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Introduction

Among the most noteworthy advances in the researctheflast century into
thermodynamics, one must indeed include the discovatythis discipline is free of any
basic hypothesis that cannot be experimentally verifielde standpoint that most of the
authors in the last fifty years have taken since tlgatgdiscoveries of R. Mayer, the
measurements of Joule, and the ground-breaking work ofiGsaasd W. Thomson, is
perhaps the following one:

There is a physical quantity, which is not identicalhwthe mechanical quantities
(mass, force, pressure, etc.), whose changes can bemieid by calorimetric
measurements, and which one cakst Heat has the property of being comparable to
ordinary mechanical work under certain circumstanceshdéydnd that, when two bodies
with differing temperatures come into contact it alwflgs/s from the hotter one to the
colder one, and never the converse.
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Now, although no other assumptions on the nature of ¢deatbe made, one can
construct a theory that accounts for all of the tesofl experience. The understanding of
this theory will later be made easier by the introductaf a new notion, whose
importance in all of physics had gradually emerged, thagnafrgy This physical
qguantity has the property of depending only upon the insteotes state of the various
substances considered, which is not true of heat.

The first main theorem of heat theory amountsdefanition of energynd states that
this quantity can be determined in any concrete case hathhé¢lp of mechanical and
calorimetric measurements.

However, various authors have already remarked thapthnt of view contains an
over-determinacy:) One can derive the entire theory without assuming the existence of
a physical quantity that deviates from ordinary mechanical quantities, nanesliy,

The purpose of the present work is to show this aslglaarpossible in all of its
details. Naturally, one can develop a physical theoryery different ways. | have
chosen an arrangement of the conclusions that diff@ns the classical proofs as little as
possible and likewise exhibits the parallelism that muskesgarily exist between the
main results of the theory and the picture that ensefigam the measurements that are
actually carried out.

The essential feature of the presentation that isxgmeee consists in the fact that the
notions of “adiabatic” and “adiabatically isolated” dot lead back to that of energy, as
they usually are, but are defined through physical propertizrse can then express the
axiom of the first law in such a way that it corresp®rno the experimental set-up of
Joule precisely when one regards the calorimeter thasad in it as an adiabatically
isolated system.

For the axiom of the second law | have chosen aitlefirthat is very applicable to
that of Planck, but the latter must be modified ineastain way, in order to take into
account the fact that heat and quantity of heat areefoted anywhere in our manner of
representation.

| have thoroughly examined the conditions under whiclhdiabatic change of state
is reversible, or furthermore, a system of sufficieahditions under which this is the
case. | then came to the definition of certain tlwetymamic systems that one can call
“simple,” because they can be treated precisely likestmplest systems that are known
to thermodynamics. This terminology deviates fromadhe that Bryan introduced in his
aforementioned Encyklopadie articlg.

Finally, in order to be able to treat systems withtealily many degrees of freedom
from the outset, instead of the Carnot cycle thaln®st always used, but is intuitive and
easy to control only for systems with two degrees eédom, one must employ a
theorem from the theory of Pfaffian differential etjoias, for which a simple proof is
given in the fourth section.

At the conclusion, | would like to draw attention teetfact that the notion of
temperature is not included in the coordinates from theeuist first appears as a result
of certain equations of condition, which are presente@m 16. The grounds for which

") Encyklopadie der mathem. Wiss. v. 3, Bryan, Thermaaykapp. 81. J. Perrin, Le contenu
essentiel des principes de la thermodynamique. Bulk ded. franc. de philos., t. VI, 1906, pp. 81.
") loc. cit., pp. 80.
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this conception of temperature is to be preferred asdlyphinted at in the final section;
they originate in certain situations that give riseaiative phenomena.

1. Definitions

In the following investigation, we will deal with the deption of the thermal
properties of systems that exist in various chemicadtanbes.

However, the general principles from which this descniptian be attained come to
light in their full generality when we, in order tcake things more concise, specialize the
problem and make the same assumptions as — say — Gibbs tt&l finst part of his
ground-breaking treatise “On the equilibrium of heteregers substances.)

At the end of this work, we will suggest how one can &isat further questions with
these same principles.

With the aforementioned authors, we would also lik@astulate”) that when the
systemSis found in equilibrium a finite number of fluid or gaseous media are present —
the “phases”

o1, @2, ..., Pa

of the system — and that external forces, such as grasgitwell as electromagnetism and
capillarity, are to be neglected.)

The systen®s that we consider will now bdefinedby associating it with certain
“symbols,” the totality of which will completely chari@rize the system.

To that end, we consider any equilibrium pointSoénd direct our attention to its
phases:

o1, @2, ..., Pa

in sequence. We associate each of these plgasesh two types of symbols: First,
certainfeaturesby which the chemical composition gfwill be established qualitatively,
such that the various substances and compounds that apggawill be enumerated.
Second,numbersthat one obtains byneasurements. These numbers represent the
following quantities:

a) The total volum#/; of the phase; .

b) The pressurg that the phase in question exerts on the bodiedt ttattacts.

c) The set:

My , M, ..., Mg

of different substances and compounds that exist in anyainine ofg; .

If the first phase exists as, e.g., a solution of salwater then for our theory a
particular equilibrium point of this phase would be chamartéd completely by the
numbersVi, p1, and a symbolic equation such as:

*

) J. W. Gibbs: Scientific Papers, vol. I, pp. 55.
") Loc. cit., pp. 62.

Hohk

) The consequences of the latter two assumptiongfipear in the second section.

*
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(1) @1 = my1H0O +npy NaCl.

All of the phasesp; will now indeed be uniquely characterized through symbolic
equations such as (1) and the totality of numbers:

i =12«

(2) Vi pi, my x¥=12;-

although, by comparison, the entire syst8mill not, by any means. To that end, we
must consider the properties that come about from the contact between therdifite
phases or the walls of the vessels that contam,thesp.

Therefore, we assume that the mass of these wadls small that our later results
will not be restricted by the fact that we have mzfuded the walls themselves in the
phasesg, . For a general theory in which fixed isotropmdacrystalline bodies can
appear in the phases, these restrictions will gisap

The physical properties of the walls of the vessleat contain one or more phases are
now of a very diverse nature.

