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We present the results of experimental and theoretical study of irregular, tetrahedral microwave networks
consisting of coaxial cable@nnular waveguidgsconnected byT joints. The spectra of the networks were
measured in the frequency range 0.0001-16 GHz in order to obtain their statistical properties such as the
integrated nearest neighbor spacing distribution and the spectral rigiglity. The comparison of our experi-
mental and theoretical results shows that microwave networks can simulate quantum graphs with time reversal
symmetry. In particular, we use the spectra of the microwave networks to study the periodic orbits of the
simulated quantum graphs. We also present experimental study of directional microwave networks consisting
of coaxial cables and Faraday isolators for which the time reversal symmetry is broken. In this case our
experimental results indicate that spectral statistics of directional microwave networks deviate from predictions
of Gaussian orthogonal ensembles in random matrix theory approaching, especially for small eigenfrequency
spacings, results for Gaussian unitary ensembles. Experimental results are supported by the theoretical analy-
sis of directional graphs.
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Quantum graphs of connected one-dimensional wireperiment specifically devoted to the study of quantum cha-
were introduced more than 50 years ago in order to describetic scattering was reported in R¢R9]. Later on a similar
organic molecules by free electron modgls?]. They can be experimental technique was applied in the observation of
considered as idealizations of physical networks in the limitresonance trapping in an open microwave caf@®j. In the
where the widths of the wires are much smaller than theicase of two dimensions the Schrédinger equation for quan-
lengths, i.e., assuming that the propagating waves remain itum billiards is equivalent to the Helmholtz equation for mi-
a single transversal mode. Among the systems modeled byrowave cavities of corresponding shape. Three-dimensional
quantum graphs one can find, e.g., electromagnetic opticahaotic billiards have been also studied experimentally in the
waveguideq3,4], quantum wireg5,6], mesoscopic systems microwave frequency domaif81,32 but for these systems
[7,8], and excitation of fractons in fractal structuf€s10]. In  there is no direct analogy between the vectorial Helmholtz
spite of the attention paid to quantum graphs, the statisticadquation and the Schrédinger equation.
properties of their spectra were hardly investigated in the A general microwave graph consists bf vertices (T
past. Recently spectral properties of quantum graphs hayeints in our casgconnected by bonds, e.g., coaxial cables.
been studied in the series of papers by Kottos and Smilanskyollowing Ref.[12] we define theN X N connectivity matrix
[11-13. They have shown that quantum graphs are exceller; which takes the value 1 if the verticésand j are con-
paradigms of quantum chaos. However, in spite of numerousected and 0 otherwise. The coaxial cable consists of an
theoretical investigations of this topid4—21] no experi- inner conductor of radius; surrounded by a concentric con-
ments have been performed so far. ductor of inner radius,. The space between the inner and

The main aim of this work is to demonstrate that using athe outer conductors is filled with a homogeneous material
simple experimental setup consisting of microwave network$aving the dielectric constamst For frequencyr below the
(throughout the text we also use the names: microwavenset of the next T mode[33], inside a coaxial cable only
graphs or circuits one may successfully simulate quantum the fundamental TEM mode can propagate, which in the lit-
graphs. The circuits are constructed of coaxial catdesu-  erature it often called a Lecher wave. This mode exists be-
lar waveguidep connected byT joints. Furthermore, to cause the cross section of a coaxial line is doubly connected,
mimic the effects of the time reversal symmetry breaking inwhich results in the existence of the potential difference be-
quantum systems it is sufficient to add the Faraday isolatordveen the inner and the outer conductfsee Eq(2)].
into the circuit. In order to find propagation of a Lecher wave inside the

