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During the last few years quantum graphs have become a paradigm of quantum
chaos with applications from spectral statistics to chaotic scattering and
wavefunction statistics. In the first part of this review we give a detailed
introduction to the spectral theory of quantum graphs and discuss exact trace
formulae for the spectrum and the quantum-to-classical correspondence. The
second part of this review is devoted to the spectral statistics of quantum
graphs as an application to quantum chaos. In particular, we summarize recent
developments on the spectral statistics of generic large quantum graphs based on
two approaches: the periodic-orbit approach and the supersymmetry approach.
The latter provides a condition and a proof for universal spectral statistics as
predicted by random-matrix theory.
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1. Introduction

The general mathematical concept of a graph (network) as a set of elements which
are connected by some relation has found applications in many branches of science,
engineering, and also social science. A street network of a traffic engineer, the
network of neurons studied by a neuroscientist, and the structure of databases in
computer science, can all be described by graphs.

Recently, the Laplacian on a metric graph has gained a lot of attention in physics
and mathematics in terms of the diffusion equation or Schrödinger equation. They
have now become known as quantum graphs but different aspects are studied under
various names such as quantum networks or quantum wires. They have a long
history in mathematics and physics.
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In physics, the first application has probably been in the context of free electron
models for organic molecules, about 70 years ago by Pauling [1], an approach which
has been further developed in subsequent years [2–8]. Quantum graphs have also
been applied successfully to superconductivity in granular and artificial materials [9],
acoustic and electromagnetic waveguide networks [10, 11], the Anderson transition
in a disordered wire [12, 13], quantum Hall systems [14–16], fracton excitations
in fractal structures [17, 18], and mesoscopic quantum systems [19–23]. Quantum
graphs have also been simulated experimentally [24].

The construction of self-adjoint operators, or wave equations with appropriate
boundary conditions on graphs, was first addressed by Ruedenberg and Scherr [5]
(see also [8]). They considered graphs as an idealization of networks of wires or wave
guides of finite cross-section in the limit where the diameter of the wire is much
smaller than any other length-scale. Similar approaches to graphs as networks of
thin wires with a finite diameter, or fat quantum graphs as they are now called, have
been a topic in mathematical physics recently [25–30].

Another interesting approach, which has been discussed mainly by Exner and
his coworkers, is based on leaky graphs [31–39]. Here, a finite attractive potential
in the Schrödinger equation is centred on a metric graph. A leaky graph is a
generalization of the Schrödinger equation with �-function potentials. A
quantum graph can be realized in the limit of infinitely strong attracting potentials
of this type.

Probably the first mathematical approaches to the Laplacian on a metric graph
were done by Roth who derived a trace formula for the spectrum of the Laplacian
[40, 41] and by von Below [42–44]. The spectral theory of quantum graphs was
mainly developed on the basis of the von Neumann theory of self-adjoint extensions
for formal differential operators [45–62]. Other recent topics in mathematics
and mathematical physics include the spectral theory of infinite periodic graphs
[49, 50, 63–66, 255–258], tree graphs [67–73] and Sierpinski graphs [74–76], scattering
and bound states in open graphs [77–84], diffusion and localization [23, 85–89],
random walks [90, 91], approximations of quantum systems by quantum graphs
[92], some inverse problems [41, 42, 54, 58, 93–104], extremal spectral properties
[105], and models of dissipative graphs [106–109].

Recent review papers on various mathematical approaches to quantum graphs
can be found in [110–112]. Special issues of research journals [113, 114] and recent
conference proceedings [115] have been devoted to quantum graphs.

The relevance of quantum graphs to the study of quantum chaos was brought
to light by the work of Kottos and Smilansky [116, 117]. They analysed the
spectral statistics for simple graphs, and showed that their spectral statistics follow
very closely the predictions of random-matrix theory. They proposed an alternative
derivation of the trace formula and pointed out its similarity to the famous
Gutzwiller trace formula [118, 119] for chaotic Hamiltonian systems. While quantum
graphs do not have a deterministic classical limit, they still share a lot of important
properties with classically chaotic Hamiltonian systems, e.g. periodic-orbit theory
in the semiclassical regime is completely analogous to periodic-orbit theory on a
quantum graph. While semiclassical approaches are approximations the analogous
approaches for quantum graphs are exact. More importantly, quantum graphs are
not as resistant to analytical approaches. Following these pioneering beginnings of
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Kottos and Smilansky, quantum graphs have become a new paradigm of quantum
chaos and have been applied to various problems, including also disorder
and diffusion [120, 121]. All aspects of quantum chaos have been covered: spectral
statistics in finite [90, 122–142] and infinite periodic structures [89], localization
and wavefunction statistics [120, 143–150], chaotic scattering [151, 152],
transport through chaotic devices [153, 154], resonances and decay in open chaotic
systems [155–157].

The main purpose of this paper is to review recent approaches to spectral
statistics in quantum graphs and discuss the relation to quantum chaos in general.
To make the paper self-contained, special effort was made to introduce the necessary
concepts in a clear and consistent way.

Recently, important progress has been achieved by Müller et al. [158, 159] in the
periodic-orbit theory for spectral statistics in chaotic Hamiltonian systems building
on the pioneering work of Sieber and Richter [160–162]. A similar approach
for quantum graphs has been developed by Berkolaiko, Schanz and Whitney [124,
125, 128]. None of these works captured the low energy sector of spectral statistics.
An alternative approach, which so far was successfully applied to quantum graphs
[141, 142], was able to close the above mentioned gap, and it will be discussed in
detail in the second part of this review.

Several other applications to quantum chaos will not be addressed in this
review. Functional integration approaches to statistical properties of wavefunctions
and localization are thoroughly reviewed by Comtet, Desbois and Texier [121]
(see also [181]). Chaotic scattering and transport in quantum graphs is discussed
in [153–157].

This review is arranged in the following way. The first sections provide a detailed
introduction to quantum graphs and their spectral theory. Though the choice of
material is biased by the application to quantum chaos, the first sections are
rather general. In section 1.1 we define graphs and their topological description.
In section 2 we quantize graphs in a straightforward way. The reformulation
in section 3 in terms of a unitary quantum evolution map will allow us to generalize
the quantization procedure. This point of view will be the foundation for the remain-
ing sections. Section 4 gives an account of the classical dynamics that corresponds to
a quantum graph and section 5 is devoted to spectral theory with the introduction of
the trace formula and its discussion.

The remaining sections are devoted to spectral statistics in quantum graphs.
After a general introduction of spectral correlation functions (and other statistical
measures of the spectrum) in section 6 we will give some background from
quantum chaos and random-matrix theory on universality in the spectral fluctua-
tions of complex quantum systems in section 7. In the last two sections we present
two analytical approaches to universal spectral statistics in large quantum graphs.
The periodic-orbit approach is presented in section 8 which also includes
sections on quantum graphs with spin and quantum graphs which are coupled to
superconductors (Andreev graphs). Finally, we summarize the supersymmetry
approach with a proof of universality in large quantum graphs in section 9.
In Appendix A we add some background on the symmetry classification of
quantum systems and in Appendix B we summarize some relevant results from
random-matrix theory.
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1.1. Graphs and their topology

A graph GðV,BÞ consists of V vertices connected by B bonds (or edges). A graph with
six vertices and ten bonds (V ¼ 6, B ¼ 10) is shown in figure 1.

The graphs are not necessarily embedded in the plane, and the fact that in the
figure bonds cross each other at points which are not vertices is completely imma-
terial. A physical realization of a graph is a network of coaxial cables (bonds)
connected by junctions (vertices). The topology of the graph, that is, the way the
vertices and bonds are connected is given in terms of the V� V connectivity matrix
Ci, j (sometimes referred to as the adjacency matrix) which is defined as

Ci, j ¼ Cj, i ¼

m if i 6¼ j where i and j are connected by m bonds,
2m if i ¼ j and there are m loops at vertex i
0 if i and j are not connected:

8<
: ð1Þ

This definition allows for vertices to be connected by several bonds, and also
for a vertex to be connected to itself by one or several loops (in which case the
corresponding diagonal element of the connectivity matrix equals twice the number
of loops).

The valency vi of a vertex i is the number of vertices j connected to i, each
weighted by the number of parallel bonds (loops). Thus, m parallel bonds (m parallel
loops) contribute m (2m) to the valency. In terms of the connectivity matrix,

vi ¼
XV
j¼1

Ci, j: ð2Þ

The neighbourhood �i of the vertex i consists of the vertices j connected to i.
The boundary of a subgraph Ĝ � G, �ðĜÞ, consists of the vertices which are not

in Ĝ but which are in the union of the neighbourhoods of the vertices of Ĝ.
The number of bonds is expressed by

B ¼
1

2

XV
i¼1

XV
j¼i

Ci, j: ð3Þ

Figure 1. A graph with V¼ 6 vertices and B¼ 10 bonds.
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Unless otherwise specified, we shall always consider connected graphs, for which

the vertices cannot be divided into two non-empty subsets such that there is no bond
connecting the two subsets. That is, for a connected graph the connectivity matrix
cannot be brought into a block-diagonal form by permuting the vertices.

There are a few classes of graphs which often appear in the literature. They are
characterized by their connectivity (see figure 2 for some examples):

. Simple graphs are graphs which have no loops and no parallel bonds connect-
ing their vertices (no multiply connected vertices). In this case, for all i and j,
Ci, j 2 f0, 1g, and in particular all the diagonal elements vanish Ci, i ¼ 0.
For simple graphs, the cardinality of �i is the valency vi for each vertex.
When we define quantum graphs in section 2 we will show that every con-
nected quantum graph can be turned into a graph of simple topology by
adding some vertices without changing the spectrum or the wavefunctions.
This will allow us to significantly simplify the notation in the remaining sec-
tions where a simple topology will be assumed without loss of generality.

. v-regular graphs are simple graphs whose vertices have the same valency v. The
simplest v regular graphs are the rings for which v¼ 2 and V¼B. A non-trivial
ring has at least two vertices. A v-regular graph is complete when v ¼ V� 1.

. Simply connected graphs do not contain any non-trivial ring as a subgraph.

. Tree graphs are simple, connected and simply connected.

. Star graphs are trees that consist of a main (central) vertex with valency v,
connected to v peripheral vertices of valency one.

In many applications it is convenient to refer to bonds directly, and we shall use
lowercase letters to denote the bonds of the graph. If the graph is simple, we can use

(a) (b) (c)

(d) (e)

Figure 2. Some examples of graphs: (a) star graph (B¼ 10, V¼ 11), (b) ring graph (B¼ 10,
V¼ 10), (c) v-regular graph with v¼ 4 (B¼ 20, V¼ 10), (d) complete graph (B¼ 45, V¼ 10),
(e) tree graph (B¼ 19, V¼ 20).
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the end points of the bond as its label : b ¼ ði, jÞ ¼ ðj, iÞ. If a graph is not simple ði, jÞ
will denote the set of all bonds that connect the vertices i and j. The round brackets
will always be used to denote such a set of undirected bonds unless otherwise stated.

All the bonds which emerge from a vertex i form a star,

S ðiÞ ¼
[
j2�ðiÞ

ði, jÞ: ð4Þ

If the graph is simple, the bonds in a star S ðiÞ are fb ¼ ði, jÞ : j 2 �ðiÞg.
Directed bonds (also referred to as arcs in the literature) are bonds on which a

direction is specified. For a simple graph we denote them by the ordered pair of
vertex indices enclosed in square brackets ½ j, i �, and the direction is from the right to
the left index. Again, for non-simple graphs ½ j, i � is the set of all directed bonds
starting at i and ending at j. Lowercase Greek letters will be used to distinguish them
from the undirected bonds. The reverse direction will be denoted by a hat so that e.g.,
if � 2 ½ j, i � then �̂ 2 ½i, j�.

Alternatively, we will denote a directed bond � 2 ½ j, i � as a pair � ¼ ðb,!Þ of a
bond b 2 ðj, iÞ and a direction index ! ¼ �1 where ! ¼ þ1 if j> i and ! ¼ �1 if j<i.
If the bond is a loop (i¼ j) the direction ! has to be assigned to avoid ambiguities.
We will use the notation !� (b�) to refer to the direction index (bond) of the directed
bond �. If � ¼ ðb,!Þ is a directed bond the reverse direction is �̂ ¼ ðb, � !Þ. All
directed bonds that start at a vertex i form an outgoing star,

S
ðiÞ
þ ¼

[
j2�ðiÞ

½ j, i �: ð5Þ

The incoming star S ðiÞ� is defined analogously as the set of directed bonds that end at i.
The set of directed bonds ½k, l� follows the set of directed bonds ½r, s� if r¼ l. With

� 2 ½k, r� and � 2 ½r, s� we then write � 2 F rð�Þ which means that the directed bond �
follows � at the vertex r. A trajectory t ¼ ð�1, . . . ,�nÞ from vertex i to j is a sequence
of directed bonds �l ¼ ðbl,!lÞ such that �lþ1 follows �l where �1 starts at vertex i and
�n ends at vertex j. The topological length of the trajectory is the number n 2 N of
directed bonds in the path. A closed trajectory starts and ends at the same vertex i¼ j
and a periodic orbit p � �1, . . . ,�n of period n is the equivalence class of closed
trajectories that are equal up to cyclic permutation. The code of the periodic orbit
is the equivalence class �1, . . . ,�n of visited directed bonds. A primitive periodic orbit
has a code which cannot be written as a repetition of a shorter code. Each trajectory t
defines a subgraph Gt which consists of all bonds and vertices visited by the path.
The number of different points on periodic periodic orbits with period n is exactly
equal tr Cn. As a consequence, if n is prime the number of periodic orbits #ðnÞ of
period n is exactly

#ðnÞ ¼
1

n
trCn

¼
1

n

XV
j¼1

�nj ð6Þ

where � j are the eigenvalues of the connectivity matrix. If n is not prime (6) is a good
approximation. In the limit of large n, #ðnÞ is dominated by the maximum eigenvalue
which shows that this number grows exponentially with n. In analogy to the theory
of dynamical systems we define the topological entropy �T as the logarithm of the
largest eigenvalue. One can easily show that for fully connected graphs �T ¼ logV
and for star graphs �T ¼ 1=2 logB.
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2. The Schrödinger operator on graphs

In section 1 we defined and discussed the graphs from a topological point of view,
where concepts like connectivity and neighbourhood played the main rôles. At this
point we would like to endow the graphs with a metric which will enable us to define
the Schrödinger operator on the graph.

We assign the natural metric to the bonds. The position x of a point on the graph
is determined by specifying on which bond b it is, and its distance xb from the vertex
with the smaller index such that xb increases in direction ! ¼ þ1 and decreases
in direction ! ¼ �1. If the bond b is a loop this defines the starting point for xb.
The length of a bond is denoted by Lb and, 0 � xb � Lb. The length of a path
t ¼ ð�1, . . . ,�nÞ is the sum over all bond lengths Lt ¼

Pn
l¼1 Lbl (where �l ¼ ðbl,!lÞ)

along the path. For a bond b ¼ ði, jÞ we will also use the notation xib and x j
b for the

values of xb at the vertices. That is, if i<j one has xib¼ 0 and x j
b¼Lb. For later use,

we define incommensurable (or rationally independent) bond lengths on the graph.
For these the equation X

b

mbLb ¼ 0 ð7Þ

where mb 2 Z only has the trivial solution mb¼ 0 for all b.
The Schrödinger operator on G consists of the one-dimensional operators

associated with each bond:

Hb ¼
1

i

d

dxb
þ Ab

� �2

þwbðxbÞ

" #
ð8Þ

Here, wb(xb) is a potential function assumed to be non-negative and smooth on the
interval ½0,Lb�. Ab are real, positive constants. If the graph contains a non-trivial ring
as a subgraph (that is, it is not simply connected), and Ab do not vanish on this
subgraph, time reversal invariance is broken, as can be seen from the eigenfunctions
of (8) with wb¼ 0 on the line,

1

i

d

dx
þ A

� �2

 ðxÞ ¼ k2 )  ðxÞ ¼ e�iAxðc1e
ikx
þ c2e

�ikx
Þ ð9Þ

(c1 and c2 are arbitrary constants). The complex conjugate of  (x) above is not
a solution of the same equation, a hallmark of a system which violates time reversal
invariance. We shall refer to the constants Ab as magnetic fluxes because they play the
same rôle as the vector potentials in the Schrödinger operator in higher dimensions.
The presence of A implies also that the wavefunctions are intrinsically not symmetric
under the reflection xÐ �x.

In the physics literature, and in particular in the quantum chaos connection, the
bond potentials wb(xb) are commonly set to zero. We included them in the general
framework for the sake of generality and because they appear in some of the math-
ematical literature on the topic. Graphs with non-vanishing potentials are sometimes
referred to as dressed graphs [163–166].

Next, we have to identify the space of wavefunctions and the boundary
conditions which renders the operator self-adjoint. In physical terms, this implies
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that the evolution induced by the operator conserves probability and the vertices can
neither be sinks nor sources. In other words, the boundary conditions at the vertices
should be such that the total probability current vanishes when summed over all the
bonds which emerge from any of the vertices. This is similar to the well known
Kirchhoff rule in the theory of electric networks, and we shall now derive it for
quantum graphs.

2.1. Vertex boundary conditions – self-adjoint extension

We consider the set of functions D which have the following properties: �ðxÞ 2 D are
continuous and complex valued functions of x 2 G, with �ðxÞ ¼  bðxbÞ for x 2 b,
and 0 � xb � Lb. Continuity is implied here also at the vertices. This means that at
each vertex i the limit limxb!xi

b
 bðxbÞ ¼ �i does not depend on b 2 S ðiÞ. The func-

tions  bðxbÞ are complex valued, bounded with piecewise continuous and square
integrable first derivatives. The set D is the domain of the positive definite quadratic
form

Q�½�� ¼

ð2
G

dx
1

i
r þ A

� �
�ðxÞ

����
����
2

þ�ðxÞ �W�ðxÞ

 !

þ � ���

�
XB
b¼1

ðLb

0

dxb
1

i

d b

dxb
þ Ab bðxbÞ

����
����2þwbðxbÞj bðxbÞj

2

 !

þ
XV
j¼1

�j �j
�� ��2 : ð10Þ

Here, � denotes the V dimensional array of �j. � is a positive diagonal matrix with
elements �j 	 0. The rôle of these parameters will become clear in the sequel and
their physical significance will be discussed below.

The self-adjoint extension of the Schrödinger operator, H, is determined by the
Rayleigh–Ritz extremum principle. For this purpose we compute the variation of the
quadratic form Q�½�� with respect to � under the condition that k�k2 �Ð
G
dxj�ðxÞj2 ¼ 1. This constraint is introduced by considering the variation of the

modified quadratic form ~Q½�� ¼ Q�½�� � k2k�k, where k2 is a positive Lagrange
multiplier. The variations of the modified quadratic form with respect to both �
and its complex conjugate have to vanish identically. Writing the variation
with respect to �
 explicitly, and performing partial integration where necessary,
we get

� ~Q�½�� ¼
XB
b¼1

ðLb

0

dxb� 


bðxbÞ

1

i

d

dxb
þ Ab

� �2

þwbðxbÞ � k2

 !
 bðxbÞ

þ � 
bðxbÞ
d

dxb
þ iAb

� �
 bðxbÞ

� �Lb

0

þ
XV
j¼1

��
j �j�j : ð11Þ

A similar expression can be obtained for the variation of ~Q with respect to �(x).
Requiring that both variations vanish for every ��ðxÞ and ��
ðxÞ, we find that the
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domain DH of the Schrödinger operator consists of functions in D, with twice differ-
entiable  bðxbÞ, which satisfy the boundary conditions

8 1 � i � V :
X

ðb, !Þ 2S ðiÞþ

!
d

dxb
þ iAb

� �
 b

����
i

¼ �i�i: ð12Þ

The derivatives in (12) boundary above are computed at the common vertex i. That is
at xb ¼ xib ¼ 0 if ! ¼ þ1 and xb¼xib¼Lb if ! ¼ �1 (if b is a loop, both directions
appear in the sum). These conditions are obtained by reorganizing the second line
in (11) according to the vertices and their associated (outgoing) stars.

The eigenfunction are solutions of the bond Schrödinger equations

8 1 � b � B : Hb b ¼ k2 b, ð13Þ

which satisfy the boundary conditions (12) boundary. The spectrum fk2ng
1
n¼1 is

discrete, non-negative and unbound. It consists of the values of the Lagrange
multiplier k2 for which a non-trivial solution is found. The sequence of eigenvalues
is conveniently arranged by increasing order, so that kn� km if n < m.

The eigenfunctions (ordered by increasing eigenvalues) have the following
property. Let Dn denote the subspace of functions in D which are orthogonal to
the first n� 1 eigenfunctions of H. Then, for any non-zero � 2 Dn

Q½�� 	 k2nk�k
2: ð14Þ

Equality holds if and only if � is the n’th eigenfunction of H.
At this point it will be good to familiarize oneself with the general formalism

above by considering a few examples.
The boundary conditions (12) take a very simple form for vertices with valency

v¼ 2, when the magnetic fluxes on the two bonds are the same and the potentials on
the two bonds take the same value at the vertex. We can now think of the two bonds
as two adjacent intervals on the line with a common boundary which we choose as
the point x¼ 0. Writing (12) explicitly we get

lim
�!0þ

d 

dx

����
0þ�

�
d 

dx

����
0��

� �
¼ � ð0Þ: ð15Þ

This is the well known boundary condition one obtains from a ‘�-potential’ of
strength �. In physics textbooks this boundary condition is derived by integrating
the Schrödinger equation along an interval of size 2� centred at x¼ 0, and the
self-adjoint extension of the operator is obtained automatically. This is not the
case when we are dealing with a more complex vertex, and the road we chose to
derive the boundary conditions must be taken.

Even though the parameters �i can take arbitrary values, the limiting values
�i ¼ 0 (Neumann boundary conditions) or 1=�i ¼ 0 (Dirichlet boundary conditions)
are of special interest.

The importance of Neumann boundary conditions (also known as Kirchhoff
boundary conditions in mathematical literature) comes from the fact (to be proven
shortly) that the spectra of systems with finite (but not vanishing) �i approach to the
Neumann spectrum as one looks higher up in the spectrum. A similar situation is
well known for the spectra of Schrödinger operators on domains with boundaries,
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where the boundary conditions intermediate between Dirichlet and Neumann are
studied [167]. Note that the case studied in the example above of a vertex with v¼ 2 is
trivial under the Neumann condition. Indeed, (15) implies that the wavefunction and
its first derivative are continuous so that the point x¼ 0 becomes an ordinary point
on the interval. Thus, a Neumann vertex with v¼ 2 can simply be erased from the
graph, without any effect on the spectrum or wavefunctions. This property can be
used in the reverse direction as well. In particular, every non-simple quantum
graph can be turned into an equivalent (with respect to spectra and wavefunctions)
quantum graph of simple topology (no loops, no multiple connections) by adding
two Neumann vertices on each loop and one Neumann vertex on each bond which
is responsible for multiple connectivity. Because of this reason, and unless stated
otherwise, we shall henceforth consider only graphs with simple topology:

Ci, j 2 f0, 1g and Ci, i ¼ 0: ð16Þ

This significantly simplifies the notation while the transition back to the original
connectivity is straightforward.

The Dirichlet boundary conditions imply that the value of the wavefunction
vanishes at all the vertices. This isolates the various bonds and the spectrum of
the Schrödinger of the graph reduces to the union of the bond spectra, with
Dirichlet boundary conditions on each of the ends of the bonds. The wavefunction
corresponding to a non-degenerate eigenvalue k2n is identically zero on all bonds but
one and the spectrum is given by the union of the independent spectra on the bonds

	Dirichlet ¼
[B
b¼1

[1
n¼1

pn
Lb

� �2
( )

: ð17Þ

2.2. The secular equation

In the previous section the Schrödinger operator and the accompanying boundary
conditions were defined and discussed. Here, we shall derive the secular function –
the real valued function whose zeros (the values of the argument where the function
vanishes) stand in one to one correspondence with the spectrum of the graph.
The spectrum of Dirichlet graphs was computed previously and we shall exclude
this case in the following.

We shall first assume that the bond potentials vanish, wbðxbÞ ¼ 0. We will
comment on non-vanishing bond potentials at the end of this section.

The starting point is the potential-free solution (9). On a bond b ¼ ði, jÞ with i � j,
the general solution of the bond Schrödinger equation is a superposition of the two
solutions (9), which can be written as

 bðxb; kÞ ¼
e�iAbxb

sin kLb

�je
iAbLb sin kxb þ �i sin kðLb � xbÞ

� 	
: ð18Þ

At the two endpoints xb¼ 0 and xb¼Lb, the wavefunction  bðxb; kÞ assumes the
values �i and �j, respectively. These same values appear in the wavefunctions on
bonds which connect i or j to other vertices, and therefore, the resulting graph
wavefunction is continuous. Thus, the most general form of � 2 DH is completely
determined (up to a scalar factor) by V complex parameters � ¼ ð�1, . . . ,�VÞ.
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The appearance in the denominator of sin kLb for all b will eventually lead to poles of
the secular function at the Dirichlet spectrum.

The eigenfunctions and eigenvalues of the Schrödinger operator are found
by demanding that the B functions (18) satisfy the boundary conditions (12).
Upon substitution, we obtain a set of V homogeneous and linear equations for the
vertex wavefunctions �,

XV
j¼1

�j hj, iðkÞ ¼ 0 8 i ¼ 1, . . . ,V, ð19Þ

where,

hi, iðkÞ ¼
�i
k
þ

X
ðb, !Þ 2S ðiÞþ

cot kLb

hj, iðkÞ ¼ �Cj, i

ei!AbLb

sin kLb

, ðb,!Þ ¼ ½ j, i �: ð20Þ

Note that the matrix h is Hermitian because the indicators ! change their sign when
i and j are interchanged. Equations (19) have a non-trivial solution if and only if

�hðkÞ � det hðkÞ ¼ 0: ð21Þ

The function �h(k) is the secular function. Because of the symmetry
 bðx; kÞ ¼ � bðx, � kÞ, the zeros of the secular function appear symmetrically on
the negative and positive k half-lines at �kn. The Schrödinger spectrum is k2n.
In section 3, an alternative secular function will be derived. The suffix h in �h(k) is
added to distinguish between this and the other secular function.

In the previous section we commented (without proof) that in the limit of
large eigenvalues, the spectra of the Schrödinger operators with �b 6¼ 0
converge to the Neumann spectrum. This is immediately apparent from (20),
since the parameters �b appear in the combination �b=k which vanishes in the
limit of large k.

Finally, it will be instructive to write explicitly the secular function for a
simple example. We do it for a star graph which was defined in section 1.1.
We denote the central vertex by the index 0, and label the emanating bonds
as well as their exterior vertices by i, i ¼ 1, . . . ,B. The only non-vanishing matrix
elements of h are

h0, 0 ¼
�0
k
þ
XB
i¼1

cot kLi

hj, j ¼
�j
k
þ cot kLj

h0, j ¼ �
e�iAjLj

sin kLj

: ð22Þ

The secular function can be computed directly,

�hðkÞ ¼ h0, 0 �
XB
iþ1

jh0, jj
2

hj, j

 !YB
j¼1

hj, j: ð23Þ
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It is worthwhile noting that the magnetic fluxes Aj do not appear in the secular
function. The reason for this is that the star graph is simply connected. Moreover,
�h can only vanish if the first factor on the right hand side of equation (23) vanishes.
The secular equation reduces to

�h ? ¼
�0
k
þ
XB
i¼1

cot kLi �
XB
i¼1

1

sin2kLi ð�i=kÞ þ cot kLið Þ
¼ 0: ð24Þ

To end this section we shall indicate how the computation of the secular equation
can be generalized to include non-vanishing potentials wb(xb) on the bonds. In the
general case one cannot write an explicit solution of the bond wave equation as
in (18). However, since it is of the Sturm–Liouville type, it is possible to find two
independent solutions, which satisfy independent initial conditions. One function
vanishes at the vertex i and its derivative is set to 1, and the other vanishes at the
vertex j and its derivative is 1. The most general solution which takes the values �i
and �j at both ends of the bond can be written as a linear combination of the two
solutions, and from here on one can proceed as in the potential free case. Use should
be made of the Wronskian relation, which in the presence of the magnetic flux takes
the form

Wð f, gÞ � f
dg


dxb
� iAbg




� �
� g


df

dxb
þ iAbf

� �
¼ Const: ð25Þ

3. The quantum evolution map

It is quite common in theoretical physics that a given subject can be formulated and
studied from several points of view which use different concepts and tools. Consider
for instance, the Lagrangian and Hamiltonian approaches to classical mechanics.
The phase-space description reveals the symplectic structure of classical dynamics
in a natural way, which is only implicit in the configuration-space description.
Following this example, we shall present in this section another formulation of the
spectral theory of graphs which uses other concepts and structures than those used in
the previous section. The main observation and intuition which underlays the new
formulation is that a wavefunction on the graph can be written as a superposition of
waves travelling in opposite directions on the bonds. The waves which propagate
towards a given vertex are scattered from the vertex and emerge as outgoing waves,
which scatter again and again. A wavefunction is an eigenfunction if it is stationary
under the multiple scattering scenario described above, and this, in turn can happen
only if the wavenumber k of the propagating wave is correctly selected. Thus, a new
form of the secular equation can be obtained, based on this multiple scattering
approach [117]. The advantages gained by developing the alternative theory are
both conceptual and technical, and they will be revealed as the theory is system-
atically unfolded in the following sections. These advantages are gained at a price:
the number of parameters necessary to represent a wavefunction increases from V to
2B, which is the number of amplitudes of waves which propagate back and forth on
the bonds.
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Note: In the present section we consider the ‘bare’ graphs so that on all the bonds
wb¼ 0. We also want to recall that we assume a simple topology without loss of
generality (see section 2.1).