Such a vessdl can have the property that, e.g., the phasesatteatfound in its
interior remain in equilibrium and the numbers {8t represent these phases preserve
their values when one alters the bodies that anadan the exterior of the vessel with
only the single restricting condition thEtshall remain at rest and preserve its original
form; a “Thermos bottle” is a tangible example o€ls a vessel. | would, however, like
to expressly emphasize that the wallofloes not need to be rigid, and one may indeed
think in terms of a completely deformable vedSelhat possesses the aforementioned
properties. The changes in the bodies that amdfexternal td” must then be restricted
in such a way that the pressures that they exdrtamnot deform it.

A vessel with these properties imposed on it dhaltalledadiabatic and the phases
that it contains aradiabatically isolated.

If two phasesp, and ¢» meet along a rigid adiabatic wall then, by analegih the
foregoing, no equation of condition will exist be@nVy, p;, My andVa, p2, My, due to
this contact; two arbitrary equilibrium points fdre phases d$ that are found on both
sides of the wall can, in other words, coexist.

For other rigid bodies, however, it can happen tha equilibrium can exist only
when one or more relations of the form:

(3) F(V]_, P1, Mya, V21 P2, m)(z) =0

are fulfiled. One then says that the wall is ‘peable.” A wall can be either permeable
only “to heat” or also for some of the chemical salnces that contact it, as well, or it

exhibits complicated behavior. What each of them@ous expressions means must be
definedprecisely each time orexperimentallyestablishes the equations of conditions in
the form (3) that describe the thermodynamical progs of the wall in question. For a

non-rigid wall, one must add the condition that pnessure on both of its sides must be
the same.
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There likewise exist necessary conditions of thenf¢8) for equilibrium when no
material wall is found between the phagesand ¢, and these phases come into direct
contact.

The exploration of all such conditions, to the extéat they appear in nature, defines
one of the main problems of thermodynamical measuremamtiswe will further focus
our attention on the most important of them.

For the time being, however, it suffices for us towrthat when one (in order to
simplify the notation) denotes the sequence of num@2¢rsollectively by:

(4) C01C11C21---1Cn+A

certainly mutually independent equations:

Fl(CO’ Coi G ) =0,

(5) F(C, v+ Gun )= 0,

F)(C: GG ) =0,

between these numbers must necessarily be satisfieden for equilibrium to exist.

We now make the assumption that we can experimemteirmineall equations of
condition of this type; i.e., that for each combinatidmumbers (4) that satisfy equations
(5) an equilibrium point can be established that cormdgpoto these numbers.
Experience suggests that this assumption will be satisfieach concrete case.

Definition I. Two systems S and $hall be called “equivalent” when there exists a
one-to-one correspondence between their phases, in the sense of eglptiand
moreover when the corresponding coefficients ¢ must be subject to the same or
mathematically equivalent conditio(s) in order for equilibrium to be possible.

In the sequel, equivalent systems shall not be digshgd. The “symbols” that
defineour systent are thus, on the one hand, symbolic equations likea(id, on the
other, the system of equations (5).

We now add to system (5) ¢ 1) equations of the form:

G(e G Gii)= %,

(6) GG G 1 Gia )= %,
Gi(G G G )= X

The functionsG; shall be chosen in such a way that when one vénes; in them

between the bounds imposed in practice, and likewise csdide conditions (5) then a
one-to-onecorrespondence exists between the possible systemkie$ var:

CO1C11 ---1Cn+/1
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and the corresponding one for:
X0, X1, ooy Xn .

Therefore, it is necessary (but not sufficient) thatfunctional determinant:

06, G, G R Ry R)
0(C, G5 G )

for all of the values o€; that come into consideration be different fromozey Thus,
one can solve the system of equations (5), (6}Herc; here, and consider tleeto be
functions:

(7) Ci = Ci(Xo, X1 ---, Xn),

that satisfy the system of equations identicallgwkhey are substituted.
Through a one-to-one correspondence between theusapossible equilibrium
points ofSand the system of values of the sequence of nianber

(8) X0, X1 5 +eey Xn s

we have achieved the means to compare these emuniilpoints with each other and to
represent them by “general coordinates” that asdogious to the ones that are used in
mechanics.

Any system of numbers (8) corresponds, as one tags‘state” of the systef§ and
for the numbersx, themselves we would like to introduce the name “sfate
coordinates.”

In order to use the language of geometry in thleviang, it is convenient to regard
the state coordinates as Cartesian coordinates-f)dimensional space; each stat&of
then corresponds to one point of this multidimenalospace, and the totality of the
equilibrium points that come into considerationhien mapped onto a certain reg@of
this space.

One then has the following theorem that summatizesbove:

Definition II: In order to characterize the equilibrium points afsystem, the state
coordinates(8) come into consideration exclusively, and two edaiMasystems for
which these quantities agree shall be identicaleoty from the thermodynamical
standpoint.

We now consider “changes of state” of the systenss, transitions of one
equilibrium point into another. Changes of statiélve characterized by certain symbols
precisely as the equilibrium points are.

The coordinates of the initial state and finaltestare to be regarded in this way.
Furthermore, another quantity comes into considerathat is associated with each

") The non-vanishing of the functional determinant has thdyone consequence, namely, that there
is a one-to-one correspondence betweamdx “in the small;” i.e., it exists in the neighborhooflamy
individual point However, this does not state thatthighborhood ox is not multiply covered.
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change of state, and which one callse¢kternal work this quantity, which we denote by
A, shall originate in the systems that are considereck hexclusively from the
deformations of thexternalform of S ) They shall be identical with the mechanical
work that any force delivers when it is exerted by anyidsothat lie on the exterior d®
(but contact the system) during the change of statadsyesl. The physical meaning of
these forces is clear, and one can also mea&uaé any time by means of certain
mechanical devices, such as one employs in technologgdtimg steam and gas motors.

Finally, however, we associate the change of stite avspecial feature. Namely,
when the systerA is adiabatically isolated during the entire time mé&trof a change of
state one calls that change of state itadifibatic the adiabatic changes of state shall
define a particular class.

We thus arrive at the following definition:

Definition 1ll: Each change of state will be characterized by the coordinates of the
initial state and the final state, the external force that is appbethém, and the given of
whether they are adiabatic or not.

2. Axioms

Certainaxiomsare valid for the notions that were described in tinegoing sections,
i.e., generalizations of the facts of experience thadt be observed under certain
particularly simple circumstances. Thermodynamicswsitwo mutually independent
axioms of this type:

The first one defines the foundations of the so-dafliest law” of heat theory, and is
nothing but an expression for the general energy prinéipléhe system considered by
us.

