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Nonuniversality in the spectral properties of time-reversal-invariant microwave
networks and quantum graphs
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We present experimental and numerical results for the long-range fluctuation properties in the spectra of
quantum graphs with chaotic classical dynamics and preserved time-reversal invariance. Such systems are
generally believed to provide an ideal basis for the experimental study of problems originating from the field of
quantum chaos and random matrix theory. Our objective is to demonstrate that this is true only for short-range
fluctuation properties in the spectra, whereas the observation of deviations in the long-range fluctuations is
typical for quantum graphs. This may be attributed to the unavoidable occurrence of short periodic orbits, which
explore only the individual bonds forming a graph and thus do not sense the chaoticity of its dynamics. In order
to corroborate our supposition, we performed numerous experimental and corresponding numerical studies of
long-range fluctuations in terms of the number variance and the power spectrum. Furthermore, we evaluated length
spectra and compared them to semiclassical ones obtained from the exact trace formula for quantum graphs.
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I. INTRODUCTION

Quantum graphs [1–4], networks of bonds connected at
vertices, have been used extensively for the experimental and
the theoretical study of closed and open quantum systems,
of which the corresponding classical dynamics is chaotic.
They were introduced by Linus Pauling to model organic
molecules [5] and since then used for the modeling of a
large variety of systems, a few examples being quantum wires
[6], optical waveguides [7], and mesoscopic quantum systems
[8,9]. In Ref. [10], the fluctuation properties in the eigenvalue
spectra of closed graphs with incommensurable bond lengths
were proven rigourously to be described by the Gaussian
ensembles (GEs) of random matrix theory (RMT) [11], in
accordance with the Bohigas-Gianonni-Schmit (BGS) conjec-
ture [12–14]. Moreover, graphs have the particular property
that the semiclassical trace formula for their spectral density
in terms of a sum over the associated periodic orbits is exact
[15]. Also, the correlation functions of scattering matrices
describing chaotic scattering on open graphs were shown
to coincide with the corresponding RMT results [16–20].
Therefore, we may expect that the fluctuation properties
in the spectra of classically chaotic quantum graphs with
time-reversal (T ) invariance, where T 2 = 1, and with violated
T invariance coincide with those of random matrices from
the Gaussian orthogonal ensemble (GOE) and the Gaussian
unitary ensemble (GUE), respectively, for the case T 2 = 1.
This has been shown numerically already in Ref. [2] and
also experimentally using microwave networks composed of
coaxial cables coupled by junctions at the vertices, which
simulate quantum graphs with a chaotic dynamics [21,22].
In the experiments of Refs. [23–27], evidence was provided
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based on the nearest-neighbor spacing distribution (NNSD).
Only recently, microwave networks were successfully used to
realize a system with an antiunitary symmetryT andT 2 = −1.
In these experiments [28], both the NNSD as a measure for
short-range spectral fluctuations and the spectral rigidity �3,
also known as Dyson-Mehta statistics [11], as a measure
for long-range spectral fluctuations were shown to coincide
with those of random matrices from the Gaussian symplectic
ensemble (GSE).

The �3 statistics has also been investigated in microwave
networks simulating T -invariant graphs [21,29] and recently
for graphs in which T invariance was violated [30]. In the
latter case, good agreement was found with an extended
RMT model applicable to incomplete spectra, whereas in
the T -invariant case the deviations observed in the statistical
measures for long-range spectral fluctuations could not be
fully explained. The objective of this article is an understand-
ing of the discrepancies between the RMT predictions for
incomplete and complete spectra and the experimental and the
corresponding numerical results, respectively, on the basis of
short periodic orbits [31,32]. For this, we analyzed long-range
spectral fluctuations in the spectra using the average power
spectrum [33–35], which is directly related to the spectral form
factor and the number variance [11]. They were demonstrated
to provide powerful tools for the identification of the effects
that lead to deviations from the GOE predictions [35].