3.1. Vertices as scattering centres

Given a graph G, the bond lengths Lb, magnetic fluxes Ab and the boundary
condition parameters �b, one can write a general solution of the Schrödinger
equation (18) (for i<j)

 bðxb; kÞ ¼
e�iAbxb

sin kLb

�je
iAbLb sin kxb þ �i sin kðLb � xbÞ

� 	
¼ e�iAbxbþikxbaout½ j, i � þ e�iAbxb�ikxbain½i, j� ð26Þ

where, ain½i, j� � ain� and aout½ j, i � � aout
�̂

are the (complex valued) amplitudes of the counter-
propagating waves (incoming and outgoing at vertex i) along the bond b, and they
can be readily written in terms of the parameters �i and �j. In section 1.1 we defined
the outgoing (incoming) stars S

ðiÞ
þ (SðiÞ� ) as the set of directed bonds which point away

(point at) the vertex i which are convenient for the following discussion. Consider
now a single vertex i and the bonds b 2 S ðiÞ. For the present discussion we also use
the convention that the vertex i corresponds to the point xb¼ 0 for all the bonds
in the star S ðiÞ. From (26) we see that �i can be expressed as

�i ¼ aoutb,! þ ainb,�!, ð27Þ

on all the bonds b 2 S ðiÞ. These vi relations provide vi� 1 homogeneous equations

aoutb,! þ ainb,�! ¼ aoutb0,! þ ainb0,�! for b, b0 2 S ðiÞ : ð28Þ

Another homogeneous expression is derived by substituting both (26) and (27) in the
boundary condition at vertex i (12),X

�2S ðiÞ�

1�
�i
ivik

� �
ain� ¼

X
�2S ðiÞþ

1 þ
�i
ivik

� �
aout� ð29Þ

These vi relations enable us to write the outgoing amplitudes aout� , � 2 S
ðiÞ
þ in terms of

the incoming amplitudes ain� , � 2 SðiÞ� in the form

8 � 2 S
ðiÞ
þ : aout� ¼

X
�2SðiÞ�

	ðiÞ�, � ain� , ð30Þ

where,

	ðiÞ�, � ¼
1þ ei
iðkÞ

vi
� ��̂, � ð31Þ

and,

ei
iðkÞ ¼
1� ið�i=vikÞ

1þ ið�i=vikÞ
: ð32Þ

This can be written shortly as 	ðiÞ ¼ 2k=ðvikþ i�iÞE� 1 where E is a full matrix with
unit entries.
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It is not difficult to prove that the vi� vi symmetric matrix 	(i) is unitary, which
implies that the total outgoing probability current equals the total incoming
probability current, as stated (without proof) in a previous section. The matrices
	i will be referred to as the vertex scattering matrices. The simple topology allows us
to use the previous and the next vertex as indices of the vertex scattering matrix
instead of the corresponding directed bonds,

	ðiÞ
½ j, i �, ½i, j0� � 	

ðiÞ
jj0 ð33Þ

for all j, j 0 in the neighbourhood of i. We shall use both notations at convenience.
Consider as an example a Neumann vertex with v ¼ 2 and Sþi ¼ f�,�g. It follows

from (31) that 	�, �̂ ¼ 	�, �̂ ¼ 0, but 	�, �̂ ¼ 	�, �̂ ¼ 1. In other words, a v ¼ 2
Neumann vertex transmits waves without any reflection. This is consistent with a
previous remark that such vertices have no effect on the quantum dynamics on
graphs, and can be added or removed at will.

The vertex scattering matrices are the building blocks of much of the subsequent
theory, and they deserve some further discussion. The vertex scattering matrices
presented above are but one of many possible examples, and they can be constructed
to model various physical systems. For example, an engineer considers the graph as a
model of a network of wave-guides connected by junctions. In the ideal situation,
there is no dissipation at the junctions, and therefore the transmission and reflection
at the junctions are characterized by unitary scattering matrices. Their details
(such as their dependence on the frequency), reflect the particular way by
which the junction is designed and constructed. Also, the quantization procedure
of section 2 can be generalized in several ways. We shall dedicate the special
section 3.3 to present and discuss the most commonly used classes of vertex matrices
beyond the present quantization scheme. We place this section at the end of the
section not to interrupt the flow of the exposition.

3.2. The quantum evolution map

The graph is a network of connected vertices, and the waves are scattered between
them along the connecting bonds. When the graph is assembled from all its vertices
and bonds, it is important to remember that given two connected vertices i and j,
a directed bond � ¼ ½i, j� is outgoing from j, � 2 S

ðjÞ
þ but it is incoming to i, � 2 SðiÞ� .

That is, when Ci, j ¼ 1

½i, j� ¼ S
ðjÞ
þ

\
SðiÞ� and ½ j, i � ¼ SðjÞ�

\
S
ðiÞ
þ : ð34Þ

The wavefunction (26) on the bond b ¼ ði, jÞ was written down by adopting the
convention that xb¼ 0 at the vertex i – this choice emphasizes the vertex i as
the scattering centre. However, we can write the same wavefunction in terms of
the coordinate x

b̂
¼ Lb � xb, so that x

b̂
¼ 0 marks the vertex j,

 
b̂
ðx

b̂
; kÞ ¼ eþiAbxb̂þikxb̂aout½i, j� þ eþiAbxb̂�ikxb̂ âin½ j, i �: ð35Þ

Again, the wavefunction is expressed in terms of counter-propagating waves with
incoming and outgoing amplitudes with respect to vertex j. However, the magnetic
flux appears now with a different sign, as befits its rôle in the theory as the element
which breaks time reversal invariance. It is therefore only natural to consider the

Quantum graphs 541

D
ow

nl
oa

de
d 

by
 [

G
ot

he
nb

ur
g 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 1

3:
09

 0
7 

D
ec

em
be

r 
20

17
 



magnetic flux as a quantity which is associated with a directed bond, with A� ¼ �A�̂,
in contrast with the bond length which does not depend on orientation. Comparing
the two expressions (26) and (35) for the wavefunction on the bond b one can read off
that the outgoing amplitude at the starting vertex of a directed bond � ¼ ðb,!Þ and
the incoming amplitude at the next vertex differ by a phase factor

ainb,! ¼ eikLbþi!AbLbaoutb,! ð36Þ

which the wave acquires from one end to the other of the bond.
Equipped with all the above notations and remarks, we can now demand that the

bond wavefunctions (26) or (35) satisfy the continuity and the boundary conditions
(12) at all the vertices. This results in 2B homogeneous linear equations for the 2B
coefficients a� which can be written explicitly as

8� : ain� ¼
X
�

UBðkÞ�, �a
in
� , ð37Þ

where the sum over � is over all 2B directed bonds and the matrix UBðkÞ is written as

UBðkÞ ¼ TðkÞSðkÞ, ð38Þ

with TðkÞ, the bond propagation matrix, which is the diagonal 2B� 2B matrix

TðkÞðb,!Þ, ðb0,!0Þ ¼ �bb0�!!0e
iðkþ!AbÞLb : ð39Þ

The 2B� 2B-matrix SðkÞ contains the vertex scattering coefficients

S�0, �ðkÞ ¼
	ðiÞ�0,� if �0 follows � at vertex i,�0 2 F i �,

0 else:

(
ð40Þ

We will refer to S as the graph scattering matrix. A non-trivial solution of (37) exists
for the wavenumber k>0 for which

�BðkÞ � detð1� UBðkÞÞ ¼ 0: ð41Þ

�BðkÞ is another secular function, whose zeros define the spectrum of the graph.
In contrast with �hðkÞ, it involves a determinant of a matrix of larger dimension,
yet it has many advantages, the most outstanding is that �BðkÞ has no poles on the
real k axis, in contrast to �hðkÞ which has poles at the Dirichlet spectrum of the
graph. The �B-function can be thought of as the characteristic polynomial
det �1� UBðkÞð Þ ¼

P2B
j¼0 aj�

j. A consequence of the unitarity of UBðkÞ is

det �1� UBðkÞð Þ ¼ det
1

�
1� UB

y
ðkÞ

� �
det �UBðkÞð Þ�2B ð42Þ

which implies

aj ¼ a
2B�jdet �UBðkÞð Þ: ð43Þ

This identity is the analogue of the Riemann–Siegel ‘look-alike’ symmetry which
holds only approximately for spectral �-functions of chaotic quantum systems.
Other properties of �BðkÞ will be discussed as the theory is developed.
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The matrix UBðkÞ will be referred to as the quantum evolution map because of the
following reasons. Being an involution of two unitary matrices, it is unitary – which
is a basic requirement for a quantum map. The action of the map is a composition of
two successive operations: scattering followed by a propagation along the bonds:
The scattering map operates on incoming amplitudes at all the vertices and produces
the corresponding outgoing amplitudes. For finite �i > 0 the graph scattering matrix
depends on the wavenumber – for �i ¼ 0 and for some of the generalizations to
discuss later it becomes independent. The matrix TðkÞ propagates the outgoing
waves along the bonds and provides the correct phase for the next scattering
event. Starting with an arbitrary distribution of amplitudes ain� of waves with a
wavenumber k, one can examine the evolution of the wave pattern as a function
of the number n of scattering events by applying UB

n
ðkÞ to the initial distribution.

The consistency condition (37) can be interpreted as a requirement that at an eigen-
value of the graph, the wavefunction is stationary with respect to the quantum
evolution map – a very natural requirement. More care has to be taken for vanishing
wavenumber k¼ 0 where e�ikLb ! 1 is not propagating. That is, only the strictly
positive part of the spectrum kn>0 is equivalent to positive zeros of the secular
function while this one-to-one correspondence may fail at k¼ 0. The simplest exam-
ple for such a failure is the line of length L with Dirichlet boundary conditions, for
which �BðkÞ ¼ 1� ei2kL. Obviously �Bð0Þ ¼ 0 in this case, but k¼ 0 is not in the
spectrum. Note that for Neumann boundary conditions �BðkÞ is not changed but
now k¼ 0 is in the spectrum. Such ‘false zeros’ of the secular function at k¼ 0 appear
quite often. For instance, quantum graphs with Neumann boundary conditions have
a non-degenerate ground state at k¼ 0 which is just the constant function on the
graph and the secular function vanishes �Bðk ¼ 0Þ ¼ 0. In most topologies this is,
however, a highly degenerate zero of the secular function (for instance in all cases,
where all valencies are larger than two). In spite of this possible failure of the secular
function at k¼ 0 the graph scattering matrix S completely determines the boundary
conditions at all vertices of the graph and the complete evolution operator UBðkÞ
determines the complete spectrum if the limit k! 0 is considered correctly.y

So far we have shown that the condition (41) is equivalent to the boundary
conditions (12). However, with the above interpretation, we can obtain the spectrum
of a wider class of graphs, whose vertex scattering matrices are unitary matrices
derived or postulated in other ways, as discussed in the next section.

3.3. Examples of generalized vertex scattering matrices

In the quantization procedure of section 2 we have considered only boundary con-
ditions for which the wavefunction is continuous through each vertex and we have
given the most general account of them. The continuity condition may however be
relaxed, and more general boundary conditions corresponding to a self-adjoint

yThis limit has to take into account that for k ¼ 0 the general solution of the one-dimensional
Schrödinger equation (without magnetic field) is a linear function aþ bx. The rest is straight-
forward. In the following we will always imply a full knowledge of the quantum map when
referring to the condition (41) such that the oddities at k ¼ 0 can always be removed by the
correct limit. We will only come back to this point if it has some non-trivial consequences.
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operator on a metric graph have been derived for this case by Kostrykin and
Schrader [57]. Generalized boundary conditions at the vertex i can be written in
the form X

j

C
ðiÞ
j0j�ði, jÞðx

i
ði, jÞÞ þD

ðiÞ
j 0j

d

dxði, jÞ
�ði, jÞðx

i
ði, jÞÞ ¼ 0 ð44Þ

where the sum runs over all vertices j in the neighbourhood of i. The (k independent)
vi� vi matrices CðiÞ and DðiÞ can be chosen arbitrarily for each vertex, restricted only
by the conditions that (i) the vi � 2vi matrix ðCðiÞ,DðiÞÞ has maximal rank and
(ii) CðiÞDðiÞ

y
is Hermitian. It then follows that the Schrödinger operator on the

graph with these boundary conditions is self-adjoint. A small exercise gives the
corresponding vertex scattering matrices.

	ðiÞðkÞ ¼ ðikDðiÞ þ CðiÞÞ�1ðikDðiÞ � CðiÞÞ: ð45Þ

The vertex scattering matrices defined in this way are unitary and generally
k-dependent. With the given restrictions on CðiÞ and DðiÞ the matrices ikDðiÞ � CðiÞ

are always invertible [57]. However, the matrices DðiÞ and CðiÞ are in general not
invertible and the limits k! 0 and k!1 in (45) are non-trivial.

As an example, let us show that the boundary conditions from section 2 are a
subset of this generalized approach. Choosing the vi � vi matrices

CðiÞ ¼ ��i1 DðiÞ ¼ E ð46Þ

where Ejj0 ¼ 1 for each matrix element is equivalent to the boundary conditions (12)
and satisfies the conditions on CðiÞ and DðiÞ. The vertex scattering matrix
	ðiÞ ¼ �1þ 2k=ðvikþ i�iÞE given by (31) is easily seen to satisfy
ðikDðiÞ þ CðiÞÞ	ðiÞ ¼ ikDðiÞ � CðiÞ using the property E

2
¼ viE. In the limit �i ! 0 our

choice of CðiÞ and DðiÞ does not satisfy the required condition that ðCðiÞ,DðiÞÞ has
maximal rank. However, the choice of CðiÞ and DðiÞ is not unique and it is easy to
find a choice that works for �i ¼ 0. To be explicit, for vi¼ 3 choose

CðiÞ ¼
1 �1 0
0 1 �1
0 0 0

8<
:

9=
; DðiÞ ¼

0 0 0
0 0 0
1 1 1

8<
:

9=
;: ð47Þ

Here CðiÞDðiÞ
y
¼ 0 which is self-adjoint and it is obvious how to extend it to higher

valencies vi>3.
Instead of defining a self-adjoint Schrödinger operator one may as well quantize

a metric graph by requiring that a unitary quantum evolution operator of the form
UBðkÞ ¼ TðkÞSðkÞ exists. This is equivalent to assigning an arbitrary unitary vertex
scattering matrix 	ðiÞðkÞ to each vertex i. Such an arbitrary choice is in general not
equivalent to a self-adjoint Schrödinger operator on a metric graph with boundary
conditions specified by (44). With a little abuse of language physicists nonetheless
speak of boundary conditions which are defined by such arbitrary vertex scattering
matrices – and so will we in the sequel. While mathematically less satisfactory this is
a physically well motivated and well defined generalization. Physically, a vertex is
some scattering centre which may have some internal structure. While the details of
this internal structure are not relevant one just describes it through its unitary
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scattering matrix which ensures probability conservation (unitarity of the quantum
evolution map). The scattering at the vertex may or may not depend on the
wavenumber k depending on the internal structure of the vertex. In most physical
applications they are just chosen to be constant. In the remaining sections we
will stick to an arbitrary but k-independent choice just for simplicity. Note that
a k-independent choice is also mathematically satisfying. It has been shown by
Carlson [54] that such a choice defines a self-adjoint Schrödinger operator on a
(directed) metric graph. An example of a widely used vertex scattering matrix is
the Discrete Fourier Transform (DFT) matrix for which

	ðiÞ, DFT
jj0 ¼

1ffiffiffiffi
vi
p e2pi ðnðjÞnðj

0
ÞÞ=vi ð48Þ

where n( j) is a one-to-one mapping of the vi neighbouring vertices j to the numbers
0, 1, . . . , vi � 1. In contrast to a vertex with Neumann boundary conditions where
backscattering is favoured for large valency v>4 the scattering amplitudes of a
vertex with a DFT vertex scattering matrix has equal absolute value for all incoming
and outgoing bonds.

In other applications one may have a specific scattering system in mind (e.g. the
bonds that are connected to a vertex are really channels that couple to a quantum
billiard). Quite general vertex scattering matrices may also arise starting from a
quantum graph with Neumann boundary conditions. In that case one may define
a composite vertex which combines some subset of the vertices of the graph and
combines them to a single one. This may simplify the topology (or calculations)
considerably. For the new composite vertex one may derive a vertex scattering
matrix by eliminating all bonds that now belong to the internal structure. As a simple
example let us look at a composite vertex defined by replacing

s (j)

s (i)

a

scomp

where one bond of length a is eliminated. For Neumann boundary conditions
	ðjÞ ¼ 1 and 	ðiÞ ¼ 2

3E3 � 13 one gets the k-dependent composite vertex
scattering matrix

	comp
¼

1

3þ ei2ak

ei2ak � 1 2ðei2ak þ 1Þ

2ðei2ak þ 1Þ ei2ak � 1

( )

¼ �12 þ E2

2

3
þ
2

3

ei2ak

1þ ð1=3Þei2ak
2

3

 !
: ð49Þ

Here, we have written the last line in such a way that an interpretation in terms of
trajectories is apparent. The first two terms �12 þ

2
3E2 describe direct processes for

which the particle does not visit the eliminated bond. In the third term the two
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factors 2=3 are the amplitudes for entering and exiting the eliminated bond and the
factor

ei2ak

1þ 1
3 e

i2ak
¼ ei2ak

X1
n¼0

�
1

3
ei2ak

� �n

ð50Þ

is a geometric sum over trajectories for which the particle is scattered back to the
eliminated bond n times.

Eliminating bonds by defining composite vertices is very useful in numerical
calculations (it reduces the matrix dimension), and also in analytical approaches.
For instance, if there is a length-scale separation between small bond lengths inside
the composite vertex and large bond lengths in the rest of the graph like in

s (2)

s (1)

s (3)

s comp

the vertex scattering matrix of the composite vertex will weakly depend on the
wavenumber k.

4. Classical evolution on graphs

So far we discussed graph dynamics from a quantum mechanical point of view.
At the present stage, we would like to study graphs from a different point of view,
which provides the classical counterpart of the quantum theory [117, 132, 168].
Usually, the connection between the quantum and the classical description is
provided by quantizing a classical system. Here, we take the process in the reverse
direction, for reasons which will be explained below.

4.1. Classical phase-space and transition probabilities

Given a graph, we consider a classical particle which moves freely as long as it is on
any of the bonds. The vertices are singular points, and it is not possible to write
down the analogue of the Newton equations at the vertices. To circumvent this
intrinsic difficulty we employ a Liouvillian approach, based on the study of
the evolution of phase-space densities. The phase space evolution operator assigns
transition probabilities between phase space points, and it is the classical analogue of
the quantum evolution operator. We shall employ this analogy to construct the
classical dynamics. For this purpose, we should first establish what is the graph
classical phase-space, and second, construct the classical analogue of the quantum
evolution operator.
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The phase-space description will be constructed on a Poincaré section which is
defined in the following way. Crossing of the section is registered as the particle
encounters a vertex, thus the ‘coordinate’ on the section is the vertex label.
The corresponding ‘momentum’ is the direction at which the particle emerges
from the vertex. This is completely specified by the label of the next vertex to be
encountered. In other words,

position
momentum

� �
()

vertex index
next index

� �
� ðb,!Þ: ð51Þ

The set of all possible vertices and directions is equivalent to the set of 2B directed
bonds. Thus, the classical phase space densities are defined on the same space as the
corresponding quantum evolution map.

The evolution on the Poincaré section is described in discrete time steps
(topological time) and is well defined once we postulate the transition probabilities
P
ðiÞ
�0 � 	 0 between the directed bonds � and �0 where �0 follows � at the vertex i,
�0 2 F i�. Probability conservation then requiresX

�0:�02F i�

P
ðiÞ
�0 � ¼ 1 ð52Þ

for all �.
For a general classical dynamics (Markov process) on a graph one may postulate

any transition probabilities P
ðiÞ
�0 � 	 0 that satisfies (52). To construct the classical

analogue of the quantum graphs, we choose the classical transition probabilities to
be equal to the quantum transition probabilities, expressed as the absolute squares
of the UB matrix elements

P
ðiÞ
�0 � ¼ 	ðiÞ�0, �ðkÞ

��� ���2: ð53Þ

In addition to the general condition (52) the transition probabilities on a quantum
graph also satisfy X

�:�̂2F i�̂
0

P
ðiÞ
�0 � ¼ 1 ð54Þ

for all �0 because the 	(i) are unitary.
As examples, we quote explicitly the transition probability which correspond

to a DFT, Neumann and Dirichlet vertex scattering matrices.

P
ðiÞ
�0 � ¼

1

vi
for a DFT vertex scattering matrix,

1�
4

vi

� �
��̂, �0 þ

4

v2i
for Neumann boundary conditions,

��̂, �0 for Dirichlet boundary conditions.

8>>>>><
>>>>>:

ð55Þ

In the DFT case a particle on a directed bond � 2 SðiÞ� is scattered with equal
probability to all outgoing bond �0 2 S

ðiÞ
þ . In contrast, for Neumann boundary

conditions at a vertex of high valency vi>4 backscattering �0 ¼ �̂ is strongly
favoured. One may thus expect that the classical decay of correlations is much faster
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in a graph with DFT vertex scattering matrices compared to a Neumann graph.
The transition probability for the Dirichlet case admits the following physical inter-
pretation. The particle is confined to the bond where it started and thus the phase
space is partitioned to non-overlapping components (‘tori’, since the dynamics on
each bond is periodic). Thus, the Dirichlet boundary conditions correspond to an
integrable classical analogue.

In general, a graph is dynamically connected if the directed bonds cannot be split
into two non-empty subsets such that all transition probabilities to go from one set
to the other vanish. Dynamical connectivity for quantum graphs may equivalently be
defined via the scattering amplitudes 	ðiÞ�,�0 .

4.2. The classical evolution operator

The transition probabilities P
ðiÞ
�0 � can be combined into a 2B� 2B matrix in the

same way that the vertex scattering matrices have been used to construct the graph
scattering matrix. This defines the classical evolution operator (also called
Frobenius–Perron operator)

M�0, � ¼ S�0, �
�� ��2¼ UB�0, �ðkÞ�� ��2¼ j	ðiÞ�0, �j

2 if �0 2 F i�,

0 else:

(
ð56Þ

M does not involve any metric information on the graph, and for Dirichlet or
Neumann boundary conditions it is independent of k. The evolution is a discrete
Markov process with transition probabilities M�0, �. The unitarity of the quantum
evolution map UBðkÞ guarantees that M is a bistochastic matrix (also known as
doubly stochastic matrix) which meansX

�

M�0, � ¼
X
�0
M�0, � ¼ 1 and 0 �M�0, � � 1: ð57Þ

Bistochastic matrices that are defined by a unitary matrix in the form (56) are also
called unistochistic matrices.y These properties of the classical evolution map are
equivalent to the conditions (52) and (54) which ensure probability conservation.

If 
�ðnÞ 	 0 denotes the probability to occupy the directed bond � at the
(topological) time n, then we can write down a Markovian Master equation for
the classical density:

qðnþ 1Þ ¼ MqðnÞ, ð58Þ

with the 2B-dimensional vector q ¼ ð
1, . . . , 
2BÞ. The total probability to be
anywhere on the graph is unity thus

kqk �
X
�


� ¼ 1: ð59Þ

yIn general unistochastic matrices are a subset of bistochastic matrices. A unistochastic matrix
defines a Markov process which, can be quantized (though not uniquely) [169–171].
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From the bistochastic property of M follows that the uniformly distributed
density on the directed bonds


inv� ¼
1

2B
ð60Þ

is invariant under the classical evolution

q
inv
¼Mq

inv: ð61Þ

In most cases there exists only one invariant probability distribution. It then follows
that the Markov process is ergodic which means that the time average of any classical
observable f 2 R

2B (that is, f� is the value of the observable on the directed bond �)
is equal to an average over the invariant uniform probability distribution

lim
N!1

1

Nþ 1

XN
n¼0

f � Mnqð0Þ ¼ f � qinv �
X
�

f�
2B

ð62Þ

for every initial distribution qð0Þ. This is equivalent to the statement that
the time averaged occupation probability on a directed bond � is uniformly
distributed over �

lim
N!1

1

Nþ 1

XN
n¼0

q�ðnÞ ¼
1

2B
: ð63Þ

This is not a very strong statement on the classical dynamics of a graph. It is known
that the classical dynamics for every dynamically connected graph is ergodic [168].
A Markov process may have the stronger dynamical property of being mixing which
is defined by

lim
n!1
M

nqð0Þ ¼ qinv ð64Þ

for any initial probability distribution qð0Þ.
The properties of the graph which determine whether it is ergodic or mixing are

encoded in the classical spectrum �‘, ‘ ¼ 1, . . . , 2B which is defined by

M�‘ ¼ �‘�‘: ð65Þ

The classical spectrum is restricted to the interior of the unit circle j�‘j � 1 and �1 ¼ 1
corresponds to the uniform distribution �1 ¼ qinv. Any probability distribution can
be written in the form

q ¼
X2B
‘¼1

a‘�‘ ð66Þ

and a1¼ 1. For �‘ 6¼ 1 one has k�‘k ¼
P

� ��, ‘ ¼ 0 due to the probability conserva-
tion of the dynamics.

Ergodicity implies that �1 ¼ 1 is the only unit eigenvector. Thus, there is a
spectral gap

�g ¼ min
‘¼2,..., 2B

1� �‘
�� �� � 1

nerg
ð67Þ
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which determines the time-scale nerg on which the left-hand side of (63) decays to the
uniform distribution. Thus, ergodicity allows for eigenvalues on the unit circle
�‘ ¼ ei which are damped by the time average. In practice, such eigenvalues are
non-generic – however there are some examples, such as star graphs which have an
eigenvalue � ¼ �1.y

If there is no eigenvalue on the unit circle apart from �1 ¼ 1 all non-uniform
modes of the probability distribution decay

M
nqð0Þ ¼ qinv þ

X2B
‘¼2

�n‘a‘�‘ �!
n!1

qinv ð68Þ

and the dynamics is mixing. The rate at which equilibrium is approached is
determined by the gap

~�g ¼ min
‘¼2,..., 2B

1� j�‘j �
1

nmix
ð69Þ

between the next largest eigenvalue and 1. In general ergodicity sets in faster than
mixing nerg < nmix.

We shall end this section by showing how the trajectories which we defined
formally in section 1.1 acquire a dynamical significance, and emerge naturally in
the classical framework developed above.

The classical probability to make a transition from a directed bond � to a
directed bond � after n steps equals

ðM
n
Þ�, � ¼

X
t2T nð�,�Þ

V�, �ðtÞ ð70Þ

where the sum extends over the set T nð�,�Þ of trajectories which start at � and get
to � in n steps, and

V�, �ðtÞ ¼
Yn�1
s¼1

M�sþ1, �s ð71Þ

are the classical weights or probabilities contributed by the trajectory t to the transi-
tion probability. This form of the transition probability emphasizes the similarity
between the classical dynamics on a graph and the evolution under Hamiltonian
maps.

One of the characteristic features of chaotic (mixing) classical dynamics is the
exponential proliferation of the number of classical trajectories which connect the
same initial and final points as the transition time increases. This property is also
shared by the trajectories on the graphs. This follows immediately from the fact that
we have a natural code – the sequence of directed bonds – which associates a string of

yStar graphs are an example of bipartite graphs for which the directed bonds can be split into
two non-empty sets and the transition probabilities within each of the two sets vanish. For star
graphs due to its topology there is no transition from any outgoing (incoming) bond to
another outgoing (incoming) bond. One may easily construct other examples which rely on
the dynamical connectivity as well. Dynamically connected star graphs are generally mixing if
the classical dynamics is defined on bonds instead of directed bonds as in sections 8 and 9.
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numbers with a trajectory t ¼ ð�1, . . . ,�nÞ (by numbering the directed bonds from
1 to 2B), and a connectivity matrix which established a Markovian grammar on the
codes. In the language used in the theory of dynamical systems this is a Bernoulli
code, which in Hamiltonian systems guarantees chaotic dynamics (see [172, 173] for
more details). On a simple graph, the sequence of vertices is often used to define an
alternative (equivalent) Bernoulli code.