We would like to give it the following statement:

Any phaseg, of a system S is, in equilibrium, associated with a functoof the
guantities(2):

\/i! pi ’ m)(' !
which is proportional to the total volume of this phase and is callethtemal energy of
this phase.
The sum:

E=&+o&+ . T &,

when taken over the totality of the phases, is called the inten@ayy of the system.
Under any adiabatic change of state, the external work done A by the chmange i
energy is equal to zero; hence, in symbols, when one denotes theamdtishal energy
by e andg :
9) g-+A=0.

") This follows from the fact that we neglect the distarces.
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The formulation of the first law that was given justw includes the assumptions that
were made at the beginning of this work, that neitheéaxisot capillary forces shall be
considered. Namely, had, e.g., capillary forces beendanes then one would have to
say that the sum over the various volume energielseoplhases no longer represents the
total energys of S and that one must add certain terms to this sumatisd from the
separating surface between the phases. Moreovestdint forces between the phases
were noteworthy then new terms would likewise entethat arise from the interaction
between the phases, not from one phase alone, and Wweulependent upon several of
them.

The second law that now comes into question is obraptetely different nature:
Namely, one has found that under all adiabatic changstt& that start from any given
initial state certain final states are not attainable that such “unattainable” final states
can be found in any neighborhood of the initial state.

However, since physical measurements cannot be algoprecise this fact of
experience includes more than the mathematical conteéhe @aforementioned law, and
we must demand that when a point is excluded, the sanleadmbe true of a small
region around this point whose size depends upon the pre@s$ithe measurement.
However, in order for us to give this precision no weighs convenient to give the
axiom in question a somewhat more general form, and indeéé following way:

Axiom Il: In any arbitrary neighborhood of an arbitrarily given initial point there is
a state that cannot be arbitrarily approximated by adiabatic changes of state.

3. Simple systems

The problem of the further examination, with the hdiphe two main axioms, now
consists in explaining the possibility of the experitaémletermination of the internal
energy of each of the physical systems examined, ikedise finding out the general
properties of the energy functien

We will see that these problems are relatively easydlve for certain special
systems, which we would like to call “simple systemblow consider a given phage,
whose internal energy one would like to describe as dsmgra component of one such
simple system, and if one knows, from prior examinatitwe internal energy of the
remaining phases then one has all of the data that @aks;neom axiom I, one then has
the equation:

=& &E—&— ... & .

The problem of constructing the “simple” system thatresponds to a given phase in
each case that occurs in practice is one of the mgsiriant ones, but also one of the
hardest, of thermodynamic measurement; the physicaniste call it “making a
reversible process.” For our general investigation, hewatis problem itself does not
enter into the considerations; it suffices for us tevkrthat it is to be dealt with in
general.

The properties that characterize “simple systems’oéa diverse nature.
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First, all of the state coordinates $fexcept for oneshall depend upon only the
external form of the system. We would like to callstneoordinates that establish the
external formdeformation coordinatesypon consideration of eq. (5), they must include
only the quantitie¥s , Vo, ...,V,.

This is found to be the case, for example, when theByexists in a single phase in
which all of the state quantities except for the prespuamd the total volumé&/ are
constant, or also whe®exists in two such phases that are separated by a rifithatas
permeable “only for heat.” Then in this case the extdoran of S depends upon two
guantities, namely, the total volumésandV- of its two components, and the system has
two deformation coordinates, whereas between the fountijga Vi, p1, Vo, p2 that come
into consideration here, one relation:

F(Vl, P1, Vo, pz) =0

must exist due to the permeability of the wall (cf. 8 6) hstlatS ultimately possesses
only three state coordinates.

From this first property of simple systems it follottat when one knows the initial
point of an adiabatic change of state, from the fioah of the system and the external
work done during the change of state, the final statehefsimple systen$ can be
calculated with the help of equation (9):

(9) E-c+A=0

(assuming that the energyis also known as a function of the state coordinaed, as
we likewise will see, is still not determined from fbem of the system).

A second assumption that shall be valid for simpitesys is that the external work
that is done during an adiabatic change of state shiabenuniquely determined in terms
of the initial and final states alone. On the contradiabatic changes of state shall be
possible that lead from a given initial state to thmesgrescribed final state and which
correspond to different amounts of work done. When, a.gas is found in an adiabatic
cylinder that is closed off by a moving piston then thekabat is done by the piston
under a prescribed expansion of the gas varies withaloeity by which one withdraws
the piston.

This assumption has the consequence, when one considet®red9y that the
energye, when regarded as a function of the coordingtesicludes that coordinate that
does not depend upon the external forns.olLetxy be this coordinate, and, by contrast,
let X1, X2, ., ..., %, be the coordinates of the deformation of the system.

We would now like to consider the various valuesAahat are possible when the
system goes from a prescribed initial state to a ptestriinal state. One can interpret
the totality of all these values as a point set omex | As a third property of simple
systems, we would like to assume that in each possdde this point set is always
connected In other words, it shall fill out a single intervkt usually can be extended
to infinity in both directions.

From this last property, it follows, with the help eduation (9), that the possible
values forxy under the same circumstances also define a connectedsptirat least
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when the domain of variation of the state coordinategesricted to a certain
neighborhood of the initial point.

Leaving from a given initial point, one can obviously aciualirive at any possible
final form under the influence of particular externakcts. However, one can do more:
Namely, the change of form of the syst&that takes place during an adiabatic change
of state is a prescribed function of time. In otherdg: one can prescrilmefunctions

(10) X1(t), X2(t), ..., Xn(t)

and demand that the change of state that goes throughisref a sort that the timelike
variation of the coordinates, X, ..., X, will be represented by the sequence (10). This
new description of a change of state, under which onlywén@tion ofx, is left out of
consideration, is much more comprehensive than thehateve considered earlier; we
would like to leave open the question of how an adialzdiasge of state can be found
that makes the magnitude of the corresponding external Avarkiquely determined by
the initial state and the functions (10) alone. Ondbwetrary, when the velocity with
which the system is deformed becomes “infinitely sloar,” more precisely, when the
derivatives:

%1 (1), % (1), X, (1)

converge uniformly to null, the work shall go to a definite value in the limit. We would
like to call a change of state that takes place solgltvat the difference between the
applied external work and this limiting value falls behetite observed limit guasi-
staticchange of state.