A crucial requirement for the agreement of the fluctuation
properties in the eigenvalue spectra of quantum systems with
a classically chaotic dynamics with those of the eigenvalues
of random matrices from the conventional GEs is the com-
pleteness of the spectra [12,36]. Accordingly, the experimental
study of the spectral fluctuation properties might be tedious,
especially when using microwave networks in which absorp-
tion of microwave power is unavoidable. In order to overcome
the problems of absorption and to attain complete sequences of
several hundreds of eigenvalues, e.g., in experiments with flat,
cylindrical microwave resonators simulating quantum billiards
[37–41], the measurements, actually, had to be performed
with resonators that were superconducting at liquid-helium
temperature [42]. In experiments with microwave networks,
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generally not all, but close to 100% of the eigenvalues can be
found by proceeding as described, e.g., in the present article.

Missing levels or nonuniversal contributions, like from
the shortest periodic orbits [43,44], lead to especially large
deviations from the RMT predictions for long-range spec-
tral fluctuation properties. The number variance [11] and
the power spectrum [33–35] are particularly suited for the
discrimination between deviations caused by missing levels
and by nonuniversal effects. The former corresponds to a
two-level correlation function, whereas the latter is given in
terms of the spectral form factor, i.e., the Fourier transform
of the two-level cluster function [11]. Deviations from RMT
predictions become visible in the number variance at a few
level spacings and, accordingly, in the power spectrum at
short times. In order to identify their origin and to ensure
that they are intrinsic and not just of experimental nature
we, in addition, performed numerical simulations for the
quantum graphs corresponding to the microwave networks
used in the experiments. Accordingly, we had a larger set
of eigenfrequencies at hand than experimentally achievable
and thereby were able to unambiguously demonstrate that the
deviations from RMT predictions observed in the experiments
and the numerical simulations arise due to the presence of
short periodic orbits that are localized on the individual
bonds by reflection at the vertices terminating them. For
this we computed the exact trace formula [2]. Like in
Ref. [21], we compared it to length spectra obtained from
the eigenfrequencies of microwave networks with preserved
T invariance. Furthermore, we computed length spectra using
sequences of 2000 numerically obtained eigenfrequencies in
order to identify non-universal periodic orbits.

In Sec. II we will briefly review the salient properties of
microwave networks and quantum graphs. Then we will intro-
duce the experimental setup in Sec. III, and finally we present
the experimental and numerical results in Sec. IV and the
comparison of their length spectra with those computed from
the trace formula for quantum graphs in Sec. V. Furthermore,
in Sec. VI we compare the statistical measures obtained for the
experimentally and the numerically determined eigenvalues to
results derived for incomplete spectra based on RMT. The
results are then summarized in the conclusions.

II. MICROWAVE NETWORKS AND QUANTUM GRAPHS

Microwave networks are constructed from coaxial mi-
crowave cables that are coupled by junctions at the vertices.
Figure 1 shows a photograph of a network used in the
experiments presented in this article. It consists of six junctions
that are all connected with each other by coaxial cables. Thus,
they simulate fully connected quantum graphs. A coaxial cable
is composed of an inner and a concentric outer conductor. The
space between them is filled with some homogeneous material.
Below the cutoff frequency for the first transverse electric
(TE11) mode only the fundamental transverse electromagnetic
(TEM) mode can propagate between the conductors. The
geometry of a network of such cables is defined by the
connectivity matrix Cij , which equals zero if vertices i and j

are not connected and unity otherwise, and by the lengths Lij of
the coaxial cables connecting the latter. The one-dimensional
wave equation of the so-called Lecher waves propagating

FIG. 1. Photograph of a microwave network consisting of six
vertices that were all connected with each other. An ensemble of
30 such networks was created by changing the lengths of four
bonds using the phase shifters visible in the background. For the
measurement of the scattering matrix, the vector network analyzer
(VNA) was coupled to the network via a HP 85133-616 flexible
microwave cable as indicated in the inset.