4.3 The return probability and a classical sum rule

Of prime importance in the discussion of the relation between the classical and the
quantum dynamics are the traces

un ¼ trMn
¼
X2B
�¼1

ðM
n
Þ�, �: ð72Þ

This is the return probability – the classical probability to perform n-periodic motion.
The mean probability to return is un=2B. For mixing dynamics where only one
eigenvalue � is on the unit circle, one has

un ¼
X2B
‘¼1

�n‘ �!
n!1

1: ð73Þ

Following the discussion at the end of the previous section, un can also be written
as a classical sum over closed trajectories of length n. The classical weight of a closed
trajectory tc with a code ð�1, . . . ,�n,�1Þ is the product

Vtc ¼
Yn
s¼1

M�sþ1, �s ð74Þ

where �nþ1 � �1. The weight can be interpreted as the probability to remain on the
trajectory. Any cyclic permutation of the bond indices in the code of a closed
trajectory is also a closed trajectory with identical classical weight. Hence, instead
of summing over closed trajectories, we may express the return probability as a sum
over periodic orbits. A code of an n-periodic orbit can be written as a repetition of
primitive codes whose lengths np divides n. The set of all the primitive orbits which
build n periodic orbits will be denoted by PðnÞ. Denote the weight of a primitive orbit
p by Wp. Then, each primitive orbit contributes to the return probability a term
which consists of its weight taken to its r power, multiplied by np ¼ n=r,

un ¼
X

p2PðnÞ

npðWpÞ
r

ð75Þ

This is a basic formula in all our subsequent discussion and it deserves a few
comments.

The weights Wp can also be defined for codes which violate the dynamical
connectivity, by assigning them the value Wp¼ 0. Sums over periodic orbits that
involve the weight as a factor can immediately be replaced by sums over all arbitrary
cyclic codes for this reason.

The code gives rise to a variety of classifications of periodic orbits. For instance,
a periodic orbit is either reducible or irreducible. An irreducible periodic orbits visits
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each directed bond at most once. All directed bonds appearing in its code are
different �i 6¼ �j. The maximal period of an irreducible periodic orbit is nmax ¼ 2B.
All other periodic orbits are reducible, that is at least one directed bond is visited
more than once. All periodic orbits of period larger 2B are reducible.y Reducible
orbits have the remarkable property that their weights can be written as products of
weight of shorter orbits Wp ¼Wp1Wp2 .

We are now equipped with the background to obtain a classical sum-rule
for mixing dynamics by substituting a periodic-orbit expansion of un. Combining
(73) and (75) we getz

un ¼
X

p2PðnÞ

npðWpÞ
r
�!
n!1

1: ð77Þ

This sum rule is analogous to the Sinai–Bowen–Ruelle [174–176] sum rule for
classically chaotic dynamics (in the physics literature also known as the
Hannay–Ozorio de Almeida sum rule [177]). The weights Wp are the counterparts
of the stability weights jdetðI�MpÞj

�1 for hyperbolic periodic orbits in Hamiltonian
systems, where Mp is the monodromy matrix. Graphs, however, are one dimensional
and the motion on the bonds is simple and stable. Ergodic or mixing dynamics
is generated, because at each vertex a (Markovian) choice of one out of v directions
is made. Thus, chaos on graphs originates from the multiple connectivity of the
(otherwise linear) system.

Using the expression (77) for un one can easily write down the complete
thermodynamic formalism for the graph. Here, we shall only quote the periodic
orbit expression for the Ruelle �-function

�RðzÞ � detð1� zMÞ�1 ¼ e�tr ln ð1�zMÞ ¼ e
P

n
ðzn=nÞun

¼
Y
p

1

1� znp expð�np�pÞ
� � ð78Þ

yThe definition of reducible and irreducible periodic orbits depends on the code which is used
to define a periodic orbit unambiguously. For a simple graph one may use the the sequence of
vertices p ¼ i1i2 � � � in as a code (symbolic dynamics) which uniquely defines a periodic orbit. In
the directed bond code the same orbit is given by p ¼ ½i2; i1�; ½i3; i2�; . . . ; ½i1; in�. Irreducible
periodic orbits with respect to the vertex code (vertex-irreducible periodic orbits), do not
intersect at any vertex such that all ij are different. Our definition which is based on the
directed bond code is not equivalent to the one based on the vertex code. In general, there
are bond-irreducible orbits of period n > V and the latter cannot be vertex-irreducible. Both
codes have their advantages and disadvantages. The vertex code has the advantage of a
smaller number of symbols and a grammar which is readily encoded in the connectivity
matrix. In the present context the grammar is less relevant since a code which does not
correspond to a periodic orbit has zero weight. The advantage of using the bond code to
define reducible orbits, is that weights of reducible orbits are products of weights of non-
irreducible orbits.
zIn the non-mixing case a dynamically connected graph is ergodic. With an additional time
average over an interval �n� n one then gets the sum rule

1

�n

Xnþ�n�1

n0¼n

un0 ¼
1

�n

X
p:n�rpnp<nþ�n

npW
rp
p �!

n,�n!1
1: ð76Þ
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where the product extends over all primitive periodic orbits p and we have
set Wp ¼ e�np�p . The Ruelle �-function is an important tool to analyse dynamical
systems [172, 173].

5. Spectral theory for quantum graphs

Trace formulae are an important tool in spectral theory. They express spectral
sums in terms of sums over periodic orbits of the underlying classical dynamics.
In this section our main goal is to introduce the trace formula for the density
of states of a quantum graph. The first trace formula for a quantum graph was
derived by Roth [40, 41] who showed that a spectral determinant (which can be
interpreted as a variant of the secular function �BðkÞ) can be written as a sum over
periodic orbits. The trace formula for the density of states goes back to Kottos and
Smilansky [116, 117] and is formulated in analogy to the semiclassical Gutzwiller
trace formula [118, 119] for chaotic (hyperbolic) Hamiltonian quantum systems.
In contrast to the latter, the trace formula for quantum graphs is exact. Apart
from the density of states we will also discuss how other spectral functions are related
to sums over periodic orbits.

The starting point for the derivation is the secular function �BðkÞ which is
expressed in terms of the quantum evolution map UBðkÞ (see section 3). Thus,
the boundary conditions at the vertices are defined by a given set of vertex scattering
matrices and the wavefunctions are not necessarily continuous across a vertex.
Without loss of generality we will restrict the discussion to dynamically connected
quantum graphs of simple topology. If the graph is not dynamically
connected (e.g. a graph with Dirichlet boundary conditions) the graph can be
divided into subgraphs which have independent spectra and wavefunctions – that
is, the complete spectrum is the superposition of the independent spectra. For sim-
plicity, we will also assume throughout this section that the vertex scattering matrices
do not depend on the wavenumber k (the generalization to k dependent scattering
matrices follows in a straightforward way).

5.1. The density of states and the counting function

If {kn} (n 2 N) is the spectrum of a quantum graph (degenerate eigenvalues appear
according to their multiplicity) we define the density of states as

dðkÞ ¼
X1
n¼1

�ðk� knÞ: ð79Þ

The spectral counting function which provides the number of eigenvalues kn which
are smaller than k is given by the integral

NðkÞ ¼ ðkÞN0 þ lim
�!0þ

ðk
�

dk0dðk0Þ ¼
X1
n¼1

ðk� knÞ, ð80Þ
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where N0 is the number of eigenvalues at k¼ 0 and

ðkÞ ¼

0 for k < 0

1=2 for k ¼ 0

1 for k > 0

8>><
>>: ð81Þ

is the Heaviside step function. The limit �! 0þ is needed only when N(k) is com-
puted at k! 0, and it ensures that limk!0 NðkÞ ¼ N0. When the secular function
�BðkÞ does not have a zero at k¼ 0 and N0¼ 0 one can set �¼ 0 from the start in the
following discussion.

We will now express the counting functions N(k) in terms of the secular function
�BðkÞ ¼ det ð1� UBðkÞÞ. To this end, we introduce the eigenvalues fei�‘ðkÞg
(‘ ¼ 1, 2, . . . , 2B) of the quantum evolution map UBðkÞ at fixed wavenumber k and
first discuss some of their properties. The phases �‘ðkÞ are important in the present
context since the quantization condition �BðkÞ ¼ 0 is equivalent to the requirement

�‘ðkÞ ¼ 2pz with z ¼ 0, 1, 2, . . . ð82Þ

for one of the �‘ðkÞ. Each of the quantization conditions (82) yields a discrete subset
fkð‘Þn g � fkng of the complete spectrum and this subset is free of degeneracies since
d�‘=dk > 0. Indeed, a direct computation reveals that

d�‘
dk
¼
XB
b¼1

Lb ja
ð‘Þ
ðb,!ÞðkÞj

2
þ ja

ð‘Þ
ðb,�!ÞðkÞj

2
� 	

> 0, ð83Þ

where a
ð‘Þ
ðb,!Þ are the components of the ‘ eigenvector. This proof of the monotonic

increase of the eigenphases depends crucially on the assumption that the vertex
scattering matrices are independent of k. It follows immediately that the maximal
degeneracy in a quantum graph is 2B. Direct inspection shows Lmin �

d�‘=dk � Lmax where Lmin (Lmax) is the smallest (largest) bond length, andP2B
‘¼1 d�‘=dk ¼ 2BL where L ¼ 1

B

PB
b¼1 Lb is the mean bond length. For Neumann

graphs with rationally independent bond lengths a much stronger statement has been
proven: their spectra are generically devoid of degeneracies [178].

We also note that UBðkþ i�Þ is subunitarity for any finite �>0. That is,
jei�‘ðkþi�Þj < 1. This is an immediate consequence of the obvious subunitarity of the
bond propagator Tðkþ i�Þ.

A counting function for the subspectrum fkð‘Þn g is obtained through the corre-
spondence to the zeros of the real function sinð�‘ðkÞ=2Þ. A sum over step functions
at the (strictly positive part of the) subspectrum can thus be written as

X
n

ðk� kð‘Þn Þ ¼ �
1

p
Im ln sin

�‘ðkþ i�Þ

2
� ln sin

�‘ð�Þ

2

� �
ð84Þ

where the limit �! 0þ is always implied. The �-shift ensures that the complex
number sinð�nðkþ i�Þ=2Þ rotates counterclockwise around the origin of the complex
plane. The term ln sinð�nð�Þ=2Þ ensures that one starts to count at zero and � has
been set to zero to indicate that the limit �! 0þ has to be performed before the
limit �! 0þ.
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The full counting function is obtained by summing over all 2B subspectra. Using
sinð�‘ðkÞ=2Þ ¼

i
2 e
ð�i�‘ðkÞ=2Þð1� eði�‘ðkÞ=2ÞÞ we get,

NðkÞ ¼N0 þ
1

2p
Im ln det

UBðkþ i�Þ

UBð�Þ
�

1

p
Im ln

�Bðkþ i�Þ

�Bð�Þ

¼N0 þ
BL

p
kþ

1

p
Im ln �Bð�Þ �

1

p
Im ln �Bðkþ i�Þ: ð85Þ

We have used the assumption that the vertex scattering matrices do not depend on k
in the second line.

The counting function can be decomposed into a smooth term (the so-called
Weyl term) and an oscillatory term

NðkÞ ¼ NWeyl
ðkÞ þNosc

ðkÞ: ð86Þ

The smooth term is given by

NWeyl
ðkÞ ¼

BL

p
kþNWeyl

ð0Þ ð87Þ

where the first term BL=pk describes the linear increase of the counting function
and

NWeyl
ð0Þ ¼ N0 þ

1

p
Im ln �Bð�Þ: ð88Þ

is a constant that depends on the boundary conditions at the vertices. This constant
ensures that the complete counting reduces to N0 at k ¼ �. When one wants to
calculate NWeyl

ð0Þ from (88) one should be aware that the logarithm is a multivalued
function and it is not always obvious which is the correct sheet. The correct sheet can
be identified by the condition 1=K

ÐK
0 dkðNWeyl

ðkÞ �NðkÞÞ ! 0 which just means
that the difference is oscillating around zero with a bounded amplitude. For general
UBð0Þ the shift NWeyl

ð0Þ can take real values. In many cases (e.g. for Neumann
boundary conditions) UBð0Þ ¼ S is a real unitary matrix. Then, NWeyl

ð0Þ is some
half-integer number. This can be calculated directly by observing that all eigenvalues
of S with non-vanishing imaginary part appear in complex conjugated pairs such
that their contributions cancel each other. Real eigenvalues take the values �1. �1
does not contribute since the imaginary part of ln 1� ð�ei�Þ vanishes for �! 0.
Only eigenvalues þ1 contribute ð1=pÞIm ðln1� ei�Þ � ð1=pÞIm lne�ip=2� ¼ �1=2 and
NWeyl

ð0Þ ¼ N0 � z=2 where z is the number of unit eigenvalues.
The linear dependence of NWeyl

ðkÞ on k is a consequence of the fact that the
graph is a one-dimensional object. The fact that it is not simply connected appears
only in the oscillatory part of the counting function – the second term in (86)

Nosc
ðkÞ ¼ �

1

p
Im ln �Bðkþ i�Þ: ð89Þ

The oscillations are bounded by the number of bonds jNosc
ðkþ i�Þj � B.

Equation (89) will be the starting point for our derivation of the trace formula in
section 5.2.
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It is now straightforward to derive the density of states by differentiation with
respect to k as a sum

dðkÞ ¼ dWeyl
ðkÞ þ d osc

ðkÞ ð90Þ

of a smooth Weyl term

dWeyl
ðkÞ ¼

BL

p
ð91Þ

and an oscillatory part

d osc
ðkÞ ¼ �

1

p
d

dk
Im ln �Bðkþ i�Þ: ð92Þ

5.1.1. The spectrum of the quantum evolution map. The 2B eigenvalues ei�‘ðkÞ of the
quantum evolution map UBðkÞ at fixed k can also be used to define a density and
a corresponding counting function which will turn out to be interesting objects in
their own right. We define the density of eigenphases as

~dð�; kÞ ¼
X2B
‘¼1

�2pð�� �‘ðkÞÞ ð93Þ

and the eigenphase counting function as

~Nð�; kÞ ¼ ~N0ð�Þ þ

ð�
�

d�0 ~dð�0; kÞ ¼
XN
n¼1

X1
�¼0

ð�� �nðkÞ þ 2p�Þ: ð94Þ

In (93) �2pð�Þ ¼
P1

�¼�1 �ð�þ 2p�Þ denotes the 2p-periodic �-function.
In complete analogy to the derivation for the spectral counting function above

one may write

~Nð�; kÞ ¼ ~NWeyl
ð�; kÞ þ ~Nosc

ð�; kÞ ð95Þ

and express the smooth and oscillatory parts in terms of the �-dependent secular
function

�Bð�; kÞ ¼ det ð1� e�i� UBðkÞÞ: ð96Þ

As a result one obtains

~NWeyl
ð�; kÞ ¼

B

p
�þ ~N0 �

1

p
Im ln �Bð�, kÞ ð97Þ

for the smooth part, and

~Nosc
ð�; kÞ ¼

1

p
Im ln �Bð�� i�, kÞ ð98Þ

for the oscillating part. These expressions for the eigenphase counting function can
alternatively be derived using Poisson’s formula. Note that the second term of the
Weyl part � 1

p Im ln �Bð�, kÞ is independent of �, however, as a function of k it can
oscillate with a maximal amplitude of B.

The smooth Weyl part of the density of eigenphases

~dWeyl
ð�; kÞ ¼

B

p
ð99Þ
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is consistent with having 2B eigenvalues distributed in an interval of length 2p.
Finally, the oscillating part of the density of eigenphases is given by

~doscð�; kÞ ¼
1

p
d

d�
Im ln �Bð�� i�, kÞ: ð100Þ

5.2. Periodic orbits and the trace formula

We will now consider the oscillating parts of the spectral functions N(k) and d(k)
from a periodic-orbit perspective. One of the reasons for the interest in quantum
graphs in the quantum chaos community is the analogy of an exact trace formula for
quantum graphs to Gutzwiller’s semiclassical trace formula for the density of states
of chaotic Hamiltonian systems. While there is no underlying deterministic classical
dynamics for graphs they still display the generic behaviour of chaotic Hamiltonian
systems. At the same time they are less resistant to either rigorous or numerical
approaches.

The logarithm of the secular equation appearing in (89) can directly be written
in terms of traces of powers of the quantum evolution map

ln detð1� UBðkÞÞ ¼ tr lnð1� UBðkÞÞ ¼ �
X1
n¼1

1

n
trUB

n
ðkÞ: ð101Þ

We can now follow the path we used in section 4.3 to compute the classical return
probability un ¼ trMn in terms of periodic orbits. The result is again a sum over
primitive periodic orbits [117]

Nosc
ðkÞ ¼

1

p
Im

X1
n¼1

1

n
trUB

n
ðkþ i�Þ

¼ Im
X
p

X1
r¼1

1

p r
A

r
pe

irLpðkþi�Þþir�p

¼
X
p

X1
r¼1

1

p r
jApj

r sin rðLpkþ�p þ �pÞe
�Lp�: ð102Þ

In the second line we have introduced the sum over all primitive periodic orbits p of
the graph and their repetitions r. Here, Lp �

Pnp
l¼1 Lbl is the length of the primitive

periodic orbit p ¼ �1, . . . ,�np ,

Ap ¼ jApje
i	p � S�1�np S�np�np�1 . . .S�2�1 ð103Þ

is the quantum amplitude of the primitive orbit defined as the product of all
scattering amplitudes along the orbit, and

�p̂ ¼
Xnp̂
l¼1

A�l ¼
Xnp̂
l¼1

!lAbl ð104Þ

is the overall magnetic flux through the periodic orbit. The step from the first line
of (102) to the second is performed by collecting all contributions to the n-th
trace that stem from the same primitive periodic orbit such that n ¼ rnp. After a
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resummation over the repetitions r in the second line of (102) the oscillatory part
of the counting function can be expressed as

Nosc
ðkÞ ¼ Im

1

p

X
p

ln 1�Ape
iLpðkþi�Þþi�p

� 	
: ð105Þ

It should be noted that these period-orbit sums are not absolutely convergent due to
the exponential proliferation of periodic orbits. That is, the number of periodic orbits
of period n grows exponentially in n. Absolute convergence is only obtained for
complex k beyond an entropy barrier Im k > �crit. For real k the limit �! 0 implies
that the infinite sum over periodic orbits is ordered with respect to the length rLp of
the periodic orbit.

The derivative of (102) with respect to k leads to the, equally exact, trace
formula

doscðkÞ ¼ Re
X
p

X1
r¼1

Lp

p
A

r
pe

irLpðkþi�Þþir�p

¼
X
p

X1
r¼1

Lp

p
jApj

r cos rðLpkþ�p þ 	pÞe
�Lp�

¼ Re
X
p

Lp

p
Ape

iLpðkþi�Þþi�p

1�Ape
iLpðkþi�Þþi�p

ð106Þ

for the oscillatory part of the density of states. Instead of the sum over primitive
periodic orbits and its repetitions, one may combine the two sums in a single sum
over all periodic orbits doscðkÞ ¼ Re

P
pðLpAp=prpÞe

iLpk. In that case Ap is the
amplitude of the full orbit, and Lp its full length while the primitive length is
Lp / rp where rp is the repetition number of the periodic orbit. Note that the classical
probability to stay on a periodic orbit (74) is just the absolute square of the quantum
amplitude

Wp ¼ jApj
2: ð107Þ

Comparing the trace formula (106) to the Gutzwiller trace formula reveals a
complete analogy.

5.2.1. Trace formulae for the eigenphase spectrum. The oscillatory parts of the
spectral functions ~Nð�; kÞ and ~dð�; kÞ for the eigenphase spectrum of quantum
evolution map at fixed wavenumber k can be written in terms of primitive periodic
orbits in an analogous way. This leads to the trace formulae

~Nosc
ð�; kÞ ¼ �Im

X
p

X1
r¼1

1

p r
A

r
pe

ir Lpkþ�p�rnpð��i�Þð Þ ð108Þ

and

~doscð�; kÞ ¼ Re
X
p

X1
r¼1

np

p
A

r
pe

ir Lpkþ�p�npð��i�Þð Þ: ð109Þ
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5.3. The length spectrum and the quantum-to-classical duality

The trace formula (106) for the density of states may be written in the form

dðkÞ ¼ Re

ð1
��

dL AðLÞeikL ð110Þ

where �! 0 will always be implied, and

AðLÞ ¼
BL

p
�ðLÞ þ

1

p

X
p

X1
r¼1

LpA
r
pe

ir�p�ðL� rLpÞ ð111Þ

is a sum over primitive periodic orbits and their repetitions plus a zero length
contribution (related to the Weyl term) that is proportional to the length BL of
the graph. The complex function AðLÞ is a weighted sum over �-functions
located at the length spectrum {Lp} (and their repetitions). This reveals a
quantum-to-classical duality between the length spectrum {Lp} and the spectrum
fkng of the quantum graph. The relation may also be inverted

AðLÞ ¼
1

p

ð1
��

dk dðkÞe�ikL ¼
1

p

X
kn

e�iknL: ð112Þ

The length spectrum is highly degenerate. This follows from the fact that the length
of any periodic orbit of period n is an integer combination of the bond lengths

Lp ¼
XB
b¼1

qbLb qb ¼ 0, 1, 2, . . . , ð113Þ

with
PB

b¼1 qb ¼ B. Periodic orbits with the same length differ only in the order by
which the bonds are traversed. Note that not every combination of integers qb is
consistent with the connectivity of the graph. The degeneracy class will be denoted by
the vector fqg where q ¼ ðq1, . . . , qBÞ. For star graphs the degeneracies are maximal,
only even qb are allowed by the connectivity without any further restriction.

The presence of the exact ‘quantum-to-classical’ duality imprinted by the relation
between the length spectrum {Lp} and the quantum spectrum {kn} has been used
efficiently in the context of isospectrality. In a variant of Kac’ famous question
‘Can one hear the shape of a drum?’ [179] one may ask the question if there are
topologically or metrically different quantum graphs which have the same spectrum
{kn} [93]. Such graphs are called isospectral. Kac’ question can be reformulated as
‘Can one hear the shape of a graph?’. Exploiting the quantum-to-classical duality an
affirmative answer has been proven in [97] if the class of graphs is restricted to simple
topologies and rationally independent bond lengths. In contrast, if the restriction of
rationally independent bond lengths is dropped, a lot of examples of isospectral
graphs are known today. Still, isospectrality is not understood in sufficient detail.
Recently, it has been asked [180] how one may resolve isopectrality for quantum
graphs by adding non-trivial additional information such as nodal counting [146].
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5.4 The secular function is a f-function

Let us set tp ¼ Ape
ikLp for a primitive orbit p. For a fixed primitive orbit p the sum

over repetitions r in the trace formula for the counting function (103) can easily be
performed

P1
r¼1 t

r
p=r ¼ �lnð1� tpÞ. Summing over all primitive periodic orbits and

comparing to (102) then leads to the exact expression

�Bðkþ i�Þ ¼
Y
p

1� tp
� �

ð114Þ

for the secular function, a truly remarkable identity. The expression on the left-hand
side is defined as the determinant of 1� UBBðkÞ. As such, when expanded in
periodic orbits it has contributions from irreducible periodic orbits only [181].
A superficial look on the right-hand side could lead to the conclusion that it involves
all possible multiples of periodic orbits and their repetitions. This apparent paradox
is resolved by observing that there is an exact cancellation mechanism which is
responsible for the identity of the left and right-hand sides. From this follows that
a truncation of the infinite product or an approximation of any of the terms tp leads
to systematic errors and therefore has no practical advantage for graphs. This con-
trasts the situation in the analogous semiclassical trace formulae where shadowing of
periodic orbits is the analogue of the exact cancellations mentioned above.
Nevertheless, for pedagogical reasons mainly, we shall investigate (114) further.

The similarity to the Euler product formula for the Riemann �-function
�RiemannðsÞ ¼

Q
primes: n 1� 1=ð1� nsÞð Þ justifies the letter � by which the secular

function is denoted. The product over primitive periodic orbits in the secular
function corresponds to a product over primes in the Riemann �-function.
Like the periodic-orbit sum the infinite product on the right-hand side of (114) is
absolutely converging only for complex k beyond the entropy barrier. For real k the
product is defined by analytic continuation. Note that a complex k with positive
imaginary part, orders the product by the length of the periodic orbit. Thus, this
ordering is implied in the analytic continuation. Ordering the contributions by the
period n instead of the length is essentially equivalent. Other non-equivalent
orderings generally diverge, or worse: they converge to a wrong result (with false
zeros [182]). Note that generally jtpj < 1 for a periodic orbit (if we exclude the line,
that is the trivial graphs with B¼ 1). Thus, the zeros of the secular function which
define the spectrum of the graph are not equivalent to zeros of the factors 1� tpðkÞ
(which have zeros only for complex k with negative imaginary part). Instead the
zeros of the secular equation for real k are due to the infinite product over primitive
periodic orbits.

Let us now come back to the exact cancellations on the right-hand side of
(114) which eventually reduce it to the finite polynomial on the left-hand side.
One principle behind these cancellations which is known as shadowing may be
understood from a closer look at the the expression tp for reducible primitive
orbits. Let pa and pb be two irreducible primitive orbits with codes a ¼ �Pa and
b ¼ �Pb which have exactly one directed bond in common. Here, Pa and Pb are
the codes for two paths that close the periodic orbits such that Pa and Pb never
visit the same directed bond. For the reducible primitive periodic orbit pab
with code ab ¼ �Pa�Pb one gets the identity tab ¼ tatb [181]. Longer reducible
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primitive orbits may be obtained from pa and pb. With an obvious short-hand
notation for the codes, aab and abb are the only possibilities to create reducible
primitive orbits composed of three irreducible orbits (with four irreducible orbits
one has aaab, aabb, and abbb; for five aaaab, aaabb, aabab, aabbb, ababb, and
abbbb). Performing the product over the primitive orbits p̂ that are composed of
pa and pb one gets

Y
p̂

ð1� tp̂Þ ¼ ð1� taÞð1� tbÞð1� tabÞð1� taabÞð1� tabbÞ . . .

¼ ð1� ta � tb þ tatbÞð1� tatbÞð1� t2atbÞð1� tat
2
bÞ . . .

¼ ð1� ta � tb þ t2atb þ tat
2
b þ t2at

2
bÞð1� t2atbÞð1� tat

2
bÞ . . . ð115Þ

In the third line all contributions of second order in ta and tb have cancelled. It is
obvious at this stage that the third order terms will cancel after the next two factors
have been multiplied. Eventually all higher order terms cancel and one gets the
simple result

Q
pð1� tpÞ ¼ 1� ta � tb which is a finite polynomial that only depends

on reducible primitive orbits (and its zeros are not zeros of one factor 1� tp).y
If more irreducible orbits are taken into account a direct multiplication gets much
more involved but the exact shadowing of reducible periodic orbits remains valid.
Eventually, when all factors 1� tp are expanded and the shadowing principle is used
to replace reducible orbits by products of irreducible orbits the final result only
depends on the finite set of irreducible orbits and their amplitudes tp. Note that
all these orbits have a period smaller than (or equal to) the dimension 2B of the
quantum map.z A more systematic treatment of approximations to the secular
function for calculating the spectrum from a finite set of primitive periodic orbits
is obtained within the cycle (or curvature) expansion [172, 173]. The cycle expansion
also holds for the Ruelle �-function �R(z) (78) that describes the classical dynamics
on the graph.

Cycle expansions are also used efficiently for semiclassical expansions of
�-functions in Hamiltonian quantum systems [183]. As soon as semiclassical
approximations are used the analytical properties of the �-function are destroyed.
Also, replacing long orbits by products of short orbits (also called pseudo-orbits in
this context) is a semiclassical approximation in these systems. For quantum graphs
the expansion of the secular function into products of irreducible periodic orbits
is exact due to the finite dimension of the quantum evolution map – that is, due
to the discreteness of phase space.

yOne may prove that each finite product over factors 1� tp equals 1� ta � tb þ R with
R ¼ OðtnÞ if all contributions from periodic orbits that are composed of less than n irreducible
periodic orbits appear in the finite product. It is a signature of the bad convergence of the
infinite product that the modulus of the remainder jRj for real k in generally does not go to
zero in the limit of large n.
zThe final result can also be obtained with Newton’s formulas which express the coefficients an
of a secular determinant detðz� AÞ ¼

PN
n¼0 anz

n through the first N traces trAn in a recursive
way.
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6. Spectral statistics

Any respectable statistical theory starts by specifying the space of variables over
which the probability distribution (measure) is defined, and where the statistical
tests and conclusions are drawn. Here we would like to study the spectrum of a
single graph or of an ensemble of graphs, from a statistical point of view. To
remain within the range of acceptable respectability we should at least state what
is our space of variables. In other words, what are we averaging over to get a
statistical (probabilistic) description? The statistical approach to the spectra of
graphs can be developed at several levels. The conceptually simplest level is to
consider the ensemble of all the graphs which share the same connectivity but
whose bond lengths, and possibly also vertex scattering matrices are drawn
randomly according to prescribed probability distribution functions. This
approach is very similar to disorder averaging, common, for example, in the
study of mesoscopic systems. The less obvious approach is the study of the
spectral statistics of a single graph. Here, one can consider non-overlapping
spectral domains and study the distribution of the spectral intervals within
each of the domains, assigning to the domains equal probabilities. This
approach, which is referred to as spectral averaging, makes sense only if one
can prove that the probabilities converge to a well defined limit distribution as
the spectral domains and their number increase.