If, under a quasi-static change of state, the extevodt is known as a function of
time then one can, with the help of the equation:

& Xo, Xa(t), X(t), ..., %()} — & +A(t) = 0,

in which & means the initial value of the energy, then one tmragard the remaining

coordinatexy as also being a definite function bf A quasi-static, adiabatic change of
state can thus be interpreted aseguence of equilibrium pointand each quasi-static,

adiabatic change of state corresponds to a certame authe space of .

Finally, we would like to make one last assumptionder any quasi-static change of
state one shall be able to measure the external Avaskif the forces that bring about this
work were the same as the ones that are necessamiitain equilibrium when, in the
foregoing, one regards the change of state as a sequieagaildrium points. These
latter forces are, however, functions of only thaest.

Therefore, the expression fAmmust necessarily have the form:

(11) A(t) = j: DA,

in which DA represents a Pfaffian expression:

(12) DA=pidxg +padxe + ... +pn dX,
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and thepy, ..., pn mean functions of the, xi, ..., X.

The functionsp;, can be determined experimentally when, for each staf® one
measures the forces that must act on the systemth@mutside in order for equilibrium
to exist. As long one is dealing with quasi-static aati@bchanges of state, one can now
give equation (9) of the first law the form:

(13 J1de+DA=0,

and since this relation must be valid for eathe conclusion follows that absolutely no
curve in the if+1)-dimensional space of tikefor which the Pfaffian equation:

(14) de+ DA =0

is satisfied can represent a quasi-static, ad@abhtinge of state.

Conversely, however, any curve in time1)-dimensional space of thethat satisfies
equation (14) can be regarded as the trace of si-gtaic, adiabatic change of state in
our simple system.

In fact, let such a curve segment be given inmatac representation through the
equations:

(15) {x° = %0, %= %(@), 0 % = X 0),

O<r<l1.
If one now sets:
T=At,

in whicht means time and, a parameter, then one can introduce adiabatiogelsaof
state that satisfy the equations:

X1 =X1(At), X2 =Xo(A1), ..., X = Xu(AL),

for each prescribed value af For a sufficiently small, a change of state of this sort is
now quasi-static and must ultimately satisfy equra(il4). By integrating this equation,
however, one finds that:
Xo = X1(At),
which proves our assertion.
Had we now substituted:
t=1-At

in equation (15), then for increasib@nd sufficiently smalll, precisely the same curve
would have been traversed, but in the oppositeesens

Quasi-static, adiabatic changes of state of a sengyistem are “reversible.”

In the usual representation of the theory, on®dhtces “reversible” changes of state
as something that is given intuitively; howeverantone looks closer, the properties that
one associates with reversible processes are ehedise ones that we based our
definition of simple systems upon. We summarize éis follows:
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Definition. A “simple” system with thgn+1) state coordinates must satisfy the
following conditions:

1. nof its coordinates- e.g.xi, X, ..., % — are deformation coordinates.

2. The external work A is not uniquely determined by the initia¢ statl final state
of S under adiabatic changes of state. The totality of all these posainds vor A under
these assumptions defines a connected set of numbers.

3. Under “quasi-static” adiabatic changes of state the external work is eguah
integral of a definite Pfaffian expression of the form:

DA:pldX1+p2dX2+ oo TPn dx, .

Ordinarily, one assumes that the first assumptiontte number of deformation
coordinates entails the other two. The exampleswiagave on page 8 would then be
simple systems. This assumption, which we will alwayske from now on, is
permissible for the substances that one examines inajeaed especially for gases and
fluids; after learning the consequences that we shalldemuce, it then agrees quite well
with the results of measurement.

On the other hand, it is quite conceivable, and also iqgdliys conceivable, that
substances can be present in nature that one can m®ad as the components of
simple systems. This would be the case, e.g., wieemtérnal friction of the substance
in question, which is generally a function of the defation velocity, does not converge
to zero under quasi-static changes of state. The fdraeptoduce the external wokk
would then no longer be comparable to the equilibriurogeythe external forok itself
could not be represented with the help of a Pfaffianesgon such as (12), and the
guasi-static changes of state would ultimately not berstble. Our theory, with nothing
further, does not allow itself to carry over to thetsof systems that usually must
likewise be the case in classical thermodynamics.

The application of the axioms of the two laws to gus#aiic, adiabatic changes of
state in simple systems will now allow us to normalthe state coordinates of these
systems in a characteristic way; for this, however,nged a mathematical theorem on
Pfaffian equations, which we would now like to derive.

4. Lemma from the theory of Pfaffian equations.
If a Pfaffian equation:
(16) dxo + Xpdxg + Xodxe + ... +XpdX, =0

is given, in which the pare finite, continuous, differentiable functions of theand one
knows that in any neighborhood of an arbitrary point P of the spacetioére is a point
that one cannot reach along a curve that satisfies this equation then thesexp(&6)
must necessarily possess a multiplier that makes it into a centjifitrential.

Let:

d,d, ...,an
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be the coordinates d¢. There are then, by assumption, infinitely many poltthat
have the poinP for an accumulation point and possess the propertynthaingle curve
exists that satisfies the differential equation (16) inaudes bothP and theP; .

However, since the coefficient dk, does not vanish, one can always find cui@es
that satisfy equation (16), includ®, and lie in the two-dimensional plane that connects
Pi with the lineG:

X=t, Xq=a k=1,2,...n),

in the event thaP; does not itself already lie on this line. L&t be the point of
intersection ofC; with G; by their construction, the point3 must converge t® for

increasingi. The pointsQ; can also be reached by curves that staR and satisfy
equation (16), since one would then, by the addition efdirveC; , also reaclP, ,

contrary to the assumption. From this, it followattin any interval on the lin& that

includesP there must be points that cannot be reached by stéximg.

One now considers a lir®;, which is parallel tdG, but otherwise arbitrary, and an
arbitrary two-dimensional cylinder that conne@sto G. LetM be the point where any
curve that satisfies equation (16), lies on this cylinded, included, intersects the line
G:1 . Under an arbitrary variation of the cylinder thenpd must remain fixed; in the
opposite case, any curve of the differential equation {{i#) lies on the varied cylinder
that goes through can include an arbitrary point in the neighborhooB oh the lineG.

In this way, we can thus reach certain po@tslong curves of the differential equation
(16) that go fronP to M, which was excluded.

