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We report on the experimental realization of a conservative optical lattice for cold atoms with a
subwavelength spatial structure. The potential is based on the nonlinear optical response of three-level
atoms in laser-dressed dark states, which is not constrained by the diffraction limit of the light generating
the potential. The lattice consists of a one-dimensional array of ultranarrow barriers with widths less than
10 nm, well below the wavelength of the lattice light, physically realizing a Kronig-Penney potential. We
study the band structure and dissipation of this lattice and find good agreement with theoretical predictions.
Even on resonance, the observed lifetimes of atoms trapped in the lattice are as long as 44 ms, nearly 105

times the excited state lifetime, and could be further improved with more laser intensity. The potential is
readily generalizable to higher dimensions and different geometries, allowing, for example, nearly perfect
box traps, narrow tunnel junctions for atomtronics applications, and dynamically generated lattices with
subwavelength spacings.
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Coherent control of the position and motion of atoms
with light has been a primary enabling technology in the
physics of ultracold atoms. The paradigmatic examples of
conservative optical potentials are the optical dipole trap
and optical lattices, generated by far off-resonant laser
fields, with the ac-Stark shift of atomic levels as the
underlying mechanism. The spatial resolution for such
optical potential landscapes is determined by the diffraction
limit, which is of the order of the wavelength of light λ.
This fundamentally limits optical manipulation of atoms.
For example, in quantum simulation with atoms in optical
lattices, the minimum lattice constant is λ=2, setting the
energy scale for Hubbard models for both hopping (kinetic
energy) and interaction of atoms, with challenging temper-
ature requirements to observe quantum phases of interest
[1]. Developing tools to overcome the diffraction limit,
allowing coherent optical manipulation of atoms on the
subwavelength scale, is thus an outstanding challenge.
Following recent proposals [2–4], we report below first
experiments demonstrating coherent optical potentials with
subwavelength spatial structure, by realizing a Kronig-
Penney–type optical lattice with barrier widths below λ=50.
In the quest to beat the diffraction limit, several ideas have

been proposed to create coherent optical potentials with
subwavelength structure. These include Fourier synthesis of
lattices using multiphoton Raman transitions [5,6], optical

or radio-frequency dressing of optical potentials [7,8], and
trapping in near-field guided modes with nanophotonic
systems [9,10] (although they suffer from decoherence
induced by nearby surfaces). An alternative approach uses
the spatial dependence of the nonlinear atomic response
associated with the dark state of a three-level system [11–16]
as a means to realize subwavelength atomic addressing and
excitation. The subwavelength resolution arises when optical
fields are arranged so that the internal dark state composition
varies rapidly (“twists”) over a short length scale.
As proposed in [3,4], such a subwavelength twist can

also be used to create a conservative potential with narrow
spatial extent, due to the energy cost of the kinetic energy
term of the Hamiltonian [2,17,18]. Unlike ac-Stark shift
potentials, this twist-induced potential is a quantum effect,
with magnitude proportional to ℏ. Using this effect, we
create 1D lattices with barrier widths less than λ=50. This
potential realizes the Kronig-Penney (KP) lattice model
[19]—a lattice of nearly δ-function potentials. We study the
band structure and dissipation and find that the dark state
nature of this potential results in suppressed scattering, in
good agreement with theoretical models.
Our approach is illustrated in Fig. 1(a). A three-level

system is coupled in a Λ configuration by two optical
fields: a spatially varying strong control field ΩcðxÞ ¼
Ωc sin ðkxÞ and a constant weak probe fieldΩp. The excited
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state jei can decay to either ground state jgii. Within the
Born-Oppenheimer (BO) approximation, slowly moving
atoms in the dark state jE0ðxÞi are decoupled from jei,
where jE0ðxÞi ¼ sinðαÞjg1i − cosðαÞjg2i and αðxÞ ¼
arctan½ΩcðxÞ=Ωp� [3]. The two bright states E�ðxÞ have
excited state component jei, leading to light scattering. As
shown in Fig. 1(b), the fields are arranged in such a way
that the dark state changes composition over a narrow
region, depending on the ratio ϵ ¼ Ωp=Ωc. The kinetic
energy associated with this large gradient in the spin wave
function gives rise to a conservative optical potential VðxÞ
[3,4] for atoms in jE0ðxÞi,

