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We report a comprehensive set of calculations of the lifetimes of Rydberg states in alkali-metal

atoms, using realistic potentials to represent the atomic core. The effects due to core polarizability,
spin-orbit interaction, and blackbody radiation are explicitly included. A complete cross reference

listing of all available experimental lifetimes is also attempted. The results compare well with exper-

iment for all principal quantum numbers n examined and should provide guidance for future experi-

mental investigations. The relation of the present approach to other works is discussed.

I. INTRODUCTION

Interest in accurate information on the atomic structure
has increased substantially in recent years. In the very
basic research branch of quantum optics, the development
of new and better lasers and other optical devices places
an increasing demand for accurate information on the
atomic and molecular states, and particularly on the
high-lying Rydberg states.

With the advent of the laser systems we have been able
to selectively reach by photon absorption highly excited
states. Thus there is a plethora of experimental results
which we would like to, and should be able to understand
and explain. Detailed and accurate theoretical studies of
atomic and molecular Rydberg states will provide infor-
mation and knowledge that will enable us to predict the
feasibility of new "lasing" systems, and will single out the
atoms and molecules in which novel processes are most
likely to take place and be observed.

With this perspective, the present study was undertaken
of transition probabilities and oscillator strengths. The
important effects of core polarizability, spin-orbit interac-
tion, and blackbody radiation are explicitly treated. The
results are given in the form of the calculated lifetime for
each excited state. The lifetime is equal to the inverse of
the total transition probability from the state under study
to all other accessible states, in this case via a dipole tran-
sition. The final result depends, therefore, on a number of
transition matrix elements, and accurate theoretical pre-
dictions for lifetime values require an accurate description
of all the states involved.

Experimentally, the lifetime of an excited species can be
directly measured or indirectly deduced by a variety of
methods each having one or more limitations. Extensive
reviews of the experimental approaches to lifetime mea-
surement were given by Corney' and by Imhof and Read.

An atomic electron in an excited (Rydberg) state is oc-
cupying an "orbit, " the major portion of which is spatially
removed from the nucleus and the remaining atomic
"core" electrons. Thus it experiences an almost purely
Coulombic field. Its energy level is given in Rydberg
units by

E„t= g /(n —pt)—

where g is the net charge of the core. This is the classical
equation of the Bohr-Sommerfeld model for the atom,
apart from the appearance of pI, the familiar "quantum
defect" of the state under consideration; for hydrogen we
have. (by definition) pt =0. The quantum defect
represents the effect on the electron's motion of all the
other (core) electrons. In the limit of the Rydberg series,
n ~ oo, the quantum defect and the zero-energy scattering
phase shift 6) are simply related by

srpt(n ~~ ) =St(E=0)

which provides an important connection between the
discrete and continuum spectra of atoms.

Systems other than hydrogen having one electron (i.e.,
ionized atoms) are called "hydrogenlike. " For atoms and
ions with more than one electron, if the core is compact
enough and the principal quantum number X of the
outermost el'ectron is sufficiently high, the latter behaves
largely as if it were in a pure Coulombic field.

In the absence of external fields, the hydrogenic prob-
lem is analytically solvable. The energy levels and the
wave functions of the electron are known exactly and all
information about the atom (ion) is thus available. The
more-than-one-electron problem, however, can be treated
only approximately, and in that case our experience from
the hydrogenic case serves as a guide in tackling this
problem. In the following we outline a short review of
previous treatments of Rydberg states and then describe
the present approach. Atomic units are used throughout
and Rydberg units for energy.

The traditional way of describing Rydberg-state wave
functions and transition probabilities is by the quantum-
defect theory which was implemented by Bates and Dam-
gaard in their classic 1949 paper treating bound-bound
state transitions. Burgess and Seaton extended this work
to calculating photoionization cross sections in their also
often quoted paper.

The basic (approximate) Schrodinger equation that the
optical electrons obey is the following:
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d P„t(r)/dr — V(r) E—„t+ l(l+]) +H(r) P„i(r)=0,
p

2

H(r)~0 as r —+ co,

V(r) —+ —2(Z N)/—r = 2(—/r as r~ ~,
(4)

where Z is the nuclear charge and X is the number of the
screening electrons. In this asymptotic case of large dis-
tances r the solution of (3) is a Whittaker function and
can be given analytically as

P I(r ) = ( —1)"+'+'g' K(n", l )(2p/n')"

)& exp( p/n*) g b—, (n*,p)p

where

p= r,
E(n*,l ) = [rl(n*)n*I (n*+l —1)1 (n* —l )] 'i, (7b)

bo ——1, (7c)

b, = (n*/2t )[l(l + 1) (n* —t )(n* t+—1)]b, i, —(7d)

(n*) = g /E„t=(n——p, ~)

and rl is a function of n* close to unity:

g(n')=1+[2/n* ]dp(e)Ide,

where e is the electron's energy (in the discrete or continu-
um spectrum).

The quantity of interest to us is

R(njl;n'lj'')= j, «P.tj(r)re'Ij''(r), (9)

and the calculation of the normalized wave functions

P„IJ is central to the present work. Bates and Damgaard
evaluated R(nlj;n'lj'') by using a series expansion of the
form (6) for both ground- and excited-state wave func-
tions and integrating analytically. This yields a double
summation which sometimes presents difficulties as
pointed out by Burgess and Seaton.

The Bates-Damgaard (BD) method utilizes the experi-
mental binding energy of the active electron to construct
an approximate radial wave function which is accurate at
large radial distances: a Coulomb wave function with the
right behavior at infinity and the right energy. The length
form of the electric dipole matrix element, which em-
phasizes large radial distances, is then evaluated using two
such wave functions. The resulting transition probability
depends on the initial and final energies and angular mo-
menta of the active electron, but not on the details of the
atomic potential at small radii.

The basic postulate of the BD method, also known as
the Coulomb approximation (CA), is that nearly all of the
dipole length matrix element is contributed by the wave
functions at radii where the active electron is outside the

(3)

where V(r) is t'he potential experienced by the optical
electron, E„i is the eigenvalue, and H(r) contains all other
interactions (predominantly exchange and relativistic ef-
fects). For large r we have

/

core (the charge distribution of the rest of the electrons
and the nucleus); the contribution from smaller radii is ei-
ther neglected (by using a cutoff radius) or severely ap-
proximated (by introducing a modifying factor into the
approximate wave function, which prevents the radial in-
tegral from diverging at the origin. ) The above assump-
tions are not valid in two cases: (a) when the active elec-
tron is in an inner orbital with very small amplitude out-
side the core or (b) when the outer contribution to the ma-
trix element is very small because of cancellation so that
the value of the inner contribution is important. The BD
approximation is only valid for electrons not having large
wave-function magnitudes at small r; this criterion may
be stated as

n*) 1+1 (10)

for valid use of the CA.

Stewart and Rotenberg extended the CA retaining the
Coulomb field for large r, but using a "scaled" Thomas-
Fermi potential for small r, i.e., r &ro where ro is the ra-
dius of the Thomas-Fermi ion (a function of N/Z only).
This approach accounts, to some extent, for the effects of
the nonactive atomic electrons and yields a wave function
which for r ) ro is identical to the BD one, apart from a
gormalization factor. To obtain an even more realistic
inner potential Warner proposed the use of the Thomas-
Fermi-Dirac model to account for the electron exchange
=ffects. In all the above approaches experimental (spec-
troscopic) eigenvalues have been used, eliminating the
need of a self-consistent calculation.

Heavens has used the tables produced by Bates and
Damgaard to calculate the radiative transition probabili-
ties from and the lifetimes of the lower Rydberg states of
Li, Na, K, Rb, and Cs, and his values are among the most
quoted among the CA ones in the literature. Various
research groups have been recalculating transition proba-
bilities and radiative lifetimes in the CA, implementing
various series cutoff criteria. Comparison to their work
will be made below.

Anderson and Zilitis' performed extensive calculations
and tabulations of the alkali-metal —atom optical oscilla-
tor strengths using a realistic potential throughout. They
used an atomic potential of the Hartree type and integrat-
ed the Schrodinger equation employing spectroscopic
eigenvalues. The wave functions at large r were described
by asymptotic series representing the solutions in a
Coulomb field.

An alternative approach, the so-called "numerical
Coulomb approximation" (NCA) method, has been intro-
duced and applied by Lindgaard and Nielsen. " In this
approximation, the wave functions are obtained numeri-
cally by direct inward integration of Schrodinger s equa-
tion starting with the correct asymptotic boundary condi-
tions. The integration is terminated at a certain small dis-
tance r„so that the wave function is normalized to unity,
and the obtained expectation value (r) agrees with the
hydrogenic formula

( r ) = J dr rPj (r ) = [3nj* —l(l+ 1)],
0 j 2g J
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where the effective quantum number n* replaces the in-
teger hydrogenic value n.

The Bates-Damgaard approximation has a sound basis
when treating transitions between states with medium to
high quantum numbers n, and especially between "non-
penetrating" states; the numerical results verify this.
Whenever one of the principal quantum numbers n is low,
however, especially when n* &l+1, the state is not
described accurately and this can lead to significant
discrepancies between theory and experiment (as we will
see below).

III. THE PRESENT APPROACH

A. The potential

The major problem and error of the BD method is in
approximating the atomic potential within the core region
by its asymptotic value —2(/r. To date, several attempts
have been made to rectify this shortcoming, by assuming
certain analytical or numerical approximations of the core
part of the atomic potential. ' ' '"

The present approach is aimed at (i) utilizing the fact
that the optical electron is experiencing for most of the
time a basically hydrogenic (Coulombic) field; (ii) ac-
counting in a realistic way for the potential within the
core; and (iii) accounting for the major additional
electron-core interactions, notably the core polarizability
and spin-orbit interaction effects. The atomic potential
used in Schrodinger s equation within the present treat-
rnent is

V~ (r ) = ——,
'

ad r [ 1 —exp[ —(r /r, ) ] j

——,(a~ —6Pao)r [1—exp[ (r/—r, )' ]] (16)

which has only one adjustable parameter. Here ad and aq
are the static dipole and quadrupole core polarizabilities,
respectively, and P is a dynamic correction to the former,
representing the time delay in the core-dipole response to
the active electron's motion. All three quantities can be
calculated ab initio. ' It should be mentioned that the
values for the quadrupole polarizability inferred from ex-
periment seem to agree poorly with the calculated ones. '

The parameter r, is obtained by fitting the observed few
lowest-energy levels of the active electron. The advantage
of the model potential used by Norcross' over similar ap-
proaches is that one has only a single parameter to fit to
experimental data and therefore can be more realistic.