If one now continuously varies the position of the liGggthenM would describe an
n-dimensional surface, and all of the curves of theerbffitial equation (16) that go
throughP must lie on this surface. The poiAtwas, however, chosen arbitrarily; by
varying its position one thus obtains a family of sugfac

F(xo, X1, ..., %) =C

that depends upon the paramefzand on whichall of the curves of the differential
equation (16) must lie. The coefficients of thein the two equations:

dxo+ Xsdxg + Xodx + ... + +X,dx, =0,

are thus proportional to each other, and one has thei@guat

dF =S {dy + X, dg+ X, dget X dX
%,
(17 oF oF
— %0, — #Z 0,
% %

from which, our theorem is proved.
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5. Normalization of the coordinates of a smple system

Let Sbe a simple system, which may depend on the coordinates:

(18) o, X1, X2, oouy Xn

in which the last quantities in the sequence (18) represent deformation catedj and
the external work for quasi-static changes of statpragluced by an integral of the
expression:

DA:pldX1+p2dX2+ oo TPn dx,.

The adiabatic, quasi-static changes of state obyséem can be represented by the
curves of the Pfaffian equation:

de+ DA:S_ngO+ X dx+ X dx+---+ X dx=0,

0
(29) oe
=—+D.

| a)g

If one could reach each point of a certain neighbod of this initial location along
curves of the differential equation (19) that stestn a give initial point then one could
also, from our assumptions on the simple systepy,oximate any arbitrary final state
by adiabatic changes of state. From our axiorhdilyever, the latter shall be impossible.
On the other hand, due to the properties of sirmpdtemsge/ 0& is not identically null;
one could then, when one omits certain singulacgdadivide the expression (16) &/
0& and arrive at precisely the same conclusions #seiforegoing section.

The expression (19) thus possesses a multipkgrigmeither null nor infinite. If one
denotes it by M then one ultimately has:

(20) de+ DA=Mdx,

in which xo means a certain function of the variables (18pwelVer, one now has, by
comparing (19) and (20):

o
9% _ 04 .
05, M’

hence, from the above, it is different from zef@ne can therefore solve the equation:

Xo =Xo(&o, X1, +.., Xn)

for &, and introduce as the i§+1)™ coordinate of our system in placedf along with
then deformation coordinates.
If we do this then the expression:
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(21) DA:pldX1+p2dX2+...+pndX1

for the external work takes on its original form, hesa it does not include the
differential d& ; now, however, th@; are functions of the new variablgs, x, ..., X, .
Likewise, the functionM in (20) must be regarded as dependent upon these same
variables.

The curves that correspond to adiabatic, quasi-stadinges of state in our system
now satisfy the equation:
(22) Xo = const.

Conversely, any curve in the space ofthehat leaves, constant can be regarded as the
trace of a change of state of that sort; namely, teqqué2?2) is equivalent to (19), and we
have seen in the third section that curves that sat$yequation possess the desired
property.

One now remarks that equation (20) is an identity, andefreplaces the expression
(21) for DA in this equation then one finally obtains the relations:

o€
23 M dx = de + DA = —dx,,
(23) X0 ox, %
_ o0& .
(24) pi=— i=1 2, ..n
0x

A coordinate system that possesses all of the preparited in (21), (23), (24) shall,
in the following, be called a “normalized” coordinateteys. Therefore, it must be
remarked that these properties all remain valid whenreplacesx, with an arbitrary
function f(xp) of these quantities, which usually follows directly frahe theory of
multipliers for a Pfaffian expression.

In thermodynamics one can distinguish a certain nazethlcoordinate system
among all of the possible ones that is uniquely determindd \aith the help of the
physical properties of rigid bodies, will be defined only feat-permeable walls; this
shall be our next problem.

6. Conditionsfor thermal equilibrium
Let two simple systents; and$; be given with the normalized coordinates:

)©1Xl1 ---1Xn1
Yo,Y1, -+cy¥Yn.

These systems shall be separated by a fixed wall thatnseable only by heat. Such
a wall will be defined by the following properties:

1. The deformation coordinates of the two systems in ipmestan be varied
independently of each other after the introduction afugtng.
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2. After any arbitrary change of form of the total eyst when it is adiabatically
isolated, equilibrium is reached after a finite time.

3. The total syster is then only found, but also always therefore in elpilim,
when a certain relation between the coordingteg of the form:

(25) FXo, %, --»X% Yo, Y1, .-, Ym) =0
is satisfied.

4. Whenever any two systeris and S, are in equilibrium with a third systef
under analogous conditions, there likewise exists equifibbetweers, andS; .

This latter condition therefore means the same thsgaying that for the three
equations:

F(XO’XU"")%; Yor Moo s yn): 0,
(26) G, X2 %5 %y 2oy )= 0,
H(Yor Yo s Y %0 %075 2)= 0,

which, analogous to (25), bring about equilibrium betwgeandS,, S andSs, S and
S, each of them is a consequence of the other two.

This is, however possible only when the system of egoust{26) is equivalent to a
system of the form:

PXo Xy X)) = 0o Vi, o Ym) = N0, 20 -0 2

In particular, the condition (25) can then be replametvo equations of the form:

P, X, %) =T,

(27)
I(Yor Yo+ Y ) =T
in which 7 means a new variable.
One calls this quantity thetemperatureand equations (27) trequations of statef
the system&, andS; .

On the other hand, the system (27) is, however, egumitd a system of the form:

WMo=n, Wd=rmn,

where W means an arbitrary function. The functions (27) asreflore not uniquely
determined; one expresses this indeterminacy by sayihgh#hdtemperature scale” can
be chosen arbitrarily.

From our assumptions, one further deduces that atdaasif the quantitiego/ 9xo ,
0o/ dyp is not identically null. Namely, if these two quaiett were null the and o
would depend only upoxy , X1 , ..., %n; Yo, Y1, ..., Ym. HOwever, they are nothing but
deformation coordinates that one can vary independentiadct other; one would thus
be able to reach states for which it would be impossibl satisfy the equation (25),
which contradicts our two assumptions on thermal eqiuihor
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One of these quantities — e.@a/ 0%, — is therefore different from zero, and one can,
at points in general position, express as a function of the remaininghm+1)
coordinates with the help of the equation:

p=0.

The systent can thus be considered to be a system witlin¢1) degrees of freedom
that possessestm) deformation coordinates. From our assumption on pagd i
therefore a simple system to which our prior resultsb=applied.

