between the spins and the magnetic field. 

13a. Wha t is, for fixed N/fi, the relation between the single-particle den
sities of state X'(w) and T>'{u) which are associated, respectively, with the 
unpolarized liquid and with the polarized liquid, where u is the kinetic energy 
per a tom? 

b . Find, for fixed N/fi, the Fermi temperature ©'^{V) oipolarized helium 
three as a function of the Fermi temperature 6>p('P) of the unpolarized liquid. 
Give the numerical value of 0p('Po) at atmospheric pressure VQ. 

c. Show tha t for fixed density N/Q polarizing the spins increases the 
pressure of the liquid, and give a physical explanation of this fact. Calculate 
this increase in pressure for T = 0. 

14a. Write down expressions for the free enthalpies G[{T = Q,V,N) and 
G'^{T == 0, V, N) of the polarized liquid and solid, for T = 0. 

b. Hence find the value of the new equilibrium pressure 7̂ 2 (0) between 
the polarized solid and liquid at T = 0. 

15. Justify the positive slope of'P2(ji") at low temperatures (see Fig. 16.25b). 

Comments: 

The degeneracy 2 of the ground state of unpolarized solid helium three, which 
is associated with the possibility that each spin takes on two values, entails a vio
lation of Nernst's principle, at least for the model considered. In actual fact there 
are magnetic interactions between the ^He nuclei. They are very weak because the 
nuclear magneton is so small and they do not play any role, except at very low 
temperatures of the order of mK, whereas we consider here temperatures of the 
order of a fraction of one K. Nevertheless, they produce in the solid a phase tran
sition at 1.03 mK below which the spins show anti-ferromagnetic ordering, that is, 
two neighbouring spins are oriented in opposite directions ±u . The ground state 
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remains degenerate, since the orientation of u is not fixed, but so little that the 
entropy per atom tends to zero for T <C 1 mK. 

In the liquid phase the Pauli principle ensures the vanishing of the entropy 
per atom at low temperatures. In the solid phase the sites are distinguishable; this 
allows each of them to have a spin which can take on two values. 

When we compress the liquid its temperature grows as V ' until one reaches 
the 7-'i(T)-curve. If the temperature is then below Tm, the compression along this 
curve lowers the temperature while He gradually crystallizes (§ 12.2.3). In our 
model we could reach the absolute zero in this way. In practice, the existence of a 
spin ordering of the solid below 1 mK, as well as losses, limit the lowering of the 
temperature. 

The spin polarization modifies profoundly the phase diagram of He because 
it increases the Fermi level of the liquid and because it removes the spin entropy 
in the solid phase. We have restricted ourselves in the problem to two extreme 
situations where the magnetic field B is either zero, or sufficiently large to align 
the spins completely. It would be easy to extend the study to arbitrary magnetic 
fiels. The model thus allows us to explain the phase diagram of He as function of 
the variables V, T, and B. 

16.14 Phonons and Rotons in Liquid Helium 

The heavy, most abundant , isotope of helium ("^He) has two liquid phases 
which are traditionally denoted by I and II. The phase I is an ordinary liquid. 
The phase II has remarkable properties such as superfluidity which we want 
here to explain. 

At atmospheric pressure VQ the phase II is stable below the temperature 
T\ = 2.18 K (Fig.12.1). The value of its mass density, g, which is practically 
independent of 7-" and T, is 145 kg m~^. 

T h e L a n d a u M o d e l 

The model of a gas of non-interacting bosons (§ 12.3.1) allows us to explain 
only a few of the properties of helium at low temperatures . In fact, the in
teractions between the atoms play an essential role in a liquid, especially 
for bosons (§12.3.2), and it is difficult to take them into account through 
a diagonalization of the Hamiltonian, even making very crude approxima
tions. Landau's theory^ of liquid helium II is based upon a semi-empirical 
description of the low-energy micro-states, which has been justified theoret
ically afterwards®. These micro-states can be approximately constructed in 
two stages: 

a) We first determine the configuration of the atoms in the liquid which 
corresponds to the ground state. This state we shall call the substrate. The 

^ L.D.Landau, J.Phys.USSR 5 (1941) 71. 
® R.P.Feynman, Progr.Low Temp.Phys. 1 (1955) 17. 
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wavefunction of the substrate is not simple, but we need not know it. For N 
atoms in a volume {2, the energy Eg of the substrate is an extensive quantity. 

b) Starting from the substrate we construct the first excited micro-states, 
the only ones which are useful for a study of the properties of helium II. 
More precisely, these micro-states describe the vibrations of the atoms in the 
substrate, considered as a fixed reference s tate . A vibrational micro-state will 
be regarded as a superposition of collective oscillations of the atoms. Each of 
these oscillations, which are called vibrational modes, is characterized by a 
wavevector q and a frequency u}{q)/2TT. 

This model of helium II is analogous to the one introduced in Chap. 11 to 
describe the vibrations and the specific heat of a crystalline solid. In tha t case, 
the substrate consisted of a system of atoms at positions close to the crystal 
lattice sites, which deviated from these sites only through small fluctuations 
of their positions and their velocities, necessary to satisfy the Heisenberg 
principle in the ground state. The modes were the phonons, that is, the 
quantized collective vibrations of the atoms in the crystal. The structure of 
the substrate is here more complicated, since the atoms are so light that they 
fluctuate widely in the whole available volume, but the excitations still look 
like the phonons in a crystal. The distribution of the excited states of helium 
resembles also that of electromagnetic radiation in a cavity (Chap.13). 
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As in these earlier problems, we associate with each mode of helium II a 
quantum harmonic oscillator, the successive excited states of which lie at a 
distance oie{q) = hw{q) from one another. An elementary excitation [e(qr), q] 
is thus interpreted as adding to the system a quasi-particle with an energy 
s{q), a momentum p — hq, and zero spin. The volume i? of the system is 
taken care of through periodic boundary conditions. 

In the case of helium II we can determine the function u){q) either theoret
ically by taking the interactions between the atoms in the liquid into account, 
or experimentally by measuring the energy and momentum absorbed by the 
liquid when a single mode is excited by a low energy neutron. As the liquid 
is isotropic, the function u){q) depends solely on the length q = \q\ of the 
wavevector. Figure 16.26 shows the so-called dispersion curve, that is the 
function iL>{q), for a pressure equal to To and a temperature T = 1.1 K. In 
fact, this curve depends little on T and V. As we shall see in what follows we 
can explain a number of properties of helium II, knowing this curve. In fact, 
a remarkable agreement with experiment is obtained up to 1.6 K. 

For a treatment of some questions it will be necessary to know the quasi-
particle velocity. In a medium in which vibrations can propagate this velocity 
is that of the centre of a wavepacket formed through a superposition of modes 
with wavevectors which are close to the wavevector q of the quasi-particle. 
The centre of the wavepacket, which resembles a classical particle, moves 
with a velocity 

duj{q) q 
dq q' 

viq) = V,{.) ^ " ^ ' ^ , (1) 

which can be found, once we know the dispersion curve w(g). 

Preliminary Questions 

1. Consider a system of identical, non-interacting, zero-spin bosons con
tained in a box of volume i7. Their single-particle quantum states are charac
terized by the value of the wavevector q. We write T>{q) d^q for the number 
of such states in the volume element d^q = dq^ dqy dqz centred around q. The 
energy of the state q is e(g), where e is assumed to be a known function of 
q. Give I'(q) as function of Q. Use the expressions for the internal energy U 
and for the grand potential A of a grand canonical system in equilibrium as 
functions of the occupation factor / , and of 2?(g) to derive expressions for U 
and A as functions oi P — i/kT, i?, e(q), and the chemical potential /x. 

2. What is the most convenient statistical ensemble to use for studying 
the above system, if the number N of bosons is not conserved, because bosons 
can be created or absorbed by the walls of the vessel? How can you in that 
case use the expressions from 1 to find the free energy F = U — TS as function 
of T, f2, and e? Give an expression for the pressure V of the boson gas. 

3. Consider a discrete system of quantum harmonic oscillators with fre
quencies u>i/2T:{i = 1,2, • • •). Repeating the arguments from the main text. 
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show that the equilibrium of such a system can be described as the equih-
brium of a set of non-interacting quasi-particles with possible energies hoji 
which obey Bose-Einstein statistics. Justify in this way the equivalence, which 
we mentioned above when defining the model for helium II, between the 
modes [huj{q),q\ and a gas of quasi-particles, provided the chemical poten
tial has a value which should be given. 

Specific Heat of Helium II 

We now consider the model which represents helium II as consisting of a 
substrate of energy Eg and a system of modes [hw{q),q], where a;(g) is given 
by Fig.16.26. 

4. Show that the free energy F of a volume O of this fluid has the form 

F ^ Es + hTQ / q^ In (l - e"'^"") dq, (2) 

where 6 is a constant which must be found and q= \q\. 
5. We shall, when evaluating F, neglect the exponential e~^^'^ when 

Phiji) > 5. Show that when T < Tx the thermodynamic properties of he
lium II depend only on two parts of the dispersion curve, defined by two 
intervals [0, go] and [91,52] for the values of the wavenumber. Give the order 
of magnitude of the quantities qo,qi, and 52-

We shall systematically use in what follows the approximation which con
sists of neglecting e '̂̂ '̂ '̂  when /3fiu> > 5. 

6. We are interested in the contribution to F from quasi-particles with 
wavenumbers in the [0, ̂ o] interval. The corresponding excitations are called 
phonons since they propagate at a well defined velocity c and, as in a crys
talline solid, correspond to vibrations with acoustic frequencies. Show that 
to a good approximation the contribution Fph of the phonons to F can be 
calculated by replacing qo by +00 and replacing the dispersion curve by a 
straight line uj = cq. Give Fph as a function of temperature, first algebraically 
and then numerically. Hence, find the contribution Cph of the phonons to the 
molar specific heat at constant volume of helium II. Compare the numerical 
value of Cph at a temperature of 1 K with typical values of specific heats 
of materials which you know of, such as gases, liquids, or solids, at room 
temperature. 

7. The excitations corresponding to the [̂ 1,52] interval are called rotons. 
Find an expression for the average number {n{q)) of rotons in each mode 
[hu}{q), q]. Show that this number remains always small when T <T\. Obtain 
a numerical upper bound for {n{q)) in the roton region [qi, 92] using Fig.16.26. 

8. Show that the contribution F R of the rotons to F has the form 

F R = -rT^'^Qe-^''^, (3) 
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where r and A are coefficients wliich you must find, both analytically and 
numerically as functions of fundamental constants and of characteristic fea
tures of the curve of Fig.16.26. To derive this result, replace <jj{q) in the region 
considered by a parabola and show that it is a good approximation to replace 
after that [91,92] by [—00,+00]. 

9. Calculate the contribution CR of the rotons to the molar specific heat 
at constant volume of helium II. Compare the numerical values of Cph and 
C R as functions of temperature and give a table showing for several values 
of the temperature the variation of the total molar specific heat of helium II, 
between T = 0 and T = Tx-

Dynamical Properties of Helium II 

We shall now use the above results to study some properties of uniformly 
flowing helium II. When it is set in motion this liquid can acquire momentum 
in two different ways which may be combined: 

a) by moving the walls of a tube which surrounds the liquid parallel to 
themselves (Fig.16.27a). We assume that in this motion the substrate is not 
dragged along: the substrate velocity is Vg = 0. On the other hand, the walls 
can give up (or absorb) energy and momentum to (from) the fluid by creating 
(or absorbing) one (or more) quasi-particle(s) of momentum p and energy hui. 
As a consequence, near the wall the quasi-particles are in equilibrium with the 
wall: they have the temperature of the wall and an average velocity u equal 
to the translational velocity v^, of the wall. For a narrow tube (for instance, 
one of the micro-channels of a porous medium) all the quasi-particles are 
thus in equilibrium with the wall. 

b) by moving the substrate at a velocity Vg (for instance, using a piston 
which pushes the fluid) (Fig. 16.27b). For a wide tube, far from the walls, the 
quasi-particles are in equilibrium with the substrate, as in the earlier parts of 
this problem, and their relative mean velocity u, with respect to the substrate, 
is zero. 

The general situation corresponds to a combination of a and b where 
the walls influence the equilibrium of the quasi-particles while the substrate 
moves without interacting with the walls. If, for example, we consider a nar
row tube with flxed walls, in which the substrate moves with a velocity Vg — v, 
the quasi-particles, in equilibrium with the walls, remain on average at rest 
in the laboratory frame so that their mean velocity u with respect to the 

•Ow =!'0 

v,=0 ; « = 0 w 

(a) (b) 
Fig. 16.27a,b. Two types of flow in helium II 
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Laboratory frame Substrate frame 

"Ow = 0 v' =-V 

« s = « ' ; « = - i 5 i>s = 0 « = - • » 

(a) (b) 
Fig. 16.28a,b. Flow of superfluid helium in a narrow tube 

substrate will be M = —v (Fig.16.28a). In fact, to simplify the discussion we 
shall most often work in a reference frame fixed to the substrate (Fig.l6.28b). 
In such a change of reference frame the relative velocity u is, of course, un
changed while Vs = 0, but the walls are no longer fixed and move with a 
non-vanishing velocity v'^ = —v. 

10a. Justify briefly the fact that in the frame in which the substrate is at 
rest and where the quasi-particles are thus dragged along by the walls the 
density operator D of the fluid is of the form 

5 = 1 -/3H-(A.?)^ (4) 
A 

where P denotes the operator which is associated with the total momen
tum P of the quasi-particles, P = ^Vi = ^^1ii ^nd H the Hamiltonian 
considered earlier. 

b. Write down an expression for the average number {n{q)) of quasi-
particles in the mode q as function of /? and A. 

c. Give in the form of a triple integral over d^q the total average momen
tum (P) of the quasi-particles as function of P, Q, and A. 

11. Show that the average u = {v{q)) of the quasi-particle velocities 
relative to the substrate equals —A/j3. To do this use fact that the integral 

/ ''[•»( 
g-/3fiw-{A-nq) <fq (5) 

vanishes. Use also Eq.(l) for the quasi-particle velocity as function of a;(g). 
12a. Taking a frame of reference fixed to the substrate show that there 

exists a critical velocity Wc, the numerical value of which must be determined 
by using Fig.16.26, which has the following property: the number of quasi-
particles remains negligible in the limit of very low temperatures (T -^ 0) as 
long as the relative velocity u of the quasi-particles relative to the substrate 
remains below u^. Compare Uc with the phonon velocity. 

b. Can the velocity u exceed u^ at a non-vanishing temperature which 
is, however, lower than T^? What happens when it reaches u^ from below? 
What exchanges of momentum and energy then take place between the fluid 
and the walls? Does the model considered here remain valid? What happens 
if in a situation like the one shown in Fig. 16.27a the speed of the walls is 
increased suSiciently to exceed Ucl 
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13a. By staying in the frame fixed to the substrate, show that if the mean 
velocity |w| of the quasi-particles is small compared to u^ {u <C Uc), the total 
momentum P of the quasi-particles in a volume i? of the fluid has an average 
value of the form 

(P) = Q^Qu, (6) 

and express Q^ as an integral over q. 
b. Write F = —kT In Z. Use the thermodynamic relation between {P) 

and F and the result of question 13a to show that F differs from its value at 
rest (u = 0), which is the free energy F considered earlier in this problem, 
as follows: 

AF = F-F = IQ^QV?. (7) 

c. Show that one can interpret this situation as the dragging along by 
the walls of a fictitious fluid, with a velocity u and a mass density £>„ which 
changes with temperature. 

14. In the case of a general flow of helium II, where the tube is not 
necessarily narrow, we consider a volume element i? of the fluid which moves 
with the velocity Vs of the substrate. The quasi-particles which are contained 
in it move with a relative mean velocity li, and hence with a mean velocity 
v^~u + Vs with respect to the laboratory frame of reference. 

We define a mass density QS by the relation 

Q = Qn^ Qs, (8) 

where Q is the total mass density of helium II, and g^ the mass density defined 
in Eq.(6). The densities g^ and gg are called, respectively, the normal and 
super fluid mass densities. 

a. Show that the mass current density J = (Piab) / ^ and the free energy 
of the moving fluid î iab are, respectively, equal to 

J = £'nWn + ^sWs, (9) 

-Flab = F+\Q{g^vl + g,vl), (10) 

where Piab and Fiab are relative to the laboratory frame of reference. We use 
the fact that, if a mass M of fluid has, in the frame of reference fixed to the 
substrate, an energy E and a momentum J-*, these two quantitities have in 
the laboratory frame the values 

-Blab = E + {P-v,) + \Mvl, (11) 

and 

-Plab = P + MVs, (12) 

while the entropy S remains unchanged (see § 14.4.4). 
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b. Deduce from, this tha t heUum II at low velocities behaves as a mixture 
of two independent fluids with a composition which depends solely on the 
temperature . 

Note tha t the first fluid, the so-called normal fluid, is similar to an or
dinary fluid, while the second, the so-called superfluid, exchanges neither 
momentum, nor energy with the walls of the tube. 

15a. Show tha t the density g^ of the normal fluid is the sum of two 
contributions, from the phonons and rotons, respectively. 

b. Show tha t the contribution g^ of the phonons to ^n has the form 

and find the value of m. 
c. Use the same approximations as in question 8 to evaluate algebraically 

and numerically the contribution g^ of the rotons to £>„. 
Assuming that g^ ^ g^^ when T > 0.7 K, show the behaviour of the 

^n(r)-curve. 
d. Determine numerically the temperature at which the superfluid disap

pears. Interpret and discuss this result. 
16. Two vessels A and B which are thermally insulated and contain helium 

II are initially at the same pressure and temperature and are connected by a 
narrow tube. We introduce a little amount of heat into A. 

a. Due to this heat, the superfluid fraction decreases initially in one of the 
two vessels; which one? How is the system going to evolve? 

b . After a short lapse of t ime we obtain in the system of the two vessels 
a stationary, near-equilibrium state in which there is a small temperature 
difference AT and a small pressure difference AV between A and B. Show 
tha t we have the relation 

^ = - . (14) 
AT n ^ ' 

Assume tha t the chemical potentials /XA and /XB of the helium atoms in the 
vessels A and B are the same in the quasi-equilibrium state considered. 

c. Using an order of magnitude estimate (for a temperature T ci 1.5 K) 
show tha t the above effect can lead to a significant difference between the 
fluid levels in the two vessels even when TA — TB is very small, of the order 
of a few hundredths of a degree. This effect which can lead to a spouting of 
liquid helium is called the fountain effect (Fig.12.8). 

d. Use thermodynamic arguments to justify the hypothesis /XA = /^B) 
made in 16b. 

Solution 

1. If ©'(e) is the density of states at energy e, we have T>{q) d q = 'D'{e) de. The 
possible values of each component qi of q are 27rn/Lj, where i = x,y, or z, where 
n is an integer, and where fi = LxLyLz is the volume, so that 
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Vi,) ^ ^ . (1) 

The internal energy U and the grand potential ^ of a quantum gas of non-
interacting spinless bosons are given by the equations 

(2) 

U = i ef{e)V\e)de, 

A = - l / " l n { l + / (£ )}©' (£)&. 

Moreover, we can express / (e) as a function of q: 

for non-interacting bosons. Hence, using (1), (2), and (3), we get 

U = j e{q)f{s{q))V{q)d^q = ^ j sMd^Q _ /4^ 
g/3[e(9)-Ml 

and 

A = V{q)d\ -^ I ln[l + f{eiq)) 

J ^ / l n ( l - e - ^ K « ) - l ) . 3 , (5) 

2. If N is not conserved, one can fix that quantity neither on average, nor 
exactly. It does not enter into the determination of thermodynamic equilibrium 
and the corresponding statistical ensemble has only the natural variables /3, which 
is conjugated to < U >, and O, if we take In Z as a thermodynamic potential. 
The expression for Z is the same as the grand partition function, which must be 
summed over all iV-particle Hilbert spaces with N going from 0 to oo, provided 
a = /3/i = 0. The thermodynamic potential associated with the variables T and Q 
is equivalently A or F, since A = F — fiN = F when /u = 0. Hence the free energy 
F has the form (5) with /i = 0: 

kTO 
STTS 

The pressure of the boson gas is 

f ln(l-e-^<Ad\. (6) 

a F _ .4 _ F _ kT 
' dO ~ n ~ Q ~ 87r3 

f ln(l-e-^<Ad'q. (7) 

3. In the main text we have discussed phonons {§ 11.4) and photons in an 
enclosure (§ 13.1), as we did also in Exerc.4f: each quantum oscillator with frequency 
uJi/2n makes a contribution to the total energy which is equal to (rij -|- 5 )^'^i where 
Tij is a positive integer or zero. A quantum micro-state of the whole system is 
characterized by giving the n^ of the different oscillators (each state n, is non-
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degenerate). If we change the energy origin to get rid of the ^hun, the micro-state 
\ni,..., Tii,...,) has an energy 

U = y rii huii = nj £j with ej = huji. 

Let us describe the system as consisting of fictitious identical particles, the quasi-
particles; the single-particle states are the set of the e, = fto;,. We can then interpret 
the rij as the occupation numbers of the different single-particle quantum states 
and they together determine the micro-state of the system. As n, = 0,1, • • •, oo, 
everything happens, as if the quasi-particles were bosons. Their total number N = 
^ T i j is clearly not conserved as the quasi-particles are at the same time energy 
quanta: even if the total energy is conserved, an energy quantum £j can disappear, 
being replaced by several other energy quanta. We thus cannot specify the number 
of particles; N is not a constant of the motion. In the model for helium II the above 
correspondence is implemented by moreover associating a quantum oscillator with a 
mode characterized by a wavevector q. We have therefore a quasi-continuous set of 
oscillators with a density of states T>{q); each oscillator q has a frequency a;(q)/27r, 
where (jj{q) is given by the dispersion curve, and an energy e{q) = hw{q). As in the 
discrete case of oscillators with OJJ, the quasi-particle number N is not conserved 
and the chemical potential of the system is zero (cf. question 2). 

4. A micro-state {n,} of helium II has an energy 

E = Es + '^Ug fkjg, (8) 

where the summation is over all values of q which are allowed in the box of volume 
n. 

The partition function can then be written in the form 

/3Ss,~/3E,"«'^-« = .-0^^ Z^p, (8') 2_] e ' ° e '-^1 ' ' = e 

where Zqp is associated with single quasi-particles; hence 

F = - -^ I n Z = Es + Fqp, 

where Fqp is the free energy (6) associated with a system of spinless non-interacting 
bosons in a box, whose number is not conserved. Replacing the integration over Qx y 
q-y, and qz by integration over q = \q\ we get 

F = E.+ 'l^ j ^ ln[l- e-^^-(')) q^ dq. (9) 

5. If we agree to neglect e~'^^'^ for x = pTiuj > 5, that is, e^"' < 7 x 10"^, 
this means that for given /3 we eliminate large values of huj. The acceptable range 
[0, hu)] is thus the narrower, the higher /3, that is, the lower T. Therefore, Juvmax 
corresponds to the upper limit kT = kT\ of the stability range of helium II, and 
t^max is defined by 

^ = —7-7^— 5; 5, or 
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^ ^ < 11 K. (10) 
k 

As we have already indicated at the beginning of this problem, the dispersion curve, 
uj{q), does not depend strongly on T. Using that curve we see that condition (10) 
is satisfied in two g-value ranges, namely, [0,go]) with go — 0.65 A and [51,52] 
around the point R, with gi ~ 1.65 A~ and 52 — 2.15 A~ . The abscissa g^ of 
the minimum R of the curve is 1.9 A~ and we thus have 

| g i - 9 R l •^ \qi~qK\ ^ 0.25 A ^ \ 

6. In the phonon region [0, go], the dispersion curve is a straight line and we have 
o) = eg, where c is the slope of the dispersion curve at the origin. Prom Fig.16.26 
we find that hc/k = 18.3 A K. To calculate Fph we replace a> by eg in (9) in the 
region [0, go] • This gives 

r -0 Fph = f ? / "ln(l-e-'^'^'=')g^dg. (11) 

Integration by parts and change of variable, x = /3hcq, give 

-^ph 

poo 

k^T*n f^ x^dx 

— / X e ax 1 i 6 e 

As 
foo 3 J /•oo 

0, 

we can extend the integral over the interval (0, +oo). The resulting definite integral 
can be found in the table at the end of the book: 

f 
Jo whence 

^ = ^W^W = S ' 

TT̂  k^nr^ n4 
^^"^ = - ^ ^ ^ = - 2 4 7 / 2 T - J . (12) 

dF 
The entropy is 5 = —-^ and the specific heat of a volume i? of helium II is 

therefore 

Using the values of the density, ^o ~ 145 kg m~^, of helium II and the mass, 
4 X 10~ kg, of a mole of He, we find for the molar specific heat 

Cph ~ 0.082 T^ J K"^ m o r ^ 
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For T = 1 K this value is small compared to those of condensed matter at room 
temperature: water, 75 J K~ mol" , or solids (Dulong-Petit law), 3R = 25 J K~ 
mol~ , or compared to those of gases | f l = 12.5 J K~ mol~ . 

