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The pressure distribution inside the proton
V. D. Burkert1*, L. elouadrhiri1 & F. X. Girod1

The proton, one of the components of atomic nuclei, is composed 
of fundamental particles called quarks and gluons. Gluons are the 
carriers of the force that binds quarks together, and free quarks 
are never found in isolation—that is, they are confined within 
the composite particles in which they reside. The origin of quark 
confinement is one of the most important questions in modern 
particle and nuclear physics because confinement is at the core of 
what makes the proton a stable particle and thus provides stability to 
the Universe. The internal quark structure of the proton is revealed 
by deeply virtual Compton scattering1,2, a process in which electrons  
are scattered off quarks inside the protons, which  subsequently 
emit high-energy photons, which are detected in coincidence 
with the scattered electrons and recoil protons. Here we report a 
measurement of the pressure distribution experienced by the quarks 
in the proton. We find a strong repulsive pressure near the centre of 
the proton (up to 0.6 femtometres) and a binding pressure at greater 
distances. The average peak pressure near the centre is about 1035 
pascals, which exceeds the pressure estimated for the most densely 
packed known objects in the Universe, neutron stars3. This work 
opens up a new area of research on the fundamental gravitational 
properties of protons, neutrons and nuclei, which can provide access 
to their physical radii, the internal shear forces acting on the quarks 
and their pressure distributions.

The basic mechanical properties of the proton are encoded in the 
gravitational form factors (GFFs) of the energy–momentum tensor1,4,5. 
Graviton–proton scattering is the only known process that can be used 
to directly measure these form factors4,6, whereas generalized parton 
distributions2,7,8 enable indirect access to the basic mechanical prop-
erties of the proton2.

A direct determination of the quark pressure distribution in the pro-
ton (Fig. 1) requires measurements of the proton matrix element of the 
energy–momentum tensor9. This matrix element contains three scalar 
GFFs that depend on the four-momentum transfer t to the proton. 
One of these GFFs, d1(t), encodes the shear forces and pressure distri-
bution on the quarks in the proton, and the other two, M2(t) and J(t), 
encode the mass and angular momentum distributions. Experimental 
information on these form factors is essential to gain insight into the 
dynamics of the fundamental constituents of the proton. The frame-
work of generalized parton distributions (GPDs)2,7,8 has provided a way 
to obtain information on d1(t) from experiments. The most effective 
way to access GPDs experimentally is deeply virtual Compton scat-
tering (DVCS)1,2, where high-energy electrons (e) are scattered from 
the protons (p) in liquid hydrogen as e p → e′ p′ γ, and the scattered 
electron (e′), proton (p′) and photon (γ) are detected in coincidence. 
In this process, the quark structure is probed with high-energy virtual 
photons that are exchanged between the scattered electron and the 
proton, and the emitted (real) photon controls the momentum transfer 
t to the proton, while leaving the proton intact. Recently, methods have 
been developed to extract information about the GPDs and the related 
Compton form factors (CFFs) from DVCS data10–13.

To determine the pressure distribution in the proton from the experi-
mental data, we follow the steps that we briefly describe here. We note 
that the GPDs, CFFs and GFFs apply only to quarks, not to gluons.
(1) We begin with the sum rules that relate the Mellin moments of the 
GPDs to the GFFs1.

(2) We then define the complex CFF, H, which is directly related to the 
experimental observables describing the DVCS process, that is, the 
differential cross-section and the beam-spin asymmetry.
(3) The real and imaginary parts of H can be related through a disper-
sion relation14–16 at fixed t, where the term D(t), or D-term, appears as 
a subtraction term17.
(4) We derive d1(t) from the expansion of D(t) in the Gegenbauer  
polynomials of ξ, the momentum transfer to the struck quark.
(5) We apply fits to the data and extract D(t) and d1(t).
(6) Then, we determine the pressure distribution from the relation 
between d1(t) and the pressure p(r), where r is the radial distance from 
the proton’s centre, through the Bessel integral.