6.1. Spectral averages

The spectral average over some interval k0 � k � k0 þ K of a spectral function f(k) of
a quantum graph is defined by

h fðkÞik ¼
1

K

ðk0þK
k0

dk fðkÞ: ð116Þ

In the simplest case one chooses f(k)¼ d(k) and calculates the mean density of
states

hdðkÞik ¼ dWeyl
þ

1

K
Nosc
ðk0 þ KÞ �Nosc

ðk0Þð Þ: ð117Þ

Since jNosc
ðkÞj � B one may neglect the second term if K p=L. Thus, the spectral

average of the density of states equals the Weyl term if the spectral interval is chosen
larger than the inverse mean bond length (equivalently, when the number of states in
that interval is large compared to the dimension of the quantum evolution map).
In most cases we will take an infinite spectral interval K!1 for averaging.
For finite K the result explicitly depends on k0. For small K < 1=dWeyl

� � where
� is the mean level spacing the �-peaks are broadened but generally do not overlap.
More interesting is the regime �� K < p=L where pronounced oscillations
modulate the Weyl term. Replacing the periodic orbit sum for Nosc one sees that
the most pronounced of theses oscillations � eiLpk0 stem from the short periodic
orbits with length Lp.
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Some spectral averages remain very spiky functions even after the spectral
averaging. A simple example for this is the correlator

hdðkÞdðkþ k0Þik ¼
X
m, n

�ðk� knÞ�ðk
0
þ kn � kmÞ

* +
k

¼ dWeyl�ðk0Þ þ lim
K!1

1

K

Xkn, km<K

n 6¼m

�ðk0 þ kn � kmÞ ð118Þ

where we have taken the average over the complete spectrum and assumed that there
are no degeneracies. In the limit K!1 the second part becomes an infinite sum
over �-functions with a weight � 1=K which is often equivalent (in a distributional
sense) to some well-behaved function. Both in numerical and in analytical
approaches an additional average over a short interval in k0 is usually needed to
make a well-behaved function apparent. In chaotic systems the interesting features of
such correlators occur on the scale of the mean level spacing � ¼ 1=dWeyl

¼ p=BL
and the additional average over k0 has to be on a much shorter scale. Equivalently,
one may replace the �-functions by a Lorentzian or Gaussian function of width �k0.
The Lorentzian is natural when the trace formula is used. The addition of an
imaginary part i� to the wavenumber results in replacing the �-functions in the
density of states by Lorentzians of width �.

In practical (numerical) calculations one can circumvent the difficulties encoun-
tered in direct application of equation (118) by dividing the spectrum of length K into
M subsequent intervals. For each of the intervals one can use (118) replacing the
�-functions by Lorentzians or Gaussians of finite width. The average over all the
intervals is a well-behaved numerical approximation. As a rule of thumb one should
use M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KdWeyl
p

.

6.2. Disorder averages

In the study of spectral statistics averaging over an ensemble of systems, usually
referred to as ‘disorder average’, is a useful theoretical tool which is naturally called
for in many applications. Disorder averaging for graphs can be implemented in
several ways. The most obvious one is to take a family of graphs with the
same connectivity but with a random distribution of bond lengths. Other possible
variables to average over are the vertex scattering matrices which can be picked at
random from some well-defined ensemble. Both methods were used in past works
and we illustrate this method in section 8.5. For graphs there is an intimate
connection between disorder and spectral averages which will be explained in the
next section.

6.3. Phase ergodicity for incommensurate graphs

All spectral functions f(k) that we are going to consider depend on k via the B phase
factors eikLb in the bond propagator TðkÞ. They are thus quasiperiodic functions of k.
Let us again assume that the bond lengths Lb are incommensurate. Under this
condition the flow

k7! eiL1k, eiL2k, . . . , eiLBk
n o

2 TB
ð119Þ
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covers the B-dimensional torus TB ergodically. With �bðkÞ � kLb and modest
conditions on the function fðkÞ � fðei�1ðkÞ, . . . , ei�BðkÞÞ we have thus the exact equality
[122, 184]

hfðkÞik ¼ lim
K!1

1

K

ðK
0

dk f ei�1ðkÞ, . . . , ei�BðkÞ
� 	

¼
1

ð2pÞB

ð
dB� f ei�1 , . . . , ei�B

� 	
� f ei�1 , . . . , ei�B

� 	D E
�
: ð120Þ

Thus, the spectral average h�ik is equivalent to a phase (or torus) average h�i�. We will
make extensive use of this equivalence in the following section and in section 9.

If only a subset of bond lengths is incommensurate one may define ergodic flows
on tori of smaller dimension and establish an equivalence of the phase average
with phase averages over these tori. We refer to the literature [122] for details and
the application to quantum graphs.

The equivalence (133) between spectral statistics and eigenphase statistics in large
graphs on one hand and the equivalence between a spectral average and a phase
average (120) on the other hand also gives a connection between the spectral
statistics of an individual quantum system (with the spectrum {kn}) and the spectral
statistics of an ensemble of unitary matrices UBðkÞ ¼ STðkÞ 7!STð�Þ parameterized
by B parameters �b. Thus, the spectral statistics of a large graph (with incommen-
surable bond lengths and moderate bond length fluctuations) is equivalent to that of
a (special) ensemble of unitary random matrices.

6.4. Spectral correlation functions

Let us now define spectral correlation functions. We have already shown that
the spectral average of the density of states reduces to the Weyl term. Spectral
correlations thus appear in the oscillating part. We define the n-point correlation
function as [185]

Rnðs1, . . . , sn�1Þ ¼ �
n
hdoscðkÞdoscðkþ s1�Þ . . . d

osc
ðkþ sn�1�Þik ð121Þ

where the average is over the whole spectrum 0 � k <1. In this definition we
anticipated that we will be interested mainly in correlations on the scale of the
mean level spacing �. The corresponding length-scale is the Heisenberg length
LH ¼ 2p=� ¼ 2BL and the corresponding period, the Heisenberg period is
nH ¼ 2B which is just the dimension of the quantum evolution map.

The two-point correlation function R2(s) and its Fourier transform, the spectral
form factor

Kð�Þ ¼

ð1
�1

dsR2ðsÞe
�2pis�

ð122Þ

will be at the centre of much of the discussion in sections 8 and 9. Though � and s
are dimensionless quantities that have been obtained from rescaling a length and a
wavenumber we will often follow the convention to call them ‘time’ and ‘energy’ –
�¼ 1 corresponds to the Heisenberg time and s¼ 1 to the mean level spacing.
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As mentioned above, spectral correlation functions (and their Fourier
transforms) are not self-averaging quantities. With the original definition of the
density of states it is obvious that they are usually a sum over �-functions. An
additional average over a small window �s� 1 in the correlators or �� � 1 in
the form factor has to be performed to smooth the function. A combination of a
spectral average and a subsequent average over � or s will be denoted by h�is or h�i� .

Instead of correlations in the spectrum fkng of the graph one may also be inter-
ested in the correlations in the eigenphases of the quantum map UBðkÞ averaged
over k. The corresponding correlation functions

~Rnðs1, . . . , sn � 1Þ ¼
p
B

� 	n
�

~d osc
ð�; kÞ ~d osc �þ s1

p
B
; k

� 	
. . . ~d osc �þ sn�1

p
B
; k

� 	D E
k

ð123Þ

are defined analogously.y For the spectral form factor of the quantum map this
reduces to

~Kð�Þ ¼
1

2B

X1
n¼1

� j�j �
n

2B

� 	
~Kn ð124Þ

where

~Kn ¼
1

2B
trUBðkÞ

n
�� ��2D E

k
: ð125Þ

The �-functions in (124) can be smoothed by an additional time average over an
interval �� > 1

2B

~K � ¼
n

2B

� 	D E
�
�

1

��

ð�þ��=2
����=2

d�0 ~Kð�0Þ ¼
1

2B��

X
n0:jn0�nj<B��

~Kn0 �
~Kn

 �
n
: ð126Þ

6.5. Equivalence of spectral correlators and eigenphase correlators in large graphs

For large graphs with moderate bond length fluctuations spectral and eigenphase
correlation functions are equivalent. We will now discuss this statement in a periodic-
orbit approach to the two-point correlation function of a quantum graph with
incommensurate bond lengths. Replacing dosc by the sum over periodic orbits
(106) and performing the spectral average one obtains

R2ðsÞ ¼
X
p, p0

X1
r, r0¼1

�ðrLp, r
0Lp0 Þ

�
2
ðrpLpÞ

2e�2rpLp�

2p2rprp0
ReAr

pA
r0

p0



ei�rpLps: ð127Þ

Here, the Kronecker �ðrpLp, rp0Lp0 Þ restricts the sum over pairs of periodic orbits to
pairs of the same (full) length rpLp ¼ rp0Lp0 . This result does not depend on the
assumption of incommensurate bond lengths. The latter has the additional implica-
tion that each bond is visited the same number of times by a pair of periodic
orbits with the same length (thus the full periods rpnp and rp0np0 are also the same).

yThe k-average destroys any dependence on the value � which can thus be set to � ¼ 0 without
loss of generality.
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Using the notation introduced in section 5.3 the two-point correlator of a quantum
graph with incommensurate bond lengths can be written as

R2ðsÞ ¼
X
fqg

�
2
L2
qe
�2Lq�

2p2
X

p, p02fqg

1

rprp0
ReAr

pA
r0

p0



ei�Lqs ð128Þ

where fqg is the degeneracy class of periodic orbits of length Lq �
PB

b¼1 qbLb.
Interference only takes place between the amplitudes of periodic orbits in the
same degeneracy class.

The spectral form factor (for � > 0)

Kð�Þ ¼
X
fqg

�2 e�2Lq�� � �
�Lq

2p

� � X
p, p02fqg

1

rprp0
A

r
pA

r0

p0



: ð129Þ

is a sum over �-functions located at the lengths of the periodic orbits – it is thus
directly related to the length spectrum discussed in section 5.3.

Finally,

~Kn ¼
X

fqg:
P

b
qb¼n

n2 e�2Lq�

2B

X
p, p02fqg

1

rprp0
A

rp
p A

rp0

p0



ð130Þ

is the periodic orbit expression for the discrete time form factor obtained from the
Fourier transform of the two-point eigenphase correlator. Here, the sum includes
only pairs of orbits of full period n ¼ rpnp ¼ rp0np0 �

PB
b¼1 qb.

An additional time average over a small interval reveals the equivalence of
the discrete time form factor ~Kn and the spectral form factor K(�) for large graphs.
To this end, let us write the spectral form factor as a sum

Kð�Þ ¼
X1
n¼1

Knð�Þ ð131Þ

where Kn(�) contains only those periodic orbits of full period n ¼ npr ¼ np0r
0. Next,

let us discuss the distribution of the quantity �p ¼ �rpLp=2p (this is the metric length
in units of the Heisenberg length LH ¼ 2p=�, or the traversal ‘time’) for periodic
orbits with period n. If n 1 one may invoke the central limit theorem and set
�p ¼ n�L=ð2pÞ þ ��p where n�L=ð2pÞ is the mean traversal time. The fluctuations
��p vanish in the mean over all periodic orbits and have the variance
h��2pip ¼ n�

2
�L2=ð2pÞ2 where �L2 ¼ ð

P
bðLb � LÞ2Þ=B is the variance of bond

lengths. We consider periodic orbits of large period in a large graph n,B!1
where n=2B is constant. Additionally we assume moderate bond length fluctuations
in the sense that �L2=L

2
remains constant when B!1. Thus Kn(�) contributes to

K(�) in a small time window of width �
ffiffiffi
n
p
=B! 0 around � ¼ n=2B. The overall

contribution of Kn(�) to K(�) can be calculated by the integralð1
0

d�Knð�Þ ¼
X

fqg:
P

b
qb¼n

�2pe
�2Lq�

X
p, p02fqg

1

rprp0
A

rp
p A

rp0

p0



¼
1

2B
~Kn 1þO

n

B2

� �� �
: ð132Þ

566 S. Gnutzmann and U. Smilansky

D
ow

nl
oa

de
d 

by
 [

G
ot

he
nb

ur
g 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 1

3:
09

 0
7 

D
ec

em
be

r 
20

17
 



As a consequence, with a suitable time average over an interval �� � B�1=2 the
spectral form factor is well approximated by the discrete time form factor
(averaged over periods which correspond to the time interval) for large graphs
and �  1=2B

hKð�Þi� ¼ h ~Knin: ð133Þ

This proves the above statement that the statistics of the spectrum {kn} and of the
spectrum of eigenphases of the quantum map are equivalent for large graphs
(if bond length fluctuations are moderate). The discrete time form factor ~Kn does
not explicitly depend on the bond lengths. It only depends on the degeneracy classes
of periodic orbits which have the same lengths. All incommensurate choices of
the bond lengths lead to the same degeneracy classes fqg and thus to the same
value for ~Kn. As a consequence the spectral form factors hKð�Þi� for different
incommensurate choices of the bond lengths are equivalent for large graphs.
This is a first signature of universality: all large graphs with the same vertex scatter-
ing matrices but different incommensurate choices of bond lengths share the same
spectral statistics.

6.6. The level-spacing distribution for quantum graphs

The level-spacing distribution P(s) is one of the most well-known signatures
of quantum chaos. For a graph with the ordered spectrum {kn}, knþ1 	 kn, it is
defined by

PðsÞ ¼ lim
N!1

�

N

XN
n¼1

�� �s� ðknþ1 � knÞ
� �

ð134Þ

where ��ðxÞ is some continuous approximation to a �-function with width �. The limit
�! 0 is implied at the end after N!1 and we will omit � in the following.

The level-spacing distribution depends on spectral correlators of all orders.
For this reason it is desirable to express the level-spacing distribution of a quantum
graph directly. Such an expression has been derived by Barra and Gaspard [122] and
we will outline their approach in this section.

The starting point is the observation that the spectrum is given by the (positive)
zeros of a quasiperiodic function f(k). For every graph there are many such
functions. For example, the secular function fðkÞ ¼ �BðkÞ will do the job but
�BðkÞ�ðkÞ where j�ðkÞj > 0 will equally be valid. We will not specify the choice of
f(k) in the following and the approach can be generalized beyond quantum graphs
to any spectrum which is given by such a function. By definition quasiperiodicity
implies that there is a function ~fð�Þ � ~fð�1, . . . ,�BÞ of B variables � ¼ ð�1, . . . ,�BÞ
which is periodic in each argument

~fð�1, . . . ,�b þ 2p, . . . ,�BÞ ¼ ~fð�1, . . . ,�b, . . . ,�BÞ ð135Þ

such that

fðkÞ ¼ ~fð�1 ¼ L1k, . . . ,�B ¼ LBkÞ ð136Þ
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where L1, . . . ,LB is a set of rationally independent frequencies. In the case of
quantum graphs these frequencies are the bond lengths.y For the secular function
�BðkÞ of a graph quasiperiodicity is easily seen since it depends on k only through
the bond propagator TðkÞ. Replacing Lbk 7!�b in TðkÞ7!Tð�1, . . . ,�BÞ leads to a
periodic function ~�Bð�1, . . . ,�bÞ which shows that fðkÞ ¼ �BðkÞ is a quasiperiodic
function. We have already encountered this in section 6.3. The variables �b live on
a B-dimensional torus TB and

�k
ð�Þ ¼ ð�1 þ kL1, . . . ,�B þ kLbÞ ð137Þ

defines an ergodic flow in ‘time’ k on this torus. When the initial condition of the
flow is set to �ð0Þ1 ¼ � � � ¼ �

ð0Þ
B ¼ 0 one has

fðkÞ ¼ ~f �k
ð�ð0ÞÞ

� 	
: ð138Þ

Thus, the intersections of the flow with the hyperplane � defined by

~fð�Þ ¼ 0 ð139Þ

give the spectrum. Denoting a point on the (B� 1)-dimensional hypersurface � by �
the flow defines a Poincaré map

�nþ1 ¼ ~�ð�nÞ

knþ1 ¼ kn þ �Rð�nÞ ð140Þ

where �n is a point on � that is mapped by the flow to �nþ1 on �. The two
points are the successive intersections of the trajectory �b ¼ kLb with � at times
kn and knþ1. The difference �Rð�nÞ � knþ1 � kn is the first return time to the surface
of section.

We can now write the level-spacing distribution as

PðsÞ ¼ lim
N!1

�

N

XN
n¼1

�ð�s� �Rð�nÞÞ

¼ lim
N!1

�

N

XN
n¼1

� �s� �R ~�n�1
ð�1Þ

� �� �
ð141Þ

As a consequence of ergodicity this distribution is independent of the initial
conditions �ð0Þb ¼ 0 of the flow. Thus, the initial conditions can be taken anywhere
on the torus without changing the limiting distribution for N!1. Moreover,
ergodicity implies that the initial condition can be taken anywhere on the surface
� and that there exists an appropriate measure dB�1x �ðxÞ such that

PðsÞ ¼

ð
�

dB�1x �ðxÞ� � �s� �Rð�ðxÞÞ
� �

, ð142Þ

where x ¼ ðx1, . . . , xB�1Þ is a set of B� 1 variables that parameterize �ðxÞ 2 �.

yIf not all bond lengths of the quantum graphs are rationally independent the number of
variables has to be reduced to some number smaller than B. The generalization of
the following argument is straightforward. However, we will keep a notation that implies
incommensurability of all bond lengths.
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We now turn to the calculation of the function �(x) that determines the invariant
measure on the hypersurface. A good starting point is the known invariant measure
on the complete torus. That is for every (measurable) function gð�1, . . . ,�BÞ on the
torus ergodicity implies

lim
K!1

1

K

ðK
0

dk gð�k
ð�ð0ÞÞÞ ¼

1

ð2pÞB

ð
dB� gð�Þ: ð143Þ

where ð1=ð2pÞBÞdB� is the invariant measure on the torus implied by the homoge-
neous ergodic flow. Defining �½�k

ð�ð0ÞÞ� as the time of flight after the last intersection
with the surface of section � (thus �½�k

ð�ð0ÞÞ� ¼ k� kn if the last intersection
happened at time kn) and setting �ð0Þ ¼ �1y to the first point of intersection we
replace the function g(�) by

g½�k�k1ð�1Þ� ¼ �Yð�s� �½�k�k1ð�1Þ�Þ
X1
n¼1

�ðk� knÞ: ð144Þ

Let us first show that the left-hand side of (143) is the cumulative function of the
level-spacing distribution, that is

IðsÞ ¼

ðs
0

ds0 Pðs0Þ

¼ lim
K!1

�

K

ðK
0

dkYð�s� �½�k�k1ð�1Þ�Þ
X1
n¼1

�ðk� knÞ: ð145Þ

We assume that there are N intersections at times k2, . . . , kNþ1 of the trajectory
�kð�1Þ with � in the interval 0 < k � K. The integral over k then givesðK

0

dkg½�k�k1 ð�1Þ� ¼
XN
n¼1

�Yð�s� ðknþ1 � knÞÞ

¼
XN
n¼1

�Yð�s� �R½ ~�
n�1
ð�1Þ�Þ:

ð146Þ

For large values one may replace K ¼ N� and arrives at

IðsÞ ¼ lim
N!1

1

N
Yð�s� �R½ ~�

n�1
ð�1Þ�Þ ð147Þ

which shows that I(s) is indeed the cumulative function of the level-spacing
distribution.

For the calculation of the right-hand side of (143) one first needs to rewrite the
sum over �-functions such that it depends explicitly on the point � on the torus.
Using that the values kn are given as the zeros of f(k) and thusX1

n¼1

�ðk� knÞ ¼
dfðkÞ

dk

����
�����ðfðkÞÞ: ð148Þ

yThis implies a shift k 7! k� k1 without changing the time difference between the last inter-
section. Thus, �½�k�1 ð�1Þ� ¼ k� kn.
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Now fðkÞ ¼ ~fð�k�k1 ð�1ÞÞ and

df

dk
¼
XB
b¼1

@ ~f

@�b
Lb

lead to

g½�k�k1 ð�1Þ� ¼ �Yð�s� �½�k�k1ð�1Þ�Þ

�
XB
b¼1

@ ~fð�k�k1ð�1ÞÞ

@�b
Lb

�����
������ð ~fð�k�k1 ð�1ÞÞÞ: ð149Þ

As a next step we change the variables � 7! ðx, �Þ where the B� 1 variables
x ¼ ðx1, . . . , xB�1Þ parameterize the surface of section � for �¼ 0 and � is the time
of flight of the flow since the last intersection with �. That is

�b ¼ Lb� þ sbðxÞ ð150Þ

where the B functions sb satisfy ~fðs1ðxÞ, . . . , sBðxÞÞ ¼ 0 such that �ðxÞ �
ðs1ðxÞ, . . . , sBðxÞÞ 2 � In the new variables we have ~fð�k�k1 ð�1ÞÞ � ~fðx, �Þ and a
measure

dB� ¼ dB�1xd� JðxÞ ð151Þ

with the Jacobian determinant

JðxÞ ¼

L1 . . . LB

@s1
@x1

. . .
@sB
@x1

. . . . . . . . .
@s1
@xB�1

. . .
@sB
@xB�1

�����������

�����������
: ð152Þ

The cumulative function becomes

IðsÞ ¼
�

ð2pÞB

ð
�

dB�1x JðxÞ

ð�R½�ðxÞ�
0

d�Yð�s� �Þ

�
XB
b¼1

@ ~f

@�b
Lb

�����
������ð ~fðx, �ÞÞ: ð153Þ

The integral over � can be performed explicitly by introducing the new variable

uð�Þ ¼ ~fðx, �Þ ð154Þ

where x is fixed. With

du

dt
¼
XB
b¼1

@ ~f

@�b
Lb

one arrives at

IðsÞ ¼
�

ð2pÞB

ð
�

dB�1x JðxÞ

ð
duYð�s� �ðuÞÞ�ðuÞ: ð155Þ
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The integral over u picks up the value of �(u) at u¼ 0. This has the two solutions
�¼ 0 and � ¼ �Rð�ðxÞÞ. Since � is the time of flight since the last intersection only the
second solution is valid and we finally arrive at

IðsÞ ¼
�

ð2pÞB

ð
�

dB�1x JðxÞð�ÞYð�s� �Rð�ðxÞÞÞ

¼
1Ð

�d
B�1xJðxÞ

ð
�

dB�1x JðxÞð�ÞYð�s� �Rð�ðxÞÞÞ ð156Þ

where the last line follows from

�

ð2pÞB

ð
�

dB�1xJðxÞ ¼ 1: ð157Þ

Equation (157) is consistent with the normalization of the level-spacing
distribution

PðsÞ ¼
dIðsÞ

ds
¼

�
Ð
�
dB�1xJðxÞ�ð�s� �Rð�ðxÞÞÞÐ

�
dB�1xJðxÞ

ð158Þ

and can be derived from

1 ¼ lim
K!1

�

K

ðK
0

dk
X1
n¼1

�ðk� knÞ ð159Þ

in analogy to the above derivation. The invariant measure on the surface of section
can now be read off easily as

dB�1x �ðxÞ ¼ dB�1x
JðxÞÐ

�d
B�1xJðxÞ

: ð160Þ

The integral (158) for a large quantum graph is in general too complex to be
performed analytically. Barra and Gaspard [122] have used this integral to
investigate the level-spacing distribution of small graphs. For large generic graphs
approximations have to be used and it is not known how to proceed from this
expression to understand the universal behaviour of generic large graphs that we
will discuss in the remaining sections.

7. Quantum chaos and universal spectral statistics

More than 20 years ago it was observed that spectral fluctuations in individual
complex (chaotic) quantum systems are universal [186]. That is, all the spectral
correlators defined in section 6 (and also the level-spacing distribution) of any chao-
tic quantum system are described by non-trivial system-independent functions. Once
rescaled by the (system-dependent) mean level spacing, they only depend on some
general symmetry properties that follow the classification scheme of Wigner and
Dyson [187–190]. This symmetry classification scheme is based on the behaviour
of the system under a time-reversal operation. Systems either violate time-reversal
invariance (symmetry class A in the notation of [191]) or they are
time-reversal invariant. In the latter case there are two symmetry classes

Quantum graphs 571

D
ow

nl
oa

de
d 

by
 [

G
ot

he
nb

ur
g 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 1

3:
09

 0
7 

D
ec

em
be

r 
20

17
 



which, in fermionic systems, are realized by time-reversal invariant dynamics
with conserved spin (symmetry class AI) or with broken spin rotational invariance
(symmetry class AII). For a general overview of symmetry classes and their algebraic
properties, see Appendix A. The spectral statistics in integrable systems is different
from the chaotic case. Spectral statistics in integrable systems with at least two
degrees of freedom is generically Possonian [192]. The above statement of universal
spectral statistics is based on an overwhelming basis of experimental and numerical
evidence and has been promoted to a conjecture for chaotic (hyperbolic)
Hamiltonian systems in the semiclassical regime by Bohigas, Giannoni and Schmit
[193] (see also [194, 195]). Since, proving the Bohigas–Giannoni–Schmit conjecture
and understanding the physical basis of this type of universality has been one of the
major challenges in the field of quantum chaos [119, 196–199]. The dominant method
that has been applied is semiclassical periodic orbit theory based on Gutzwiller’s
trace formula [118, 119] which expresses (the oscillatory part of) the density of states
as a sum over periodic orbits of the corresponding classical Hamiltonian dynamics.
In spite of significant recent progress, universal spectral correlations in individual
Hamiltonian systems are not fully understood. Moreover, some counterexamples
of classically chaotic quantum systems have been identified which do not show
universal spectral statistics [200–202]. While in these systems the strong deviation
from universality is fairly well understood, it raises the question what are the
precise conditions to find universality in the spectra of classically chaotic
Hamiltonian systems? Today, large quantum graphs are the only class of
individual quantum systems for which universality has been proven and precise
sufficient conditions can be stated [141, 142]. We will give an outline of this proof
later in section 9.

7.1. Universal correlators and random-matrix theory

It has been known for some time that universality can be proven with an (additional)
average over ensembles of systems. The first successful approach was random-matrix
theory [185, 203, 204] where a complex quantum system is described by a Hermitian
matrix with random entries. Random-matrix theory has become an important tool to
predict spectral statistics, wavefunction statistics and transport statistics in complex
quantum systems (e.g. disordered mesoscopic systems) [205–207]. Wigner and
Dyson [187–190] proposed three Gaussian random-matrix ensembles, one for each
symmetry class: the Gaussian Unitary Ensemble (GUE, symmetry class A), the
Gaussian Orthogonal Ensemble (GOE, symmetry class AI) and the Gaussian
Symplectic Ensemble (GSE, symmetry class AII). The universal spectral correlators
for these ensembles have been calculated analytically in the limit of infinite matrix
dimension [185]. See Appendix B for a definition of the ensembles and for their
correlation functions. The success of random-matrix theory in predicting universal
correlators is reflected in the physical literature where ‘universality’ is frequently
replaced by ‘random-matrix behaviour’.

If the spectrum of a quantum system is known (either by experimental
measurements or by a numerical calculation) a simple way to see if its spectral
statistics follows the universal predictions of random-matrix theory, is to plot a
histogram of its level-spacing distribution against the Wigner surmises (an energy
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interval with a few hundred eigenvalues is usually sufficient). The Wigner surmises
(B9) are the random-matrix results for the level-spacing distributions of the Gaussian
random-matrix ensembles of dimension 2� 2 (GUE and GOE) or 4� 4 (GSE).
They only deviate very slightly from the exact universal result for infinite matrix
dimension [196] and the difference can only be resolved with very large data sets.
In figure 3 the level-spacing distribution of a completely uncorrelated spectrum is
plotted against the Wigner surmise of the GOE. Uncorrelated spectra are realizations
of a Poisson process. Poissonian eigenvalue statistics is generic for integrable systems
(with at least two freedoms) [192, 196] and the level-spacing distribution is just an
exponential decay

PðsÞ ¼ e�s: ð161Þ

The strong deviation of the Wigner surmise from the Poisson distribution is a
signature of the non-trivial correlations in complex quantum systems. The most
obvious difference of the two distributions is that small values of the level
spacing are favoured in a Poisson spectrum (level clustering) but are strongly
suppressed in the Wigner surmise. This level repulsion in complex quantum systems
can be understood using a perturbative approach [196]. Also, large values of the level
spacing occur much more frequently in a Poisson spectrum than in a universal
complex quantum system. That is universal spectra are much more rigid than
Poisson spectra.

7.2. Analytical approaches to universality

Apart from random-matrix theory there have been two other successful attempts to
understand universality for ensembles of quantum systems: a particle in a random
potential (disordered system) [208, 209] and the so-called Pechukas–Yukawa gas

GOE

Poisson

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

s

P
 (
s)

Figure 3. Level-spacing distributions of a complex quantum system (Wigner surmise for the
GOE, full line) and of an uncorrelated spectrum (Poisson distribution, dashed line).
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where the parametric dependence of eigenvalues and eigenvectors on a parameter �
in a Hamiltonian of the form H ¼ H1 þ �H2 is investigated [196, 210–212]. In spite
of their success and significance these studies (and also random-matrix theory)
cannot explain the deep quantum-to-classical correspondence between spectral
correlations in a Hamiltonian systems and the dynamic properties of the underlying
classical flow.

This correspondence is the main focus in quantum chaos where semiclassical
periodic-orbit theory has been used [183, 213–217]. We will not go into the details
of the semiclassical periodic orbit approach here but only summarize qualitatively
some of the main results and ideas. For an introduction we refer to textbooks on
quantum chaos [119, 196–198] and to the cited literature. The periodic-orbit
expansions for quantum graphs, which we will present in the next section, are in
most parts analogous to semiclassical periodic orbit theory. While periodic-orbit
theory on graphs is not always trivially generalized to Hamiltonian systems, its
main advantage is that it allows for exact analytical treatments with controlled
approximations.