7. The average number of rotons in a mode q equals the corresponding Bose-
Einstein factor: 

eMi) - 1 Qnu>{q)/kT _ I • 

This number has an upper bound which is the value of /<, for OJR = ui{q^) and 
T = Tx, where 

kTx - • 

We have thus 

(n(q)>R < e-'^'^'^/'^^^ ~ e-4 ~ 0.02, 

which is, in fact, a small number. 
8. In the roton region u){q) has a parabolic shape and we can therefore replace 

the dispersion relation by 

——^ = a{Q-qR) , (14) 

where a = 40.4 K A^ = 40.4 x 10-^° K m ^ Moreover, as e"^'^'^'^ < e'^"^/'''^^ ~ 
0.02 <C 1 we can expand the logarithm in Eq.(9) for the free energy as for a classical 
limit. We find 

-FR - — Y ^ / q dqe '•''" , (15) 

with ui{q) given by (14). As indicated in the text, we assume that, if we extend 
the integral (15) to the interval (—oo,+cx)), the physical results remain essentially 
unchanged. In fact, if we make this approximation, the error is of the order of 1 
% due to the fact that the integrand is so small outside the interval (qi,92)- Using 
that approximation we get, after changing the variable q to a; = Wa/T{q — gji): 

(16) 

The integral has two non-vanishing terms, the first one with x^ and the second one 
with qj^a/T. We need retain only the latter, as (^a/T = 150/T, and we get 

"3/2 2 

R 27r3/2al/2 

which is of the expected form, ~rT^''^Qe ^'"^ ^ with 

^ = „ •, / , 1 / , and A = ——. 
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Table 16.1. The phonon and roton contributions to the specific heat of He II, in 
J K~^ m o r ^ 

T 

Cph 

CR 

C 

0.2 

6.5x10"^ 

— 

6.5x10"* 

0.4 

0.0052 

2.4x10"^ 

0.0052 

0.6 

0.0175 

0.0018 

0.019 

0.9 

0.059 

0.127 

0.186 

1.2 

0.14 

0.97 

1.11 

1.5 

0.27 

3.05 

3.32 

1.8 

0.47 

6.30 

6.77 

2.0 

0.65 

8.92 

9.57 

2.18 

0.84 

11.46 

12.30 

The numerical values, equal to r = 6.9 x 10^ J m ^ K ^/^ and A = 8.67 K, are 
found by taking the values of a, qii — 1.9 A , and ujji from Fig.16.26. 

9. The roton contribution to C, evaluated in the same way as the phonon 
contribution, is 

CR •-^'1M-f (17) 

Hence, taking for O the molar volume, we find 

The temperature dependences of Cph and CR are very different. Because of the 
factor e~ ' the roton contribution C R is negligible compared to the phonon 
contribution at very low temperatures. Nevertheless, although the number of rotons 
per mode always stays small, the roton contribution cannot be neglected when the 
temperature increases, as the region q •-.̂  0 in wavevector space related to the 
phonons is much smaller than the neighbourhood of the sphere g ~ QR relating to 
the rotons. 

Up to r = 0.6 K, the phonon contribution in T^ dominates (Table 16.1). Prom 
T = 1.4 K onwards, the inverse is true. The curve obtained in this way is in good 
agreement with experiment, except at the highest temperatures, where measure
ments show that C diverges at T = T;̂  = 2.18 K. In fact, the model is then no 
longer valid; it does not predict the phase transition to helium I, an ordinary liquid. 

10a. The total average momentum is non-vanishing for the quasi-particles. It is 
imparted to them by the walls which play the role of a bath which determines the 
constant of motion P. We can therefore fix (P) by means of a Lagrangian multiplier 
A. At equilibrium the Boltzmann-Gibbs density operator is thus 

D 
1 ^nn^ 0H^{A-P) 

h. As in 8 we have 

E = Es + ' ^ n(q) hu}{q). 

(18) 

(19) 
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On the other hand, we have 

P = ^ n{q)p = ^ n{q)Tiq. (20) 

Hence we find 

Z = ^ exp[-PEs] exp -/3 2^ nqhuj{q) ~ I A- y^ riq hq (21) 

which is the same as Eq.(8') for the partition function, except that (3u}(q) has 
been replaced by /3u;{q) + {A • q). If we make the same substitution in the average 
occupation number (n(q)), we get 

("(«)) 
1 

^l3hu(q)+{A-hq)-l • 

c. We find 

(P> = j {n{q))hqV{q)d\ = 

11. The integral in question is equal to 

hqd^q 

I d^qVg ln( l -0s-{A-p)\ I 

) + {A-hq} _ l' 

d^qVq{/3e + {A-p)) 
e/9e+(^-p) _ 1 

(22) 

Using the fact that v{q) = Vq{u}), p = hq, and e = tiu!{q), we find 

/

o 3 
d^q{n{q)){phv{q) + nA} = ^N[(3hu + hA]. 

Because the logarithm vanishes at infinity, the integral / vanishes, and we find 
therefore that /3u + A = 0, that is, the required result: 

A 

12a. We write {n{q)) in the form 

1 
(nil)} = g/3ft[a;(g)-(«-,)] 

(23) 

(24) 

As long as ui{q) — {u • q) > iij(q) — uq remains positive, this number tends to zero 
as T ^ 0. Therefore, if 

u < 
w{q) 

for all values of q, the average number of quasi-particles per mode is negligible as 
T —» 0, exactly as for a zero velocity. The minimum of uj/q is the slope Uc of the 
tangent from the origin to the dispersion curve, which touches this curve in the 
roton region at qc, ojc', this minimum is slightly smaller than w(gR)/gR (Fig.16.26). 
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Hence, if T ~ 0 and u < Uc, the liquid remains practically a t rest in its ground 
s ta te . Note t h a t t he integral / of quest ion 11 is defined only when u < Uc or A < Ac-

b . Let us consider a wavevector q of length qc in the direction of u. The average 
number of ro tons in t he corresponding mode , 

{n{q)) 

t ends t o infinity as u increases and reaches Uc- Infinite amounts of energy and of 
m o m e n t u m are thus impar ted to the fluid th rough the creation of ro tons due t o the 
mot ion of t he walls. This catastrophe implies t h a t the model ceases to be valid for 
u > Uc. Therefore, if we let the velocity Uw of the walls increase, their mot ion s ta r t s 
to produce an anisotropic quasi-particle dis t r ibut ion (24) wi th u = Vw', when Ww 
reaches Uc, hel ium changes from helium II into normal hel ium I; after this phase 
change it is globally dragged along a t the velocity Vw, jus t like any other fluid. 

Figure 16.26 gives us the numerical value huc/k = 4.3 x 10~ m K, or Uc = 
56 m s^ j which is not in agreement wi th t he exper imental value of the critical 
velocity, being too large by two orders of magni tude . In fact, before t he walls create 
a large number of rotons, other excitat ions appear which we have not discussed, 
t he so-called vortex lines associated wi th gradients in the displacement velocity of 
t he subs t ra te , which we have here assumed to be rigid. 

13a. The to ta l quasi-particle m o m e n t u m is 

/ d^q {n{q)) hq. 
STTS 

Expand ing (n(q)) u p t o first order in u, we get 

{n{q)) - {niq))u=0 = I ^ T ^ C " - ^ ) 

^huj{q)/kT ^ 

2 ^ i^^hu(q)/kT _ 1^ 
{u-q). 

T h e t e r m (n(q))„=o corresponds t o t he rest s t a te and contr ibutes zero t o ( P ) . 
Therefore we find 

(P) = :^ J ,^^ 72 T^{^-<i)<id q 87r3 J Uhu>(q)/kT _i\^ kT 

2;-axis along it and integrate oi 

(u • q)q sin 9 dO dip = uq — I I sin 0 cos 6 dd dip 

« Jo Jo 

We take t he 2;-axis along it and integrate over the angles. We find 

/••K 1-2-K 
47r 2 

q u, 
3 

whence 

(P) = ngnu, (25) 

wi th 

f 
Jo 

(•oo hw/kT 4 j „ 
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b. Prom Eq.(18) we obtain 

and hence, using the relations A = —/3M and F = —kT InZ, we find that 

dF 
{Pi) = ^— = gnOui. 

OUi 

Since F is the same as F when yl = 0, we find by integration 

F-F = ^Oenu^- (27) 

c. When a fluid of mass density g and volume J? is set globally in motion with 
a velocity u, its momentum becomes Ogu, its energy increases by ^ Qgu , and its 
free energy increases by the same amount, while its entropy remains unchanged. 
Equations (25) and (27) can thus be interpreted as the total momentum and kinetic 
energy of a volume J? of a fluid in motion, the density g^ of which is a function of 
the temperature given by Eq.(26). 

14a. In the frame fixed to the substrate (jP) and F are given by Eqs.(25) and 
(27). Changing to the laboratory frame and using the formulae for a change of frame 
which we gave, we find 

•f*lab = OgnU + Mvs = gn^ {u + Vs) + gs^Vs, 

where g = gn + gs', hence we find, writing vn = it + f s, 

I -^lab „ , 
J lab = — Q - = QnVn + gsVs-

On the other hand, as the entropy is the same in the two frames, 

^lab = F + {Ei^b-E) = F + P-vs + ^Mvl 

If we now write P = Qg-aU, M = (gn + gs)0'a,rs.d Un = "s + u, we easily find that 

F = F+ln{envl + gsvi). 

h. From a purely mechanical point of view we see that everything takes place, 
as if we had a mixture of two independent fluids with mass densities ^n and ^s, 
velocities Vn and Vs, fluxes gnVn and ^s^s, and kinetic energies per unit volume 
jfti^n + 2^s'''s- "^^^ results referring to the frame fixed to the substrate show that 
only the normal fluid exchanges energy and momentum with the walls. 

15a. If hu/kT is large in Eq.(26) for gn, the integrand is of order e"'*'^/*'^ q'^. 
We can thus again make the same approximations as before and neglect g-ranges 
corresponding to huj > 5, retaining only the phonon and roton regions. We shall 
calculate these two contributions. 

b. We get the phonon contribution by putting tt» = cq. Writing x = phcq and 
extending the domain of integration as in question 6, we find 

ph _ fi^ (kTV' f°° x'^e^'dx 
^" ~ GTT^kT [he) JQ l^^x _ 1)2' 
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PS'̂  = AT\ 

The exact calculation shows that 

A - ^ ' T ' ^^ ~. 0.016 kg m - 3 K - ^ 
45 ft3^5 

c. As in question 8, the roton contribution to the normal density is 

„R •*• /" „2 , ^ - R a ) B , / f e T ^ - a ( 9 - 9 R ) 2 / T 'i 1 2 

with / i ~ 8.67 K. 
As T ^ 0, the phonon contribution dominates, as Q^ is exponentially small. 

When T > 0.7 K, we find that ^n ~ g^ increases fast. For instance, when T ~ 0.7 
K, we have gn — 2.6 • 10" kg m~^, and when T = 2 K, we have ^n ~ 49 kg m~ . 

d. Our model ceases to be valid, when ^n exceeds the total density g of the 
fluid. As g = gn + gs, "we see that ^s is a decreasing function of T and that the 
superfluid disappears when gn = g (ps = 0). The characteristic temperature of this 
disappearance is given by 

1800 J ^ e~^/^o = 145. y To 

Hence we find that 

To ~ 2.75 K. 

One expects that when ^s vanishes the anomalous properties connected with an 
inviscid component also disappear: this vanishing should thus signal the phase tran
sition of helium from its phase II to its phase I. Actually, TQ is not very different 
from the experimentally observed transition temperature Tx = 2.18 K. The agree
ment is remarkable, if we bear in mind that our model, which is based upon a 
simple description of low-energy excitations, becomes less and less adequate as the 
temperature rises. Morover, the model loses all its validity when gn, which is the 
effective density dragged along by the walls, exceeds the total density g of the fluid. 
That part of the gn{T)-cuTve, where ^n approaches g, is thus rather unreliable. 

16a. If we supply heat, the temperature in vessel A increases. We have seen in 
the previous question that gs{T) is a decreasing function of T, so that the amount of 
superfluid will decrease in vessel A, before the system starts to approach equilibrium 
again. The narrow tube does not let normal fluid pass through, but lets superfluid 
pass through freely. There will thus be a tendency to make ^s the same everywhere 
in the system through passing superfluid from B to A; as a consequence, the mass, 
and thus the pressure, will be higher in A. 
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b. The Gibbs-Duhem relation is 

A = -Vn = U-TS-tJ,N, 

F + vn 

We assume that /XA = ^B- Writing Ax = XA — XB, we find that 

MA - ^B = 0 = Z \ g + PA^ + ^AV, (28) 

where F/N and Q/N are the free energy and the volume per atom. 
On the other hand, we have the thermodynamic relation for an adiabatic trans

fer of matter from B to A: 

A— = - - AT-V A — . (29) 
N N N ^ ' 

Combining (28) and (29) we find 

^ ̂ ^ = I ^̂' 
which is the required formula: 

^ = ^ . (30) 
AT n ^ ' 
c. At T ~ 1.5 K the entropy is dominated by the roton contribution (see question 

8). We have therefore 

f2 n dT dT 

or, at 1.5 K, 

^y3/2 ^-4/T^ ^ ^ yl/2 ^-A/T ( I + I ) , 

— = 0.19 X 10^ P a K " \ 

Applying Eq.(30), we have AT ~ 2 x 10^ Pa for AT ~ 10"^ K. Using the hy
drostatic formula for a fluid column, AV = QQAZ, we finally get Az ~ 14 cm for 
^ r ~ i o - 2 K. 

d. In quasi-equilibrium the entropy is a maximum, taking into account the possi
bility of exchanges between the two vessels. These exchanges consist here merely in 
transfer of superfluid which does not transport any entropy. If dN atoms pass from 
A to B, or —dN from B to A, the total entropy is thus stationary, and moreover 
5 A and S B are separately unchanged, which leads to 

dt/A = TdSx + HAdN - VAdQx = HAdN - P A ^ J ^ A , 

dUB = -fiBdN -TsdOQ. 
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Moreover, the complete system only exchanges work with the outside, 

dUx + dUn = -VAdOA - VBdOB-

Combining these equations, we find {HA — /XB) dN = 0, or /Lt̂  = MB-

16.15 Heat Losses Through Windows 

We want to study how the use of composite windows can diminish the loss 
of heat from buildings through glazing. To do this we shall rely on rough 
numerical estimates. 

1. Consider a window consisting of a simple pane of glass of area S. When 
the room is heated, a stationary regime is set up: we assume that the walls of 
the room are maintained at a uniform temperature Ti and that the outside 
temperature is Tg. The glass is sufficiently thin that the temperature hardly 
varies from one side to the other; we neglect the effects of conduction and 
air leaks near the window frame and we assume that the temperature T of 
the glass is uniform over the whole of its area S. The temperature of the 
inside air is close to Tj, except near the window where a thin boundary layer 
is established through which the temperature falls from Tj to T. A similar 
effect occurs on the outside, provided the air is calm. Nevertheless, when 
there is wind, the outside boundary layer cannot be established, and the 
temperature T of the window is equal to the outside temperature Tg. 

Energy exchanges between the outside and the inside take place through 
radiation, through convection, and through conduction. The walls of the room 
absorb the infra-red. The glass is transparent to visible light, but opaque to 
infra-red, which it absorbs. We neglect the absorption of radiation by the air. 
We bear in mind that Stefan's constant is cr = 5.67 x 10^* W m~^ K~*. 

The convection and conduction of heat through either of the boundary 
layers of air, inside or outside, are characterized by an empirical coefficient ^ = 
2 W m~^ K~^; the heat flux through a boundary layer with end temperatures 
Ti and T2 is ^(Ti — T2). We neglect the heat conduction across the glass and 
across the walls, which are assumed to be well insulated. 

a. Evaluate the power Wi lost through the window in the windy regime 
as function of the temperatures Ti and T^. 

h. Calculate the power Wl lost through the window when the outside air 
is calm; compare this with Wi. 

c. Calculate the annual cost corresponding to the energy losses through 
this window in the following conditions: 

- window surface S = 3 m^; 
- price of 1 kWh for domestic heating is 0.2 Ffr; 
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- the room is heated 150 hours per year and for half of the time there is 
wind outside; 

- the mean inside temperature is 20 °C, and the mean exterior temperature 
during heating periods is 5 °C. 
2. We now consider a double window. In practice the two panes are 

mounted hot in a factory on a single tight frame; this makes it possible to 
eliminate water vapour between them. We neglect convection and conduction 
in the air which remains inside; in high-quality double windows the air is re
placed by other gases to reduce these effects. In a steady regime the outside 
pane is at a temperature Ti and the inside pane at a temperature T2. 

a. Evaluate the power W2 lost in a windy regime, and compare it with 
the power Wi lost through an ordinary window. 

b. Same question, but for a calm regime (lost power VF2). 
c. With the same hypotheses as in Ic and assuming that a double window 

costs 300 Ffr more than a simple window, find how many years it will be 
before the extra cost is recouped. 

3. Consider a window consisting, more generally, of n parallel panes. Such 
windows are not yet available commercially, except with n = 3 in cold coun
tries, but one may imagine a cheap construction where we have n — 2 trans
parent plastic sheets, which are light and cost very little, stretched on a 
frame between two pieces of glass to protect them. Let Ti, Ta, . . . , T„ be the 
temperatures of all these sheets. 

a. Calculate the power W3 lost in a windy regime, and compare it with 
the power Wi lost through an ordinary window. 

b. Repeat this for the case of calm outside air (power lost W^). 
c. Comparing W^/Ws with W{/Wi can you imagine an extra advantage 

of multiple windows? 
4. Another possible type of windows, used in a number of modern build

ings, makes use of glass with one of its sides coated by a thin film of semi
conducting oxide, such as Sn02 doped with F, typically 300 nm thick, or of 
metal, such as Ag, 10 nm thick. This coating is transparent to visible light 
and more or less reflecting in the infra-red, because of its good electrical con
ductivity. Let R = 0.8 be its infra-red reflection coefficient and A = 1 — R 
its absorption coefficient. Remember that glass absorbs infra-red completely. 
We retain the hypotheses of 1, especially that, when there is wind, convection 
effects ensure that T = T^. The temperature of the coating is the same as 
that of the glass. 

a. Evaluate the power VF4 lost in a windy regime when the oxide layer is 
on the outside. Repeat the calculation for the case when the oxide layer is on 
the inside (power lost W^). Is it more advantageous to place the layer on the 
outside or on the inside? 

b. Same questions for the case when the air is calm. 
5. Double windows made out of one ordinary glass pane and one coated 

pane are also commercially available (Fig.16.29). The oxide or metal coating 
is applied to the face 3 (we number the glass faces from the outside inwards). 
We retain the same hypotheses as before. 
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Fig. 16.29. Double window with coated glass 

interior vr> 

a. Evaluate the power losses when there is wind and when there is no wind. 
Show that it is thermally more advantageous to coat either face 2 or face 3 
than faces 1 or 4 (Fig.16.29) - this also protects the film against accidental 
scratching. 

b. Would this conclusion have to be changed, if we take into account that 
glass is not perfectly absorptive for infra-red radiation, as we assumed so far, 
but has a reflectivity R' = 0.1? 

c. One could imagine double windows with coatings on both faces 2 and 
3, but for economic reasons these are not produced. Use a comparison of the 
efficiencies of double windows without coating, with one coating, and with 
two coatings to explain why this is the case. 

6. In the preceding questions we have assumed that the radiation received 
from the outside was that of a black body at a temperature T^\ this hypothesis 
is only valid for the night. During the day one should add the solar radiation 
received by the window either directly, when the sun shines on the window, or 
indirectly after the radiation is scattered by the atmosphere, when the skies 
are dull or for a North facing window. The energy of this radiation is for 60 % 
in the visible spectrum and for 40 % in the infra-red. Its power $ per unit area 
can be estimated to be # = 70 W m~^ for a dull sky and to be # = 700 W m~^ 
when the Sun is shining brightly. Study for these two alternatives the power 
transfer through the window for the various kinds of windows considered 
above: simple glass, double glass, glass with an oxide layer. Assume that glass 
is perfectly transparent for visible light while the oxide layer has a reflectivity 
r = 0.10 and an absorptivity a = 0.15. Estimate the temperatures attained 
within the room when there is no heating or cooling, for various values of 
the external temperature and of the flux #. Reach some conclusions about 
the energy economies for heating in winter and air-conditioning in summer. 
Explain why it is more advantageous for heating purposes to coat face 3 
rather than face 2 in windows of the type of Fig.16.29. 
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Note. Even though the conclusions drawn from this problem are qualitatively cor
rect, the numerical results obtained are often not very realistic because our simplify
ing hypotheses have been too all-embracing. Especially, we neglected heat transport 
by the gas enclosed inside double windows, which in real situations reduces their 
efficiency. Moreover, glass is partially reflecting; and, above all, it only absorbs the 
far infra-red and thus lets most of the solar radiation pass through it. We should 
at least have distinguished the far infra-red, which dominates thermal radiation 
at room temperatures, from the near infra-red, which together with the visible 
dominates solar radiation. 

16.16 Incandescent Lamps 

We want to study how incandescent lamps with a tungsten filament operate. 
A schematic picture of a light bulb is shown in Fig. 16.30. The filament has the 
form of a helix; we shall assume tha t as far as i ts emission is concerned we can 
t reat it as a rectilinear cylinder with diameter d and length I, behaving like 
a black body. The electrical current is brought to the filament by conductors 
of negligible electrical resistance. We also neglect their thermal conductivity 
and tha t of the gas which fills the bulb. 

As this is a practical problem, we at tach importance to numerical calcu
lations; the results must be correct as to order of magnitude, but a relative 
accuracy within 30 % will most often be sufficient. The fundamental constants 
can be found at the end of the book. Tungsten has the following properties: 

- Resistivity: Q = 10~® CI m, independent of temperature in the conditions 
under which the lamp is operating - bear in mind tha t the resistance of 
a wire of length I and cross-section s is gl/s. 

- Atomic mass: 184 g mol^^. 

- Mass density: 18 g cm~^. 
- Its solid-vapour equilibrium is characterized by the sublimation curve, 

VsiT), empirically given by the equation 

Fig. 16.30. Sketch of a light bulb. The filament has a 
diameter d and a length /, if we stretch it out. The 
glass bulb is modelled by a sphere of diameter 8 
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l o g i o ^ = - ^ + S , (1) 

where Vs is in pascal, T in kelvin, A = 4.0 x 10^ K, and B = 11.3. 

General Properties 

1. One wants to produce a lamp with an electric power consumption of 
P = 100 W for an effective alternating voltage equal to V = 220 V. 

a. Show that if one fixes the temperature T{ of the filament, its geometric 
dimensions (diameter d and length I) are determined. Give numerical values 
for Tf = 2700 K. How should d and I be modified to change the power P of 
the lamp for a given V? 

b. What are the advantages of a higher filament temperature? Estimate 
the luminous flux of a 100 W lamp operating at 2700 K. 

Vacuum Lamp 

2. We cannot increase the filament temperature arbitrarily because the 
tungsten will sublimate, which has two bad consequences: on the one hand, 
the tungsten vapour will condense on the walls of the bulb, producing an 
opaque deposit; on the other hand, when the mass loss of the filament becomes 
important, it becomes fragile and may melt at points where it has become 
thin and is heated more strongly. The melting temperature is 3400 °C. We 
assume that the filament stops operating when it has lost 3 % of its mass 
through sublimation. 