The sum rules that relate the second Mellin moments of the chiral- 
even GPDs to the GFFs are1:

∫ ξ ξ+ =x H x t E x t x J t[ ( , , ) ( , , )]d 2 ( )

∫ ξ ξ= +xH x t x M t d t( , , )d ( ) 4
5

( )2
2

1

1Thomas Jefferson National Accelerator Facility, Newport News, VA, USA. *e-mail: burkert@jlab.org

15

10

5

0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

–5

r2
p

(r
) (
×1

0–2
 G

eV
 fm

–1
)

r (fm)

Repulsive
pressure

Con�ning
pressure

Fig. 1 | Radial pressure distribution in the proton. The graph shows 
the pressure distribution r2p(r) that results from the interactions of the 
quarks in the proton versus the radial distance r from the centre of the 
proton. The thick black line corresponds to the pressure extracted from 
the D-term parameters fitted to published data22 measured at 6 GeV. The 
corresponding estimated uncertainties are displayed as the light-green 
shaded area shown. The blue area represents the uncertainties from all the 
data that were available before the 6-GeV experiment, and the red shaded 
area shows projected results from future experiments at 12 GeV that will 
be performed with the upgraded experimental apparatus30. Uncertainties 
represent one standard deviation.
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where H and E are the GPDs corresponding to the nucleon helicity- 
conserving and helicity-flip processes, respectively; x and  ξ  are the 
average and the transferred quark momentum fractions, respectively; 
and M2(t), J(t) and d1(t) correspond to the time–time, time–space and 
space–space components of the energy–momentum tensor, respec-
tively. We have some constraints on M2(t) and J(t) from theory and 
previous work; namely, at t = 0 they are fixed to the proton’s mass and 
spin, respectively. By contrast, almost nothing is known about the 
equally fundamental quantity d1(t). As the GFF d1(t) encodes the shear 
forces on the quarks and the pressure distribution in the proton, we can 
expect the existence of a zero-sum rule ensuring that the total pressure 
and forces vanish, thus preserving the stability of the dynamics. The 
observables are parameterized by the CFFs, which for the GPD H are 
the real quantities ReH and ImH defined by:
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The average quark momentum fraction x is not observable in this pro-
cess; it is integrated over with the inverse of the quark momentum frac-
tions shifted from the real axis by an infinitesimal positive number ε.  
The analytical properties of the amplitude H (as a complex function) 
in the leading-order approximation lead to the dispersion relation:
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where P is the principal part of the integral and the subtraction con-
stant is the D-term. This approach allows us to replace one unknown 
complex CFF in the dispersion relation with its imaginary part and the 
D-term18,19.

We derive d1(t) as the first coefficient in the Gegenbauer expansion 
of the D-term. Here, we truncate this expansion to d1(t) only.
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C1 is the first coefficient in the Gegenbauer expansion, and z is the 
ratio of the quark momentum fraction to the longitudinal momen-
tum transfer to the quark. Our starting points in the analysis are the 
global fits presented in refs 10,11, referred to as Kumerički–Müller  
parameterization. The imaginary part of the amplitude is calculated 
from a parameterization of the GPDs along the diagonal x = ξ. The real 
part of the amplitude is then reconstructed by assuming leading-order 
dominance and applying the dispersion relation. The ξ-dependence 
of the D-term is completely generated by the Gegenbauer expansion 
and restricted to the d1(t) term only. Finally, the momentum transfer 
dependence of the d1(t) term is given as a function of the three para-
meters d1(0), M and α:
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where M and α are parameters adjusted to the data, and the chosen 
form of d1(t) with α = 3 is consistent with the asymptotic behaviour 
required by the dimensional counting rules in QCD20. We adjust and 
fix the central values of the model parameters to DVCS data obtained 
at an electron beam energy of 6 GeV21,22 which include unpolarized and 
polarized beam cross-sections over a wide phase space in the valence 
region and support the model that suggests that the GPD H largely 

dominates these observables. The fit to the beam-spin asymmetries is 
shown in Fig. 2, and that to the unpolarized cross-sections in Fig. 3. A 
fit to d1(t) is provided in Fig. 4; the data points correspond to the values 
extracted from the fit in Fig. 3. The analysis of the experimental results 
shows that d1(0) has a negative sign, consistent with several theoretical 
studies16,23,24. The fit results give d1(0) = −2.04 with statistical uncer-
tainty 0.14 and systematic uncertainty 0.33, where the uncertainties are 
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Fig. 2 | Fits to the beam-spin asymmetry results. The experimental 
results (squares) are shown as a function of the angle φ between the 
electron and recoil scattering planes. The sine-like behaviour of the data is 
due to the interference of DVCS and Bethe–Heitler processes. The fit is 
shown as the thick dark curve. The thin light-grey curves correspond to 
variations of the fitting parameters to the imaginary part of the CFF H, as 
calculated from a Kumerički–Müller parameterization10 adjusted to the 
data. Uncertainties represent one standard deviation.