The analogy between quantum graphs and microwav€oaxial cable joining théth and thejth vertex of the micro-
networks is based upon the equivalency of the Schrédingeiave graph we can begin with the continuity equation for the
equation describing the quantum system and the telegragi!arge and the current on the considered cémbed [34]
equation describing the ideal microwave circuit. It is worth de;(x,1) dJ; (x,1)
noting that this paper continues the use of microwave spec- dt == dx (1)
troscopy to verify wave effects predicted on the basis of
quantum physics, which for two-dimensional systems, thirwhereg;(x,t) andJ;(x,t) are the charge and the current per
microwave cavity resonators, was pioneered in ] and  unit length on the surface of the inner conductor of a coaxial
further developed in Ref§23-28. The first microwave ex- cable.
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For the potential difference we can write down Microwave
Graph
Uy (x,t) = VA(x,t) = Vi (x,1) = —JQ (2
i y Lock-in
whereVy (x,t) andV3(x,t) are the potentials of the inner and Amplifier
the outer conductors of a coaxial cable ahis the capaci- .
tance per unit length of a cable.
Taking the spatial derivative of EqR) and assuming that I |
the wave propagating along the cable is monochromati O [d
&;(x,t)=e""g;(x) and U;;(x,t)=e"'“'U;;(x) one can obtain ——
(34] PC Synthesizer
d
d_XUij (x) == 2%;(x), (3

FIG. 1. Experimental setup for measurements of the spectra of
where Z=R-(iwL/c?. R and £ denote the resistance and the microwave graphs. Microwave synthesizer: HP867CA
the inductance per unit length, respectively. The angular fre-18.5 GH2 and SMTO3 (5 kHz-3 GH2, D - crystal detector
guencyw is equal to Zrv andc stands here for the speed of (HP8472B, C - microwave couplefNarda 4055
light in a vacuum.

Making use of Eqgs(1)~3) and the definition ofZ for an Vij(heo=¢is Wi, =@ 1<), Cj#0
ideal lossless coaxial cable with the resistaRce0, one can d
derive the telegraph equation on the microwave graph -2 C”d Wji (0l * 2 Ci— ix Wij(X)|x=0=0.
j<i j>i
2 2
9
OIXZU,J(x) =z U;;(x) =0, (4) 9)
In order to check the equivalence of microwave and quan-
- tum graphs we measured the spectra of ten tetrahedral mi-
wheres=LC [35] crowave graphs in the frequency range 0.0001-16 GHz For

The continuity equation for the potential difference ré- his frequency ranae onlv a Lecher wave can propadate in the
quires that for every=1,... N q y rang y propag

graphs. The next mode to propagate is theT&ith the
U 0lo=o, U (Xl =@, i<j, Ci#0. (5 cutoff frequencyv.=c/m(r,;+r,)Ve=32.9 GHz[33], where
iWl0= ¢ Uil = b ®) r,=0.05 cm is the inner wire radius of the coaxial cable

surrounding conductor, ang=2.08 is Teflon dielectric con-
CyJji(x CijJj(¥)|xeo=0 6 Stant
E il e i E i heo © The experimental setup for measurements of spectra of
the microwave graphs is shown in Fig. 1. We used Hewlett-
may be transformed using E) into Packard 8672A microwave synthesizer to measure the spec-
tra of the graphs in the frequency range 2—16 GHz while for
_ the frequency range 0.0001-3 GHz Rhode-Schwartz
Ci U - C: U 0= 7 . X ;
E U dx “(X)|X i g d 100 heo ™ SMT-03 microwave synthesizer was used. The microwave