(iii) The spin-orbit interaction potential V, , is taken to
be the term in the Pauli equation. The full relativistic
form is used to ensure that the potential has the correct
behavior near the origin, and is given by

(r) = —,
' a f(r) (1/r)[dV~(r) jdr]L S (17)

with

f(r)= [1+(a /4)[E V(r)]J—
where V (r) is the model potential consisting of the core
plus the polarization potentials, defined above:

V (r)= V, (r)+ V~(r) .

V(r) = V, (r)+ V~(r)+ V, , (r) .
This model potential has the following limiting values:

(12)

It consists of three terms.
(i) The single-electron central field V, due to the nu-

cleus and the core electrons. For Li, Na, and K it is con-
structed from analytic Hartree-Pock orbitals' of the oc-
cupied shell electrons, as

V, (r)= VHF(r)= —(Z X)/r —2+(2l +—1)g (r)/r,

(13)

g (r)= f dx(1 r/x)P~(x)—, (14)

where Z is the nuclear charge, X is the number of elec-
trons in the closed shells, and J' (r) is the Hartree-Fock
orbital in the ath shell. In the case of Rb and Cs the ap-
propriate Hartree potentials' were used.

(ii) The polarization potential V~ which represents the
effect of the induced core electron moments on the active
electron, and can be taken to be of various forms: e.g. , (a)

Vz(r) = —, adr [1—exp[ —(r/r, )—]j
——,

'
A,r [1—exp[ (r/r, )']J-

+(co+c&r) exp( r/ro), —

where the parameters ad, X, ro, r], co, and c& are given
by Weisheit' for Na, K, Rb, and Cs, and by Bottcher'
for Li; or (b) the form used by Norcross, '

V (r=0)= 2Z/r, —

V (r +co)= 2(Z— X)jr—. —
(20)

(21)

Away from the origin f(r) is equal to unity; this is not
true near r =0, however, and its full expression is retained
so that the series expansion of the wave function there has
the correct behavior.

All three potential terms are known exactly for dis-
tances r larger than the atomic core radius, or at least for
r larger than a few times that. This is true because the
central atomic field becomes always —2(Z X)/r for-
r g r, . Therefore, whatever approximations are involved
in constructing the model potential, these approximations
and their effects are limited to distances less than the
atomic core radius. This radius is not strictly defined; in
any case, it is of the order of only a few Bohr radii and
does not differ from model to model by more than
10—20%.

Electron exchange has not been explicitly included
above. Its effects are expected to be small. Electron ex-
change, as well as r'elativistic terms in the Pauli approxi-
mation, other than the spin-orbit interaction, are imply'citly
included, in a local-potential form, through the term

(co+c~r) exp( rjro)—
of the polarization potential. Nonlocal potential terms
would greatly increase the amount of computational
work. The effect of spin-orbit interaction is treated here
explicitly because it describes the splitting of the various
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levels according to the total angular momentum J,
whereas the other terms of the Pauli approximation move
the center of gravity of these 1|.'vels. This center of gravity
of several terms was fitted in obtaining the polarization
potential parameters of Eqs. (15) and (16) above.

I
S(njl~n'Ij'') =(2j+1)(2j'+1), . max(l, l')

2 J J

&&R(nlj;n'Ij'') (25)

B. The wave functions with

The traditional self-consistent-field calculation of wave
functions entails outward integration of the appropriate
Schrodinger equation, starting at r=O, and inward in-
tegration from the practical infinity. The inward integra-
tion is continued until the outer classical turning point
where the solution is matched to the outward one. The
energy is adjusted so that the correct number of nodes is
present and the wave function is smooth at the matching
point. However, even if the best energy eigenvalue within
a model is obtained, this does not necessarily imply the
best or, at least the most correct wave function possible.
This is true because in all cases the atomic potential can
be described only approximately.

In the present approach, the Rydberg-state radial wave
functions are obtained by direct inward integration of the
appropriate Schrodinger equations. After establishing the
model potential V, + Vz+ V, , we eIDploy the experimen-
tal energy level values and integrate Schrodinger's equa-
tion inwards with the correct boundary condition at infin-
ity, in the same way as Lindgaard and Nielsen. " Since we
use an accurate potential, however, the wave functions so
obtained are,accurate also at and near the origin, some-
thing we have tested for several typical cases. This is en-
sured by matching the inward integration with the out-
ward one at the inner classical turning point, i.e., near the
origin. Since we do not iterate the process, this numerical
wave function may have a discontinuous first derivative at
the matching point. The latter's location, however, is very
close to the origin and has no noticeable effect on the
transition matrix elements.

C. The transition probabilities

3
4 2 AE S(yJ,y'J')

y y
3 R 2J+1 (22)

and

The transition probability and absorption oscillator
strength between two states yJ) and

~

y'J') are given by

R(njl;n'Ij'') =(nlj
~

)r ~n'Ij'')
[cf. Eq. (9)].

A derivation of the dipole transition moment
R (njl;n'Ij'') including, to a first-order correction and in a
consistent way, the effects of core polarization by the
valence electron leads to the replacement' '

r mr[1 —ad—(co)v(r)/r ] (26)

in the integral (9). Here ad(co) is the dynamic dipole po-
larizability of the core at the transition frequency co=DE,
and Ir(r) is the ratio of the true induced dipole moment
operator to its asymptotic form at large r. For discrete
transitions ad(co) is usually taken to be equal to the static
value ad(0) =aq, which is a good approximation for the
lower transitions. A better first approximation is

ad(~) =ad(0)/[1 —(~/&E„) ] (27)

where AE„ is the resonance energy of the core; this ap-
proximation is only valid for frequencies less than this en-

ergy. The ratio v(r) is traditionally modeled either as

~(r ) = 1 —exp[ —(r /r, ) ], (28)

where m =3 may be the most physically appropriate
choice orzo

~(r)=v /(v +r, ) (29)

which at r~0 corresponds to m =4 in (28). The effec-
tive core radius r, is usually taken either so that the
theoretical oscillator strengths reproduce characteristic
features of the experimental oscillator strengths and/or
photoionization cross sections, or in some other semi-
empirical way.

A more recent treatment by Moore and co-workers
calculates the cutoff functional in a self-consistent way
and may be a more desirable choice. They use a Hartree-
Slater central potential to describe the alkali-metal —atom
core, and for the valence electron the core polarization po-
tential

respectively, where

(23)

with

dP(v)
2r~ 1 4~ad p (r)/Z— (30)

(24)

is the line strength, o, is the fine-structure constant, E. is
the reduced-mass Rydberg energy constant, and
AE=E(yJ) E(y'J') is the transition —energy. For the
transitions considered here the line strength takes the ex-

plicit form:

p (r) = [1—exp( —kr~/a~o )]n(r ),
f p (r)dr =1,
P(v) = f p (r')dr',

(31a)

(31b)

(31c)

where the parameters p, k, and o.d are inferred from ex-
periment, n(r) is the total ion core electron density, and
P(r ) is exactly equal to the ratio ~(r ) in Eq. (26).
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D. The blackbody-radia, tion (BBR) effect

The population of the higher states can be significantly
affected by the blackbody radiation in which the atoms
are embedded. If there exist other states that are ener-
getically very close to the one under study, a significant
depletion of its population occurs by stimulated emission
and absorption. Specifically, the total transition probabil-
ity 2 from the mth state to "anywhere" is generally ob-
tained from

=g 3 = g g A(m~m')((n)+1)

at r +—oo, which is suitable for spatially extended excited
states.

In principle, the new variable takes values in the inter-
val ( —oo, + oo ). For the actual calculations we restrict it
to-the interval [xo,x~] where

xp ———I3(10+ lnZ)

corresponding to

ro —4.5&&10 /Z .

An equidistant mesh is used for x,

x; =xo+ih, i =0, 1,2, . . . , X

+ g g A(-m" —+ m)(n),
m" &m

(32) and the coefficient a is given by the relation

where ( n ) = ( n (h v ) ) is the average number of photons
with energy h v in thermal equilibrium at temperature T:

1 1
~Zkv. = ~~zZkr (33)

g~ is. the degeneracy of the mth state, and r* its effective
lifetime. For low-lying states this effect is negligible be-
cause AE »kz T at temperatures below 1000 C.

a=(x~ —Pl nr, „) /r, „. (40)

Finally, the maximum distance r „considered, the mesh
h, the number of mesh points N, and the coefficient P are
input parameters.