7. Absolutetemperature

The assumption that is appropriate to the foregoingosects that the energgyof our
total systemS is equal to the sum of the energigsand & of its two components.
Likewise, the external worlA that is done ors during an arbitrary change of state is
equal to the sum of the quantitidgs and A, that are associated with the two syst&ns
and $. However, these latter systems were simple andr tt@ordinates were
normalized. Therefore, one can write:

ds + DAL =M(X0, X1, ..., %) dXo,
ds; + DA2 =N(Xo, X1, ..., %) OX.

By adding these equations one obtains:
(28) de+DA=Mdx+Ndy.

However, the systel@is also a simple system, as we have proved. Thetaipon
consideration of (27) the expression on the right-hadd sf (28) must possess a
multiplier.

We would now like to assume that in nature at leastsystem exists whose equation
of state includes one more deformation coordinates.pefience teaches that this
assumption is satisfied for, e.g., gases. If we nbwaose such a system f&¢ then it
follows that the functiom includes at least one of the quantities ..., x, — say,x; . We
can then regard the quantiy/in (28) as a function of:

X0, [, X0y ooy Xn .
For the equation of state:

oYo,Y1, .-, ¥Ym) = T,

we now focus our attention upon all of the possibilities.
1. In the case wherg depends upon no single one of the quantitiesy: , ..., Ym,
the 7in M must be replaced with a particular value. In thetithethat now exists:

(29) du=A[M dxo + N dy]
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the functionu must depend upon onkg andyy, such thatdiM and AN also depend upon
only these two variables. Now, since thelo not appear iiM, A cannot include any of
the deformation coordinates 8f ; however, they do not enter indd/, either. It follows
thatN is also free from these quantities and depends upowjust

2. In the case where depends upon only the one state coordigateone would
replace the quantity in M with a function ofy,, and in the same way deduce the
conclusion thaN also includes onlyy here.

The fact that neither of these two cases occurtureas in no way a contradiction to
our assumptions about simple systems.

3. Finally, we consider the case in which at least @efermation coordinate also
enters intoo. Let it be — say y1; we can now regard this latter quantity, and as atresul
also the quantitii, as functions of:

Yo, T, Y2,Y3, ..., Ym.

In (29),AM andAN are also now functions of onkg andy, . Now, sinceM, as well
asAM, do not include the coordinatgs, ys, ..., Ym , the same is true fot. It follows
thatN is also independent of these quantities since otheAMsgould also include these
guantities.

From the analogous considerations for xthe one finally derives the result that
depends upon at most, y, 7, while M depends upon onkg andz, andN depends upon
onlyyo andr .

Now, sincedM andAN are also independent of one thus has:

Mﬂ-}-ja_lvl:o, NQ+A6_N :O,
or or or or

from which one concludes that the logarithmic derivative:

104

Aor
of A with respect tar can depend upon neithgrnot xo, and it follows thatt decomposes
into a product of the single variabteand a function ok, andy, . Therefore, one write:

(%> Yo)

f(7)

and from this it further follows, sincéM is a function ofx, andyy alone, thatM must
have the form:

M =1(27) a(x),

and in precisely the same way, one sees that:
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N =1(7) Ayo)-

The most general splitting d¥ and N into a product of two factors, one of which
depends upon only and the other, upon onkg (yo, resp.), wherC means an arbitrary
non-null constant, is:

(30) M = Cf(r)@, N = Cf(r)@.

If one starts with a given temperature scale therafgr system whose equation of
state includes one of the deformation coordinates thetiumf(z) is completely
determined up to a multiplicative constant, and the samnaador all such systems.

If one now remarks that such a splitting of the fuoreh is possible for the systems
that we examined in 1 and 2 then we see that the funiftap possesses a completely
general physical meaning. The temperature scale thafined®y this function:

t =Cf(7)
will be calledabsolute. In order to also determine the constants, one aEscpbes the
difference of two fixed temperatures — e.g., the meltihgom and the evaporation of
water — under prescribed pressures.

8. Entropy

For any simple system, one can, from (23) and (30)nalire the coordinates such
that one can have:

o€ o€ o€
DA=-—dx——dx—---—— dx,
X 0% 0x,
98 _ talx)
0X, c

in whicht means the absolute temperature. We now introduce aowwiates; with
the help of the equation:

(31) /7-%#”’@0%;

8

equation (31) can be solved farsinceM, and therefore, from (30), algmp is non-zero.
The total differential of the energy function novsasies the form:

(32) de=tdn—- DA

This new coordinatey was called theentropy of the system by Clausius, and is
determined up to an arbitrary additive constant by (31).
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For the systerB= S, + S that we considered in the previous section, one hasphyor a
guasi-static change of state, wh@an 77 mean the entropies &f andS; :

de=dg +dg =t(dm +drg,) — DAL — DA, .

Thus, whem, andr, are expressed with the help of the equations:

m+n,=1,
(33) 08 _0¢, _
on, on,

as functions ok , yx and the new; variables, the total differential of the total emes
once again takes on the form (32). The entropjeftotal system is therefore equal to
the sum of the entropies of its various componeany physicists have overlooked
this additive property of entropy, which also pstsiwhen one considers other walls
besides planes that are permeable by only headranput between the systeBsandS,,

as one can gather from the theory of these walleyder to regard entropy as a physical
guantity that is similar to the mass that is atéaclio any spatially extended body,
although it is dependent upon the instantaneots stahat body.

Since, from (30), the entropy depends only upenn normalized coordinates, it
remains constant for any quasi-static, adiabatacess, and any change of state of a
simple system under which the entropy remains emhss, from our prior argument,
reversible.

9. Irreversible changes of state

We have assumed that under adiabatic changeateftbat are caused by the possible
values of the work done for a given initial andafirform, simple systems define a
connected numerical set. If one now calculatescthreesponding final values of the
entropy# with the help of the formula:

an X1, X, ..,X)—&+A=0,

which is valid for arbitrary adiabatic processes, then it follows from contyui
considerations that they also fill up an entireiaél. The initial valuey, of the entropy
must necessarily be a point of this interval; taéug of7 then remains unchanged under
guasi-static changes of state, which can indeexlsscounted among the ones that come
under consideration. Now, il were arinterior point of the interval then one could next
assume that under adiabatic changes of state line @&7 would be arbitrary in a certain
neighborhood ofrp, and then under quasi-static changes of stateafdixed /7 the
deformation coordinates would change arbitrarilyjowever, this contradicts the axiom
of the second law.