VðxÞ ¼ ℏ2

2m

�
dα
dx

�
2

¼ ER
ϵ2cos2ðkxÞ

½ϵ2 þ sin2ðkxÞ�2 ; ð1Þ

where k ¼ 2π=λ, ER ¼ ℏ2k2=2m is the recoil energy, andm
is the mass of the atom. The potential VðxÞ can be viewed
as arising from nonadiabatic corrections to the BO potential
[3,4] or artificial scalar gauge potential [18,20,21]. When
ϵ ≪ 1, this creates a lattice of narrow barriers spaced by
λ=2, with the barrier height scaling as 1=ϵ2 and the full
width at half maximum scaling as 0.2λϵ [Fig. 1(b)].
The potential VðxÞ exhibits several properties that

distinguish it from optical potentials based on ac-Stark
shifts: (1) The explicit dependence on ℏ, via the recoil
energy ER, reveals the quantum nature of VðxÞ arising from
the gradient in the wave function, whereas a typical optical

potential can be described entirely classically as an induced
dipole interacting with the electric field of the laser.
(2) Since gradients in wave functions always cost energy,
VðxÞ is always repulsive. (3) The geometric nature of the
potential results in it being only dependent on ϵ. By
deriving both fields from the same laser, it is relatively
insensitive to technical noise. (4) Unlike near-field guided
modes [9,10], our scheme works in the far field, thus
avoiding the decoherence associated with the proximity of
surfaces.
We realize the Λ configuration using three states selected

from the 1S0, F ¼ 1=2 and 3P1, F ¼ 1=2 hyperfine mani-
folds in 171Yb. The two 1S0 ground states mF ¼ �1=2
comprise the lower two states jg1i and jg2i [see Fig. 1(a)].
The 3P1, mF ¼ −1=2 state, with inverse lifetime
Γ ¼ 2π × 182 kHz, makes up the third state jei in the Λ
configuration. The jgii → jei transitions are isolated from
the transition to the other 3P1, mF ¼ þ1=2 state by
applying a 12 mT magnetic field B⃗ to Zeeman split the
two 3P1 states by ΔB ¼ 1.8 × 103 Γ. The same field
slightly splits the 1S0 ground states by −0.5Γ due to the
small nuclear magnetic moment. The standing-wave con-
trol field ΩcðxÞ, traveling along B⃗, is produced by two
counterpropagating σ− laser beams that couple the jg2i and
jei states with amplitudes Ωc1eikx and Ωc2e−ikx. A third
beam, π polarized and traveling normal to B⃗, couples the
jg1i and jei states with amplitude Ωpeiky. The frequency of
the control and probe beams can be chosen to set the single-
and two-photon detunings, Δ and δ. We define δ ¼ 0 as the
dark state condition for the isolated three-level system,
accounting for the Zeeman splitting. Off-resonant cou-
plings to other states can introduce light shifts, which
require nonzero δ to maintain the dark state condition.
We create an ultracold 171Yb gas in a bichromatic crossed

dipole trap by sympathetic cooling with Rb atoms that are
also magnetically confined [22,23]. After Yb atoms are
collected with a temperature of ≃300 nK (T=TF ¼ 1.10,
where TF is the Fermi temperature), the magnetic field in
the x direction is ramped up in 100 ms to 12 mT, removing
Rb from the trap. The Yb atoms are then optically pumped
into jg1i using a 50 ms pulse from one of the control beams,
resulting in ≃1.5 × 105 Yb atoms polarized. The small
171Yb scattering length (−3a0 [24], with a0 the Bohr
radius), plus the lack of s-wave scattering in polarized
fermions allow us to neglect interactions. The Rabi
frequencies of each of the three beams are calibrated by
measuring the two-photon Rabi frequencies from jg1i →
jg2i at large Δ with different pairs of beams. The laser
polarization purity and alignment to B⃗ are carefully
optimized, such that the residual fraction of wrong polari-
zation measured in Rabi frequency is less than 0.5%. To
load Yb into the ground band of the dark state lattice, we
first populate the spatially homogeneous dark state by
ramping on Ωc1 followed by Ωp and then adiabatically

(a) (b)

(c)

FIG. 1. Level structures and experimental geometry. (a) The
three levels in 171Yb used to realize the dark state are isolated
from the fourth 3P1, mF ¼ þ1=2 state by a large magnetic field.
They are coupled by a strong σ− polarized control field Ωc
(green) and a weak π polarized probe field Ωp (orange). The
resulting dark state is a superposition of the ground states jg1i and
jg2i, with relative amplitudes determined by ΩcðxÞ=Ωp. (b) Spa-
tial dependence of the dark state composition is created using a
standing wave control field ΩcðxÞ and a traveling wave probe
field Ωp. The geometric potential VðxÞ (black) arises as the dark
state rapidly changes its composition near the nodes of the
standing wave. (c) The two counterpropagating σ− beams
creating the standing wave are aligned with a strong magnetic
field along x, while the π beam travels along y.
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ramp on Ωc2 in 1 ms, creating the lattice. We measure the
momentum distribution using a band mapping sequence
[25], by first ramping off Ωc2 in 0.5 ms and then suddenly
turning off all the other light fields. We take absorption
images after time-of-flight (TOF) along y to measure the
momentum along x and z; see [26] for further details.
The existence of lattice structure of VðxÞ leads to

