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FROM THE PREFACE TO THE FIRST ENGLISH EDITION

The present book is one of the series on Theoretical Physics, in which we

endeavour to give an up-to-date account of various departments of that science.

The complete series will contain the following nine volumes

:

1. Mechanics. 2. The classical theory of fields. 3. Quantum mechanics

(non-relativistic theory). 4. Relativistic quantum theory. 5. Statisticalphysics.

6. Fluid mechanics. 7. Theory of elasticity. 8. Electrodynamics of continuous

media. 9. Physical kinetics.

Of these, volumes 4 and 9 remain to be written.

The scope of modern theoretical physics is very wide, and we have, of

course, made no attempt to discuss in these books all that is now included in

the subject. One of the principles which guided our choice of material was

not to deal with those topics which could not properly be expounded without

at the same time giving a detailed account of the existing experimental results.

For this reason the greater part of nuclear physics, for example, lies outside the

scope of these books. Another principle of selection was not to discuss very

complicated applications of the theory. Both these criteria are, of course,

to some extent subjective.

We have tried to deal as fully as possible with those topics that are included.

For this reason we do not, as a rule, give references to the original papers,

but simply name their authors. We give bibliographical references only to

work which contains matters not fully expounded by us, which by their com-

plexity lie "on the borderline" as regards selection or rejection. We have

tried also to indicate sources of material which might be of use for reference.

Even with these limitations, however, the bibliography given makes no pre-

tence of being exhaustive.

We attempt to discuss general topics in such a way that the physical signifi-

cance of the theory is exhibited as clearly as possible, and then to build up the

mathematical formalism. In doing so, we do not aim at "mathematical

rigour" of exposition, which in theoretical physics often amounts to self-

deception.

The present volume is devoted to non-relativistic quantum mechanics. By
"relativistic theory" we here mean, in the widest sense, the theory of all

quantum phenomena which significantly depend on the velocity of light. The
volume on this subject (volume 4) will therefore contain not only Dirac's

relativistic theory and what is now known as quantum electrodynamics, but

also the whole of the quantum theory of radiation.

Institute ofPhysical Problems L. D. Landau

USSR Academy of Sciences E. M. Lifshitz

August 1956



PREFACE TO THE SECOND ENGLISH EDITION

For this second edition the book has been considerably revised and en-

larged, but the general plan and style remain as before. Every chapter has

been revised. In particular, extensive changes have been made in the sections

dealing with the theory of the addition of angular momenta and with collision

theory. A new chapter on nuclear structure has been added; in accordance

with the general plan of the course, the subjects in question are discussed only

to the extent that is proper without an accompanying detailed analysis of the

experimental results.

We should like to express our thanks to all our many colleagues whose

comments have been utilised in the revision of the book. Numerous com-

ments were received from V. L. Ginzburg and Ya. A. Smorodinskii. We are

especially grateful to L. P. Pitaevskii for the great help which he has given in

checking the formulae and the problems.

Our sincere thanks are due to Dr. Sykes and Dr. Bell, who not only

translated excellently both the first and the second edition of the book, but

also made a number of useful comments and assisted in the detection of

various misprints in the first edition.

Finally, we are grateful to the Pergamon Press, which always acceded to

our requests during the production of the book.

L. D. Landau
October 1964 E. M. Lifshitz



NOTATION

Operators are denoted by a circumflex

dq element in configuration space

fnm = /" = (n\f\m) matrix elements of the quantity/ (see definition in §11)

%m = (En— Em)!^ transition frequency

{/, g} = fg—g/ commutator of two operators

i? Hamiltonian

S, &? electric and magnetic fields

Si phase shifts of wave functions

eua antisymmetric unit tensor

"± = "a; i ^"y



CHAPTER I

THE BASIC CONCEPTS OF QUANTUM MECHANICS

§1. The uncertainty principle

When we attempt to apply classical mechanics and electrodynamics to explain

atomic phenomena, they lead to results which are in obvious conflict with

experiment. This is very clearly seen from the contradiction obtained on

applying ordinary electrodynamics to a model of an atom in which the elec-

trons move round the nucleus in classical orbits. During such motion, as in

any accelerated motion of charges, the electrons would have to emit electro-

magnetic waves continually. By this emission, the electrons would lose their

energy, and this would eventually cause them to fall into the nucleus. Thus,

according to classical electrodynamics, the atom would be unstable, which

does not at all agree with reality.

This marked contradiction between theory and experiment indicates that

the construction of a theory applicable to atomic phenomena—that is, pheno-

mena occurring in particles of very small mass at very small distances

—

demands a fundamental modification of the basic physical concepts and laws.

As a starting-point for an investigation of these modifications, it is conveni-

ent to take the experimentally observed phenomenon known as electron

diffraction.^ It is found that, when a homogeneous beam of electrons passes

through a crystal, the emergent beam exhibits a pattern of alternate maxima

and minima of intensity, wholly similar to the diffraction pattern observed

in the diffraction of electromagnetic waves. Thus, under certain conditions,

the behaviour of material particles—in this case, the electrons—displays

features belonging to wave processes.

How markedly this phenomenon contradicts the usual ideas of motion is

best seen from the following imaginary experiment, an idealisation of the

experiment of electron diffraction by a crystal. Let us imagine a screen

impermeable to electrons, in which two slits are cut. On observing the

passage of a beam of electrons^ through one of the slits, the other being

covered, we obtain, on a continuous screen placed behind the slit, some pat-

tern of intensity distribution; in the same way, by uncovering the second

slit and covering the first, we obtain another pattern. On observing the

passage of the beam through both slits, we should expect, on the basis of

ordinary classical ideas, a pattern which is a simple superposition of the other

two : each electron, moving in its path, passes through one of the slits and

f The phenomenon of electron diffraction was in fact discovered after quantum mechanics was
invented. In our discussion, however, we shall not adhere to the historical sequence of development
of the theory, but shall endeavour to construct it in such a way that the connection between the basic

principles of quantum mechanics and the experimentally observed phenomena is most clearly shown

J The beam is supposed so rarefied that the interaction of the particles in it plays no part.

1



2 The Basic Concepts of Quantum Mechanics §1

has no effect on the electrons passing through the other slit. The phenomenon
of electron diffraction shows, however, that in reality we obtain a diffraction

pattern which, owing to interference, does not at all correspond to the sum
of the patterns given by each slit separately. It is clear that this result can
in no way be reconciled with the idea that electrons move in paths.

Thus the mechanics which governs atomic phenomena

—

quantum mechanics
or wave mechanics—must be based on ideas of motion which are fundamentally
different from those of classical mechanics. In quantum mechanics there is

no such concept as the path of a particle. This forms the content of what is

called the uncertainty principle, one of the fundamental principles of quantum
mechanics, discovered by W. Heisenberg in 1927.f

In that it rejects the ordinary ideas of classical mechanics, the uncertainty
principle might be said to be negative in content. Of course, this principle
in itself does not suffice as a basis on which to construct a new mechanics of

particles. Such a theory must naturally be founded on some positive asser-

tions, which we shall discuss below (§2). However, in order to formulate
these assertions, we must first ascertain the statement of the problems which
confront quantum mechanics. To do so, we first examine the special nature
of the interrelation between quantum mechanics and classical mechanics. A
more general theory can usually be formulated in a logically complete manner,
independently of a less general theory which forms a limiting case of it. Thus,
relativistic mechanics can be constructed on the basis of its own fundamental
principles, without any reference to Newtonian mechanics. It is in principle

impossible, however, to formulate the basic concepts of quantum mechanics
without using classical mechanics. The fact that an electron^ has no definite

path means that it has also, in itself, no other dynamical characteristics.
||

Hence it is clear that, for a system composed only of quantum objects,

it would be entirely impossible to construct any logically independent
mechanics. The possibility of a quantitative description of the motion of an
electron requires the presence also of physical objects which obey classical

mechanics to a sufficient degree of accuracy. If an electron interacts with
such a "classical object", the state of the latter is, generally speaking, altered.

The nature and magnitude of this change depend on the state of the electron,

and therefore may serve to characterise it quantitatively.