coupler(Narda 405% enabled us to observe signals reflected
whereL;; represents the length of the bond joining ttie  from microwave graphs. Because for the specified frequency
and thejth vertex of the graph. To simplify the notation, range only a single TEM mode could propagate in the mi-
the lengths of six bonds of the four-vertex graph shown incrowave networks a reflected signal was proportionasfo
Fig. 1 are labeled by letters, ... ,f}. where the complex numb& may be considered as a one-
Assuming the following correspondencé;;(x) = U;j(x)  dimensional scattering matrix. This type of microwave ex-
andk? = w?e/c?, Eq. (4) is formally equivalent to the one- periment, related to scattering matrix measurements, was
dimensional Schrédinger equatigwith #=2m=1) on the  pioneered in Ref[29] and stimulated in Ref[36]. In Fig.
graph with the magnetic vector potenti| =0 [12], 2(a) a typical fragment of a measured modulus of scattering
matrix |§ of the graph is presented in the frequency range
d 3.95-5.05 GHz. The experimental spectrum is also com-
dXZ\P'J(X)J'kZ\I"J(X) 0. ®) pared with numerically calculated eigenfrequencies of the
ideal graph(R=0) having the same bond lengths as the ex-
It is easy to verify that Eqs(5) and (7) are equivalent to perimental one. The total “optical” lengths of the microwave
equations derived in Refl2] [see Eq.(3)] for quantum graphs, includingT joints, varied from 171.7 to 262.2 cm,
graphs with Neumann boundary conditiopps=0) and van-  which allowed for the observation of 156—264 eigenfrequen-
ishing magnetic vector potentid;=A;=0. Such systems cies in the frequency range 0.0001-16 GHz. To avoid the
possess the time reversal symmdffRS), degeneracy of eigenvalues the lengthg of the bonds
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FIG. 2. (@ A fragment of a measured modulus of scattering  FIG. 3. Integrated nearest neighbor spaditNNS) distribution
matrix |§ of the microwave graph of the “optical” length 223.6 cm |(s) averaged for ten microwave graphs. Results of the experiment
in the frequency range 3.95-5.05 Gkig) The response function (open triangles are compared with the numerical resultspen
r(k) calculated for the graph having the same bond lengths as theircles and theoretical prediction for GOBolid line) and GUE
experimental one. In the calculations of the response function  (dashed ling
absorption of the microwave field by coaxial cables were taken into
account(see text Vertical broken lines show the positions of nu- wyveen experimental and theoretical results is quite goioel
merically calculated eigenfrequencies of the graph without.q|ative errors are of the order of 19, which justifies a
absorption. posteriori our assumption that the microwave circuits can be

described with good accuracy by the quantum graphs with
(cableg were chosen not to be commensurable. The transNeumann boundary conditions. In this way our experimental
mission through thd" joints was characterized by the weak results additionally support theoretical findings about the
frequency dependence, e.g., in the frequency ranggoundary conditions for shrinking domaif37,3§. Our re-
0.05-16 GHz the rati®Rs=(|S;|"*~|§;|™")/|S;|"*<0.06,  sults also show that relatively short microwave graphs con-
where|S;|"*and|S;|™" are the maximum and the minimum sisting of coaxial cables, at least as it concerns the eigenval-
values of modulus of nondiagonal elements of a three porties’ positions, can be approximately treated as ideal lossless
scattering matrixS;, respectively. The indices,j=1,2,3  graphs with the resistanc@=0. The last statement is not
andi #j. For the frequency range 3.95-5.05 GHz specifiedery surprising. A similar situation one can find in the ex-
in Fig. 2@) the ratio fulfilled the conditiorRs=0.02. periments with microwave cavitig®2]. A thorough discus-

