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Abstract

We review recent progress on Horn’s problem, which asks for a description of the possible
eigenspectra of the sum of two matrices with known eigenvalues.

After revisiting the classical case, we consider several generalizations in which the space of
matrices under study carries an action of a compact Lie group, and the goal is to describe an
associated probability measure on the space of orbits. We review some recent results about
the problem of computing the probability density via orbital integrals and about the locus of
singularities of the density. We discuss some relations with representation theory, combinatorics,
pictographs and symmetric polynomials, and we also include some novel remarks in connection
with Schur’s problem.
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1 Introduction

Horn’s problem deals with the following question: If A and B are two n-by-n Hermitian matrices
with known eigenvalues α1 ě . . . ě αn and β1 ě . . . ě βn , what can be said about the eigenvalues
γ1 ě . . . ě γn of their sum C “ A ` B? After almost a century of work, starting with H. Weyl
(1912) and including an essential conjecture by Horn [16], this problem is now solved, in the sense
that there is a necessary and sufficient condition that is known to determine when pγ1, ¨ ¨ ¨ , γnq will
occur as the spectrum of some such C [19, 21]. In a nutshell, the γ’s must satisfy certain linear
inequalities, hence live inside a convex polytope in Rn´1.

Horn’s original problem may be generalized in different directions. First, Hermitian matrices,
taken traceless and up to a factor i , may be thought of as living in the Lie algebra of the group
SUpnq. One may consider as well the case of other simple Lie groups, and their so-called coadjoint
orbits. Coadjoint orbits are known to carry the structure of a symplectic manifold and as such,
Horn’s problem has attracted the attention of symplectic geometers. As we shall see, this coadjoint
case may be treated in a detailed way.

Another direction is to regard the Hermitian matrices as a case of self-adjoint complex n-by-n
matrices acted upon by the unitary group SUpnq, and to consider in parallel the two other cases of
real symmetric matrices under the action of the real orthogonal group SOpnq, and of quaternionic
self-dual matrices under the action of the unitary symplectic group USppnq.

In this paper we review some recent progress regarding both of these generalizations. First, we
discuss what is known regarding the similarities and differences between the three self-adjoint cases,
and we explain the relationship between Horn’s problem and Schur’s problem of characterizing the
possible diagonal entries of a matrix with known eigenvalues. Second, the study of coadjoint orbits
leads to very interesting connections with representation theory and combinatorics, namely the de-
termination of multiplicities in the decomposition of tensor products of irreducible representations.
It has been known for a while that Horn’s problem yields a semi-classical approximation to that
problem, in the limit of large representations (i.e., tensor products of irreps whose highest weights
lie deep in the dominant Weyl chamber). We present below an alternative approach, through
an exact relationship between the two problems that is more precise than the previously known
asymptotic relationship.

The questions addressed in this article are primarily of mathematical interest, and some of
the cases that we study are not yet known to have a direct physical application. However, many
mathematical objects that arise in this investigation, such as tensor product multiplicities and
orbital integrals, are ubiquitous in today’s theoretical physics, and an improved understanding of
these objects represents an expansion of the future physicist’s toolkit. The possibility to extend the
considerations of this paper to the current (affine) algebras and to the fusion of their representations
is an especially interesting route to explore. At any rate, we hope that with its many facets in many
directions, this subject would have pleased our colleague and friend Vladimir, who was a man of
culture and of tireless curiosity.

2 What is Horn’s problem ?

2.1 Introduction

Given two Hermitian nˆ n matrices A and B, of known spectrum

α1 ě . . . ě αn and β1 ě . . . ě βn ,

what can be said about the spectrum γ “ tγ1 ě γ2 ě ¨ ¨ ¨ ě γnu of their sum C “ A`B ?
This is an old problem, with a rich history [8, 12]. Obviously,

řn
k“1 γk ´ αk ´ βk “ 0, thus

γ must lie in an pn ´ 1q-dimensional hyperplane that we identify with Rn´1. It is clear that
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γ must additionally satisfy some linear inequalities to belong to the spectrum of A ` B. For
example, we have the obvious inequality γ1 ď α1 ` β1 stemming from the maximum principle
γ1 “ maxψ

xψ,pA`Bqψy
xψ,ψy , or Weyl’s inequality [27], 1 ď i, j, i ` j ´ 1 ď n ñ γi`j´1 ď αi ` βj .

Horn [16] conjectured a set of linear inequalities relating α, β and γ which are necessary and
sufficient conditions for γ to occur as the spectrum of some A`B:

ÿ

kPK

γk ď
ÿ

iPI

αi `
ÿ

jPJ

βj

for some triplets tI, J,Ku of subsets of t1, ¨ ¨ ¨ , nu of the same cardinality, which may be determined
recursively.

If true (and it is!), Horn’s conjecture implies that the possible values of γ lie in a convex
polytope in Rn´1. This convexity property is not a surprise in the context of symplectic geometry
(Atiyah–Guillemin–Sternberg–Kirwan convexity theorems) [20].

After many contributions by many mathematicians, Horn’s conjecture was finally proven by
Klyachko [19] and Knutson and Tao [22].

The problem is interesting for its many facets and ramifications, its interpretation in symplectic
geometry, its appearance in various guises – algebraic geometry (via a connection with Schubert
calculus), invariant factors, among others – and its connections with representation theory and
combinatorics. We refer the reader to the review by Fulton [12].