After introducing the new variable, Eq. (34) yields an
equation including a first derivative. To implement
Numerov s integration method, this derivative is removed
by the transformation

IV. CGMPUTATIONAL APPRQA(CH
y;(x ) = [(ar+P)/r )]' P;(r )

which yields

(41)

To obtain the radial wave functions of the active elec-
tron in its initial and final states we have to solve the
second-order differential equation:

(42)d y/dx =p(x)y,

p(x)=(«+P) 'r'[V (r) —&;]+0(«+13/4)/(«+13)
d2P; /dr2=[V;(r) E;]P;(r), —

V(r)=V, +V, , +V~,

(34)

(3&)

(43)
The last two equations are solved in a convenient way by
the method described in the Appendix.

x =ar+ f3lnr, (36)

where u and p are constants. The variable x behaves like
lnr at small r (a variable employed almost invariably for
ground-state self-consistent-field calculations) and like «

where V, (r) is the sum of the (central) core potential, the
spin-orbit interaction potential, and the polarization po-
tential defined earlier. As mentioned above, E; =E„~z is
input here and no iteration is implemented in the solution
of (34). This equation is amenable to a solution using the
efficient Numerov method. Numerov's approach is more
efficient when an equidistant mesh is used for the in-
dependent variable. The nature of the potential V(r )
which has a pole at the origin (r =0) implies the particu-
lar need of dense integration (mesh) points near the origin.
At intermediate to large distances the mesh points may be
considerably less dense, for usual cases. Since, however,
our approach is intended for states with typical effective
principal quantum numbers n' =5—15, i.e., with the elec-
tron spending most of its time at distances 38—340 a.u. ,
there are limitations to the maximum distance between
adjacent mesh points at large r. A new variable taking
into account the above two requirements is obtained by
the following transformation, proposed by Bratsev and
implemented by Chernysheva et al. for cases similar to
ours:

A. General

The approach outlined in Secs. III and IV above was
applied to the calculation of lifetimes of s, p, d, and f
states with principal quantum n up to at least n =16 in
the stable alkali-metal atoms, i.e., Li, Na, K, Rb, and Cs.
The results are given below in Tables II—VI, and will be
discussed separately for each atom. The agreement is ex-
cellent for the lower states where the analytic and numeri-
cal CA methods are least accurate. The lifetimes shown
there depend on the transition probabilities to all dipole-
aJlowed lower states, and the composite final result is af-
fected by the inadequacies of an approximation, like BD,
to various degrees, depending on the upper state under
consideration. %'e are impressed, however, at how good
NCA" is overall. This should be contrasted to the fact
that the actual expectation value (r ) of the lowest states
is not equal to the hydrogenic prediction of Eq. (11) with
n*. Table I shows a comparison between the hydrogenic
values and the values obtained numerically by the present
approach, as well as by the Hartree-Slater (HS) and
Hartree-Kohn-Sham (HKS) predictions. This table also
indicates the difficulty of a self-consistent-field calcula-
tion to converge to a correct result for some excited states.

Higher angular momentum states have negligible quan-
tum defects, since they do not penetrate the atomic core,
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TABLE I. Expectation values (r ).
nl

2s

2p

1

2

1 3
2& 2

Hydrogenic

3.815

4.694

This work

3.785

4.758

HS

3.755

4.694

HKS

3.920

4.814

3p

3p

3d

1

2

1

2

3
2

3 5
2s 2

4.021

5.847

5.853

10.387

3.971

5.720

5.725

10.408

4.021

5.690

10.362

4.277

5.972

10.425

4s

4p

4p

3d

3d

4f
4d

4d

1

2

1

2

3
2

3
2

5
2

5 7
2s 2

3
2

5
2

4.609

6.436

6.462

7.993

7.989

17.874

17.536

17.532

4.702

6.474

6.493

9.217

9.215

17.918

18.625

18.622

4.968

6.670

6.261

17.977

5.356

7.088

8.975

17.986

Rb Ss

Sp

Sp

4d

4d

4f

5d

Sd

1

2

1

2

3
2

3
2

5
2

5 7
272

3
2
7
2

4.917

6.887

6.896

7.640

7.642

17.757

17.157

17.166

4.886

6.797

6.886

8.483

8.482

17.860

17.601

17.608

5.292

7.149

6.417

17.946

12.956

5.751

7.618

8.794

17.969

16.185

6s

6p

6p

5d

Sd

4f

1

2

1

2

3
2

3
2

5
2

5 7
27 2

5.304

7.181

7.424

6.059

6.118

17.541

5.241

7.137

7.367

6.736

6.792

17.738

5.886

7.743

5.428

17.077

6.431

8.284

7.930

X
ad /ao3

4((RA,„t „i )
(44)

and they decay to other also nonpenetrating states. Thus,
hydrogenic matrix elements and transition probabilities
can be used; they are given by Green et a/. We must in-

clude, however, the effects of the core polarizability which
can be simply done in this case, as described by Curtis,
by the substitution

( nl
[ /r f

[n'I') ~(nli fr] /n'I')

and a cutoff distance is not necessary.

Effects of spin orbit interaction-

The spin-orbit interaction is a relativistic effect, is pro-
portional to (r ), and becomes more important for the
heavier alkali-metals. In lithium it hardly splits the j= —,

and —, levels in classical spectroscopic studies, whereas for
cesium these splittings are substantial and the two j states
must be treated separately. In terms of the Schrodinger
equation and the electron wave function, the spin-orbit in-
teraction can significantly alter the wave function's
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TABLE II. Lifetimes of Li (in nsec).

This work
620 K Experimental

Other theoretical
NCA" Other

30.04
56.29

30.04
56.04 5S.87 52.7(1.6}'

55.8(2.8)'
48.2(2)'
56(1.7)'

30.32

56.65

30.0'
57.2'
54.5P

56.9q

6s
7$
8s
9s

10s
11$
12$
13$
14s
15s
16s
17$
18s
19s
20s

172.44
271.06
403.30
574.76
783.44

1057.11
1369.49
1745.77
2186.09
2695.43
3278.95
3941.81
4689.03
5525.69
6456.82

164.71
251.36
362.89
501.79
666.46
869.49

1097.54
1361.38
1660.44
1993.76
2363.74
2771.76
3218.25
3704.88
4239.92'

162.39
246.64
354.55
488.27
646.39
839.71

1056.70
1306.57
1588.88
1902.30
2249. 15
2630.62
3046.95
3499.67*
3997.17*

102.5(4.0)'

99(9)"

166.4(8. 1)'
243(17)'
387(31)'

173.2
272.9
405.3
578.6
788.0

1061.4
1374.1

103'
104.0q

175.1q

4p
Sp
6p
7p
8p
9p

10@
11p
125
13@
14@
15@
16@
17@
18@
19@
20@

212.18

391.22
610.25
913.49

1319.45
1848.24
2509.54
3328.00
4310.12
5490.30
6856.38
8270.24

10276.38
12355.00
14702.03
17334.06
20267.71
23518.79

21 1.92

383.94
567.63
792.40

1064.50
1389.97
1769.69
2205.04
2715.92
3293.97
3909.02
4575.10
5436.55
6357.23
742S.06
8721.70

10500.14
14700.59*

378.90
550.19
757.50

1007.97
1307.16
1656.22
2055.05
2523.89
3052.38
3611.23
4222.49
5005.24
5846.45
6824.89
8020.28
9681.98

13769.09

26.9(0.8)'
25.0(1)'
26.2(1)'
31.9(1.9)
27.2(0.4)
26.4(8)g
27.29(4}"

203(8)g
202'
235'
182(6)j

402.6
627.8
940.0

1358.9
1856.1
2587.5
3360.4
3448.9
S663.9

27.2'
26.9q
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This work
620 K

TABLE II. ( Contt'n, ued).

Experimental
Other theoretical

NCA" Other

5d
6d
7d
8d
9d

10d
11d
12d
13d
14d
15d
16d
17d
18d
19d
20d

33.49

63.89
108.63
170.53
252.39
357.02
487.25
656.66
834.96

1059.72
1320.55
1621.12
1964.20
2352.63
2789.27
3276.83
3818.19

33.47

63.64
107.34
166.64
243.56
340.14
458.29
609.50
765.81
959.97

1184.02
1440.69
1732.76 .

2065.73
2448.44
2901.73
3506.67'

14.64

63.47
106.76
165.31
241.05
335.95
451.80
599.68
752.38
941.58

1159.92
1409.94
1694.41
2019.10
2393.53
2840.57
3450.96'

14.9(0.5)'
14.5(0.7)"
13.9(0.5)'
15.0( 1.0)'
14.0(0.7)
16.7(1.0)'
14.60( 13)
32.5(0.9)'
31.0(1)"
33.0(1}'
39.2(2)
42,3(1.5)'

61.5(2.9)'
103.2(4.0)'
171.2(8.9)'
229(14)'
316(25)'
436(44)'
575(56)'

63.70
108.2
169.9
251.2
355.9
485.9
648.2
833.1

14.5'
14.0q

14.0'

35.2'
32.5P

33.5"
32.6'

4f
5f
6f
7f
8f
9f

10f
llf
12f
13f
14f
1Sf
16f
17f
18f
19f
20f

72.34
139.85
239.04
375.93
556.59
787.11

1073.59
1422.17
1840.29
2331.03
2902.44
3560.47
4311.22
5160.82
6115.42
7181.14
8363.92

72.24
138.27
231.03
352.96
506.94
695.99
922.40

1190.20
1503.83
1855.33
2262.79
2726.83
3255.17
3860.86
4569.77
5447.83
6768.67'

72.12
137.21
227.50
345.46
493.71
675.16
891.70

1147.28
1445.97
1778.97
2165.56
2605.62
3106.88
3682.68
4359.89
4208.03
6521.05

72.39
139.9
239.1
376.3
556.1
787.6

1073.5
1419.7
1841.5

'%'. Hansen, J. Phys. B 16, 933 (1983).
J. P. Buchet, A. Denis, J. Desesquelles, and M. Dufay, C. R. Acad. Sci. 2658, 471 (1967).

'W. S. Bickel, I. Martinson, L. Lundin, R. Buchta, J. Bromander, and I. Bergstrorn, J. Opt. Soc. Am.

59, 830 (1969).
R. Vr'. Boyd, J. G. l3odd, J. Krasmskr, and C. Stroud, Opt. Lett. 5, 117 (1980).

'T. Anderson, K. A. Jessen, and G. Soerensen, Phys. Lett. 29A, 384 (1969).
K. C. Brog, T. G. Eck, and H. Wieder, Phys. Rev. 153, 91 (1967).

gW. Nagourney and %'. Happer, Phys. Rev. A 17, 1394 (1978).
"A. Gaupp, P. Kuske, and H. J. Andrae, Phys. Rev. A 26, 3350 (1982).
'A. N. Filipov, Z. Phys. 69, 526 (1931).
'R. C. Isler, S. Marcus, and R. Novick, Phys. Rev. 187, 76 (1969).
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"J.Heldt and G. Leuchs, J. Opt. Soc. Am. 51, 1058 (1961).
'F. Karstensen and J. Schramm, Z. Phys. A 195, 370 (1966).