In this connection the "classical object" is usually called apparatus, and
its interaction with the electron is spoken of as measurement. However, it

must be emphasised that we are here not discussing a process of measurement
in which the physicist-observer takes part. By measurement, in quantum
mechanics, we understand any process of interaction between classical and

f It is of interest to note that the complete mathematical formalism of quantum mechanics was
constructed by W. Heisenberg and E. Schrodinger in 1925-6, before the discovery of the uncertainty
principle, which revealed the physical content of this formalism.

X In this and the following sections we shall, for brevity, speak of "an electron", meaning in general
any object of a quantum nature, i.e. a particle or system of particles obeying quantum mechanics and
not classical mechanics.

I
We refer to quantities which characterise the motion of the electron, and not to those, such as the

charge and the mass, which relate to it as a particle ; these are parameters.



§1 The uncertainty principle 3

quantum objects, occurring apart from and independently of any observer.

The importance of the concept of measurement in quantum mechanics was
elucidated by N. Bohr.

We have denned "apparatus" as a physical object which is governed, with

sufficient accuracy, by classical mechanics. Such, for instance, is a body
of large enough mass. However, it must not be supposed that apparatus is

necessarily macroscopic. Under certain conditions, the part of apparatus may
also be taken by an object which is microscopic, since the idea of "with

sufficient accuracy" depends on the actual problem proposed. Thus, the

motion of an electron in a Wilson chamber is observed by means of the

cloudy track which it leaves, and the thickness of this is large compared with

atomic dimensions; when the path is determined with such low accuracy,

the electron is an entirely classical object.

Thus quantum mechanics occupies a very unusual place among physical

theories: it contains classical mechanics as a limiting case, yet at the same
time it requires this limiting case for its own formulation.

We may now formulate the problem of quantum mechanics. A typical

problem consists in predicting the result of a subsequent measurement from
the known results of previous measurements. Moreover, we shall see later

that, in comparison with classical mechanics, quantum mechanics, generally

speaking, restricts the range of values which can be taken by various physical

quantities (for example, energy) : that is, the values which can be obtained

as a result of measuring the quantity concerned. The methods of quantum
mechanics must enable us to determine these admissible values.

The measuring process has in quantum mechanics a very important pro-

perty: it always affects the electron subjected to it, and it is in principle

impossible to make its effect arbitrarily small, for a given accuracy of measure-
ment. The more exact the measurement, the stronger the effect exerted by
it, and only in measurements of very low accuracy can the effect on the mea-
sured object be small. This property of measurements is logically related

to the fact that the dynamical characteristics of the electron appear only as a

result of the measurement itself. It is clear that, if the effect of the measuring
process on the object of it could be made arbitrarily small, this would mean
that the measured quantity has in itself a definite value independent of the

measurement.

Among the various kinds of measurement, the measurement of the co-

ordinates of the electron plays a fundamental part. Within the limits of

applicability of quantum mechanics, a measurement of the co-ordinates of an
electron can always be performed-]- with any desired accuracy.

Let us suppose that, at definite time intervals At, successive measurements of

the co-ordinates of an electron are made. The results will not in general lie

on a smooth curve. On the contrary, the more accurately the measurements

f Once again we emphasise that, in speaking of "performing a measurement", we refer to the
interaction of an electron with a classical " apparatus", which in no way presupposes the presence of
an external observer.



4 The Basic Concepts of Quantum Mechanics §1

are made, the more discontinuous and disorderly will be the variation of

their results, in accordance with the non-existence of a path of the electron.

A fairly smooth path is obtained only if the co-ordinates of the electron are

measured with a low degree of accuracy, as for instance from the condensa-

tion of vapour droplets in a Wilson chamber.

If now, leaving the accuracy of the measurements unchanged, we diminish

the intervals At between measurements, then adjacent measurements, of

course, give neighbouring values of the co-ordinates. However, the results

of a series of successive measurements, though they lie in a small region of

space, will be distributed in this region in a wholly irregular manner, lying on
no smooth curve. In particular, as A* tends to zero, the results of adjacent

measurements by no means tend to lie on one straight line.

This circumstance shows that, in quantum mechanics, there is no such

concept as the velocity of a particle in the classical sense of the word, i.e. the

limit to which the difference of the co-ordinates at two instants, divided by
the interval At between these instants, tends as At tends to zero. However,
we shall see laier that in quantum mechanics, nevertheless, a reasonable

definition of the velocity of a particle at a given instant can be constructed,

and this velocity passes into the classical velocity as we pass to classical mech-
anics. But whereas in classical mechanics a particle has definite co-ordinates

and velocity at any given instant, in quantum mechanics the situation is

entirely different. If, as a result of measurement, the electron is found to have

definite co-ordinates, then it has no definite velocity whatever. Conversely,

if the electron has a definite velocity, it cannot have a definite position in

space. For the simultaneous existence of the co-ordinates and velocity would

mean the existence of a definite path, which the electron has not. Thus, in

quantum mechanics, the co-ordinates and velocity of an electron are quantities

which cannot be simultaneously measured exactly, i.e. they cannot simultane-

ously have definite values. We may say that the co-ordinates and velocity

of the electron are quantities which do not exist simultaneously. In what

follows we shall derive the quantitative relation which determines the pos-

sibility of an inexact measurement of the co-ordinates and velocity at the same

instant.

A complete description of the state of a physical system in classical mech-

anics is effected by stating all its co-ordinates and velocities at a given instant

;

with these initial data, the equations of motion completely determine the

behaviour of the system at all subsequent instants. In quantum mechanics

such a description is in principle impossible, since the co-ordinates and the

corresponding velocities cannot exist simultaneously. Thus a description

of the state of a quantum system is effected by means of a smaller number of

quantities than in classical mechanics, i.e. it is less detailed than a classical

description.

A very important consequence follows from this regarding the nature of the

predictions made in quantum mechanics. Whereas a classical description

suffices to predict the future motion of a mechanical system with complete
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accuracy, the less detailed description given in quantum mechanics evidently

cannot be enough to do this. This means that, even if an electron is in a state

described in the most complete manner possible in quantum mechanics, its

behaviour at subsequent instants is still in principle uncertain. Hence quan-
tum mechanics cannot make completely definite predictions concerning the
future behaviour of the electron. For a given initial state of the electron, a
subsequent measurement can give various results. The problem in

quantum mechanics consists in determining the probability of obtaining vari-

ous results on performing this measurement. It is understood, of course,

that in some cases the probability of a given result of measurement may be
equal to unity, i.e. certainty, so that the result of that measurement is unique.

All measuring processes in quantum mechanics may be divided into two
classes. In one, which contains the majority of measurements, we find those
which do not, in any state of the system, lead with certainty to a unique
result. The other class contains measurements such that for every possible
result of measurement there is a state in which the measurement leads with
certainty to that result. These latter measurements, which may be called
predictable, play an important part in quantum mechanics. The quantitative
characteristics of a state which are determined by such measurements are
what are called physical quantities in quantum mechanics. If in some state

a measurement gives with certainty a unique result, we shall say that in this

state the corresponding physical quantity has a definite value. In future we
shall always understand the expression "physical quantity" in the sense given
here.

We shall often find in what follows that by no means every set of physical
quantities in quantum mechanics can be measured simultaneously, i.e. can
all have definite values at the same time. We have already mentioned one
example, namely the velocity and co-ordinates of an electron. An important
part is played in quantum mechanics by sets of physical quantities having
the following property: these quantities can be measured simultaneously,
but if they simultaneously have definite values, no other physical quantity
(not being a function of these) can have a definite value in that state. We
shall speak of such sets of physical quantities as complete sets; in particular
cases a complete set may consist of only one quantity.

Any description of the state of an electron arises as a result of some mea-
surement. We shall now formulate the meaning of a complete description of
a state in quantum mechanics. Completely described states occur as a result
of the simultaneous measurement of a complete set of physical quanti-
ties. From the results of such a measurement we can, in particular, deter-
mine the probability of various results of any subsequent measurement,
regardless of the history of the electron prior to the first measurement.

In quantum mechanics we need concern ourselves in practice only with
completely described states, and from now on (except in §14) we shall under-
stand by the states of a quantum system just these completely described
states.
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§2. The principle of superposition

Passing now to an exposition of the fundamental mathematical formalism

of quantum mechanics, we shall denote by q the set of co-ordinates of a quan-

tum system, and by dq the product of the differentials of these co-ordinates.