between the inner and outer conductor along such a coax cable
is given in terms of the difference Uij (x) between the potentials
at the conductors’ surfaces,

d2

dx2
Uij (x) + ω2ε

c2
Uij (x) = 0, i < j. (1)

Here, the coordinate x varies along the coaxial cable from
x = 0 at vertex i to x = Lij at vertex j , ε is the dielectric
constant of the medium, ω = 2πν is the angular frequency
with ν the microwave frequency and c is the velocity of light.
Equation (1) is also called telegraph equation. It is applicable
to lossless coaxial cables. At each pair of connected vertices
i and j the potential difference Uij (x) obeys the continuity
equation

Uij (x = 0) = φi, Uij (x = Lij ) = φj , i < j, (2)

that is, all waves leaving or entering a vertex take there the same
value. Furthermore, the current is conserved at each vertex,

−
∑
j<i

Cij

d

dx
Uji(x = Lij ) +

∑
j>i

Cij

d

dx
Uij (x = 0) = 0. (3)

The wave Eq. (1) together with the properties Eqs. (2) and (3) is
valid for ideal coaxial cables with vanishing Ohmic resistance.
It is mathematically identical with that of a quantum graph with
Neumann boundary condition at the vertices and with lengths
of the bonds chosen as L

opt
ij = √

εLij [2,3]. The corresponding
Schrödinger equation is obtained by replacing in Eq. (1) the
term

√
εω/c by the wave number k. The eigen wave numbers

of the graph are determined by solving the equation [2]

det hij (k) = 0, (4)

with

hij (k) =
{− ∑

m�=i Cim cot(kLim), i = j

Cij (sin(kLij ))−1, i �= j
. (5)

The spectral density ρ(k) of a quantum graph may be expressed
in terms of purely classical quantities. Separating it into its
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smooth part ρ̄(k) and its fluctuating part ρfluc(k), the former is
given by Weyl’s formula,

ρ̄(k) = L
π

, (6)

where L denotes the total length of the graph, the latter by an
exact trace formula,

ρfluc(k) = 1

π

∑
p∈Pn

lp cos(r[klp + πμp])

er(npγp/2) , (7)

with

e−npγp/2 =
μp∏
s=1

∣∣∣∣
(

1 − 2

vs

)∣∣∣∣
np−μp∏

s=1

∣∣∣∣ 2

vs

∣∣∣∣ . (8)

The sum is over the set of primitive periodic orbits p ∈ Pn,
coded by a sequence of np vertices with n = rnp denoting
the period after r repetitions of it. The length of the primitive
periodic orbit, which is given by the sum over the lengths of
the bonds that are passed during one loop of it, is denoted by
lp. Furthermore, μp gives the number of vertices with vi �
2, where backscattering occurs. Here, vi corresponds to the
valency of vertex i, that is, the number of bonds coupled to
it. In the numerical simulations the valency of each of the six
vertices equaled five, and also the lengths of the bonds were
chosen equal to the optical lengths of the coaxial cables in the
30 microwave networks used in the experiments.

III. EXPERIMENTAL SETUP

The microwave networks were constructed from six vertices
that were all connected with each other via coaxial cables
(SMA-RG402) that consisted of an inner conductor of radius
r1 = 0.05 cm and an outer one with inner radius r2 = 0.15 cm.
The space between them was filled with Teflon of which
the dielectric constant was determined experimentally to
ε � 2.06. Accordingly, the cutoff frequency νc = c

π(r1+r2)
√

ε

[45,46] of the TE11 mode was at around 33 GHz, which is well
above the range of frequencies used in the experiments. The
lengths of the cables were chosen such that the microwave
networks simulated quantum graphs with chaotic dynamics.
An ensemble of 30 different networks with the same total
optical length L = 7.04 ± 0.02 m was generated by varying
the lengths of four bonds of lengths Li � 40–65 cm with
phase shifters (see Fig. 1) in steps of ± 0.42 cm. Here, L was
estimated by measuring the optical length of each coaxial cable
including their extensions across the junctions separately.