We first of all consider a lamp which has been evacuated. 
a. Evaluate the sublimation flux #, that is the number of tungsten atoms 

leaving the filament per unit area per unit time; they will stick to the walls of 
the lamp, which therefore remains practically a vacuum. To do this, assume 
that this flux depends solely on the temperature and remains unchanged 
when the filament becomes surrounded by tungsten vapour rather than by a 
vacuum. Evaluate, as in kinetic theory, the flux of atoms from this vapour 
hitting the metal surface; assume that these atoms have unit probability to 
be incorporated into the metal and write down the balance equation for the 
case where the metal is in equilibrium with its saturated vapour, eventually 
to find # as function of the temperature. 

b. Calculate the period r during which the lamp can operate for T{ — 
2700 K. 

c. We require that the lamp will have a lifetime of 1000 hrs for the same 
power consumption and the same voltage. At what temperature T/ must we 
keep the filament? What should be its diameter d' and its length I' so that 
this temperature can be reached? 

d. Evaluate the loss of lighting efficiency for a vacuum lamp operating at 
this latter temperature T/ as compared to a lamp operating at Tf = 2700 K; 
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use as criterion for comparison the radiating luminous power around 0.6 |im, 
which is the centre of the visible spectrum. 

Iodine Lamp 

3. A recent technique to improve the efficiency and lifetime consists in 
filling the lamp with a gas, such as iodine, I. This forms with tungsten, W, a 
compound, C, which we shall assume to have the chemical formula WI and 
which has the following properties: 

- The compound C is stable at the temperature of the gas which fills the 
lamp; this temperature is practically uniform and equal to the temper
ature TB of the bulb. All tungsten atoms which sublimate thus combine 
with iodine atoms. 

- The compound C is volatile so that one avoids its deposition on the 
inside of the bulb, provided the temperature TB is sufficiently high. For 
practical and safety reasons one does not exceed TB — 600 K. Under 
those conditions, if a solid deposit of the compound C were formed on 
the bulb, it would be in equilibrium with the C vapour in the lamp. 

- Above 2000 K the compound is unstable; therefore, it decomposes when 
in contact with the filament, at T{ = 2700 K, so that the tungsten is 
reincorporated into the filament when a C molecule hits it. 

This procedure therefore allows us to offset the tungsten losses from the 
filament by sublimation through a permanent regeneration, while at the same 
time suppressing the deposit on the bulb. 

a. The high temperature TB of the bulb is maintained because it absorbs 
part of the radiation from the filament, which is dissipated afterwards in 
the form of thermal radiation. Neglect thermal conductivity and convection 
effects in the gas. Show that the lamp must be rather small if one wishes the 
temperature TB to be high. Calculate the diameter S of the bulb, assumed 
to be a sphere, for TB = 600 K. Assume that the material of the bulb -
quartz - is transparent for wavelengths under 4 [iia and opaque for infra-red 
wavelengths above 4 nm. Use the expansion 

^ - 1 
6 ^ - 1 

and the result 

f°° x^dx 

Jo e- - 1 

X X^ 

" 2 "̂  12 ~ 

^ ^ ' 
15' 

x^ 
" 720 ^ 

b. The equilibrium vapour pressure of the compound C which may con
dense on the bulb is given by the empirical formula 

logio^B = - Y + ^ ' ' 
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similar to Eq . ( l ) for tungsten, but with coefficients A' ^ A and B' ~ B. 
What approximate condition must be satisfied by A' so tha t the process is 
efficient? Wha t is the property of crystaUine C with which this condition is 
connected? The atomic mass of iodine is 127 g mol^^. 

c. Justify the hypotheses we have made about the stabiUty of the com
pound C. Assume tha t the vapours of W and I are monatomic, that a molecule 
of C = W I has a single bound state with a binding energy u = 2 eV, and tha t 
the bulb contains 10""* g of iodine. 

A r g o n L a m p 

4. Usually lamps are filled with a neutral gas, like argon or krypton, 
which has a pressure of about 0.5 a tm at room temperature . In fact, for 
safety reasons we do not want that pressure to exceed 1 a tm when the lamp 
is lit. 

a. Knowing tha t the radii of the argon and tungsten atoms are of the 
order of 2 A and 1.5 A, estimate the mean free pa th of a tungsten a tom in 
an argon gas under the operating conditions. 

b. Wha t happens to the tungsten atoms which are emitted by the fila
ment? Explain qualitatively why there is an improvement as compared to a 
vacuum lamp. Try to estimate the increase in lifetime. 

Solution 

la. The electrical power consumed, 

n £)/[7r(d/2)2]-l 4el ' 

which is transformed into heat through the Joule effect in the filament, is completely 
emitted as radiation. The Stefan-Boltzmann formula then gives 

P = l-KdaTf. 

These two relations determine d and I. Eliminating I, we get, in SI units, 

2 ^ / O s ^ i n n \ 2 i r\~G 
j 3 / 2 P \ 2 ^ ^ ^ / 2 X 100\2 10 

VTTV/ (TT* ~ V7rx220/ 5 .67x10" ' 

,d-

l 

= 0.03 mm, and hence 

P 

TTdaTf 

X 220/ 5.67 X 10-8 x (2700)^' 

35 cm. 

The dimensions of the filament should increase with the power P as d oc P ^ and 
I oc P^/\ 
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b. Given the power consumed, the yield, that is, the power emitted in the visible, 
is 

where vi and V2 are the limits of the visible spectrum, and where 

hvi he 
Xl kTf kTfXi 

corresponds to the infra-red limit (Ai = 0.8 |xm). The approximation in the nu
merator is reasonable, as xi is sufficiently large {xi = 6.7 for 2700 K, X2 = 2a;i). 
The yield increases rapidly with tempera;ture; it is 8.5 % at 2700 K, and grows by 
a factor 

when the filament temperature is increased by AT, becoming, for instance, 10 % 
at 2800 K. 

Moreover, as the visible range is in the tail of the spectrum emitted by the 
filament, the power emitted in the blue is much smaller than that emitted in the 
red. The ratio is approximately 

•) e"̂ i""̂ 2 = 8e"''i = 1% '^^Y „2:i-a:2 

at 2700 K. This ratio improves significantly as the temperature is raised since it 
increases by a factor 

fhi^i AT\ , 6.7ZiT 

when Tf increases by AT. One must therefore increase the filament temperature to 
get a whiter illumination. 

These two eSects, a larger fraction being emitted in the visible and a less red 
colour, can be described more accurately if we use photometric units (§ 13.3.4) which 
weight the power emitted by the sensitivity of the eye. The latter is characterized 
by a function v'(i') which vanishes at both ends of the visible spectrum and which 
has a maximum, put equal to 1, corresponding to a wavelength of 5550 A. The unit, 
the lumen, corresponds to a weighted power equal to ĝ g W, which gives for the 
theoretical luminous flux of a P watt bulb 

6B3P i ^ / ^ ^ # ^ = 105P / ^ ( ^ ) ^ ^ Im, 7r4/i4 J Qhu/kT_i J ^^ h ' e"" - I 

where the losses due to the geometry of the filament and of the lamp have been 
neglected. Assuming a parabolic shape for ip one finds numerically a flux of 3300 Im 
for T = 2300 K and P = 100 W, which corresponds to a photometric efficiency of 
5%. 
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Apart from the difficulties mentioned earlier, increasing the temperature of the 
filament for a given consumed power P makes it necessary, according to question 
la, to use a thinner filament; this makes it more brittle and increases the risk of 
melting. 

2a. The number of particles from the vapour hitting unit surface area in unit 
time is 

/(P^>0) "* 

where n is the number of gas particles per unit volume. Using the Maxwell distri
bution and the equation of state of the gas we find for this flux 

fcTm (27rmJfer)V2 y^p^^Q) ^^ ^^ (27rmfcr)i/2" 

When the vapour is saturated, that is, when the pressure equals VsiTf), it is in 
equilibrium with the solid at the temperature Tf so that the flux ^ lost by the 
latter is exactly compensated by the flux we have just evaluated of vapour atoms 
hitting the solid and being absorbed by it. We have therefore 

{2nmkTiy/^ {2-KmkTf)^/^ 

b. The total number of atoms lost by the filament during a period T, which 
equals ^ • lird • r , should not exceed 3 % of its total number of atoms, l7r{d/2) rif, 
where rif is the number of atoms per unit volume of filament, 

18 000 p-Q^,n28 -3 
n{ = No -^j^ = 5.9 X 10 m . 

The lifetime of the lamp is thus 

3 d 1 
^ = 100 4 "f ^ • 

At 2700 K we have 

T = 11600 s ~ 3 hours. 

c. Using the expressions for r , $, and d (see question 1) for two different values 
of the temperature, T{ and Tf, we have 

T d $' 

A A , T ' 5 , Tf 
^ = ^ + I ° g i 0 7 - 6 ^ ° 8 i 0 l f ' 

4 X 10* _ 4 X 10^ 3600 x 10^ 5 T{ 
~^f~ ~ ~ ^ r ^ ^ ^ " 11600 " 6 "̂̂ 10 Tf-
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The last term is expected to be small as compared to the preceding one, which 
equals 2.49. Neglecting it we find 

T{ = 2300 K. 

If we substitute this value into the neglected term, which then equals 0.06, we see 
that the result for Tf is not changed. In order to operate at that temiperature, a 
100 W lamp should have a filament with a diameter d' = 0.04 mm and a length 
I' = 50 cm. 

d. Prom Planck's law it follows that the loss in the efficiency of the lamp, 
measured by the power emitted at VQ and taking into account the change in the 
surface of the filament which is necessary to maintain the consumed power at a 
constant value, is equal to 

, where 
Id e^o - 1 

hvo he „ „„ 

/ „ hiyo Ti 

are large. The loss in efficiency, if we use the results of question la, therefore reduces 
to 

Ti\ g»=o-4 = 0.4. 
n) 

We lose thus a factor of 2 to 3 in the illumination. More precisely, the luminous 
flux found for a 100 W lamp with a filament at 2300 K is 1400 Im, as compared to 
3300 Im at 2700 K. 

3a. The fraction of the power emitted by the filament which is absorbed by the 
bulb is, when we use the Stefan-Boltzmann and Planck laws, 

Pt = iTvdaT? - ^ — -, 

Xr(x3d^)/(e--l)' 
where 

_ huc he -̂ 0 1 „„ 

is the dimensionless variable associated with the cut-off wavelength (Ac = 4 |a,m) 
and with the filament temperature. 

If we use Kirchhoff's law, we find that the bulb emits to the outside an infra-red 
power equal to 

2 4 / ; (x^ da;)/(e^ - 1) 
P2 = TTS^ aT^ •'° 

/ o " ( x 3 d x ) / ( e - - l ) ' 

where TTS is the surface of the sphere and where 
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_ hvc ^ ^f = 6 

(the bulb emits as a black body for v < Vc and does not emit anything iox v > Vc). 
For a stationary regime we must write down the balance between the total power 
lost by the bulb and the total power absorbed by it; in the model considered by 
us these exchanges are exchanges of infra-red radiation. The total emitted power 
is 2P2, half to the outside and half to the inside. Nevertheless, the total energy P2 
emitted to the inside by one point of the bulb is again absorbed by another point of 
the bulb - we can neglect the surfaces of the filament and of the base as compared 
to that of the bulb. The total power absorbed by the bulb is thus P\ + P2 and the 
balance equation is Pi = P2, or 

2̂ ^ ,^ lTj_Y J^{xUx)/{e--l) 
Tn) J^ {x^dx)/{e^ -1)' 

Even at the upper limit y = 1.33 of the integral in the numerator the expansion 

2 4 
X X X 

e^ - 1 2 12 720 

converges well with successive terms decreasing rapidly. We have thus 

k i ^ ^ ^ / o i ^ - T + i 2 J ^ - = T - T + 60 = ° - ^ ^ -

On the other hand, the upper limit z = 6 of the integral in the denominator is large 
and we can write 

' dx f X dx f X dx r x^dx ̂  p x^dx _ r 

- - - / 

e^ - 1 

4 /'oo 

15 

Altogether we thus have 

X e dx 

4 

-""^ [z^ + 3^^ + 6z + 1) = 5.6. 

6^ = 0.35 X 3 X 10-^ X f ? ^ y X 5 i 5 m^ = 3.5 X 10~^ m ^ 
V 600 / 5.6 

8 = 0.019 m = 2 cm. 

b. In order that the process be efficient it is first of all necessary that the partial 
pressure V of the compound C in the lamp is less than the pressure •Pg(TB) of the 
saturated vapour at the bulb temperature. In fact, this condition not only makes 
it possible to avoid any solid deposit on the bulb during its operation, but also 
ensures that any possible deposit, for instance when the lamp cools off after it is 
switched off, will evaporate. 
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As far as the filament is concerned, the flux of tungsten atoms which leave it is 
the quantity $ calculated in 2a. On the other hand there is a flux $' of molecules of 
the gaseous WI compound which will hit the filament and deposit on it a number 
$' of tungsten atoms per unit time and unit surface area. This fiux, calculated at 
the start of 2a, equals 

^' 
$ = (27rm'fcTB)^/^' 

where V' and Tg are the pressure and temperature of the compound C in the lamp 
while m' is the mass of one of its molecules. In a permanent regime no C-molecule 
should be deposited on the bulb and the continuous regeneration of the filament 
means that $ = $'. The partial pressure of the compound C in the lamp is thus 
given by the expression 

This pressure must be less than VsiT^), whence 

1/2 
/ m % \ (yl/Tf)+B ^ „ - ( A ' / T B ) + B ' 

\mT{ ) 

J^ < A^ + {B'-B)TB + ^TBlogio 
mT( 

Ti ' ' ° ' 2 ° °^" m'T-B 

With the given numerical data the last two terms are negligible and we find the 
condition 

A' < A ^ , or 

A' < 9x 10^ K. 

The empirical form (1) of the sublimation function VsiT) does not differ much 
from the form found in Probs.3 and 8 using simple theoretical models. In those 
two cases we saw the appearance of a factor e~^' in VsiT), where e represented 
the energy needed to tear one of its atoms from the solid. The remaining factor 
varies more slowly with temperature than this exponential, and its replacement by 
a constant leads to Eq.(l), where fc^lnlO can be identified with e. The condition 
J4' < 9 X 10 K thus means that the cohesion energy per molecule kA' In 10 of a C 
crystal must be less than 1.7 eV. 

c. It follows from §8.2.2 that the respective chemical potentials fi, /x', and /j, 
in the W, C, and I vapours must satisfy the relation fj! = fj. + y,", in chemical 
equilibrium at a temperature T. Hence, it follows that 

N{Ni - N') _ (mm"kT\^'^ -^/kT 
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where Ni denotes the total number of iodine atoms, N that of free tungsten atoms, 
and N' the number of WI molecules. Provided N' <^ Ni, we find that N/N' = 
6 X 10"* at r = TB and N'/N = 5 x 10"* at T = T{. The complete determination 
of the densities of each of the chemical species in the bulb as functions of their 
distance from the filament would make it necessary to solve the transport equations, 
as in question 4b, including moreover a relation from chemical kinetics between the 
fluxes and the aflanities. 

4a. Consider a tungsten atom travelling a distance L; the volume swept through 
by a sphere centred on this atom and with a radius a = 3.5 A, which is the sum of 
the radii of a tungsten and an argon atom, is 

•Ka L. 

The mean free path /, that is, the mean distance traversed between two collisions, is 
obtained by dividing L by the number of centres of argon atoms in the above volume. 
If nA is the number of argon atoms per unit volume we have, with VA = 0.5 x 10® Pa 
for TA = 300 K, or VA = 10® Pa for TA = 600 K: 

I = — T T ? = — ^ ^ = 2 x 10"'^ m = 0.2 am. 
•Ka^LuA ira'^VA 

In the immediate vicinity of the filament the temperature is higher, but I does not 
2700 
600 exceed 1 |xm, which corresponds to the temperature Tf = ^TTTTA and the pressure 

10® Pa. 
b. The tungsten atoms which leave the filament collide with the argon atoms 

and thus change their velocities. There is thus some probability that they will hit 
the filament again and be incorporated in it. Qualitatively, that probability will be 
important if the first collisions occur before the particle is far from the filament at 
a distance exceeding the filament diameter. In fact, beyond that the trajectory of a 
W-atom has less chance to return to the filament than to end up at the bulb where 
it will condense. One condition for the operating period of the lamp to be improved 
is thus I < d which is well satisfied by the preceding calculations of I. 

The calculation of the increase in the operating period can be performed by 
analyzing the transport of tungsten atoms. We can obtain an order of magnitude 
estimate by studying a cylindrical geometry: bulb in the form of a cylinder of 
diameter S, with on its axis a filament in the form of a rectilinear cylinder of 
diameter d. The tungsten atom flux ^g in the gas is conserved (div ^g = 0). 
Following Chap.15 we introduce a diffusion coefficient D which relates this flux to 
the density gradient of the tungsten atoms, 

$g = -DVn, 

and which is given by the expression 

D = AugZ, 

where A is a numerical constant and Vg the mean square velocity of the tungsten 
atoms in the gas. The conservation of flux implies V n = 0, whence we have for 
^d<r < ^6 

n{r) = —1/In r + constant. 
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and $g{r) = Dv/r. The constant v will be determined from the flux emitted by the 
filament. Moreover, the calculations at the start of 2a show that the flux of atoms 
which hit the bulb is 

This flux is deposited completely. Near the surface of the filament, the flux #g(^d) 
is the difference between the sublimation flux $ for a vacuum lamp calculated in 
question 2a and the return flux, or 

GTT 

(we neglect the variation of the temperature in the argon). Eliminating v gives the 
net flux $g{^d) lost by the filament and deposited on the bulb. 

( ^ + l ) ^ g ( . , ) = ^ l in ^ - 1 ^ , ( 1 . ) 

whence we find that the lifetime of the lamp is multiplied by 

d ^ 1 d , 6 
7 + 1 + T= 7 I n - , 

which is of the order oi d/l, as I <^ d -^ 6. 
In practice, the filament has the shape of a helix of diameter d'. The result 

depends on the pitch of the helix and we expect that we should replace d by a 
length which lies between d and d'. The lifetime, multiplied by a factor which is at 
least equal to 150, reaches thus a reasonable value of at least 500 hours. 

16.17 Neut ron Physics in Nuclear Reactors 

The essential element of a nuclear reactor is the "fuel" which produces a 
fission chain reaction through a fissile nucleus producing two fragments with 
the emission of secondary neutrons, for instance, 

1 | U + n ^ | | S r + i |0Xe + 2n. 

The average number of secondary neutrons which is emitted per primary 
neutron is u. They can in turn be absorbed, which makes it possible that the 
reactions can continue, provided v is sufficiently large. Each fission produces 
an energy Wj of the order of 200 MeV so tha t the secondary neutrons have 
a high kinetic energy. This energy is exchanged with various materials which 
constitute the core of the reactor, and is recovered in the form of heat thanks 
to circulating water which is either boiling or under pressure - molten sodium 
in the breeder Superphenix at Creys-Malville (EVance). 
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In a breeder the fuel, plutonium, produces a chain reaction even in the 
case of fast neutrons. Nevertheless, most reactors use as fuel uranium which 
is enriched with the fissile isotope ^^^U. The fission reaction is then efficiently 
produced only if the primary neutron is "thermal", that is, slow with a kinetic 
energy comparable with the value 3fcT/2 which is characteristic of thermal 
equilibrium at the temperature T of the reactor. It is therefore important 
to slow the secondary neutrons down before they react again and this is the 
role of the "moderator", a material which surrounds the uranium bars and 
in which the secondary neutrons undergo collisions which thermalize them 
(§15.2.5). The moderator is often water which in that case acts both as 
moderator and as coolant; one also uses graphite or heavy water. 

Apart from the fuel, the moderator, and the cooling fluid, the reactor core 
contains structural materials - cladding containing the fuel, the constituents 
of the heat exchangers - and movable control bars, made of boron or cad
mium steel, meant to absorb neutrons so as to keep the flux at the wanted 
level. Finally, the core is surrounded by several barriers which play different 
roles: to contain and to circulate the cooling fluid, to be a protection against 
radiation and against overpressures in the case of overheating, and to reflect 
the neutrons towards the core. 

For the operation of the reactor neutron physics plays a prime role, es
pecially the study of the neutron densities and fluxes. In fact, one needs to 
trace in detail what happens to the secondary neutrons, which can in the 
various elements of the reactor diffuse, start new fissions, get lost through 
capture or be absorbed by ^ssy ĝ ^̂ j produce Pu, leave the core, or be re-
fiected. When the reactor operates normally, a "critical" regime is reached 
where the neutron density is stationary. 

We shall first of all, in questions 1 to 3, establish an approximate equation 
governing the neutron distribution, where we assume them to be monoen-
ergetic. We shall neglect their slowing down process, assuming it to be so 
efficient that the secondary neutrons reach almost immediately a "thermal" 
velocity. By considering very schematic models we shall then be able to treat 
simple questions and to understand some of the problems posed in the design 
of reactors. In the whole problem we assume that the reactor elements, ex
cept the fuel, are a single composite material which is uniformly distributed 
in space. The fuel which is the source for neutrons will be considered either 
(question 7) also to be distributed uniformly in the reactor, or (questions 4 
to 6) to be located in a plane. 

We denote by f{r,p, t) the reduced single-particle density which describes 
the neutron distribution. As in Chap.15 we write down the neutron density: 

Q{r,t) = J f{r,p,t)d^p, 

as well as the current density 

J{r,t) = f ^ f{r,p,t)d^p. 
J rn 
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We look for the balance equation for neutrons with a given momentum in 
a volume element V d^p, where F is a finite volume in coordinate space, 
bounded by a surface S. In writing down the balance we take into account 
the flux of particles across S and the collisions which are of two kinds: 

- reactions which make neutrons disappear from the volume element V d^p 
when they are captured. Each of those collisions is chacterized by the ab
sorption cross-section era. The absorbing centres involved in this process 
are uniformly distributed and have a density ga-

- collisions, changing the velocity. They are characterized by a differential 
cross-section asc{p -^ p'), where (Tgc d^p' describes the inelastic processes 
which lead to the volume element d^p' in momentum space, and by the 
density QSC of the scatterers, assumed to be distributed uniformly. The 
total scattering cross-section is CTSCCP) — J d^p' <^sc{p —> p')-

Finally, we take into account the existence of neutron sources which are 
distributed in phase space with an intensity Q(r,p,t) and we write 

Q{r,t) = j Q{r,p,t)d^p, 

for the number of particles emitted per unit volume and unit t ime due to 
fissions. 

l a . Establish the evolution equation for the neutron distribution 

^ + {v-Vr)f + va,gJ = Qir,p,t) + K, 

where v = p/m and 

K =gscjd^p' 
P 
— fir,p',t)asc{p' ->p) 
m 

— fir,P,t)cr^c{p^p') (1) 

b. Use this equation to find the evolution equation for the neutron density 
g{r,t). 

2. We assume tha t the neutrons are monoenergetic so tha t p = poiv = 
mvoU), where w is a unit vector along the direction of the momentum. We 
can then write 

f{r,p,t) = g{r,ij^,t) 6{e-eQ), 
mpo 

where e = e(p) = p^/m is the particle energy, 
a. Show tha t 

•^(^>0 = / <^ vog{r,u:,t)d^u, 
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Q{'r,t) = / g{r,u},t)(fu}, 

where (Pu = smOdOdip is an element of solid angle in momentum space, 
b. We assume that the sources are monoenergetic and isotropic: 

Q{r,p,t) = —6{e-eQ)^Q{r,t). 

Moreover, we assume that the collisions do not modify the speed but change 
the direction of the velocity, and we introduce the elastic scattering cross-
section <Tsc{i^' —> i^) through the equation 

cTscip' -» P) = -^ HP- P') a'sc('»'' -^ <^)-

This assumption is justified for elastic collisions of neutrons with sufficiently 
heavy nuclei so that there is little recoil in a collision. 