This dq is often called an element of volume in the configuration space of the

system; for one particle, dq coincides with an element of volume dV in

ordinary space.

The basis of the mathematical formalism of quantum mechanics lies in the

fact that any state of a system can be described, at a given moment, by a

definite (in general complex) function Y(#) of the co-ordinates. The square

of the modulus of this function determines the probability distribution of the

values of the co-ordinates: |Y| 2d# is the probability that a measurement

performed on the system will find the values of the co-ordinates to be in the

element dq of configuration space. The functionY is called the wavefunction

of the system (sometimes also the probability amplitude), j-

A knowledge of the wave function allows us, in principle, to calculate the

probability of the various results of any other measurement (not of the co-

ordinates) also. All these probabilities are determined by expressions bi-

linear in Y and Y*. The most general form of such an expression is

jjV{q)Wffl<Kq t <t)*qM, (2.1)

where the function (f>(q, q) depends on the nature and the result of the mea-

surement, and the integration is extended over all configuration space. The

probability YY* of various values of the co-ordinates is itself an expression

of this type. J
The state of the system, and with it the wave function, in general varies

with time. In this sense the wave function can be regarded as a function of

time also. If the wave function is known at some initial instant, then, from

the very meaning of the concept of complete description of a state, it is in

principle determined at every succeeding instant. The actual dependence

of the wave function on time is determined by equations which will be de-

rived later.

The sum of the probabilities of all possible values of the co-ordinates of

the system must, by definition, be equal to unity. It is therefore necessary

that the result of integrating |Y| 2 over all configuration space should be equal

to unity:

J>|»df = l. (2.2)

This equation is what is called the normalisation condition for wave functions.

If the integral of |Y| 2 converges, then by choosing an appropriate constant

coefficient the function Y can always be, as we say, normalised. Sometimes,

f It was first introduced into quantum mechanics by Schrodinger in 1926.

% It is obtained from (2.1) when<£(g, q') = 8(?-? ) 8(q'-q ), where 8 denotes the delta function,

defined in §5 below; q denotes the value of the co-ordinates whose probability is required.
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however, wave functions are used which are not normalised; moreover, we
shall see later that the integral of |TJ

2 may diverge, and then Y cannot be
normalised by the condition (2.2). In such cases |T| 2 does not, of course,

determine the absolute values of the probability of the co-ordinates, but the

ratio of the values of |T| 2 at two different points of configuration space deter-

mines the relative probability of the corresponding values of the co-ordinates.

Since all quantities calculated by means of the wave function, and having a

direct physical meaning, are of the form (2.1), in which T appears multiplied

by Y*, it is clear that the normalised wave function is determined only to

within a constant phase factor of the form eia (where a is any real number),
whose modulus is unity. This indeterminacy is in principle irremovable;

it is, however, unimportant, since it has no effect upon any physical results.

The positive content of quantum mechanics is founded on a series of

propositions concerning the properties of the wave function. These are as

follows.

Suppose that, in a state with wave function VF^), some measurement leads

with certainty to a definite result (result 1), while in a state with Y2(#) it

leads to result 2. Then it is assumed that every linear combination of Yx

and Y2 ,
i.e. every function of the form c

J
T1+c2

xF2 (where cx and c% me con-
stants), gives a state in which that measurement leads to either result 1 or

result 2. Moreover, we can assert that, if we know the time dependence of

the states, which for the one case is given by the function T^, t), and for the
other byY2(<7, t), then any linear combination also gives a possible dependence
of a state on time. These propositions can be immediately generalised to

any number of different states.

The above set of assertions regarding wave functions constitutes what is

called the principle of superposition of states, the chief positive principle of

quantum mechanics. In particular, it follows at once from this principle

that all equations satisfied by wave functions must be linear in Y.
Let us consider a system composed of two parts, and suppose that the state

of this system is given in such a way that each of its parts is completely
described.f Then we can say that the probabilities of the co-ordinates qx of
the first part are independent of the probabilities of the co-ordinates q% of the
second part, and therefore the probability distribution for the whole system
should be equal to the product of the probabilities of its parts. This means
that the wave function Y12(ft, qz) of the system can be represented in the form
of a product of the wave functions Y^ft) and Y2(#2) of its parts:

^i2(?i,?2)=Yi(?i)Y2(?2). (2.3)

If the two parts do not interact, then this relation between the wave function
of the system and those of its parts will be maintained at future instants also,

f This, of course, means that the state of the whole system is completely described also. However,
we emphasise that the converse statement is by no means true: a complete description of the state
of the whole system does not in general completely determine the states of its individual parts (see
also §14).
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i.e. we can write

Tu(fo ?i, t) = YjCfc, /)T2(?2 , 0- (2.4)

§3. Operators

Let us consider some physical quantity / which characterises the state

of a quantum system. Strictly, we should speak in the following discussion

not of one quantity, but of a complete set of them at the same time.

However, the discussion is not essentially changed by this, and for brevity

and simplicity we shall work below in terms of only one physical quantity.

The values which a given physical quantity can take are called in quantum

mechanics its eigenvalues, and the set of these is referred to as the spectrum

of eigenvalues of the given quantity. In classical mechanics, generally speak-

ing, quantities run through a continuous series of values. In quantum mech-

anics also there are physical quantities (for instance, the co-ordinates) whose

eigenvalues occupy a continuous range ; in such cases we speak of a continuous

spectrum of eigenvalues. As well as such quantities, however, there exist in

quantum mechanics others whose eigenvalues form some discrete set; in

such cases we speak of a discrete spectrum.

We shall suppose for simplicity that the quantity / considered here has a

discrete spectrum; the case of a continuous spectrum will be discussed in §5.

The eigenvalues of the quantity/ are denoted by/n , where the suffix n takes

the values 0, 1, 2, 3 We also denote the wave function of the system, in

the state where the quantity / has the value

/

n , by Yn . The wave functions

Yn are called the eigenfunctions of the given physical quantity/. Each of these

functions is supposed normalised, so that

J>n|*d«z = l. (3.1)

If the system is in some arbitrary state with wave function T, a measure-

ment of the quantity/ carried out on it will give as a result one of the eigen-

values fn . In accordance with the principle of superposition, we can assert

that the wave function Y must be a linear combination of those eigenfunc-

tions T
TC
which correspond to the values fn that can be obtained, with prob-

ability different from zero, when a measurement is made on the system and

it is in the state considered. Hence, in the general case of an arbitrary state,

the functionT can be represented in the form of a series

Y=SawYw ,
(3.2)

where the summation extends over all n, and the an are some constant coeffi-

cients.

Thus we reach the conclusion that any wave function can be, as we say,

expanded in terms of the eigenfunctions of any physical quantity. A set of

functions in terms of which such an expansion can be made is called a complete

(or closed) set.
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The expansion (3.2) makes it possible to determine the probability of find-

ing (i.e. the probability of getting the corresponding result on measurement),

in a system in a state with wave function Y, any given value/n of the quantity

/. For, according to what was said in the previous section, these probabili-

ties must be determined by some expressions bilinear in Y and Y*, and

therefore must be bilinear in an and an*. Furthermore, these expressions

must, of course, be positive. Finally, the probability of the value fn must
become unity if the system is in a state with wave function Y = Yn , and

must become zero if there is no term containing Yn in the expansion (3.2)

of the wave function Y. This means that the required probability must be

unity if all the coefficients an except one (with the given n) are zero, that one

being unity; the probability must be zero, if the an concerned is zero. The
only essentially positive quantity satisfying these conditions is the square of the

modulus of the coefficient an . Thus we reach the result that the squared

modulus \an \

% of each coefficient in the expansion (3.2) determines the prob-

ability of the corresponding valuefn of the quantity/ in the state with wave
function Y. The sum of the probabilities of all possible values fn must be

equal to unity; in other words, the relation

S law |

2 = 1 (3.3)
n

must hold.

If the function Y were not normalised, then the relation (3.3) would not

hold either. The sum £ \an \

2 would then be given by some expression

bilinear in Y and Y*, and becoming unity when Y was normalised. Only
the integral J YY* dq is such an expression. Thus the equation

SflA* = JYY*d? (3.4)

must hold.