2.2 The classical Horn problem revisited

Horn’s problem may be reformulated as follows. Let Oα be the orbit of diag pα1, α2, ¨ ¨ ¨ , αnq under
the adjoint action of Upnq,

Oα “ tUdiag pα1, α2, ¨ ¨ ¨ , αnqU
´1 | U P Upnq u

and likewise Oβ. Then which orbits Oγ intersect the (Minkowski) sum of orbits tA ` B : A P

Oα, B P Oβu?
(i) In particular, suppose we take A uniformly distributed on Oα (according to the Haar mea-

sure), and likewise B uniform on Oβ and independent of A. Can one determine the probability
distribution of γ, i.e. by explicitly writing down its probability density function (PDF)?

(ii) Traceless Hermitian n-by-n matrices may be regarded as elements of the dual of the Lie
algebra of SUpnq. The action of SU(n) on these matrices by conjugation is its coadjoint representa-
tion. What happens if we consider sums of orbits in the coadjoint representations of other classical
Lie groups? Can we compute the probability distribution as in (i)?

(iii) Finally, what happens if we replace orbits of complex Hermitian matrices under the conju-
gation action of Upnq by

– orbits of real symmetric matrices under the conjugation action of SOpnq, or
– orbits of quaternionic Hermitian (aka self-dual) matrices under the conjugation action of

USppnq ?
In all three cases, any matrix A may be brought to a diagonal form diag pα1, . . . , αnq by conju-

gation by some element of the group.
For questions (i) and (ii), as we’ll see below, the answer is Yes, we can! For the last question,

much less is known. There is, however, a general result by Fulton, which asserts that Horn’s
inequalities relating α, β, γ are the same in the three “self-adjoint” cases. Hence, for given α and
β, the set of possible γ is the same polytope irrespective of the class of self-adjoint matrices. What
about the distribution of γ, if again A and B are uniformly and independently distributed on their
orbits?

It is revealing to make a (numerical) experiment. Take for example n “ 3 and α “ β “ p1, 0,´1q,
and generate using Mathematica [23] many samples of C “ diag pαq`V diag pβqV ´1, with V drawn
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Figure 1: Comparing the action of SO(3) (left), SU(3) (middle) and USp(3) (right) on α “ β “ p1, 0,´1q.

randomly from the Haar measure on the appropriate group. Diagonalize the samples and plot
pγ1, γ2q. Recall that by convention γ1 ě γ2 ě γ3 “ ´γ1 ´ γ2. See Fig. 1.

We observe, as expected, that pγ1, γ2q lies in the same convex polygon in the three cases. The
fact that the distribution is more concentrated about its mean as we go from SO to SU to USp is
also natural, as a consequence of a Jacobian prefactor in the PDF, see below. But the most striking
(and unexpected) feature is the appearance of lines of enhancement in the SO(3) case. These lines
become even more conspicuous when one computes the histogram of the three distributions.

It should also be stressed that these features do not depend on the particular choice of α and
β that we have made here. See [28] for other examples exhibiting the same singularities.

Question: Can one compute the PDF for the three cases and understand the origin, location
and nature of the singularities in the orthogonal case?

We shall see below that the PDF for the unitary and symplectic cases admits a closed-form
expression, whereas an explicit expression in the orthogonal case appears out of reach. Nonetheless,
we can determine a great deal about the singularities of the PDF in all three cases.

2.3 From Schur to Horn

Before we proceed, let us first observe that there is a limiting case of Horn’s problem where it
reduces to another well-studied problem, namely Schur’s problem:

Given a matrix A on the orbit Oα (of any of the types previously discussed), what can be said
about the diagonal matrix elements of A?

It is known [15] that the diagonal matrix elements of A lie in the permutahedron Pα, i.e., the
convex polytope with vertices pαP p1q, . . . , αP pnqq, P P Sn. More precisely, if A is drawn uniformly
at random from its orbit Oα, what is the distribution of the diagonal elements ξi :“ Aii? For SUpnq
orbits, it is known that this distribution coincides with the (normalized) Heckman measure [14],
whose density is a piecewise polynomial function of degree pn´1qpn´2q{2. For SOpnq orbits, much
less is known [11].
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Figure 2: Histogram of the diagonal elements pA11, A22q, for A “ Odiag p7, 4,´11qO´1, O P SOp3q.

Figure 3: Interpolating polygon and singular lines from Schur to Horn, for tgp7, 4,´11qg´1 `

p11,´1,´10q. For 0 ď t ď 1
2 , the singular lines are the diagonals of the (shifted) permu-

tahedron; for 1
2 ď t ď 2

3 , a triple point appears along with a new side of the polygon, for
2{3 ď t ď 7{4, a second triple point appears etc.

Take first the case n “ 2 and a traceless diagonal matrix diag pα1,´α1q. For SO(2), resp.
SU(2), orbits, the PDF of the A11 element is readily computed

ppA11q “

$

’

’

&

’

’

%

$

&

%

const.?
α2
1´A

2
11

SOp2q

const. SUp2q
for 0 ď |A11| ď |α1|

0 otherwise.

(1)

Thus we find that the PDF exhibits an integrable inverse–square-root edge singularity in the SOp2q
case. For SO(3) orbits, numerical experiments show a singular behavior, see Fig. 2.

There is an obvious relationship with Horn’s problem. Given two matrices A P Oα and B “

diag pβq, Horn’s problem for C “ tA`B, t small, reduces to Schur’s problem. Indeed to first order
in perturbation theory in t, the eigenvalues γptq of C are

γiptq “ βi ` tAii `Opt
2q .

Thus to first order, the Horn polytope is nothing but the permutahedron Pα shifted by the vector
β. It is interesting to see how the polygon of support and the singular lines deform as t grows, see
Fig. 3 and the discussion in the next section.

