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We present the results of experimental and theoretical study of irregular, tetrahedral microwave networks
consisting of coaxial cables(annular waveguides) connected byT joints. The spectra of the networks were
measured in the frequency range 0.0001–16 GHz in order to obtain their statistical properties such as the
integrated nearest neighbor spacing distribution and the spectral rigidityD3sLd. The comparison of our experi-
mental and theoretical results shows that microwave networks can simulate quantum graphs with time reversal
symmetry. In particular, we use the spectra of the microwave networks to study the periodic orbits of the
simulated quantum graphs. We also present experimental study of directional microwave networks consisting
of coaxial cables and Faraday isolators for which the time reversal symmetry is broken. In this case our
experimental results indicate that spectral statistics of directional microwave networks deviate from predictions
of Gaussian orthogonal ensembles in random matrix theory approaching, especially for small eigenfrequency
spacings, results for Gaussian unitary ensembles. Experimental results are supported by the theoretical analy-
sis of directional graphs.
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Quantum graphs of connected one-dimensional wires
were introduced more than 50 years ago in order to describe
organic molecules by free electron models[1,2]. They can be
considered as idealizations of physical networks in the limit
where the widths of the wires are much smaller than their
lengths, i.e., assuming that the propagating waves remain in
a single transversal mode. Among the systems modeled by
quantum graphs one can find, e.g., electromagnetic optical
waveguides[3,4], quantum wires[5,6], mesoscopic systems
[7,8], and excitation of fractons in fractal structures[9,10]. In
spite of the attention paid to quantum graphs, the statistical
properties of their spectra were hardly investigated in the
past. Recently spectral properties of quantum graphs have
been studied in the series of papers by Kottos and Smilansky
[11–13]. They have shown that quantum graphs are excellent
paradigms of quantum chaos. However, in spite of numerous
theoretical investigations of this topic[14–21] no experi-
ments have been performed so far.

The main aim of this work is to demonstrate that using a
simple experimental setup consisting of microwave networks
(throughout the text we also use the names: microwave
graphs or circuits) one may successfully simulate quantum
graphs. The circuits are constructed of coaxial cables(annu-
lar waveguides) connected byT joints. Furthermore, to
mimic the effects of the time reversal symmetry breaking in
quantum systems it is sufficient to add the Faraday isolators
into the circuit.

The analogy between quantum graphs and microwave
networks is based upon the equivalency of the Schrödinger
equation describing the quantum system and the telegraph
equation describing the ideal microwave circuit. It is worth
noting that this paper continues the use of microwave spec-
troscopy to verify wave effects predicted on the basis of
quantum physics, which for two-dimensional systems, thin
microwave cavity resonators, was pioneered in Ref.[22] and
further developed in Refs.[23–28]. The first microwave ex-

periment specifically devoted to the study of quantum cha-
otic scattering was reported in Ref.[29]. Later on a similar
experimental technique was applied in the observation of
resonance trapping in an open microwave cavity[30]. In the
case of two dimensions the Schrödinger equation for quan-
tum billiards is equivalent to the Helmholtz equation for mi-
crowave cavities of corresponding shape. Three-dimensional
chaotic billiards have been also studied experimentally in the
microwave frequency domain[31,32] but for these systems
there is no direct analogy between the vectorial Helmholtz
equation and the Schrödinger equation.

A general microwave graph consists ofN vertices (T
joints in our case) connected by bonds, e.g., coaxial cables.
Following Ref.[12] we define theN3N connectivity matrix
Ci j which takes the value 1 if the verticesi and j are con-
nected and 0 otherwise. The coaxial cable consists of an
inner conductor of radiusr1 surrounded by a concentric con-
ductor of inner radiusr2. The space between the inner and
the outer conductors is filled with a homogeneous material
having the dielectric constant«. For frequencyn below the
onset of the next TE11 mode[33], inside a coaxial cable only
the fundamental TEM mode can propagate, which in the lit-
erature it often called a Lecher wave. This mode exists be-
cause the cross section of a coaxial line is doubly connected,
which results in the existence of the potential difference be-
tween the inner and the outer conductors[see Eq.(2)].