Write down the evolution equation for g{r,(v,t). 
3. Expand g in powers of u; up to the term linear in w: 

g{r,u:,t) = h{r,t) + u-H{r,t); 

this is justified provided the anisotropy in the velocity distribution is small. 
a. Determine h and H as functions of g{r,t) and J{r,t). 
b. Use the evolution equation for g and the expansion of g just introduced 

to derive the evolution equation for J(r,t): 

1 dJ(r,t) , ^ -,, ^ Wo „ / X 

V(f Ot o 

where we have assumed that the collisions which lead to the scattering cross-
section (Tsc(p' -^ p) are isotropic. 

c. Show that in the stationary case this equation is Pick's law and give 
an expression for the diffusion coefficient D. What is now the form of the 
equation for g which we found in lb, for the stationary case? 

We now focus on a stationary regime and use the results of the earlier 
questions. In question 4 we find boundary conditions convenient for reactor 
calculations. In question 5 we study an equilibrium regime for the case of a 
planar source localized at the centre of the reactor. In question 6 we examine 
a technical device which allows us to limit the loss of neutrons. 

In what follows we restrict ourselves to the case of a system which is 
uniform in the x- and y-directions; the problem thus depends only on a single 
variable, z. The current density J now has only a single component, J{z,t) 
in the ^-direction. 
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The boundary conditions along discontinuities of the reactor materials 
are the following ones: 

- the density Q{Z) is continuous; 
- the current J{z) is continuous except when we pass through a surface 

which contains sources. 

4a. Consider an infinite planar source along x and y in the z = 0 plane, 
which is characterized by its surface density Q{z,t) = QQ 6{Z). Show that 

\,m[J{z)-J{-z)] ^ Qo. 
z—>+0 

b. Split the total current J{z) into two parts, J+{z) and J-{z), which are 
associated with the particles moving in the z > 0 and the z < 0 directions, 
respectively, and where J{z) = J+{z) — J^{z). Show that 

^ , , 1 , . 1 „ dg 
J±{z) = l^oQ{z)T^D~. 

c. Let z = zi > 0 he the boundary separating the active materials of 
the reactor, situated at z < zi, from their surroundings, z > zi, assumed 
to be a vacuum. How do Q{Z) and J±{z) vary for z > zi? Considering the 
limits of g{z) and dg/dz as 2; —» zi with z < zi enables us to extrapolate 
by a straight line the curve Q{Z) for z < zi into the vacuum region. We 
thus define the "extrapolated" boundary of the reactor as the surface z = ZQ 
where Q{Z) would vanish, if it were linearly extended towards the outside of 
the actual material boundary, z = Z\, with its tangent equal to that at the 
latter boundary. Determine the distance \ = ZQ — Zx as a. function of the 
characteristics of the material in the region z < z\. 

In what follows we replace the boundary conditions along a natural bound
ary with the vacuum by requiring that Q vanishes along the extrapolated 
boundary, which is further away by a distance A. 

5. We model the reactor by the same planar source Qo S{z) as in question 
4a, surrounded by a homogeneous material which fills the —zi < z < +zi 
region. 

a. Give expressions for the neutron density Q{Z) and the neutron cur
rents J±{z),J{z) as functions of the characteristics of this material, when 
the reactor extends to zi = ±00. 

b. Repeat these calculations for a finite-size reactor, zi = ±(2:0 —A), where 
±zo is the position of the extrapolated boundary. 

6. Study how one can reduce the neutron loss from a reactor. We use a 
model for a reactor where a first kind of material (material I with diffusion 
coefficient Di) contains as above a source Q at its centre. This is surrounded 
by a second kind of material (material II with diffusion coefficient Du) the 
effect of which we wish to study. To do this we shall determine for various 
geometries the ratio J-f-{z)/J-{z) at the I-II interface. 
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a. The material II extends to infinity. Note that the solution g{z) in ma
terial II is of the same type as in question 5a. 

b. Repeat the calculation for the case where the thickness of material II 
is e. In this solution of the type found in 5b determines the fluxes in 
material II. 

c. Comment qualitatively on the reflection effect of the cover provided by 
material II and its efficiency as function of its thickness. Estimate numerically 
the values of A and e, the thickness of a cover which has an efficiency equal 
to 80 % of that of an infinite medium. Assume that in material II we have 
'''sc&c = 1 cm"^ and a^Qa = 0.2 cm~^. 

7. We now investigate the non-stationary solutions. To do this we intro
duce new approximations in the evolution equations for J{z, t) and Q{Z, t) 
which we found in 3. We treat the various elements of the reactor, both 
the fissile material and the scattering and absorbing materials, as a single 
homogeneous block. 

a. Show that we can neglect the partial derivative with respect to the 
time in the evolution equation for J{r,t), provided we make the following 
assumptions: 

- the quantity (ascesc)' and also the characteristic distances over which 
the spatial density variations occur are of the order of centimeters 
(0"a£'a < CTsc&c)-

- the temporal variations in J{r, t) take place over times exceeding or equal 
to 10~^ s. 

- the neutrons are thermal neutrons at a temperature T = 300 K. 

b. Use the approximate evolution equation obtained in this way to derive 
the evolution equation for the neutron density g{r,t). In this case we cannot 
neglect the partial derivative of g with respect to the time, if we take into 
account the presence of sources and the fact that cTafe is small. 

c. Consider the non-stationary case for a reactor extending from 0 to ZQ. 
Take here the actual boundary the same as the extrapolated boundary. The 
source term for the reactor is given explicitly in the form 

Qiz,t) = i'VQa{g{g{z,t), 

where u is the number of neutrons produced in a single fission reaction, gi 
is the number of flssile fuel nuclei, and uf the cross-section for the fission 
reaction. The factors g{ and g{z, t) stem from the fact that a fission reaction 
requires a fissile nucleus and a neutron. 

Determine the general form of the solution g{z,t), assuming that you 
know the initial distribution g{z, 0). Start by looking for particular solutions 
of the form e^'^'^sinqz and give the possible values of q and 7. How does 
g{z, t) behave for large i? 

d. One says that a reactor is operating critically, when it has reached a 
stationary regime involving energy production. Give the condition for critical 
operation. Show that there exists a minimum value for the density gt of the 
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fissile product below which the reactions cannot reach the critical threshold. 
Show tha t a reactor has a minimum size ZQ for given values of the densities 
and the cross-sections; discuss the effect of enriching uranium with ^35^ ^^ 
the reactor size. Wha t value must we give to a^gt, by adjusting g^, for a 
reactor of size ZQ = 1 m with the average values (TSC^SC = 1 cm~^, (Ta.ga. = 0.2 
c m - \ V = 2.5? 

e. Est imate the power of a reactor of 1 m^ in the critical regime taking 
in the x, y-direction a cross-section S =lm^. One single fission produces on 
average an energy Wf = 200 MeV, which is sufficiently large tha t the capture 
energy can be neglected. The neutron density at the centre of the reactor is 
10'' c m - 3 . 

f. Assume tha t the absorption (Ta^a is increased by a relative amount lO"** 
during 0.01 s through a perturbation, and that it afterwards regains its initial 
value, corresponding to critical operation. Wha t happens to the power of the 
reactor? 

Note. The last question shows how sensitive the reactor is to perturbations and 
suggests that a reactor might easily stop operating or blow up. Luckily, on time 
scales larger than 0.01 s there are braking mechanisms in the nuclear reactions which 
we have neglected in our model and which stabilize the evolution of the neutron 
density Q{t) by preventing it from decreasing or growing exponentially. That makes 
it possible to manage the reactor efficiently by modifying the absorption through 
shifting the control bars. 

16.18 Electron Gas with a Variable Density 

This problem concerns an electron gas the density of which can be made 
to vary. A structure which enables us to obtain such a gas is the electrical 
condenser shown in Fig.16.31. It has two electrodes of which one, A, is a per
fect conductor (equipotential); the other, B, is a parallelepiped of dimensions 

z 

V/^-JJ-ff-fJ'/yj/-/y/rjr/rjJ'77lr/r. 

z' 

•nw/y////'777JM 

Fig. 16.31. A device allowing control of the electron density in the layer B 
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X,Y, Z {X ^ Z,Y ^ Z) with its edges parallel to the x-, y-, and z-axes. The 
material of B does not contain free electrons when there is no charge on the 
condenser. If one introduces a charge +Q on the electrode A by connecting 
A and B to a generator, it will be compensated by a charge — Q on the elec
trode B, which consists of free electrons enclosed in a "box" of dimensions 
X, Y, Z. As energy zero we take the potential energy inside the box when 
the condenser is uncharged {Q = 0). We assume that the potential outside 
the box is much larger than the thermal energy kT. The two electrodes are 
separated by an insulator of thickness Z'. We assume that the material of B 
and the insulator have the vacuum dielectric constant EQ. 

This model aims to give some idea about the operation of some of the 
semiconductor devices mentioned at the end of § 11.3.5. We shall see below 
that one can control the capacitance by acting on the potential applied be
tween A and B. The so-called MIS (metal-insulator-semiconductor)wariaft/e 
capacitance diodes are precisely realized on these principles, by superimpos
ing layers of silicon (electrode B), of Si02 (an insulating oxide), and of metal 
(electrode A). We shall also see that the potential between A and B controls 
the resistance of B along y, that is, the current flowing between two electrodes 
placed at y = 0 and y = Y (Fig. 16.31). In practice, the latter are replaced 
by n-doped pieces of semiconductor, while the bulk of B is p-doped, and this 
increases the effect. The so-called MOSFET field effect transistors operate 
along these lines. 

We shall use the Poisson equation from electrostatics (§ 11.3.3), which is 
satisfied by the electrostatic potential (p: 

where g is the electron density and V^ the Laplace operator. The corre
sponding potential energy of an electron is —ecj). If we use the fact that 
X ^ Z,Y ^ Z, we find that the solution of this equation leads to the fol
lowing relations between the electric field in the insulator and the charge of 
the condenser: 

^^ = ~ 1 ^ ' T-' E^ ^ Ey = 0, (1) 

where E^^ is the 2;-component of the electric field in the insulator and E^ and 
Ey are the transverse components. 

One has the following technological restrictions: 

' Z > 10~* m, 
- Z' > 10-* m, 
- Ez < 10^ V/m, to prevent break-down in the insulator. 
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The necessary numerical values of the fundamental constants are given 
at the end of the book. Bear in mind that, if f{x) is a function which has a 
zero at XQ, the 5-function has the following property: 

l/'(̂ o) 

Classical Gas 

In the whole of this part we shall assume that the conditions are such that 
we can treat the electrons in the electrode B as a classical gas at a uniform 
temperature T. 

We charge the condenser through an outside generator. We assume that 
the system is in equilibrium after the generator is disconnected and is char
acterized by an electrostatic charge Q on the electrode A. 

1. Why is the chemical potential fi of the electrons the same in each point 
of the electrode B, but different from the chemical potential of A? 

2. To start with we neglect both the electrostatic interaction with the 
electrode A and the electrostatic interaction between the electrons in the 
electrode B. Give the relation which connects the chemical potential fi with 
the electron density at a point of the electrode B. Give the relation connecting 
/J, with Q. 

3. We now introduce the electrostatic interaction with the electrode A. 
This amounts to introducing in the material B an electric field .E^ which is 
uniform and connected with Q through Eq.(l). 

a. Find the electron density g{z) in the electrode B as function of z; 
calculate the ratio Q{z)/g{0). 

b. There exists a charge Qi such that when Q <C Qi the density can be 
regarded as approximately independent of z. Find the order of magnitude of 
Qi as function of the thickness Z and the temperature T. 

c. Why does the presence of the electrical field E^ not imply the existence 
of an electrical current parallel to J^? 

d. Is it technologically possible to build a device such that the condition 
Q <C <5i is realized at room temperatures for the whole range of values of Q 
which are practically accessible? 

4. We finally include the electrostatic interaction between the electrons 
in the electrode B. We make the assumption that in order to take it into 
account it is sufficient to assume that each electron sees the extra electrostatic 
potential created by a charge density corresponding to the mean electron 
density in each point. This approximation is justified in Chap. 11. 

a. Write down the differential equation which for a given value of /x must 
be satisfied by the electrostatic potential ip{z). 

b. Show that the electrical field E^ vanishes in the z = 0 plane. 
c. Show that, if Q <C Qi, the z-dependence of Q{Z) is weak, as in the 

preceding question. 
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d. Evaluate 4>{z) in this limit, considering g{z) to be a constant. 
e. Find the functions Q{Z), E^{Z), and 4>{z) qualitatively in the case when 

Q ^ Qi- Confirm these results quantitatively by solving the differential equa
tion for (p or g. 

Capacitance of the Condenser 

5. After the external generator has been switched off, its effect has been 
to produce between the electrodes A and B a difference in chemical potential: 

Afi = —ev, 

where v is the e.m.f. of the generator. The electrode A which is assumed to 
be a perfect metal is such that one can neglect the change in the chemical 
potential due to the extra charge +Q. The differential capacitance of the 
condenser is the ratio between a small change dQ in the charge and the 
corresponding change dv in the e.m.f.. 

a. Calculate this differential capacitance as a function of the charge Q on 
the condenser in the limit when Q <^Qi. 

b. Under what conditions is it approximately equal to the capacitance one 
would obtain, if the electrode B were identical with the electrode A which is 
a perfect conductor? 

c. Calculate for the cases when Q' = Qi/2Q and Q" = Qi/10 the differ
ence between the e.m.f. corresponding, respectively, to Q" and Q', at room 
temperature with Z = 10~* m and Z' = 10~^ m. 

Validity of the Classical Approximation 

We shall now discuss the limits of the validity of the classical gas approxima
tion for the electrons. 

6. There exists a charge Q2{T) such that when Q 3> Q^iT) the electron 
density g is so large that one should use the Fermi-Dirac statistics for free 
electrons. Discuss the relative magnitudes of Qi and Q2 for possible values of 
the thickness Z for T = 300 K and for T = 4 K. To do that, evaluate Q2{T), 
assuming that Q2 ̂  Qi, and discuss whether this assumption is consistent. 

7. For small Z we cannot systematically replace the summation over the 
quantum number m^, which is associated with the momentum p^, by an 
integral. 

a. Give an expression for the density of electronic states, T>{e), in the layer 
B as function of the energy for a value of Z of the order of 10~* m. 

b. What conditions must we impose on Q and T in order that we can 
treat the electron gas as a two-dimensional gas? 

c. What conditions must we impose on Q and T in order that we can 
treat the electron gas as a classical two-dimensional gas? 
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Electrical Conduction 

By connecting the layer B with two planar metallic contacts in the y = 0 and 
y = Y planes (Fig.16.31), we can measure the electrical transport properties 
of the electron gas with a variable density. We assume that the electron 
densities remain those calculated above notwithstanding the perturbations 
introduced by the presence of the contacts and the current. At any rate we 
shall assume that the voltages applied to these contacts are always very small. 

We assume that the electrons are scattered by uniformly distributed cen
tres which have a density QSC- We shall use the Lorentz model to describe the 
interactions of the electrons with these centres. The scattering potential is 
taken as a hard sphere potential with a minimum distance apart equal to 6. 

8. To start with we assume that we can use the classical approximation. 
a. Give an expression for the conductivity of the electron gas as function 

of the charge Q, assuming a uniform electron density (Q -C Qi). 
b. Give an expression for the electrical resistance of the layer B, measured 

between the two contacts, neglecting their own resistance. 
9. We now increase the charge Q, still remaining within the framework of 

the classical approximation, into the Q ^ Qi domain. 
a. Is the relation between the charge on the condenser and the resistance 

changed? 
b. Calculate numerically the smallest resistance which one can reach, tak

ing into consideration technological limitations, at room temperatures for 
X = F , with Qsc = 10^1 m-3 and 6 = 10^^ m. 

c. In general, we have no a priori information about the density and size of 
the scattering centres. What partial information about the scattering centres 
can we obtain from this kind of experiment? 

10a. What qualitative deviation from the classical approximation can we 
see in the conduction when we increase the charge beyond the limit Q2 defined 
in question 6? 

b. The preceding questions assumed tacitly that the sizes X and Y were 
macroscopic. Technologically one can reduce Y to values of the order of 
10~^ m. Discuss for what conditions one should question the calculation of 
the electrical resistance made in question 8. 

c. Suggest properties other than the electrical conduction which one might 
study as function of the charge Q. 

11. Assume that the thickness Z of the electrode B is as small as possible 
and that the charge Q is such that we can treat the electron gas as a clas
sical two-dimensional gas. Treat the scattering centres in a two-dimensional 
Lorentz model by introducing a surface density g'^^ of the centres, each of 
which is surrounded by a "hard circle" potential of radius 6' which has prop
erties similar to the three-dimensional hard sphere potential. 

a. Give for this case an expression for the collision term. 
b. Evaluate the electrical resistance of the layer B. 
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Hints. The transition probability W{p,p'), evaluated as in §15.1.3, is no longer 
isotropic. Apply the Chapman-Enskog method and use symmetry considerations 
to evaluate the collision integral for the conditions when there flows a stationary 
electric current. 

16.19 Snoek Effect and Martensit ic Steels 

Carbon is a classical "impurity" of iron. Up to concentrations CQ (CQ is the 
ratio of carbon atoms to iron atoms) of the order of 8 x 10~^ the Fe-C alloys 
are steels. Beyond tha t we enter the domain of cast iron. 

We use an experiment thought up by Snoek to study the arrangements 
of small concentrations (CQ ^ 10~^) of carbon atoms in steels. 

At room temperatures the iron atoms occupy all the sites of a body cen
tred cubic lattice with cube edge 2A. In such a lattice the vertices and the 
centres of the cubes are equivalent since a translation by a vector (A, A, A) 
interchanges centres and vertices. When their concentration is low, the car
bon atoms may sit either at the middle of an edge (a) or in the centre of a 
face {(3) of the elementary cube (Fig.16.32). Here also, a translation by the 
vector (A, A, A) interchanges the roles of the edges and the faces; each possi
ble site for a carbon a tom is midway between two iron atoms at a distance 
2A from one another. We shall therefore distinguish three families, (x), (y), 
and (z) for these carbon sites according to the direction to the nearest iron 
neighbour: for instance, in Fig.16.32 a is an (a;)-site, being between two iron 
atoms which are si tuated in the a;-direction from a; similarly, /3 is a (j/)-site. 

If there are no constraints, these three families obviously play the same 
role. In equilibrium the corresponding concentrations are equal provided CQ 
is sufficiently small: 

Cv — C-u 
Co 

3 • 
(1) 

We note for what follows tha t there are 4 nearest neighbour carbon sites at a 
distance A from a given carbon site, say, a (2;)-site. Of these two are (a;)-sites 
and two (j/)-sites. 

Pig. 16.32. Two possible sites for C in the iron lattice 
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We also note tha t a macroscopic volume i? of the metal contains J7/8A^ 
elementary cubes, N = 2 x J?/8A^ iron atoms, and 6 x H/SX^ carbon sites. 

S n o e k ' s E x p e r i m e n t 

We shall now t ry to break the equipartition expressed by (1). To do this we 
take a single-crystal sample of steel in the form of a prism of volume /? with 
edgelengths a, a, and b along the x-, y-, and ^-directions, respectively, which 
is initially without stresses and in equilibrium, c^ — Cy — c^ — co/3. At t ime 
i = 0 we submit it to a uniaxial traction a in the z-direction, where aa^ is the 
applied force. After tha t the stress remains constant. We measure the length 
of the sample in the ^-direction as function of t ime and we denote the strain 
Ab/b by £. 

At t ime t = 0 we observe the classical elastic strain 

Ab a , . 
e, = - = - , (2) 

where Y is the elastic Young modulus of pure iron. We then see an additional 
strain, the so-called anelastic strain: e2{t) which increases with t ime and 
approaches a saturat ion value £3° (Fig.16.33). 

If we lift after a long t ime t' the applied stress, two consecutive contrac
tions, s'l = —£1 and e'2 = —£2 reproduce the initial shape of the sample: this 
so-called Snoek effect is thus reversible. Experiments show tha t : 

(i) £2 varies exponentially with t ime. The equilibrium value £2° is reached 
the faster, the higher the temperature T; 

(ii) £2° is proportional to the carbon concentration CQ; 
(iii) £2° is proportional to the stress cr and inversely proportional to the tem

perature T. 

Stat i s t i ca l T h e r m o d y n a m i c s T r e a t m e n t 

The idea is the following one. By increasing the distance between the iron 
atoms in the ^-direction the stress a tends to stabilize the carbon atoms 

a V- • 

Fig. 16.33. Strain and relaxation of a steel 
bar under the traction a 
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in the (2;)-sites at the cost of the (x)- and (y)-sites. In fact, the latter are 
more strongly squeezed by their iron neighbours so that the energy of a 
carbon atom on a (2;)-site becomes lower, by an amount 2w, than if it were 
on an (x)- or {y)-site. This change in energy produces an asymmetry so 
that the populations Cx,Cy,Cz: have no longer any cause to be equal. We 
shall characterize the deviation relative to the isotropic situation (1) by a 
parameter 

V = '̂ ^ ~ "3"' ^̂ ^ 

which is called the polarization of the system. In equilibrium, this parameter 
reaches the value 7]°°. 

We shall show in what follows (question 5) that the polarization rj of the 
carbon atoms in the 2;-direction gives rise to a strain £2 which must be added 
to the elastic strain ei, defined in (2), and which is proportional to TJ: 

62 = BT], (4) 

and especially 

eT = Bri"^. 

This will enable us to explain the Snoek effect. 
We shall beforehand calculate the value 77°° of 77 in equilibrium at a tem

perature T and for a given value of the total strain e. To do this we evaluate 
the free energy F(e, r/, T) of the quasi-equilibrium states of the sample in 
various stages of the variation of the polarization effect. These states are 
characterized not only by the temperature but also by giving the total strain 
s = £1 + £2 and the polarization TJ, considered to be independent variables. 
The equilibrium polarization r]°° is a function of e which will be determined 
by expressing that in equilibrium the two systems consisting of the (2)-sites 
and of the (x)- and (j/)-sites can, for fixed e, exchange carbon atoms. We 
assume that £2 can be neglected compared to £1, a condition which will be 
satisfied, provided CQ is sufficiently small. 

We assume that the only important changes in the free energy come from 
the following contributions: 

(i) the elastic free energy, which is associated with the interactions be
tween the iron atoms and has the same expression as for pure iron: 

(ii) the decrease by 2w in the internal energy, which is produced by each 
jump (x) or (y) |—> (z), when the carbon atom in (z) finds a more favourable 
position than if it were in (x) or (y). We take the energy 2w to be proportional 
to the deformation £, which is practically constant and equal to £1 during 
the polarization since £3 •C £1: 
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2w = A e; (5) 

(iii) the change in the configuration entropy Sm of the carbon atoms. 

We denote by N the number of iron atoms in the sample, of volume a^b, 
and therefore by NCQ the number of carbon atoms, and by g the number of 
iron atoms per unit volume. 

1. Determine the configuration entropy Sm corresponding to the concen
trat ions Cx, Cy, and c^ which we assume to be arbitrary to begin with. Find 
the expression for the value S^ of Sm for the case when there is equilibrium 
and there are no stresses (cj. = Cy ~ Cz = Co/3). 

2. Wha t happens to this entropy when the carbon atoms become polar
ized? We assume here tha t a is sufficiently small tha t we have rj <^ CQ and 
we remember tha t CQ ^ 1. Calculate Sm — Sm as function of rj up to second 
order in rj. 

3. Use the hypotheses (ii) and (iii) mentioned earlier to determine the 
value of ri°° at equilibrium as a function of e. Express this quanti ty as a func
tion of the parameters a, CQ, and T which can be controlled experimentally. 

4. Starting from the expression for F{e,r],T), which results from the hy
potheses (i), (ii), and (iii) given earlier, give a relation between the stress a 
and the total strain e for a given polarization rj. 

5. Use this relation to prove tha t Eq.(4) is the consequence of these hy
potheses and tha t the parameter B can be expressed as 

in terms of the quantities A and Y, which are defined through Eqs.(5) and 

(2). 
6. Give an expression for the anelastic strain at equilibrium. Which of the 

experimental results (i) to (iii) given earlier can be explained by this model? 
7. Evaluate w numerically in eV, taking a = 1000 bar (= 100 MPa) . Take 

for B the experimentally found value 0.8. The atomic mass of iron is 56 and 
its density 7.8 g cm^^. Evaluate the anelastic strain £2° at room temperature 
for a steel with a concentration CQ = 10~^. 