The valuery, is thus found at aendpointof the interval in question. From this, it
follows that under arbitrary adiabatic changestafesthat start from a given initial state
the value of the entropy can be neither increasel@orease.
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If one varies the initial state then one sees tha,to continuity, the impossibility of
an increase or decrease in entropy for two arbitratialistates of the same system must
always follow in the same way. The same is alse, thowever, of two different systems
S and S , due to the additive property of entropy that we spok@ ahe preceding
paragraphs.

Whether the entropy can only increase or only decré@gends upon the constant
in formula (31), in whichy enters multiplicatively. One chooses these cotstansuch
a way that the absolute temperature positive. Experiences then teaches that one only
needs a single experiment to confirm teatropy never decreases.

From this, it follows that equilibrium will always ce@mabout when the entropy must
decrease under all permissible virtual changes of statesample system, and it then
possesses a maximum in the equilibrium state.

In addition, however, it follows from our conclusiaihet if the value of the entropy
does not remain constant under any change of statethadiabatic change of state can
be found that takes the system in question from its §tadé to its initial state.

Any change of state under which the value of entropy changes is “infgeers

10. Possibility of the experimental determination of energy,
entropy, and absolute temperature

We must show that the quantities 7, and t that we introduced into our
considerations can be determined by experiment in anyetencase. The simplest way
that this is achieved is when one, as we would now ltikéd, assumes that one can
observe reversible processes with sufficient accur&myce nothing stands in the way of
this assumption from a logical standpoint, one comekeaansight that thermodynamics
is purely experimental; i.e., can be founded without anymagson on the nature of
“heat.”

In reality, one would encounter difficulties in the bgation of the method that was
given here that arise from the unavoidable errors sendation. One thus divides the
problem into two pieces: First, one determines the alestdumperature scale; | will not
go into this question in the present work, since it reguliengthy discussion. However,
if t is known then one can compute the quantiiesd; rather easily, as we will see in
the following sections, and indeed computations in which @meloys measurements
that can be made very accurately.

Here, we assume that a simple syst®8ms given that may depend upon the
coordinates:

501X11X21 ----1Xn1

in which thex; mean the deformation coordinates. Furthermore, tih@afimlg functions
shall be capable of being established by measurements:
1. The equation of state 8ffor any temperature scate

(34) WU, X1, X2y iy X)) =T

2. The coefficients of the Pfaffian expression far workA:
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(35) DA:pldX1+p2dX2+...+pnqu.

3. The coefficients of the Pfaffian equation for quaatis, adiabatic changes of
state:

(36) O%(d£+DA):dEo+X1dxl+X2dx2+...+Xndxn.
ox,
In order to experimentally determine the coefficieKis X,, ..., X, in this latter

expression one makes the following attempt: One consaigabatic changes of state of
the system under which only one deformation coordinat@+~xe.— increases byx,
while X2 , X3, ..., Xy remain constant. One measures the ché&dgdan & that comes
about during this process. WhAr, is sufficiently small and, in addition, the change of
state results sufficiently slowly, one then has:

_ A

X =
1 A)(l

for the initial state in question.

The Pfaffian expression (36) must, from the previous t€spbssess a multiplier
that makes it into a complete differential when thentjtias X; satisfy certain differential
equations that must necessarily exist for any actual myste long as our theory is
correct.

There then exists the equation:

A(dg(o + X dxg +Xod + ... +X, d)(n) =dx,

which one can integrate. If one now chooggdo be any of its integrals then that
guantity can be introduced as a new coordinate. Therdfore (34), one will have:

(37) X0, X1, ooy X)) = T,
and (35) also preserves its original form, except thaptmust be regarded as functions

of the new variables.
If we now make the Ansatz for the absolute temperdture

t=41
then it follows from equations (24) and (32) that:
(38) de= A1) alxo) dxo—prdxg — ... = pn dX, .

The functionsa and f must be determined in such a way that the expressionig38)
integrable.
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This is first possible only when (35) is also integrable donstantx,, from which
certain conditions for thg, arise that must be satisfied for any system. [fuvthér set:

X2:a21)(’3:a(‘31 "'1Xn:an1

where theg; refer to constants, and introduce the relations:
(39) T =@, X1, &, ..., a) =f(Xo, X1),
(40) P1(Xo , X1, @, ..., &) = 0(Xo , X1),

then the expression:
Bf(xo , x1)) a(x0) dxo —g(Xo , X1) dx

must be an exact differential, which yields the conditio

, of a9 _
BT (%, &)]aa(%ﬂa—

or.
ag
(41) B axe) =- 2.
6x1

The right-hand side of this equation must theon# introducesg; as a function ok, and
7 into it with the help of (39), split into a produzf a function ofx, and a function of,
such that one can write:

ag
- % = w(e) ().

6><1
If C andC' are yet-to-be-determined constants then one yimdiains:
t=41) = ch@(r)dHc,

alxo) = = lP(Xo)

The first of these equations represents the alesddrhperature, while the second one
allows one to determine the entropy:

1%
n=m=g [, Wi dx.
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One obtains the integration const&t when one prescribes the differenbein
absolute temperature between two given temperatgresd r» arbitrarily, from the
formula:

D

C=———.
ITZG(r)dr

By the introduction of the values found farand S into (38) one can integrate these
equations when the integrability conditions are all B8atisas must be true in concrete
cases, and obtain:

E—&=C(n—no) +F(n, X1, ..., %).

One sees that during reversible processes one can determine the absolute
temperature only up to an additive constant and the internal energy only uprteaa li
function of the entropy.

However, one can remove this indeterminacy when oseredsC' for all time with
the help of a single@reversible adiabatic process; e.g., one in which no external work
done. In this case, the energy remains constant, widecoordinates experience
measurable changes, from which a linear equatio@'farises.

For ideal gases, the calculations take on the fotigviorm: When, for constant total
mass, we choose the coordinates to be the pregane the specific volume we have
the equation of state:

pv=T
and the equation of the adiabatic curves:

pv*! = const.
We can thus set:
V=X, pvV* =x

and obtain, for formulas (39) and (40):

7="1(X0, %) = %X,
p= g(Xo, Xl) = Xoxi-(yﬂ) )

Here, equation (41) takes the form:

1
B(Da(x) = —,
VX
such that one obtains:
t=41n=Ct+C, O'(Xo):i,
Cyx

J

-y
de= |:X1_+

dx, = % X dx.
; Cm} X% = % X" dy
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The integration of the latter equation now yields:

%%
y

E—&= +£Iogx0,
Cy

or, when we once again introducandv as coordinates:

r C C
E—=—+—Ir+—lv.
y Cy C

One now needs an irreversible process in orddetermine the value @&'. Under
adiabatic expansion, during which no work is donetlee gas,r, for example, remains
constant. One thus h&s= 0, and the well-known formulas:

1
= —t, v=—t,
Cy P C

which easily lead back to the usual relations.