For the measurement of the scattering matrix element
S11 an Agilent E8364B microwave vector network analyzer
(VNA) was connected to one six-arm vertex of the network
via a HP 85133-616 flexible microwave cable; see inset in
Fig. 1. Figure 2 shows a measured reflection spectrum in
the frequency range from 2–4 GHz. The positions of the
resonances yield the eigenfrequencies and thus the eigenvalues
of the corresponding quantum graph. Ohmic losses in the
coaxial cables lead to a broadening of the resonances. Below
6 GHz thereby arising overlaps between the resonances were
sufficiently weak so that we were able to determine nearly all
eigenfrequencies by fitting Lorentzians to them. In order to
decide whether a hump in a broad resonance corresponds to a

FIG. 2. A reflection spectrum in the frequency range from
2–4 GHz. The overlap between neighboring resonances was suffi-
ciently weak below 6 GHz, so that we were able to determine about
96–97% of the eigenfrequencies for each of the corresponding
quantum graphs.

genuine eigenvalue we used two very efficient methods. First,
we plotted the level sequences obtained for the 30 microwave
networks, which were generated by stepwise changing the
lengths of four bonds while keeping the total length fixed,
versus the number of steps thus yielding continuously varying
eigenfrequencies (see Fig. 3), i.e., a level dynamics [14].
Here, the lengths of two of them were increased, and those
of the other two were decreased by the same amount. After
13 and 25 steps, respectively, in one bond the increase
was changed to decrease, and vice versa in another one,

FIG. 3. Sequences of the eigenfrequencies of the 30 graphs
labeled by the step number ns in the frequency range from 3.5–4 GHz.
The graph with label ns + 1 was obtained from that with label
ns by increasing the lengths of two bonds by 0.42 cm and at the
same time decreasing that of two other ones by the same amount
so the total length was fixed. At ns = 13 and ns = 25 for one of
these bonds increase was changed into decrease, and vice versa for
another one. The resulting eigenfrequency dynamics was used to
decide whether a hump in a resonance corresponds to a spurious or a
genuine eigenfrequency. Missing red dots at a given n correspond to
nondetectable eigenfrequencies.
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FIG. 4. Fluctuating part Nfluc(ν) of the integrated spectral density.
Each dot corresponds to one eigenfrequency. A missing eigenfre-
quency results in a jump of the local average of Nfluc(ν) by more than
one. This is illustrated in the inset, where two eigenfrequencies are
missing around 2.4–2.5 GHz.

to keep the total length of the network fixed. In order to
indicate the level dynamics we connected eigenfrequencies
(red dots) by red lines. Then missing levels become visible
as gaps in the level dynamics. Second, we looked at the
fluctuating part of the integrated spectral density Nfluc(νi), that
is, the difference of the number of identified eigenfrequencies
N (νi) = i below νi for ordered frequencies ν1 � ν2 � . . . and
the number predicted by Weyl’s formula [2] given in Eq. (6).
One example is shown in Fig. 4. At a missing or spurious
eigenfrequency the local average of Nfluc(νi) exhibits jumps
by more than 1. This is illustrated in the inset of Fig. 4.
There two eigenfrequencies are missing around 2.4–2.5 GHz.
Approximately 210 eigenfrequencies could be identified for
each network. A comparison with Weyl’s formula yielded that
about 3–4% of the eigenvalues were missing after application
of the above described procedure. Actually, Figs. 3 and 4 show
parts of the final result. Still missing eigenfrequencies might
arise due to a too close encounter of two levels or because of a
vanishing electric field strength at the position of a resonance,
resulting in a vanishing or too small amplitude of it to be
detectable.