K i n e t i c T r e a t m e n t 

We now want to s tudy the way the directional ordering is established in time, 
tha t is, the evolution of the polarization 77. 

This needs carbon atoms to j u m p from {x)- or (j/)-sites to (z)-sites. We 
assume tha t the carbon atoms j u m p only from one site to a nearest neighbour 
site. Each j u m p occurs along a diffusion pa th of length A which joins two 
nearest neighbour sites of different kinds (Fig. 16.34 shows an (x) | ^ (z) 
j ump) . We also assume that in the j u m p the carbon atom passes, in the E{r) 
space, over an energy barrier at the middle of the two, departure and arrival, 
sites. Let AE be the height of this barrier and let u be the characteristic 
frequency of vibration for a carbon atom on each of the sites. 
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(a) (b) ^ (c) 
Fig. 16.34. (a) Jump of a carbon atom from an (x)- to a neighbouring (z)-site; 
(b) variation of the potential energy E{r) along that path for e = 0; (c) the same 
for e > 0 

A carbon a tom j u m p from a given departure site to a given (nearest 
neighbour) arrival site is a random process characterized by a probability per 
unit t ime for it to occur that will depend on the temperature T and the height 
of the barrier vi^hich must be passed over. One can show tha t this probability 
per unit t ime equals f exp[—(^M — Eo)/kT], where EM is the energy at the 
top of the barrier and Eo the energy at the departure site. 

Take into account tha t the concentration CQ is very small. 

8. Wha t is the mean number of jumps î j of a given carbon a tom per unit 
t ime? Wha t is the mean time TJ which a carbon a tom will spend at a given 
site at room temperature? Use the experimental values u = 1.5 x 10^* s~^ 
and AE = 0.87 eV. 

9. The stress in Snoek's experiment changes the energy profile of Fig.16.34b 
to tha t of Fig. 16.34c: the (z)-sites have under this constraint an energy which 
is lower by 2w t han tha t of the (a;)- or (2/)-sites (see Eq.(5) above). On the 
other hand, the energy of the top of the barrier, EM, is not changed. We 
assume tha t the stress a is sufficiently small tha t w will be small compared 
to bo th AE and kT. We neglect the change in w during the experiment, since 
£2 ^ £1 • The carbon atoms on a (z)-site with a concentration c^ can jump 
to (a;)- and to (2/)-sites. Conversely, {x) and (t/) atoms can jump to (z)-sites. 

Write down a differential equation describing the balance for the change 
dcz in Cz at t ime t during an interval dt much larger than TJ. 

10. Use tha t equation to find, start ing from time t = 0, the general form 
of the functions Cz{t) and £2(i) in Fig.16.33, to first order in w/kT, taking as 
the initial conditions c^ = Cy = c^ = CQ/S. Find especially the quantities c ^ 
and £2°) checking tha t the lat ter is the same as tha t found in 6, and also the 
characteristic t ime r for the evolution of the anelastic strain. How does this 
t ime change with temperature? 

Which of the experimental results (i) to (iii) of the introduction can be 
explained by this theory? 

Use the numerical values calculated earlier to give the order of magnitude 
of T. Check tha t the assumptions that w -C AE and w <C kT were justified. 
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Fig. 16.35. The Fe-C phase diagram in the 
atomic concentration-temperature plane 

600 
0 4 8 12 16 %C 

11. The numerical values of the frequency v and of the energy AE were 
given so far without justification (question 8). Wha t experiments would you 
devise to measure them? 

M a r t e n s i t i c Stee l s 

The equilibrium Fe-C diagram is given in Fig.16.35. The a-phase, or ferrite, 
is the body-centred cubic phase studied above. The 7-phase, or austenite, is 
a face-centred cubic phase into which the carbon is more soluble than into 
the a-phase. The FesC phase is called cementite. 

Let us take a steel with CQ = 5 x 10~^ at 1100°C and let us cool it down 
suddenly (temper or quench it) to room temperature. 

12. Wha t is the equilibrium structure of this steel at 1100°C? What would 
normally be its equilibrium structure at room temperature or at 600° C? 

13. Experiments show tha t , in fact, neither the one nor the other of these 
two structures is the one seen after tempering. The tempered steel consists of 
a pseudo-ferrite similar to the phase studied earlier, but one in which locally 
all carbon atoms occupy one kind of site, say, (^)-sites. This structure is called 
martensite and is not in thermodynamic equilibrium: it is metastable. The 
formation of martensite, tha t is, the total polarization of the carbon atoms 
into (z) positions, is a dynamic process due to the tempering and which we 
shall not describe here. 

Wha t is the value of the polarization? Wha t is, in your opinion, the shape 
of the elementary cell of martensite? Wha t are its dimensions as compared to 
the edgelength 2A of the ferrite cube of Fig. 16.32? Can one use X-ray exper
imental measurements of these dimensions to find the value of the coefficient 
B in Eq.(4)? 

14. Although metastable, martensite can exist a long time: one often finds 
martensite in prehistoric tools. 

Can you explain qualitatively what leads to this longevity of martensite? 
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15. The polarization axis of martensite can be just as well in the x- or 
the j/-direction as in the z-direction. Going from one region to another of a 
piece of tempered steel one finds small domains, of a few hundred A to a few 
micron, of (a;)- or (y)- or (z)-type martensite. 

Use the answers to 13 to say something about the state of internal con
straint in this piece. Can you find a connection between your answer and the 
great hardness of tempered steel? Do you understand why the hardness of 
such steels increases with the carbon concentration? We assume here without 
any further justification tha t the deformability of a crystal is connected with 
the facility with which certain crystal defects - dislocations - can move. 

16. Remembering what we have seen so far how would you set out to 
decrease the hardness of a piece of martensitic steel? 

In an actual examination students were given two nails which looked identical, 
but one of which was of tempered steel and the other had been annealed, that is, 
reheated during an hour at 500°C. They were then asked the following question: 
"How do you think the most ductile, that is, the most easily deformed, of the two 
enclosed nails has been treated?" 

Solutions to the Last Three Questions: 

14. The strain of the (z) polarization axis calculated in 13, which equals 
2Sco/3 ~ 3 X 10~^, is much larger, by a factor of order 1000, than the anelastic 
strain calculated in 7. This strong distortion implies a large degree of stabilization 
of the carbon atoms in the {z) position thanks to the increase in w. In 7 we found a 
value w 2± 3 X 10~^ eV for an elongation of 4 x 10~ ; the proportionality assumed 
in (5) would now give for w a value of a few eV, but that is incompatible with the 
value of AE and with the shape of Fig. 16.34. It is therefore reasonable to estimate 
that w saturates for large deformations to a value of the order of AE, say, 0.5 eV. 
Under those conditions the characteristic time for (2) [-* {x) or {y) jumps, which 
are necessary for a return to equilibrium, is increased considerably, as it contains 
a factor e'^/'^'^. For w ~ 0.5 eV and at room temperatures it will be increased by 
e ~ 5 X 10 and changes from the value of 2.2 s, obtained in 8, to 10 s ~ 30 
years. For w ~ 0.6 eV we would get 2000 years. The carbon atoms are thus frozen 
in for a very long period in the metastable (z) positions. 

15. The (a;), (y), and {z) domains exert considerable stresses upon one another, 
the strain of one of them being opposed by the different orientation of the polar
ization in the next ones. Interactions of an elastic nature between these internal 
stresses and the crystal defects which are responsible for deformations inhibit the 
mobility of these defects and the hardness is increased. The strength of the internal 
stresses, and thus the hardening effect, increases with the polarization of the do
mains which itself is proportional to CQ. The hardness of tempered steel therefore 
increases with carbon content. 

16. To accelerate the (z) martensite |—> ferrite transition we must make the 
(z) |—> (x) or (3/) jumps more favourable. It is sufficient for this to heat the sample, 
as this reduces the characteristic time through the factor exp[{AE + w)/kT] which 
changes considerably. The hard nail is made of tempered martensitic steel; the other 
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one, which is easily bent, has been heated, at less than 700°C, so that it reached 
the equilibrium phase of ferrite + cementite which involves practically no internal 
constraints. 

"Ni si haut, ni si bas! simple enfant de la terre, 
Mon sort est un probleme, et ma fin un mystere.'' 

Lamartine, Meditations 



Conclusion: 
The Impact of Statistical Physics 

Applications of Statistical Physics 

The different examples which we have treated in the present book have shown 
the role played by statistical mechanics in other branches of physics: as a 
theory of matter in its various forms it serves as a bridge between macroscopic 
physics, which is more descriptive and experimental, and microscopic physics, 
which aims at finding the principles on which our understanding of Nature 
is based. This bridge can be crossed fruitfully in both directions, to explain 
or predict macroscopic properties from our knowledge of microphysics, and 
inversely to consolidate the microscopic principles by exploring their more or 
less distant macroscopic consequences which may be checked experimentally. 
The use of statistical methods for deductive purposes becomes unavoidable 
as soon as the systems or the effects studied are no longer elementary. 

Statistical physics is a tool of common use in the other natural sciences. 
Astrophysics resorts to it for describing the various forms of matter existing 
in the Universe where densities are either too high or too low, and tempera
tures too high, to enable us to carry out the appropriate laboratory studies. 
Chemical kinetics as well as chemical equilibria depend in an essential way 
on it. We have also seen that this makes it possible to calculate the mechan
ical properties of fluids or of solids; these properties are postulated in the 
mechanics of continuous media. Even biophysics has recourse to it when it 
treats general properties or poorly organized systems. 

If we turn to the domain of practical applications it is clear that the 
technology of materials, a science aiming to develop substances which have 
definite mechanical (metallurgy, plastics, lubricants), chemical (corrosion), 
thermal (conduction or insulation), electrical (resistance, superconductivity), 
or optical (display by liquid crystals) properties, has a great interest in statis
tical physics. For instance, ferromagnetism, a phenomenon which is of great 
importance as it has enabled the development of electrical engineering (alter
nators, transformers, motors), is the result of an order-disorder phase transi
tion; we have sketched its theory in Chap.9. Here, observations and practical 
applications preceded understanding. However, we have shown in Chap.11 
how the theory of another kind of substances, the semiconductors, has led to 
the construction of devices such as diodes or transistors and everybody knows 
their innumerable applications (micro-electronics, computers, energetics). 
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Through thermodynamics, which has become its extension, but also di
rectly, statistical physics contributes to the development of various energy 
techniques, whether the extraction, transformation, transport, storage, sav
ing, or efficient use of thermal, electrical, radiative, chemical, mechanical, or 
nuclear energy. In passing we have mentioned some applications to the quest 
for new energy sources, such as fusion or solar energy. 

Methods and Concepts of Statistical Physics 

Statistical physics has also played a major role in the realm of ideas. Like rela
tivity and quantum mechanics, and maybe even more deeply, it has changed 
our world picture through its philosophical impact and its epistemological 
implications. As we have seen several times it has accustomed us, even out
side the framework of quantum theory, to incorporate in science a partially 
subjective, or at least a relative, aspect inherent in the probability concept. 
We see now scientific progress as a devolution of more and more probable, 
more and more faithful, images of reality, but the belief in an absolute sci
entific Truth, which was so widespread amongst scientists and philosophers 
in the nineteenth century, can hardly be found nowadays: more or less great 
likelihood, yes, but no final certainty. 

Also noteworthy are the contributions of statistical physics to the devel
opment of methods and concepts. It was one of the first disciplines where the 
statistical method, that is the art of making predictions when one has little 
knowledge, was worked out. A macroscopic substance is a typical example of 
a system which is too complicated to be described in all detail. The proper
ties in which we are interested concern only a few degrees of freedom, or are 
average effects; the statistical treatment allows us to discard those aspects 
that are too complicated, not well known, or of no interest. This fruitful ap
proach is met with in all applications of statistics. We have also illustrated 
another remarkable possibility opened up by statistics, to wit, the possibil
ity to m âke nearly certain predictions even though the system studied has a 
random nature, provided it is large. 

Another method, examples of which can be found in Chaps.7 or 15, dealing 
with transport, and 13, dealing with Kirchhoff's laws, consists in making up 
a detailed balance of exchanges which can take place between one part of the 
system and another. Conservation laws, such as those for energy, momentum, 
or particle numbers, play an important role in establishing this balance and 
this enables us to reduce the problem. These ideas can be transposed to 
economic sciences. We also saw in Chap.14 how fruitful is the systematic 
exploitation of symmetry and invariance properties. 

Statistical physics is a field where the use of models is a nearly perma
nent feature. The ideal method, which would consist of starting from a known 
Hamiltonian to use a Boltzmann-Gibbs distribution for deriving the proper-
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ties of a system, often turns out to be intractable. Therefore, as we did on 
many occasions in this book, one does not start from first principles, but one 
uses a model, that is, a simple, idealized structure, which is meant to depict 
consistently a more complicated reality. It even happens that one introduces 
contradictory models to describe different aspects of the same system. One 
knows that the social sciences, such as economics and sociology, make great 
use of models. Statistical physics can help us understand the significance 
of their use. In fact, in fields where theory is not so well developed, one is 
prepared to justify a model by its operational fertility and by more or less 
intuitive similarity arguments. In statistical physics, we can go further, as we 
saw at the end of Chap.l, by constructing a series of more and more refined 
models which are based partly upon more and more precise experiments, and 
partly upon known "first principles" from which approximations enable us to 
construct models. These nested models are successive steps in the capture of 
Nature. 

Several concepts introduced in statistical physics have already passed into 
everyday usage. It suffices to mention energy, its transformations and the 
consequences of its conservation: the limitation of our energy resources, on 
the one hand, and the inevitability of "thermal pollution" if one uses energy, 
on the other hand, have become commonplace. 

We have studied the relations between the concepts of entropy, informa
tion, and disorder. Energy degradation, and irreversibility, are manifestations 
of the general tendency towards the loss of order. We also saw that when we 
increase our knowledge about a system, we put order into it. These kinds of 
considerations by and large go beyond the framework of physics. Especially, 
information theory, the birth of which was partly due to statistical physics, 
enables us to improve the efiiciency of transmission methods by using a suit
able treatment of messages which avoids their being tangled up by noise. 
Prom this point of view, a sizeable part of biology appears as the study of 
mechanisms through which living organisms create order by using the infor
mation contained in their genetic code. Is even intellectual activity nothing 
but a struggle against chaos? 

A set of remarkable effects, which may also be found outside statistical 
physics, is connected with the establishing of order in a system. We have been 
able to appreciate the diversity of the forms that order can take, from mag
netism to the superfluidity of helium. The huge variety of crystal structures 
provide us with a spectacular example of this wealth of types of ordering. We 
saw also (§§ 11.1.2 and 12.2.3) that different forms of order may compete and 
that depending on the situation, one or other of them dominates. The a pri
ori most surprising phenomenon is the sudden appearance of order: we have 
encountered several examples of phase transitions where a qualitative change 
is suddenly produced when the temperature is gradually lowered. Statisti
cal physics enables us to understand the origin of such discontinuities which 
occur only thanks to the large size of the systems studied. 
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Finally, statistical physics clearly illustrates the concept of hierarchical 
structures, which is fashionable in human sciences. Depending on the scale 
in which we are interested, the laws of physics differ: a substance is on the 
microscopic scale a set of electrons and nuclei interacting through Coulomb 
forces; on the macroscopic scale, it is a gas or a solid with an order which we 
could not expect from the microscopic laws. However, the physicist believes 
in the existence of universal fundamental laws, or at least in the possibility of 
gradually unifying the various pieces of information available at a given time. 
Statistical physics helps us to resolve this contradiction between the unity of 
Nature and the change of her laws depending on the scale, by enabling us to 
derive a large number of macroscopic laws from the underlying microscopic 
laws. On the level of principles, the latter, which are simpler, appear to be 
more fundamental. On the practical level, the fact that this derivation is pos
sible in relatively simple cases, all the same, does not transform macroscopic 
physics or chemistry into disciplines with the logical and consistent structure 
of mathematics: the constituent elements of reality are simple, but combining 
them leads to enormously rich complex phenomena. 

Deduction in Science 

This remark leads us to finish with a warning. Statistical mechanics stresses 
the deductive aspect of science, an aspect which is favoured in French teaching 
by the dominance of mathematics. In this book itself, at least starting from 
Chap.2, for the sake of pedagogical efficiency we have adopted a deductive 
approach. This should not lead one to develop erroneous ideas about the 
practice of science or to believe that the deductive method, of which statistical 
mechanics is one of the most beautiful examples, lies at the roots of our 
knowledge. 

Certainly, most scientists adhere to reductionism, at least in their daily 
practice. According to this doctrine, sciences can be classified in a hierar
chy with levels corresponding to increasing degrees of complexity of the ob
jects studied. The deepest foundations are at the level of elementary particle 
physics. Atomic physics is based on it, and in its turn it is directly the basis of 
chemistry, and indirectly of the physics of materials, thanks to the techniques 
of statistical mechanics. The ladder extends from chemistry to molecular bi
ology, then to cellular biology on which the study of multi-cellular organisms 
is based, and one may imagine that one day it will end up with psychology 
and sociology. According to reductionism, each level is completely governed 
by the lower level, without needing any new hypotheses, and its laws are, as 
a matter of principle, merely the consequences of the laws of the underlying 
level. 

This idea of science, however, does not imply that deduction plays the 
dominant role in it. Most scientists think that biology can be reduced in 
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successive steps to microscopic physics, which has as its fundamental laws 
quantum mechanics and electromagnetic interactions between electrons and 
nuclei. However, one would be completely wrong in believing that, conversely, 
one might some day solve biological problems, starting from these laws. Even 
though deduction is relatively easy for a composite system, consisting of a 
small number of elements, and even though, as we have seen, it is, thanks to 
statistical methods, still possible for materials which are rather poorly orga
nized, usually it is not feasible. Using models often enables us to circumvent 
this difficulty, but at the risk of losing view of the reality which they have to 
take into account. 

The relation between science and deduction has thus a paradoxical na
ture. Reductionism aims at constructing a consistent framework which, in 
principle, is deductive and based upon few fundamental laws. This attitude 
is fruitful, and everything so far leads us to believe that it enables us to ac
quire an increasingly adequate knowledge of reality. However, the approach 
itself which is followed to reduce one branch of science to another goes in the 
opposite direction to deduction: only rarely does one discover new effects when 
one attempts to construct them, starting from simple fundamental laws. On 
the contrary, most often one starts from a new effect, discovered at a compli
cated level through empirical kinds of research, to find elementary laws. For 
instance, phase transitions have been known a long time; however, it needed 
the whole arsenal of statistical mechanics to construct a theory accounting 
for them, and that, only many years after the laws of microphysics had been 
well established. One could never, starting from those laws, have imagined 
their existence, if one had not observed them previously at the macroscopic 
level. More generally, even though one knows that sciences such as thermo
dynamics or mechanics are based on microphysics, they are not in any way 
endangered - quite the contrary - and new effects continue to be discovered in 
those fields. At a different level, the duplication of DNA is a purely chemical 
effect; one would never have understood it without the reductionistic urge to 
look for its explanation merely in the structure of the molecules involved, but 
also one would never have invented it, just from knowing the laws of chem
istry. In the progress of discovery, science thus goes from the complex to the 
elementary, checking a posteriori that the new observations are compatible 
with the known, or as yet unknown, simple fundamental laws. 

Why is it so difficult to find the properties of complex systems, start
ing from the laws governing the behaviour of their elementary constituents? 
The example of phase transitions is significant. Prom a microscopic point of 
view, a phase transition, such as solidification, is a rather extravagant effect: 
nothing at the atomic scale indicates that there may appear a discontinu
ity in the macroscopic properties; moreover, the translational and rotational 
invariance of the microscopic laws is well reflected in the high-temperature, 
liquid, phase, but not in the low-temperature, crystalline, phase. Statistical 
mechanics explains these paradoxical differences in behaviour by appealing 
to approximation methods which violate certain properties of the microscopic 
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laws, but which are eventually found to be justified by the enormous differ
ence in scale between the substance ajid the atoms which are its constituents. 
Thus, once a certain degree of complexity is reached, a system consisting of 
a large number of constituents can behave in a manner which is radically 
different from that of its elements. There then appear qualitatively new, un
predictable properties; one of the essentials tasks of science is to uncover and 
to explain those. Altogether, the existence of a hierarchy between the sci
ences does not imply that it suffices to apply the most "fundamental" ones 
for building the others. Each level calls for a conceptual structure, laws, and 
even a methodology, all of its own. Unlike the physical sciences, biology or 
computer science use the so-called system approach which right from the 
start stresses the function, rather than the structure of objects. 