Brillouin zones (BZ), visible in TOF images taken after
band mapping. Since kBT is less than the band gap, the
population is predominantly in the first BZ and distinct
band edges are visible [upper panel in Fig. 2(a)]. The lower
panel shows the result with no probe beam, where we find a
nearly Gaussian distribution in the lattice direction. We also
see nearly Gaussian distributions for atoms loaded in the
other two-beam configurations: Ωc1, Ωp and Ωc2, Ωp.
For small ϵ, this lattice maps to a 1D KP model. One

characteristic feature of the KP lattice is that the energy of
the nth-band scales as n2ER, such that the band spacing
increases with n. In contrast, in a deep sinusoidal lattice,
the band spacing decreases with n. To map out the band
structure, we excite atoms from the ground (s) band into the
higher bands by shaking the lattice using phase modulation
of one of the σ− beams. After band mapping, we measure
the band populations, which become separated after TOF
[see Fig. 2(c)]. Figure 2(b) plots the frequency-dependent

excitation into the first (p) and second (d) excited bands for
ϵ ¼ 0.14, extracted from the data in Fig. 2(c). The s → d
excitation arises from a two-step process involving the p
band. We map out the band structure up to the g band
and plot the energy differences for adjacent bands [see
Fig. 2(d)], which increase monotonically with n. The green
rectangles show the theoretical band spacings and widths,
calculated from a model that includes both the light shifts
from states outside the three-level system [26] and mixing
with the bright states.
Another property of a KP lattice is that, in the deep lattice

limit, its band structure is almost independent of the barrier
strength (the area under the potential for a single barrier),
which scales with 1=ϵ. The band spacings for different ϵ are
plotted in Fig. 3(a) for fixedΩc ¼ 100 Γ andΩp varied from
5 to 20 Γ. As expected, the band spacings are almost
independent of ϵ, even though the probe power varies by
an order of magnitude. The upper panels of Fig. 3(a) show the
potentials of the upper bright state (blue) and dark state
(green) for three ϵ. For ϵ ≤ 0.1, mixing between E0ðxÞ and
E�ðxÞ states modifies the band structure, reducing the band
spacing. For ϵ≃ 0.1, we realize a barrier width of 10 nmwith
minimal coupling to the bright state. The shaded regions are
predictions based on amodel that takes bright state couplings
into account,which are in better agreementwith themeasured
spacings, compared to the model that has no couplings
(dashed line). We attribute the discrepancy between theory
and experiment to the residual polarization imperfections,
calibration errors in the optical intensity, and limitations of
band spectroscopy. We note that the theory predicts a
vanishing band width near ϵ≃ 0.125 and the growth of
thebandwidth at even smaller ϵ, due to the interference of dark
state and bright state mediated tunneling [26].
Away from δ ¼ 0, the state is no longer completely dark

and it experiences an additional periodic potential with
amplitude δ [26,30] [Fig. 3(b)]. This additional potential
perturbs the KP lattice and the band structure. We verify
this by measuring the band spacings as a function of δ
[Fig. 3(b)] and find it agrees with the prediction (shaded
area), with the systematic deviation likely coming from the
same factors as in Fig. 3(a).
Finally, we study dissipation. The nonadiabatic correc-

tions to the BO potential that give rise to VðxÞ also weakly
couple the dark state with the bright states, which leads to
light scattering, heating the atoms out of the trap. We
measure the lifetime τ in a dark state lattice [Fig. 4(a)] for
different Δ and find it significantly longer for Δ > 0 than
for Δ < 0. This is in contrast to an optical lattice based on
ac-Stark shifts, where heating is independent of the sign of
Δ [31,32]. To intuitively understand this asymmetry, we use
the model described in [4] and note that the coupling to the
bright states takes place inside the barrier. An atom can
scatter light by admixing with the bright states E�ðxÞ
(approximately Δ independent) or exiting into the energy-
allowed E−ðxÞ state via nonadiabatic couplings (strongly Δ

(a)

(d)

(b) (c)

FIG. 2. (a) Band mapping results for atoms loaded into the dark
state lattice with three beams (upper) and with only Ωc beams
(lower). The white traces show the integrated momentum dis-
tribution in each direction (x is the lattice direction). (b),(c) Band
spectroscopy: in (c), we plot the TOF column density integrated
over z after shaking the lattice vs the shaking frequency; in (b),
we plot the fraction of the population (frac. pop.) excited to the p
band (dark green) and d band (magenta) Brillouin zones [see (c)]
vs shaking frequency. Gaussian fits [colored lines in (b)] are used
to determine the center frequency and the width of the transition.
(d) Band spacing scaling: Enþ1 − En is plotted vs the band index
n of a dark state lattice with Ωc ¼ 70 Γ, Ωp ¼ 10 Γ, Δ ¼ 22 Γ,
and δ ¼ 0. The gray vertical bars indicate the transition width
inferred from the measurements, while the green rectangles are
predictions of the expected band spacings and widths [26].