For more comprehensive comparison of the experimentadion on influence of absorption of energy caused by the finite
and numerical results the experimental spectrum shown igonductivity of the cavity walls on reflection from the cavity
Fig. 2a) is compared in Fig. @) with the response function power was given by Doroat al.[29]. They showedsee also
r(k) calculated for the graph having the same bond lengths aef. [30]) that small absorption of energy is necessary for
the experimental one. The response functith) was intro-  revealing cavity’s resonances as dips in the reflected power.
duced in this paper in order to analyze the directional graphs We have examined statistical properties of spectra of the
consisting of Faraday isolators and is defined by &#§). In microwave graphs such as the integrated nearest neighbor
the calculations of the response functidi) absorption of  spacing (INNS) distribution I(s) and the spectral rigidity
microwave cables were taken into account by replacing thes(L). (for their definitions see, eg., Ref®9,40). Figure 3
real wave vectok by the complex vectok+iB\k [35]. The  presents the INNS distributions. The solid line represents
absorption coefficien=0.009n"2 was evaluated on the predictions of random matrix theory obtained for Gaussian
basis of absorption of the microwave cables used in the exerthogonal ensembléGOE), applicable for systems with a
periment. The direct comparison of the results presented itime-reversal symmetry. The dashed line denotes results
Figs. 2a) and 2b) requires some care because the responseharacteristic of Gaussian unitary ensemi@&JE), used if
function r(k) is rather proportional to the amplitude of the the time-reversal symmetry is brokdi39]. Experimental
field transmitted through the graph than to the amplitudecurve(open triangleswas obtained by averaging over the set
reflected from the graph that is represented by the scatteringf ten microwave graphs obtained by varying the length of
matrix |§. However, the aim of this comparison is to show one bond, which provided us with a total of 2220 experimen-
that the inclusion of absorption of microwave cables leads tdally measured eigenfrequencies. Numerical cufe@en
comparable with the experimental results broadening of resaircles shows results averaged for ten quantum graphs hav-
nances. It is also important to note that calculated in such ang the same bond lengths as the experimental ones. Eigen-
way eigenfrequencies are very close to the ones calculatddequencies were calculated by solving numerically the secu-
for the ideal graph, from which they differ at most by lar equations for quantum grapfigs.(6)-(8) in Ref.[12]].

1 MHz. Figures 2a) and 2b) show that the agreement be- This procedure allowed us to identify a total of 2344 eigen-
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FIG. 4. Spectral rigidityAs(L) for the microwave graph of the
“optical” length 223.6 cm. Results of the experimguafpen tri-

angles are compared with the numerical resultgpen circle and
theoretical prediction for GOIEsolid line) and GUE(dashed ling

FIG. 5. Absolute square of the Fourier transform of the fluctu-
ating part of the density of resonances of the graph of the “optical”
length 223.6 cm. Results of the experiméatlid line) are com-
pared with the numerical resultslotted ling. The assignment of
peaks of|F(I)|? to simple periodic orbitg§see text is shown along
frequencies, slightly more than measured experimentallywith the length of the orbits. The “optical” lengths of the bonds of
Figure 3 shows that in both cases the INNS distributions ar¢he graph:a=21.0 cm, b=26.3 cm, c=34.0 cm, d=39.6 cm, e
in a very good agreement with the GOE predictions. =46.8 cm,f=55.9 cm.

Figure 4 demonstrates the spectral rigidity(L) obtained o
for the microwave graph of the “optical” length 223.6 cm. obtained from a least squares Ntk) = a;k+ a, of the mea-
Experimental curvgopen triangleswas based on 229 iden- sured staircas&l(k). The slope parameter, obtained from
tified eigenfrequencies, while the numerical da@pen the experimental datay;=0.707+0.006, isvery close to
circles were computed out of 237 eigenfrequencies. In botfthe valuea=0.712,received from the Weyl formula given
cases the frequency range was 0.0001-16 GHz. Deviationsgy Eq. (7) in Ref. [11].
of the experimental and numerical rigidity from the GOE  The absolute square of the Fourier transform of the fluc-
predictions (solid line) are visible. For comparison the tuating part of the density of resonandgg¢l)|? for the graph
dashed line in Fig. 4 shows the RMT prediction for GUE. of the “optical” length 223.6 cm is shown in Fig. 5. The
Our experimental and numerical results are lying above th@angths of the bonds of this graph fulfill the following rela-
GOE prediction forL. between 2.5-5. For higher valuelof  tions:a<b<c<d<e<f. Results obtained from the experi-
saturation of the numerical value of the spectral rigidity iSmental spectrungsolid line) are compared to the results ob-
observed in agreement with the predictions of Be4#].  tained from numerical calculationgdotted ling. The
The experimental rigidity fol.>10 is located below the experimental spectrum included 149 identified eigenfrequen-
GOE curve and above the numerical results. The departure @fes while the numerical one included 150 eigenfrequencies.
the experimental rigidity from the numerical one can bejn hoth cases the frequency range was 0.2-10.2 GHz. We
probably attributed to the loss of about 3 % of experimentalised the narrower frequency range than in the calculations of
eigenfrequencies. the INNS distributions and (L) to be sure that at most only

The measurements of the spectra of the graphs enabled gge eigenfrequency was missing in the experimental spec-
also to calculate the lengths of periodic orbits in the graphtrum. The absolute square of the Fourier transfdft)|?