The semiclassical theory distinguishes between several relevant time-scales
which have either classical or quantum mechanical origin. The classical scale terg is
determined by the inverse Lyapunov exponent. The shortest quantum time-scale is
the Heisenberg time tH ¼ 2p�h=�. This is the time-scale on which the discreteness of
the spectrum is resolved. In the semiclassical limit tH  terg.

The spectral form factor has been the main focus of semiclassical periodic
orbit theory of spectral statistics. The universal spectral form factors for the three
Wigner–Dyson classes are shown in figure 4. The non-trivial spectral correlations in
the form factor are apparent as deviations from KPoisson

ð�Þ ¼ 1.
Using Gutzwiller’s trace formula [118, 119] the form factor K(�) for a classically

chaotic Hamiltonian system can be approximated semiclassically as a sum over pairs

GUE

GOE

GSE

0 0.5 1 1.5 2
0

0.5

1

1.5

K
( 

  )

Figure 4. The spectral form factors for the three universality classes described by the GUE,
GOE, and GSE.
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of periodic orbits with period tp ¼ �tH

Kð�Þ �
X
p, p0

t2p
rprp0
ApA



p0 ð162Þ

where Ap=p0 are amplitudes corresponding to the periodic orbits and rp, p0 are
repetition numbers. The magnitude of A depends on the classical stability, and its
phase on the classical action of the orbit p.

The contribution of periodic-orbits in the range terg � tp � tH to the spectral
correlators is quite well understood and it reproduces the universal form factor. In a
seminal paper Berry [214] showed that a reduction of the double sum in (162) to pairs
which are either the same or time reversed (the diagonal approximation) can be
performed on the basis of the sum rules [177] and leads to an agreement with the
linear universal behaviour of the form factor for short times. Since, it has been a
challenge to understand the next-to-leading order in the short time expansion

KGUEð�Þ ¼�

KGOEð�Þ ¼2� � 2�2 þOð�3Þ

KGSEð�Þ ¼
�

2
þ
�2

4
þOð�3Þ ð163Þ

of the form factor or to understand the long-time behaviour �>1. Many interesting
results on action correlations [213, 216, 217] in terms of so-called ‘pseudo-orbit’
expansions have been obtained [183, 215]. Sieber and Richter made a crucial progress
by identifying pairs of correlated periodic orbits whose contribution gives the next-
to-leading order term in (163) [160–162] (see also [218–220]). This approach has been
developed further in a number of recent articles [221–225]. The present status of
semiclassical periodic orbit theory singles out in a systematic way the pairs of
periodic orbits contribute to progressively higher terms in the short-time expansion
of the form factor [158, 159]. However, due to the essential singularity of the form
factor at the Heisenberg time �¼ 1 this result cannot be extended beyond �>1.
Another drawback of the present theory is that not all periodic orbits are
considered. An estimate of the contribution of the omitted orbits to the form factor
is not given.

There exists yet another attempt to explain universality in individual
chaotic quantum systems. It relies on a mapping to a supersymmetric field
theory. It was hoped that these so-called ‘ballistic 	-models’ would allow a direct
access to universality via their mean field approximations [226–229]. However, there
are serious problems in regularizing these theories, and so far they could only
be established under the protection of an additional average over (very weak)
disorder [230].

For individual quantum graphs periodic-orbit methods and methods from
random-matrix theory and disordered systems like mappings to supersymmetric
field theories can all be applied rigorously. The inherent disorder introduced into
the quantum graph by a fixed choice of rationally independent bond lengths is
sufficient to treat a quantum graph in a similar way as an ensemble of disordered
systems or as an ensemble of unitary matrices. In the following sections we will give
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a detailed account of the periodic-orbit theory and its supersymmetric counterpart to
quantum graphs.

8. Periodic orbit theory for spectral statistics

In this section we describe the periodic-orbit theory for the spectral form factor for
large graphs. We will not try to give the most general account but will restrict our
discussion to star graphs. While the results can be generalized to other topologies,
the main ideas can be explained in a clearer way for star graphs, where one avoids a
few technical problems that arise in the general case. For the same reason we will
only consider the discrete version of the form factor which corresponds to two-point
correlations in the eigenphases of the quantum map. As shown in section 6.5
eigenphase correlations are equivalent to spectral correlations for large graphs
with bond lengths which are incommensurate and which are confined to a
moderately narrow interval of lengths.

The quantum dynamics on a star graph is not affected by adding a magnetic
field (24). The only way to violate time-reversal invariance is by choosing a central
vertex scattering matrix in an appropriate way. Similarly, one can add a spin degree
of freedom which enables us to study the resulting spectral statistics and compare
them with the predictions of random-matrix theory.

One of the important features of random-matrix theory is that the statistics
derived for ensembles of N�N matrices tend to well-defined limiting distributions
in the limit N!1, provided that the spectral parameters are properly scaled. In
periodic-orbit theory the analogous limit is tH!1 which is the semiclassical limit
for Hamiltonian flows. For graphs the limit p! 0 has no consequence. However,
one can make the Heisenberg time tH arbitrarily large by increasing the number of
bonds B. The disadvantage of graphs with respect to Hamiltonian flows is that there
is no way to increase the number of bonds and at the same time preserve the classical
dynamics on the graph. As a matter of fact there is no unique way to reach the limit
B!1. In the case of star graphs the limit B!1 is topologically straightforward.
However, one has to prescribe a sequence of central vertex scattering matrices.
For this reason it is more appropriate to consider fixed large graphs and expand
the spectral functions as powers series in B�1. In the cases of Neumann or DFT
vertex scattering matrices which we study here as examples one can perform the limit
B!1 in a consistent way.

8.1. Spectral form factor for star graphs

One of the main technical advantages of star graphs is the fact that one may reduce
the dimension of the quantum evolution operator from 2B to B. This follows from
the observation that a wave which scatters into a bond is totally reflected at the
peripheral vertex. This idea can be implemented in the following way. The 2B� 2B
graph scattering matrix for star graphs has the form

S ¼
0 �S?
�1B 0

� �
ð164Þ
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where S? is the B� B star scattering matrix. We assume only dynamically
connected star graphs for which S? cannot be brought into block-diagonal form
by a permutation of bond indices. It is equal to the central vertex scattering matrix
up to a minus sign which we introduce for convenience. We have chosen Dirichlet
boundary conditions at the peripheral vertices. These appear as minus the identity
matrix in the graph scattering matrix. The secular function of a star graph can be
written as

�BðkÞ ¼ det 12B � UBðkÞð Þ ¼ det 1B � UB?ðkÞ
� �

ð165Þ

where

UB?ðkÞ ¼ T?ðkÞS?: ð166Þ

with T?ðkÞb, b0 ¼ �bb0e
2ikLb is the B�B star quantum evolution map. The star bond

propagation matrix T?ðkÞ describes the phase accumulated during the propagation
from the centre to the peripheral vertices and back. The minus signs picked up during
the scattering at the peripheral vertices are cancelled by the minus sign of the central
scattering matrix �S?. Thus, the star quantum evolution map UB?ðkÞ describes the,
process of scattering at the centre and subsequent propagation along the bonds until
coming back to the centre. This way we have removed the direction index ! from the
description.

The topological length n of a trajectory in this reduced picture is equal to the
number of peripheral vertices (or undirected bonds) visited. This corresponds to a
length 2n in the general approach based on directed bonds. Thus the Heisenberg
period is now nH¼B. The discrete form factor at time � ¼ n=B is

~K?, n ¼
1

B
hjtrSn

?j
2
ik ¼

X
p, p02PðnÞ

�ðrpLp, rp0Lp0 Þ
n2

B rprp0
A

rp
p A

rp0

p0



ð167Þ

where a periodic orbit p ¼ b1, b2, . . . , bnp is now specified by the sequence of
undirected bonds b ¼ 1, . . . ,B and its amplitude is the product of the amplitudes
of the star scattering matrix Ap ¼ S? b1, bnp � � �S? b3, b2S? b2, b1 . Another way of writing
the same expression is

~K?, n ¼
X

fqg:
P

qb¼n

n2

B

X
p2fqg

1

rp
A

rp
p

�����
�����
2

ð168Þ

where fqg is the degeneracy class of periodic orbits of length L ¼ 2
P1

b¼1 qbLb.
A sufficient condition for a star graph to be invariant under time-reversal

(symmetry class AI) is that the star scattering matrix is symmetric

S? ¼ ST
? : ð169Þ

Otherwise, time-reversal symmetry is in general broken (symmetry class A). More
precisely, any star graph with a scattering matrix of the form S? ¼ S0D where S0

is symmetric S0 ¼ ST
0 and D ¼ diagðei�b Þ is time-reversal invariant. Under this

condition every periodic orbit has the same amplitude as its time-reversed partner.
Note also that the secular equations for a graph with scattering matrix S? ¼ S0D and
a graph with the scattering matrix S0? ¼ D1=2S0D

1=2 are completely equivalent.
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Time reversal invariant star graphs of symmetry class AII can be constructed
by adding a spin freedom to the wavefunction [139]. This will be implemented in
section 8.4.

We will use two examples of scattering matrices for star graphs to illustrate our
results: (i) Neumann star graphs [123, 126, 127, 147, 149, 150]

SNeumann? bb0 ¼ �bb0 �
2

B
, ð170Þ

and (ii) DFT star graphs [139, 140]

SDFT? bb0 ¼ �
1ffiffiffiffi
B
p ei2pbb

0=B
ð171Þ

for which the the central vertex scattering matrix is taken as the discrete Fourier
transform matrix (see section 3.3). Both scattering matrices are symmetric, thus both
families of star graphs are time-reversal invariant. The main difference between the
two families is revealed by comparing the probability of backscattering b! b to the
probability to be scattered into any other bond b! b0 6¼ b. For DFT star graphs
an incoming wave packet is scattered into any bond with the same probability
PDFT? b b ¼ PDFT? b b0 ¼ 1=B. For Neumann star graphs with large B back scatter-
ing PNeumann? b b ¼ ð1�

2
BÞ

2 is favoured, while scattering into any other bond has a
small probability PNeumann? b b0 ¼ 4=B2. In the limit B!1 this difference has
a strong impact on spectral statistics. While DFT star graphs have the
canonical universal spectral statistics of the GOE the Neumann star graphs belong
to a different universality class [123, 127, 147].

8.2. The diagonal approximation

We shall start the discussion of the periodic-orbit theory by considering the first
leading term in the short time expansion of the form factor K(�). This limit is
defined by the requirement that �¼ n/B is much smaller than the Heisenberg time
� � �H � 1.

In (168) we have expressed the form factor ~K? n as a sum over degeneracy classes
fqg of periodic orbits which share the same length Lq. Each degeneracy class fqg gives
a contribution

n2

B

X
p2fqg

Ap

rp

�����
�����
2

¼
n2

B

X
p2fqg

jApj
2

r2p
þ

X
p, p02fqg:p 6¼p0

A


pAp0

rprp0

 !
: ð172Þ

If the phases of the amplitudes Ap were completely random one would expect that
the purely diagonal term which is the first term on the right-hand side of (172)
dominates the form factor. However, the phases of the terms are not random and
the extraction of the form factor as a power series in � amounts to unravelling the
phase correlations in a systematic way.

Let us now consider the time-reversal invariant case where S? ¼ ST
? . In general

each periodic orbit has then the same amplitude as its time-reversed partner.
Therefore, time-reverse pairs add coherently to the form factor which results in
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doubling the contribution of the pure diagonal approximation. This is not
exactly true because there always exist self-retracing orbits, for which by definition
the time-reversed partners are identical.

It is natural to divide the form factor into diagonal and off-diagonal
contributions

~K? n ¼ ~Kdiag
? n þ

~Koff�diag
? n ð173Þ

where the diagonal part

~Kdiag
? n ¼

2n2

B

X
p2PðnÞ

jA
rp
p j

2

r2p
�
n2

B

X
p2PðnÞ:p¼p̂

jA
rp
p j

2

r2p
ð174Þ

consists of all pairs p, p0 2 PðnÞ of primitive periodic orbits that are either equal
p0 ¼ p or time-reversed to each other p0 ¼ p̂. The second term is a sum over
self-retracing periodic orbits which have been counted twice in the first term.

The off-diagonal contribution

~Koff-diag
? n ¼

n2

B

X
p, p02PðnÞ:p0 6¼p, p0 6¼p̂

�ðrpLp, rp0Lp0 Þ
A

rp
p A

rp0

p0



rpr
0
p

ð175Þ

to the form factor amounts to all remaining pairs of periodic orbits. It is responsible
for the quantum interference effects which are not present in the diagonal part.

The diagonal approximation [214] consists of writing the form factor in terms
of the diagonal part only. This is justified for short times n� B because of the
following argument. For n� B the majority of periodic orbits visit any bond
at most once. In that case only the orbits which contribute to the diagonal approx-
imation contribute coherently to the sum irrespectively of the chosen star scattering
matrix S? and one may expect that the off-diagonal terms are suppressed due to the
remaining phase factors.

At larger times the probability to visit a bond twice is non-negligible – this
probability grows proportional to the time for n� B. When a bond is
visited twice (or more often) some off-diagonal orbit pairs have correlated
phases and add up coherently. Eventually these give higher order corrections
in �¼ n/B.

We will come back to a discussion of the off-diagonal part later in section 8.3.
For the rest of this section we will discuss the diagonal approximation to the form
factor in detail. Note that

Ap

�� ��2¼Ynp
j¼1

S? bjþ1, b0j

��� ���2¼YM? bjþ1bj ¼Wp ð176Þ

is just the classical weight of a periodic orbit (74) for the classical evolution map

M? bb0 ¼ S? bb0
�� ��2: ð177Þ
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Replacing Ap

�� ��2!Wp in the diagonal part (174) and comparing it to the classical
periodic orbit expansion (75) of the return probability un ¼ trMn one obtains the
identity

~Kdiag
? n ¼

2n

B
un �

2n2

B

X
p2PðnÞ:rp	2

rp � 1

r2p
W

rp
p �

n2

B

X
p2PðnÞ:p¼p̂

1

r2p
W

rp
p ð178Þ

in terms of the classical weights. In the classical periodic orbit expansion of the
return probability (75) repetition numbers rp 	 2 have a different factor in front of
the weight W

rp
p compared to the form factor. This difference is neglected in the first

term but corrected in the second term of (178). Below we will show that only a very
small fraction of orbits p 2 PðnÞ has rp 	 2. The last summand in (178) is the sum
over self-retracing periodic orbits.

The first term in (178) is the graph analogue of a general semiclassical relation
which expresses the short-time form factor as the product of 2� with the classical
probability to return [213, 231].

The total number of periodic orbits of period n grows exponentially
/ Bn=n ¼ e�Tn=n with the topological entropy �T ¼ lnB for a star graph. The
number of periodic orbits p 2 PðnÞ which are repetitions of shorter periodic orbits,
that is rp 	 2, is only proportional to Bn=rp rp=n / e�Tn=rp rp=n. Though this
number also grows exponentially it is only an exponentially small fraction of all
periodic orbits. For self-retracing orbits a similar argumentation is straight-
forward because one half of the corresponding code is just the (time) reverse of
the other half. Altogether the total number of periodic orbits that contribute
in the second and third summand of (178) only grows as e�Tn=2=n with half the
topological entropy.

Let us now use the classical sum rule (77) to estimate the diagonal approxima-
tion. The sum rule states un! 1 for periods n nmix. On the same time-scale the
second and third part of (178) which contain the contributions from repetitions of
shorter orbits and self-retracing orbits are exponentially small because the number of
these periodic orbits cannot compensate the small weight of the repeated orbit, which
is W

rp
p / ð1=BÞ

n in the mean. The largest contributions to the second and third parts
come from the finite number of short primitive orbits p with a period smaller than
the mixing time np < nmix. Their repetitions have a weight W

rp
p 9e�n=n

mix

which can
also be neglected. In summary, a mixing classical evolution implies the quantum
mechanical sum rule

B

n
~Kdiag
n �!

n!1
2 ð179Þ

for the diagonal part of the form factor for time-reversal invariant quantum graphs.
The deviations die out on the mixing time-scale nmix. This time-scale can be replaced
by the (in general shorter) ergodic time-scale if an additional time average over a
small interval �n is applied.

Since the diagonal approximation is only valid for quantum mechanically short
times n� B the sum rule (179) can only be used effectively to predict the form factor
if there is a time-scale separation such that mixing sets in much faster than the
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Heisenberg time nerg � nH ¼ B. In that case there is a time regime, nerg=B� � � 1,
where the spectral form factor

K � ¼
n

B

� 	D E
�
� h ~Kin � 2� ð180Þ

follows the universal prediction from random-matrix theory up to corrections of
order Oð�2Þ.

In the limit of large graphs B!1 at a fixed time � ¼ n=B a more detailed
account is necessary because the number of classical modes (which equals the
number of bonds) grows. The spectral gap �g ¼ 1=nerg defined in (67) may also
depend on B. If the spectral gap is bounded from below by a constant �g > � > 0
equation (180) becomes exact for B!1 for every fixed time �. If the spectral gap
approaches zero more care has to be taken for those classical modes with eigenvalues
�‘ ! 1 [137]. In that case the corrections

un � 1 ¼
XB
‘¼2

�n‘ ð181Þ

to the classical sum rule (77) have to be considered in more detail. One may estimate
these corrections by

hjun � 1jin9ðB� 1Þð1��gÞ
n
� B e��gn ð182Þ

which shows that the corrections in the limit B!1 can only be neglected if
�gB!1. Otherwise deviations from the universal behaviour remain in the diag-
onal approximation for the short-time form factor. Based on this observation,
Tanner conjectured [137] that large quantum graphs have universal spectral statistics
(also beyond the diagonal approximation) if the spectral gap either remains finite
or decays as

�g � B�� with 0 � � < 1 ð183Þ

in the limit B!1. We will discuss this condition again in connection with the
supersymmetry approach to quantum graphs in section 9. We shall conclude this
general discussion with the following remarks.

(i) If the gap condition is violated, the contributions of repetitions and
self-retracing orbits (178) to ~Kdiag

n should be examined because there is no a priori
reason to neglect them. We shall give an example below.

(ii) The gap condition is consistent with the existence of the time regime
1 �  nerg=B. It has been shown that the gap conditions holds generically for
large star graphs [127, 170].

Let us illustrate the general discussion by two examples – the DFT star graph
and the Neumann star graph. The DFT star graph is known to show universal
spectral statistics [139] – the classical map is simply MDFT? bb0 ¼ 1=B for which
all eigenvalues apart from �1 ¼ 1 vanish exactly. Thus the gap condition is
fulfilled maximally. The Neumann star graph is an example with spectral statistics
which belongs to a universality class that is not described by the GOE [117, 123, 147],
here MNeumann? bb0 ¼ ð4þ �bb0 ðB

2
� 4BÞÞ=B2 for which all eigenvalues (except for

�1 ¼ 1) have the same value �‘ ¼ ðB� 4Þ=B such that the gap is �g ¼ 4=B which
does not fulfil the gap condition. Thus we also have to consider repetitions of
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short orbits and self-retracing orbits. In the case of Neumann star graph it suffices to
consider the repetitions of the shortest periodic orbits with primitive period np¼ 1.
These are at the same time self-retracing orbits. Altogether one arrives at [117]

~Kdiag
Neumann? n ¼2

n

B
un þ

1

B
1� 2nð Þ

XB
b¼1

ðMNeumann? bbÞ
n

�! e�4� þ 2� 1� e�4�
� �

¼ 1� 4� þOð�2Þ ð184Þ

which shows that the contributions from repetitions and self-retracing orbits
dominate the short-time behaviour.

We will now study the form factor in the case of a weakly broken time-reversal
symmetry such that S? � ST

? 6¼ 0 is small. The contributions from time reversed pairs
to the diagonal part of the form factor acquire phases and they do not add up
coherently any more. In that case (178) is replaced by

~K? n � � trMn
? þ trRn

?ð Þ ð185Þ

where

R? bb0 ¼ S
? b0bS? bb0 ð186Þ

and we have neglected the contributions from repetitions and self-retracing orbits.
The first term in (185) is the contribution of equal pairs of periodic orbits. For these
the above discussion remains valid and we may replace trMn

? ! 1 for n nerg
if we assume that the gap condition holds for the classical map M?. The second
term in (185) is the contribution from time-reversed pairs of periodic orbits.
The matrix R? has generally complex entries. This reflects the fact that broken
time-reversal invariance leads to destructive interference of counter-propagating
orbits. In the present context only the leading eigenvalue the matrix R? has to
be considered. This can be estimated using perturbation theory. As a result the
contribution of the time-reversed pairs decays exponentially

trRn
/ e�n=n

crit

ð187Þ

in n on a time-scale set by

1=ncrit �
1

B
trS
?ðS? � ST

? Þ
�� ��: ð188Þ

The inverse time-scale 1=ncrit is an obvious measure for the violation of time-reversal
invariance. For large graphs B!1 and fixed time �¼ n/B the contribution of
counter-propagating orbits vanishes if 1=nT / B�

0

where 0 � �0 < 1. This leaves

hKð�Þdiagi� ¼ hK
diag
? n in! � ð189Þ

which is the leading order of the universal result (163) for broken time-reversal
invariance.

8.3. Off-diagonal contributions

The diagonal approximation only gives the leading order in the short-time expansion
of the form factor. We will now discuss how universality is built up order by
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order when more and more off-diagonal pairs of periodic orbits are included in the
expansion of the form factor. We will discuss the limit of large star graphs B!1 at
a fixed time � ¼ n=B� 1. The leading off-diagonal correction to the diagonal
approximation for general large graphs has been given by Berkolaiko, Schanz,
and Whitney [128] following the method by Sieber and Richter [161, 162] for
Hamiltonian systems.

For simplicity we will assume that the elements of the quantum map of the star
graph are all of the same order jUBðkÞ? bb0 j � B�1=2 as for example in the DFT star
graph. As a consequence the gap condition (183) holds with �¼ 0. With some extra
effort the following discussion can be generalized to graphs where the gap condition
holds with 0 � � < 1.

For time-reversal invariant graphs random-matrix theory predicts a leading
off-diagonal correction Kð�Þ � Kdiag

ð�Þ ¼ �2�2 þOð�3Þ to the diagonal approxima-
tion of the form factor. For broken time-reversal symmetry random-matrix theory
predicts that there are no corrections to the diagonal part for short times �<1.
We will start with the time-reversal invariant case and come back to broken
time-reversal at the end.

A family of pairs of periodic orbits can conveniently be described in terms of
diagrams which show the geometry of the two orbits. A diagrammatic language has
first been introduced in [124, 128]. We will follow closely [139, 140] where a variant
which is suitable for star graph dynamics has been developed. The art of finding the
diagrams which contribute to a given order in � to the form factor is significantly
simplified by our assumptions.

To introduce diagrams let us recall that a pair of periodic orbits p and p0 only
contributes to the (discrete) form factor ~Kn if both orbits have the same length
Lp ¼ Lp0 . Rationally independent bond lengths imply that the two orbits visit the
same bonds with equal multiplicity in a permuted order. That is the code of one orbit
is a permutation of the code of the other orbit. All periodic orbit pairs for which this
permutation is equal (up to a cyclic permutation) share a similar geometry which can
be expressed as a diagram.

The diagrammatic language is most easily introduced by first considering the n-th
trace

sn ¼ trSn
? ¼

X
p2PðnÞ

n

rp
A

rp
p ð190Þ

as a sum over periodic orbits of period n. For a fixed period, say n¼ 4, one may write
this sum in terms of the following diagram

ð191Þ

The diagram on the right-hand side represents the sum over all periodic orbits of
period n¼ 4. The sequence of bonds visited by the periodic orbit in the star graph is
represented by a sequence of vertices in the diagram (these should not be confused
with the vertices of the graph) which is traversed in the direction indicated by arrow.
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Each vertex in the diagram on the right-hand side is translated on the left-hand side
as one summation index b ¼ 1, . . . ,B which is summed over. Each (directed) line
b! b0 is translated as a factor S? b0b. A diagram needs not be labelled with the
summation indices bj as above. We will do so sometimes to facilitate the translation.
In the diagrams for the traces sn with higher period n it is useful to define a line
element for matrix elements of the n-th power Sn

? by writing the power n explicitly
next to the line. This leads to the diagram

ð192Þ

which completes the introduction to diagrams for the trace sn.
Now we shall introduce diagrams that contribute to the form factor ~Kn. Instead

of immediately giving a full set of rules how to draw and translate diagrams for the
off-diagonal part we will first consider the diagonal part where the partner orbits are
either the same or time-reversed. Neglecting the overcounting of repetitions of
shorter orbits and the double counting of self-retracing orbits the following two
diagrams give the dominant contribution to the diagonal approximation of the
form factor (here explicitly for n¼ 4)

ð193Þ

The first diagram represents the sum over all equal pairs and the second the sum
over time-reversed pairs of periodic orbits. As before each vertex in the diagram is
translated as a summation index bj (the explicit labels in the diagram are not
necessary). A full line from vertex b to b0 is translated as the corresponding matrix
element S?b0b and a dashed line as its complex conjugate. If a full and a dashed line
are parallel (or antiparallel) one may translate both lines as one matrix element of the
classical evolution map M?b0b as in the last line (193). An overall prefactor 4=B is
added where 1/B stems from the definition of the form factor and 4 is the number of
cyclic permutations of one orbit with respect to the other.

In general the two diagrams for the diagonal approximation to the form
factor ~Kdiag

n has n vertices. The translation rules for lines and vertices are the same
as in the example above and the prefactor is n=B. For drawing the diagrams it is
useful to replace a long stretch of parallel (antiparallel) full and dashed lines by a
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single pair of parallel (antiparallel) lines and put a label next to the line which
gives the length of the stretch. For the diagonal approximation this leads to the
diagrams

ð194Þ

In general a stretch of parallel (antiparallel) lines from vertex b to b0 is translated as a
matrix element ðMn

Þ?b0b of the n-th power of the classical map. Ergodicity sets in for
n nerg and one may replace ðMn

Þ?b0b! 1=B in the limit n,B!1. The corrections
due to classical decaying modes vanish exactly in that limit and one obtains the form
factor ~Kdiag

n ! 2� as predicted by random-matrix theory.
We will now introduce diagrams that contribute to the off-diagonal part of

the form factor. The diagrams have to be ordered by the power of � to
which they contribute in the short-time expansion of the form factor. A lot of
care has to be taken when more and more diagrams are added to the form
factor since certain pairs of periodic orbits occur in more than one diagram.
Off-diagonal diagrams and the careful considerations that have to be taken when
they are added to the form factor are most easily introduced by considering the
diagram

ð195Þ

as a pedagogical example.
We will first describe how this diagram is translated into a sum over pairs of

periodic orbits. Both periodic orbits in the diagram have period n ¼ n1 þ n2 þ 4.
The full line is a periodic orbit with code b1, . . . , bn. The dashed line is parallel
to the full line along the long stretches of length n1 and n2 on the left and right.
In the code of the partner orbit two indices have interchanged b1 $ bn1þ3 and,
for this reason, we will call this diagram a transposition diagram. The contribu-
tion of this diagram to the discrete form factor ~Kn is the sum over all pairs of
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periodic orbits with the given geometry. For n1 6¼ n2 the diagram is translated as
the following sum

ð196Þ

Apart from an additional factor n in the prefactor the translation follows the same
rules as in the diagonal approximation. The additional factor n is explained by the
observation that interchanging the indices b2 $ bn1þ4 in the code b1 � � � bn describes a
different partner orbit than interchanging b1 $ bn1þ3. The diagrams for both
transpositions lead to the same diagram – only the labels at the vertices are changed.
For n1 6¼ n2 all transpositions bj $ bjþn1þ2 with j ¼ 1, . . . , n lead to different partner
orbits with the same contribution which results in the factor n. For n1 ¼ n2
(thus n ¼ 2n1 þ 4 is even) only bj $ bjþn1þ2 with j ¼ 1, . . . , n=2 lead to different
partner orbits due to the symmetry of the diagram. In that case the additional factor
is n=2 instead of n. In general the prefactor of any diagram (including the diagonal
diagrams) is given by n2=sB for a diagram with s-fold symmetry (e.g. s¼ n for the
diagonal diagrams).

The total contribution of the transposition diagram is now computed using the
unitarity of the graph scattering matrix S? and replacingMn1

? bb0 ,M
n2
? bb0 ! 1=B for

j¼ 1, 2. For fixed lengths n1, n2 ¼ n� n1 � 4 of the two loops one gets

ð197Þ

where s¼ 2 for n1 ¼ n2 and else s¼ 1.
This shows that a transposition diagram contributes to order �2 in the form factor

which is the leading correction to the diagonal part. We will now add all diagrams of
this type to the two diagonal diagrams. Eventually it will turn out that their total
contribution vanishes once pairs of periodic orbits that occur in more than one dia-
gram have been considered correctly. Later we will consider other diagrams that
contribute to the same order �2 in the form factor and give a non-vanishing contribu-
tion which is consistent with the predictions of random-matrix theory.