On the other hand, multiplying by Y the expansion Y* = S tfn*Yn* of

the function Y* (the complex conjugate of Y), and integrating, we obtain

jYY* dq = S an*jYn*Y dq.

Comparing this with (3.4), we have

SaB«tt
* = San*jYn*Yd?,

from which we derive the following formula determining the coefficients an
in the expansion of the function Y in terms of the eigenfunctions Yn :

an = jYYn*d2 . (3.5)

If we substitute here from (3.2), we obtain

«n = Saw fYTOYn*d9 ,
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from which it is evident that the eigenfunctions must satisfy the conditions

JTmVn*dq = 8nm , (3.6)

where $nm = 1 for n = m and Snm = for n # m. The fact that the integrals

of the products TwTn* with m ^ n vanish is called the orthogonality of the
functions Tn . Thus the set of eigenfunctions Tn forms a complete set of
normalised and orthogonal (or, for brevity, orthonormal) functions.

We shall now introduce the concept of the mean value f of the quantity/
in the given state. In accordance with the usual definition of mean values,

we define / as the sum of all the eigenvalues fn of the given quantity, each
multiplied by the corresponding probability |an |

2
. Thus

/= IfnW- (3.7)

We shall write / in the form of an expression which does not contain the

coefficients an in the expansion of the function T, but this function itself.

Since the products anan* appear in (3.7), it is clear that the required expres-

sion must be bilinear in T and Y*. We introduce a mathematical opera-

tor, which we denotef by /and define as follows. Let (/Y) denote the result

of the operator / acting on the function Y. We define / in such a way that

the integral of the product of (/Y) and the complex conjugate function Y*
is equal to the mean value /:

/=jV(/T)d? . (3.8)

It is easily seen that, in the general case, the operator / is a linearJ
integral operator. For, using the expression (3.5) for an , we can rewrite the

definition (3.7) of the mean value in the form

/= \fnana* = J
Y*(S anfnWn) 6q.

Comparing this with (3.8), we see that the result of the operator / acting on
the function Y has the form

(/Y) = San/MYw . (3.9)

If we substitute here the expression (3.5) for an , we find that /is an integral

operator of the form

tfr) = JK(q,<nv(<nw, (3.io)

where the function K(q, q') (called the kernel of the operator) is

K(q, q') = S/.Y.-foT^fe). (3.11)

f By convention, we shall always denote operators by letters with circumflexes.

+ An operator is said to be linear if it has the properties

/(^i+T2) =M+/Y, and/(«T) = afY,
where XF 1 and *F 2 are arbitrary functions and a is an arbitrary constant.
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Thus, for every physical quantity in quantum mechanics, there is a definite

corresponding linear operator.

It is seen from (3.9) that, if the function T is one of the eigenfunctions \Fn
(so that all the an except one are zero), then, when the operator / acts on it,

this function is simply multiplied by the corresponding eigenvalue fn :

fa =/«^n- (3.12)

(In what follows we shall always omit the parentheses in the expression

(/T), where this cannot cause any misunderstanding; the operator is taken

to act on the expression which follows it.) Thus we can say that the eigen-

functions of the given physical quantity /are the solutions of the equation

where / is a constant, and the eigenvalues are the values of this constant for

which the above equation has solutions satisfying the required conditions.

Of course, while the operator /is still defined only by the expressions (3.10)

and (3.11), which themselves contain the eigenfunctions ^I^, no further con-

clusions can be drawn from the result we have obtained. However, as we
shall see below, the form of the operators for various physical quantities can

be determined from direct physical considerations, and then the above pro-

perty of the operators enables us to find the eigenfunctions and eigenvalues

by solving the equations p¥ = f¥.
The values which can be taken by real physical quantities are obviously

real. Hence the mean value of a physical quantity must also be real, in any
state. Conversely, if the mean value of a physical quantity is real in every

state, its eigenvalues also are all real; to show this, it is sufficient to note that

the mean values coincide with the eigenvalues in the states described by the

functions Tn .

From the fact that the mean values are real, we can draw some conclusions

concerning the properties of operators. Equating the expression (3.8) to its

complex conjugate, we obtain the relation

J
T*(/Y) dg = j Y(f*Y*) dg, (3.13)

where /* denotes the operator which is the complex conjugate of /. j- This
relation does not hold in general for an arbitrary linear operator, so that it is

a restriction on the form of the operator /. For an arbitrary operator / we
can find what is called the transposed operator/, defined in such a way that

JY(fl>)dq=f<l>(jY)dq, (3.14)

where *F and <D are two different functions. If we take, as the function O,
the function T* which is the complex conjugate of Y, then a comparison with

(3.13) shows that we must have

/=/•• (3.15)

t By definition, if for^the operator /we h&vefifi =
<f>,

then the complex conjugate operator /* is

that for which we have /*^t* =
<f>*.
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Operators satisfying this condition are said to be Hermitian.^ Thus the

operators corresponding, in the mathematical formalism of quantum
mechanics, to real physical quantities must be Hermitian.

We can formally consider complex physical quantities also, i.e. those

whose eigenvalues are complex. Let / be such a quantity. Then we can
introduce its complex conjugate quantity/*, whose eigenvalues are the com-
plex conjugates of those of/. We denote by /+ the operator corresponding

to the quantity/*. It is called the Hermitian conjugate of the operator / and,

in general, will be different from the complex conjugate operator /* : from
the condition/* = (/)* we find at once that

/+ =7*. (3.16)

from which it is clear that /+ is in general not the same as /*. For a real

physical quantity /= /+, i.e. the operator is the same as its Hermitian

conjugate (Hermitian operators are also called self-conjugate).

We shall show how the orthogonality of the eigenfunctions of an Hermitian
operator corresponding to different eigenvalues can be directly proved. Let

fn and/„, be two different eigenvalues of the quantity/, and Tn , *Fm the cor-

responding eigenfunctions

:

f^n^fn^n, fX¥m =fmXrm -

Multiplying both sides of the first of these equations by Tm*, and both

sides of the complex conjugate of the second by Tn , and subtracting corre-

sponding terms, we find

W *fw _tF /*tF * — ( f —f W* W *

We integrate both sides of this equation over q. Since /* =/, by (3.14) the

integral on the left-hand side of the equation is zero, so that we have

(fn-fm) jTnYw*d^ = 0,

whence, since fn # fm , we obtain the required orthogonality property of the

functions xPn and Tm .

We have spoken here of only one physical quantity /, whereas, as we said

at the beginning of this section, we should have spoken of a complete set

of physical quantities. We should then have found that to each of these

quantities/ g, ... there corresponds its operator /, g, ... . The eigenfunctions

Tn then correspond to states in which all the quantities concerned have

definite values, i.e. they correspond to definite sets of eigenvaluesfn , gn , ... ,

and are simultaneous solutions of the system of equations

/F=/V, iW=gY,....

f For a linear integral operator of the form (3.10), the Hermitian condition means that the kernel

of the operator must be such that K(q, q') = K*(q', q).
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§4. Addition and multiplication of operators

Let / and g be two physical quantities which can simultaneously take

definite values, and / and g their operators. The eigenvalues of the sum

f+g of these quantities are equal to the sums of the eigenvalues of/ and g.

To this new quantityf+g there will obviously correspond an operator equal

to the sum of the operators / and g. For, if Yn are the eigenfunctions com-

mon to the operators / and g }
then it follows from /*Fn = f^¥ni £*Fn =gnx^n

that

(f+gWn = (fn+gnWn,

i.e. the eigenvalues of the operator f+j> are equal to the sums/n+£n «

If the quantities / and g cannot simultaneously take definite values, then

it is meaningless to speak of their sum in the direct sense just mentioned.

It is conventional in quantum mechanics to define the sum of the quantities

/ and g in such cases as the quantity whose mean value in an arbitrary state

is equal to the sum of the mean values /and g:

7+J=/+|. (4-1)

It is clear that, to the quantityf+g so defined, there corresponds an operator

j+£. For, by formula (3.8), we have

7+g = \^*{f+gW d? = J>*/*F dq+ JVfF dq =f+g.

The eigenvalues and eigenfunctions of the operator f+g will not, in general*

now bear any relation to those of the quantities / and g. It is evident that,

if the operators / and g are self-conjugate, the operator f+g will be so too,

so that its eigenvalues are real and are those of the new quantity f+g thus

defined.