They were computed from the Fourier transform shows pronounced peaks near the lengths of certain periodic
Krmax . orbits. The agreement between the experimental and the nu-
|:(|)=J (K w(ke™dk, (100  merical results is good, however, some discrepancies for

0

shorter periodic orbits are visible. In Fig. 5 we show all
irreducible periodic orbit$12], i.e., periodic orbits which do
not intersect themselves, with the lengths 165 cm. For
clarity, in Fig. 5 we additionally show the first repetition of
the periodic orbit B atl=2b+2b=105.2 cm and two reduc-
ible periodic orbitsabc+2c andbdet2a at1=149.3 cm and
f=154.7 cm, respectively. It should be noticed that many
. . . peaks forl >70 cm cover several unresolved periodic orbits.
we determined the density of states accordingpte) |, orger to check whether the missed resonance was respon-
=2;8(k-kj) and subtracted from it the mean densil)  gjpje for discrepancies in the lengths of periodic orbits we
=dN(k)/dk. The meanN(k) of the staircase function, i.e., artificially added this resonance to the spectrum of the graph
the number of resonances up to the wave nunihevas and recalculated the lengths of periodic orlfiesults are not

where) is the oscillating part of the level density anadk)
=sir?(7k/ ka0 is @ window function that suppresses the
Gibbs overshoot phenomendi28,41]. Here k., is the
maximal value of the wave number within the interval
where the eigenvalues of the graph were evaluated. |
order to extract the oscillating part of the level dengty
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shown). Indeed, the inclusion of the missed level improved
the agreement with the numerical results. The main change
was visible in the “experimental” amplitudes that became y)
closer to the numerical ones. For example the amplitudes o
the most sensitive orbitsa2and & (see Fig. % were de-
creased from 1.5 to 1.0 and from 1.4 to 1.1, respectively. The
positions of the periodic orbits were not as sensitive as am-
plitudes. For example in the case of the orhit the length
was changed froni=42.0 cm tof =41.4 cm becoming more
distant from the numerical resuft=42.0 cm. In a different
way behaved the orbitl2whose length was modified from
€=51.5 cm to€=52.5 cm becoming closer to the numerical
result€=52.6 cm.

In this paper we also present experimental study of mi- 0.0 LI—————,
crowave graphs consisting of coaxial cables and Faraday isc 00 05 1.0 15 20 25 30 35
lators. The graphs with Faraday isolators are examples o s
simple experimental realization of directional graphs for
which the time reversal symmetry is broken. A microwave FIG. 6. Integrated nearest neighbor spacing distribution aver-
Faraday isolator is a passive device, which transmits theged for eight realizations of the microwave graphs with Faraday
wave moving in one direction while absorbing the waveisolators(solid triangle$ is compared with the averaged results for
moving in the opposite direction. Due to absorption the in-the microwave graphs without the isolataigpen triangles and
troduction of Faraday isolators transforms the problem frontheoretical prediction for GOEsolid line) and GUE(dashed ling
the bound system to an open system. In the experimenh both cases experimental results were obtained for the frequency
AerCom 60583 Faraday isolato(msertion loss<0.4 dB, range 3.5-7.5 GHz.
isolation >19 dB, length=5.7 cmwith the operating fre-

quency range 3.5-7.5 GHz were used. We _measurgd tNfirected bond—can be described by means of a filter factor
spectra of four graphs consisting of one of their bonds’ ong,ich damps the wave moving in one direction. In the nu-