It behooves us therefore to put the deductive method in its right place. A 
living science is characterized by a continuous interplay between fundamen
tal laws or hypotheses and properties, considered to be their consequences. 
This two-way movement, using deductions every time - unfortunately rare 
at the start - when this is possible, is an essential source of the progress and 
the gradual unification of the sciences. In the last stages when a discipline 
has reached maturity and especially when one tries to apply it, deductive 
methods, like those of statistical physics, gain the upper hand. The steam 
engine preceded thermodynamics, but later thermodynamics played a signif
icant role in improving it. Similarly, the extraordinary development of the 
techniques of electronic components rests upon an understanding in depth of 
the properties of substances, which is based upon a study of their microscopic 
structure and which cannot be attained from purely empirical research. Does 
this justify the strong accent we have placed on deduction? 
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elastic scattering, see scattering 
electrical conduction, — conductivity 39, 

91, 95, 97, 104-107, 115, 120, 125, 
129, 189, 293-295, 333, 350-352, 
361-364, 418, 422, 562-563 

electric charge, see charge 
electric current 285-286, 292-295; 

125-129, 246, 293-295, 298-299, 356, 
417-419,422 

electric dipole, see dipole 
electric displacement (or — induction) 

286-287; 114-115 
electric energy, — work 250, 286-292; 

298 
electric field 170, 285-292; 107, 114-115, 

125-129, 156-157, 202-204, 352, 
417-419,422 

electric induction, see — displacement 
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electric mobility, see mobility 
electric potential 216-217, 286-287, 290, 

292; 109, 111, 114-115, 123-129, 
156-157, 203, 294-296 

electric susceptibility 113-115, 458 
electrochemical potential 216-217; 112, 

295; see chemical potentials of charge 
carriers 

electrochemistry 246 
electrodynamics 99-102, 104-107, 

293-300 
electroluminescence 125 
electrolytes, see ions, solutions 
electromagnetic field, see electric —, 

magnetic — 
electromagnetic radiation, — waves 248; 

see photons, radiation 
electromagnetism 131, 245, 250, 

284-295; 90, 244-245 
electromotive force 216; 247, 295-298, 

357 
electron 8, 34, 492 
electron gun 40 
electronic devices, see microelectronics, 

semiconductor — 
electron paramagnetic resonance, see 

magnetic resonance 
electron-phonon interaction 106, 130, 

138 
electrons in crystals 16, 60-61, 68-129, 

489, 500 
electrons in metals 33-34, 36, 74, 91-95, 

159-160, 358, 364-365, 503-516 
electrons in molecules 363-367; 4, 12 
electrons in semiconductors, see 

conduction electrons, holes 
electron tube, see thermionic effect 
electrophoresis 352-353, 419-421 
electrostatic equilibrium, macroscopic 

205, 245, 286-292; 114-115, 494-498 
electrostatic equilibrium, microscopic 

147, 216-217; 33, 61, 107-114, 
122-125, 560-561; see charge, 
dielectrics, dipole 

elementary excitations, see 
quasi-particles 

elementary particles, see particle physics 

emission 210-211, 221-232, 240; see 
photons, radiation, stimulated — 

emittance 222-223 
emitter 126-128 
empiricism 6, 127 
enclosure 203, 423; see black-body 

radiation 
endothermic reactions 283 
energetics 127, 189 
energy 572-573; see electric —, 

Fermi —, free, internal, and magnetic 
energies, shift of — origin 

energy conservation 23-24, 125; 252, 
273-274, 278-280, 296, 307, 312-313, 
372, 376-377, 380; see conservation 
laws, First Law, internal energy, 
macroscopic and microscopic balance 

energy density 207, 216, 219, 223, 
275-276, 279-280, 291, 296, 301, 343, 
379 

energy downgrading 197-198; 266, 328; 
see dissipation, heat, irreversibility, 
work 

energy eigenstates, see energy spectrum, 
excited states, ground state, level 
density 

energy exchanges, — transfer, see 
current density, fluxes, heat 
exchanges, radiation exchanges, 
thermalization, transport 

energy flux 275, 279-280, 296, 304-305, 
307, 311, 345, 379, 425, 427-428; see 
emittance, Poynting vector, thermal 
conduction 

energy partition 28-31, 184-186, 222, 
244-245; see equipartition, probability 
distribution for energy 

energy spectrum 127, 349, 351, 355, 
366-369, 375-376; 4 

energy units 463; 605 
enriched uranium, see isotope separation 
ensembles, see canonical —, equivalence 

of —, grand canonical, 
isobaric-isothermal, microcanonical, 
and statistical ensembles 

enthalpy 214, 220, 258-260, 283, 362, 
406-407; 485 

entropic elasticity 232; 437 
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entropy 11, 123; 573; see additivity, 
Boltzmann, classical, and Kolmogorov 
entropies, maximum of—, mixing, 
quantum, relevant, statistical, 
thermodynamic, and thermostatic 
entropies 

entropy changes, — current, — density, 
— flux 254, 265-270, 301, 314-316, 
397-400 

entropy of classical gases 323-324, 354, 
356-357; 31-32, 460, 472 

entropy of phase transition 269-273, 
418-421, 425, 430-431; 479-480, 485, 
519 

entropy of quantum fluids or gases 27, 
42-43, 47-50, 147, 177-179, 184, 202, 
216, 235-236, 400 

entropy production, see dissipation 
equations of continuity, see continuity — 
equations of motion, see evolution 
equations of state 219, 249-250, 253, 

286; 253-255, 262, 271, 284, 289, 346 
equations of state for specific substances 

37, 231, 296-298, 322-323, 353-354, 
398, 404, 414; 67, 175-176, 184-185, 
301, 343, 378-379, 437, 467, 472-473 

equilibrium 141, 152-165, 242, 251; see 
approach to —, chemical, 
electrostatic, gravitational, 
hydrostatic, liquid-vapour, and 
magnetostatic equilibria, 
metastability, osmosis, phase 
equilibria, radiative equilibrium, 
rotational —, shift in —, solid-liquid 
—, solutions, sublimation, thermal —, 
thermostatics 

equilibrium constant 361-363 
equilibrium currents 257, 268, 303, 

315-316, 379 
equipartition 370-374; 49, 142-143, 

147-148, 223, 458, 461 
equiprobability 24, 104-105, 142, 

225-226; see indifference principle 
equivalence of ensembles 34, 165, 186, 

207-210, 237, 319-320, 446-448; 155, 
183, 192-195 

equivalence principle, see First Law 
ergodicity 134-135,146-147 

escape velocity 317 
Euler equation 312, 380 
Eulerian description 247, 306 
Euler-Lagrange equations 82 
Euler-Maclaurin formula 464; 50, 

462-463, 506, 606 
evacuation 175, 239, 344-345; 543; see 

vacuum 
evaporation 216, 421; 187, 246; see 

liquid-vapour equilibrium, 
sublimation, vaporization heat 

evaporation plateau, see Maxwell 
construction 

event 102, 113 
evolution, macroscopic, see approach to 

equilibrium, hydrodynamics, 
irreversibility, magnetic resonance, 
relaxation, responses, thermodynamics 

evolution, microscopic 58-60, 73-74, 
81-84, 90-92, 118-119; 3, 5, 99-102, 
115, 242, 336-339, 371-376; see 
classical mechanics, Liouville-von 
Neumann equation 

evolution operator 59, 73-74, 118 
exchange interaction 427; 12, 71, 435 
exchange of particles, see 

indistinguishability, Pauli principle 
exchange operator 87-88; 3-6, 24 
exchanges 183-188, 195-197, 243-248, 

251; 243-245, 249-253, 289; see 
energy, momentum transfer, 
particle —, radiation — 

excitations, see quasi-particles 
excited states 308-309, 385-386; see 

energy spectrum, level density, 
single-particle density of states 

exclusion principle 6, 11-14, 24, 35-37, 
160, 176, 360, 400-401; see Pauli 
principle 

exclusive events 64, 67, 139 
exhaustion regime, see saturation — 
exothermic reactions, see reaction heat 
expansion coefficient 252, 263, 268, 274; 

67, 154-155, 446, 482-483, 486-487; 
see linear expansion 

expansion of Universe 347; 216, 220-221, 
235-237 

expansions, see perturbation — 
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expectation values 21, 76-77, 79, 93, 
143-144, 146, 226; 283-285, 321 

expectation values at equilibrium 
158-159, 163-164, 166,168, 226 

expectation values, quantum 57, 64-66, 
73, 75-77 

exponential dominance 29-30, 208, 210; 
see saddle-point method 

exponential of operator 54-55 
extensive variables 29, 205-207, 212, 

244-245, 250; 244-245, 253, 271 
extensivity 49, 134, 205-210, 221, 226, 

244, 248, 324, 359, 395, 403, 412, 424, 
446-448; 13, 28, 182-183, 193, 197 

exterior algebra 261-263 
extrinsic regime, — semiconductors 116, 

119-121, 155-156 

faces, see surface of crystals 
factorization 161-163, 166, 314, 351; 

20-21, 24-25, 396, 444, 449 
Fermi 8; see Golden Rule 
Fermi-Dirac statistics, see fermions, 

occupation numbers, Pauli principle 
Fermi energy, — level, — momentum, 

— sea, — surface, — temperature, 
— velocity 217; 35-38, 91-97, 138, 
176, 190, 361-363, 489-491, 500, 514, 
520 

Fermi factor 26-27, 29-30, 36-41, 97-99, 
358-359, 364, 368, 401, 470, 507 

Fermi gas 33-43, 56-58, 69-70, 183-184, 
235-237, 359-360, 400-401, 466, 
470-471, 474-477, 489-490, 500, 
517-521 

fermions 61, 375, 379; 5-14, 19-20, 24, 
171 

ferrite {or a-iron) 568-570 
ferroelectricity 426; 456-460 
ferromagnetism 45, 204, 301-304, 392, 

425, 427-440, 442; 12-13, 139, 192, 
198 

ferromagnetism in metals 61, 159-170, 
571 

fibres 231-235; 436 
Fick law 260, 295, 313, 347, 350, 

420-421, 555 
field, see deformation —, electric —, 

magnetic —, molecular —, radiation 

field effect transistor 129, 559 
field operators 23, 145-146, 150-152, 

186, 188, 190, 206-211, 213-215; see 
annihilation — 

field theory 23, 143, 150, 206, 215, 
275-276 

filament, see incandescent lamps, 
polymers 

filled bands 91-93, 95-97, 108,110 
films 28, 53-54, 186-187, 504-508, 

540-541, 561-562 
filter 322, 325 
fine structure 365 
finite systems 186, 221-230, 424; 329-330 

see defects, fibres, films, fluctuations, 
interfaces, semiconductor devices 

First Law 125, 188-197, 244; 252, 271 
first-order transition, see phase equilibria 
fission 369, 552; see nuclear reactions 
flame 230 
flow, see hydrodynamics 
fluctuation-dissipation theorem 323, 328 
fluctuations 98-99, 130-131, 221-224, 

227-229, 238-239; 26, 147-148, 
192-195, 202, 215, 394-395, 500-501 

fluctuations, critical 227, 302-304, 424, 
428; 170, 186, 192 

fluctuations, methods of calculation 99, 
159, 167, 169, 371 

fluctuations, quantum 57-58, 312; 
150-152 

fluctuations and responses 173-174, 238, 
432; 329 

fluctuations, smallness 30, 207-209, 226; 
286 

fluids 165, 253, 263-264, 391-426; 
276-282; see classical fluids, gases, 
helium, hydrodynamics, interfaces, 
liquid-vapour equilibrium, solutions 

fluid-solid equilibrium, see solid-liquid 
equilibrium 

fluorescence 227, 229, 231-232 
fluxes 326-327, 335; 231, 243, 249-251, 

256-257, 270-271, 274, 276-282, 287, 
289-290, 294, 305, 310, 319-320, 341, 
345-347, 377, 379, 384-385, 550-554; 
see entropy flux 

Fock representation 2, 14-24, 195-200 
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Fock space 52, 93, 144, 167; 15, 19-20, 
146, 213; see field operators 

Fokker-Planck equation 391-393, 402 
forbidden bands 74-75, 78, 82-83, 85, 

89-90, 96-97,103, 105, 115-116, 121, 
126 

forced regime 248, 321-323 
forces 191, 231-235; 252, 258, 278, 282, 

306-307; see affinities, pressure, 
stress, surface tension, viscosity 

force variables 191-193, 250, 291-292; 
258, 321; see conjugate variables in 
thermostatics 

form, see exterior algebra 
fountain effect 187, 528, 538 
Fourier law 244, 258-259, 292, 347 
Fourier transforms 78-79, 132-133, 137, 

144, 148, 204, 259, 322-328, 417-419 
Fourth Law, see Onsager relations 
free energy 213-214, 220, 233, 258-259, 

288, 290-291, 294, 322, 403; 146-147, 
210, 401-402, 459-460, 484 

free enthalpy 214, 220, 232-233, 260, 
278, 283; 484, 486, 488, 519 

freeze-out regime, see extrinsic — 
freezing, see solid-liquid equilibrium 
freezing in 40, 309-310, 359, 377; 53; see 

quenching 
freezing in of electrons 363-365, 367, 

393-394; 9, 39, 43, 91, 97, 104, 361 
freezing in of translations 1-2, 59, 171 
freezing in of vibrations 372-374; 178 
freezing mixture 443 
Frenkel pair 154-155 
frequency spectrum 101, 133-137, 

143-144, 204, 212, 522-523 
Fresnel 215 
friction 246, 393-394, 420 
Friedel oscillations 58 
fusion, see solid-liquid equilibrium, 

thermonuclear fusion 

Galaxy 431-432 
Galilean invariance 60-61, 170, 177, 341, 

350; 254, 262, 275, 301-309, 314, 
372-373, 382-386, 537 

galvanometer 230 
gamma function 464; 606 

Gamow peak 426, 429 
gap 97, 105, 121; see forbidden bands 
gas constant 323 
gaseous diffusion 347; 318 see effusion 
gases, see adsorption, Bose —, 

centrifuging, classical —, 
condensation, diatomic —, effusion, 
Fermi —, hydrodynamics, inert —, 
ionization, liquid-vapour equilibrium, 
monatomic fluids, perfect —, 
photon —, polyatomic —, 
quantum —, relativistic — 

gate 129 
gauge invariance, — transformation 20, 

56, 286; 139, 203, 210, 422 
Gaussian distribution, — noise, 

— variables 30, 97-98, 210, 229, 239, 
464; 148-150, 416, 606 

generating functions 99; see partition 
functions 

generators 61 
genetic code, — information 107, 136; 

352-353 
germanium 105, 115, 121 
g factor (or gyromagnetic ratio) 43-44 
Gibbs 5, 127, 156 
Gibbs-Duhem relation 219, 251, 271, 

306; 37, 301, 316, 475, 484, 495 
Gibbs ensemble 128, 226; 

see statistical — 
Gibbs paradox 127-128, 324, 358-359; 7, 

410 
Gibbs phase rule 272, 283 
Gibbs potential, see free enthalpy 
glass 7, 152, 204; 64, 230, 232, 240, 

539-542 
gluons 10 
glycerine 152 
Golden Rule 328; see transition 

probability 
Goldstone bosons 138-139, 158 
grand canonical distribution 

(or ensemble) 144, 146, 
167-169, 172, 187, 215, 220, 223-224; 
21, 24-25, 193-195, 213 

grand partition function 168, 170, 
207-209, 212, 218, 220, 319, 443; 
25-27, 302, 464-465, 467 
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grand potential 218-220, 258, 323, 
351-352, 397, 402; 30, 41, 94-95, 175, 
180, 183, 196, 504, 512 

graph, see diagrammatic expansion 
graphite 152; 64, 97, 142, 553 
Grassmann, see exterior algebra 
gravitational equilibrium 206, 245, 250, 

304-306; 13-14, 33, 54-55, 217, 
426-430, 490-499; see hydrostatic — 

gravity 192, 299, 301, 325, 421, 445; 307 
greenhouse, — effect 232, 238-240 
gregarity of bosons 7, 14, 44-45, 171, 

181-182; see Pauli principle 
ground state 308, 364; 35-37, 150 
group velocity 101, 135; see frequency 

spectrum 
growth of crystals 439-445, 448-453 
Guldberg and Waage, see mass action 

law 
gyromagnetic ratio, see g factor 

hadrons J 0-11 
Hall effect 120,421-423 
Hamilton equations 82; 101-102, 206, 

276 
Hamiltonian 58, 60-61, 73-74, 82, 255 
Hamiltonian, specific forms 83, 340, 350, 

367-368; 15, 20-21, 23, 62, 69, 117, 
130-131, 133-134, 145, 160, 195, 
207-208, 211 

Hamilton principle 81 
hardness 67, 569-570 
hard spheres 337, 345, 374-375, 386-387, 

562-563 
harmonic, see oscillators 
Hartree approximation 60, 69-73, 90, 95, 

109-110, 114, 183 
Hartree-Fock approximation 7J 
heat 35-36, 124-125, 190-191, 198-199, 

217, 243, 275; 307, 311, 313-315; see 
enthalpy, latent —, reaction —, 
thermal conduction 

heat baths, see thermostats 
heat capacity, see specific heats 
heat conduction, see thermal — 
heat death 129, 274 
heat exchanges 195-197, 259-260; 

245-246, 248-249, 425-431, 539-542; 

see energy partition, thermal contact, 
radiation exchanges 

heat flux, see fluxes, thermal conduction 
heating 224, 231-232, 239-240, 539-541 
heat pumps 276-277 
Heisenberg inequalities 58, 312; see 

complementarity 
Heisenberg model 427 
Heisenberg picture 60, 74, 77; 145, 211, 

276 
helicity 212, 214 
helium 151, 312; 4, 9-10, 12 
helium four 14, 43, 171-175, 179-189, 

195-200, 521-539 
helium three 204; 35, 171-179, 190, 400, 

516-521 
helium II, see helium four 
Helmholtz 188-189, 213; — potential, 

see free energy 
hemoglobin 387-390 
Henry law 443 
Hermitean conjugation 52 
Hermitean matrix, — operator 54, 56, 

66; 24 
Herschel 224 
heterojunction 122, 558-559 
hexafluoride, see isotope separation 
hidden variables 145, 148, 246, 382; 245, 

409-411, 414; see order parameters 
high densities 391-392; 33, 54-55, 59, 

488, 494, 502-503 
Hilbert paradox 348-349 
Hilbert spaces 50^52, 75, 77; 146, 213 
holes 331; 10, 38-39, 61, 98-99, 101-107, 

118-120, 122-128, 333, 354-355 
Hooke law 235, 284 
jy-theorem 126, 129; 398-403, 409 
Hubble constant 221 
hybridization 87-89, 97 
hydrodynamic description 334-335, 

408-411 
hydrodynamic entropy, see 

thermodynamic — 
hydrodynamic regime, see local 

equilibrium 
hydrodynamics 187, 247, 300-316, 

378-389, 571; see superfluidity 
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hydrodynamic velocity 335-336, 339, 
341; 243, 254, 301, 306, 312-313, 378, 
525-528, 534-538 

hydrogen 151, 245, 312, 378-382, 462; 
12, 116-117,174, 425-431, 604 

hydrogen chloride 151, 368-369; 460 
hydrostatic equilibrium, — pressure 147, 

305-306, 337; 55, 301, 303, 426-430, 
491, 495; see gravitational —, gravity 

hyperfine splitting 365 
hysteresis 271; 245; see metastability 

ice 443 
ideal gas, see perfect gas 
ideal measurements, see measurements 
ideal preparations, see preparations 
identical particles, see 

indistinguishability, Pauli principle 
illuminance 231 
impact parameter 336-337, 374 
impedance 300, 322-323, 417-419 
imperfections, see lattice — 
impulse 329; 252, 326 
impurities 105-112, 114-121, 291, 333, 

365; see doping 
impurity regime, see extrinsic — 
inaccessibility principle, see 

Caratheodory 
incandescent lamps 231, 542-552 
incomplete knowledge, — measurements, 

— preparations 20, 23, 50, 62, 65, 
120-121, 137-138; see contraction of 
the description 

incompressibility 484 
indicator method 99 
indifference principle 142, 155, 226, 248 
indirect effects 261, 263, 297-299, 313, 

316, 389; see Onsager relations 
indistinguishability 56, 206, 342, 

352-353; 2-14, 24, 46-51, 374, 459, 
461; see Pauli principle, symmetry of 
wavefunctions 

indistinguishability in the classical limit 
80, 85, 87-88, 359, 370, 378; 3; see 
Gibbs paradox 

induction, see electric displacement, 
magnetic field 

inert (or rare) gases 309, 313, 363-364; 
35, 56, 545 

information 101-140, 145, 149, 201, 
247-249, 358; 242-243, 284-286, 288, 
290, 335, 406, 414, 573 

infrared divergences 151 
infrared radiation 224, 230, 232, 238, 

240, 542; see radiation detectors, 
radiation exchanges 

inhomogeneous systems, see coexistence 
of phases, continuous media, interfaces 

input 322; see responses 
insufficient reason, see indifference 

principle 
insulators 61, 95-115, 141-142, 292-293, 

354, 559; see semiconductors 
intensive variables 29, 205, 212, 249-251; 

253-255, 271 
interactions 158, 310-311, 352, 391-448; 

59-61, 174, 183-184, 210-211, 
224-225, 244-245, 283-284, 335, 341, 
377, 464, 521 

interband coupling 100, 113, 118, 
195-200, 214-215 

interfaces 245, 299-301, 421, 440-442; 
148, 267; see junction, surface charge, 
surface of crystals 

internal degrees of freedom 78, 350-351; 
see electrons in molecules, rotations 
of —, vibrations of — 

internal energy 22, 90, 188-189, 196-197, 
213, 220, 244, 288, 294; 233-234 

internal energy of classical fluids 324, 
354, 398, 401, 413; 301, 306-307, 
310-313 

internal energy of quantum gases 27, 29, 
36, 41-42, 47-49, 71-73, 95, 139-140, 
147, 216 

internal partition function 350-353, 
373-374, 376 

International System of Units (SI) 462; 
604 

interstitial defects, see point defects 
intrinsic regime, — semiconductors 115, 

119-120 
invariance laws 7, 60-61, 111, 122, 350, 

375, 425-426, 429; 138-139, 242, 
261-265, 271, 273-276, 385, 572; see 
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broken invariances, conservation laws, 
Galilean invariance, 

rotations, shift of energy origin, 
symmetries, translations 

inversion temperature 407 
iodine lamps 231, 544-545, 548-551 
ionic crystals 93 
ionization 309, 313, 353, 386-387; 35, 

220, 489-491, 493-494, 500; see 
plasmas 

ions 33, 92-93, 107, 112, 352; see 
chemical equilibrium, solutions 

iron 151; 159, 162, 170, 230, 563-570 
irreversibility 4, 119-120, 122, 125, 

197-198, 201-202, 259, 276; 242, 267, 
286, 290, 315, 329-330; see 
dissipation, thermalization 

irreversibility paradox 128-131, 135, 149; 
242-243, 332, 402-414 

irreversible processes 7, 245, 276-277, 
358, 385, 406; 266; see kinetic theory, 
relax;ation, thermodynamics, transport 

Ising model 301, 392, 426-437; 67 
islands, see surface of crystals 
isobaric-isothermal ensemble 171, 214, 

220, 232-233; 482, 486 
isobars 419 
isolated systems 73, 118, 147, 187, 

244-246; 248; see closed —, open — 
isothermal transformations, see 

thermostats 
isotherms 298-299, 415; 463-464, 

467-468, 472-477 
isotopes 396; 8-9, 11, 56; see helium 
isotope separation by effusion 327-328, 

347-348, 383-385; 318-321 
isotope separation by thermal diifusion 

389 
isotope separation by ultracentrifuging 

326,338-342 

Jacobians 83, 261-263 
jet 318-319, 328 
Josephson effect 189 
Joule 188-189 
Joule effect 105, 138, 298-299, 329, 364, 

368-369, 545 

Joule expansion, — law 263, 324, 346, 
354,401; 177 

Joule-Thomson expansion 264, 406-408 
junction 189; see interfaces, p-n junction, 

thermoelectric effects, Volta effect 
junction characteristic 126-127 
junction transistor 126-129 

Kamerlingh Onnes 189 
Kappler experiment 228-229, 239 
kelvin 36, see Thomson 
kets 50, 57, 62, 66; see micro-states 
kinetic energy 318, 334; 307 
kinetic pressure 328-330; 217, 234, 303 
kinetic theory 5, 125-127, 307-308, 

326-336, 345-347; 125-126, 221-222, 
331-432, 543, 545, 547, 550-551 

kink, see growth of crystals 
Kirchhoff law 227-232, 239-240 
knowledge, see information, 

measurements, relevant entropy 
Knudsen regime, see ballistic — 
Kolmogorov entropy 135 
Kramers-Chandrasekhar equation 

391-395 
Kramers-Kronig relation 325, 329 
Kubo relation 323, 328-329 

labelling of particles, see anonymity 
of —, indistinguishability 

lack of information, see information 
Lagrangian 81-82, 255, 339-342; 

144-145, 274-276, 281 
Lagrangian description 247 
Lagrangian multipliers 152-156, 

159-160, 184, 187-188, 250, 341; 283, 
378, 395-396, 399, 445, 533-534 

lambda point 185, 521, 537; see Bose 
condensation 

Lambert law 222, 226, 230 
lamps, see lighting 
Landau 7, 50, 63 
Landau diamagnetism 40, 503-508 
Landau model for helium four 185, 188, 

200, 521-539 
Landau theory of Fermi liquids 176 
Landau theory of phase transitions 

299-304, 426; 161, 168, 460 
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Landau-Uhlenbeck equation 400-401, 
404 

Lande factor, see g factor 
Langevin 391 
Langevin paramagnetism 48, 176 
Langmuir isotherms 175; 330 
language, see communication theory 
Laplace 142, 325 
large numbers, 8-10, 23, 30, 128, 149, 

236-238 
large systems, — volumes 225-226; 

27-50, 205; see extensivity 
Larmor frequency, — precession 42, 

95-97; 249, 412-414 
lasers 14, 227, 424-425 
latent heat 272-273; 482, 484-485; see 

melting —, vaporization — 
lattice 59-60, 63, 74, 86; see crystal 

structures 
lattice gas 413, 426; 463-480 
lattice imperfections 91, 104-107, 291, 

333, 364-365; see defects, impurities, 
phonons 

lattice temperature 47, 150-151, 185 
lattice vibrations 60-61, 64, 68, 106-107, 

129-136, 174, 178-179, 485, 487-488, 
500-501, 516-518; see phonons 

Laws of thermodynamics 182; see 
Zeroth, First, Second, and Third Law 

layer, see boundary —, films 
least action principle, see action 
least bias, see bias 
Le Chatelier-Braun principle 267-268 
Le Chatelier principle 266-267, 283 
Legendre transformation 160-161, 

208-209, 211, 213, 218, 253-255 
leptons 10, 236 
level density 25-26, 166, 169, 206-207, 