11. Practical determination of £and #

In this section, we assume that the absolute teatyre is known already and that for
a simple systery, whose state coordinates may again be:

&, X, X2, ey Xn

one can measure the following data:
1. The equation of state:
2. The functiong; , p2, ..., pn in the Pfaffian expression for the external work.
3. The “specific heat” for constant volume. Th#&dr means that with the help of

calorimetric measurements — i.e., by observingagerirreversible processes — the
guantities:

o€

ot

can be obtained for constagt, x2 , ..., X, .
From 1, it follows that one can choose thel() independent coordinates to be:

tl Xll X2’ ---1an

in whicht again represents the absolute temperature. &e tbeordinates, (32) has the
form:

on 5. 0n
de=t—Ldt+Y | t=—-p |dx.
ot le{ ox n} '
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Since this expression shall be a complete differertiad, has, due to the integrability
conditions:

(42) /A § i=1,2, ...n

(43) S1=2C2

Equations (42) and (43) allow the entropyo be determined uniquely, up to an additive
constant, when only certain integrability conditionsween thep, and thede / ot are
satisfied. If one introduces the value (42) idedhen one obtains the equation:

on n [ 9p }
44 de=t—-dt+ t— — dx,
(44) P El[ P A | dx

which can be integrated as long as the conditions ad@veatisfied.

By integrating equations (42), (43), and (44), one thus bl of the data that one
needs.

One would be led to precisely analogous calculatioméf had measured the specific
heat for constant external forces instead of the gpeb#at for constant volume.
However, one does not first compute the enerdput the “thermodynamic potential:”

£—p1dx1—p2dx2— —pndxq

12. Crystalline media

All of our procedures and results up to now can be choier to the general case
where some of the media are fixed and possess a tingstdtucture.

The only difference is that the quantities that cti@rze these phases are different
from the ones that were considered heretofore. Aloitly the volumeV, differential
invariants that were defined in elasticity theory come consideration here. Since we
assume that the individual phases are homogeneousdinesgties are the same at any
point of a phase and can be regarded as characteristicefeaf the entire phase.

Instead of pressure, which is no longer independent retttin here, one must
introduce the “mechanical invariants;” i.e., the coéffits of the differentials of the
deformation quantities in the Pfaffian expression for éx¢ernal work, which will
likewise be drawn from the theory of elasticity.

When one further adds the quantityy these collectively constitute thirteen
coordinates, in place of the two — vi¥.,andp — that we had up to now. This number
can, however, be reduced for special crystalline systems.

By comparison, the chemical coordinates — i.e, thetdigsm, — that we considered
in the first section of this work are precisely theng as before.
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Between these various quantities, however, certaatioak exist, also when we
consider the individual phases, while previous equationsondiiton can only apply
when the various phases come into contact. Fort#tensent of these relations, | must
again refer to the theory of elasticity.

13. Remarks on the consequences of the thermodynamical theorems

The manner in which we have derived the main resultth@fmodynamics, and
particularly the way that we presented the notion ofstilie temperature” and
“entropy,” allows us to suspect (since other ways of mtésg the theory are
conceivable) that these theorems and notions are lik@sahy assumptions and their
domain of validity is correspondingly restricted.

Naturally, certain generalizations are possible that achieved with no further
assumptions. One can thus immediately free onaself the assumption that the various
media shall be homogeneous. One thus needs only ta thgastate coordinates that we
had up to now as functions of position and to modify thendein of the internal energy
and the work done from the outside with the help of pdaticcorresponding integrals.
The difficulties that arise from such generalizasi@ne of a purely mathematical nature;
they are easily treated separately and will in no eetyact from out results.

Similarly, one can treat the case where capillfoyces are considered. A
thermodynamic treatment of this problem can be fountienaforementioned treatise of
Gibbs and already seems to include all of our main idestsmight lead to completely
satisfying solutions of these questions.

By comparison, the problems of radiation and “heat mbtiead to difficulties of a
completely different nature; thus, in particular, sesl the thermodynamics of moving
media.

For the simplest radiative phenomena, in order tondedquivalent systems or the
state of a system one no longer begins with a finitalrer of coordinates. The emission
capability of the substance, as well as its dispersi@habsorption capabilities, must then
be given foreverywavelength, such that now not jusimbersare necessary to describe
these properties, budunctionsthat depend upon one or more variables. The same
distinction presents itself in mechanics when one gaes $ystems with a finite number
of degrees of freedom to continuum mechanics.

Now, the notion of temperature is not a primary ame, one must be able to present
the various state coordinates without making use of this fyantAs we saw,
temperature enters into the calculations when onesiders certain equilibrium
conditions. One can now seekdefinethe temperature of a radiative medi&rby the
condition that it is in equilibrium with our previouystem S, which possesses the
temperaturé. However, the fact that such a definition can leashdeterminacy can be
seen from the fact that the syst&nmust now likewise be regarded as a radiative
medium. However, there can very well exist two syste8h and S, that are different

from each other from the viewpoint of radiation, wéaes, for ordinary thermodynamics,
which knows less state coordinates, they represent pretimekame situation. Thus, it
does not need to be true tiatis likewise in equilibrium withS, and S;, and when this

is the case this system cannot possibly possess a téanperathe ordinary sense of the
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word. Before one responds to this question, it mustubgected to a thorough test. One
can make completely similar thoughts valid for theamdf entropy, whose definition is
so closely connected to that of absolute temperature.

In cases where the thermodynamics of moving media fgmhich one can also
count the theory of heat conduction) can be treatedouititonsidering radiation
phenomena the difficulties are of a different nature.

Here, one would probably associate each material pbitite systems with a certain
temperature that varies with time. This temperature loawever, possibly depend upon
all of the state coordinates here, and thus also ovelbeity.

Nevertheless, for the determination of the energgtfon and equations of motion
our previous methods cannot be employed since all such pescass now always
irreversible, due to the internal friction that one @anreglect.

Bonn, 10 December 1908.