D. Schulz-Hagenset, H. Harde, W. Brandt, and W. Demtroeder, Z. Phys. A 282, 149 (1977).
"A. Lindgaard and S. E. Nielsen, At. Data Nucl. Data Tables 19, 533 (1977).
'O. S. Heavens, J. Opt. Soc. Am. 51, 1058 (1961).
C. Laughlin, M. N. Lewis, and Z. J. Horak, J. Phys. B 6, 1953 (1973).
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(U.S.), Natl. Stand. Ref. Data Ser. No. 4 (U.S. GPO, Washington, D.C., 1966), Vol. 1.
'S. Garpman, Phys. Scr. 12, 295 (1975).

behavior at small r, especially its slope, which also de-
pends on the energy. Thus in the traditional outward in-
tegration approach a possible error near the origin propa-
gates in an unpredictable way towards large r. This is
especially true if a non-self-consistent method is used, i.e.,
when the energy parameter is kept constant. In the
present method the integration is performed inwards using
the experimentally available energy levels, and the analyti-
cally known asymptotic boundary conditions [cf. Eq. (6)].
Therefore, the wave function is accurately described for
most of the distances, independent of what potential is
used to describe the core and polarization effects. The
latter normally extend to no more than 10 a.u. whereas
the majority of the states studied have an expectation
value (r ) well beyond this number. In the low rregion-
we still use a very accurate potential, obtained by fitting
experimental energies, or, in the worst case, by a Hartree-
Slater potential, which for all practical purposes is a very
good approximation to the "exact" potential. Still, any
departure from the "exactness" consistent with the experi-
mental energy will cause the wave function to miss pass-
ing through the origin, though the latter is a physical re-
quirement. We avoid this difficulty by matching the in-
ward integration with the outward integration, from the
origin, at the innermost classical turning point (cf. Sec.
III B).

Exactly because of the inward nature of our approach,
the spin-orbit interaction potential, being mainly of short
range, has minimal effects on the obtained results. This
should also be true for the similar approach by Lindgaard
and Nielsen. " Nevertheless, effects of the spin-orbit in-
teraction are inherently included into the treatment
through the experimental energies employed, which de-
pend on it directly.

2. Effects of core polarization

As discussed in Sec. III, core polarization affects the
calculation of transition matrix elements, which is central
to our work, in two ways: first, it changes the wave func-
tions and their energies themselves, and, second, it
changes the effective transition operator. The latter is
usually more important. In the actual calculations we
used the parametric potentials given by Bottcher' for Li
and by Weisheit' for Na, K, Rb, and Cs bemuse they
were readily available. Due to the nature of our treat-
ment, the polarization potential, with leading term 1/r,
has a small effect on the wave function. We found, how-

ever, that the change in the dipole operator was signifi-
cant. We investigated the two approaches to the cutoff
function z(r) [cf. Eq. (26)], i.e., Eqs. (27) and (29), for the
lithium atom. They give different results when applied
with the same value for the cutoff radius; the results be-
come comparable, however, when the Hartree-Slater-
potential core radius is used in conjunction with (27),
and the expectation value (r ) of the outermost occupied
orbital (of the core) is used in (28). There has been some
controversy in the literature about the arbitrariness of
choice for the cutoff radius r, . We feel that the choice of
r, to be the Hartree-Slater, or Dirac-Slater for heavier
atoms, core radius of the atom, is unique as well as physi-
cal enough and we have implemented it for Li. Our find-
ings concerning the use of ad(co) rather than ad(0) are
that the results are only slightly different, as expected for
the transitions of our interest.

3. Effects of blackbody radiation

Since we are dealing with the alkali metals, tempera-
tures significantly higher than room temperature (300 K)
are needed to produce enough metal vapor so that a suffi-
cient experimental signal-to-background ratio can be ob-
tained. A review of all the experimental investigations
shows that the temperatures at which data were obtained
ranged from 620 to 720 K for Li, to at least 350 K for Cs,
and one work was at 5 K. In the following tables we list
the lifetimes calculated at absolute zero, the standard
reference point, and at two other temperatures, at least
one of which is the most commonly employed in the

. respective experimental studies. The temperatures are
well in excess of the room temperature at which the
pioneering work of Gallagher and Cooke was per-
formed, and show that the population depletion progresses
rapidly with the increase of temperature, i.e., effects more
drastic than those reported in Ref. 23 are seen even at
lower Rydberg states with n =15. In our calculations we
routinely included contributions from the blackbody-
radiation-induced transitions to all dipole-accessible lower
states and to 15—20 higher states. The number of higher
states was so determined only for numerical convenience,
and we made sure that contributions from further higher
states were less than 1%. This number should be in-
creased at higher temperatures as well as for higher prin-
cipal quantum number n. Actually, for the highest levels
considered, inclusion of all states that practically contri-
bute to the BBR depletion of population becomes prohibi-
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TABLE III. Lifetimes of Na (in nsec).

State
nl j 0 K

This work
410 K 600 K Experimental

Other theoretical
NCA' Other

4s—1

2

5s—1

2

37.71

77.64

37.71 37.71

77.30 71(5)'

39.54 40.5'

88.94"
37"

6s—
2

7s 1

2

8s—1

2

9s—1

2

10s 1

11s 2
1

12s

13s 1

14s 1

15s 1

16s 1

17s 1

18s 1

19s 1

20s 1

2ls 1

148.12

256.34

410.31

618.17

888.23

1228.78

1647.63

2152.78

2753.05

3456.34

4270.55

5204.35

6265.83

7462.40

8804.24

10295.91

146.63

246.88

381.21

553.46

767.22

1025.35

1339.42

1684.78

2091.20

2552.58

3071.52

3651.16

4299.35

5030.01*

5901.01*

7908.27*.

143.21

235.82

358.10

512.89

702.80

929.49

1194.74

1499.98

1847.11

2238.57

2676.16

3162.37

3704.87

4317.94*

5062.76*

7061.79*

269(10)'

276(14)

393(90)'

465(40)

618(43)'

713(76)

1024(49)

1280(130)'

2270(170)b

7420( 170)

8900(400)

11 300(600)

152.5

263.2

422. 1

634.6

913.5

1262.8

1690.0

79.3"

159.4"

160"

151.2"

278.9"

261.8"
280"

451.9"

418.2"
450'

683.9"

633.7"
690'

900"
1000"

1250'

1400'

1900"

2180'

2004"
2300'

7580d

8940d

10 500

3p 16.14 16.14 16.14 16.40(3 }'

17(2)
17(2)g

17.3(1.0)"
14.0(2)'
15.9 '

16.0(2)"

17.0'
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TABLE III. (Continued) .

State
nl j 0 K

This work
410 K Experimental

Other theoretical
NCA' Other

3p

4p—1

4p-
5p

5p

6p
1

6p 2

7p

7p

8p z
1

8p 2

9p 2

9p 2

10p 2
1

10p
3

11p 2

11p 2

12p 2
1

12p 3

13p—

13p—

14p 2

14p—

16.09

107.19

106.45

369.86

366.36

918.90

908.69

1866.17

1843.52

3333.76

3270.98

5059.11

5136.77

7264.74

8076.90

10025.73

11 388.64

'13 407.10

15 639.35

17472.88

20 791.89

22 286.49

26 918.84

16.09

107.15

106.41

366.71

363.25

860.65

851.25

1463.27

1511.42

2112.26

2257.86

2642.85

3007.34

3203.44

3956.74

3799.36

4866.25

4417.46

5895.48

5046.97

7020.15

7598.35

8242.55

16.09

107.03

106.29

357.69

354.38

773.57

763.99

1163.05

1244.25

1582.58

1755.43

1932.53

2271.90

2314.43

2920.86

2724.06

3563.61

3149.04

4292.39

3583.22

5091.57

5534.95

5960.94

17(2)

17(2)g

17.3( 1.0)"
14.0(2)'
15.9'
16.0(5)'
16.1(2)
16.0(3)"
16.12(22)'

99.5(3)~

125(10)

98(3)P

345(43)q

890(90)q

1450(100)q

16.49

101.8

342.1

836.7

1676.0

2951.0

4688.0

7014.3

10 184

13 812

16.9'

17"

106'

83.15"
103"
100"

353'

351"
330'

864

770"

1750"

1500'

2600'

4100"

6000'

8500'

1200"

1500"
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TABLE III. (Continued).

State
nl j 0 K

This work
410 K Experimental

Other theoretical
NCA' Other

16p

16p

17p

17p

1

2

3
2

1

2

3
2

18p ~
1

18p

19p

19p

20p

20p

3
2

1

2

3
2

1

2

3
2

15p z

15p ~

27 844.92

34096.89

34 817.45

43 033.69

42 821.85

51 891.45

51 922.58

62 674.89

62 186.16

74 843.01

73 653.29

89 736.83

8721.48

9567.34

10291.80

11 047.54

12 043.49

12 760.20

14 113.02

14 879.12

16779.35*

17 648.79

21 033.13*

22 263.54*

6345.72

6902.77

7492.36

7946.34

8775.12

9198.90

10300.47

10748.14

12 289.06*

12 794.90

15 538.60

16261.30*

3d 2
3

3d 2

4d ~
3

4d ~
5

Sd ~

5
2

6d z

6d ~

7d 2
3

7d

8d ~

8d ~
5

9d ~
3

9d ~

10d ~

10d 2

19.44

19.47

52.37

52.50

108.57

108.87

193.43

194.02

312.43

313.41

471.00

472.53

674.91

677.12

930.12

956.97

19.44

19.47

52.35

52.47

108.33

108.63

191.71

192.27

305.77

306.40

453.64

450.82

638.79

640.64

864.65

906.51

19.44

19.47

52.30

52.42

107.68

107.98

188.54

189.03

297.43

297.44

436.99

430.83

610.11

611.74

819.55

868.27

52.1(3)'
53.5(3)'
57(3)'

120(14)b

206(14)"

176(10)'

279(15)'
324(32)"

449(50)'
502(39)"

643(47)'
720(67)"

971(35)b

19.89

52.42

107.7

191.0

308.1

463.4

664.6

914.6

20.2'

21'

55'

53.2'

53.5'

43.3"

51.9"

110"

~ 110"
107"

190w

200"

317.3"

306.1"
320'

478.3"

460.4"
490"

681.8" .
658"
710'

947"

980'
920~
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TABLE III. (Continued).