IV. ANALYSIS OF THE EXPERIMENTAL
AND NUMERICAL DATA

For the analysis of the spectral properties of the microwave
networks, first, the eigenfrequencies νi need to be unfolded in
order to eliminate system-specific properties. This was done
with the help of Weyl’s law given in Eq. (6). Accordingly,
the unfolded eigenvalues are obtained from the ordered
eigenfrequencies as εi = (2νi/c)L.

In order to investigate short-range spectral fluctuations, we
analyzed the commonly used NNSD, that is, the distribution of
the spacings between adjacent eigenvalues, si = εi+1 − εi . For
the study of long-range spectral fluctuations, we considered the
number variance and the average power spectrum [11,33,34].
The latter is obtained from the Fourier spectrum of the

FIG. 5. Spectral properties of the unfolded eigenfrequencies.
Panels (a)–(d) show the NNSD, the integrated NNSD, the number
variance and the average power spectrum, respectively. The experi-
mental results (black histograms and circles) are compared to the GOE
curves (solid black lines) and the corresponding numerical results [red
(dark gray) histograms, dashed lines and squares].

deviation of the qth-nearest neighbor spacing from its mean
value q, δq = εi+q − εi − q,

S(k̃) = |δ̃k̃|2 =
∣∣∣∣∣∣

1√
N

N−1∑
q=0

δq exp
(−2πik̃q

)
∣∣∣∣∣∣
2

, (9)

with N denoting the number of levels taken into account and
k̃ � 1 takes the values 1/N, 2/N, . . . , (N − 1)/N . For k̃ � 1
the power spectrum exhibits a power-law dependence 〈S(k̃)〉 ∝
k̃−α , where for regular systems α = 2 and for chaotic ones
α = 1 independently of whether T invariance is preserved
or not [33,34,47–52]. Recently, the power spectrum was
successfully applied to the measured molecular resonances in
166Er and 168Er [53,54] and extended to systems with violated
T invariance [30].

Figure 5(a) shows the NNSD P (s), Fig. 5(b) the integrated
NNSD I (s), which was obtained by counting the spacings
with values below a given s and dividing by the total
number of spacings, Fig. 5(c) the number variance 2(L) and
Fig. 5(d) the power spectrum 〈S(k̃)〉 plotted on a double-log
scale for better visibility. The experimental curves (black
histograms and circles) were generated by computing the
statistical measures for each of the 30 microwave networks
and then performing an ensemble average over the results
obtained for every third sequence in Fig. 3 in order to ensure
statistical independence of the associated eigenfrequencies.
Since the classical dynamics is chaotic and T invariance
is preserved, they are compared to the corresponding GOE
results (solid black lines). While in the short-range spectral
fluctuations in Figs. 5(a) and 5(b) only small deviations
from the GOE predictions are observed for small spacings,
discrepancies are clearly visible for the long-range spectral
fluctuations in Figs. 5(c) and 5(d). Similar results were
obtained for the numerically determined eigenvalues of the
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corresponding quantum graphs (red histograms, dashed lines,
and squares). Both for the experimentally and the numerically
determined eigenvalues the number variance and the power
spectrum deviate from the GOE result for L � 3 and k̃ � −0.9,
respectively. These discrepancies cannot be solely attributed to
missing levels, because we used complete sequences of up to
2000 eigenvalues for the numerical calculations. In this case
the 2 statistics and the power spectrum saturate below the
GOE curve [43], whereas the corresponding curves obtained
from the experimental data, evolve above the GOE results.
Note that the numerical calculations are performed for closed
graphs whereas, due to the connection of the external lead,
i.e., the HP85133-616 microwave cable to the VNA and due
to Ohmic losses in the coaxial cables, the microwave networks
correspond to slightly opened quantum graphs. However, the
aim of the present studies was not a level-by-level comparison
of numerical and experimental data but the statistical analysis
of their spectral fluctuations and the comparison with RMT
predictions. We demonstrate in Sec. VI that this deviant
behavior, actually, may be attributed to a small percentage
of missing levels in the experimental level sequences. In the
following section, we will pursue the supposition that the
deviations originate from short periodic orbits.