The following theorem should be noted. Let / and g be the smallest

eigenvalues of the quantities / and g, and (f+g) that of the quantity f+g.
Then

(f+g)» >fo+go- (4.2)

The equality holds if / and g can be measured simultaneously. The proof

follows from the obvious fact that the mean value of a quantity is always

greater than or equal to its least eigenvalue. In a state in which the quantity

f+g has the value (f+g) we have f+g = (f+g) , and since, on the other

hand, f+g = f+g ^ f +g > we arrive at the inequality (4.2).

Next, let/ and g once more be quantities that can be measured simultane-

ously. Besides their sum, we can also introduce the concept of their product

as being a quantity whose eigenvalues are equal to the products of those of the

quantities / and g. It is easy to see that, to this quantity, there corresponds

an operator whose effect consists of the successive action on the function

of first one and then the other operator. Such an operator is represented

mathematically by the product of the operators / and §. For, if Tn are the
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eigenfunctions common to the operators / and g, we have

Jg?n =JtpTJ = fgn^n = gnf^n = gnfn^n

(the symbol fg denotes an operator whose effect on a function ¥ consists of
the successive action first of the operator g on the function ¥ and then of the
operator / on the function #¥). We could equally well take the operator gf
instead of fg, the former differing from the latter in the order of its factors.

It is obvious that the result of the action of either of these operators on the
functions ¥n will be the same. Since, however, every wave function ¥ can
be represented as a linear combination of the functions ¥

TC , it follows that

the result of the action of the operators fg and gf on an arbitrary function will

also be the same. This fact can be written in the form of the symbolic
equation fg = gf or

/g-gf=0. (4.3)

Two such operators / and g are said to commute with each other. Thus
we arrive at the important result : if two quantities/andg can simultaneously

take definite values, then their operators commute with each other.

The converse theorem can also be proved (§11): if the operators /and g
commute, then all their eigenfunctions can be taken common to both;
physically, this means that the corresponding physical quantities can be
measured simultaneously. Thus the commutability of the operators is a

necessary and sufficient condition for the physical quantities to be simultane-

ously measurable.

A particular case of the product of operators is an operator raised to some
power. From the above discussion we can deduce that the eigenvalues of an
operator fp (where p is an integer) are equal to the pth. powers of the eigen-

values of the operator/. Any function </>(/) of an operator can be defined

as an operator whose eigenvalues are equal to the same function <£(/) of

the eigenvalues of the operator/. If the function <f>(f) can be expanded as a

Taylor series, this expresses the effect of the operator <£( / ) in terms of those

of various powers/^.
In particular, the operator / _1

is called the inverse of the operator / It is

evident that the successive action of the operators / and / _1 on any function

leaves the latter unchanged, i.e. // -1 = /
_1/ = 1-

If the quantities / and g cannot simultaneously take definite values, the

concept of their product cannot be defined in the above manner. This
appears in the fact that the operator fg is not self-conjugate in this case, and
hence cannot correspond to any physical quantity. For, by the definition

of the transpose of an operator we can write

J"
Yjg* dq = j¥/(i<D) dq = j (£<D)(/¥) dq.

Here the operator/ acts only on the function ¥, and the operator £ on <E>, so

that the integrand is a simple product of two functions^® and/¥. Again
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using the definition of the transpose of an operator, we can write

Thus we obtain an integral in which the functions *F and <S> have changed

places as compared with the original one. In other words, the operator §f
is the transpose of fg, and we can write

fg=if, (4-4)

i.e. the transpose of the product fg is the product of the transposes of the

factors written in the opposite order. Taking the complex conjugate of both

sides of equation (4.4), we have

(fg)
+ = g+f+ - (4.5)

If each of the operators / and g is Hermitian, then
( fg)

+ = gf It follows

from this that the operator fg is Hermitian if and only if the factors / and g
commute.
We note that, from the products)^ andgfof two non-commuting Hermitian

operators, we can form an Hermitian operator by taking the symmetrical

combination

iifg+gf)- (4.6)

Such expressions are sometimes needed ; they are called symmetrised pro-

ducts.

It is easy to see that the difference fg—gf is an anti-Hermitian operator
(i.e. one for which the transpose is equal to the complex conjugate taken with
the opposite sign). It can be made Hermitian by multiplying by i; thus

i(fg-gf)

is again an Hermitian operator.

In what follows we shall sometimes use for brevity the notation

{/£> =/£-i/> (4.7)

called the commutator of these operators. It is easily seen that

{j§A = {fM+f{g,h (4.8)

We notice that, if {/, h} = and {g, h) = 0, it does not in general follow
that / and g commute.

§5. The continuous spectrum

All the relations given in §§3 and 4, describing the properties of the eigen-
functions of a discrete spectrum, can be generalised without difficulty to the
case of a continuous spectrum of eigenvalues.

Let / be a physical quantity having a continuous spectrum. We shall
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denote its eigenvalues by the same letter/simply, without suffix, in accordance
with the fact that/takes a continuous range of values. We denote by T/ the
eigenfunction corresponding to the eigenvalue /. Just as an arbitrary wave
function Y can be expanded in a series (3.2) of eigenfunctions of a quantity
having a discrete spectrum, it can also be expanded (this time as an integral)

in terms of the complete set of eigenfunctions of a quantity with a continuous
spectrum. This expansion has the form

T(?) = J«/T/(9)d/, (5.1)

where the integration is extended over the whole range of values that can be
taken by the quantity/.

The subject of the normalisation of the eigenfunctions of a continuous
spectrum is more complex than in the case of a discrete spectrum. The
requirement that the integral of the squared modulus of the function should

be equal to unity cannot here be satisfied, as we shall see below. Instead,

we try to normalise the functions T/ in such a way that |«/|
2 d/is the prob-

ability that the physical quantity concerned, in the state described by the

wave function Y, has a value between/ and f+df. This is a direct generali-

sation of the case of a discrete spectrum, where the square \an \

2 determines

the probability of the eigenvaluefn . Since the sum of the probabilities of all

possible values of / must be equal to unity, we have

J>,|
2 d/=1 (5.2)

(similarly to the relation (3.3) for a discrete spectrum).

Proceeding in exactly the same way as in the derivation of formula (3.5),

and using the same arguments, we can write, firstly,

j
yin¥*dq = j K|

2 d/

and, secondly,

jYY* dq = jj af*¥,*¥ dfdq.

By comparing these two expressions we find the formula which determines

the expansion coefficients,

a, = JY(qy¥f*(q)dq, (5.3)

in exact analogy to (3.5).

To derive the normalisation condition, we now substitute (5.1) in (5.3),

and obtain

at = \ar(£¥fWt*dq)df'.

This relation must hold for arbitrary a
f , and therefore must be satisfied

identically. For this to be so, it is necessary that, first of all, the coefficient

of ar under the integral sign (i.e. the integral
J"
Yj'Y/* dq) should be zero for
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all/' 7^/. For/'=/, this coefficient must become infinite (otherwise the

integral over /' would vanish). Thus the integral J Yy'Y/* dq is a function

of the difference /'—/, which becomes zero for values of the argument

different from zero and is infinite when the argument is zero. We denote

this function by B(f'—f):

JY/r,*d<z = 8(/'-/). (5.4)

The manner in which the function S(/'—/) becomes infinite for/'—f=
is determined by the fact that we must have

J8(f'-f)ardf = af.

It is clear that, for this to be so, we must have

j 8(f-f) d/' = l.

The function thus defined is called a delta function, and was first used in

quantum mechanics by P. A. M. Dirac. We shall write out once more the

formulae which define it. They are

S(«) = for x # 0, 8(0) = oo, (5.5)

while

f 8(x) dx = 1. (5.6)

We can take as limits of integration any numbers such that x = lies between

them. If f(x) is some function continuous at x = 0, then

js(*)/(*)d*=/(0). (5.7)

—oo
*

This formula can be written in the more general form

j S(x-a)f(x)dx =/(«), (5.8)

where the range of integration includes the point x = a, and/(#) is continuous

at x = a. It is also evident that

S(-x) = 8(x), (5.9)

i.e. the delta function is even. Finally, writing

f8(a*)d*=r8(v)^ = -,
-i -i |a| |a|

we can deduce that

8(«) = (1/M) S(*), (5.10)
where a is any constant.