State
nl 0 K

1241.20

This work
410 K

1133.30

600 K

1066.74

Experimental
Other theoretical

NCA' Other

1300'

11d 2

12d 2

1~ 2

13d ~

13d 2

14d ~

14d 2

15d 2

15d 2

16d 2

16d 2

17d 2

17d-
18d 2

18d 2

19d 2

19d 2

20d 2

20d 2

1271.58

1611.14

1647.76

2050.45

2095.07

2562.46

2616.62

3152.96

3218.21

3827.38

3934.26

4591.28

4711.20

5450.22

5588.26

6409.87

6569.10

7475.23

7690.98

1163.89

1445.58

1474.48

1808.10

1832.64

221.58

2213.96

2694.43

2735.28

3229.78

3403.68

3835.56

. 3930.21

4526.04

4538.96

5333.56*

5469.04

6406.13*

6869.24*

1098.10

1352.05

1378.50

1680.81

1680.81

2053.24

2026.99

2479.54

2512.84

2961.43

3151.77

3507.30

3594.69

4133.16

4116.10

4877.02*

5007.04

5921.31*

6457.03*

1650(150)

2120(400)

4460(220)

5750(280)

6900(340)"

7700(400)

1217.8

1752.4

1578"
1590~

2087

2020"

4480

5310

6250

7290

4f 2

4f —,

5f 2

5f —',

6f 2

6f 2

7f T~

7f —,

8f —,
'

8f —,

9f T~

9f —,

10f ~

lof 2

llf 2

llf ~

12f 2

12f 2

71.24

71.24

137.17

137.17

233.87

233.43

367.25

359.89

543.18

538.41

767.67

765.37

1046.09

1042.51

1385.46

1380.45

1790.90

1784.27

71.24

71.24

136.91

136.45

231.65

230.01

358.69

354.53

521.39

517.03

723.31

721.46

967.37

959.17

1257.86

1230.35

1597.07

1469.18

71.17

71.17

135.83

134.17

226.88

226.13

346.89

346.11

498.98

494.50

686.18

683.77

910.88

898.17

1176.53

1134.77

1484.69

1308.45

71.62

137.4

233.9

367.3

542. 1

767.0

1044.0

1435.1

1788.1

71'

140'

230"

370'

540'

760'

1030'
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TABLE III. (Continued).

State
nl j
13f 2

13f —,

14f —,

14f 2

15f ~

15f 2

16f —,

16f T~

17f —',
17f —',

18f —,

18f T~

19f ~

19f T~

20f 2

20f T~

0 K
This work

410 K

2268.56

2260.06

2824.44

2813.82

3464.60

3480.15

4195.11

4243.85

5021.57

5109.90

5950.15

6084.25

6986.86

7173.49

8137.23

1987.95

1551.69

2433.93

1854.86

2945.96

2252.31

3528.60

2687.96

4193.36

3183.39

4961.98

3782.02

5887.95

4762.75

7181.52*

8383.30 7948.16*

600 K

1837.45

1305.62

2237.73

1550.06

2699.08

1881.47

3224.54

2242.28

3826.76

2654.26

4530.87

3162.00

5401.17*

4064.00

6703.47*

7668.90*

Experimental

2270(400)'

2640(450)'

3540(500)'

Other theoretical
NCA' Other

2260~

2810~

3450~
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tively large to include in detail completely. We have,
therefore, denoted by an asterisk states for which the BBR
effect has not been completely accounted for. At this
stage, the discrete states should be described as belonging
to a "semicontinuum" spectrum and the oscillator

strengths should be obtained by simple interpolation be-
tween the lower- n states values and a few "real-
continuum" photoionization cross section values. Since in
this case the states are close to the ionization threshold,
contributions from the continuum should be included,
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TABLE IV. Lifetimes of K (in nsec).

State
nl j 0 K

This work
355 K 600 K Experimental

Other theoretical
NCA" Other

5s—1

2

6s—1

2

7$ 1

2

18s—
2

9s—1

2

10s 1

11s 2
1

12s z
1

13s z
1

14s 1

15$ 1

16s 1

17s 1

18s 2
1

19s 1

20s 1

21s 1

46.50

87.12

158.83

267.23

419.55

623.32

886.09

1215.42

1618.96

1633.68

2644.04

3358.56

4105.30

4916.01

5712.63

6846.00

7961.21

46.50

87.07

157.58

259.58

396.14

571.17

788.30

1050.79

1361.68

1449.54

2118.65

2617.08

3133.55

3689.52

4249.18*

5029.51*

6462. 16*

46.49

86.49

152.77

245. 15

366.59

519.78

706.86

929.82

1190.43

1312.19

1816.07

2217.71

2635.09

3084.20

3542.67

4176.45

5617.13*

68(9)'

165(12)'

260(14)

441(18)

600(13)

910(12)

46.38

87.84

160.3

269.2

423.4

628.3

895.4

1227.0

46.7'

46'

90.9'

87"

88

160"

270"

420'

6203

870'

12003

1650'

2200'

4p—1

4p 2

5p—1

5p—3

6p 2
1

6p
3

7p
1

7p
3

8p

8p 2
3

9p

9p 2

27.51

27.16

127.06

124.02

321.67

312.77

619.47

601.80

1040.23

1010.51

1607.54

1561.31

27.51

27.16

127.05

124.02

319.86

311.04

590.93

574.80

920.67

897.50

1311.20

1280.89

27.51

27.16

126.86

123.82

306.33

298.21

523.75

511.19

772.58

756.60

1061.84

1042.70

27.3(3.0)

27.8(5)

28(2)'

27.8(5)'
26.0(5)'

120(4)'

140.8(1.0)'
133(3)'

310(15)

26.63

121.1

298.7

572.0

957.4

1477.6

27.1'

29"

26.9'

28"

123'

130'

120'

1303

298'

320'

300'

3153

620'

600'

1050'

1000'

1600'

1550'
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TABLE IV. (Continued).

State
nh j 0 K

This work
355 K Experimental

Other theoretical
NCA" Other

lop

10p

lip
lip
12p

12p

13p

13p

14p

14p

15p

15p

16p

17p

17p

18p

18p

19p

19p

20p

20p

1

2

3
2

1

2

3
2

1

2

3
2

1

2

3
2

2

3
2

1

2

3
2

3
2

1

2

3
2

j
2

3
2

1

2

3
2

1

2

3
2

2345.84

2279.41

3267.54

3173.43

4402.92

4279.78

5779.52

5608.89

7567.98

7336.27

9414.94

9131.65

11 597.40

11 237.34

14 145.22

13 694.08

16630.73

16621.73

19 628.10

19617.77

23 069.96

23 058.04

1769.92

1733.80

2295.11

2250.66

2892.11

2842. 13

3601.98

3539.03

4524.24

4445.57

5239.54

5156.16

6132.64

6036.33

7129.79

7018.94

8155.28

8153.09

9367.26*

9364.89

10 863.09

10 860.43*

1396.11

1374.56

1773.56

1749.30

2196.43

2170.58

2703.75

2671.11

3375.80

3334.65

3844.69

3801 ~ 39

4453.73

4404.31

5130.52

5073.99

5847.12

5845.96

6690.54

6689.29

7752.66

7751.28*

2153.9

3002.4

4088.5

2250'

2200'

31503

3050'

4300'

4200'

S650"

5500'

3d 2
3

3d

4d 2

4d—5
2

5d 3

5d 2
5

6d 2

6d 2

7d 2
3

7d 5

8d 2
3

8d 2

9d 2

45.24

45.85

285.56

291.18

767.41

769.63

1180.58

1168.54

1600.98

1577.12

2117.36

2080.88

2763.05

45.24

45.85

284.94

290.54

748.75

750.83

1093.01

1082.65

1399.34

1381.25

1755.38

1730.68

2182.80

45.24

45.84

282.06

287.54

691.82

693.55

947.06

939.47

1175.78

1163.41

1448.70

1432.54

1777.07

42(3)g

61Q(9Q)b

890(60)"

1210(100)b

1590( 130)

2040(300)

41.64

284.4

720.1

1066.2

1416.3

1844.4

40'

39'

40.8'

283'

280'
286'

710'

1050j

1500"

19103

24503
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TABLE IV. (Continued) .
State
711 J

9d 2

10d 2

OK

2715.17

3555.S0

This work
355 K

2153.68

2686.29

600 K

1758.79

2161.45

Experimental
Other theoretical

NCA" Other

2332.0

10d 2

11d ~

3492.12

4520.80

2651.41

2373.54

2140.35

2604.68

3116.3

11d 2

12d 2

13d 2

13d ~

14d 2

14d 2

15d ~

15d ~

16d 2

16d 2

17d

17d

18d ~

18d 2

19d 2

19d 2

4432.58

5668.12

5574.14

6990.31

6874.17

8829.85

8683.40

10435.45

10262.00

13 204.24

12 985.80

15741.69

15 648.07

19222.24

19026.89

24 133.76

23 764.69

3229.01

3941.46

3900.13

4690.54

4647.19

5667.30

5635.04

6540.14

6578.93

7881.61

- 7270.61

9156.89

9025.95

10 872.70

10495.55'

. 15 192.10

16 354.88

2578.25

3103.01

3080.90

3662.76

3642.66

4371.03

4368.87

S024.76

5103.79

5971.31

5410.54

6899.59

6787.13

8135.15

7795.59'

11723.72

13002.69

5316.4

5400~

4f-
4f —,'

5f z

5fl
6f —,

'

6f —,

7f 2

7f 2

Sf 2

Sf 2

9f 2

9f —,
'

10f 2

10f 2

llf 2

llf 2

12f 2

12f

70.65

125.70

12S.69

205.22

205.20

313.04

314.00

456.74

456.68

638.03

637.93

863.58

863.43

1137.66

1137.46

1465.08

1467.78

70.63

125.34

125.37

203.41

203.39

308.16

308.10

442.75

442.33

610.43

607.35

815.30

790.82

1060.06

973.49

1347.76

1237.64

124.03

124.02

198.65

198.62

297.26

296.99

422.67

420.86

577.71

568.77

765.80

716.32

989.02

848.30

1249.64

1075.16

62.93

113.5

186.7

105'

180'
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TABLE IV. (Continued).