V. TRACE FORMULA FOR QUANTUM GRAPHS

In order to ascertain that the nonuniversal effects originate
from the shortest periodic orbits, which are confined to,
respectively, one of the bonds, we computed length spectra
using the experimental and the numerical data. A length
spectrum is obtained from the Fourier transform of the
fluctuating part of the density of eigen wave vectors,

|ρ̃(l)| =
∣∣∣∣
∫ kmax

0
dkeiklρfluc(k)

∣∣∣∣. (10)

It is called length spectrum because it exhibits peaks at the
lengths of the classical periodic orbits. In order to identify
the above-mentioned shortest orbits, we equally calculated
the Fourier transform of the trace formula Eq. (7), which
provides the exact semiclassical description of the fluctuating
part of the spectral density of quantum graphs. Here, we took
into account only those periodic orbits, which are confined
to one of the bonds. Accordingly, we restricted the sum in
Eq. (7) to primitive orbits with twice the lengths of a bond,
that is, with lp = 2Lij , np = 2, μp = np. Its integral, shown
as a solid turquoise line in Fig. 6, for one of the 30 graphs
describes the slow oscillations exhibited by the fluctuating
part of the numerically obtained integrated spectral density of
the associated graph (red dots). The resulting semiclassical
length spectrum is shown in Fig. 7 as a turquoise dashed
line. The corresponding length spectrum obtained from the
200 experimental eigenfrequencies is shown as a solid black
line and that obtained from the numerical data as a thin red
line. Here, we used 1800 computed eigenvalues in order to
achieve agreement with the semiclassical length spectrum for
the orbits confined to a bond, thereby illustrating that indeed
the shortest periodic orbits provide a considerable contribution
to the length spectrum. Also, the length spectrum deduced
from the experimental data shows peaks at the lengths of the
shortest periodic orbits. Thus, evidently, backscattering at the

FIG. 6. Fluctuating part of the integrated spectral density [thin red
(dark gray) line], obtained by using 1800 computed eigenvalues of
one of the quantum graphs. It exhibits slow oscillations that are well
described by the associated integrated semiclassical trace formula
Eq. (7), taking into account only the periodic orbits confined to a
bond via reflections at the vertices at its ends [solid turquoise (gray)
line].

joints of the microwave networks and the resultant confinement
of waves to one of the bonds is nonnegligible. These waves do
not experience the joint effects arising from the scattering at all
vertices of the quantum graph that lead to the chaoticity of the
underlying dynamics. This explains the deviations of the long-
range fluctuations in the spectra of the microwave networks
and the quantum graphs from the predicted GOE behavior.

Note, however, that we didn’t observe such deviations
in the experiments with microwave networks with violated

FIG. 7. Comparison of an experimental (solid black line) and the
corresponding numerical [thin red (dark gray) line] length spectrum
with the Fourier transform of the semiclassical trace formula Eq. (7)
for the periodic orbits confined to a bond via reflections at the vertices
at its ends [dashed turquoise (gray) line], which, accordingly, exhibits
peaks at twice the lengths of the bonds. The experimental length
spectrum was obtained by using 200 eigenfrequencies of one of the
microwave networks. For the numerical one, 1800 eigenvalues were
taken into account, in order to illustrate the applicability of the trace
formula and to identify the peaks corresponding to lengths of periodic
orbits confined to one of the 15 bonds.
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T invariance. In these experiments, circulators were used,
which hinder the backscattering. The discrepancies observed
in these experiments between the spectral properties of the
microwave networks and the GUE results could be shown
unambiguously to be exclusively due to a small percentage
of missing levels [30]. We, in fact, also observe similar
discrepancies in the present case. As is clearly visible in Fig. 5,
the curves obtained from the experimental eigenfrequencies
for the number variance and the power spectrum lie above the
GOE predictions, whereas the numerical ones lie below. In
order to ascertain that this different behavior may be attributed
to a small percentage of missing levels in the experimental
level sequences, we performed similar studies as in Ref. [30].
These are presented in the following section.