Taking into account all different transposition diagrams which differ by the
size of the loops one gets an overall contribution of ððn� 1Þ=2Þ�2 which diverges
as n,B!1.y This apparent divergence is resolved due to the fact that certain pairs

yTranspositions of an element with its neighbour (formally n1 ¼ �1) or next-neighbour
(n1 ¼ 0) leads to diagrams which look a little bit different but have the same value.
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of periodic orbits occur in different diagrams and are thus double (or multiply)
counted. In particular, each of the transposition diagrams contains diagonal periodic
orbit pairs which have to be subtracted before performing the limit of large
graphs. In the explicit summation (196) diagonal pairs of periodic orbits appear
whenever the two transposed bond indices are the same (b1 ¼ bn1þ3). The subset of
pairs of periodic orbits which appears both in the left diagonal diagram in (194) and
in the transposition diagram (196) can be expressed by the diagram

ð198Þ

which has the same value as the transposition diagram (197). Each transposition
diagram is thus cancelled by subtracting the doubly counted orbit pairs. As a
consequence the transposition diagrams do not contribute at all to the form factor
in spite of the fact that each diagram is of order �2. A transposition of two indices
to the right diagram of the diagonal approximation in (194) (thus changing the
direction of the dashed arcs in the transposition diagram) also leads to new
diagrams which are cancelled in the same way. This observation can be generalized.
Adding a diagram which differs from the transposition diagram by a further
interchange of two bonds inside one of the two long stretches of parallel lines
gives a contribution n2=B3 which is a factor 1=B smaller than the transposition
diagram. Subtracting all periodic orbits which have been counted twice – once in
the transposition diagram and once in the new one – cancels the overall contribution
of these orbits.

In the transposition diagrams discussed above the two periodic orbits are parallel
in two long stretches on the left and right of the diagram. We will call such long
stretches loops because they describe a parallel propagation of the two trajectories in
phase space. On these the motion is free of interference and described by the classical
map. A long loop of length n1 in a diagram just gives a factor Mn1ð Þbb0! 1=B.
Interference occurs only in the small region (composed of six bond indices) near
the transposed indices. It seems natural to consider diagrams with long parallel
stretches of classical motion with a few regions where quantum interference is active
in order to find quantum corrections to the diagonal approximation. This leads
directly to the so-called loop expansion which orders the diagrams according to
the number of classical loops. The diagonal approximation is represented by a single
loop. We will show that the universal �2 correction to the diagonal approximation
is obtained by all diagrams with two loops (including, of course, the correction
diagrams for multiply counted pairs). We have already discussed two types of
diagrams with two loops: the transposition diagrams where the periodic orbits
traverse the loops in the same direction, and the same type of diagram for loops
which are traversed in opposite (time-reversed) direction. None of these gave
any contribution after the doubly counted orbits have been subtracted. There is a
third type of diagram with two loops. For these one loop contains time-reversed
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trajectories and the other parallel trajectories. The diagram is easily drawn and
calculated

ð199Þ

This eight-shaped diagram is the analog of the semiclassical Sieber–Richter [160–162]
pairs for Hamiltonian systems. The left loop has a minimal length n1 	 2 since the
cases n1 ¼ 0, 1 have already been included as transpositions in the time-reversed
diagonal diagram. For the same reason the right loop has a minimal length
n� n1 � 2 	 2. These minimal lengths of the loops are the graph analog of the
minimal length for a classical loop in Hamiltonian flows. Altogether there are
n� 5 new diagrams of the same value n2=B2. Let us now consider the doubly counted
orbit pairs which have diagrams

ð200Þ

with n2 ¼ 2, 3, . . . , n� 2. These pairs have either already been included in diagonal or
transposition diagrams or they appear in two new diagrams with different n1. As a
consequence we have to subtract n� 3 correction diagrams with value n2=B2.
Altogether the form-factor in the two-loop expansion is

~Kn ¼ 2� þ �2ðn� 5� ðn� 3ÞÞ ! 2� � 2�2: ð201Þ

This is equivalent to the short-time expansion of the random-matrix prediction for
the form factor in time-reversal invariant systems (symmetry class AI) in the same
order.

Breaking time-reversal invariance (symmetry class A) effects all antiparallel
loops. Instead of the classical evolution mapM the dynamics along the antiparallel
loops is governed by the complex matrix R (186). A diagram which contains an
antiparallel loop is suppressed exponentially and does not contribute in the limit
B!1. Thus only the first diagonal diagram remains while all other diagrams in the
two-loop expansion are either cancelled by doubly counted pairs or vanish due to
antiparallel loops. The two-loop result ~Kn ¼ n=B ¼ � is consistent with the random-
matrix prediction.

It takes some effort to write down and calculate all three-loop diagrams for the
next order �3 [124]. The building blocks of the loop expansion are all known but it
has been performed explicitly only for a few orders. For Hamiltonian systems the
loop expansion in the semiclassical form factor works analogously and has recently
been extended to all orders [158, 159]. One should be aware that the loop expansion
is valid only for � � 1. Near the Heisenberg time � ¼ �H ¼ 1 the probability that a
bond is visited more than once is unity and long loops have negligible importance.
Similar expansions which work near or beyond the Heisenberg time are not known.
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The loop expansion also cannot estimate the error due to all neglected diagrams. For
a fixed n the expansion in diagrams is exact and finite, but in the limit B!1, the
number of orbit pairs grows exponentially while only a small fraction is included
in the loop-expansion.

8.4. Graphs with spin and their spectral statistics

So far we have only discussed two of the three Wigner–Dyson symmetry classes on
quantum graphs. The third symmetry class (AII) is relevant for fermionic systems with
time-reversal invariant dynamics and broken spin-rotational symmetry. The time-
reversed path of an electron in such a system travels along the same trajectory in
opposite direction p 7! � p, and has, additionally, opposite spin direction s 7! � s.
In quantum mechanics the time-reversal symmetry is described by an anti-unitary
operator T which commutes with the Hamiltonian H, T½ � ¼ 0. The two
Wigner–Dyson symmetry classes of time-reversal invariant systems are distinguished
by T 2

¼ �1 in symmetry class AII in contrast to T 2
¼ 1 in symmetry class AI.

The spectra of a quantum system in symmetry class AII is doubly degenerate
due to Kramers’ degeneracy. If j�i is an eigenstate of the system Hj�i ¼ Ej�i the
state T j�i is an orthogonal eigenvector h�jT �i to the same energy
HT j�i ¼ T Hj�i ¼ ET j�i. The different type of time-reversal symmetry has impact
on spectral statistics [232]. The spectral fluctuations which are displayed by complex
quantum systems in symmetry class AII are described by the Gaussian Symplectic
Ensemble (GSE). For more details we refer to Appendices A and B and to the
literature [196].

For quantum graphs this symmetry class has first been studied by Bolte
and Harrison who considered the Dirac operator on the graph with appropriate
boundary conditions at the vertices and discussed the spin contribution to spectral
statistics. Quantum graphs with a spin degree of freedom have also been discussed
in the context of localization induced by spin–orbit coupling [143]. Here, we shall
introduce spin degrees of freedom which are only effected by the scattering at
the vertices. As in the previous section we shall discuss only star graphs [139, 140].
The spin degree of freedom is added to a graph by considering wavefunctions  b	ðxbÞ
on the bond b which have a spin up 	 ¼ 1=2 and a spin down 	 ¼ �1=2 component.
Spin rotational invariance is broken by allowing spin flips at the vertices. As in the
previous we will limit ourselves to star graphs with spin and allow for spin flips only
at the centre.

The construction of the star quantum evolution operator in section 8.1 and
spectral theory is completely equivalent to usual star graphs when one replaces the
star graph with B bonds and a two-component wavefunction by a star graph with 2B
bonds and a scalar wavefunction.

Time-reversal symmetry of the star graph with spin requires that the unitary
2B� 2B star graph scattering matric S? has the structure

S? ¼
A B

C A
T

� �
B ¼ �B

T
C ¼ �C

T
ð202Þ

where the explicit structure is in the spin index such that the B�B matrix A (AT)
describes spin up (down) to spin up (down) scattering from one bond to another
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while B, and C describe scattering processes where the spin is changed. That is the
scattering amplitude ðb0, 	0Þ ! ðb, 	Þ equals the one of the time-reversed process
ðb, � 	Þ ! ðb, � 	Þ up to a minus sign which occurs when the spin component is
flipped

S? b 	, b0 	0 ¼ ð�1Þ
	�	0S? b0 �	0, b�	: ð203Þ

Since the number of spin flips along a periodic orbit p is even its amplitude in the
trace formula equals the amplitude of the time-reversed periodic-orbit Ap ¼ Ap̂

where the time-reverse of an orbit with code p ¼ ðb1, 	1Þ, ðb2, 	2Þ, . . . , ðbn, 	nÞ is now
defined as p̂ ¼ ðbn, � 	nÞ, . . . , ðb2, � 	2Þ, ðb1, � 	1Þ.

By convention every pair of degenerate eigenvalues in a spectrum that displays
Kramers’ degeneracy is only counted once in the density of states. This leads to an
overall factor 1=2 in the trace formula and the mean level spacing between different
eigenvalues is � ¼ p=BL as in a scalar graph with the same number of bonds.
The equivalence of the spectral form factor with the discrete time form factor of
the eigenphases in large graphs leads to the relation

K � ¼
n

B

� 	D E
�
¼ h ~Knin ð204Þ

for time-reversal invariant spin star graphs, where

~Kn ¼
1

4B
hjtrUB?ðkÞ

n
j
2
ik: ð205Þ

We will discuss the form factor in the diagrammatic language introduced in the
previous section and assume that the classical evolution operator
M? b	, b0	0 ¼ jS? b	, b0	0 j

2 is strongly mixing such that the decaying classical modes do
not contribute to any of the considered diagrams in the limit of large graphs.

The loop expansion follows the same rules as in the previous section. However
one needs to add a sum over the 2n spin indices along the two orbits. We start with
the two diagrams of the diagonal approximation. The first diagram can be written in
the form

ð206Þ

where the matrix that appears on the right-hand side describes the propagation of
two spins from one bond to another. It contains the classical mapM as a 2B� 2B
submatrix which describes the propagation of two parallel spins that remain parallel.
Antiparallel spins are propagated by the matrix

Kb	, b0	0 ¼ S? b 	, b0 	0S


? b�	, b0 �	0 ð207Þ

while antiparallel spins and parallel spins are coupled by

J b	, b0	0 ¼ S? b 	,B0 	0S


? b 	, b0 �	0 and Lb	, b0	0 ¼ S? b 	,B0 	0S



? b�	, b0 	0 : ð208Þ

Being defined in terms of a unitary matrix K, L and J all have eigenvalues inside the
unit circle. Their contribution to the trace is thus exponentially suppressed. Only the
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ergodic mode of the classical map survives in the n-th trace when n is larger than all
decay times. In the limit B!1 the first diagonal diagram gives a contribution �=4
to the form factor. The second diagonal diagram gives the same contribution – with
the only difference that the ergodic modes corresponds to antiparallel spins along the
loop. Minus signs occur in addition to the classical propagator whenever both spins
flip but since the number of spin flips is even along a periodic orbit they all cancel.
We thus have

ð209Þ

in accordance with the random-matrix result (163).
Loops in other diagrams can be treated in a similar way. Each loop just gives a

factor 1=2B and only transports parallel spins for a loop that is traversed in the same
direction by both orbits and antiparallel spins for loops that are traversed in opposite
direction. For time-reversed loops an additional factor �1 appears if the number
of spin flips along the loop is odd. The �2 corrections to the diagonal approximation
are found again in the diagrams with two loops. While the transposition diagrams
cancel with the doubly counted orbits in just the same way as for scalar graphs one
again gets a non-vanishing contribution from the eight-shaped diagrams of the
Sieber–Richter type

ð210Þ

The main difference to the scalar case is the different overall sign (the other factors
are just due to Kramers’ degeneracy). The different sign also appears in the diagram
for the doubly counted orbits which has the same value �n2=8B2. With n� 5 eight-
shaped diagrams (not counting the transposition diagrams) and n� 3 diagrams
accounting for double counting the two loop correction is n2=4B2

¼ �2=4 in accor-
dance with the universal result (163).

8.5. Andreev graphs and non-standard symmetry classes

Recently, the threefold symmetry classification of quantum systems by Wigner and
Dyson has been extended to a ten-fold classification [191, 233–236]. This has been
necessary for certain physical systems, such as a Dirac particle in a random
Gauge field, quasiparticles in in a hybrid superconducting–normal-conducting
structure or quasiparticles in a disordered superconductor. The new feature in these
systems is a electron–hole or particle–antiparticle symmetry. The one-particle excita-
tions are described by a Hamiltonian (for instance, the Dirac operator or the
Bogoliubov–de Gennes operator) that have a positive spectrum corresponding to
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(quasi-) particle excitations and a negative spectrum corresponding to antiparticle
excitations (while the excitation energies of the full many-body field theory remain
positive). That is if j�i is an eigenstate with energy E, the particle–antiparticle sym-
metry yields another eigenstate j�0i with energy �E. There are two types of such
particle–antiparticle symmetry operators. They are either unitary or antiunitary.
A unitary symmetry operator P that anticommutes with the Hamiltonian
P,H½ �þ¼ 0 is a chiral symmetry operator and an anti-unitary operator C which
anticommutes with the Hamiltonian C,H½ �þ¼ 0 is a charge-conjugation symmetry.
Both types of symmetry have impact on spectral statistics near E¼ 0 and lead to
new quantum interference effects which are not present in the Wigner–Dyson
classes. Sufficiently far away from the symmetry point E¼ 0 these systems are
usually described well by the standard Wigner–Dyson classes. Combining charge-
conjugation and chiral symmetries with time-reversal symmetries one can show that
there are seven non-standard symmetry classes beyond the Wigner–Dyson classes
[191]. A full account of these is given in Appendix A. In each non-standard symmetry
class random-matrix ensembles can be constructed which predict universal statistical
properties of their spectra in complex quantum systems.

In this section we will concentrate on two non-standard symmetry classes,
which have been called C and CI (see Appendix A), and on chaotic systems with
spectral statistics which is dominated by the universal predictions of Gaussian
random-matrix ensembles (see Appendix B). The symmetry classes C and CI can
be realized by quasiparticles in a hybrid superconducting–normal-conducting struc-
ture [235, 236]. The wavefunction obeys the Bogoliubov–de Gennes equation

p

i
r þ eAðxÞ

� �2

2m � EF �sðxÞ

�sðxÞ



�

p

i
r � eAðxÞ

� �2

2m þ EF

0
BBBBB@

1
CCCCCA

�eðxÞ
�hðxÞ

� �
¼ E

�eðxÞ
�hðxÞ

� �
ð211Þ

where �eðxÞ and �hðxÞ are the (quasi-) electron and hole components of the wave-
function, � �h

i r � eAðxÞ
� �2

=2m is the kinetic energy of the electron or hole in the
presence of a magnetic field A, EF is the Fermi energy, and �sðxÞ is the pair potential
of the superconducting condensate which couples electron and hole components.
The pair potential vanishes in the normal conducting region. There is an anti-unitary
charge conjugation symmetry C

�eðxÞ
�hðxÞ

� �
7! C

�eðxÞ
�hðxÞ

� �
¼

�hðxÞ



��eðxÞ



� �
with C

2
¼ �1 ð212Þ

which transforms an eigenstate with energy E to a different eigenstate with energy
�E. The Bogoliubov–de Gennes equation is time-reversal invariant with T 2

¼ 1

(symmetry class CI) if the magnetic field vanishes and the pair potential is real
(for broken time-reversal invariance the symmetry class is C).

In a normal conducting region electrons and holes are not coupled. In a hybrid
normal-conducting–superconducting system electrons and holes are coupled by
Andreev scattering (see figure 5) at a normal-conducting–superconducting interface
[237]. An electron (or hole) with energy jEj � j�sj � EF in the normal conducting
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region (�s ¼ 0) hits the interface and is retroflected as a hole (electron) of the same
energy in the direction from which the incident quasiparticle came (as opposed to
normal specular reflection at a potential wall or normal-conducting–isolating
interface). The physical process can be described as an electron which enters the
superconductor and recombines with an electron–hole pair such that the two
electrons build a new Cooper pair and the hole is ejected out of the superconductor.
Up to corrections of order E=

ffiffiffiffiffiffi
EF

p
the momentum is conserved in this process, not

only in magnitude but also in direction (again in contrast to normal reflection at a
potential wall). Note that the velocity of a hole is in opposite direction to its
momentum due to the overall minus sign in the kinetic energy (or ‘negative mass’)
of the hole.

If a non-magnetic chaotic system is coupled to a superconductor, Andreev
reflection will destroy chaos near the Fermi level (E¼ 0) since almost every trajectory
will hit the superconducting interface and the incident particle travels back along the
same trajectory. Exponential divergence of nearby trajectories can only survive on a
short time-scale between two Andreev reflections. Still, signatures of chaos in the
normal system remain which are a topic of interesting present research. For details
we refer to the literature [238–242]. Here we will only be interested in the regime
where the combined electron–hole dynamics is chaoticy – this can be achieved by a
magnetic field which bends both electrons and holes in the same direction such that
hole trajectories do not travel back along the electron trajectories. In general this
breaks time-reversal invariance (symmetry class C) but certain reflection and point
symmetries can restore (a non-conventional) time-reversal invariance (symmetry
class CI).z

The charge conjugation symmetry in a chaotic system effects all spectral correla-
tion functions near E¼ 0 and the deviations from the Wigner–Dyson classes decrease

Andreev reflection Normal reflection

no
rm

al
 c

on
du

ct
or

no
rm

al
 c

on
du

ct
or

Su
pe

rc
on

du
ct

or

Is
ol

at
or

Electron Electron

Hole

Figure 5. Andreev reflection at a normal-conducting–superconducting interface and normal
reflection at a potential wall.

yIn the literature on Andreev billiards it has become a convention to call a system chaotic or
integrable according to the dynamics of the normal system where electrons and holes are not
coupled. We will always refer to the combined electron–hole dynamics in presence of the
superconductor.
zAnother option to restore chaos is to introduce many point scatterers (disorder).
Both symmetry classes can also be realized in a completely different context like two
coupled spins where chaos in the semiclassical limit (large spins) is not prevented by
Andreev reflections.
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on the scale of the mean level spacing �. That is for E � chaotic systems in the
symmetry classes C and CI are described by the GUE and GOE (symmetry classes A
and AI). The effects can thus not be seen by any type of spectral average in an
individual system. Instead the spectral average has to be replaced by an
average over some system parameter like the Fermi energy, the magnetic field or
the geometry of the system. The deviations from Wigner–Dyson behaviour turn out
to be universal and are themselves described by Gaussian random-matrix ensembles
which we will call the C-GE and CI-GE.

In contrast to the Wigner–Dyson symmetry classes there are universal interfer-
ence effects also in the mean density of states for the non-standard symmetry classes
(averaged over some system parameter). These will be in the focus of the following
discussion.

In figure 6 the mean density of states for the Gaussian random-matrix
ensembles C-GE and CI-GE [235, 236] is shown (for explicit formulae
see Appendix B) as a function of the energy s ¼ E=�E in units of the mean level
spacing. Quantum interference leads to a dip in the mean density of states at s¼ 0
where hdðsÞi ¼ 0, that is there are no states on the Fermi level. For s 1 (or E �)
the mean density of states approaches the value hdðsÞi ! 1 (or hdðEÞi ! 1=� which
defines the mean level spacing here). With

hdðsÞi ¼ 1þ

ð1
0

d�Fð�Þ cos 2p�s ð213Þ

we introduce the Fourier transform of hdðsÞi � 1 which we will call the first-order
form factor (or just form factor in this section) because its periodic-orbit treatment is
to some extent analogous to the (second-order) form factor in the Wigner–Dyson
classes. We will show that the short-time expansion

Fð�ÞC ¼� 1

Fð�ÞCI ¼� 1þ
�

2
þOð�2Þ ð214Þ

of this form factor for a quantum graph in the corresponding symmetry class is given
by a loop expansion analogously to the loop expansion of the second-order form

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

s

−4 −2 0 2 4
s

C-GE
〈d

(s
)〉

〈d
(s

)〉

0

0.2

0.4

0.6

0.8

1

1.2

CI-GE

Figure 6. The mean density of states in the random-matrix ensembles C-GE and CI-GE (full
lines). The dashed lines give the flat density of states of a system without charge-conjugation
symmetry and the same mean level spacing.
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factor in the Wigner–Dyson case. In figure 7 the universal form factors are shown
together with a numerical average over Andreev star graphs of the corresponding
symmetry classes. The form factor is a strongly oscillating quantity. To compare it to
the universal result an additional time average over a small interval �� � 1 is needed
to tame the oscillations.

Andreev graphs [139, 140] are quantum graphs which are coupled to a
superconductor such that Andreev reflection occurs. Such graphs can be
constructed in the symmetry classes C and CI by assigning a two-component
wavefunction �b 	ðxbÞ to each bond where 	 ¼ e, h corresponds to the electron
and hole components on the bond b with additional restrictions on the
boundary conditions at the vertices. We will not give the most general definition,
instead we will look at star graphs. Each bond of the star graph is coupled to
a superconductor at the peripheral vertex where Andreev reflection couples
the electron and hole components. Along the bonds and at the central
vertex the graph is assumed to be normal conducting (electrons are not coupled
to holes).

The quantum evolution map of an Andreev star graph with B bonds in symmetry
class C (broken time-reversal invariance) has the form

UB?ðkÞ ¼
S? 0
0 S
?

� �
0 TehðkÞ

TheðkÞ 0

� �
ð215Þ

where the unitary B�B matrix S? is the electron-electron scattering matrix of the
central vertex. Charge conjugation symmetry then requires that the hole-hole scat-
tering matrix is the complex conjugate S
? . The diagonal B�B matrices TehðkÞ
(TheðkÞ) contain the phase factors acquired for a hole propagating from the centre
to a peripheral vertex where it is scattered back as an electron which propagates back
to the centre. Altogether

Teh bb0 ðkÞ ¼ �i�bb0e
ibei2kLb The bb0 ðkÞ ¼ �i�bb0e

�ibei2kLb , ð216Þ

0 0.5 1 1.5
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−0.6
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  )

F
( 
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−0.8
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0

0 0.5 1 1.5

Figure 7. Universal first-order form factor as predicted by the random-matrix ensembles
C-GE and CI-GE (full lines). The dashed lines are an average over 10 000 realizations of
Andreev star graphs with B¼ 50 bonds.
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where ei2kLb is the phase acquired during the propagating along the bond b from the
centre to the periphery and backy and �Ieib (�Ie�ib) is the phase acquired during
the Andreev reflection for a hole (an electron) hitting the superconductor – e�ib is
the phase of the superconductors pair potential. An average over system parameters
is easily obtained by taking the phases b as independent random variables which are
equidistributed on 0 � b < 2p.

For a time-reversal invariant Andreev star graph (symmetry class CI) there are
additional restrictions: the central electron-electron scattering matrix (and thus also
the hole-hole scattering matrix) has to be symmetric S? ¼ ST

? and the pair potential
has to be real, thus eib ¼ �1. For time-reversal invariant Andreev graphs the
different signs of the pair potentials will be taken as independent random variables
in a system average. Note that it is sufficient to break either the symmetry of the
central scattering matrix or the reality of the pair potentials to break time-reversal
invariance. Indeed, in the numerical calculations performed in figure 7 we have taken
S? ¼ SDFT which is symmetric and one finds very good agreement of the form factor
with the universal result.

We will assume that the S? is a full matrix and the magnitude of all matrix
elements is of order 1=

ffiffiffiffi
B
p

. Since we do not perform any spectral average there is
no fundamental difference between rationally dependent and incommensurable bond
lengths here. For simplicity we choose all bond lengths equal Lb¼L. The mean level
spacing is � ¼ p=2BL. Setting k ¼ �s in the oscillating part of the density of states
doscðkÞdk ¼ doscðsÞds we arrive (after a few minor manipulations) at

doscðsÞ ¼
2

B

X1
n¼1

ð�1Þn cos 2ps
n

B

� 	
tr S?DS
?D



ð Þ

n
ð217Þ

where Dbb0 ¼ �bb0e
ib . One can immediately read off the time averaged form factor

F � ¼
n

B

� 	D E
�
¼ hFnin ð218Þ

where

Fn ¼ 2htr S?DS
?D



ð Þ
n
i ð219Þ

is a discrete variant. The trace appearing in Fn is equivalent to a sum over periodic
orbits of period 2n which are scattered at the centre of the star alternately as
electrons or holes.

Averaging over the phase factors eib (for broken time-reversal invariance) only
those periodic orbits survive in Fn which visit each bond an even number of times –
one half as electrons being Andreev reflected back to the centre as holes the other

yAt first sight this does not seem to be in accordance with the Bogoliubov–de Gennes equa-
tion. Indeed an electron (a hole) propagating along a bond with energy E would acquire a
phase eIkeLb (e�IkhLb ) according to the Bogoliubov–de Gennes equation where electron (hole)
momentum is ke ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EF þ E
p

(kh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EF � E
p

) – the sign in the phase of the hole is different
since it propagates in opposite direction to its momentum. Since we are interested in the limit
EF  E one may expand the momenta ke;h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eF � E
p

¼
ffiffiffiffiffiffi
EF

p
� E=2

ffiffiffiffiffiffi
EF

p
þOðE2=E3=2

F Þ.
Adding the hole and electron phases ðke � khÞLb the leading part cancels. Keeping
k ¼ E=2

ffiffiffiffiffiffi
EF

p
fixed in the limit EF !1 only 2kLb remains.
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half as holes being Andreev reflected as electrons. The sum over the remaining orbits
is still very complex and cannot be performed in a closed form. It resembles the sum
over pairs of periodic orbits in the (second-order) spectral form factor where only
those pairs survive the average where both orbits visit the same bonds. Since there is
only one orbit there are no diagonal and off-diagonal terms in Fn. However there are
self-dual periodic orbits which are invariant under electron–hole interchange [243].
That is, a self-dual periodic orbit visits the same sequence of bonds twice
with electrons and holes interchanged at the second traversal. The self-dual
approximation takes into account only the coherent contribution of self-dual orbits.
Since self-dual periodic orbits only exist for odd n one has

Fself-dual
n ¼

0 for odd n,

�2trMn for even n,

�
ð220Þ

whereMbb0 ¼ jS? bb0 j
2 is the corresponding classical map on the graph which does not

distinguish between electrons and holes. We can use the classical sum rule (77) and
replace trMn

! 1 and an average over n yields the leading order of the universal
term

hFð�Þself-duali� ¼ hF
self-dual
n in ¼ �1: ð221Þ

The overall minus sign is just a consequence of the 2n Andreev reflections each of
which gives a factor �i. While the diagonal approximation to the second-order form
factor ~Kn is linear in � the self-dual approximation starts with a constant. The reason
for this difference is that the contribution of a pair of periodic orbits in a spectral
two-point correlator gets an extra factor n for all cyclic permutations of the second
orbit with respect to the first one. In contrast we here deal with a single orbit where
such a factor cannot arise.

If time-reversal is broken the contribution of all remaining periodic orbits have
to vanish for universal spectral statistics. In contrast time-reversal invariant Andreev
graphs in symmetry class CI display corrections to the self-dual approximation – the
first order being linear in �. The average in a time-reversal invariant Andreev graph is
just over eib ¼ �1. The orbits that survive this average outnumber the orbits that
contributed at broken time-reversal invariance. Every bond is still visited an even
number of times – but there is no restriction that half of them should come from the
centre as an electron and the other half as a hole. There are additional orbits already
on the level of the self-dual approximation. However their contribution cancels as we
will show now. If an orbit first visits a sequence of n bonds and then traverses the
same bonds backwards with electrons and holes interchanged it is self-dual with
respect to charge-conjugation combined with time-reversal invariance. This is most
easily seen by drawing diagrams

ð222Þ
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where the first diagram contains the self-dual orbits that we have already discussed
for broken time-reversal symmetry and the second diagram contains the additional
orbits which only survive in the time-reversal invariant case. The first diagram gives a
contribution �1 and the second diagram gives ð�Þn2n. The additional factor n stems
from the reduced symmetry of the diagram with respect to the first self-dual diagram.
Averaging over a small time interval the contribution of the second diagram cancels
due to its alternating sign.

Higher order corrections in both symmetry classes can be obtained by draw-
ing diagrams with more than one loop [140]. One should be aware that both
types of loops parallel and antiparallel are present in the time-reversal invariant
case but only the parallel loops survive the ensemble average in the case of
broken time-reversal invariance. The linear correction to the self-dual approxima-
tion is due to diagrams with two loops. We will not present a full account of
these diagrams but refer to the literature. It has been shown that all two-loop
diagrams in symmetry class C give a vanishing contribution. In contrast
there are two-loop diagrams with a non-vanishing contribution in symmetry
class CI – these have one parallel and one antiparallel loop. Subtracting doubly
counted orbits they give the value �=2 which is the linear order of the universal
result.

We have shown that periodic-orbit theory in Andreev star graphs can
account for universal spectral statistics in non-standard symmetry classes.
The remaining five non-standard symmetry classes can equally be treated with star
graphs but their treatment does not contain any new ideas and we refer to the
literature [140].