State
nl j 0 K

This work
355 K 600 K Experimental

Other theoretical
NCA" Other

13f —,
'

13f -',

14f —,

14f 2

15f T~

15f ~

16f T~

16f 2

17f —,

17f —,

18f 2

18f 2

1849.24

1852.98

2298.63

2305.02

2815.43

2826.23

3404.69

3420.68

4071.00

4093.75

4819.61

4850.25

1683.59

1528.48

2074.98

1868.74

2525.78

2257.33

3050.52

2711.73

3670.70

3260.67

4473.91*

4087.64

1555.16

1319.53

1911.70

1607.74

2323.98

1936.86

2810.86

2328.20

3401.53

3816.87

4225.39*

3649.84*

'B. R. Bulos, R. Gupta, and W. Happer, J. Opt. Soc. Am. 66, 426 (1976).
"T.F. Gallagher and W. E. Cooke, Phys. Rev. A 20, 670 (1970).
'J. Ney, Z. Phys. 223, 126 (1969).
"J.K. Link, J. Opt. Soc. Am. 55, 426 (1976).
'R. W. Schmieder, A. Lurio, and W. Happer, Phys. Rev. 173, 76 (1968).
S. Svanberg, Phys. Scr. 4, 275 (1971).
V. Teppner and P. Zimmermann, Astron. Astrophys. (Germany) 64, 215 (1978).

"A. Lindgaard and S. E. Nielsen, At. Data Nucl. Data Tables 19, 533 (1977).
'O. S. Heavens, J. Opt. Soc. Am. 51, 1058 (1961).
'P. F. Grudzev and V. I. Denisov, Opt. Spektrosk. 52, 15 (1982) [Opt. Spectrosc. (USSR) 52, 8 (1982)].
"B.Warner, Mon. Not. R. Astron. Soc. London 139, 115 (1968).

probably in the same fashion as in the works of Farley
and Wing, ' and Spencer and co-workers. We must
remember, however, that as n increases, the probability of
collisional depopulation of these states also increases, and
the blackbody-radiation effect becomes only one of the
competing processes. I

B. Specific comparisons

Below we review the level of agreement between our
predictions, the available experimental data, and other
theoretical calculations. For the sake of convenience, we
have grouped the relevant references at the end of each
table. From the theoretical works we single out four,
when available, as having direct relevance here. (i) The
numerical Bate's-Darngaard predictions of Lindgaard and
Nielsen, "which are expected to be the closest to ours. (ii)
The results of Anderson and Zilitis, ' who used experi-
mental energies, numerical outward integration with a
central-field potential, and power-expansion solutions at
asymptotic distances. (iii) The CA-type calculations of
Gruzdev and Denisov who also included polarization ef-
fects. (iv) The calculations of CJounand, who used a dif-
ferent cutoff criterion for the double summation (cf. Sec.
II).

The experimental energy term values were taken from
Moore's tables. They were complemented by more re-

cent tabulations, wherever available, and by extrapolations
using the available quantum defects for other states.

1. Lithium

The experimentally available energy levels by Moore
and Johansson do not clearly distinguish between the
fine-structure states j= —, and —,. Neither do the lifetime
measurements, because the splittings are relatively small.
We have thus used the multiplet centers of gravity. There
exist a number of experimental works on the lifetimes of
the lowest two s, p, and d states, most notably the one by
Gaupp and co-workers, claiming a high accuracy for 2p.
Our value is very close to it. Hansen has recently mea-
sured the lifetimes of a significant number of s and d
states, at temperatures 620 and 720 K. Our predictions at
the corresponding temperatures fall within his experimen-
tal errors for most of his values. The cutoff radius for the
dipole matrix element [cf. Eq. (27)] was taken equal to
r, =1.4862 a.u. , the Hartree-Slater prediction for the
atomic core radius.

2. Sodium

Sodium is probably the most widely used alkali-metal
atom by experimentalists, for studies of varying purposes.
Though the recent tabulation of energy levels distin-
guishes between the j=—,

' and —, states, the more sys-

ternatic experimental lifetime investigations do not, and,
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TABLE V. Lifetimes of Rb (in nsec).

State
nl j 0 K

This work
350 K 460 K Experimental

Other theoretical
NCA' Other

6s 1

2

7s 1

2

8s 1

2

9s 1

2

10s 1

11s 2
1

12s z
1

13$ 1

14s z
1

15s 1

16s 1

17s 1

18s z
1

19s 1

20s 1

45.21

86.59

158.34

266.36

417.84

620.16

879.83

1207.57

1609.28

2092.32

2664.27

3332.67

4105.03

4988.76

5991.36

45.21

86.55

157.09

258.77

394.68

568.81

784.09

1046.35

1357.41

1720.32

2138.50

2616.68

3163.33*

3806.88

5032.60*

45.21

86.39

155.24

252.52

381.40

545.24

746.35

989.55

1276.46

1609.28

1991.02

2426. 14

2923.31*

3513.70*

4755.94*

46(5)'

88(6)'

91(11)b

154(7)'

153(8)'

258(13)'

245(50)"

430(20)'

532(32)'

764(46)'

770(150)'

1260(250)"

2190(500)"

2600(600)

3300(700)"

51.47

97.72

178.4

299.5

470.5

698.3

993.6

51.3"

5 1x

99w

96x

98~

170'

290'

460'

427'

680'

628'

1000"

887'

1400"

1210'

1850'

1600'

2400'

2070'

2620'

3260'

4000'

4850'

5810'

5p

5p

6p

6p
3

27.04

25.69

124.03

114.03

27.04

25.69

124.02

114.02

27.04

25.69

123.94

113.94

30(3)

29.4(7)g

27.8(9)"
28.5(1.1)'

26.0( 1.8 )'

25.5(5)
25.8(8)g

27.1(1.4)
27.0(5)'
28.2(9)

125(4)'

131(5)'

112(3)'

111(3)"
118(8)"
114(6)'
109(7)'

26.51

99.25

28.2"

30x

267
29x

110"
120'

105'
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TABLE V. (Continued).

State
nI j 0 K

This work
350 -K 460 K Experimental

Other theoretical
NCA" Other

7p

7p

8p
1

8p z

9p 2

9p 2

10p 2
1

10p z

11p 2
1

11p z
3

12p
1

12p
3

13p

13p 3

14p 2
1

277.39

256.72

496.36

463.00

798.84

749.21

1201.44

1130.45

1720.42

1622.84

2369.41

2238.14

3167.98

2996.25

4129.11

275.51

255.05

479.79

448.73

739.22

697.56

1058.64

1005.60

1443.69

1378.76

1896.92

1818.78

2424.42

2332.14

3027.35

272.30

252.32

464.42

435.57

702.35

665.34

991.75

946.20

1336.90

1282.73

1739.45

1675.83

2204. 15

2130.35

2731.45

272(15)'

246(10)'

240(20)I'

233(10)'

400(80)q

665(40)'

1000(60)'

1450(85)'

1550(200)'

1970(110)'

221..1

403.6

659.3

1001.9

1443.6

1998.2

255"

260'
236"

240'

480"

440"

770"

720"

1150"

1190"

1100"
1190'

1550'

1710'

2220"

2250'

2150"

2400'
2220"

3000'

3230'

2900"

3900'

14p
3

15p 2
1

15p 3

16p

16p 2

17p

17p 3

18p 2

18p

19p

19p 3

3904.52

5269.01

4989.02

6604.02

6246.36

8149.23

7708.48

9933.04

9398.54

12 325.87

11 645.23

2917.38

3707.57

3584.04

4471.09

4327.30

5321.22

5156.94

6765.67

6517.17

7772.86*

7555.89

2644.72

3322.19

3226.81

3981.79

3872.65

4712.82

4589.45

6043.17*

5843 ~ 19

6862.02*

6705.66

2600(400)'

6400(1300)'

3950"
4230'
3750"

5410'

6800'

7930"
8410'

10200'

12 300'

4d 82.27 82.27 82.27 83.4'

86(6)'

85.01 78.7"
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TABLE V. (Continued)

State
nl j 0 K

This work
350 K Experimental

Other theoretical
NCA' Other

4d

5d

5d

6d

6d

7d

7d

8d

8d

9d

9d

10d

10d

11d

11d

12d

12d

13d

136

14d

14d

15d

15d

16d

16d

176

17d

18d

18d

5
.2

3
2

5
2

3
2

5
2

3
2

5
2

3
2

5
2

3
2

5
2

3
2

5
2

3
2

5
2

3
2

5
2

3
2

5
2

3
2

5
2

3
2

5
2

3
2

5
2

3
2

5
2

3
2

5
2

88.74

240.03

231.78

253.62

243.72

331.08

319.57

455.48

440.90

625.98

606.96

847.17

822. 10

1126.33

1092.41

1461.07

1418.92

1866.14

1813.48

2358.95

2275. 11

2911~ 81

2809.39

3564.98

3439.99

5156.45

4976.55

5156.45

4976.55

88.74

239.72

231.48

251.32

241.58

323.65

312.72

438.01

424.77

591.42

574.94

785.96

765.20

1025.91

999.00

1307.36

1275.25

1640.82

1602.34

2038.18

1978.16

2477.91

2407.09

2992.39

2908.58

4572.38

4436.00*

4572.38*

4436.00

88.74

238.96

230.76

248.60

239.10

318.01

307.55

427.86

415.39

574.65

559.32

759.87

740.80

987.16

962.71

1252.66

1223.68

1565.86

1531.45

1937.41

1883.86

2347.81

2285 ~ 10

2827.23

2753.52

4387.62

4263.25*

4387.62*

4263.25*

89 5'

94(6)'

205(40)'

230(23)'

237(15)'

285(16)'

325(22)'

388(25)'

421(25)'

515(30)' .

568(35)'

565( 120)"

758(60)'

720(120)

980(80)'

975(200)

1250(300)"

1400(300)

3740(700)

53oo(11oo)'

266.2

295.1

386.5

532.4

722.8

988.9

1311.3

1676.9

78"

241"

241"

255"

300'

400'

S60'

800'

750"

1040'

1070',

1400"

1410'

1820"

1830'

2300"

2330'

2910'

3610'

4400'

5300'

6320'
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TABLE V. (Continued).