In order to find propagation of a Lecher wave inside the
coaxial cable joining theith and thej th vertex of the micro-
wave graph we can begin with the continuity equation for the
charge and the current on the considered cable(bond) [34]

deijsx,td
dt

= −
dJijsx,td

dx
, s1d

whereeijsx,td andJijsx,td are the charge and the current per
unit length on the surface of the inner conductor of a coaxial
cable.
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For the potential difference we can write down

Uijsx,td = V2
i jsx,td − V1

i jsx,td =
eijsx,td

C , s2d

whereV1
i jsx,td andV2

i jsx,td are the potentials of the inner and
the outer conductors of a coaxial cable andC is the capaci-
tance per unit length of a cable.

Taking the spatial derivative of Eq.(2) and assuming that
the wave propagating along the cable is monochromatic
eijsx,td=e−ivteijsxd and Uijsx,td=e−ivtUijsxd one can obtain
[34]

d

dx
Uijsxd = − ZJijsxd, s3d

whereZ=R−sivL /c2d. R andL denote the resistance and
the inductance per unit length, respectively. The angular fre-
quencyv is equal to 2pn andc stands here for the speed of
light in a vacuum.

Making use of Eqs.(1)–(3) and the definition ofZ for an
ideal lossless coaxial cable with the resistanceR=0, one can
derive the telegraph equation on the microwave graph

d2

dx2Uijsxd +
v2«

c2 Uijsxd = 0, s4d

where«=LC f35g.
The continuity equation for the potential difference re-

quires that for everyi =1, . . . ,N

Uijsxduz=0 = wi, Uijsxduz=Lij
= w j, i , j , Cij Þ 0. s5d

The current conservation condition

o
j,i

CijJjisxdux=Lij
− o

j.i

CijJijsxdux=0 = 0 s6d

may be transformed using Eq.s3d into

− o
j,i

Cij
d

dx
Ujisxdux=Lij

+ o
j.i

Cij
d

dx
Uijsxdux=0 = 0, s7d

whereLij represents the length of the bond joining theith
and thej th vertex of the graph. To simplify the notation,
the lengths of six bonds of the four-vertex graph shown in
Fig. 1 are labeled by lettersha, . . . ,fj.

Assuming the following correspondence:Ci jsxd⇔Uijsxd
and k2⇔v2« /c2, Eq. (4) is formally equivalent to the one-
dimensional Schrödinger equation(with "=2m=1) on the
graph with the magnetic vector potentialAij =0 [12],

d2

dx2Ci jsxd + k2Ci jsxd = 0. s8d

It is easy to verify that Eqs.s5d and s7d are equivalent to
equations derived in Ref.f12g fsee Eq.s3dg for quantum
graphs with Neumann boundary conditionssli =0d and van-
ishing magnetic vector potentialAij =Aji =0. Such systems
possess the time reversal symmetrysTRSd,

uCi jsxdux=0 = wi, uCi jsxdux=Lij
= w j, i , j , Cij Þ 0

− o
j,i

Cij
d

dx
C ji usxdux=Lij

+ o
j.i

Cij
d

dx
uCi jsxdux=0 = 0.

s9d

In order to check the equivalence of microwave and quan-
tum graphs we measured the spectra of ten tetrahedral mi-
crowave graphs in the frequency range 0.0001–16 GHz For
this frequency range only a Lecher wave can propagate in the
graphs. The next mode to propagate is the TE11 with the
cutoff frequencync.c/psr1+r2dÎ«=32.9 GHz[33], where
r1=0.05 cm is the inner wire radius of the coaxial cable
(SMA-RG402), while r2=0.15 cm is the inner radius of the
surrounding conductor, and«=2.08 is Teflon dielectric con-
stant.