2.4 The locus of singularities in Horn’s problem

Compare the three “self-adjoint cases” of real symmetric, complex Hermitian or quaternionic self-
dual, n ˆ n (traceless) matrices. We label these cases by a parameter θ “ 1

2 , 1, 2, i.e. half the
Dyson index familiar from random matrix theory, as follows:

4



θ Mθ
n Gθ

1
2 Real Symmetric SOpnq

1 Complex Hermitian SUpnq

2 Quaternionic Self-Dual USppnq

For given n and α, β, not only the support of the distribution of γ is the same [12], but also
the locus of singularity of the PDF (although the singularities themselves are of quite a different
nature). We may state the following proposition [7]:

The PDF is a piecewise real-analytic function of γ. Non-analyticities occur only when γ lies on
hyperplanes of the form

ÿ

kPK

γk “
ÿ

iPI

αi `
ÿ

jPJ

βj (2)

with I, J,K Ă t1, ¨ ¨ ¨ , nu, |I| “ |J | “ |K|, independently of θ.

Hint at proof: Consider the map Φ : GˆGÑMθ
n, pg1, g2q ÞÑ C “ A`B “ g1αg

´1
1 `g2βg

´1
2 .

If C is a regular value of Φ in the sense that the differential dΦ is surjective at all points of the
preimage Φ´1pCq, then the PDF is real analytic at γ. Non-analyticities can therefore only occur
at γ that are spectra of non-regular values of Φ, and it is easy to see that these lie on hyperplanes
of the form (2), see details in [7].

Remarks:
– This condition encompasses boundary facets of Horn’s domain other than those lying on the
hyperplanes γi “ γi`i, where indeed the PDF vanishes in a non-analytic way.
– Eq. (2) gives a necessary, but not sufficient, condition for non-analyticity. It doesn’t say where
singularities do in fact occur. Typically, we’ll find that singularities appear only on subsets of the
hyperplanes defined by (2).

3 Computing the PDF

3.1 The orbital integrals

As will appear, in all cases a central role is played by the orbital integral (aka generalized or
multivariate Bessel function). In the self-adjoint cases, we write

HθpA,Xq “

ż

Gθ

expptr pXgAg´1qq dg

where A,X PMθ
n and dg is the normalized Haar measure. In the coadjoint cases, we rather write

it as

HgpA,Xq “

ż

G
exppxX,AdgAyqq dg (3)

where A,X P g, the Lie algebra of G, and x¨, ¨y is a G-invariant inner product. When the case under
consideration is clear, we shall suppress the subscript and write both types of integral as HpA,Xq.

Note that:
‚ As a function of X, HgpA, iXq is the Fourier transform of the orbital measure at A, i.e. the

unique G-invariant probability measure concentrated on the orbit of A.
‚ HθpA,Xq depends only on the eigenvalues α and x of A and X. Likewise, HgpA,Xq depends

only on α and x, representatives of the orbits of A and X in the dominant chamber of a Cartan
subalgebra t. With a small abuse of notation, we shall often write the integral as Hpα, xq.
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In the unitary (θ “ 1) case with Hermitian (or anti-Hermitian) matrices, the explicit formula
is well known to physicists under the HCIZ acronym [13, 17]. For A and X “regular,” i.e. αi ‰ αj
and xi ‰ xj ,

H1pα, ixq “

ż

SUpnq
ei tr pXV AV ˚q dV “

n´1
ź

p“1

p!
detpeixiαj q1ďi,jďn

∆pixq∆pαq
,

where ∆pxq “ Πiăjpxi ´ xjq is the Vandermonde determinant of the x’s.
This is a particular case of a general formula due to Harish-Chandra, [13], see also [24]

Hgpxq “ const.
ÿ

wPW

εpwq
ei xwpαq,xy

∆gpixq∆gpαq
. (4)

Here W is the Weyl group, εpwq is the signature of w PW , and

∆gpxq :“
ź

αααą0

xααα, xy , (5)

a product over the positive roots1, generalizes the Vandermonde determinant to all g, see [24].
Returning to the self-adjoint cases, in the symplectic (θ “ 2) case, there is a generalization of

the previous formulae which reads [3]

H2pα, ixq “ const.
ÿ

PPSn

ei
ř

j xjαPj

∆3pixq∆3pαP q
fnpx, αP q ,

where fn is a polynomial in the variables τi,j :“ pxi ´ xjqpαPi ´ αPjq, degpf2q “ 1, degpf3q “ 3,
etc. A recursive formula is known to construct fn for higher n.

In the orthogonal (θ “ 1
2) case, most unfortunately, there is no similar compact expression. The

best that may be achieved is a series expansion in terms of zonal polynomials (see [5] and references
therein), which is not very handy for detailed calculations.

3.2 The Horn PDF in terms of orbital integrals

We may now state the following integral representation of the Horn PDF. Here we assume again
that A and B are traceless, and we also assume they each have n distinct eigenvalues.2 We identify
the space of n-by-n traceless diagonal matrices with Rn´1. Then we have:

For self-adjoint matrices A and B, independently and uniformly distributed on their Gθ-orbits
Oα and Oβ, the PDF of γ is given by

ppγ|α, βq “ constpθ, nq |∆pγq|θ
ż

Rn´1

dnx |∆pxq|2θHθpα, ixqHθpβ, ixqHθpγ, ixq
˚ , (6)

where ∆pxq “
ś

iăjpxi ´ xjq is the Vandermonde determinant.
For coadjoint orbits, a similar formula applies, where the integral runs over the Cartan subal-

gebra t and |∆pxq|2θ is replaced by ∆2
gpxq.