Fig. 3 | Examples of fits to unpolarized cross-sections. Experimental 
DVCS cross-sections22 (black squares) are shown as a function of φ at 
fixed values of xB and Q2. Q2 is the virtuality of the exchanged photon, 
and xB is the momentum fraction of the struck quark. The light-grey 
curves show the results of the local fits with the parameter d1(t) at fixed 
−t, including one standard deviation. The upper, dark-grey curves are 
the results of global fits to the −t dependence of d1(t), with the real part 
of the DVCS amplitude calculated from the dispersion relations and the 
subtraction term evaluated from the d1(t) contribution. The Bethe–Heitler 
contribution is shown with the lower, black curve. Its contribution to the 
cross-section dominates the extreme regions of φ. Uncertainties represent 
one standard deviation.
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given as one standard deviation. The negative sign of d1(0) found in this 
analysis seems deeply rooted in the spontaneous breakdown of chiral 
symmetry25, which is a consequence of the transition of the micro-
second-old Universe from a state of de-confined quarks and gluons 
to a state of confined quarks in stable protons. It is thus intimately 
connected with the stability of the proton24 and of the visible Universe.

We can relate d1(t) to the pressure distribution via the spherical 
Bessel integral:

∫∝
−

d t
j r t

t
p r r( )

( )

2
( )d1

0 3

where j0 is the first spherical Bessel function. Our results of the quark 
pressure distribution in the proton are illustrated in Fig. 1. The thick 
black line corresponds to the pressure distribution r2p(r), as extracted 
from the D-term parameters that are fitted to the published data22 
acquired at 6 GeV. The estimated uncertainties are displayed as the 
light-green shaded area. The red-shaded area represents projected 
results from future experiments at higher energy. The distribution has 
a positive core and a negative tail of the r2p(r) distribution as a function 
of r, with a zero crossing near r = 0.6 fm. The regions where repulsive 
and binding pressures dominate are separated in radial space, with 
the repulsive distribution peaking near r = 0.25 fm, and the maximum 
of the negative pressure that is responsible for the binding occurring 
near r = 0.8 fm.

The outer, blue-shaded area in Fig. 1 corresponds to the D-term 
uncertainties obtained in the global fit results from previous 
research10,11. This area has a shape similar to the light-green area, con-
firming the robustness of the analysis procedure used to extract the 
D-term. The pressure p(r) must satisfy the stability condition:

∫ =
∞

r p r r( )d 0
0

2

which is satisfied within the uncertainties of our analysis. The shape of 
the radial pressure distribution resembles closely that obtained using 

the chiral quark–soliton model24, in which the proton is modelled as a 
chiral soliton whose constituent quarks are bound by a self-consistent 
pion field. This agreement suggests that the pion field is appropriate for 
the description of the proton as a bound state of quarks.

Other applications of the GFFs of the energy–momentum tensor 
include the description of nucleons in the nuclear medium23,26,27, 
excited baryon states (such as the Δ(1232) resonance28) and point-
like and composed spin-0 particles29.

Future precision experiments are expected to provide substantially 
more DVCS data30 and enable the mapping of d1(t) in much finer steps 
and in a much larger −t range, which will reduce the systematic uncer-
tainties, as indicated by the red-shaded area in Fig. 1. We also expect 
that this work will motivate new theoretical efforts to understand the 
fundamental characteristics of the stability of the proton from first  
principles. Our results may serve as a benchmark for the assessment 
of theo retical models, including lattice quantum chromodynamics 
models.
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reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
018-0060-z.

Received: 25 August 2017; Accepted: 16 February 2018;  
Published online 16 May 2018.

 1. Ji, X. D. Deeply virtual Compton scattering. Phys. Rev. D 55, 7114–7125 (1997).
 2. Ji, X. D. Gauge-invariant decomposition of nucleon spin. Phys. Rev. Lett. 78, 

610–613 (1997).
 3. Ozel, F. & Freire, P. Masses, radii, and equation of state of neutron stars. Annu. 

Rev. Astron. Astrophys. 54, 401–440 (2016).
 4. Pagels, H. Energy–momentum structure form factors of particles. Phys. Rev. 

144, 1250–1260 (1966).
 5. Teryaev, O. V. Gravitational form factors and nucleon spin structure. Front. Phys. 

11, 111207 (2016).
 6. Belitsky, A. V. & Radyushkin, A. V. Unraveling hadron structure with generalized 

parton distributions. Phys. Rep. 418, 1–387 (2005).
 7. Müller, D., Robaschik, D., Geyer, D., Dittes, F. M. & Horejši, J. Wave functions, 

evolution equations and evolution kernels from light-ray operators of QCD. 
Fortschr. Phys. 42, 101–141 (1994).