The experimental setup for measurements of spectra of
the microwave graphs is shown in Fig. 1. We used Hewlett-
Packard 8672A microwave synthesizer to measure the spec-
tra of the graphs in the frequency range 2–16 GHz while for
the frequency range 0.0001–3 GHz Rhode-Schwartz
SMT-03 microwave synthesizer was used. The microwave
coupler(Narda 4055) enabled us to observe signals reflected
from microwave graphs. Because for the specified frequency
range only a single TEM mode could propagate in the mi-
crowave networks a reflected signal was proportional touSu2,
where the complex numberS may be considered as a one-
dimensional scattering matrix. This type of microwave ex-
periment, related to scattering matrix measurements, was
pioneered in Ref.[29] and stimulated in Ref.[36]. In Fig.
2(a) a typical fragment of a measured modulus of scattering
matrix uSu of the graph is presented in the frequency range
3.95–5.05 GHz. The experimental spectrum is also com-
pared with numerically calculated eigenfrequencies of the
ideal graphsR=0d having the same bond lengths as the ex-
perimental one. The total “optical” lengths of the microwave
graphs, includingT joints, varied from 171.7 to 262.2 cm,
which allowed for the observation of 156–264 eigenfrequen-
cies in the frequency range 0.0001–16 GHz. To avoid the
degeneracy of eigenvalues the lengthsLi,j of the bonds

FIG. 1. Experimental setup for measurements of the spectra of
the microwave graphs. Microwave synthesizer: HP8672As2
-18.5 GHzd and SMT03 s5 kHz-3 GHzd, D - crystal detector
(HP8472B), C - microwave coupler(Narda 4055).
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(cables) were chosen not to be commensurable. The trans-
mission through theT joints was characterized by the weak
frequency dependence, e.g., in the frequency range
0.05–16 GHz the ratioRS=suSij umax− uSij umind / uSij umaxø0.06,
whereuSij umax anduSij umin are the maximum and the minimum
values of modulus of nondiagonal elements of a three port
scattering matrixSij , respectively. The indicesi , j =1,2,3
and i Þ j . For the frequency range 3.95–5.05 GHz specified
in Fig. 2(a) the ratio fulfilled the conditionRSø0.02.

For more comprehensive comparison of the experimental
and numerical results the experimental spectrum shown in
Fig. 2(a) is compared in Fig. 2(b) with the response function
rskd calculated for the graph having the same bond lengths as
the experimental one. The response functionrskd was intro-
duced in this paper in order to analyze the directional graphs
consisting of Faraday isolators and is defined by Eq.(19). In
the calculations of the response functionrskd absorption of
microwave cables were taken into account by replacing the
real wave vectork by the complex vectork+ ibÎk [35]. The
absorption coefficientb=0.009m−1/2 was evaluated on the
basis of absorption of the microwave cables used in the ex-
periment. The direct comparison of the results presented in
Figs. 2(a) and 2(b) requires some care because the response
function rskd is rather proportional to the amplitude of the
field transmitted through the graph than to the amplitude
reflected from the graph that is represented by the scattering
matrix uSu. However, the aim of this comparison is to show
that the inclusion of absorption of microwave cables leads to
comparable with the experimental results broadening of reso-
nances. It is also important to note that calculated in such a
way eigenfrequencies are very close to the ones calculated
for the ideal graph, from which they differ at most by
1 MHz. Figures 2(a) and 2(b) show that the agreement be-

tween experimental and theoretical results is quite good(the
relative errors are of the order of 10−3), which justifies a
posteriori our assumption that the microwave circuits can be
described with good accuracy by the quantum graphs with
Neumann boundary conditions. In this way our experimental
results additionally support theoretical findings about the
boundary conditions for shrinking domains[37,38]. Our re-
sults also show that relatively short microwave graphs con-
sisting of coaxial cables, at least as it concerns the eigenval-
ues’ positions, can be approximately treated as ideal lossless
graphs with the resistanceR=0. The last statement is not
very surprising. A similar situation one can find in the ex-
periments with microwave cavities[22]. A thorough discus-
sion on influence of absorption of energy caused by the finite
conductivity of the cavity walls on reflection from the cavity
power was given by Doronet al. [29]. They showed(see also
Ref. [30]) that small absorption of energy is necessary for
revealing cavity’s resonances as dips in the reflected power.