The proof is elementary: Hpα, ixq, the Fourier transform of the orbital measure, may also be
regarded as the characteristic function (in the sense of probability theory) of the random variable
A P Oα. The characteristic function of C “ A`B is the product Hpα, ixqHpβ, ixq, from which the
PDF of C is recovered by inverse Fourier transform. As the latter depends only on the eigenvalues
γ, paying due care to the Jacobians that occur in the changes from matrices to eigenvalues, one
finds (6).

This formula must have been known to a number of people, see in particular [9] and other
related references in [28].

1The reader should not confuse the roots ααα of the algebra g with the eigenvalues α of Horn’s problem.
2These assumptions are easily removed, but without them the “PDF” may additionally include a delta distribution

enforcing the constraint trpCq “ trpAq ` trpBq, as well as other linear constraints due to degenerate eigenvalues.
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γ1=γ2

γ2=γ2max

γ3=γ3min

γ1=γ1max

γ2=γ2min

γ2=γ3

γ3=γ3max

γ1=γ1min

γ2=α2+β2

γ2=α3+β1

γ1=α1+β2

γ3=α2+β3

γ2=α1+β3

γ1=α2+β1

γ3=α3+β2

10 15
γ1

-6

-4

-2

2

4

6

γ2

Figure 4: SU(3): (left) Horn’s polygon with the lines of non-differentiability, drawn here for α “

p11,´1,´10q, β “ p7, 4,´11q; (middle) histogram of 106 samples of γ; (right) the PDF of (7) for
the same α and β.

3.3 Explicit computation of the PDF ppγq in the SUpnq case.

It is then a matter of simple calculation to write an explicit form of the PDF for low values of
n. One finds that the PDF is the product of a normalizing constant, a ratio of Vandermonde
determinants and a function that we call J , which will soon gain a geometrical interpretation:

ppγ|α, βq “

śn´1
1 p!

n!

∆pγq

∆pαq∆pβq
J pα, β; γq (7)

J pα, β; γq “
i´npn´1q{2

p2πqn´1

ÿ

P,P 1PSn

εP εP 1

ż

dn´1u

r∆puq

n´1
ź

j“1

eiujAjpP,P
1,Iq , (8)

where AjpP, P
1, P 2q “

řj
k“1pαP pkq ` βP 1pkq ´ γP 2pkqq and r∆puq :“

ś

1ďiăjďnpui ` ¨ ¨ ¨ ` uj´1q.

Note that J is a linear combination of integrals over u P Rn´1 of the form
ş

dn´1u
r∆puq

eiujAj ,

generalizing the classical Dirichlet integral

P
ż

R

du

u
eiuA “ iπεpAq , if A ‰ 0,

where ε is the sign function and P is Cauchy’s principal value. Carrying out a partial fraction
decomposition of 1{r∆puq into simple elements and using repeatedly

P
ż

R

du

ur
eiuA “ iπ

piAqr´1

pr ´ 1q!
εpAq

leads to very explicit expressions for J . This has been carried out for n “ 2, ¨ ¨ ¨ , 6 in [28, 4].

– J is clearly a homogeneous function of pα, β, γq of degree pn´ 1qpn´ 2q{2.
– It is discontinuous for n “ 2, where it is, in the variable γ1 ´ γ2, just the indicator function of
the interval r|pα1 ´ α2q ´ pβ1 ´ β2q|, pα1 ´ α2q ` pβ1 ´ β2qs.
– By looking at the convergence properties of the integral (8) and of its derivatives, one concludes
that for n ě 3, J is a piecewise polynomial function of γ of differentiability class Cn´3.
– In particular, for n “ 3, a simple, piece-wise linear expression may be written for J pα, β; γq that
shows explicitly where the lines of non-differentiability lie, see [28] and Fig. 4 for an example. The
resulting formulae reproduce very well the histograms obtained by numerical simulations.

3.4 Extension to other coadjoint representations or to quaternionic self-dual
matrices

Making use of the expressions given in sect. 3.1 for the orbital integrals, and using the same method
as in the previous subsection of reduction to generalized Dirichlet integrals, the PDF may also be
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Figure 5: Comparing results of analytical calculations with “experimental” histograms. Quaternionic self-
dual 3ˆ3 matrices with α “ β “ p1, 0,´1q; Skew-symmetric 5ˆ5 matrices with α “ p1.01, 1q, β “
p3, .5q.

computed analytically for coadjoint orbits of other low-rank Lie algebras, or for the (self-adjoint
case of) quaternionic self-dual matrices. One finds a PDF that is a function of differentiability
class C2r´3 for the coadjoint orbits of the Br algebra, and C2pn´2q for quaternionic self-dual n-by-n
matrices. A sample of comparisons with numerical data is displayed on Fig. 5.

3.5 SOp2q and SOp3q orbits of real symmetric matrices

The case of SOpnq acting on real symmetric matrices is both more challenging, since no manageable
expression exists for the orbital integrals, and more intriguing, in view of the strong singularities
apparent from numerical data, see Fig. 1-left.

In the case of 2ˆ 2 real symmetric matrices and the action of SOp2q, it is a classroom exercise
to work out the PDF as a function of the differences α12 :“ α1´α2, β12 :“ β1´ β2, γ12 :“ γ1´ γ2.
One finds

ppα, β|γq “

$

&

%

2
π

γ12?
pγ212M´γ

2
12qpγ

2
12´γ

2
12mq

for γ12 P rγ12m, γ12M s :“ r|α12 ´ β12|, α12 ` β12s,

0 otherwise,
(9)

which exhibits an inverse–square-root singularity at the end points of its support (only the upper
one if α12 “ β12).