Faraday isqlator_or two Faraday isolators connected_ in Serieﬁ'1erical analysis of the directed graphs we have assumed that
The I|m|tat:¢ons |mpos|ed dby the nk?rrow range offlsolatorsby measuring the reflection spectra of the graphs we are
operating frequency lead to rather poor eigenfrequenc : i
statistics—between 34 and 39 eigenfrequencies were O%gther probing the graphs as closed systems by some cou

served for the graphs with Faraday isolators. Therefore, foP/ind: Which is weak enough, not to influence the internal
each of four graphs we performed three measuremenfdynamics of the systems. , ,
where: the isolator was mounted in the bdndf the graph, We introduce the connectivity matrib of a directed
the isolator was mounted in the bond and two isolators ~9raph, which does not need to be symmetric. With any di-
connected in series were mounted in the bdn@ihe assign-  "ected graphl” one may associate a bidirectional gragh
ment of the letters to the bonds of the graph is shown in_Nlth the same number of vertices. Its connectivity maix
Fig. 1. is symmetric,

The results of these 12 measuremetigether 444 eigen-
frequencies were averaged to obtain the INNS distribution Cij = maxD;;,Dj). (1)
(solid triangles in Fig. § The INNS distribution obtained for The numberB of bonds in the graptG is equal toB

the same frequency range, but without Faraday isolators ar_el2 C. To be able to filt ting i
also shown in Fig. Gopen triangles The examination of the —2=ij ~ij- ' O D€ able {0 llter Some waves propagating in one

INNS distribution obtained for the graphs, with and withoutd'ref:t'on wh|!e preserving those moving m_the opposite .d"

Faraday isolators, shows that they are different. In spite ofection we will use a_bqnd scattering technique of analyzing

some deviations, one can see that INNS distribution for th&PE¢tra of graphs, similar to this introduced _ll)k); Kottos and

graphs without the isolators is close to the RMT predictionomiianskyl12]. C,?ns'der a plain wave,,(x) =€ coming

for GOE (solid line) in contrast to the INNS distribution for [T0M the vertexj’ to the vertexn. It is scattered into all

the graphs with the isolators, which follows more closely the®0nds going out from the vertex for which Cy;# 0,

RMT prediction for GUE(dashed ling This is especially

well seen at small eigenfrequency spacgdsimilar devia-

tions of the spectral statistics were reported by experiment?_ ) (N . ) .

with microwave billiards[25-27. In the experiment per- he vertex scattering matrrxjj, is completely determined, if

formed by Soet al. [25] the transition from GOE to GUE We assume Neumann boundary conditi¢@s which imply

statistics was caused by a piece of magnetized ferrite placed m

inside a two-dimensional microwave cavity while in the ex- O = CjrnCnj(= §jj + 2/vp). (13

periment performed in Marburf26,27 the deviation from .

GOE statistics was induced by Faraday isolator connected £g€re vn denotes the number of bonds meeting at titie

a microwave cavity. V((anr)tex, also called thefal_encyof the ve_rtex. Elements_ pf
The directed graphs can be also modeled theoretica”y_)'”, for all vertex n combine to the entire bond transition

The crucial element of the graph—the Faraday isolator in anatrix of the graphG

Dpi(x) = 8,67+ ek, (12)
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le,nm= b‘IanICan'J(In)qv (14)

which describe the changes of amplitudes of waves propaye,
gating in each bond of the gragm both directiong after

one event of scattering on vertices. The matrix dimension is
equal to twice the number of bondsin the graph. To take

into account the presence of the Faraday isolators we mak
use of the connectivity matri® of the directed graph’, and
introduce a diagonalRx 2B matrix A(k)

Aj|‘j,|,(k):5“,5”,Dj|eik"i|, (15)