VI. MISSING-LEVEL STATISTICS

The incompleteness of level sequences is a very common
problem in experiments involving, e.g., nuclei or molecules
[55–58], thus rendering the study of spectral properties a
tedious task. Analytical expressions were derived for the
statistical measures describing the fluctuation properties in
incomplete spectra based on RMT in Ref. [59]. The resulting
NNSD is given by a sum over the (n + 1)st nearest-neighbor
spacing distributions P (n,s), n = 0,1,2, with P (0,s) = P (s),
which are well approximated by P (n,s) � γ sμe−�s2

, with
(n,μ) = (0,1), (1,4), (2,8), . . . for the GOE [60]. The coeffi-
cients γ and � are obtained from the normalization of P (n,s) to
unity and the scaling of s to average spacing unity, respectively.
As long as the fraction of detected eigenvalues ϕ is close to
unity, the NNSD is well approximated by

p(s) � P

(
s

ϕ

)
+ (1 − ϕ)P

(
1,

s

ϕ

)
+ · · · . (11)

Furthermore, the number variance and the power spectrum
[35] are given in terms of the corresponding expressions for
complete spectra (ϕ = 1),

σ 2(L) = (1 − ϕ)L + ϕ22

(
L

ϕ

)
(12)

and

〈s(k̃)〉 = ϕ

4π2

{
K(ϕk̃) − 1

(k̃)2
+ K[ϕ(1 − k̃)] − 1

(1 − k̃)2

}

+ 1

4 sin2(πk̃)
− ϕ2

12
, (13)

respectively. Here, K(τ ) is the spectral form factor, where
τ � 1 in Eq. (13), so K(τ ) = 2τ − τ log(1 + 2τ ) for the GOE.

In Fig. 8 the functions Eqs. (11)–(13) are plotted for
ϕ = 0.965 as turquoise dashed lines. This value of ϕ was
determined by fitting the analytical results Eqs. (12) and
(13) to the corresponding experimental ones. Furthermore,
we evaluated the statistical measures for the numerically
determined eigenvalues taking into account a sequence of
200 eigenvalues and randomly eliminating 3.5% from it. The
agreement between the experimental (black histograms and
circles) and numerical (red histograms, dashed lines, and
squares) results is remarkable, also that with the RMT results.
However, small differences are visible for the long-range

FIG. 8. Spectral properties of the unfolded eigenfrequencies.
Panels (a)–(d) show the NNSD (histogram), the integrated NNSD
(circles), number variance (circles), and the average power spectrum
(circles), respectively. The experimental results are compared to
the GOE curves (solid black lines) and to the theoretical curves
Eqs. (11)–(13) for ϕ = 0.965 [turquoise (gray) dashed lines]. The
corresponding numerical results [red (dark gray) dashed lines and
squares] were obtained by using sequences of 200 eigenvalues and
randomly eliminating 3.5% of them.

spectral fluctuations in the region where in Fig. 5 the onset
of deviations from the GOE is observed, that is, around
L ≈ 3 in Fig. 5(c) and log10(k̃) ≈ −0.9 in Fig. 5(d). There the
effect of nonuniveral contributions from the shortest periodic
orbits becomes perceptible. Like the experimental NNSD
the corresponding curve Eq. (11) indeed is very close to
the GOE results. This feature enabled the assignment of the
GOE as the RMT model applicable to the experimental data.
The discrepancies between the experimental and RMT curves
visible in the integrated NNSD at small spacings (see insets in
Figs. 5 and 8) may be attributed to the experimental resolution
which impedes the accurate determination of eigenfrequencies
if they are to close to each other. Note that the deviations
observed between the statistical measures for long-range
spectral fluctuations obtained from the experimental and
the numerical data and the RMT predictions taking into
account missing levels are much smaller than those between
the numerical, i.e., complete spectra and the GOE result
in Fig. 5.