210, 446-448; see single-particle 
density of states 

levels of description 332, 334-335, 
409-410; see contraction of the 
description 

light, see radiation 
lighting 224, 231-232, 542-552 
limiting mass, see Chandrasekhar limit 
Linde 408 
Lindemann criterion 136, 500-501 

linear expansion 232, 235; 437 
linear regime 256, 258, 266, 290, 321-323 
linear responses, see responses 
linear transformations 52 
Liouville equation 84, 88-89; 404 
Liouville representations of quantum 

mechanics 53-54, 77, 87-88; 286-289 
Liouville theorem 83-84, 91, 122; 232, 

338 
Liouville-von Neumann equation 73-74; 

285-287, 323 
liquefaction, see liquid-vapour 

equilibrium 
liquids 312, 393-397; 281, 300; see fluids, 

helium, hydrodynamics, solid-liquid 
equilibrium, solutions 

liquid nitrogen trap 344-345 
liquid-vapour equilibrium 269, 299-302, 

391-392, 395, 408-426; 236-237, 
463-480; see interfaces, solutions 

local chemical potential 243, 247, 
253-254, 294-299, 301-302, 341, 378 

local densities 251-255, 267, 271, 273, 
334, 344, 358-359, 377, 425; see energy 
density, momentum —, particle — 

local equilibrium 331-336, 347; 244-246, 
248, 253, 272, 281, 289^290, 321-322, 
325, 340-345, 354-355, 377-378, 380, 
385, 393, 403, 408, 425 

local temperature 201; 243, 253, 297, 
306, 341, 378, 425 

local velocity, see hydrodynamic velocity 
longitudinal modes 135, 137, 419 
long-range interactions 205-206, 433; 

252, 279 
long-range order 302-304; 65, 198-200; 

see broken invariances, critical 
phenomena, order parameters 

Lorentz 34, 334 
Lorentz force 82; 211 
Lorentz model 332-364, 390, 400, 

417-423, 425, 427, 562-563 
Loschmidt 128 
low densities 32-33; see ballistic regime, 

classical limit, ionization, molecules, 
perfect gas 
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low temperatures 35-43, 59, 238-239; see 
cooling, helium, refrigerators, 
superconductivity 

lumen, lux, see luminous flux 
luminance 226-229 
luminescence 231 
luminosity 425-432, 498-499 
luminous flux, — intensity 231, 533-546, 

548 

macromolecules, see polymers 
macroscopic balance 275, 277; 202, 

227-233, 237-240, 249, 266-269, 295, 
318-321, 543, 549; see conservation 
laws 

macroscopic data (or — variables) 
142-144, 146-152, 182, 222, 243; 
282-285, 409-411; see contraction of 
the description 

macroscopic entropy, see 
thermodynamic — 

macro-state 20-21, 63-70, 79-81, 113; 
17; see Boltzmann-Gibbs distribution, 
density in phase, density operator 

magic numbers 11 
magnetic dipole, — moment 17-19, 43, 

170, 192, 294; 12, 211; see 
magnetization 

magnetic energy, — work 35, 250, 
292-295 

magnetic field H, or B, — induction B 
17, 43, 170, 285-286, 292-295; 
202-204, 421-422, 503, 520 

magnetic resonance 41-43, 150; 248-249; 
see relaxation, spin echo 

magnetic susceptibility 16, 18, 173, 
302-303, 428, 432; 51-52, 161, 166, 
435, 504, 506, 513 

magnetism 16, 49, 176, 204, 234, 
285-286, 292-295; 90, 189, 261; see 
dia-, para-, and ferromagnetism. 
Landau diamagnetism 

magnetization 16, 38-39, 285-286, 
292-295, 302-303, 427, 430, 432; 161, 
164, 166, 244, 413, 434, 505, 507-508 

magneton, see Bohr — 
magnetostatic equilibrium 147, 170; see 

magnetism 

magnon 139 
majority carriers 120, 125-126, 128, 

421-422 
many-body theory 7; 22, 61, 172 
marginal energy 217; see chemical 

potential 
Mariotte 322 
markers, see radioelements 
Markovian process 286, 416-417, 567 
martensite transition 515-516, 568-570 
mass action law 362, 381, 442-445; 119 
mass current 304, 379 
mass density 305-306; 306, 491-492, 

494-497; see hydrostatic equilibrium 
Massieu functions 211-213, 220-221, 

227, 256, 296 
mass-luminosity relation 426, 429 
mathematics 2, 134-135; 606, 607 
matrices, see density operator, 

observables, operators, tensors 
maximum of Massieu function 

256-258; see variational methods 
maximum of statistical entropy 114, 134, 

141-152, 156-158, 171, 186, 222, 
225-226, 246-249; 245, 282-285, 335, 
395-396; see disorder 

maximum of thermostatic entropy 
243-248, 251, 264-274, 279, 305, 361; 
488; see Second Law 

Maxwell 5, 125-126, 326, 335-336 
Maxwell construction 272, 298, 423-424; 

467-468, 474-477 
Maxwell demon 130-134, 249 
Maxwell distribution 155, 313-322, 

396-397; 32, 221, 341, 344, 364, 
366-367, 378, 399-400 

Maxwell equations 285-286; 114-115, 
202-203, 205, 211-213 

Maxwell relations 260-261 
Mayer 188-189 
Mayer relation 324-325, 354 
mean field, see effective field, Hartree 

approximation, self-consistent 
potential, variational methods 

mean free path 331-336; 336, 342, 350, 
427, 545, 548 

mean square, see fluctuations 
mean value 226; see expectation — 
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measurements 57-58, 62, 68, 70-73, 111, 
119-122,132, 230; 151 

mechanical equivalents 463; 605 
mechanics 575; see classical —, evolution 
Meissner effect 189 
melting 543, 547; see solid-liquid 

equilibrium, Lindemann criterion 
melting heat 248, 446 
memory 248, 285-286, 288-290, 300, 

308, 321-323, 329-330, 342-343, 345, 
406, 409-410, 414, 418 

Mendeleev 7; see periodic table 
mesons 11 
mesoscopic description 243, 284-286, 

334-335, 395 
message, see communication theory 
metallic brightness 34 
metallic films, see films 
metals 33-34, 39-40, 43, 51, 58, 61, 

91-96, 102, 106-108, 112, 114, 142, 
159-170, 293, 296, 357-369, 503-516 

metastability 150-152, 246, 271, 
380-382, 421-423, 437-440, 448; 66, 
244, 410, 447-448, 451, 467-468, 474, 
478-479, 515-516, 568-570 

microcanonical distribution 
(or — ensemble) 22, 28-29, 97, 140, 
143, 147, 169, 172, 185-186, 220, 
225, 233, 321-322; 154-155 

microcanonical partition function 169, 
211, 220; see level density 

microelectronics 331; 122, 332, 417 
microreversibility (or detailed balance 

principle) 227, 229, 339, 366, 372, 405, 
423-424 

microscopic balance 8, 91, 326-327, 330, 
332, 334; 221-223, 242, 331-332, 
338-340, 554, 567; see collision term, 
conservation laws, kinetic theory 

micro-states 20-21, 24, 57, 63-64, 78, 
113; 5-7, 15-20, 69, 206, 213 

migration, see diffusion, electrophoresis 
miniaturization, see microelectronics 
minimum of thermodynamic potentials 

257-258, 409, 411, 421-422; 493, 
514-515; see variational methods 

minority carriers 120, 125-126, 128 
MIS diode 559 

missing information, see information 
mixing entropy 106, 246, 357-359, 

383-385 
mixtures 81, 127-128, 139, 148, 151, 215, 

217, 244-245, 249, 357-363, 381, 426; 
313, 388-393; see isotope separation, 
solutions, statistical mixture 

mobility 91, 106-107, 120, 293-295, 
352-353,417 

mode density, see single-particle density 
of states 

models 14, 45; 572-573, 575 
moderator 368, 553 
modes 16, 131, 134-137, 143^144, 

202-204, 206, 209, 212-215, 522; see 
single-particle states 

modulus, see elasticity 
mole 279 
molecular beams (or jets) 318-319, 328 
molecular effusion, see effusion 
molecular field 412; see variational 

methods 
molecular gases 309, 349-390; 460-461 
molecules 366-369; 4, 9-10, 12, 62-64, 

97, 174; see chemical equilibrium 
moment of inertia 171, 342, 374, 376; 461 
momentum 170, 177, 315, 340-342; 76, 

79-80, 131-133, 137, 146, 207, 212, 
214, 217, 422, 525-527, 533-537; see 
conjugate momenta 

momentum conservation 61; 273, 275, 
277-278, 306-307, 371-372, 376-377, 
380; see conservation laws 

momentum current density, — flux, see 
fluxes, stress tensor 

momentum density 277, 301, 304 
momentum operator 56, 61; 75, 209, 214; 

see translations 
momentum transfer 335-336; 245-248, 

252, 260, 525-526; see stress tensor 
monatomic fluids 309, 363-365, 393-394; 

463, 545 
MOSFET 129, 559 
motion, see evolution 
motors 61, 571 
multiple bands 86-89, 97, 170 
multiplicity, see degeneracy 
multipliers, see Lagrangian — 
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myoglobin 390 

Nakajima-Zwanzig method, see 
projection method 

natural uranium, see isotope separation 
natural variables 210-212, 214, 254 
Navier-Stokes equation 247, 258, 313 
negative temperatures 37, 46-47,185 
negentropy 133, 275; see information 
Nernst 131-132; see Third Law 
neutrino 10-11, 235-237, 492 
neutron 8, 11-12, 65, 143, 523 
neutron stars 206, 305; 14, 35, 37, 54-56, 

499 
neutron transport 250, 260, 291, 333, 

337, 369-371, 552-558 
Newton 215 
Newtoniaji fluids, — viscosity 336; 247, 

260, 308, 311-312 
Newton law 144, 306 
nickel 162, 170 
nitrogen 344-345, 378; 4, 8-11, 238-239 
Noether theorem 274-275, 278, 280 
noise 107, 230, 238; 148-150, 323, 329; 

see random evolution 
non-equilibrium processes, see 

irreversible processes, relaxation, 
thermodynamics, transport 

non-equilibrium statistical mechanics 
273-290, 321-330, 331-432 

non-linearity 286, 406 
normal conditions 308, 463; 605 
normal coordinates, — modes, 

see modes 
normal fluid 527-528 
n-type semiconductors 116-118 
nuclear energy 572; see isotope 

separation, stars, — reactors 
nuclear magnetism 150-151, 364; 

178-179; see magnetic resonance 
nuclear reactions 151, 306; 369, 426, 492, 

498, 552 
nuclear reactors 260, 291, 333, 369-371, 

552-558 
nuclear structures 3, 171, 375, 412; 9, 

11-12, 16, 35, 184, 190, 400 
nucleation 423 
nucleus, see neutron, proton 

number of states 30, 87, 90; see 
single-particle density of states 

Nyquist theorem 323, 329 

observables 56-57, 75-77; 3, 20-24, 
206-210 

occupation factor, see Bose —, Fermi — 
occupation numbers 17-20, 22, 69, 137, 

146, 151, 213, 215, 530 
Ohm law 258, 293, 296, 347, 351, 417 
one-dimensional models 231-235, 

435-437 
one-particle density, see reduced 

densities 
one-particle states, see single-particle — 
Onsager 7, 392; 264 
Onsager relations 263-265, 272, 293, 

299, 308, 310, 324, 348, 385, 389, 405, 
421-422 

opacity 427-428 
opalescence 227, 304 
open systems 127, 156, 167, 187-188, 

319; 247, 254; see closed —, 
isolated — 

operators 52-56; 20-24; see 
annihilation —, field — 

optical phonons 135-136, 158-159 
optics 1; 67, 90, 104, 215 
orbital magnetism 20, 43, 47; 503 
orbitals 79, 86-90, 93, 97; see 

shell model 
order parameters 301-304, 425-426; 186, 

197-200, 411, 454-456, 458-460, 565; 
see broken invariances 

orthohydrogen 379; 247 
orthonormality 51, 53, 64; 79, 204 
oscillators 131, 140, 177-178, 229, 237, 

370-372; 45, 47, 144-145, 148-150, 
205-208, 213-214, 505, 523-524, 530; 
see anharmonicity, lattice vibrations, 
modes, phonons, photons, vibrations 
of molecules 

osmosis 147, 216, 245, 278-279; 246, 260; 
see solutions 

osmotic pressure 278, 442, 444 
Otto cycle 277 
output 322; see responses 
oxygen 312, 378; see hemoglobin 
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packing 64 
pair creation 354-357 
pairing, see Cooper pairs 
paradoxes 127-131 
parahydrogen 379; 247 
paramagnetism 15-48, 95-97, 175-176, 

185, 204, 427, 432; 38-39, 161, 166, 
412, 434-435; see magnetic resonance, 
Pauli paramagnetism 

parity 60; 88, 261-263, 309-310 
partial densities, — pressures 357, 361 
particle conservation 60, 244-246; 

196-200, 274, 276, 376-377, 380 
particle density 90, 299-301, 316, 320, 

325, 337-340, 410, 417, 420, 440-441; 
23, 69-70, 107-114, 276, 291, 295, 301 

particle exchanges, — transfer 187-188, 
215-217, 244-246, 271, 278-283; 
245-248; see chemical equilibrium, 
— reactions, diffusion, effusion, fluxes, 
osmosis, p-n junction 

particle-field complementarity 151-152, 
211-215 

particle flux 276, 308; see effusion 
particle-hole symmetry 38-39, 98-99, 

118-119, 164, 513 
particle number 60, 76, 93, 167-168, 357, 

359-362; see chemical potentials, 
conservation laws, probabilities 

particle number in quantum gases 20-23, 
27, 29-30, 41-42, 44-45, 97-99, 103, 
119-120, 137, 155-156, 180-183, 
196-200, 208, 215-216 

particle physics 3; 10-11, 22, 139, 215, 
574 

particles, identical, see 
indistinguishability, Pauli principle 

partition, see energy —, particle 
exchanges 

partition functions 158-165, 212, 
220-221, 433-435; 271, 302, 452; see 
canonical, classical, grand canonical, 
internal, and microcanonical partition 
functions 

passive transformations 60; 262, 300 
Pauli 7-8 
Pauli matrices 94 

Pauli paramagnetism 34, 40, 51-52, 
94-95, 161, 166, 505-507 

Pauli principle 61, 78, 352-353, 379; 
2-14, 24, 35-37, 46-51, 136, 160, 
171-173, 175, 183-184, 190, 359; see 
bosons, fermions, indistinguishability, 
symmetry of wavefunctions 

Peltier efi"ect 264, 299-300 
perfect fluid 312-313, 380 
perfect (or ideal) gas 80, 296-297, 

307-348; 31-32, 56, 341, 371-388, 
396-397, 409, 469; see classical fluids 

periodic boundary conditions 16, 28, 
75-76, 79-80, 83, 132, 182, 209, 510 

periodicity 59-63, 322; see band theory, 
crystal structures, Fourier 
transformation, oscillators, phonons, 
resonance 

periodic table 11, 115 
permeability coefficient 260 
permittivity, see dielectric constant 
permutation of particles, see Pauli 

principle 
Perrin 5, 337-338; 391 
perturbation expansions 397-405; 321 
petit canonical —, see canonical — 
phase density, see density in phase 
phase diagram 272, 419-420, 422; 65-66, 

172-173, 178, 184, 446, 480-488, 
501-502,516-517,521 

phase equilibria 7, 127, 152, 158, 216, 
222-223, 269-273, 283, 301-304, 319, 
391-392, 425-448; 65-66, 183-186, 
575; see alloys, ferroelectricity, 
ferromagnetism, liquid-vapour 
equilibrium, metastability, solid-liquid 
equilibrium, sublimation 

phase separation, see coexistence of 

phases 
phase space 78-84, 89-91, 122-123 
phase transitions, see — equilibria 
phonons 43, 61, 107, 129-143, 145-152, 

158-159, 174-175, 185, 200, 211-212, 
333, 365, 368, 522, 524; see Landau 
model for helium four, lattice 
vibrations 

photocell 125, 356-357 
photoconductivity 121, 356 
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photocopier 121 
photoelectricity 40, 121, 212 
photometry 226, 231, 546, 604-605 
photon gas 216, 347; 16, 43, 45, 215-216, 

223, 235 
photons 8, 10, 14, 21-23, 30, 104, 136, 

139, 202, 208, 211-215, 423-429 
photovoltaic effect 125 
physical constants 462-463; 604-605 
piezoelectricity 261, 263 
Planck 6, 131; 224 
Planck constant 53, 79, 84, 357, 462; 604 
Planck-de Broglie relation 212 
Planck law 140, 177-178; 218-224, 

230-231, 423-424, 548 
Planck length 3 
planets 304-306, 317; 237-238 
plane waves 15-16, 79-80, 188 
plasmas, 309, 386; 13, 112, 114, 122, 425, 

499-503; see ionization, stars, white 
dwarfs 

plutonium 370 
p-n junction 122-129, 156-157, 356-357 
Poincare 128, 134 
point defects 67, 154-155, 438, 482 
point particles 308-309, 350, 393 
Poisson bracket 84, 88-89 
Poisson distribution 98, 238 
Poisson equation 111-112, 559 
Poisson summation formula 464; 606 
polarization of dielectrics 285-291; 

108-110, 112-114, 354, 457-460 
polarization of spins 94-97; 79, 520-521; 

see magnetization 
polarization of steel 565 
polarization of wave 137, 204, 209-210, 

212, 217 
polyatomic gases, — molecules 309, 

366-368, 372-374; 460-461 
polymers 7, 231-235; 63, 352-353, 

436-437 
polymorphy, see diamond, graphite, steel 
Pomeranchuk cooling 178-179, 520 
porous wall, see Darcy law, effusion 
position variables 191-192, 250, 291, 

292; 321; see conjugate variables in 
thermostatics 

positive operator 54, 67; 383 

positivism 127 
potential, see chemical —, electric —, 

gravitational equilibrium, Massieu —, 
thermodynamic —, vector — 

power 275-276; see radiation exchanges 
Poynting vector 207, 214, 275-276 
precession, see Larmor — 
preparations 57-58, 63; see 

measurements, wavepacket reduction 
pressure 171, 213, 219, 305-306; 30, 197, 

233-234, 282, 303; see equations of 
state, kinetic —, osmotic —, stress 
tensor 

pressure of classical fluids 337, 357; 303, 
304; see kinetic — 

pressure of Fermi gases 37, 42, 54, 427, 
430-431, 489-490, 501-502, 517-520 

prior measure 111, 122 
probabilities 20-22, 49-50, 68, 72, 75, 

102-103, 113, 126-128,191, 221, 
228-230; 407-408; see assignment 
of —, statistics 

probability distributions: for a field 
147-152; for an oscillator 228-229; 
148-150; for energy 29-30, 166, 210, 
447-448; for macroscopic variables 
227-228; for momentum or velocity 
315-319; for particle number 93, 
98-99, 168; 26; for subsystems 
224-226 

projection 55-56, 58, 66; 384 
projection method 286-290, 335, 345, 

395 
proton 8, 11; see hydrogen 
p-type semiconductors 118-119 
pulsars 54 
pure states 20, 57-58, 63, 66, 94, 114, 

137 
pyrometer 223 

quantization 56, 58, 72; 19-20, 131-134, 
136-138, 145-146, 202, 205-206, 
208-211; see oscillators, phonons, 
photons 

quantum entropy 111-122, 131-132, 139, 
226 

quantum fields, see field operators 
quantum fluids 171-175, 187-188, 516, 

521 



Subject Index 597 

quantum gases 1-58 
quantum mechanics 49-78, 131-132, 

309-310, 312, 324, 351, 375-382; 1-14, 
188, 201, 224; see measurements 

quantum numbers, see micro-states, 
modes, second quantization, 
single-particle states, spectra 

quarks 10-11 
quartz 263, 544 
quasi-crystals 7; 64 
quasi-equilibrium 320; 244-245, 258; see 

local equilibrium, metastability 
quasi-momentum 76-81, 84-87, 98, 

100-101, 133-134, 136-137 
quasi-particles 2, 10, 60-61, 67, 70-73, 

99-103, 137-139, 176, 185, 200, 214, 
522-527, 530 

quasi-static processes 198, 245; see 
adiabatic —, irreversibility 

quenching 20, 44; 487, 568-569; see 
freezing in 

radiance, see luminance 
radiated power, see Poynting vector 
radiation 21-23, 43, 201-215; see 

black-body —, oscillators, radiative 
equilibrium, stars 

radiation detectors 121, 125, 230 
radiation exchanges 201-202, 221-233, 

237-240, 246, 275-276, 425-431, 492, 
498, 539-543 

radiation pressure 217, 227 
radiative equilibrium 131; 202, 215-221, 

233-237, 423-424 
radiators 231 
radioactivity, see beta decay, nuclear 

reactions 
radioelements 352, 416 
random evolution, — walk 62, 74, 95, 

118, 128; 368, 394, 405, 413, 416, 
566-567; see chaotic dynamics 

random variables 68, 76-77, 79; see 
probabilities 

Rankine 188 
Raoult laws 442^444 
rare gases, see inert gases 
ratio of specific heats 324-325 
Rayleigh 6; 223-224 

Rayleigh-Jeans law 223 
reaction heat 283, 362-363 
reaction speed 250; see chemical flux 
reactive mixtures, — systems, see 

chemical equilibrium, — reactions, 
nuclear reactions 

reactor, see nuclear energy 
reciprocal effects, see Onsager relations 
recoil 364-365, 369-370, 390 
recombination 125-126, 257, 354-357 
rectifers 40, 125-127 
recurrence time 128-129 
red cells 278; see hemoglobin 
reduced densities 89-93, 315-316, 

320-321, 339, 396; 276-281, 334-336, 
338-345, 348-349, 355, 358-359, 368, 
371, 374-378, 395-397, 404-407 

reduced description, see contraction of 
the — 

reduction, see wavepacket — 
reductionism 574-575 
redundancy 107 
reflection, reflectivity 225-229, 232, 239, 

540-542, 557 
refrigerators 248, 276-277; 300; see 

adiabatic demagnetization, cooling, 
freezing mixture, Joule-Thomson 
expansion, low temperatures, 
Pomeranchuk cooling 

regime, see ballistic —, extrinsic —, 
forced —, intrinsic —, local 
equilibrium, relaxation, saturation —, 
stationary —, transient —, transport 

relative entropy, see relevant — 
relative temperature 33, 183-187; see 

Zeroth Law 
relativistic gases 342; 30, 211-213, 

235-236, 489-490, 494, 496 
relaxation 95-97, 148-150; 248, 259, 272, 

323, 326, 329-330, 343-344, 355, 380, 
395, 403-404, 411-414, 420, 564-570; 
see thermalization 

relaxation time approximation 387-388 
relevant entropy (or relative —) 

129-130, 137-139, 247-248; 243, 
282-285, 290, 332, 335-336, 397, 
408-410, 413-414 

relevant variables, see macroscopic data 
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renormalization 150 
repeatability 72-73 
reservoirs, see sources 
resistance thermometer 121 
resistivity, see electrical conductivity 
resolvent kernel 288 
resonance 83, 248-249, 322-323, 326, 

328-330 
response coefficients 255-265, 267, 269, 

271-272, 290, 296, 300, 308-312, 344, 
347-348, 351, 361-363, 384-388 

responses in thermodynamics 335-336; 
243, 248, 256, 271, 380-381 

responses in thermostatics 173-174, 238, 
252-253, 261, 263-264,266-268, 
273-274, 432 

responses to time-dependent 
perturbations 248, 258, 300, 321-330, 
417-419 

retardation, see memory 
retarded response 321-322, 324 
reversibility, see irreversibility 
Richardson law 53 
rotational equilibrium 171, 325, 338-342 
rotations 61, 350, 425-426; 54, 88-89, 

130-131, 139, 187-188, 261-263, 273, 
275, 280-281, 307-309, 403; see 
invariance laws, angular momentum 

rotations of molecules 81, 369-370, 
373-377, 379; 460-462, 486 

rotons, see Landau model for helium four 
rubber 231-232; 436 
Rutherford scattering 426, 430 
Rydberg 462; 604 

Sackur-Tetrode formula 323, 356; 104, 
397 

saddle-point method 209-210, 236-238, 
321, 433-435; 193-194 

Saha equation 386-387 
saturated vapour 417-421; 438-439, 446, 

468, 477-480, 543-544, 547 
saturation curve 272, 419-420; 446, 468, 

478 
saturation of magnetization 38-39, 44, 

47 
saturation regime 120, 155-156 
scalar potential, see electric — 

scalars 262, 291, 309 
scattering 328; 65, 143, 225, 227-229, 

291, 332-333, 336-339, 361, 364-366, 
369-370, 372-373, 419-421, 425-426 

Schottky defect 154-155 
Schottky peak 365-366 
Schrodinger equation 58-59, 367-369, 