The formula (5.4) gives the normalisation rule for the eigenfunctions of a

continuous spectrum; it replaces the condition (3.6) for a discrete spectrum.

We see that the functions T/ and Y/» with/ # /' are, as before, orthogonal.
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However, the integrals of the squared moduli |T/| 2 of the functions diverge

for a continuous spectrum.

The functions Yfiq) satisfy still another relation similar to (5.4). To derive

this, we substitute (5.3) in (5.1), which gives

Y(ff) = JW)tfY/WM 4/) <¥,

whence we can at once deduce that we must have

jVf*(q'Wf(q)df=S(q'-q). (5.11)

There is, of course, an analogous relation for a discrete spectrum

:

HYn*(q')Wn(q)=*(q'-q). (5.12)
n

Comparing the pair of formulae (5.1), (5.4) with the pair (5.3), (5.11), we
see that, on the one hand, the function xP(q) can be expanded in terms of

the functions T/(^) with expansion coefficients «/ and, on the other hand,

formula (5.3) represents an entirely analogous expansion of the function

af = a(f) in terms of the functions xF/*(gr

), while the Y(q) play the part of

expansion coefficients. The function a(f), like
y
¥(q) i

completely determines

the state of the system; it is sometimes called a wave function in thef repre-

sentation (while the function T(^) is called a wave function in the q representa-

tion). Just as |T(^)| 2 determines the probability for the system to have co-

ordinates lying in a given interval dq, so |«(/)|
2 determines the probability for

the values of the quantity / to lie in a given interval d/. On the one hand,

the functions Yfiq) are the eigenfunctions of the quantity/in the q representa-

tion ; on the other hand, their complex conjugates are the eigenfunctions of

the co-ordinate q in the /representation.

Let<£(/) be some function of the quantity/, such that<£ and /are related in

a one-to-one manner. Each of the functions Y^) can then be regarded as

an eigenfunction of the quantity
<f>,

corresponding to a value of the latter

determined by <j> = <f>(j).
Here, however, the normalisation of these functions

must be changed: the eigenfunctions Y^q) of the quantity <j> must be

normalised by the condition

jT^Wd* = 8[#/')-tf/)],

whereas the functions M^, are normalised by the condition (5.4). The argu-

ment of the delta function becomes zero only for/' = /. As /' approaches/,

we have cf>(f') -<f>(f) = [d<£(/)/d/] . (/' -/). By (5.10) we can therefore writef

«/')-<£(/)] =
[AM( \ IAJU'-f)- (5 -!3)

t In general, if<f>(x) is some one-valued function (the inverse function need not be one-valued), we
have

8[<f>(x)] = V S(x—aA

where a,- are the roots of the equation <f>(x) = 0.
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Thus the normalisation condition for the functions T^ can be written in
the form

l*v>Y„f
dq = —-^—-scr-/).

l<W)/d/l

Comparing this with (5.4), we see that the functions T^ and ¥> are related
by

r*w=vmw?f- (5 -14)

There are also physical quantities which in one range of values have a
discrete spectrum, and in another a continuous spectrum. For the eigen-
functions of such a quantity all the relations derived in this and the previous
sections are, of course, true. It need only be noted that the complete set
of functions is formed by combining the eigenfunctions of both spectra.
Hence the expansion of an arbitrary wave function in terms of the eigenfunc-
tions of such a quantity has the form

Yfe) = S anrn(q)+ j afYf(q) d/, (5.15)

where the sum is taken over the discrete spectrum and the integral over the
whole continuous spectrum.

The co-ordinate q itself is an example of a quantity having a continuous
spectrum. It is easy to see that the operator corresponding to it is simply
multiplication by q. For, since the probability of the various values of the
co-ordinate is determined by the square |Y(?)| 2

, the mean value of the
co-ordinate is q = J q\W\

2 dq. On the other hand, the mean value of the
co-ordinate must be determined by its operator as q^^T^qYdq. A
comparison of the two expressions shows that the operator q is simply
multiplication by q\ this may be symbolically written in the formf

§ = q- (5.16)

The eigenfunctions of this operator must be determined, according to the
usual rule, by the equation qT

g<i
= q Yqo , where q temporarily denotes the

actual values of the co-ordinate as distinct from the variable q. Since this
equation can be satisfied either by Y

q<i
= or by q = q , it is clear that the

eigenfunctions which satisfy the normalisation condition arej

%o
= S(q-q ). (5.17)

t In future we shall always, for simplicity, write operators which amount to multiplication by some
quantity in the form of that quantity itself.

J The expansion coefficients for an arbitrary function Y in terms of these eigenfunctions are

\ = \nm<i-qo)dq = V(qo).

The probability that the value of the co-ordinate lies in a given interval dq is

W<, \

2 dq = mq )\
z dq

,

as it should be.
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§6. The passage to the limiting case of classical mechanics

Quantum mechanics contains classical mechanics in the form of a certain

limiting case. The question arises as to how this passage to the limit is

made.

In quantum mechanics an electron is described by a wave function which

determines the various values of its co-ordinates ; of this function we so far

know only that it is the solution of a certain linear partial differential equation.

In classical mechanics, on the other hand, an electron is regarded as a material

particle, moving in a path which is completely determined by the equations

of motion. There is an interrelation, somewhat similar to that between

quantum and classical mechanics, in electrodynamics between wave optics

and geometrical optics. In wave optics, the electromagnetic waves are

described by the electric and magnetic field vectors, which satisfy a definite

system of linear differential equations, namely Maxwell's equations. In

geometrical optics, however, the propagation of light along definite paths, or

rays, is considered. Such an analogy enables us to see that the passage from

quantum mechanics to the limit of classical mechanics occurs similarly to the

passage from wave optics to geometrical optics.

Let us recall how this latter transition is made mathematically. Let u be

any of the field components in the electromagnetic wave. It can be written

in the form u = aei(
f> (with a and<£ real), where a is called the amplitude and<£

the phase of the wave. The limiting case of geometrical optics corresponds

to small wavelengths; this is expressed mathematically by saying that
<f>

(called in geometrical optics the eikonal) varies by a large amount over short

distances ; this means, in particular, that it can be supposed large in absolute

value.

Similarly, we start from the hypothesis that, to the limiting case of classical

mechanics, there correspond in quantum mechanics wave functions of the

form T = ae**!*, where a is a slowly varying function and <j> takes large values.

As is well known, the path of a particle can be determined in mechanics by

means of the variational principle, according to which what is called the

action S of a mechanical system must take its least possible value (the principle

of least action, or Hamilton's principle). In geometrical optics the path of the

rays is determined by what is called Fermat's principle, according to which the

optical path length of the ray, i.e. the difference between its phases at the

beginning and end of the path, must take its least (or greatest) possible

value.

On the basis of this analogy, we can assert that the phase <j> of the wave

function, in the limiting (classical) case, must be proportional to the mech-

anical action S of the physical system considered, i.e. we must have

S = constantX <f>.
The constant of proportionality is called Planck's con-

stanff and is denoted by h. It has the dimensions of action (since
<f>

is

t It was introduced into physics by M. Planck in 1900. The constant h, which we use everywhere

in this book, is, strictly speaking, Planck's constant divided by 2n.
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dimensionless) and has the value

h = 1-054 xlO-27 erg sec.

Thus, the wave function of an "almost classical" (or, as we say, quasi-
classical) physical system has the form

T = ae^/K.
(6.1)

Planck's constant h plays a fundamental part in all quantum phenomena.
Its relative value (compared with other quantities of the same dimensions)
determines the "extent of quantisation" of a given physical system. The
transition from quantum mechanics to classical mechanics, corresponding to
large phase, can be formally described as a passage to the limit h ->0 (just
as the transition from wave optics to geometrical optics corresponds to a
passage to the limit of zero wavelength, A -> 0).

We have ascertained the limiting form of the wave function, but the
question still remains how it is related to classical motion in a path. In
general, the motion described by the wave function does not tend to motion
in a definite path. Its connection with classical motion is that, if at some
initial instant the wave function, and with it the probability distribution of
the co-ordinates, is given, then at subsequent instants this distribution will
change according to the laws of classical mechanics (for a more detailed dis-
cussion of this, see the end of §17).