In ref. [5], the case of orbits of real symmetric matrices under the action of SOp3q has been
treated in detail. With no loss of generality, one may assume that the matrices A andB are traceless.
Then, to circumvent the lack of an expression for the orbital integral, it was found useful to trade
the three eigenvalues γi (of vanishing sum) for their symmetric functions p “ γ1γ2 ` γ2γ3 ` γ3γ1,
q “ ´γ1γ2γ3. Write the characteristic polynomial of C “ diag pαq`R diag pβqRT , with R P SOp3q,
as

detpz I3 ´ Cq “ z3 ` P pRqz `QpRq .

For given α and β, and R regarded as a random variable uniformly distributed in SO(3) (in the
sense of Haar measure), P pRq and QpRq are also random variables, whose “PDF” may be written

8



formally as

ρpp, qq “ E
`

δpP ´ pqδpQ´ qq
˘

“

ż

DR δpP pRq ´ pq δpQpRq ´ qq .

Parametrize R in terms of Euler angles, R “ RzpφqRypθqRzpψq with 0 ď φ ď 2π, 0 ď θ ď π, 0 ď
ψ ď 2π, and the normalized Haar measure equal to DR “ 1

8π2 sin θ dθ dφ dψ . Then Pp :“ P pRq´ p
and Qq :“ QpRq ´ q are degree 2 polynomials in c “ cos θ, so that

ρpp, qq “
1

2π2

ż π

0
dφ

ż π

0
dψ

ż 1

´1
dc δpPpqδpQqq ,

while the PDF for the independent variables γ1, γ2 is

ppγ1, γ2q “ |∆pγq| ρpp, qq . (10)

A curious (and apparently original) identity on delta functions of polynomials then comes to the
rescue:

ż

dc δpPppcqq δpQqpcqq “ |J | δpRq (11)

where R is the resultant of Pppcq and Qqpcq, and J some Jacobian. For the conditions of applicability
and proof of (11), see [1].

In the present case, the resultant R of Pppcq and Qqpcq is a fairly big degree 4 polynomial of
u “ cos2 φ and z “ cos2 ψ and J is a degree 1 polynomial in z and u, thus

ρpp, qq “
1

2π2

ż 1

0
dz

ż 1

0
du |Jpu, zq| δpRq

“
1

2π2

ż 1

0
dz

ÿ

i
roots uipzqPr0,1s

|Jpui, zq|

|R1upui, zq|
. (12)

The calculation has been carried out in detail in [5] in the particular case of α “ β “ p1, 0,´1q.
Then

ρpp, qq “
2

π2

ż 1

0
dz

ÿ

roots ui of R
0ďuiď1

p2` u` zq

|R1u|

ˇ

ˇ

ˇ

u“ui
. (13)

Even in that particular case, which has special symmetries, e.g. of R under z Ø u and of ρ under
q Ø ´q (i.e., γ1 Ø ´γ3, γ2 Ñ ´γ2), the calculation is complicated by the intricate pattern of roots
uipzq P r0, 1s of Rpu, zq within the integration interval z P r0, 1s, and by the task of determining
which of the possible zeros of R1upui, zq give rise to a divergent integral. At the end of the day, the
result reproduces very well the numerical histogram in the p, q or in the γ1, γ2 variables, see Fig. 6.

The main merit of the expression (13) is to allow a detailed discussion of the various singularities
of the integral. Divergences of ρ can arise in two ways:

– From the vanishing of R1puipzq, zq at some zs by coalescence of two roots ui “ uj of R, giving
rise to a non-integrable singularity of 1{|R1u| at zs, or

– From the overall vanishing of R1u in some limit.
One finds a logarithmic divergence of the PDF ppγ1, γ2q (see eq. (10)) as γ approaches the blue,

red and magenta lines in Fig. 7, and inverse–square-root divergences at the two special points
pγ1, γ2q “ p1, 0q and p2, 0q. Note that because of the vanishing of the Vandermonde determinant,
ppγ1, γ2q may have a smaller locus of singularity than ρ, see [5].

Discussion. Though it is gratifying to have reproduced the pattern and the nature of singu-
larities of J (in a particular case, but this will generalize to arbitrary α, β, at the price of heavier
algebra), this computation sheds limited light on the geometric origin of these singularities and on

9



Figure 6: Comparing the computation of ppγ1, γ2q for α “ β “ p1, 0,´1q with the histogram of Fig. 1
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Figure 7: The various divergences of ppγ1, γ2q
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what should be expected for higher n. In [7] it has been argued that the singularities find their
origin in the projection from the original OαˆOβ to C`, and that they can be understood as arising
from the singularity of certain coordinates on the product of orbits. The argument, unfortunately,
says nothing about the nature of the singularity. For higher n, should the singularity become softer
and become just a non-analyticity like in the coadjoint cases, or should a divergence persist? Nu-
merical experiments indicate a sharp pattern of the PDF for n “ 4, but its precise nature remains
elusive. There is clearly room for further progress.