 8. Radyushkin, A. V. Scaling limit of deeply virtual Compton scattering. Phys. Lett. B 
380, 417–425 (1996).

 9. Polyakov, M. V. Generalized parton distributions and strong forces inside 
nucleons and nuclei. Phys. Lett. B 555, 57–62 (2003).
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MEthods
Here we provide additional details about the method of extraction of the CFFs 
using dispersion relations, from which the D-term and d1(t) are computed. In 
the first step, the beam-spin asymmetries and unpolarized cross-sections are 
fitted simultaneously, and the CFFs are obtained locally as the real and imaginary 
parts of the amplitude at one particular kinematical point. In the second step, 
the CFFs are fitted globally with the Kumerički–Müller parameterization10,11, 
the real part of the amplitude is calculated by the dispersion integral from the 
imaginary part of the amplitude, and the D-term is derived as a subtraction, as 
described in the text.

To illustrate the robustness of our results, in Extended Data Fig. 1 we show the 
locally extracted CFFs ImH and ReH separately as a function of ξ, for a fixed t 
value. These locally extracted amplitudes (black squares) are compared to the 
global parameterization (central red curve, with the grey bands showing the esti-
mated uncertainties). The left panel shows the imaginary part of the amplitude H, 
which is mostly sensitive to beam-spin asymmetries, together with the amplitude 
parameterization as a function of ξ at −t = 0.13 GeV2. The interpretation of the 
error bands as separate contributions from different uncertainties in the parame-
terization, after adjustment to our data, are discussed in more detail below. The 
right panel shows the real part of the amplitude, which is mostly sensitive to the 
unpolarized cross-sections. The different numbers of points in the polarized and 
unpolarized cross-sections come from the real and imaginary parts of the ampli-
tude being sensitive to different ranges in the azimuthal angle φ. The real part of 
the amplitude is more sensitive in the central range around φ = 180°, where  
the statistics and the acceptances are reduced—as a consequence, ReH cannot be 
determined when ξ increases.

The central red curve in each panel is the result of our global fit. The grey band 
between the thick red lines shows the uncertainties of the contribution from the 
other CFFs, on which our data do not provide strong constraints. The red band 
shows the total error of the global fit to the imaginary part of the amplitude, includ-
ing fitting errors of the model parameters, in addition to the above uncertainties. 
In our framework, these grey and red bands are propagated through the dispersion 
integral as direct uncertainties in the real part of the amplitude. The additional 
blue band in the right panel illustrates the total error of the real part of the ampli-
tude, including that of the extracted D-term. We note that the uncertainties in 
the D-term increase with −t, as reflected by the larger uncertainties in the spatial 
distribution at short distances, even after r2 weighting.

For completeness, we show in Extended Data Fig. 2 and Extended Data Fig. 3 
the real and imaginary parts of the amplitude for the other four −t values that 
are shown in Fig. 4 as a function of ξ. Our data show a behaviour similar to the 
Kumerički–Müller parameterization at the lower −t value, but begin to depart from 
the calculations at higher −t values. The assumption D(t) = 0, shown by the black 
line, is inconsistent with our full results. This confirms that finite values of D(t) 
are required and again demonstrates the robustness of our results shown in Fig. 1.
Data availability. The data used in this work are publicly available at http://clasweb. 
jlab.org/physicsdb/intro.html.
Code availability. The code used in the data analysis is available at https://userweb.
jlab.org/~fxgirod/code_paperFeb18. The data reduction program uses the standard 
C++ ROOT framework, which was developed at CERN and is freely available 
under a GNU Lesser General Public License at https://root.cern.ch. The source 
code to reproduce the figures is freely available at https://userweb.jlab.org/~fxgirod/ 
code_paperFeb18/. 
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Extended Data Fig. 1 | Compton form factor H at −t = 0.15 GeV2. The 
graphs show the imaginary (left) and real (right) parts of H versus the 
momentum transfer to the quark, ξ. The inner red curve shows the result 
of our global fit. The grey band shows the estimated uncertainties from the 

contributions of other CFFs, the outer red band shows the total 
uncertainties of the imaginary part of the amplitude, and the outer blue 
band (right) includes the uncertainties related to the D-term. All 
uncertainties represent one standard deviation.
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Extended Data Fig. 2 | Compton form factor H at −t = 0.11 GeV2 and at 
−t = 0.20 GeV2. The imaginary (left) and real (right) parts of H are shown 

as a function of ξ. The red curve and the grey, red and blue bands are as in 
Extended Data Fig. 1. All uncertainties represent one standard deviation.
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Extended Data Fig. 3 | Compton form factor H at −t = 0.26 GeV2 and at 
−t = 0.34 GeV2. The imaginary (left) and real (right) parts of H are shown 

as a function of ξ. The red curve and the grey, red and blue bands are as in 
Extended Data Fig. 1. All uncertainties represent one standard deviation.
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