where the phase factor describes the free propagation alon
the bond(jl) of lengthL;. By definition, the elemenD;, is
equal to zero for bonds which do not belong to the directed
graphI'. The effect of absorption of the microwave field by s
microwave cables can be easily taken into account by modi-
féylng g]_ee(irl]_%t\%{“/\ngél:é /?Ii\;e?hsyatl)zsqc;Elﬁl);octc?eeffifc(:)irenrqlt spacing(INNS) dis.trib.utions. averaged forl 20 realizations of the
jir =il K P i " _directed graphsgsolid circleg is compared with the averaged results
The total _evo_lutlon of the vector of wave am_phtudes of for the bidirectional graphgopen circles Calculations were per-
length 2B is given by the bond scattering matrix formed in the frequency range 0—20 GHz. Numerical results for the
INNS distributions are compared with theoretical predictions for
Sk =AK)T. (16)  GOE(solid line) and GUE(dashed ling
The matrixS(k) is subunitary, since it is obtained by putting
to zero some elements of a unitary matrix. We denote the
eigenvalues o8(k) by \;(k), all of \;(k) are located irfor a
the unit circle,|\;(k)|<1. The equation for the eigenmode
of the quantum graph

FIG. 7. Numerically calculated integrated nearest neighbor

Using this approach we calculated approximated eigenfre-
s quencies of 20 directed graphs in the frequency range
0-20 GHz. As in the experimental realization, only one

bond was assumed to be directed. Numerical search for the
de(S(k) -1)=0 (17)  eigenfrequencies was performed for two sets of directed
graphs with five different lengths of a directed bondsee
may have no real solution. In our experimental setup therig. 1 for the assignment of the letters to the bonds of the
graph is driven by the microwave generator. We are intergraph. The other bonds of the graphs were bidirectional and
ested, for which wave vectoisthe resonant driving of the ~within the set were kept fixed. The same number of numeri-
graph will appear. We analyze the stationary state of thega| calculations were also done for two sets of directed
system, in which an arbitrary number of scattering pro-  graphs with the varied length of the directed bahdFigure
cesses take place and decompose it in the eigenbaSi&)of 7 shows the integrated nearest neighbor spacing distribution
The amplitudes of each mode become an infinite SUPerposkyeraged for 20 realizations of the directed graphs in the
tion of waves scattered times, so the enhancement factor frequency range 0—20 GHz. Together 3207 eigenfrequencies
rj(k) of the jth mode reads were used in the calculations of the INNS distribution. In this
o case we decided not to put the experimental and theoretical
ri(k) = > [\ (P= #7 (18  data on one plot, to emphasize that the results are based on
p=0 1-x(k) different statistics and cannot be directly compared. How-
ever, it is justified to compare these numerical results ob-
where\;(k) are the eigenvalues of the bond scattering matrixained for the directed graplisolid circleg with the numeri-
S(k). Since each eigenmode may contribute to the resonady| data obtained in the frequency range 0—20 GHz for 20
dissipation in the system, we approximate the total responsgajizations of standard(bidirectiona) graphs (empty
function of the graph by the average enhancement fétter  ¢jrcleg. In this case 4641 eigenfrequencies were used in the

mean ofr;(k)] calculations of the INNS distribution. Theoretical predictions

2B 2B for GOE and GUE, denoted by solid and dashed curve, re-
r(k) = iz r(k) = iE 1 _ (19) spectively, suggest that the INNS spectral statistics for di-
2Bi5 ! 2B 1 -7k rected graphs deviate at small spacings from the GOE curve

and become closer to the GUE predictions. This result con-
Maxima of this function, which occur if one of the eigenval- firms also our experimental findings for the microwave di-
ues \j(k) is close to unity, identify resonant values of the rected graphs.

wave vectork. We analyzed the functionk) generated for In summary, we show that quantum graphs with Neumann
parameters of the system as used in the experiment and stugbundary conditions can be simulated experimentally by mi-
ied numerically the statistics of its maxima. crowave networks. Bidirectional microwave graphs, i.e., cir-
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cuits without Faraday isolators, simulate quantum graph$or GOE, approaching the results characteristic of GUE.
with time reversal symmetry. The results for the directional

microwave graphs with Faraday isolators, for which the time  This work was partially supported by KBN Grant Nos.
reversal symmetry is broken, indicate that their certain char2 PO3B 047 24 and 1 PO3B 042 26. We would like to thank

acteristics such as the integrated nearest neighbor spacifjofessor Marek Kéiand Professor Petr Seba for valuable
distribution can significantly differ from the RMT prediction discussions.
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