4 Horn’s problem, Representation theory, and Combinatorics

In this section, we shall discuss the relationship between Horn’s problem and a basic problem in
representation theory: the decomposition of tensor products of representations of a compact Lie
group G. The fact that multiplicities in such a decomposition admit, for large representations,
a semi-classical description has been known for a long time, see [14]. More specifically, we con-
sider here the so-called “Littlewood–Richardson (LR) multiplicities” Nν

λµ, which appear in the
decomposition of the tensor product of two irreps of highest weights λ and µ,

Vλ b Vµ “
à

ν

Nν
λµVν . (14)

Here we will assume that G is simply connected, so that we can identify representations of G and
g. The bottom line is that Horn’s problem appears as a semi-classical approximation of the LR
multiplicities, as we will now explain.

4.1 Relation J –LR

The reader may have noticed the similarity between the general form of J in (8), as an integral of
the product of three H’s, and the classical expression of LR multiplicities in terms of characters of
the group

Nν
λµ “

ż

G
dg χλpgqχµpgqχνpgq

˚ “

ż

T
dT χλpT qχµpT qχνpT q

˚ , (15)

where in the second expression, the integration has been reduced to a Cartan torus T. The parallel
is made much tighter if one realizes that the H-C orbital integral Hgpα, ixq is proportional to the
character χλpT q, when evaluated at α “ λ` ρ, ρ “ 1

2

ř

αααą0ααα, and T “ eix P T:

χλpT q

dimVλ
“

∆gpixq

∆̂gpeixq
Hpλ` ρ, ixq (16)

where ∆gpxq has been introduced above in (5) and ∆̂gpe
ixq :“

ś

αααą0

´

e
i
2
xααα,xy ´ e´

i
2
xααα,xy

¯

is the

famous “Weyl denominator.” This remarkable formula reflects a deep correspondence between
(“classical”) coadjoint orbits and (“quantum”) irreps of G: this is the object of Kirillov’s orbit
theory [18].

Using that relation, one may rewrite J as expressed in (8), evaluated at a triple of h.w. λ, µ, ν
shifted by ρ, as an integral of characters. We assume that the triple pλ, µ, νq is such that λ`µ´ν P Q,
where Q is the root lattice, since otherwise the LR multiplicity Nν

λµ vanishes, as is well known.
The main difference between the integrals appearing in (8) and (15) is that the former runs over

the whole Cartan subalgebra t » Rr, while the latter is over the (compact) Cartan torus T. But
since T» t{p2πP_q, where P_ is the coweight lattice, generated by the coweights3 ω_i , i “ 1, ¨ ¨ ¨ , r,

3Here the fundamental weights satisfy 2xωi, αjy{xαj , αjy “ δij , while the coweights are normalized so as to satisfy
xω_i , αjy “ δij .

11



we may write

J pλ` ρ, µ` ρ; ν ` ρq “ dimVλ dimVµ dimVν

ż

t»Rr
drx |∆gpxq|

2 Hpλ` ρ, ixqHpµ` ρ, ixqpHpν ` ρ, ixqq˚

“

ż

t
drx |∆̂gpe

ixq|2
∆̂gpe

ixq

∆gpixq
χλpe

ixqχµpe
ixqpχνpe

ixqq˚

“

ż

t
drx |∆̂gpe

ixq|2
looooooomooooooon

ÿ

δP2πP_

∆̂gpe
i px`δqq

∆gpi px` δqq
χλpe

i px`δqqχµpe
i px`δqqpχνpe

i px`δqqq˚

“

ż

T
dT

˜

ÿ

δP2πP_

ei xρ,δy ∆̂gpe
ixq

∆gpi px` δqq

¸

χλpT qχµpT qpχνpT qq
˚. (17)

Now, the sum over δ P P_ is a generalization of the classical identity
ř8
n“´8

p´1qn

u`p2πqn “
1

2 sinpu{2q

and in general yields [10]

ÿ

δP2πP_

ei xρ,δy ∆̂gpe
ixq

∆gpi px` δqq
“

ÿ

κPK

rκχκpT q, (18)

where the sum on the right runs over a finite, pλ, µ, νq-independent set of weights K described in
[4, 7]. The coefficients rκ are non-negative rational numbers satisfying

ÿ

κ

rκ dimVκ “ 1 . (19)

For each such term, the integral over T thus yields the multiplicity λ b µ b κ Ñ ν. There is a
similar identity involving J at unshifted weights pλ, µ, νq [7]. We conclude that for a triple pλ, µ, νq
such that λ` µ´ ν P Q, we have two identities (distinct if ρ R Q):

J pλ` ρ, µ` ρ; ν ` ρq “
ÿ

κPK,τ

rκN
τ
λµN

ν
τ κ “

ÿ

κPK

rκN
ν
λµκ (20)

J pλ, µ; νq “
ÿ

κPK̂,τ

r̂κN
τ
pλ´ρq pµ´ρqN

ν´ρ
τ κ “

ÿ

κPK̂

r̂κN
ν´ρ
pλ´ρq pµ´ρqκ . (21)

For example, for SU(3), the sum in the rhs of (18) includes only the trivial representation, so
that we have simply J pλ` ρ, µ` ρ; ν ` ρq “ N ν

λµ. In contrast, for SU(4) and Spin(5) respectively,

J pλ` ρ, µ` ρ; ν ` ρq “
1

24

´

9N ν
λµ `N

ν
λµ pω1`ω3q

¯

, J pλ, µ; νq “
1

6
N ν´ρ
λ´ρµ´ρ ω2

, (22)

J pλ` ρ, µ` ρ; ν ` ρq “
1

8

´

3N ν
λµ `N

ν
λµω1

¯

, J pλ, µ; νq “
1

4
N ν´ρ
λ´ρµ´ρ ω2

. (23)

4.2 The BZ polytope, its stretching, and the J function as a volume

We now change gear and introduce combinatorial methods to determine the LR coefficients. This
follows from the work of Berenstein and Zelevinsky [1], who have shown that given a triple pλ, µ, νq
such that σ :“ λ ` µ ´ ν P Q, one may construct a polytope Hν

λµ, such that the LR coefficient

Nν
λµ is given by the number of integer points in Hν

λµ. We consider this polytope as a subset of Rk
where k is the number of positive roots; its dimension is at most d “ k ´ rankpGq. Then

Nν
λµ “ #pHν

λµ X Zkq.