State
nl j 0 K

This work
350 K 460 K Experimental

Other theoretical
NCA' Other

4f
4f
5f
5f
6f
6f
7f
7f
8f
8f
9f
9f

10f

10f

13f

13f
14f

14f

15f

15f

16f 2

16f 2

59 44

59.44

106.12

106.09

173.94

173.84

267.11

266.91

389.72

389.40

546.08

545.58

739.99

739.27

976.06

975.08

1258.24

1256.95

1590.78

1593.40

1977.75

1979.43

2423.41

2423.88

2937.08

2931.09

59.42

59.43

105.86

105.83

172.43

172.34

262.31

262. 12

378.48

378.11

524. 10

522.94

701.95

697.12

915.84

888.73

1169.66

1088.05

1468.79

1377.01

1822.43

1657.53

2270.20

1656.73

2756.49

2639.78*

59.39

59.40

105.48

105.44

170.96

170.87

258.76

258.57

371.73

371.22

512.81

510.89

684.64

676.96

891.18

852.70

1136.35

1030.04

1425.91

1305.48

1770.37

1557.50

2218.47

1478.75

2696.82

2550.70*

550(80)"

680( 100)"

900(140)"

1620(240)"

1960(290)"

57.21

101.1

164.8

252.8

367.6

515.6

697.8

918.2

1190.0

53x

96x

160x

245'

360'

500'

506'

680"

686'

890'

904'

1140"

1170'

1470'

1830'

2240'

2710'

'J. Marek and P. Muenster, J. Phys. B 13, 1731 (1980); note that columns h and i should be inter-
changed in Table I of this work.
B.R. Bulos, R. Gupta, and W. Happer, J. Opt. Soc. Am. 66, 426 (1976).

'H. Lundberg and S. Svanberg, Phys. Lett. 56A, 31 (1976).
F. Gounand, M. Hugon, and P. R. Fournier, J. Phys. (Paris) 41, 119 (1980).

'J. Marek (private communication).
J. D. Feichter, J. H. Gallagher, and M. Mizushima, Phys. Rev. 164, 44 (1967).
A. Gallagher and E. L. Lewis, , Phys. Rev. A 10, 231 (1974).

"G. Stephenson, Proc. Phys. Soc. London, Sect. A 64, 458 (1951).
'E. L. Altman and S. A. Kazantsev, Opt. Spectrosk. 28, 805 (1970) [Opt. Spectrosc. (USSR) 28, 432
(1970)].
'A. I. Lupascu, I. M. Popescu, and St. St. Tudorache, Rev. Roum. Phys. (Rumania) 22, 923 (1977).
"R.W. Schmieder, A. Lurio, W. Happer, and A. Khadjavi, Phys. Rev. A 2, 1216 (1970).
'J. K. Link, J. Opt. Soc. Am. 56, 1195 (1966).

H. A. Schuessler, Z. Phys. 182, 289 (1965).
"G. Belin and S. Svanberg, Phys. Scr. 4, 269 (1971).
'H. Bucka, B. Grosswendt, and H. A. Schuessler, Z. Phys. 194, 193 (1966).
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TABLE V. (Continued).

"H. Bucka, G. zu Putlitz, and R. Rabold, Z. Phys. 213, 101 (1968).
qG. zu Putlitz and K. V. Venkataramu, Z. Phys. 209, 470 (1968).
'F. Gounand, P. R. Fournier, J. Cuvellier, and J. Berlande, Phys. Lett. 59A, 23 (1976).
'V. Teppner and P. Zimmermann, Astron. Astrophys. (Germany) 64, 215 (1978).
'C. Tai, %'. Happer, and R. Gupta, Phys. Rev. A 12, 736 (1975).
"M. Hugon, F. Gounand, and P. R. Fournier, J. Phys. B 11, L605 (1978).
'A. Lindgaard and S. E. Nielsen, At. Data Nucl. Data Tables 19, 533 (1977).
"O. S. Heavens, J. Opt. Soc. Am. 51, 1058 (1961).
"P. F. Grudzev and V. I. Denisov, Opt. Spektrosk, 52, 15 (1982) [Opt. Spectrosc. (USSR) 52, 8 (1982)].
~B. %amer, Mon. Not. R. Astron. Soc. London 139, 115 (1968).
'F. Gounand, J. Phys. (Paris) 40, 457 (1979).
"E. M. Anderson and V. A. Zilitis, Opt. Spektrosk. 16, 177 (1965) [Opt. Spectrosc. (USSR) 16, 99
(1965)]; 16, 382 (1965) [16, 211 (1965)].

TABLE VI. Lifetimes of Cs (in nsec).

State
nl j 0 K

This work
350 K 600 K Experimental

Other theoretical
NCA" Other

17S 2 48.17 48.16 49(4)' 57.35 56 8ee

8s—1

2 90.08 96(14)"

87(9)'

106.5

13s 1

14s

15s

16s 1

17s

18s 1

164.30

630.26

891.51

1217.67

1618.20

2093.07

2656.00

3317.98

162.82

1055 ~ 81

1367.09

1727.05

2146.34*

2645.63

711.29

933.63

1495.31

1843.53*

2263.28

231(35)"

147(15)'
167(3)'
160(8)'

260(12)'

270(5)'

343(22)

411(8)"

545(30)

571(15)g

959(50)'

319.2

498.2

192ee

180

167
189hh

300"

271'
324"

416
509"

700

610
75811

1000

866"

1080"

1450

1267
1486"

1900

1984"

2450
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TABLE VI. (Continued).

State
nl j 0 K

This work
350 K Experimental

Other theoretical
NCA Other

6p z

6p ~

7p

7p

8p—1

8p 2

9p 2

9p 2

10p

10p 2

11p

11p z

33.66

29.48

159.30

133.80

363.32

318.47

654.13

593.97

1050.77

976.60

1573.01

1483.89

33.66

29.48

159.14

133.68

360.74

316.74

636.36

580.18

985.02

921.00

1407.73

1337.77

33.66

29.48

158.42

133.24

350.89

309.47

592.10

543.29

877.23

826.47

1210.58

1157.69

34h

34.0(6)'

28(2P

3o.s(7)'
29.7(2)
29.8(2)'

32.7(3)

1ss(s}"
165(6)'
158(3)'
158(5)"
158(5)q

136(4)'

136(4)"
135(3)
122(2)'

131(4)"
118'
125'

111(6)'
135(1)
134.0(2.8 )"

134(3)'

330(30)'

307(14)"
334(21)"

31o(s)"

274(12)"
318(18)"
240(20)'

575(35)"

502(22)"

575(30)"
390(30)'

920(50)~

900(40)~

30.67

113

264.9

264.9

498.0

498

825.6

1264.9

3see

'

38ff

3411

30 9"
34ff

3011

138"
16O"

169gg

155hh

130"

121"
106"
13S"
1 10hh

350(?)

331

39O"

293"

267"

234"
1605
32O"

73O"

526"

61s"
420"

12OO"

837"

1O2O"

670"

18OO"

1236"

1SSO"

992"
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TABLE VI. (Continued)

State
nI j
12p z

12p z
3

13p—1

13p 2
3

14p
1

14p
3

15p 2
1

15p z
3

16p z
1

16p z

17p z
1

17p
3

18p z
1

18p z
3

0 K

2241.49

2133.34

3074.53

2945.59

4092.58

3937.27

5318.31

5128.16

6764.09

6530.19

8459.33

8174.00

10426.53

10069.29

This work
350 K

1909.22

1832.43

2495.41

2412.84 ~

3177.04

3087.80

3975.10

3876.16

4923.41*

4819.93

6149.40

6066.39*

8047.46*

7869.89*

600 K

1598.98

1543.69

2050.23

1993.45

2574.37

2516.12

3190.73

3129.51

3934.28

3878.47

4937.43*

4919.67*

6640.36*

6538.96*

Experimental .

1817.2

24SO"

1731"

22SO"

1392"

33SO"

2340"

31OO"

1883"

44so"

3071"

42OO"

2471"

S7OO"

3919"

ssoo"

3167"

4930"

3965"

6078"

4900"

Other theoretical
NCAd" Other

Sd 2
3

sd 2

6d 2

6d 2

7d 2

7d 2

8d z
3

8d 2

909.15

1283.40

58.16

58.39

87.26

88.06

138.45

139.99

909.15

1283.39

58.14

58.38

87.06

87.87

137.38

138.93

908.74

1282.07

58.02

58.26

86.33

87.16

135.02

136.62

890(90)'

890(90)'

57(15)'

60.0(2.5)'

60.7(2.5)'

89(4)'

98(10)'

88(9)'

152(3)

154(5)'

1110.5

69.89

69.89

102.9

161.1

952"
1164gg

956"

1370

»so"
1164gg

1343"

64.5

60.65"

65.5
69ff

605

82.9"

1OO"

83.S"

124"

16O"

125"
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TABLE VI. (Continued)

State
nl j
9d-
9d 2

0 K

212.19

214.70

This work
350 K

208.72

211,28

600 K

203.38

205.85

Experimental

218{4)

95(10)" 245.2

181"

2SO"
183"

Other theoretical
NCA" Other

10d 2

10d 2

11d

11d 2

12d 2

12d 2

13d 2

13d 2

14d 2

14d 2

15d 2

15d 2

16d

16d 2

4f-
4f 2

5f —,

5f 2

7f Y~

7f 2

8f 2

8f 2

9f 2'

9f —,

10f 2

311.54

315.29

440.22

445.55

601.62

608.87

800.54

809.84

1039.27

1051.55

1322.75

1335.77

1662.32

1667.06

49.95

50;09

87.96

88.10

143.85

143.95

221.00

221.04

322.86

322.81

452.91

452.72

614.65

303.22

307.04

423.52

428.98

571.53

579.34

749.19

761.46

944.51

977.31

1168.56

1228.16

1369.58

1520.45

49.94

50.09

87.79

87.92

142.65

142.76

217.10

217.17

313.82

313.84

435.57

435.54

585.45

292.69

296.52

405.13

410.80

541.60

550.38

702.09

717.98

865.75

915.13

1051.55

1143.04

1162.65

1409.22

49.86

50.00

86.63

86.97

139.52

139.64

210.27

210.39

301.56

301.67

416.09

416.20

-557.05

311(6)

428(12)

561(18)'

575(25)'

741(22)"

760(40)'

980(30)"

1175(38)

1492(38 )'

92(8)"

95(6)"

150(10)"

230(20)"

330(30)"

470(30)"

357.3

504.4

687.4

44.93

76.78

123.8

189.2

274.8

385.1

257"

35O"

260"

352"

52O"

357"

470"

477"

612"

92O"

621"-

780"

117O"

792"

976"

1180d

1573kk

990"

1207"

1443
1957kk

1224"

49ff

85ff

14O"

22Off

32O"

4so"
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TABLE VI. (Continued).