We have examined statistical properties of spectra of the
microwave graphs such as the integrated nearest neighbor
spacing (INNS) distribution Issd and the spectral rigidity
D3sLd. (for their definitions see, eg., Refs.[39,40]). Figure 3
presents the INNS distributions. The solid line represents
predictions of random matrix theory obtained for Gaussian
orthogonal ensemble(GOE), applicable for systems with a
time-reversal symmetry. The dashed line denotes results
characteristic of Gaussian unitary ensemble(GUE), used if
the time-reversal symmetry is broken[39]. Experimental
curve(open triangles) was obtained by averaging over the set
of ten microwave graphs obtained by varying the length of
one bond, which provided us with a total of 2220 experimen-
tally measured eigenfrequencies. Numerical curve(open
circles) shows results averaged for ten quantum graphs hav-
ing the same bond lengths as the experimental ones. Eigen-
frequencies were calculated by solving numerically the secu-
lar equations for quantum graphs[Eqs.(6)-(8) in Ref. [12]].
This procedure allowed us to identify a total of 2344 eigen-

FIG. 2. (a) A fragment of a measured modulus of scattering
matrix uSu of the microwave graph of the “optical” length 223.6 cm
in the frequency range 3.95–5.05 GHz(b) The response function
rskd calculated for the graph having the same bond lengths as the
experimental one. In the calculations of the response functionrskd
absorption of the microwave field by coaxial cables were taken into
account(see text). Vertical broken lines show the positions of nu-
merically calculated eigenfrequencies of the graph without
absorption.

FIG. 3. Integrated nearest neighbor spacing(INNS) distribution
Issd averaged for ten microwave graphs. Results of the experiment
(open triangles) are compared with the numerical results(open
circles) and theoretical prediction for GOE(solid line) and GUE
(dashed line).
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frequencies, slightly more than measured experimentally.
Figure 3 shows that in both cases the INNS distributions are
in a very good agreement with the GOE predictions.

Figure 4 demonstrates the spectral rigidityD3sLd obtained
for the microwave graph of the “optical” length 223.6 cm.
Experimental curve(open triangles) was based on 229 iden-
tified eigenfrequencies, while the numerical data(open
circles) were computed out of 237 eigenfrequencies. In both
cases the frequency range was 0.0001–16 GHz. Deviations
of the experimental and numerical rigidity from the GOE
predictions (solid line) are visible. For comparison the
dashed line in Fig. 4 shows the RMT prediction for GUE.
Our experimental and numerical results are lying above the
GOE prediction forL between 2.5–5. For higher value ofL a
saturation of the numerical value of the spectral rigidity is
observed in agreement with the predictions of Berry[42].
The experimental rigidity forL.10 is located below the
GOE curve and above the numerical results. The departure of
the experimental rigidity from the numerical one can be
probably attributed to the loss of about 3 % of experimental
eigenfrequencies.

The measurements of the spectra of the graphs enabled us
also to calculate the lengths of periodic orbits in the graph.
They were computed from the Fourier transform

Fsld =E
0

kmax

r̃skdvskde−ikldk, s10d

wherer̃ is the oscillating part of the level density andvskd
=sin2spk/kmaxd is a window function that suppresses the
Gibbs overshoot phenomenonf28,41g. Here kmax is the
maximal value of the wave number within the interval
where the eigenvalues of the graph were evaluated. In
order to extract the oscillating part of the level densityr̃
we determined the density of states according torskd
=o jdsk−kjd and subtracted from it the mean densityr̄skd
=dN̄skd /dk. The meanN̄skd of the staircase function, i.e.,
the number of resonances up to the wave numberk, was

obtained from a least squares fitN̄skd=a1k+a2 of the mea-
sured staircaseNskd. The slope parameter, obtained from
the experimental data,a1=0.707±0.006, isvery close to
the valuea=0.712,received from the Weyl formula given
by Eq. s7d in Ref. f11g.