We call Hν
λµ the BZ polytope associated to the triple pλ, µ, νq. In general it is rational but not

integral (i.e. the coordinates of its vertices are rational but not always integers). Moreover, for ν

12



on the interior of the support of J , the dimension d coincides with the degree of homogeneity of
J .

Determining the number of integer points in a rational polytope and its dilations is a classical
problem in combinatorics. If sHν

λµ is the dilated polytope tsx : x P Hν
λµu for some positive integer

s, then the number of integer points in sHν
λµ is given by the Ehrhart quasi-polynomial

P νλµpsq “ #psHν
λµ X Zkq “

d
ÿ

`“0

s`a`psq,

where “quasi” means that the coefficients a`psq may be periodic functions of s. One can prove that
whenever Hν

λµ is an integral polytope, P νλµpsq is an honest polynomial. But there are cases where
P νλµpsq is a polynomial even though Hν

λµ is not integral; indeed the LR stretching polynomials
for SUpnq are always honest polynomials even for non-integral BZ polytopes. In contrast, for the
Spinp2m` 1q groups (i.e., for the Bm algebras), one encounters many cases of quasi-polynomiality,
though we have not yet been able to discern a criterion determining which P νλµ are actual polyno-
mials.

Using standard results in combinatorics, it can be shown that the coefficient ad of P νλµ is a
constant equal to the d-volume of Hν

λµ. (In fact it is the relative volume, given by the Euclidean
d-volume times a scalar factor that can be computed, see [7] for details.) We now want to show that
this volume is given by the function J . Writing eq. (20) for a triple of dilated weights psλ, sµ, sνq,
s " 1, we have

J psλ` ρ, sµ` ρ; sν ` ρq « J psλ, sµ; sνq “ sdJ pλ, µ; νq (24)

“
ÿ

κPK

rκN
sν
sλ sµκ

s"1
«

ÿ

κPK

rκ dimVκ
looooooomooooooon

“1

N sν
sλ sµ “ N sν

sλ sµ

where in the first line we have made use of the continuity (for n ą 2 in SUpnq) and of the homo-
geneity of the function J ; in the second line, for s large, all the weights of the irrep of h.w. κ
contribute additively and with their multiplicity to N sν

sλ sµκ « dimVκN
sν
sλ sµ, and we use the relation

(19).
We conclude that for s large

sdJ pλ, µ; νq « N sν
sλ sµ “ P νλµpsq « ads

d “ VolpHν
λµqs

d ,

whence
J pλ, µ; νq “ VolpHν

λµq . (25)

This vindicates the claim that the Horn problem is a semi-classical description of the LR multiplicity
problem, and that the function J measures the volume of the BZ polytope. Returning to the
relations (20, 21) we see that they give an exact expression for this volume as a finite sum of LR
multiplicities, which is more precise than the previously known asymptotic relationship.

4.3 Pictographs

This relationship between the two problems, Horn and LR, has been beautifully illustrated by
the honeycomb/hive construction of Knutson and Tao [22]. KT-honeycombs are examples of pic-
tographs, i.e., of graphical combinatorial objects that describe the two problems.

In the LR problem, the basic idea is that there should be as many (distinct) pictographs with
prescribed “external labels” specifying the given three highest weights λ, µ, ν (or the three irreps) as
the multiplicity itself. In other words the number of pictographs should be equal to the dimension
of the space of intertwiners HompVλ b Vµ, Vνq. KT-honeycombs are well suited for studying the
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Figure 8: Three equivalent pictographs: a BZ-triangle, an O-blade, and an isometric SU(4) honey-
comb.

Horn problem and the GL(n) or the Upnq multiplicity problem; their three sides are labelled by
Young diagrams, i.e. by the summands of the associated integer partitions, in other words by the
Young variables specifying three given irreps.

KT-honeycombs can also be used to describe multiplicities for SUpnq, but in this case three
other kinds of pictographs are often better suited. The pictographs that we have in mind have
Dynkin labels attached to their three sides. We shall distinguish three kinds of pictographs, which
look different but are essentially equivalent: the Berenstein-Zelevinsky triangles (or BZ-triangles
for short), the Ocneanu blades (or O-blades) and the SUpnq isometric honeycombs. The first were
introduced in [2], the second in [25], and the last were discussed, in the framework of SU(3),
by two of us in sect. 4 of [6]. KT-honeycombs (and hives), in relation with the solution of the
Horn problem in the Hermitian case, are discussed in many places, so we shall restrict this short
discussion to the SUpnq case and remind the reader how the last three kinds of pictographs are
related. It will be enough to present a simple example: let us consider, in SU(4), the tensor product
V21,13,5bV7,10,12 where the indices (non-negative integers) refer to the Dynkin labels of two highest
weights. The decomposition of this tensor product into a sum of irreducible representations contains
537186 terms, most of them with non-trivial multiplicity because only 7092 are inequivalent. The
representation V20,11,9, for instance, occurs with multiplicity 367. This means that there will be
367 distinct BZ-triangles with the given labels, and the same number of O-blades and SUpnq-
honeycombs. Fig. 8 displays one of them, in its three avatars.