9. The supersymmetry approach to quantum graphs

In this section we will come back to universal spectral statistics in the standard
Wigner–Dyson symmetry classes and present a proof that the statistics in large
well-connected time-reversal invariant quantum graphs follows the predictions of
random-matrix theory [141, 142]. This proof involves a field-theoretic description
of spectral correlation functions in a specially adapted version of the supersym-
metric non-linear 	-model. While the theory can be presented for general simple
graphs we restrict again to star graphs which allows for some technical simpli-
fications. Similar methods have been used efficiently in disordered systems [205,
208, 209, 244, 245] where an average over a disorder ensemble leads to super-
symmetric 	-models and universal spectral statistics can be proven (for an ensem-
ble of systems). The phases eikLb acquired during the propagation through a
bond are a source of disorder in an individual quantum graph with incommen-
surate bond lengths. This type of disorder eventually allows for an exact mapping
to a variant of the non-linear 	-model as an additional powerful tool to analyse
their spectral statistics. We will present the theory and the proof of universality
for the two-point correlator of the eigenphases of the quantum evolution map
of large star graphs. Generalizations to general graphs can be found in the
literature [141, 142].
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9.1. An exact supersymmetric model for spectral correlators

The starting point of the supersymmetry approach to the two-point correlator of
eigenphases of the quantum evolution map is the expression

~R2ðsÞ ¼
1

8p2
@2

@jþ@j�

�����
j�¼0

�ðjþ, j�; sÞ
 �

k
ð223Þ

where

�ð jþ, j�; sÞ ¼
�Bðþ,F; kÞ

�Bðþ,B; kÞ

�Bð�,F; kÞ



�Bð�,B; kÞ

 ð224Þ

with

�,F ¼
2p
B

j� �
s

2

� 	
�,B ¼

2p
B
�j� �

s

2

� 	
: ð225Þ

�ðjþ, j�; sÞ is a generating function expressed as a quotient of secular functions.
A similar expression can be used for the spectral two-point correlator R2(s) which
we will not discuss here (for moderate bond length fluctuations we have shown in
section 8 that the two correlators are essentially equivalent for large graphs).

The generating function expressed as a quotient of determinants is an ideal
starting point for supersymmetry approaches since it can easily be written as a
Gaussian integral over commuting and anticommuting variables. Powerful methods
are available to perform averages on Gaussian integrals which renders such an
expression a desirable object. We will not give an introduction to the supersymmetry
method and the notions of superdeterminant sdetA of a supermatrix A or of its
supertrace strA ¼ trAB � trAF which is available in many textbooks and reviews
[196, 208, 244, 245],y but we will give the main steps leading to a convenient
Gaussian expression for the generating function.

Defining the supervectors

 ¼

z1
� � �

zN
�1
� � �

�N

0
BBBBBB@

1
CCCCCCA

and ~ ¼ z
1 � � � z
N ~�1 � � � ~�N
� �

, ð226Þ

where zi are complex commuting (bosonic) variables while �i and ~�i are independent
anticommuting (fermionic) numbers, the quotient of determinants of an N�N

yOne should be aware that there are different conventions for the definition of a supertrace
which might differ by an overall sign and consequently for the superdeterminant which may
be defined via sdetA ¼ estr lnA. There are also different conventions for the integration over
anticommuting numbers which differ by an overall constant.
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matrix AF and a (positive definite) N�N matrix AB can be expressed as a Gaussian
integral

detAF

detAB

� sdetAð Þ
�1
¼

ð
dð ~ , Þe�

~ A : ð227Þ

Here,

A ¼
AB 0
0 AF

� �
ð228Þ

is a block-matrix in superspace (boson–fermion space) and the measure is given by

dð ~ , Þ ¼ p�N
YN
i¼1

dReðziÞdImðziÞd ~�id�i ð229Þ

with
Ð
d�i �i ¼ 1 and

Ð
d�i ¼ 0.

Before applying this to (224), it will be convenient to double the matrix
dimensions using

�Bð; kÞ ¼ det 1� e�iUB?ðkÞ
� 	

¼ det e�iS?

� 	
det

1 T?ðk=2Þ
T?ðk=2Þ eiSy?

� �
: ð230Þ

At this point the doubling of dimension seems arbitrary – it leads to simplifications
at a later stage. Now we write the generating function as a Gaussian superintegral

�ðjþ, j�; sÞ ¼

ð
dð ~ , Þ e�i

4ps
B e�S½

~ , �
ð231Þ

where

S½ ~ , � ¼ ~ þ

I T?ðk=2Þ

T?ðk=2Þ z
þS
y
?

 !
 þ

þ ~ �
I T?ðk=2Þ




T?ðk=2Þ

 z�S?

 !
 �: ð232Þ

Here,  ¼ f a, s, x, bg is a 8B-dimensional supervector where, a ¼ �distinguishes
between the retarded and the advanced sector of the theory (components coupling
to � or �
, respectively). The index s ¼ F,B refers to complex commuting and antic-
ommuting components (determinants in the denominator and numerator, respec-
tively), and x¼ 1, 2 to the internal structure of the matrix kernel appearing in
(232). The 2� 2 matrices

z� �
e�iB,� 0

0 e�iF,�

� �
ð233Þ

are diagonal matrices in superspace containing the appropriate phase factors in the
boson–boson and fermion–fermion sector.
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To account for the (optional) time-reversal invariance of the scattering matrix,
we introduce the doublets

� ¼
1ffiffiffi
2
p

 

~ T

� �

~� ¼
1ffiffiffi
2
p ~ ,  T	bf3

� �
, ð234Þ

where 	bf3 � ð
1
0

0
�1
Þ is the Pauli matrix in superspace. Notice that the lower compo-

nents of � emanate from the upper component by the time reversal operation
(transposition). For later reference, we note that the new fields are related to each
other through

� ¼ � ~�T ~� ¼ �T�: ð235Þ

The matrix � is defined by

� ¼ EB	
tr
1 � iEF	

tr
2 , ð236Þ

where 	tri are Pauli matrices in the newly introduced ‘time-reversal’ space and EB=F

are the projectors on the bosonic and fermionic sectors, respectively. All we will need
to know to proceed is that � obeys the conditions

�T ¼ ��1 and �2 ¼ 	3
bf: ð237Þ

The appearance of the matrix � in (234) suggests to introduce the generalized matrix
transposition

A� � �AT��1: ð238Þ

Using (237) and ðAT
Þ
T
¼ 	3

bfA	3
bf for a supermatrix [208], one finds that the

generalized transposition is an involution,

ðA�Þ� ¼ A: ð239Þ

For later reference we also note that

~�þA�� ¼ �T
�	3

bfAT ~�T
þ ¼

~��A
��þ: ð240Þ

With all these definitions, the action (232) now takes the form

S ½ ~�,�� ¼ ~�þ
1 T?ðk=2Þ

T?ðk=2Þ z
þS
y

� �
�þ

þ ~��
1 T?ðk=2Þ




T?ðk=2Þ

 z�S

� �
��: ð241Þ

where the matrix structure is again in the auxiliary index x and we have introduced
the matrix

S ¼
S? 0
0 ST

?

� �
ð242Þ

where the matrix structure is in time-reversal space.
We are now in a position to subject the generating functional to the spectral

average. We do this by invoking the method discussed in section 6.3, whereby the
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average over k is replaced exactly by phase space averaging on the B-torus. The only
k-dependence is in T?ðk=2Þ which is replaced by replace T?ðf�bgÞ ¼ diagðei�b Þ. The
averaging is written explicitly as

h�ð jþ, j�; sÞi� ¼ e�i4ps=B
ð
dð ~ , Þe�S0

YB
b¼1

ð
d�b
2p

e�S1, b : ð243Þ

Here,

S0 ¼ ~�þ, 1�þ, 1 þ ~��, 1��, 1

þ ~�þ, 2z


þS
y�þ, 2 þ ~��, 2z�S��, 2 ð244Þ

is the phase-independent part of the action and

S1, b ¼ 2 ~�þ, 1, be
i�b�þ, 2, b þ 2 ~��, 2, be

�i�b��, 1, b: ð245Þ

So far, we have not achieved much other than representing the spectral
determinants by a complicated Gaussian integral, averaged over phase degrees of
freedom. The most important step in our analysis will now be to subject the
generating function to an integral transform known as the colour–flavour transfor-
mation [246–248]. The colour–flavour transformation amounts to a replacement of
the phase-integral by an integral over a new degree of freedom, Z. Much better than
the original degrees of freedom, the Z-field will be suited to describe the long time
behaviour of the system, which is equivalent to the low energy sector s� 1 of the
field theory.

In a variant adopted to the present context (a single ‘colour’ and F ‘flavours’) the
colour–flavour transformation assumes the formð

d�

2p
e�

T
þe

i��þþ�
T
�e
�i��� ¼

ð
dð ~Z,ZÞsdet 1� Z ~Z

� �
e�

T
þZ��þ�

T
�
~Z�þ , ð246Þ

where �� and �� are arbitrary 2F dimensional supervectors and Z, Z̃ are
2F-dimensional supermatrices. The boson–boson and fermion–fermion block of
these supermatrices are related by ~ZBB ¼ ZyBB, and

~ZFF ¼ �Z
y

FF, while the entries
of the fermion–boson and boson–fermion blocks are independent anticommuting
integration variables. The integration dð ~Z,ZÞ runs over all independent matrix ele-
ments of Z and Z̃ such that all eigenvalues of ZBBZ

y

BB are less than unity and the
measure is normalized such thatð

dð ~Z,ZÞ sdetð1� Z ~ZÞ ¼ 1: ð247Þ

We apply the colour–flavour transformation B times – once for each phase
�b. As a result, we obtain a B-fold integral over supermatrices Zb. There is one
flavour corresponding to the time-reversal index t¼ 1, 2. We combine all
matrices Zb ( ~Zb) into a single block-diagonal 4B-dimensional supermatrix Z
(Z̃) such that

Zbts, b0t0s0 ¼ �b, b0Zb ts, t0s0 : ð248Þ
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The averaged generating function now has the form

h�ðjþ, j�; sÞi ¼e
i4ps=B

ð
dð ~ , Þ

ð
dð ~Z,ZÞ

sdetð1� ~ZZÞ e�Sð
~�,�, ~Z,ZÞ

ð249Þ

where

Sð ~�,�, ~Z,ZÞ ¼ ~�1

1 Z

Z� 1

� �
�1

þ ~�2
z
þS

y ~Z�

~Z z�S

 !
�2, ð250Þ

and we used 2 ~�1Z�1 ¼
~�1Z�1 þ

~�1Z
��1, 2 ~�2

~Z�2 ¼
~�2

~Z�2 þ
~�2

~Z��2. Here, the

indices 1, 2 refer to the auxiliary index x, and the matrix structure is in advanced-
retarded space. Integrating the Gaussian fields ~� and � we arrive at the (exact)
representation

h�ðjþ, j�; sÞi ¼

ð
dð ~Z,ZÞ e�Sð

~Z,ZÞ
ð251Þ

where the action is given by

Sð ~Z,ZÞ ¼ � str log ð1� ~ZZÞ þ
1

2
str log ð1� Z�ZÞ

þ
1

2
str log ð1� Szþ ~Z�z
�S

y ~ZÞ, ð252Þ

where the prefactor e�i4ps=B has cancelled.
What have we gained with expression (252) apart from an exact reformulation of

the two-point correlator in terms of a complicated supersymmetric field theory? This
question seems quite urgent since instead of an integral over B phase factors ei�b we
now have to deal with an integral over B pairs Zb, ~Zb of supermatrices – each of size
4� 4. The main difference of expression (252) with respect to the definition (224) is
the direct coupling of the retarded and advanced sectors of the theory. In the defining
expression the retarded sector contributes via (products of) periodic orbits of type
tr T?ð�ÞS?ð Þ

n while the advanced sector contributes further factors involving S
?
instead. Such periodic orbits gather quasirandom phases. In contrast, after the
colour–flavour transformation we obtain a theory which may be expressed as a
sum over periodic orbits str ~Z�S ~ZSy

� 	n
of a quite different type where forward

and backward scattering alternate. The phase of such an orbit can be expected to
be less random. We will show in the next section how a saddle-point analysis can be
used to extract the universal contribution to spectral statistics together with sufficient
conditions for a dominance of universal spectral correlation over small deviations.
It is not clear if the supersymmetric method may also be useful for graphs which
deviate strongly from universality like the Neumann star graph.
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9.2. The mean-field approximation and universality

The expressions (251) and (252) for the generating function of the two-point correla-
tion function of the eigenphases of the quantum map of a quantum graph are an
exact identity. While the integral over the modes Z, ~Z cannot be performed analy-
tically in a closed form this expression is an ideal starting point for saddle-point
analysis for large graphs B!1. We will only be interested in the correlator for
s� B which allows us to expand the sources z� defined in (233) as

z� ¼ 1� i
2p
B

	3
bfj� �

s

2

� 	
: ð253Þ

Higher orders will vanish in the limit B!1. The resulting action can be written
as a sum

SðZ, ~ZÞ ¼ S0ðZ, ~ZÞ þ SsðZ, ~ZÞsþ SþðZ, ~ZÞjþ þ S�ðZ, ~ZÞj� ð254Þ

where

S0ðZ, ~ZÞ ¼ � str log 1� ~ZZ
� �

þ
1

2
str log 1� Z�Zð Þ þ

1

2
str log 1� S ~Z�Sy ~Z

� 	

SsðZ, ~ZÞ ¼ � i
p
B
str

S ~Z�Sy ~Z

1� S ~Z�Sy ~Z

SþðZ, ~ZÞ ¼i
p
B
str

	3
bf
S ~Z�Sy ~Z

1� S ~Z�Sy ~Z

S�ðZ, ~ZÞ ¼ � i
p
B
str
S ~Z�	3

bf
S
y ~Z

1� S ~Z�Sy ~Z
: ð255Þ

The saddle-point manifold (which is also called the zero-mode for reasons to
become clear below) is equivalent to a mean-field description in which all system-
dependent features (encoded in the matrix S) drop out. We will show that a reduc-
tion of the action (255) to the saddle-point manifold yields an exact expression for
universal spectral two-point correlators. Later, in section 9.3 we will analyse the
validity of this approximation and give sufficient conditions under which deviations
from the mean-field can be neglected in the limit B!1. We will assume time-
reversal invariance S? ¼ ST

? (and thus S ¼ S? � 1tr � S?) throughout – the effect of
breaking time-reversal invariance will be discussed in section 9.4.

Let us start with the saddle-point equations for the action (255). Note that the
source terms j� are the only terms which break the supersymmetry – in other words
�ðjþ ¼ 0, j� ¼ 0; sÞ ¼ 1 which can be seen directly from the defining expression (224).
The two-point correlator as a derivative of the generating function with respect to
the sources is a measure of the response of the supersymmetric action at j� ¼ 0
to breaking this symmetry. A saddle-point analysis is justified because the largest
response can be expected where the supersymmetric action is small. This will be
shown explicitly when we analyse the validity of this approximation.
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The first saddle point equation at j� ¼ 0 and s¼ 0 takes the form

�S0

�Z
¼ 0 ¼ str

~Z

1� ~ZZ
� str

Z�

1� Z�Z
ð256Þ

and has the solution

~Z ¼ Z�: ð257Þ

The second saddle-point equation reads

�S0

� ~Z
¼ 0 ¼ str

Z

1� ZZ�
� str

SZSy

1� SZSyZ�
ð258Þ

where we have used explicitly the solution Z ¼ ~Z� of the first saddle-point equation
and the time-reversal invariance of the system via S� ¼ S. It is solved for field
configurations Z that commute with the scattering matrix S,Z½ � ¼ 0. This implies
equidistribution of the field Z over the bond index b. The saddle-point manifold is
thus given by the mean-field configurations

Z0 b ts, t0s0 ¼ Yts, t0s0 and ~Z0 b ts, t0s0 ¼
~Yts, t0s0 , ð259Þ

where Y ¼ ~Y� is a 4� 4 supermatrix. The commuting parts of Y obey
Y�BB ¼ ~YBB ¼ Y
BB and Y�FF ¼ ~YFF ¼ �Y



FF while the non-commuting entries of Y

are all independent integration variables. The fermion–fermion part is integrated
over R4

’ C
2 while boson–boson part is restricted to the compact region where all

eigenvalues of YyBBYBB are less than unity.
Reducing the action (255) to the zero-mode the first contribution vanishes exactly

S0ðZ0, ~Z0Þ ¼ 0 while the remaining term becomesy

SGOE
ð ~Y,YÞ ¼ �ip sstr

Y ~Y

1� Y ~Y
þ ipjþstr

	3
bfY ~Y

1� Y ~Y
� ipj�str

	3
bf ~YY

1� ~YY
: ð260Þ

Restricting the integration to the saddle-point manifold, we obtain

h�ðjþ, j�; sÞi ’ �
GOE
ðjþ, j�; sÞi �

ð
dð ~Y,YÞe�S

GOE
ðY, ~YÞ, ð261Þ

where the denotation �GOE indicates that the matrix integral over Y obtains but an
exact representation of the GOE correlation function. The right-hand side can be
represented in more widely recognizable form. Let us define the 8� 8 supermatrix

Q ¼
1 Y

~Y 1

� �
�z

1 Y

~Y 1

� ��1

¼
1þ 2Y ~Y=ð1� Y ~YÞ �2Y=ð1� ~YYÞ

2 ~Y=ð1� Y ~YÞ �1� 2 ~YY=ð1� ~YYÞ

 !
, ð262Þ

yNote that for s 6¼ 0 or j� 6¼ 0 the second saddle-point equation is changed which leaves only
two saddle points in the reduced action (260). These can serve as starting points for perturba-
tive treatments of the correlator. The loop expansion in the diagrammatic periodic-orbit
treatment of the form-factor in section 8 is essentially equivalent to an expansion around
the saddle-point Z ¼ ~Z ¼ 0. Keeping the full saddle-point manifold of S0 we are able to go
beyond such perturbative expansions.
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where �z ¼ ð
1
0

0
�1
Þ. It is then a straightforward matter to show that the action

Sð ~Y,YÞ takes the form of Efetov’s action [208] for the GOE correlation function

�GOE
ðjþ, j�; sÞ ¼

ð
dQ eiSðQÞ ð263Þ

where the measure is given by dQ � dð ~Y,YÞ,

SðQÞ ¼
p
2
str ðQ��zÞ�̂ ð264Þ

and

�̂ ¼ �
jþ	3

bf
þ

s

2
0

0 j�	3
bf
�

s

2

0
@

1
A:

For a discussion of the integral (263), and the ways random-matrix predictions are
obtained by integration over Q, we refer to the textbook [208].

9.3. Validity of the mean-field approximation and sufficient conditions for
universality

So far, we have shown that the reduction of the exact supersymmetric field integral
for the generating function � to an integral over the saddle-point manifold (that is
over mean-field configurations) results in the GOE spectral correlations. However,
we have not yet shown under which conditions this reduction is actually legitimate.
Let us turn to this subject now.

In a full saddle-point analysis one writes the fields as a sum Z ¼ Z0 þ �Z where
Z0 parameterizes the saddle-point manifold and �Z describes the fluctuations around
the saddle-point manifold. The reduction of the exact field integral to the integral
over the saddle-point manifold is obtained by an expansion of the action SðZ, ~ZÞ in
the fluctuations �Z to second order and a subsequent Gaussian integral over these
modes. In general this will lead to deviations from the mean-field result presented
above. We will investigate under which conditions these deviations are small and
vanish in the limit B!1 of large graphs.

As we will show later it is sufficient for this purpose to consider the expansion of
the full action (255) to second order in the fields Z,

Sð2ÞðZ, ~ZÞ ¼S
ð2Þ
0 ðZ,

~ZÞ �
ips
B

str S ~Z�Sy ~Z
� 	

þ
ipjþ
B

str 	3
bf
S ~Z�Sy ~Z

� 	
�
ipj�
B

str S ~Z�	3
bf
S
y ~Z

� 	
, ð265Þ

where

S
ð2Þ
0 ðZ,

~ZÞ ¼str ~ZZ�
1

2
Z�Z�

1

2
S ~Z�Sy ~Z

� �

¼
1

2
str ðZ� ~Z�Þð ~Z� Z�Þ þ ~Z� ~Z� S ~Z�Sy ~Z
h i

: ð266Þ

Physically, the quadratic action describes the joint propagation of a retarded and an
advanced Feynman amplitude along the same path in configuration space. It thus
carries information similar to that obtained from the diagonal approximation in the
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periodic orbit approach. More precisely it is equivalent to neglecting deviations from
~Kdiag
n ¼ 2ntrMn=B which come from repetitions and self-retracing orbits. The second

order expansion is justified if the fluctuations of the fields Z are massively damped (in
the sense that the matrix elements of Z effectively contributing to the integral are
much smaller than unity). Under these conditions, the integration over matrix ele-
ments of Z may be extended to infinity and we obtain a genuine Gaussian integral.
In fact, one is forced to extend the integration to infinity in order to preserve
�ðj�; sÞ ¼ 1 at every level of approximation.

The eigenvalues m‘ of the quadratic form appearing in S
ð2Þ
0 determine the damp-

ing m‘ – or the mass, in field theoretical jargon – inhibiting fluctuations of an
eigenmode. As indicated by its name, the zero-mode Z0 carries zero mass. With
the observation that the quadratic form involves the classical mapM? bb0 ¼ jS? bb0 j

2

of the graph via

strS ~Z�Sy ~Z � str
X
bb0

S? bb0 ~Z
�
b0S


? bb0

~Zb ¼ str
X
bb0

~ZbM? bb0
~Zb0 ð267Þ

the action is easily diagonalized by an orthogonal transformation Zb ¼
P

b0 Ob‘Z
0
‘

(we will drop the primes of Z0‘ in the sequel) and can then be written as a sum over
separate contributions

Sð2ÞðZ, ~ZÞ ¼
XB
‘¼1

S
ð2Þ
‘ ðZ‘,

~Z‘Þ ð268Þ

where S
ð2Þ
‘ is the contribution

S
ð2Þ
‘ ðZ‘,

~Z‘Þ ¼
1

2
str ðZ‘ � ~Z�‘Þð ~Z‘ � Z�‘Þ þ ð1� �‘Þ ~Z

�
‘
~Z‘

� �
� �‘

pi
B
str s ~Z�‘ ~Z‘ � jþ	3

bf ~Z�‘ � j� ~Z�‘	3
bf

� �
~Z‘

� �
ð269Þ

of the eigenmode of the classical mapM with eigenvalue �‘. Let us now focus on the
integral over one mode Z‘, ~Z‘. We can split the action of a single mode into con-
tributions from a pair fields Z‘, ~Z‘ that satisfies the first saddle-point equation
Z ¼ ~Z� and contributions violating it. One can show that only the configurations
Z ¼ ~Z� contribute non-trivially while the integral over configurations violating this
condition just give a factor unity.y We are left with half the number of integration
variables and an action S

ð2Þ
‘ ¼ ð1� �‘=2ÞstrZ

~Z ¼ ðm‘=2ÞstrZ ~Z for vanishing sources
j� ¼ s ¼ 0. In this expression we see that the eigenvalues �‘ of the classical map are
related to the masses m‘ ¼ 1� �‘ of the supersymmetric field theory. Performing the

yFor the integral over anticommuting numbers this can easily seen from the action (269)
where the shifts Z‘;BF=FB 7!Z‘BF � ~Z�

‘BF=FB decouple the anticommuting parts of Z‘ from
the anticommuting part of ~Z. For the commuting entries one can write down the integral
over all real and imaginary parts of the entries Z‘BB=FF and ~Z‘BB=FF – shifting the entries and
changing the contours of integration leads to a similar decoupling such that the action at
s ¼ j� ¼ 0 is of the form S‘ ¼ ð1=2Þstr þð1� �‘Þ ~Z‘ evenZ‘ evenÞ

� �
where Z‘ even ¼ ~Z�

‘ even and
Z‘odd ¼ � ~Z�

‘odd and the terms at s 6¼ 0 and j� 6¼ 0 only involve Z‘ even.
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remaining integral we will see that the mass m‘ sets the scale for the response to the
sources j� which break the supersymmetry of the model. That is, a large mass m‘

corresponds to a strongly damped contribution to the two-point correlator. The
remaining Gaussian integral over one mode gives

I‘ ¼

ð
dðZ‘, ~Z‘Þe

�Sð2Þ
‘
ðZ‘, ~Z‘Þ

¼
1þ i pðm‘�1Þðsþj�Þ

m‘B

h i2
1þ i pðm‘�1Þðs�j�Þ

m‘B

h i2
1þ i pðm‘�1Þðsþj�Þ

m‘B

h i2
1þ i pðm‘�1Þðs�j�Þ

m‘B

h i2 ð270Þ

where j� ¼ jþ � j� and j� ¼ jþ þ j�. The generating function in this approximation
is just the product

�ð2Þðjþ, j�; sÞ ¼
YB
‘¼1

I‘ ð271Þ

over the contributions from each mode. Differentiating with respect to the sources j�
we finally obtain the quadratic approximation to the correlation function,

~R
ð2Þ
2 ðsÞ ¼

XB
‘¼1

1

8p2
Re

@2

@jþ@j�
I‘

���
j�¼0

¼
XB
‘¼1

ðm‘ � 1Þ2ðm2
‘B

2
� p2ðm‘ � 1Þ2s2Þ

ðm2
‘B

2 þ p2ðm‘ � 1Þ2s2Þ2
: ð272Þ

The contribution of the zero mode (m1¼ 0) is given by �1=p2s2 and coincides with
the diagonal approximation to the GOE correlation function. Later on we shall see
that in the case of broken time reversal invariance, one half of the matrix elements
of Z0 become massive implying that the contribution of the zero mode reduces to the
GUE expression �1=2p2s2.

In the limit B!1, the s-dependence of the contribution of massive modes to
the correlation function is negligible for our purpose, i.e. individual modes contri-
bute maximally as � ðm‘ � 1Þ2=2m2

‘B
2
� ðm‘BÞ

�2. Only modes of mass m‘ � B��,
where � is a non-vanishing positive exponent, can survive the limit B!1. The
contribution of an individual mode is negligible if the exponent 0 � � < 1. There are
at mostOðBÞ nearly massless modes, and we are led to require that B2��1 must vanish
in the limit of large graphs B!1, or that 0 � � < 1=2.

This is a slightly stronger condition than the one discussed within the context of
the periodic-orbit analysis of section 8.2, where we have seen that for fixed � the form
factor is universal if 0 � � < 1. The two results are fully consistent as the condition
0 � � < 1=2 implies the stronger statement that deviations to the two-point corre-
lator vanish uniformly in s.

In the intermediate region 1=2 � � < 1 – permissible by Tanner’s criterion – non-
universal corrections vanish only if the number r of classical modes with a small mass
remains constant (or does not grow too fast) such that B2�2

g=r!1. If, however,
the number of low energy modes is extensive, r � B, the stricter condition
0 � � < 1=2 has to be imposed. An example of a graph with OðBÞ almost massless
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modes is the Neumann star graph, for which all the classical modes (apart from the
zero-mode m1¼ 0) have a mass m � 1=B. The Neumann star thus strongly violates
the condition for universal GOE statistics – as a single mode with mass m � 1=B
is already sufficient to give non-vanishing corrections.

Above we have shown that in the limit B!1 only the zero mode effectively
contributes to the correlation function (provided, of course, the master condition
�g � B�� is met). While the zero mode integral must be performed rigorously, all
other modes are strongly overdamped and may be treated in a quadratic approx-
imation. This is the a posteriori justification for the quadratic approximation on
which our analysis of the mass spectrum was based.

9.4. Breaking time-reversal invariance

The analysis above applies to time reversal invariant graphs. In this section we
discuss what happens if time reversal invariance gets gradually broken. We assume
full universality, i.e. B�2

g  1 such that only the zero-mode contributes to R2(s). Our
aim is to derive a condition for the crossover between GOE-statistics in the time-
reversal invariant case and GUE–statistics for fully broken time-reversal invariance.

The substructure of the Z–fields with Z ¼ ~Z� in time reversal space is given by

Zb ¼
ZD b ZCb

~ZT
C b	

BF
3

~ZT
D b

� �
, ~Zb ¼

~ZD b 	BF3 ZT
C b

~ZC b ZT
D b

 !
, ð273Þ

where ZD=C b and ~ZD=C b are 2� 2 supermatrices subject to the constraint
~ZD=CBB ¼ Z
C=DBB and ~ZC=DFF ¼ �Z



C=DFF, while the non-commuting entries of

these matrices are independent integration variables. The subscripts DðCÞ allude to
the fact that in disordered fermion systems, the modes ZD (ZC) generate the so-called
diffusion (cooperon) excitations. Physically, the former (latter) describe the interfer-
ence of two states as they propagate along the same path (the same path yet in
opposite direction) in configuration space. Cooperon modes are susceptible to time
reversal invariant breaking perturbations.

Substituting this representation into the quadratic action, we obtain

Sð2Þ ¼ str ~ZDð1�M?ÞZD þ
~ZCð1�R?ÞZC

� �
ð274Þ

for the action of the zero mode at j� ¼ s ¼ 0. Here,M? bb0 ¼ fjS? b, b0 j
2
g is the classical

evolution map and R? bb0 ¼ S? b, b0S


? b0b. For broken time-reversal invariance

M? 6¼ R? and the symmetry of the action in time reversal invariance space gets lost.
Noting that B ¼

P
b, b0 jS? bb0 j

2, we conclude that the cooperon zero mode
ZC, b ¼ YC acquires a mass term � BmC strðYC

~YCÞ, where the coefficient

mC ¼
1

B

X
bb0

S? bb0 ðS


? bb0 � S
? b0bÞ

�����
�����

¼
1

B
trSy?ðS� ST

? Þ

��� ��� ð275Þ

measures the degree of the breaking of the symmetry S¼ST. We have encountered
the cooperon mass before in section 8.2 as the inverse time nT ¼ 1=mC on which
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a pair of time reversed orbits decays in the diagonal approximation. The cooperon
mode may be neglected once BmC !1 as B!1.