The absolute square of the Fourier transform of the fluc-
tuating part of the density of resonancesuFsldu2 for the graph
of the “optical” length 223.6 cm is shown in Fig. 5. The
lengths of the bonds of this graph fulfill the following rela-
tions:a,b,c,d,e, f. Results obtained from the experi-
mental spectrum(solid line) are compared to the results ob-
tained from numerical calculations(dotted line). The
experimental spectrum included 149 identified eigenfrequen-
cies while the numerical one included 150 eigenfrequencies.
In both cases the frequency range was 0.2–10.2 GHz. We
used the narrower frequency range than in the calculations of
the INNS distributions andD3sLd to be sure that at most only
one eigenfrequency was missing in the experimental spec-
trum. The absolute square of the Fourier transformuFsldu2
shows pronounced peaks near the lengths of certain periodic
orbits. The agreement between the experimental and the nu-
merical results is good, however, some discrepancies for
shorter periodic orbits are visible. In Fig. 5 we show all
irreducible periodic orbits[12], i.e., periodic orbits which do
not intersect themselves, with the lengthsl ,165 cm. For
clarity, in Fig. 5 we additionally show the first repetition of
the periodic orbit 2b at l =2b+2b=105.2 cm and two reduc-
ible periodic orbitsabc+2c andbde+2a at l =149.3 cm and
l =154.7 cm, respectively. It should be noticed that many
peaks forl .70 cm cover several unresolved periodic orbits.
In order to check whether the missed resonance was respon-
sible for discrepancies in the lengths of periodic orbits we
artificially added this resonance to the spectrum of the graph
and recalculated the lengths of periodic orbits(results are not

FIG. 4. Spectral rigidityD3sLd for the microwave graph of the
“optical” length 223.6 cm. Results of the experiment(open tri-
angles) are compared with the numerical results(open circles) and
theoretical prediction for GOE(solid line) and GUE(dashed line).

FIG. 5. Absolute square of the Fourier transform of the fluctu-
ating part of the density of resonances of the graph of the “optical”
length 223.6 cm. Results of the experiment(solid line) are com-
pared with the numerical results(dotted line). The assignment of
peaks ofuFsldu2 to simple periodic orbits(see text) is shown along
with the length of the orbits. The “optical” lengths of the bonds of
the graph: a=21.0 cm, b=26.3 cm, c=34.0 cm, d=39.6 cm, e
=46.8 cm,f =55.9 cm.
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shown). Indeed, the inclusion of the missed level improved
the agreement with the numerical results. The main change
was visible in the “experimental” amplitudes that became
closer to the numerical ones. For example the amplitudes of
the most sensitive orbits 2a and 2b (see Fig. 5) were de-
creased from 1.5 to 1.0 and from 1.4 to 1.1, respectively. The
positions of the periodic orbits were not as sensitive as am-
plitudes. For example in the case of the orbit 2a the length
was changed from,=42.0 cm to,=41.4 cm becoming more
distant from the numerical result,=42.0 cm. In a different
way behaved the orbit 2b whose length was modified from
,=51.5 cm to,=52.5 cm becoming closer to the numerical
result,=52.6 cm.

In this paper we also present experimental study of mi-
crowave graphs consisting of coaxial cables and Faraday iso-
lators. The graphs with Faraday isolators are examples of
simple experimental realization of directional graphs for
which the time reversal symmetry is broken. A microwave
Faraday isolator is a passive device, which transmits the
wave moving in one direction while absorbing the wave
moving in the opposite direction. Due to absorption the in-
troduction of Faraday isolators transforms the problem from
the bound system to an open system. In the experiment
AerCom 60583 Faraday isolators(insertion loss,0.4 dB,
isolation .19 dB, length=5.7 cm) with the operating fre-
quency range 3.5–7.5 GHz were used. We measured the
spectra of four graphs consisting of one of their bonds’ one
Faraday isolator or two Faraday isolators connected in series.
The limitations imposed by the narrow range of isolators
operating frequency lead to rather poor eigenfrequency
statistics—between 34 and 39 eigenfrequencies were ob-
served for the graphs with Faraday isolators. Therefore, for
each of four graphs we performed three measurements
where: the isolator was mounted in the bondb of the graph,
the isolator was mounted in the bondd, and two isolators
connected in series were mounted in the bondd. The assign-
ment of the letters to the bonds of the graph is shown in
Fig. 1.