State
nl j
10f -',

1lf 2

1 lf —,

0 K

614.27

811.66

810.94

This work
350 K

585.35

766.48

766.2"

557.18

727.33

727.41

Experimental

635(30)"

830(5)"

825(40)"

689.9 800"

Other theoretical
NCA Other

610

932.83

933.08

1324.21

1244.89

1645.94 1590.87

2616.80

3186.98 3177.49'

12f 2 1047.11 983.45

12f ~ 1046.20 983.23 1060(25)" 891.4 1

13f —, 1244.94' 1185.29'

13f 2 1323.32 1185.83

14f 2 1647.22 1591.11* 1546.99"

14f 2 1547.54

16f —, 2652.47 2638.82" 2623.17*

16f 2 2645.27 2632.02"

17f 2 3196.33 3186.56* 3173.75*

17f —, 3165.00*

'J. Marek, J. Phys. B 10, L325 (1977).
B.R. Bulos, R. Gupta, and W. Happer, J. Opt. Soc. Am. 66, 426 (1976).

'J. Marek, Phys. Lett. 6QA, 190 (1977).
'J. S. Deech, R. I.uypaert, L. R. Pendrill, and G. W. Series, J. Phys. B 10, L137 (1977).
'J. Marek and M. Ryschka, Phys. Lett. 74A, 51 (1979).
H. Lundberg and S. Svanberg, Phys. Lett. 56A, 31 (1976).

gW. Demtroeder, Z. Phys. 166, 42 (1962).
"A. Gallagher, Phys. Rev. 157, 68 (1967).
'J. K. Link, J. Opt. Soc. Am. 456, 1195 (1966).
"G. Markova, G. Khvostenko and M. Chaika, Opt. Spektrosk. 23, 835 (1967) [Opt. Spectrosc.

23, 456 (1967)].
"S.Svanberg and S. Rydberg, Z. Phys. 227, 216 (1969).
'S. Rydberg and S. Svanberg, Phys. Scr. 5, 209 (1972).
R. W. Schmieder, A. Lurio, W. Happer, - and A. Khadjavi, Phys. Rev. A 2, 1216 (1970).

"E. L. Altman and S. A. Kazantsev, Opt. Spektrosk. 28, 805 (1970) [Opt. Spectrosc. (USSR)
(1970)].
'M. Gustavson, H. Lundberg, and S. Svanberg, Phys. Lett. 64A, 289 (1977).
"P. W. Pace and J. B. Atkinson, Can. J. Phys. 53, 937 (1975).
qJ. Marek and N. Nlemax, J. Phys. B 9, L483 (1976).
'H. Bucka, H. Kopfermann, and E. W. Otten, Ann. Phys. (Leipzig) 74, 39 (1959).
'E. L. Altman and M. P. Chaika, Opt. Spektrosk. 19, 968 (1965) [Opt. Spectrosc. (USSR)
(1965)].
'R. J. Wolff and S. P. Davis, J. Opt. Soc. Am. 58, 490 (1968).
"J.Marek and K. Niemax, J. Phys. B 9, L483 (1976).
"E. L. Altman, Opt. Spektrosk. 28, 1029 (1970) [Opt. Spectrosc. (USSR) 28, 556 (1970)].
"J.Marek (private communication).
'H. Bucka and G. von Oppen, Ann. Phys. (I.eipzig) 10, 119 (1962).
~A. Sieradzan, W. Jastrzebski, and J. Krasinski, Opt. Commun. 28, 73 (1979).
'C. Tai, W. Happer, and R. Gupta, Phys. Rev. A 12, 736 (1975).
"Y. Archambault, J. P. Descoubes, M. Priou, and J. C. Pebay-Peyroula, J. Phys. Radium

(1960).
""S.Nakayama, F. M. Kelly, and G. W. Series, J. Phys. 8 14, 835 (1981).
"H. Lundberg and S. Svanberg, Z. Phys. A 290, 127 (1979).
" A. Lindgaard and S. E. Nielsen, At. Data Nucl. Data Tables 19, 533 (1977).
"O. S. Heavens, J. Opt. Soc. Am. 51, 1058 (1961).
rrP. F. Grudzev and V. I. Denisov, Opt. Spektrosk. 52, 15 (1982) [Opt. Spectrosc. (USSR) 52, 8 (

ggP. M. Stone, Phys. Rev. 127, 1151 (1962); 135, AB2(E) (1964).
""B.Warner, Mon. Not. R. Astron. Soc. London 139, 115 (1968).
W. Happer (pl ivate. communication).

~A. Faist, E. Geneux, and S. Koide, J. Phys. Soc. Jpn. 19, 2299 (1964).
""D.R. Bates and A. Damgaard, Philos. Trans. R. Soc. London, Ser. A 242, 101 (1949).

(USSR)
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therefore, their values should lie somewhere between our
two numbers. For lifetimes we have, for lower states, the
works by Gallagher and co-workers and by Kaiser,
whereas Gounand and co-workers have been studying
high-n states. Gaupp and co-workers have also mea-

sured the lifetime of the 3p(j= —, ) state with a high

claimed accuracy; we refer to the latter work for an ex-

haustive comparison of their measured oscillator strength
and various theoretical predictions. Our lifetime value is

only slightly off theirs. In the other states, agreement be-

tween theory and experiment is fair. It should be noted,
however, that there is no accord among different experi-
mental values either. Of special interest here are the
works of Spencer and co-workers, who studied the sys-

tematic BBR effects, as a function of temperature, on the
lifetime of the 19s and on the BBR-induced photoioniza-
tion of the 15d states.

3. Potassium

Note added in proof A. fter submission of this paper W.
S. Neil and J. B. Atkinson published lifetimes of S and D
states in Cs in good agreement with our values [J. Phys. B
17, 693 (1984)].
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APPENDIX NUMERICAL ASPECTS
OF THE PROGRAM

Numerov's method of solution for Eq. (42) is expressed

yj+ &

—2yj +yj &

——(h /12)(yj'+ & + 10yj"+yJ' & )+O(h )

(Al)

The energy levels were taken from the recent tabulation
of Corliss and Sugar. Here again, the more systematic
lifetime measurements do not distinguish between the
fine-structure components of a state, and the lifetime
value should lie somewhere between our two numbers.
The only extensive experimental data were obtained by
Gallagher and Cooke, and are in reasonable agreement
with our values. It is interesting to notice here that the
analytical CA results of Gruzdev and Denisov are closer
to ours than the numerical CA data of Lindgaard and
Nielsen. "

4. Rubidium

This has been a widely studied atom. The energy levels
were taken from Moore's tables and from the more recent
measurements of Johansson. ' The works of Marek and
co-workers and of Gounand and co-workers are the more
extensive ones. The former distinguish between the fine-
structure components and thus make a systematic com-
parison with theory more meaningful. The predicted and
measured lifetimes appear to be in an overall good agree-
ment. The other theoretical values are in overall fair
agreement with experiment.

5. Cesium

The energy levels were taken from Moore's tables and
from an assortment of more recent works. Here again
we have a wide range of experimental investigations and
their overall agreement with our theoretical values is
good, when they agree with one another. A very thorough
comparison between all available techniques when applied
to the Cs(5p) state lifetime was given by Pace and Atkin-
son. The lifetimes we obtained by using Norcross's po-
tential' were not significantly different. The predictions
of the numerical CA approximation, " as well as the
analytical CA values of Gruzdev and Denisov,
Happer, and Gounand, are all off for all s, p, and d
states. The reason should be attributed to the significant
size of the Cs atom core. This renders approximations
that ignore the core obsolete.

which leads to [neglecting O(h ) terms]

a, +~ y, +]—b,.y, +a, ~ y =0

with

(A2)

az
——1 —(h /12)pj,

bj ——2[1+(5h /12)pj] .

(A3)

(A4)

In the above we have used the notation y;=y(x;) and

p; =p(x;).
It is known that the numerical solution obtained from

(A2) is unstable when p(x))0. In the case of bound
single-electron states p(x) is always positive at very small
distances (near the origin) and at very large distances. In
addition, , when a centrifugal "barrier" is present, p(x) is
positive in the region of the barrier. The range [xo,xz] is
consequently subdivided into three regions:

(a) x E [xo,xj ~), xz~ is the first zero of p(x) (lower re-
gion);

(b) x E [xj&,x12), xj2 is the last zero of p(x ) (middle re-

gion); and
(c) x E [xi2,x~] (upper region).

yp
——y&

——0 (A5)

to successively eliminate one unknown value of yj from
(A2). Specifically we have the following.

(a) Lower region:

yj ——uj +v)yj'+

u~ =aj &ui & /(bj —aj.
~v~ ~),

vj ——a&+~ /(bj —aj &uj. &), j=1,2, . . . , j& —1

starting with

Qp=vp=0 .

(A6a),

(A6b)

(A6c)

(A7)

In the lower and upper regions the Numerov method can
become stable by applying the method of Gauss elimina-
tion without pivoting. With this method, we use the
boundary conditions
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(b) Upper region:

I I ~ ~

O'J= J + J'3'J' —t J =22 J2+» . -

u ~ =aj+tu + ) I(bJ —aI+)vj+) ),
vj ——az t l(bJ —aI+&vj+t), j =Iti 1,$——2, . . . ,j2

starting with

Q~ =U~ =0 .

(A8a)

(Agb)

(Agc)

(A9)

and

A =0.1, 6=3,

r,„=(n') I 1+[1+5(10/n*) ]'~
I .

yj2 &

——y(xj2 &) is used as the starting value for the re-
cursion relation of the upper region.

The adopted input parameters which were found op-
timal are

(c) Intermediate region: the full relation (A2) is used in
this case. The starting value yj&

——y(xIt) at the first zero
of p (x ) is taken equal to unity. The last value

X was chosen to ensure a minimum of 10—20 calculation
points per wave-function loop.
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