9.5. On higher order correlation functions and the gap condition

The supersymmetry method described above can be generalized in a straightforward
manner to higher order correlation functions with a generating function that con-
tains an appropriate number of spectral determinants �B in its enumerator and
denominator. A reduction to a saddle-point manifold gives the universal correlations
known from random-matrix theory. It all works the same way as for the two-point
correlator and the condition that this reduction becomes exact in the limit of large
graphs also remains unchanged. For a finite graph this proves universal spectral
correlators up to small deviations in correlators of order n where n� B.
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Appendix A: The symmetry classes of quantum systems

Based on earlier ideas of Wigner [187], Dyson introduced a three-fold classification
of quantum systems according to their behaviour under time-reversal, spin and
rotational invariance [188–190]. This symmetry classification turned out to be very
useful, for instance in semiclassical, disordered and random-matrix approaches to
complex quantum systems. In this appendix we give a short summary of this three-
fold symmetry classification and a recent extension to a ten-fold classification which
is related with the ten classes of Riemannian symmetric spaces. We only present a
description of the ten symmetry classes and refer to the literature [191] for a proof
that this classification is complete. Table A1 summarizes this appendix.
In the literature the symmetry classes are often denoted by the Gaussian random-
matrix ensemble of Hermitian matrices respecting the corresponding symmetry
restrictions. Such a notation is misleading and often quite confusing. Here, we
stick to the notation introduced by Zirnbauer [191].

According to a theorem by Wigner a symmetry of a physical system is repre-
sented in quantum mechanics either by a unitary operator or by an anti-unitary
operator that commutes (or anticommutes) with the Hamiltonian operator H.
Unitary symmetry operators which commute with H are associated with constants
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of the motion. In the eigenbasis of such a unitary symmetry operator the
Hamiltonian operator is represented by a block diagonal matrix – each block con-
nected to one eigenvalue of the symmetry operator which serves as a quantum
number of the state. In the following we will always assume that any unitary
symmetry has been used to reduce the Hilbert space.

Anti-unitary symmetry operators which commute with H do not lead to a con-
stant of motion, yet they affect the form of the representation of the Hamiltonian
operator in a suitable basis. More importantly, they have an effect on statistical
properties of the spectrum and of the wavefunctions in complex quantum systems.
The same is true for (unitary and anti-unitary) symmetry operators that anticom-
mute with H.

Though every symmetry of a physical system is represented by a unitary or anti-
unitary operator in quantum mechanics the reverse is not true. An arbitrary unitary
or anti-unitary operator U in general does not qualify as a symmetry of the system.
E.g. for any Hamiltonian operator H one may uniquely define a anti-unitary opera-
tor A by its action A

P
n anjni ¼

P
n a


njni in the eigenbasis Hjni ¼ Enjni of the

Hamiltonian operator. Trivially, A commutes with the Hamiltonian operator
½A,H� ¼ 0 without being connected to any symmetry of the system. In contrast a
symmetry operator can be defined representation independent which includes that it
can be defined independent of the value one formally assigns to �h. This immediately
rules out the trivial operator A since the eigenbasis will generally depend on the value
of �h.

A.1. Time-reversal invariance

Consider a physical system represented by the Hamiltonian operator H. The system
is time-reversal invariant if an anti-unitary symmetry operator T , the (generalized)
time-reversal operator, exists which commutes with the Hamiltonian operator

H, T½ � ¼ 0: ðA1Þ

Table 1. The ten symmetry classes of quantum systems. If a symmetry class obeys time-
reversal symmetry or a spectral mirror symmetry the entry �1 in the corresponding column
indicates if the symmetry operator squares to �1. The entry 0 indicates that the corresponding
symmetry is broken. The last column gives the corresponding Riemannian symmetric space (of

compact type).

symmetry class T P C symmetric space

A 0 0 0 UðNÞ
AI þ1 0 0 UðNÞ=OðNÞ
AII �1 0 0 Uð2NÞ=SpðNÞ
AIII 0 þ1 0 Uðpþ qÞ=UðpÞ �UðqÞ
BDI þ1 þ1 þ1 SOðpþ qÞ=SOðpÞ � SOðqÞ
CII �1 þ1 �1 Spðpþ qÞ=SpðpÞ � SpðqÞ
C 0 0 �1 SpðNÞ
CI þ1 �1 �1 SpðNÞ=UðNÞ
BD (D) 0 0 þ1 SOðNÞ
DIII �1 �1 þ1 SOð2NÞ=UðNÞ
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It can be shown [139, 196] that such an operator obeys either

T
2
¼ 1 or T

2
¼ �1: ðA2Þ

and T reverses the direction of time in the Schrödinger equation.
It follows that there are three symmetry classes, the Wigner–Dyson classes

connected to time-reversal invariance:

Class A: Systems with broken time–reversal invariance.

Class AI: Time-reversal invariant systems and T 2
¼ 1.

Class AII: Time-reversal invariant systems and T 2
¼ �1.

A particle in a potential described by the Hamiltonian operator
H ¼ ðp2=2mÞ þ VðxÞ is time-reversal invariant. The corresponding time-reversal
operator T AI is defined to be the anti-unitary operator obeying T AI x T

�1
AI ¼ x and

T AI p T
�1
AI ¼ �p. In the coordinate representation T AI is represented as complex

conjugation of the wavefunction hxjT AIj i ¼ hxj i

. Obviously, T 2

AI ¼ 1 and such
systems belong to class AI.

For particles with spin s ¼ 1=2 and broken spin rotation invariance one may
define the time-reversal operator T AII, which acts as T AI on x and p and additionally
obeys T AII s T

�1
AII ¼ �s. For this operator T

2
AII ¼ �1 and the system is in class AII

if ½H, T AII� ¼ 0.
In both cases time-reversal is broken by the presence of a magnetic field. Thus a

particle in a magnetic field generally belongs to class A. Note however that we made
a special choice of the time-reversal operator in our examples.

A.2. Kramers’ degeneracy

The energy spectrum of any physical system which is time-reversal invariant with
T

2
¼ �1 is (at least) two-fold degenerate. If jni (normalized such that hnjni ¼ 1)

solves the stationary Schrödinger equation Hjni ¼ Enjni so does T jni. Since
hT njT ni ¼ hnjni
 ¼ 1 the state T jni does not vanish. At the same time jni and
T jni are orthogonal hnjT ni ¼ hT njT 2ni
 ¼ �hnjT ni ¼ 0 such that En is two-fold
degenerate.

A.3. Chiral symmetries and charge conjugation symmetries

We will now consider certain unitary symmetry operators P and anti-unitary
operators C which anticommute with the Hamiltonian operator,

½H,P�þ ¼ 0 or ½H, C�þ ¼ 0: ðA3Þ

One may have to shift the Hamiltonian operator by a constant to reveal such a kind
of symmetry which is tacitly assumed in the following. Equation (A3) leads to an
energy spectrum which is symmetric. If E is in the spectrum, so is �E. Since the
Hamiltonian operator of a proper quantum mechanical system should be bounded
from below such symmetries either occur in systems with finite-dimensional Hilbert
space (e.g. a finite number of coupled spins) or in the framework of one-particle
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equations of a field theory. Examples are the Dirac and Bogoliubov–de-Gennes
equations which are formally equivalent to the Schrödinger equation, that is they
can be written in the form i�hð@=@tÞj�ðtÞi ¼ Hj�ðtÞi. The negative part of spectrum
of these operators is related to positive energy excitations of the corresponding
field theory. Since we will not consider the complete field theory here we will call
the one-particle operator H the Hamiltonian operator of the system.

A chiral symmetry operator P is unitary and obeys P2
¼ 1. A physical system

with a chiral symmetry can have an additional time-reversal invariance. In that case
the time-reversal operator T and the chiral symmetry operator P are required to
commute ½T ,P� ¼ 0. Thus there are three chiral symmetry classes:

Class AIII: Systems with a chiral symmetry and broken time–reversal invariance.

Class BDI: Time-reversal invariant systems with a chiral symmetry and T 2
¼ 1.

Class CII: Time-reversal invariant systems with a chiral symmetry and T 2
¼ �1.

The chiral symmetry classes have first been considered in quantum chromody-
namics as Dirac particles in a random gauge potential [ 233, 234]. They also occur for
Bogoliubov–de-Gennes quasiparticle excitations in the certain types of disordered
superconductors [249].

Finally, a charge conjugation symmetry is described by an anti-unitary operator C
that anticommutes with the system Hamiltonian operator and which obeys either
C
2
¼ 1 or C2 ¼ �1. Accounting for the possibility of additional time-reversal

invariance there are six symmetry classes which have a charge conjugation symmetry
all of which can be found in certain types of disordered superconductors. Two of
them have been presented as the time-reversal invariant chiral symmetry classes.
Indeed, if P is a chiral symmetry operator and T with ½P, T � ¼ 0 a time-reversal
operator C ¼ PT is a charge conjugation operator with ½C, T � ¼ 0 and C2 ¼ T 2.
The remaining four symmetry classes have not been given any satisfactory and
consistent name. We will call them charge conjugation symmetry classes though the
symmetry operator C may not be related to any physical charge conjugation (see
below). In any case the distinction between the three chiral symmetry classes and
the four charge conjugation classes has historical origins and should not be taken
as a mathematical or physical relevant distinction. The four charge conjugation
symmetry classes are:

Class C: Systems with broken time-reversal invariance and a charge conjuga-
tion symmetry obeying C2 ¼ �1.

Class CI: Time-reversal invariant systems with a charge conjugation symmetry
obeying both T 2

¼ 1 and C2 ¼ �1.

Class BD: Systems with broken time–reversal invariance and a charge conjuga-
tion symmetry obeying C2 ¼ 1. This symmetry class is denoted as class
D if the Hilbert space has even dimension.

Class DIII: Time-reversal invariant systems with a charge conjugation symmetry
obeying both T 2

¼ �1 and C2 ¼ 1.

They have first been discussed in connection to hybrid normal-conducting–
superconducting structures and disordered superconductors [235, 236].
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Note that the notation for these symmetries stems from the systems for which
they have first been discussed in detail where they were connected to the charge
conjugation of a quasiparticle or to the chirality of a Dirac particle. In general
these symmetries need not have this physical interpretation: any of the seven sym-
metry classes can be realized by a Hamiltonian operator for two coupled spins S1, 2

with spin quantum numbers s1, 2 where the (generalized) chiral symmetry operator or
(generalized) charge conjugation operator are not related to the chirality or electric
charge of a particle.

A.4. The symmetry classes for quantum graphs

The symmetries of the Hamiltonian operator H of a physical system can be trans-
lated to symmetries for the quantum evolution map [140] UBðkÞ ¼ TðkÞSðkÞ. It will be
more convenient to define an equivalent quantum evolution map by

UB1=2ðkÞ ¼ Tðk=2ÞSðkÞTðk=2Þ ðA4Þ

and discuss this symmetrized variant. Here, the right factor Tðk=2Þ propagates the
wavefunction from the centre of a directed bond to the next vertex where it is
scattered by SðkÞ to the next directed bond. Finally, the left factor Tðk=2Þ propagates
the wavefunction along the next directed bond to its centre. Some symmetry classes
are more naturally discussed for graphs with a multicomponent wavefunction (spin
or particle-hole components).

A time-reversal operator T acts on the evolution map as

UB1=2ðkÞ 7!T ½UB1=2ðkÞ� ¼ T̂ UB1=2ðkÞ


T̂
y

ðA5Þ

where T̂ is a unitary matrix with the additional property T̂ 
T̂ ¼ �1. Time-reversal
invariance of a graph means that the evolution map is equal to its time-reversed
under the action of T

UBðkÞ ¼ T ½UBðkÞ
y
� ¼ T̂ UBðkÞ

T
T̂
�1: ðA6Þ

For symmetry class AI one requires T̂ 
T̂ ¼ 1 whereas symmetry class AII requires
T̂


T̂ ¼ �1. The natural choice for the time-reversal symmetry operator in symmetry

class AI is given by

T̂ ¼ 	dir1 ðA7Þ

which acts like the corresponding Pauli-matrix on the direction indices ! while bond
indices b remain unaffected. Equivalently, the evolution map of a time-reversal
invariant graph in class AI has the property

UBðkÞ1=2�� ¼ UBðkÞ1=2 �̂�̂: ðA8Þ

Time-reversal invariant graphs with T 2
¼ �1 (class AII) can be realized as graphs

with spin s ¼ 1=2 and

T̂ ¼ 	dir1 � 	
spin

2 : ðA9Þ

Thus time-reversal involves a change in direction and in spin.
The chiral and charge conjugation symmetry classes on graphs can all be realized

by either putting the Bogoliubov–de-Gennes or Dirac equations on the graph.
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Thus, they always involve electron and hole components of a wavefunction
(one needs an additional spin 	 ¼ �1=2 in some classes). We will not give a complete
construction of the symmetries for all seven classes, for the classes C and CI an
example for a star graph is given in section 8.5.

A chiral symmetry operator P acts on the evolution map as

UB1=2ðEÞ 7!P½UB1=2ðEÞ� ¼ P̂UB1=2ð�EÞP̂
�1

ðA10Þ

where P̂ is a unitary matrix with P̂2
¼ 1 and E is the energy. A quantum graph has a

chiral symmetry if

UB1=2ðEÞ ¼ P½UB1=2ðEÞ
y
� ¼ P̂UBð�EÞ

y
P̂
�1

ðA11Þ

where taking UBð�EÞ
y reflects the anticommuting character of the Hamiltonian

operator. It is easy to see from equation (A11) that the corresponding energy spec-
trum is symmetric. If UB1=2ðEÞ has an eigenvalue unity and there is a chiral symmetry
UB1=2ð�EÞ also has an eigenvalue unity.

Finally, a charge conjugation symmetry operator C acts on the evolution map as

UB1=2ðEÞ 7!C½UB1=2ðEÞ� ¼ ĈUB1=2ð�EÞ


Ĉ
�1

ðA12Þ

where Ĉ is a unitary matrix with Ĉ2 ¼ �1. A quantum graph with a charge conjuga-
tion symmetry obeys

UB1=2ðEÞ ¼ C½UB1=2ðEÞ
y
� ¼ ĈUB1=2ð�EÞ

T
Ĉ
�1: ðA13Þ

Note that we have not used the momentum k but the energy E as the argument of the
evolution map. For the chiral and charge conjugation symmetry classes one should
be aware that the momentum is in general not a constant of motion and thus the
energy has to be used. For example, in the Bogoliubov–de-Gennes equation an
electron and a hole moving in the positive x-direction at energy E are described
by the wavefunctions

 electron
ðxÞ �

1
0

� �
ei
ffiffiffiffiffiffiffiffi
�þE
p

x and  hole
ðxÞ �

0
1

� �
e�i

ffiffiffiffiffiffiffiffi
��E
p

x
ðA14Þ

where � is the Fermi energy. If � E one may expand
k� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�� E
p

�
ffiffiffiffi
�
p
� E=2

ffiffiffiffi
�
p
¼ kF � �k. In the limit �=E!1 one may thus

replace E 7! �k and the symmetry relations of the evolution map hold for �k.

Appendix B: Some relevant results of random-matrix theory

Random matrices were first applied to physical systems by Wigner and Dyson
[187–190] as a model for complex nuclei. Since then, random-matrix theory has
had an enormous impact on various areas in physics and is today one of the main
tools to describe statistical properties of complex quantum systems. There are many
books and reviews on random-matrix theory [185, 203, 206, 207] and its applications
in physics. In this appendix we summarize some of relevant results in the context of
this review. We will neither discuss the various methods to calculate properties of
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random matrices nor give any proof of the presented results, and we will only
summarize results on the Gaussian ensembles of Hermitian matrices.

B.1. Universality and universality classes

The success of random-matrix theory relies on the fact that many statistical proper-
ties of the spectrum and of the wavefunctions for a large class of complex quantum
systems are universal (system independent) yet not trivial. When properly scaled,
they only depend on some general properties of the system such as time-reversal
invariance. In Appendix A we have described the ten symmetry classes of quantum
systems which was completely general. Here, we relate these symmetries to the
statistical properties of complex quantum systems described by a random
Hamiltonian operator.

A universality class is a subset of a symmetry class which shares the same statis-
tical properties – or at least some universal correlation functions up to small system
dependent deviations. In general there are many universality classes within one
symmetry class. Each of them can be described (and defined) by some ensemble of
random matrices in the limit of large matrices. Usually there will be a lot of different
ensembles that share the same universal statistical properties [250].

We will focus on the so-called ergodic universality classes that can be described by
Gaussian ensembles of Hermitian matrices in each of the ten symmetry classes which
describe strongly chaotic systems or disordered systems in the delocalized regime.
For each of the three Wigner–Dyson symmetry classes (A, AI, and AII) and for two
of the charge conjugation symmetry classes (C and CI) there is a unique ergodic
universality class. In contrast for the other symmetry classes there is an additional
parameter. For instance, the symmetry class BD can be realized in an even or in an
odd dimensional Hilbert space and this will effect the spectral statistics. In the odd-
dimensional case the symmetry fixes one eigenvalue at E¼ 0 which changes the
statistical properties of the spectrum near E¼ 0 while in the even-dimensional case
(also denoted as class D) the charge conjugation symmetry does not fix a vanishing
eigenvalue. Similarly, a chiral symmetry operator may fix some integer number
� ¼ 0, 1, 2 of eigenvalues E¼ 0. The number � is known as the topological quantum
number and is important for applications of random-matrix theory to quantum
chromodynamics. We will only present the results for those ergodic universality
classes where no eigenvalue E¼ 0 is fixed by the symmetry operators P or C (thus
�¼ 0 for the chiral classes).

B.2. The Gaussian ensembles of random-matrix theory

A Gaussian random-matrix ensemble [185] consists of N�N Hermitian matrices
H ¼ Hy with a Gaussian distribution

PðHÞdH ¼ e�� trH
2

dH: ðB1Þ

This form is the same for all ergodic universality classes. However the symmetries of
the Hamiltonian operator restrict the number of independent matrix elements. The
flat measure dH ¼ N

�1
dH11dReðH12ÞdImðH12Þ � � � runs over all independent real

and imaginary parts of the Hermitian matrix H with the additional symmetry
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requirements of the symmetry class. The real parameter �>0 rescales the spectrum
of the system and N is a normalization constant.

If there are no further symmetry restrictions onH ¼ Hy the ensemble is called the
Gaussian unitary ensemble (GUE). It describes ergodic systems with broken time-
reversal invariance in class A. Time-reversal invariance with T 2

¼ 1 (class AI)
restricts the matrices H ¼ Hy to be real (and hence symmetric) H ¼ H
 ¼ HT. The
corresponding ensemble is called the Gaussian orthogonal ensemble (GOE).

Time-reversal invariant systems in symmetry class AII are realized only in even
dimensional Hilbert spaces due to Kramers’ degeneracy. The random Hamiltonian is
a 2N� 2N matrix restricted by the symmetry condition

0 1N
�1N 0

� �
H ¼ HT 0 1N

�1N 0

� �

and the corresponding ensemble is called the Gaussian symplectic ensemble (GSE).
Note that we have made a special choice for the time-reversal operators T for the
GOE and GSE.

The Gaussian ensembles for the chiral and charge conjugation symmetry classes
can easily be constructed from the three Wigner–Dyson ensembles GUE, GOE, and
GSE by reducing the number of independent matrix elements further as required. In
the chiral case the ensembles have been called chiral Gaussian unitary ensemble
(chGUE) for class AIII, the chiral Gaussian orthogonal ensemble (chGOE) for class
BDI, and the chiral Gaussian symplectic ensemble (chGSE) for class CII. The
Gaussian ensembles for the charge conjugation symmetry classes do not have any
established name. We will refer to them as C-GE, CI-GE, D-GE, and DIII-GE.

B.3. Spectral statistics for Gaussian random matrices

The mean density of states for a random-matrix ensemble is defined as

hdðsÞi ¼
1

g
htr �ðs�HÞi ¼

1

g

ð
dHPðHÞ tr �ðs�HÞ ðB2Þ

where g¼ 2 in symmetry classes with Kramers’ degeneracy (every eigenvalue is
counted only once) while g¼ 1 in other ensembles. For large matrices in the
Wigner–Dyson ensembles the mean density of states is given by Wigner’s semicircle
[185, 187, 196] law

hdðsÞiGUE,GOE,GSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

p2s2

4N2

s
¼ 1þO

s2

N2

 !
ðB3Þ

where we have scaled the spectrum such that hdi ¼ 1 in the centre of the semicircle by
an appropriate choice of the scaling parameter � in the definition (B1). Here N is the
size of the matrix (N�N for GUE and GOE, 2N� 2N for GSE). The result (B3) is
exact in the limit s,N!1 where s /N is kept constant. The relevant limit for our
purposes is N!1 keeping s constant. In that limit the density of states is flat and
the mean level spacing, �s ¼ hdi�1 ¼ 1.

In the presence of chiral or charge conjugation symmetries, there are deviations
from Wigner’s semicircle law near s¼ 0 due to the symmetric spectrum. On the
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scale of the mean level spacing the mean densities of states for these ensembles are
given by [236, 251–254]

hdðsÞichGUE ¼
p2jsj
2

J20ðpsÞ þ J21ðpsÞ
� �

hdðsÞichGOE ¼hdðsÞichGUE þ
p
2
J0ðpsÞ 1�

ðpjsj
0

d�J0ð�Þ

� �

hdðsÞichGSE ¼hdð2sÞichGUE �
p
2
J0ð2psÞ

ð2pjsj
0

d� J0ð�Þ

hdðsÞiC-GE ¼1�
sin 2ps
2ps

hdðsÞiCI-GE ¼hdðsÞichGUE �
p
2
J0ðpsÞJ1ðpjsjÞ

hdðsÞiD-GE ¼1þ
sin 2ps
2ps

hdðsÞiDIII-GE ¼hdð2sÞiCI-GE þ
p
2
J1ð2pjsjÞ: ðB4Þ

For all seven ensembles the deviation from the flat density of states is pronounced at
s¼ 0 and decays for s 1. The deviations near s¼ 0 are universal interference effects
that can be seen in complex quantum systems of the corresponding symmetry class.
For quantum graphs this is discussed in section 8.5.

The spectral two-point correlation function for an ensemble of matrices is
defined as

R2ðs; s0Þ ¼hdðs0 þ
s

2
Þdðs0 �

s

2
Þi � 1

¼
1

g2
htr �ðs0 þ

s

2
�HÞ tr �ðs0 �

s

2
�HÞi � 1: ðB5Þ

For the Wigner–Dyson ensembles they do not depend on the central energy s0 (in the
limit N!1; s, s0 ¼ const., as before) and are given by [185, 196]

R2ðsÞGUE ¼�ðsÞ �
sin2 ps
p2s2

R2ðsÞGOE ¼R2ðsÞGUE þ
pjsj cos ps� sin pjsjð Þ 2 SiðpjsjÞ � pð Þ

2p2s2

R2ðsÞGSE ¼R2ð2sÞGUE þ
2pjsj cos 2ps� sin 2pjsj

4p2s2
Sið2pjsjÞ: ðB6Þ

The Fourier transform

Kð�Þ ¼

ð1
�1

dsR2ðsÞe
�2pis�

ðB7Þ
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is known as the spectral form factor. For the Wigner–Dyson ensembles the form
factors are given by

Kð�ÞGUE ¼
j�j for j�j�1 ,

1 for j�j 	1,

�

Kð�ÞGOE ¼

j�j 2� ln 2j�j þ 1ð Þð Þ for j�j�1,

2� j�jln
2j�j þ 1

2j�j � 1
for j�j 	1,

8<
:

Kð�ÞGSE ¼

j�j

4
2� ln 1� �j jj jð Þ forj�j � 2,

1 forj�j 	 2:

8<
:

ðB8Þ

Since we do not discuss second-order correlation functions for systems with chiral or
charge conjugation symmetry we will not state further results. Note, however, that
all spectral correlation function go over to the correlation functions of the Wigner–
Dyson ensembles for energies s 1.

Another frequently used statistic that depends on correlation-functions of any
order is the level-spacing distribution. Ordering the spectrum such that sn � snþ1 the
level spacings the differences si ¼ siþ1 � si between two subsequent eigenvalues. Their
distribution for the Wigner–Dyson ensembles can be approximated very well by the
Wigner surmises

PðsÞGUE ¼
32s2

p2
e�

4
ps

2

PðsÞGOE ¼
ps
2

e�
p
4s

2

PðsÞGSE ¼
218s4

36p3
e�

64
9ps

2

ðB9Þ

which are exact for 2� 2 (GUE, GOE) or 4� 4 (GSE) matrices.
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[45] J.E. Avron, in Mesoscopic Quantum Physics, Proceedings of the Les Houches

Summer School LXI 1994, edited by E. Akkermans, G. Montambaux, J.L. Pichard
and J. Zinn-Justin (North-Holland, Amsterdam, 1995).

[46] S. Alberverio and K. Pankrashkin, J. Phys. A 38 4859 (2005).
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[95] D. M. Cvetković M. Doob, and H. Sachs, Spectra of Graphs (Academic Press, New

York, 1980).
[96] S. Nicaise, Bull. Sc. Math. 2e Série 111 401 (1987).
[97] B. Gutkin and U. Smilansky, J. Phys. A 34 6061 (2001).
[98] V. Kostrykin and R. Schrader, math-ph/0603010 (2006).
[99] P. Kurasov and M. Novaczyk, J. Phys. A 38 4910 (2005).
[100] P. Kurasov and F. Stenberg, J. Phys. A 35 101 (2002).
[101] V. Pivovarchik, SIAM J. Math. Anal. 31 801 (2001).
[102] M. Harmer, J. Phys. A 38 4875 (2005).
[103] M. Harmer, ANZIAM J. 44 161 (2002).
[104] N.I. Gerasimenko, Theor. Math. Phys. 75 460 (1988).
[105] L. Friedlander, Annales de l’Institut Fourier 55 199 (2005).
[106] U. Smilansky, Waves in Random Media 14 S143 (2004).
[107] M. Solomyak, Waves in Random Media 14 S173 (2004).

Quantum graphs 621

D
ow

nl
oa

de
d 

by
 [

G
ot

he
nb

ur
g 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 1

3:
09

 0
7 

D
ec

em
be

r 
20

17
 



[108] W.D. Evans and M. Solomyak, J. Phys. A 38 4611 (2005).
[109] W.D. Evans and M. Solomyak, J. Phys. A 38 7661 (2005).
[110] P. Kuchment, Waves in Random Media 12 R1 (2003).
[111] P. Kuchment, Waves in Random Media 14 S107 (2004).
[112] P. Kuchment, J. Phys. A 38 4887 (2005).
[113] P. Kuchment (Guest Editor), Special Section: Quantum Graphs Waves in Random Media

14 S1 (2005).
[114] G. Dell’Antonio, P. Exner, and V. Geyler (Guest Editors) Special Issue: Singular Inter-

actions in Quantum Mechanics: Solvable Models J. Phys. A 38Number 22 (2005); Section
Quantum Graphs: Usual, Fat, and Leaky p. 4859.

[115] G. Berkolaiko, R. Carlson, S. Fulling, and P. Kuchment (Editors), Quantum Graphs
and Their Applications, Proceedings of the Joint Summer Research Conference in the
Mathematical Sciences in Snowbird 2005, Contemporary Mathematics 415
(American Mathematical Society, Providence, 2006).

[116] T. Kottos and U. Smilansky, Phys. Rev. Lett. 79 4794 (1997).
[117] T. Kottos and U. Smilansky, Annals of Physics 274 76 (1998).
[118] M.C. Gutzwiller, J. Math. Phys. 12 343 (1971).
[119] M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York,

1990).
[120] B. Winn, The Laplacian on a graph and quantum chaology, PhD thesis, University of

Bristol (2003).
[121] A. Comtet, J. Desbois, and Ch. Texier, J. Phys. A 38 R341 (2005).
[122] F. Barra and P. Gaspard, J. Stat. Phys 101 283 (2000).
[123] G. Berkolaiko and J.P. Keating, J. Phys. A 32 7827 (1999).
[124] G. Berkolaiko, H. Schanz, and R.S. Whitney, J. Phys. A 36 8373 (2003).
[125] G. Berkolaiko, Waves in Random Media 14 S7 (2004).
[126] G. Berkolaiko, Quantum star graphs and related systems, PhD thesis, University of

Bristol (2000).
[127] G. Berkolaiko, E.B. Bogomolny, and J.P. Keating, J. Phys. A 34 335 (2001).
[128] G. Berkolaiko, H. Schanz, and R.S. Whitney, Phys. Rev. Lett. 82 104101 (2002).
[129] J. Bolte and J. Harrison, J. Phys. A 36 2747 (2003).
[130] J. Bolte and J. Harrison, J. Phys. A 36 L433 (2003).
[131] T. Kottos and H. Schanz, Physica E 9 523 (2001).
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