The results of these 12 measurements(together 444 eigen-
frequencies) were averaged to obtain the INNS distribution
(solid triangles in Fig. 6). The INNS distribution obtained for
the same frequency range, but without Faraday isolators are
also shown in Fig. 6(open triangles). The examination of the
INNS distribution obtained for the graphs, with and without
Faraday isolators, shows that they are different. In spite of
some deviations, one can see that INNS distribution for the
graphs without the isolators is close to the RMT prediction
for GOE (solid line) in contrast to the INNS distribution for
the graphs with the isolators, which follows more closely the
RMT prediction for GUE(dashed line). This is especially
well seen at small eigenfrequency spacings. Similar devia-
tions of the spectral statistics were reported by experiments
with microwave billiards[25–27]. In the experiment per-
formed by Soet al. [25] the transition from GOE to GUE
statistics was caused by a piece of magnetized ferrite placed
inside a two-dimensional microwave cavity while in the ex-
periment performed in Marburg[26,27] the deviation from
GOE statistics was induced by Faraday isolator connected to
a microwave cavity.

The directed graphs can be also modeled theoretically.
The crucial element of the graph—the Faraday isolator in a

directed bond—can be described by means of a filter factor
which damps the wave moving in one direction. In the nu-
merical analysis of the directed graphs we have assumed that
by measuring the reflection spectra of the graphs we are
rather probing the graphs as closed systems by some cou-
pling, which is weak enough, not to influence the internal
dynamics of the systems.

We introduce the connectivity matrixD of a directed
graph, which does not need to be symmetric. With any di-
rected graphG one may associate a bidirectional graphG
with the same number of vertices. Its connectivity matrixC
is symmetric,

Cij = maxsDij ,Djid. s11d

The numberB of bonds in the graphG is equal to B
= 1

2oi jCij . To be able to filter some waves propagating in one
direction while preserving those moving in the opposite di-
rection we will use a bond scattering technique of analyzing
spectra of graphs, similar to this introduced by Kottos and
Smilanskyf12g. Consider a plain waveC j8nsxd=e−ikx coming
from the vertex j8 to the vertexn. It is scattered into all
bonds going out from the vertexn, for which CnjÞ0,

Fnjsxd = d j j 8e
−ikx + s j j 8

sndeikx. s12d

The vertex scattering matrixs
j j 8
snd is completely determined, if

we assume Neumann boundary conditionss9d, which imply

s j j 8
snd = Cj8nCnjs− d j j 8 + 2/vnd. s13d

Here vn denotes the number of bonds meeting at thenth
vertex, also called thevalencyof the vertex. Elements of
s

j j 8
snd for all vertex n combine to the entire bond transition

matrix of the graphG

FIG. 6. Integrated nearest neighbor spacing distribution aver-
aged for eight realizations of the microwave graphs with Faraday
isolators(solid triangles) is compared with the averaged results for
the microwave graphs without the isolators(open triangles) and
theoretical prediction for GOE(solid line) and GUE(dashed line).
In both cases experimental results were obtained for the frequency
range 3.5–7.5 GHz.
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Tjl ,nm= dlnCjlCnms jm
sld , s14d

which describe the changes of amplitudes of waves propa-
gating in each bond of the graphsin both directionsd after
one event of scattering on vertices. The matrix dimension is
equal to twice the number of bondsB in the graph. To take
into account the presence of the Faraday isolators we make
use of the connectivity matrixD of the directed graphG, and
introduce a diagonal 2B32B matrix Lskd

L jl ,j8l8skd = d j j 8dll8Djle
ikLjl , s15d

where the phase factor describes the free propagation along
the bonds jl d of lengthLjl . By definition, the elementDjl is
equal to zero for bonds which do not belong to the directed
graphG. The effect of absorption of the microwave field by
microwave cables can be easily taken into account by modi-
fying the matrix L jl ,j8l8skd given by Eq. s15d to the form
d j j 8dll8Djle

sik−bÎkdLjl, whereb is the absorption coefficient.
The total evolution of the vector of wave amplitudes of
length 2B is given by the bond scattering matrix