VII. CONCLUSIONS

We showed experimentally and numerically that deviations
from GOE predictions for incomplete and complete spectra
observed for long-range spectral fluctuations in the level
sequences of quantum graphs, consisting of six vertices that
are connected with each other via bonds of incommensurable
lengths, may be attributed to the occurrence of short periodic
orbits confined to individual bonds by backscattering at the
vertices terminating them. Such orbits do not sense the
chaoticity of the underlying classical dynamics, which arises
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due to a joint effect of the scattering at all its vertices. In
addition, their contributions are nonuniversal because they
depend on the lengths of the bonds. We analyzed length
spectra and compared them to those deduced from the exact
trace formula for quantum graphs in order to illustrate the
dominance of these orbits in the corresponding spectra.
Actually, their presence seems to be unavoidable and their
effect on the spectral properties of the associated quantum
graph is comparable to that of bouncing-ball orbits in a stadium
billiard [44]. However, in distinction to the latter, they occur
in all possible realizations of periodic orbits with a certain
period, i.e., their number is not of measure zero. In fact,
it is impossible to extract the contributions of the shortest
periodic orbits from the eigenvalue spectra by adding the
slow oscillations, caused by them in the integrated spectral
density (see Fig. 6), to the smooth part of the latter [44],
which yields the unfolded eigenvalues. We determined these
contributions by integrating the semiclassical trace formula
Eq. (7) and also from the inverse Fourier transform of ρ̃(l),
defined in Eq. (9) and obtained by using 1800 computed
eigenvalues, where we took into account only the lengths
intervals around peaks in the length spectra corresponding
to periodic orbits of twice the lengths of the bonds [61];
see Fig. 7. Both procedures yielded exactly the same results,
thus corroborating the powerfulness of the former. However,
even when including short primitive periodic orbits of pe-
riod np � 4 [31], which, e.g., in Fig. 7 would comprise
all peaks below l � 15 dm, we were not able to achieve
agreement with the GOE as concerns long-range fluctuations.
Note that backscattering and, thus, the presence of shortest
periodic orbits may be avoided by introducing circulators
in microwave networks or considering unidirectional bonds
in numerical simulations of quantum graphs. This, however,
will lead to a violation of T invariance [21,23]. Further-
more, a considerably improved agreement with an extension

of the GOE to spectra with missing levels may be achieved
even in numerical simulations by simply randomly extracting
eigenvalues from a level sequence. Then, small deviations are
only visible in the domain of the statistical measures for long-
range fluctuations, where the effects of nonuniversality set in.
We corroborated these results in further experiments and in
numerical simulations with a varying number of bonds and
connectivity of the bonds, and in all cases observed similar
deviations from the GOE predictions.

We come to the conclusion that, due to the presence of
shortest periodic orbits confined to individual bonds, a quan-
tum graph might not provide a suitable model system for the
investigation of long-range fluctuations in the level sequences
of a generic, classically chaotic quantum system. This is cor-
roborated by the deviations observed between the parameter-
dependent spectral statistics of large graphs with Neumann
boundary conditions at the vertices and the GOE predictions
[62]. Furthermore, it was shown there that, on the contrary,
when replacing the vertex scattering matrices by matrices from
the circular orthogonal ensemble, they are in good agreement
with RMT predictions [63]. We would like to emphasize that
according to Refs. [10,17–19] and experimental results pre-
sented, e.g., recently in Refs. [28,30] the introduction of time-
reversal invariance violation or, similarly, unidirectionality,
leads to a most appropriate system for the study of GSE or GUE
features.
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