In order to obtain motion in a definite path, we must start from a wave
function of a particular form, which is perceptibly different from zero only
in a very small region of space (what is called a wave packet); the dimensions
of this region must tend to zero with h. Then we can say that, in the quasi-
classical case, the wave packet will move in space along a classical path of a
particle.

Finally, quantum-mechanical operators must reduce, in the limit, simply
to multiplication by the corresponding physical quantity.

§7. The wave function and measurements
Let us again return to the process of measurement, whose properties have

been qualitatively discussed in §1 ; we shall show how these properties are
related to the mathematical formalism of quantum mechanics.
We consider a system consisting of two parts: a classical apparatus and

an electron (regarded as a quantum object). The process of measurement
consists in these two parts' coming into interaction with each other, as a
result of which the apparatus passes from its initial state into some other;
from this change of state we draw conclusions concerning the state of the'
electron. The states of the apparatus are distinguished by the values of some
physical quantity (or quantities) characterising it—the "readings of the ap-
paratus". We conventionally denote this quantity by g, and its eigenvalues
by gn ;

these take in general, in accordance with the classical nature of the
apparatus, a continuous range of values, but we shall—merely in order to
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simplify the subsequent formulae—suppose the spectrum discrete. The

states of the apparatus are described by means of quasi-classical wave func-

tions, which we shall denote by <&n(£), where the suffix n corresponds to the

"reading" gn of the apparatus, and £ denotes the set of its co-ordinates. The

classical nature of the apparatus appears in the fact that, at any given instant,

we can say with certainty that it is in one of the known states <Dn with some

definite value of the quantity g\ for a quantum system such an assertion

would, of course, be unjustified.

Let O (£) be the wave function of the initial state of the apparatus (before

the measurement), and T(^) some arbitrary normalised initial wave function

of the electron (q denoting its co-ordinates). These functions describe the

state of the apparatus and of the electron independently, and therefore the

initial wave function of the whole system is the product

Y(?)O (|). (7.1)

Next, the apparatus and the electron interact with each other. Applying the

equations of quantum mechanics, we can in principle follow the change of

the wave function of the system with time. After the measuring process it

may not, of course, be a product of functions of £ and q. Expanding the

wave function in terms of the eigenfunctions On of the apparatus (which

form a complete set of functions), we obtain a sum of the form

XAn{q)®n(Z), (7-2)

where the An(q) are some functions of q.

The classical nature of the apparatus, and the double role of classical

mechanics as both the limiting case and the foundation of quantum mechanics,

now make their appearance. As has been said above, the classical nature of

the apparatus means that, at any instant, the quantity g (the "reading of the

apparatus") has some definite value. This enables us to say that the state

of the system apparatus + electron after the measurement will in actual fact

be described, not by the entire sum (7.2), but by only the one term which

corresponds to the "reading" gn of the apparatus,

4.(«)*.tf). (
7 - 3 )

It follows from this that An{q) is proportional to the wave function of the

electron after the measurement. It is not the wave function itself, as is seen

from the fact that the function An(q) is not normalised. It contains both

information concerning the properties of the resulting state of the electron

and the probability (determined by the initial state of the system) of the

occurrence of the nth "reading" of the apparatus.

Since the equations of quantum mechanics are linear, the relation between

An{q) and the initial wave function of the electron Y(q) is in general given by

some linear integral operator

:

An(q) = JKn(q,q'W(q')dq', (7.4)
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with a kernel Kn(q, q') which characterises the measurement process con-
cerned.

We shall suppose that the measurement concerned is such that it gives a
complete description of the state of the electron. In other words (see §1),
in the resulting state the probabilities of all the quantities must be indepen-
dent of the previous state of the electron (before the measurement). Mathe-
matically, this means that the form of the functions An(q) must be determined
by the measuring process itself, and does not depend on the initial wave
function Y(q) of the electron. Thus the An must have the form

Mfi = "n<f>n(q), (7.5)

where the
<f>n are definite functions, which we suppose normalised, and only

the constants a^ depend on T(^). In the integral relation (7.4) this corresponds
to a kernel Kn{q, q') which is a product of a function of q and a function of q'

:

Kn{q,q') = <i>n{qWn*(q'y, (7.6)

then the linear relation between the constants an and the function Y(q) is

a^J^WF.-fo)^, (7.7)

where the Tn(^) are certain functions depending on the process of measure-
ment.

The functions <j>n{q) are the normalised wave functions of the electron after
measurement. Thus we see how the mathematical formalism of the theory
reflects the possibility of finding by measurement a state of the electron
described by a definite wave function.

If the measurement is made on an electron with a given wave function
f(q), the constants an have a simple physical meaning: in accordance with
the usual rules, |aj 2 is the probability that the measurement will give the
nth result. The sum of the probabilities of all results is equal to unity:

?KI 2 = 1. (7.8)

In order that equations (7.7) and (7. 8)shouldhold foran arbitrary normalised
function W(q\ it is necessary (cf. §3) that an arbitrary function T(g) can be
expanded in terms of the functions Yn(y). This means that the functions
^n(q) form a complete set of normalised and orthogonal functions.

If the initial wave function of the electron coincides with one of the func-
tions Yn(g), then the corresponding constant an is evidently equal to unity,
while all the others are zero. In other words, a measurement made on an
electron in the state Tn(#) gives with certainty the nth result.

All these properties of the functions Yn(q) show that they are the eigen-
functions of some physical quantity (denoted by /) which characterises the
electron, and the measurement concerned can be spoken of as a measurement
of this quantity.

It is very important to notice that the functions T
TC(^) do not, in general,
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coincide with the functions
<f>n(q) ; the latter are in general not even mutually

orthogonal, and do not form a set of eigenfunctions of any operator. This

expresses the fact that the results of measurements in quantum mechanics

cannot be reproduced. If the electron was in a state Tn(^), then a measure-

ment of the quantity / carried out on it leads with certainty to the value fn .

After the measurement, however, the electron is in a state c/)n(q) different

from its initial one, and in this state the quantity / does not in general take

any definite value. Hence, on carrying out a second measurement on the

electron immediately after the first, we should obtain for/a value which did

not agree with that obtained from the first measurement.-f To predict (in the

sense of calculating probabilities) the result of the second measurement from

the known result of the first, we must take from the first measurement the

wave function <j>n{q) of the state in which it resulted, and from the second

measurement the wave function Tn(^) of the state whose probability is re-

quired. This means that from the equations of quantum mechanics we deter-

mine the wave function c/>n(q, t) which, at the instant when the first measure-

ment is made, is equal to<£n(<?) ; the probability of the mth result of the second

measurement, made at time t, is then given by the squared modulus of the

integral J^n(?l t)Ym*(q) 6q.

We see that the measuring process in quantum mechanics has a "two-

faced" character: it plays different parts with respect to the past and future

of the electron. With respect to the past, it "verifies" the probabilities of the

various possible results predicted from the state brought about by the previ-

ous measurement. With respect to the future, it brings about a new state

(see also §44). Thus the very nature of the process of measurement involves

a far-reaching principle of irreversibility.

This irreversibility is of fundamental significance. We shall see later (at

the end of §18) that the basic equations of quantum mechanics are in them-

selves symmetrical with respect to a change in the sign of the time; here

quantum mechanics does not differ from classical mechanics. The irrever-

sibility of the process of measurement, however, causes the two directions

of time to be physically non-equivalent, i.e. creates a difference between the

future and the past.

t It must be remarked that there is an important exception to the statement that results of measure-

ments cannot be reproduced : the one quantity the result of whose measurement can be exactly re-

produced is the co-ordinate. Two measurements of the co-ordinates of an electron, made at a sufficiently

small interval of time, must give neighbouring values; if this were not so, it would mean that the

electron had an infinite velocity. Mathematically, this is related to the fact that the co-ordinate

commutes with the operator of the interaction energy between the electron and the apparatus, since this

energy is (in non-relativistic theory) a function of the co-ordinates only.



CHAPTER II

ENERGY AND MOMENTUM

§8. The Hamiltonian operator

The wave function Y completely determines the state of a physical system
in quantum mechanics. This means that, if this function is given at some
instant, not only are all the properties of the system at that instant described,
but its behaviour at all subsequent instants is determined (only, of course, to
the degree of completeness which is generally admissible in quantum mech-
anics). The mathematical expression of this fact is that the value of the deri-
vative <W/dt of the wave function with respect to time at any given instant
must be determined by the value of the function itself at that instant, and,
by the principle of superposition, the relation between them must be linear.