In the BZ-triangle, the pattern of black integers is such that an integer carried by an edge
is the sum of the integers labelling its end-points; the integers in blue are given (Dynkin labels).
Moreover, we have one additional constraint: the red integers carried by opposite sides of hexagons
are equal. In the O-blade, there is “conservation of the external integers” (Dynkin labels); we did
not display the red integers: they sit in the six angles surrounding the three inner vertices, and the
constraint, now, is that opposite angles (defined as the sum of their corresponding edges) should
be equal. In the SU(4) honeycomb the constraint is that sums of two edges relative to opposite
points of each of the three hexagons are equal.

Which pictograph one prefers is a matter of taste since the geometric correspondence between
the three pictures is rather obvious. In particular the honeycomb is obtained from the O-blade by a
star-triangle operation, also called a Y-∆ transform; the constraints are automatically satisfied by
displaying the hexagons of the resulting honeycomb in a metric way as parallelo-hexagons (opposite
sides are parallel), or, equivalently, as equiangular hexagons (each angle has a value equal to 120˝),
because the length of each side is then given by the non-negative integer it carries.

In an equiangular hexagon, the sums of two consecutive edges surrounding opposite vertices
are equal (for a proof of this elementary fact, extend the six sides of the chosen hexagon and
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Figure 9: An isometric SU(7) honeycomb displaying one possible coupling for
t115, 73, 73, 45, 67, 34u b t118, 95, 84, 72, 49, 23u Ñ t50, 52, 44, 78, 78, 126u .

embed the latter in one of the two resulting equilateral triangles). Remember also that the black
integers are non-negative, but they are allowed to equal 0, in which case the irregular hexagons
may degenerate to pentagons or to quadrilaterals. For SUpnq, there are pn ´ 1qpn ´ 2q{2 inner
vertices in the O-blades (the same as the number of hexagons), and we can intuitively interpret the
existence of some non-trivial multiplicity relative to a chosen triple of irreps as a kind of “breathing”
of the (irregular) hexagons. More properties of O-blades and isometric SUpnq honeycombs, in
particular their decomposition on “fundamental pictographs,” can be found in [6]. Notice that
the external sides of the KT-honeycombs are labelled by partitions, whereas those of the SUpnq
isometric honeycombs are labelled by Dynkin indices. Moreover the numbers carried by the leaves
(internal edges) are non-negative integers in the latter case, whereas they can be negative in the
former (which cannot be “isometric,” of course). For purposes of illustration, Fig. 9 displays an
SUp7q isometric honeycomb for a triple of highest weights with rather large entries.

Although one can construct BZ polytopes for all simple Lie groups, pictographs have been
invented only for SUpnq. Finding analogs of the latter for other types of simple Lie group is a
problem that has baffled the community and is still waiting for an answer.

4.4 Relation with symmetric polynomials

Since characters of representations combine multiplicatively under the tensor product, the multi-
plicities Nν

λµ can be interpreted as structure constants in the ring of symmetric functions generated
by the characters of the irreps of g. In the case of SUpnq for example, these multiplicities encode
the structure constants for the Schur polynomials.

In the coadjoint case, we have a notion of BZ polytopes (and, in the SUpnq subcase, we also
have pictographs); we know that the volume of a BZ-polytope is measured by the value of the J
function, a value that can be obtained by looking at the highest degree coefficient of the stretching
(or LR) polynomial when multiplicities are scaled. Moreover, we have an equality between structure
constants of the algebra of symmetric polynomials in the Schur basis and the number of integer
points of appropriate BZ-polytopes (or hive polytopes), for SUpnq. We obtain therefore a relation
between the function J , as defined in the (Hermitian) Horn problem, and the scaling behavior of
appropriate structure constants of the ring of symmetric polynomials in the Schur basis. Clearly
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Figure 10: Left: Surface approximating the rescaled zonal structure constants for some choice of
arguments.
Middle : Point plot of the volume function J for the corresponding arguments.
Right: Superposition of both.
Remark : Because of the large vertical coordinate range, those parts of the surface lying
far from the singularities look essentially flat and one only sees the singularities (high
values of J ).

this kind of relation extends to other situations, where the Lie group SUpnq is replaced by other
simple Lie groups and where Schur polynomials are replaced by orthogonal Schur polynomials,
symplectic Schur polynomials, etc.

In the self-adjoint case, however, there is no obvious notion of multiplicity and there are no
BZ-polytopes. Nevertheless, we still have a J function stemming from the Horn problem. Could
this J function be related to some kind of volume, or to some kind of asymptotic behavior for
the structure constants of an appropriate class of polynomials? The answer to the second part of
the question is positive: as discussed in [5], one shows that for θ “ 1{2 or 2, J is the limit of the
structure constants of appropriate zonal polynomials (Jack polynomials with parameter θ), see also
[26]. The approach to asymptotics is illustrated in Fig. 10 which displays both the volume function
J “ ρ, calculated from the integral of eq. (12), for some choice of its arguments, and a vertically
scaled version of the surface approximating the corresponding4 zonal structure constants.

The answer to the first part of the question is not known: notice that there is no clear way
to obtain a combinatorial interpretation of a would-be hive or BZ-polytope, since the structure
constants of zonal polynomials are usually not integers but rational numbers — they are integers
if the Jack parameter θ “ 1, but this is because one recovers in that case the Schur polynomials
themselves! We leave this problem to the sagacity of our readers.
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