Sskd = LskdT. s16d

The matrixSskd is subunitary, since it is obtained by putting
to zero some elements of a unitary matrix. We denote the
eigenvalues ofSskd by l jskd, all of l jskd are located insor atd
the unit circle,ul jskduø1. The equation for the eigenmodes
of the quantum graph

det„Sskd − 1… = 0 s17d

may have no real solution. In our experimental setup the
graph is driven by the microwave generator. We are inter-
ested, for which wave vectorsk the resonant driving of the
graph will appear. We analyze the stationary state of the
system, in which an arbitrary numberp of scattering pro-
cesses take place and decompose it in the eigenbasis ofSskd.
The amplitudes of each mode become an infinite superposi-
tion of waves scatteredp times, so the enhancement factor
r jskd of the j th mode reads

r jskd = o
p=0

`

fl jskdgp =
1

1 − l jskd
, s18d

wherel jskd are the eigenvalues of the bond scattering matrix
Sskd. Since each eigenmode may contribute to the resonant
dissipation in the system, we approximate the total response
function of the graph by the average enhancement factorfthe
mean ofr jskdg

rskd =
1

2B
o
j=1

2B

r jskd =
1

2B
o
j=1

2B
1

1 − l jskd
. s19d

Maxima of this function, which occur if one of the eigenval-
ues l jskd is close to unity, identify resonant values of the
wave vectork. We analyzed the functionrskd generated for
parameters of the system as used in the experiment and stud-
ied numerically the statistics of its maxima.

Using this approach we calculated approximated eigenfre-
quencies of 20 directed graphs in the frequency range
0–20 GHz. As in the experimental realization, only one
bond was assumed to be directed. Numerical search for the
eigenfrequencies was performed for two sets of directed
graphs with five different lengths of a directed bondb (see
Fig. 1 for the assignment of the letters to the bonds of the
graph). The other bonds of the graphs were bidirectional and
within the set were kept fixed. The same number of numeri-
cal calculations were also done for two sets of directed
graphs with the varied length of the directed bondd. Figure
7 shows the integrated nearest neighbor spacing distribution
averaged for 20 realizations of the directed graphs in the
frequency range 0–20 GHz. Together 3207 eigenfrequencies
were used in the calculations of the INNS distribution. In this
case we decided not to put the experimental and theoretical
data on one plot, to emphasize that the results are based on
different statistics and cannot be directly compared. How-
ever, it is justified to compare these numerical results ob-
tained for the directed graphs(solid circles) with the numeri-
cal data obtained in the frequency range 0–20 GHz for 20
realizations of standard(bidirectional) graphs (empty
circles). In this case 4641 eigenfrequencies were used in the
calculations of the INNS distribution. Theoretical predictions
for GOE and GUE, denoted by solid and dashed curve, re-
spectively, suggest that the INNS spectral statistics for di-
rected graphs deviate at small spacings from the GOE curve
and become closer to the GUE predictions. This result con-
firms also our experimental findings for the microwave di-
rected graphs.

In summary, we show that quantum graphs with Neumann
boundary conditions can be simulated experimentally by mi-
crowave networks. Bidirectional microwave graphs, i.e., cir-

FIG. 7. Numerically calculated integrated nearest neighbor
spacing(INNS) distributions averaged for 20 realizations of the
directed graphs(solid circles) is compared with the averaged results
for the bidirectional graphs(open circles). Calculations were per-
formed in the frequency range 0–20 GHz. Numerical results for the
INNS distributions are compared with theoretical predictions for
GOE (solid line) and GUE(dashed line).
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cuits without Faraday isolators, simulate quantum graphs
with time reversal symmetry. The results for the directional
microwave graphs with Faraday isolators, for which the time
reversal symmetry is broken, indicate that their certain char-
acteristics such as the integrated nearest neighbor spacing
distribution can significantly differ from the RMT prediction

for GOE, approaching the results characteristic of GUE.
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