PHYSICAL REVIEW LETTERS 120, 083601 (2018)

083601-3



dependent). The E−ðxÞ state [red, Fig. 4(a), upper panels]
contributes more to the loss, explaining the Δ asymmetry.
The result of the model [26] is depicted as the black line,
with an empirical scale factor of 2.2 applied to the theory to
account for the unknown relationship between the scatter-
ing rate and loss rate (1=τ). The lifetime in a homogeneous
control field when one of the Ωc beams is blocked is shown
in Fig. 4(a) (inset). The τ≃ 4 × 105=Γ lifetime is almost
independent of Δ, as theory would predict, and is 70% of
the expected lifetime due to nonadiabatic coupling to the
bright states and off-resonant scattering from states outside
the three-level system.
The nonadiabatic bright state coupling also leads to a

counterintuitive dependence of the dissipation on the laser
power. Figure 4(b) shows the lifetime at constant ϵ as a

function of Rabi frequencies. Remarkably, the lifetime
increases with Rabi frequency. In contrast, for a regular
optical lattice at a fixed detuning, the lifetime does not
improve with more laser power. For the dark state lattice,
larger Ωc;p increases the separations between BO potentials,
resulting in decreased scattering. In general, the lifetime
improves with more laser power and at blue detuning.
However, couplings to EþðxÞ adversely affects the barrier
height [similar to the case with ϵ ≪ 1 in Fig. 3(a)]. With
realistic increase in laser intensity, we can potentially
improve the lifetime by an order of magnitude, while
maintaining the ultranarrow barriers.
The conservative nanoscale optical potential demon-

strated here adds to the toolbox of optical control of atoms,
enabling experiments requiring subwavelength motional
control of atoms. Such sharp potential barriers could be
useful for the creation of narrow tunnel junctions for

(a)

(b)

FIG. 3. Band structure scalings. Energies of the p and the d
bands with respect to the s band are plotted. (a) Vary ϵ:
Ωc ¼ 100 Γ, Ωp ¼ 5–20 Γ, Δ ¼ 22 Γ, and δ ¼ 0. Dashed lines
indicate the allowed transition energies predicted from modeling
VðxÞ alone, while the shaded regions are from a model including
couplings to the bright states. (Upper) Representative potentials
for the dark state (green) and bright state (blue). At ϵ ¼ 0.075, the
bright and dark states are no longer good basis states because of
the strong coupling between them. (b) Vary δ: Ωc ¼ 70 Γ,
Ωp ¼ 10 Γ, Δ ¼ 22 Γ. (Upper) Calculated dark state potentials
for positive and negative δ.

(a)

(b)

FIG. 4. (a) Lifetime of dark state lattice τ scaled by the excited
state lifetime Γ−1 vs Δ, with Ωc ¼ 70 Γ, Ωp ¼ 10 Γ, and δ ¼ 0.
(Inset) Lifetime of the dark state in spatially homogeneous
control fields, with Ωc1 ¼ 35 Γ, Ωc2 ¼ 0, Ωp ¼ 10 Γ, and
δ ¼ 0. (Upper three panels) The two bright state potentials
E−ðxÞ (red) and EþðxÞ (blue), and the dark state potential
(green), at different Δ. (b) Lifetime vs Ωp in a dark state lattice
where ϵ ¼ 0.2 and Δ ¼ 0. The solid black lines are predictions
scaled with a factor 2.2 [except for (a) inset, where no scaling is
applied]. The error bars represent 1 standard deviation uncer-
tainty from fitting the population decay data.
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quantum gases [33] or for building sharp-wall box-like
traps [34]. In addition, spin and motional localization on
small length scales can enhance the energy scale of weak,
long range interactions [3]. The dark state lattice is
generalizable to 2D and, for example, can be used to study
Anderson localization with random strength in the barrier
height [35]. By stroboscopically shifting the lattice [36], the
narrow barriers should enable optical lattices with spacings
much smaller than the λ=2 spacing set by the diffraction
limit, which would significantly increase the characteristic
energy scales relevant for interacting many-body atomic
systems.
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