375-376; 7, 62, 69, 130, 212 
Schrodinger picture 59-60, 74; 145, 276 
screening 100, 107-112, 115, 117, 124, 

160 
screw dislocation 448 
second derivatives 252, 255, 260, 266 
Second Law 28, 124, 126, 130, 133, 185, 

189, 197-202, 243-246, 385; 227, 266, 
271-272 

second-order transition, see critical 
points, phase equilibria 

second quantization 19-24, 195, 199, 
214; see Fock representation 

Seebeck effect 264, 297-299 
segregation 67, 456; see coexistence of 

phases 
selenium 121 
self-consistent potential 411-412, 430, 

433; 70, 95, 109, 114-115, 296, 
494-497; see Hartree approximation, 
variational methods 

self diffusion 260, 313, 402 
self gravitation, see gravitational 

equilibrium 
semiconductor devices 121-122, 125-129, 

356-357, 417, 558-562, 571 
semiconductors 7, 217, 331; 61, 107, 

114-129, 155-157, 250, 257, 291, 296, 
333, 337, 342, 349-350, 353-357, 
362-369, 416, 421-422, 540 

semi-permeable membranes, see osmotic 
equilibrium 

separation, see coexistence of phases, 
isotope separation 

Shannon theorems 106-107; see 
communication theory 

shape memory 411 
shear, see deformations, viscosity 
shell model 11, 12, 16, 87-88, 184 
shift of energy origin 4, 93, 111, 150, 

208, 262, 294, 296 
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shift in equilibrium 190-197, 266-268; 
72-73 

shock wave 332, 378 
short memory, see memory 
shot noise 230, 238 
silicon 115, 122,417,559 
single-particle density, see reduced 

densities 
single-particle density of states 28-30, 

53, 74-75, 89-90, 92-93, 116, 139-140, 
142, 160, 205, 218, 363-364, 509-511, 
528-529 

single-particle states 5, 15-18, 21, 
212-215; see Hartree approximation, 
modes 

singlet 69, 379-380; 12-13, 434 
SI units 462; 604 
Slater determinant 6, 18-19 
small systems, see finite — 
Smoluchowski 130, 227 
Snoek effect 563-568 
sodium 87-88, 91-93, 230-231 
solar cell, see photocell 
solar energy, — radiation 125, 224, 230, 

232-233, 237-240, 356-357, 541-542, 
572 

solidification, see solid-liquid 
equilibrium 

solid-liquid equilibrium 425-426, 443; 
66, 130, 136, 172-173, 178-179, 
480-483, 486-488, 499-503, 516-521; 
see surface of crystals 

solids 7, 49, 283-284; 10, 59-170, 175, 
178-179 

solid-vapour equilibrium, see 
sublimation 

solutions 325, 396, 442-446; 107, 112, 
114, 354; see chemical equilibrium, 
diffusion, mixtures, osmosis 

solvent, see solutions 
Sommerfeld 34 
Sommerfeld formula 41, 52, 164-165, 169 
Soret effect 389 
sound 316, 325; 61, 135, 143, 147, 248, 

326; see phonons 
sources (or reservoirs) 195-197, 202, 

248-249, 274-277, 291; 246, 248-250, 

252, 267, 271, 307, 554; see exchanges, 
thermostats 

space reflection, see parity 
specific heat of helium 177, 184-185, 

191-192, 524-525, 531-533 
specific heats 39, 238-239, 252, 263, 266, 

268, 274, 302-303; 147, 437 
specific heats of gases 296-297, 324-325, 

354-355, 363-382; 461-462, 489 
specific heats of solids 428, 431; 42-43, 

61, 94, 104, 130, 139-143, 154-155, 
158, 161, 166-168, 456, 483, 487, 492, 
498, 513 

spectra 224; see band theory, energy 
spectrum, frequency —, level density, 
phonons, photons, Planck law, 
single-particle density of states 

spectral decomposition 58 
spectral lines 317, 343, 355 
speed, see frequency spectrum, velocity 
spherical harmonics 375, 379; see 

angular momentum 
spin 19, 65, 69, 94-97, 365, 369, 375, 

379-380, 437-438; 5-9, 11-13, 16, 48, 
86, 118, 159-160, 178-179, 354, 505; 
see Ising model, paramagnetism, Pauli 
paramagnetism 

spin echo 249, 332, 411-414 
spin of photon 210-212, 214 
spin temperature 35-37, 47, 150-151, 

185; 249 
spin wave 138 
spontaneous emission 423-425 
spontaneous magnetization, see broken 

invariances, ferromagnetism 
spontaneous polarization 459 
stability of equilibrium 264-268; see 

met as t ability 
stability of matter 205-207; 13, 498; see 

extensivity 
stability of nuclei 11-12 
stability of stationary state 426, 

429-430, 558 
stacking faults 67 
standard conditions, see normal — 
standard deviation, see fluctuations 
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stars 205-206, 304-306, 317; 13-14, 
216-217, 221, 230, 425-432, 499; see 
ionization, neutron stars, white dwarfs 

states, see density in phase, density 
matrix, macro-state, state vectors 

state vectors, see kets, micro-states, pure 
states, single-particle states 

stationary phase, see saddle-point 
method 

stationary regime, — states 146-147, 
347-348, 406-408; 248, 429-430 

statistical ensembles 8, 20, 57, 63, 71, 75, 
128; see canonical ensembles 

statistical entropy 26-27, 30, 101-140, 
164, 199, 203-204, 225-226, 246-248; 
242, 406-407, 409-410, 566; see 
maximum of 

statistical mixture 63-70, 75-77, 94, 117 
statistics 5, 8-10, 57-58, 145, 149, 221, 

228-230, 307, 326; 284, 398, 572; see 
bosons, fermions, fluctuations, Pauli 
principle, probabilities 

steady states, see stationary — 
steam engines 277 
steel 563-570 
steepest descent, see saddle-point 

method 
Stefan-Boltzmann law, Stefan constant 

222-223, 428, 498, 545 
step on crystal face 439-445, 448-453 
Stern-Gerlach experiment 65 
stimulated emission 14, 227, 423-425 
Stirling formula 26, 237, 464; 606 
stochastic process, see random evolution 
stoicheiometric coefficients 250; see 

chemical equilibrium, — reactions 
Stokes law 338; see Navier-Stokes 

equation 
Stosszahlansatz 405 
strain, see deformations 
stress, — tensor 250, 284; 278, 281-282, 

303-310, 312, 315, 379, 384-386, 
514-516, 564-570; see deformations, 
elasticity 

string, see vibrating — 
strong interactions 10-11 
structureless particles, see point particles 
sub-additivity 105, 115-116 

sublimation 66, 437-453, 480-486, 
542-547 

subsystems 62, 68-72, 115-117, 137, 147, 
224-226; 270-271; see composite 
systems 

sulphur 95 
sum over states, see partition functions 
Sun 463; 605; see solar energy, stars 
superconductivity 7; 14, 22, 90, 138, 172, 

189-190 
supercooling 152, 271; see 

supersaturation 
superfluidity 14, 22, 171-172, 186-190, 

521, 525-528, 533-539, 573 
superheating 271, 422; 474, 478-479 
supernova 14, 54, 499 
superoperators 287-289 
superposition 57; 214 
superradiance 424 
supersaturation 422; 439-445, 447-453, 

474, 478-479 
superselection 57 
surface charge 108, 112, 123-124, 

156-157, 492, 497-498 
surface of crystals 65, 67, 437-453, 488 
surfaces, see interfaces 
surface tension 245, 299-301; 447 
surprisal 103 
susceptibility, see electric —, 

magnetic —, Pauli paramagnetism 
symmetries 7, 81, 284; 242, 244, 

261-263, 271-272, 385, 572; see 
broken —, conservation laws, crystal 
structures, invariance laws, parity 

symmetry number 81, 370, 381 
symmetry of wavefunctions 61, 87-88, 

352-353, 375, 379; 3-7, 9, 17; see 
Pauli principle 

synchrotron radiation 65 
Szilard 132 

television 40 
temperature, see absolute —, 

characteristic —, lattice —, local —, 
negative —, relative —, spin —, 
thermometry 

tempering {or quenching) 568-569 
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tension, see affinities, elasticity, 
surface — 

tensor product 51, 54; 5, 21 
tensors 44, 283-284; 257, 262-263, 309 
thermal baths, see thermostats 
thermal capacity, see specific heats 
thermal conduction, — conductivity 

332-336; 91, 187-188, 229, 238-239, 
259, 269-270, 291-293, 296, 307, 311, 
314-315, 350, 362-364, 379, 385-388, 
426-427, 430; see heat exchanges 

thermal contact 28-31, 183-187, 
201-202, 222, 245; 246; see energy 
partition, heat exchanges 

thermal death, see heat — 
thermal diffusion 261, 389 
thermal engines 171, 197, 235, 248, 

274-278 
thermal equilibrium 22-33, 147, 183-187 
thermal excitation 363-382, 385-386; 52, 

130, 142 
thermal expansion, see expansion 

coefficient, linear expansion 
thermal ionization, see Saha equation 
thermalization 355, 364-371, 390, 420 
thermal length 311-312, 351; 31, 34, 337 
thermal neutrons, see neutron transport 
thermal noise, see noise 
thermal pollution 275; see heat death 
thermionic effect 238; 34, 40, 52-53 
thermochemistry, see chemical 

equilibrium 
thermocouple 297-298 
thermodynamic entropy, 124-125; 242, 

253, 283, 332, 335, 397-398, 402, 
408-410, 413-414; see thermostatic 
entropy 

thermodynamic equilibrium, see 
equilibrium, thermostatics 

thermodynamic forces, see affinities 
thermodynamic identities 249-253; 272 
thermodynamic inequalities 265-266; 

266 
thermodynamic limit, see extensivity 
thermodynamic potentials 210-221, 256, 

288-296; 255, 271; see enthalpy, 
entropy, free energy, free enthalpy. 

grand potential, internal energy, 
Massieu functions 

thermodynamics 124-125, 241-243; 
241-272, 290-316, 330, 344, 575; see 
irreversible processes, thermostatics 

thermodynamic tensions, see affinities 
thermoelectric effects 264, 297-300 
thermoelectric power 297, 362-364 
thermomechanical effects 187-188, 293, 

313, 528, 538 
thermometry 18, 187, 317; 121, 223, 298 
thermonuclear fusion 151, 306; 425-426, 

503 
thermos flask, see dev/ar — 
thermostatic entropy 35-37, 132, 

197-201, 203-204, 210-211, 220, 
242-248; 242, 271; see maximum 
of , Second Law 

thermostatics 141, 146-152, 181-235, 
241-306; 242-245 

thermostats 32-33, 186-187, 195-197, 
214, 224-226, 257, 259; 249-250, 269, 
366-367, 393, 401-402 

Third Law (or Nernst principle) 36, 132, 
203-204, 273, 277, 356, 359, 364, 372, 
439; 43, 177, 185, 435, 517, 520 

Thomas-Fermi equation 111 
Thomson effect 300 
Thomson JJ 34 
Thomson scattering 425 
Thomson W, Lord Kelvin 125, 128, 197; 

264 
three K radiation 220, 235; see 

expansion of Universe 
tight binding 83-87, 92-93 
time reversal 4, 61; 242, 263-265, 286, 

404, 407, 411, 414; see irreversibility, 
microreversibility 

time scales 333; 245-246, 288-290, 331, 
335-336, 340-344, 348-349, 371, 406 

time translation 60; 273-274 
trace 55-56, 64, 66, 85, 87 
traction, see stress 
transfer matrix method 435-437 
tranfers, see exchanges 
transformations 60-61; 262 
transformers 571 
transient regime 343-344, 349 
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transistor 126-129, 342, 357, 559 
transition points, see critical — 
transitions, see phase equilibria 
transition probability 328, 340, 342, 372, 

376, 389 
translations 61, 170, 350, 426; 65, 74-76, 

80, 86, 88, 130-132,134, 138-139,171, 
273, 275, 278, 307; see invariance 
laws, momentum operator, 
quasi-momentum 

translations of molecules 78, 307, 
367-368, 371, 374, 377; 1-2 

transmission, transmittivity 225, 227, 
229-230, 240 

transport 331-336; 258, 269-270, 272, 
369-371, 425-430; see diffusion, 
electrical conduction, thermal —, 
viscosity 

transport coefficients, see response — 
transport equations, see responses in 

thermodynamics 
transverse modes 135, 137, 204, 209, 419 
trap 344-345 
trial state, see variational methods 
triple point 272; 184, 481, 485-487 
triplet 379-380; 12-13, 434 
truncation, see wavepacket reduction 
tubes, see thermionic effect 
tungsten 231, 542-552 
tunneling 426 

turbulence 286; see convection 
two-dimensional systems, see films, 

interfaces 
two-fluid model 527-528, 536 
two-level system 19, 95; 38-39 
two-particle reduced density 90-92, 

320-321, 396; 278-280, 404 
two-particle states 6-7, 18 

Uehling-Uhlenbeck collision term 
400-401 

ultracentrifuging 325-326, 338-342 
ultraviolet divergence 150-151, 208 
ultraviolet radiation 231, 238 
unbiased prediction, see bias 
uncertainty, see disorder, entropy, 

fluctuations, Heisenberg inequalities, 
information 

unification of sciences 1-4, 241-242, 330; 
241-242, 270-272, 574, 576 

unitary operators 54, 59-61, 73-74; 
75-76, 197-198 

units 462-463; 604-605 
universality 426 
Universe, see expansion of —, ionization, 

stars 
uranium, see isotope separation, nuclear 

reactors 
urn model 178-179 
Ursell-Yvon-Mayer expansion, see virial 

expansion 

vacancies 438, 445-446, 482-483, 
486-488; see point defects 

vacuum 17, 99, 103, 139, 150-151; see 
evacuation 

valence band 95-99, 118-119; see holes 
van der Waals equation 296-298, 

398-401, 405, 414; 473 
van't Hofflaw 362-363, 443 
vaporization, see liquid-vapour 

equilibrium, sublimation 
vaporization heat 418, 421; 468, 

479-480; see latent heat 
varactor (or variable-capacitance diode) 

129, 559 
variance 67; see fluctuations 
variational methods 156-158, 257, 

408-412, 421-422, 424, 427-432, 436, 
441; 22, 60, 66, 70-73, 160-163, 
196-200, 455-456, 466-467, 493-494 

vector potential 56, 82-83, 286, 294; 
203-204, 209, 211-213, 503 

vectors 262, 309 
velocity 170, 177, 315-318; 211-212, 422, 

523; see drift —, frequency spectrum, 
hydrodynamic —, probability 
distributions, sound 

vibrating string 143-152, 326 
vibrations in crystals, see lattice 

vibrations, phonons 
vibrations of molecules 369-370, 373, 

376-377; 485-486; see mode, 
oscillators 

video camera 121 
virial coefficients, — expansion 401-405, 

442 
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virial theorem 305-306, 401; 304 
viscosity 335-336, 338; 186-188, 260, 

312-313, 315, 386-388 
Vlasov equation 92 
Volta effect 216-217; 40, 122; see 

junction 
volume 171, 244-245 
volume viscosity 312, 386 
von Neumann 50, 63, 112, 132, 226 
von Neumann entropy, see quantum 

entropy 
vorticity 307-308, 535 

walls 311, 328-331; 203, 214, 525-526 
Wannier wavefunctions 78-80, 83-89, 93, 

97, 100-101,108, 113, 117-118, 160, 
355, 510 

wave equation, wavefunction 51, 62, 
375-376; 3-7, 9, 144, 187-188, 
212-213; see Bose condensation, plane 
waves, Schrodinger equation 

wavenumber, wavevector 133-136, 
143-144, 204, 212, 214, 522-523 

wavepacket reduction 58, 70-73, 
119-121, 138;151 

weak binding 79-83, 93 
weak interactions 10-11; see beta decay 

Weiss field 392, 412, 430; 198; see 
variational methods 

white dwarfs 206; 13-14, 35, 37, 
426-427, 430-432, 488-503 

Wick theorem 57, 199-200 
Wiedemann-Franz law 34, 350, 362, 364 
Wien law 219-220, 223-224 
Wigner representation or transform 

53-54, 87-89; 33, 56, 359 
Wilson theory 304 
windows 539-542 
wool 231-232 
work 125, 191-197, 214, 217, 223, 250, 

259, 275, 277, 383-385; 252, 276, 307, 
313, 315, 318-320, 380; see electric 
energy, magnetic energy 

X-rays 65, 568 

yield, see efficiency 
Young modulus, see elasticity 

Zermelo 128 
zeros of partition functions 424, 433-435 
zero-point motion 150-151, 174, 502 
Zeroth Law 183-188, 251 
zeta-function 465; 607 
Zustandssumme, see partition functions 



Units and Physical Constants 

We use the international system of units, the so-called SI system, which is adopted by most 
official international organizations. Its fundamental units are the metre (m), the kilogram (kg), 
the second (s), the ampere (A), the kelvin (K), the mole (mol), and the candela (cd). 

Derived SI units with special names are the radian (rad), the steradian (sr), the hertz (Hz 
= s^-'), the newton (N = m kg s^^), the pascal (Pa = Nm^^), the joule (J = Nm), the watt 
(W = J s - i ) , the coulomb (C = As), the volt (V = WA"! ) , the farad (F = CV"^), the ohm 
(n = V A - i ) , the Siemens (S = AV^^), the weber (Wb = Vs), the tesla (T = W b m ' ^ ) , the 
henry (H = Wb A~^), the Celsius temperature (°C), the lumen (Im — cdsr), the lux (Ix = 
Imm^^), the becquerel (Bq = s^^), the gray (Gy = Jkg^^), and the sievert (Sv = Jkg"'-). 

Prefixes used with SI units to indicate powers of 10 as factors are: deca (da = 10); hecto 
(h =10^); kilo (k = 10^); mega (M = lOS); giga (G = 10^); tera (T = 10"); peta (P = lO^^); 
exa (E = 10^*); deci (d = 10"^); centi (c = 10"^); milh (m = 10"^); micro (n = lO"**); nano 
(n = 10-8); pi(,Q (p ^ 10-12). £gjjĵ .Q (f ^ 10-15); atto (a = 10-^*). 

Constants for electromagnetic units 

velocity of light 

Planck's constant 

Dirac's constant 

Avogadro's number 

(Unified) atomic mass unit 
neutron and proton masses 
electron mass 

Elementary charge 
Faraday's constant 

Bohr magneton 

nuclear magneton 

£0 = 

c = 
c ~ 
h = 

h = 

JVA 

1 u = 
m„ 
m s 
e ~ 
NAB 

fJ'B -

eh 
2m„ 

- 47r X 10 '' N A 2 (definition of the ampere) 

: ~ , - T ^ ^ g x l O ^ N m2C-2 
/ iflC 47r£o 

299 792 458 m s-^ (definition of the metre) 
3 X 10*ms"! 
6.6260755 X 10-** J s 
— ~ 1.055 X 10-3* J s 
27r 

~ 6.022 X 10^3 mol-i (by definition the 
mass of one mole of ^^C is 12 g) 

= 1 g/iVA ^ 1.66 X 1 0 " " kg (or dalton or amu) 
- 1.0014 mp ~ 1.008 u 
1 u/1823 ~ 9.11 X 10-31 kg 
1.602 X 10-1" C 
~ 96 485 C m o l - i 

ph 
= ~ ~ 9.27 X 10-2* J T - i 

2m 
~ 5 X 10-2'' J T - i 

Fine structure constant 

Hydrogen atom: 

Bohr radius 

binding energy 

Rydberg constant 

a Ansohc 137 

Aivsoft 

m 

- 0.53 A 
„2 ^ 2 

2^^ \4:Tt£o 

~ 109 737cm-i 

13.6 eV 
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Boltzmann's constant 
molar gas constant 

Normal conditions: pressure 
temperature 

molar volume 

k ~ 1.381 X 10-23 J K- i 
R = N^k ~ 8.32 J K~i mol"! 
1 atm = 760 Ton = 1.01325x10^ Pa 
Triple point of water 273.16 K (definition of the kelvin) 

or 0.01°C (definition of the Celsius scale) 

Gravitational constant 
gravitational acceleration 

Stefan's constant 

Definition of photometric units 

Energy units and equivalents 

electric potential 
heat 
chemical binding 
temperature (kT) 
mass (mc^) 
wavenumber [hc/X) 

G 
9 

6.67 X 1 0 " " m^ kg-i s" 
9.81 m s-2 

TT^k* 
~ 5.67 X 10-* W m-2 K"* 

A 1 W luminous power, emitted at a frequency of 
540 THz, is equivalent to 683 Im 

1 erg = 10"'^ J (non SI) 
l k W h = 3.6xlO** J 
1 eV ^ 1.602 X 1 0 " " J ^ 11600 K 
1 cal = 4.184 J (non SI; specific heat of 1 g of water) 
23 kcal mol"i <-̂  1 eV (non SI) 
290 K <-> ^ eV (room temperature) 
9.11xl0"3^kg <-̂  0.511 MeV (electron rest mass) 
109 700 cm-i ^ 13.6 eV (Rydberg) 
3.3 X lOi'̂  Hz « 13.6 eV frequency (hv) 

It is useful to keep these equivalents handy for quickly finding orders of 
magnitude. 

Various non SI units 

Solar data 

1 angstrom (A) = 10 •̂ '' m (atomic scale) 
1 fermi (fm) = 10"-'^ m (nuclear scale) 
1 barn (b) = lO'^* m^ 
1 bar = 10^ Pa 
1 gauss (G) = 10-4 T 
1 nautical mile = 1852 m 
1 knot = 1 nautical mile per hour = 0.51 m s~^ 
1 astronomical unit (AU) ~ 1.5 x 10^^ m (Sun-Earth 

distance) 
1 parsec (pc) ~ 3.1 x lO^^m (1 AU/arc sec) 
1 light year (ly) ~ 0.95 x 10̂ ® m 

Radius 7 x 10* m = 109 Earth radii 
Mass 2 x 10^° kg 
Average density 1.4gcm-^ 
Luminosity 3.8 x 10̂ ** W 



A Few Useful Formulae 

Normalization of a Gaussian function: 

/ 

differentiation of this formula with respect to a gives us the moments of the Gaussian 
distribution. 

Euler's gamma-function: 
poo 

T{t) = / x ' - ^e -^dx = ( t - l ) r ( t - l ) , 
Jo 

mr{i-t) sin Trt 

Stirling's formula: 

r(i) = V^. 

t->CJCI 

Binomial series: 

n=0 

x" r ( t + 1 ) 
n! r(f + 1 - n) E -xY r{n-t) 

n\ T{-t) 
\x\ < 1. 

Poisson's formula 
+ 00 +CX> + 00 ^ + o T-L^J T i j k j -pui j ~_j_OQ 

E /(") = E /(2'̂ o = E / ^ /̂( 
_ t _ 7_ •/—OO 

Euler-Maclaurin formula: 

^ £ ^ ' dxfix) « l [ / ( a ) + / ( a + £ ) ] - ^ / ' ( x ) [ ^ % ^ / " ' ( a : ) + ... 

/(«+H + ^mr-^/"'(x) + ... 

this formula enables us to calculate the difference between an integral and a sum over n, 
when we put a = ne. 
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Constants: 

e :^ 2.718, n ~ 3.1416, 

7 = lim (l + h :̂  — In n) c^ 0.577 Euler's constant. 

Riemann's zeta-function: 

m 
1 f 

f 
Jo 

6=̂  + 1 

6 ^ - 1 

(i_2-*+i)r(t)CW 

r(t)CW, 

t 

c 

1.5 

2.612 

2 

1-' 
2.5 

1.341 

3 

1.202 

3.5 

1.127 

4 

^ - * 

5 

1.037 

Dirac's ^-function: 

27r 

^ e^""«/" = % m o d a ) = ^ % - na); 

sin tx ,. 1 — cos (a; ^, . 
Iim = lim r = no(x); 

t—too X i—»oo ia;-^ 

f{x)S{x) = mS{x), f{x)S'{x) = -f'{0)S{x) + fiO)S'{x) 

If f{x) = 0 in the points x = Xi, we have 