In the most general form we can write

where L is some linear operator; the factor i is introduced here for conveni-
ence.

We shall derive some properties of the operator L. Since the integral

J YY* dq is a constant independent of time, we have

Substituting here dYjdt = -iD¥, dY*{dt = it*W* and using in the first

integral the definition of the transpose of an operator, we can write

J
YZ*Y* dq -

J
Y*&F dq = j Y*Z*Y dq - j >¥*&¥ dq

=
J

xF*(l*-l)Wdq = 0.

Since this equation must hold for an arbitrary function T, it follows that we
must have identically Z*—L = 0, or

The operator L is therefore Hermitian. Let us find the classical quantity to
which the operator L corresponds. To do this, we use the limiting expression
(6.1) for the wave function and write

BY _ i dS

~dt~h~dt '

the slowly varying amplitude a need not be differentiated. Comparing this

25
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equation with the definition dYjdt = —iD¥, we see that, in the limiting

case, the operator L reduces to simply multiplying by — (l/#) dSjdt. This

means that —(1//*) dSjdt is the physical quantity into which the Hermitian

operator L passes.

As is well known from mechanics, the derivative —dSjdt is just Hamilton's

function H for a mechanical system. Thus the operator hL is what corres-

ponds in quantum mechanics to Hamilton's function; this operator, which

we shall denote by i?, is called the Hamiltonian operator or, more briefly, the

Hamiltonian of the system. The relation between dY/dt and T is

ihdy¥ldt=fiK¥. (8.1)

If the form of the Hamiltonian is known, equation (8.1) determines the wave

functions of the physical system concerned. This fundamental equation of

quantum mechanics is called the wave equation.

§9. The differentiation of operators with respect to time

The concept of the derivative of a physical quantity with respect to time

cannot be denned in quantum mechanics in the same way as in classical mech-

anics. For the definition of the derivative in classical mechanics involves

the consideration of the values of the quantity at two neighbouring but

distinct instants of time. In quantum mechanics, however, a quantity which

at some instant has a definite value does not in general have definite values at

subsequent instants; this was discussed in detail in §1.

Hence the idea of the derivative with respect to time must be differently

defined in quantum mechanics. It is natural to define the derivative / of a

quantity / as the quantity whose mean value is equal to the derivative, with

respect to time, of the mean value /. Thus we have the definition

/=/ (9-1)

Starting from this definition, it is easy to obtain an expression for the

quantum-mechanical operator / corresponding to the quantity /. Since

f= jY*fYdq,

Here dfjdt is the operator obtained by differentiating the operator / with

respect to time; /may depend on the time as a parameter. Substituting for

BYjdt, dW^/dt their expressions according to (8.1), we obtain

/= [V*—Wdq+- f (#*Y*)/Td?-^ (wf(fr¥)dq.
J dt hj n J

Since the operator i? is Hermitian, we have

f (i?*T*)(/T) dq = JT*^/T dq:
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thus

/-J**S+i*
L>> d »-

Since, on the other hand, we must have, by the definition of mean values,

/= J Y*/ Tdg-, it is seen that the expression in parentheses under the integral

is the required operator /:f

We notice that, if the operator / is independent of time, / reduces, apart

from a constant factor, to the result of commuting the operator / with the

Hamiltonian.

A very important class of physical quantities is formed by those whose
operators do not depend explicitly on time, and also commute with the

Hamiltonian, so that /= 0. Such quantities are said to be conserved.

If the operator /is identically zero, then/=/= 0, that is, /is constant.

In other words, the mean value of the quantity remains constant in time.

We can also assert that, if in a given state the quantity/has a definite value

(i.e. the wave function is an eigenfunction of the operator /), then it will

have a definite value (the same one) at subsequent instants also.

§10. Stationary states

If the system is not in a varying external field, its Hamiltonian cannot
contain the time explicitly. This follows at once from the fact that, in the

:+5&+
|f<>

f In classical mechanics we have for the total derivative, with respect to time, of a quantity/ which
is a function of the generalised co-ordinates g, and momenta p{ of the system

dt dt

Substituting, in accordance with Hamilton's equations, qt
= dH/dpi and pt

= —dHldqt , we obtain

d//d* = df/dt+[H,f],
where

Z-w \dqt dpi dpi dqtJ
i

is what is called the Poisson bracket for the quantities/and H (see Mechanics, §42). On comparing with

the expression (9.2), we see that, as we pass to the limit of classical mechanics, the operator i($f—fff)
reduces in the first approximation to zero, as it should, and in the second approximation (with respect
to K) to the quantity H[H,f]. This result is true also for any two quantities / and g; the operator

i(fg-gf) tends in the limit to the quantity h[f, g] , where [/, g] is the Poisson bracket

^L,\dqt dpi dpidqt)'

This follows at once from the fact that we can always formally imagine a system whose Hamiltonian
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absence of an external field (or in a constant external field) all times are

equivalent so far as the given physical system is concerned. Since, on the

other hand, any operator of course commutes with itself, we reach the con-

clusion that Hamilton's function is conserved for systems which are not in a

varying external field. As is well known, a Hamilton's function which is

conserved is called the energy. Thus we have the law of conservation of

energy in quantum mechanics. Here it signifies that, if in a given state the

energy has a definite value, this value remains constant in time.

States in which the energy has definite values are called stationary states

of a system. They are described by wave functions Tn which are the eigen-

functions of the Hamiltonian operator, i.e. which satisfy the equation

i?Tn = E^¥n , where En are the eigenvalues of the energy. Correspondingly,

the wave equation (8.1) for the function Tn ,

ihdWnldt=8Yn = Enyn

can be integrated at once with respect to time and gives

Tn = erU/*>*:ntfn(q), (10.1)

where ipn is a function of the co-ordinates only. This determines the relation

between the wave functions of stationary states and the time.

We shall denote by the small letter i/j the wave functions of stationary states

without the time factor. These functions, and also the eigenvalues of the

energy, are determined by the equation

ify = E+. (10.2)

The stationary state with the smallest possible value of the energy is called

the normal or ground state of the system.

The expansion of an arbitrary wave function \F in terms of the wave func-

tions of stationary states has the form

T = S ane-QME«tif,Jq). (10.3)
n

The squared moduli \an \

2 of the expansion coefficients, as usual, determine

the probabilities of various values of the energy of the system.

The probability distribution for the co-ordinates in a stationary state is

determined by the squared modulus pFJ 2 = |</rn |

2
; we see that it is indepen-

dent of time. The same is true of the mean values

/=jTn*/Yn d? = J^n*/0n d9

of any physical quantity / (whose operator does not depend explicitly on the

time), and therefore of the probabilities of its various values.

As has been said, the operator of any quantity that is conserved commutes

with the Hamiltonian. This means that any physical quantity that is con-

served can be measured simultaneously with the energy.
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Among the various stationary states, there may be some which correspond
to the same value of the energy, but differ in the values of some other physical

quantities. Such eigenvalues of the energy (or, as we say, energy levels of

the system), to which several different stationary states correspond, are said

to be degenerate. Physically, the possibility that degenerate levels can exist

is related to the fact that the energy does not in general form by itself a

complete set of physical quantities.

In particular, it is easy to see that, if there are two conserved physical

quantities/and g whose operators do not commute, then the energy levels of

the system are in general degenerate. For, let $ be the wave function of a

stationary state in which, besides the energy, the quantity/also has a definite

value. Then we can say that the function gifi does not coincide (apart from a

constant factor) with ip; if it did, this would mean that the quantity g also

had a definite value, which is impossible, since / and g cannot be measured
simultaneously. On the other hand, the function gip is an eigenfunction of the

Hamiltonian, corresponding to the same value E of the energy as ifs:

&m =§&+ = %&!>)•

Thus we see that the energy E corresponds to more than one eigenfunction,

i.e. the energy level is degenerate.

It is clear that any linear combination of wave functions corresponding

to the same degenerate energy level is also an eigenfunction for that value of

the energy. In other words, the choice of eigenfunctions of a degenerate
energy level is not unique. Arbitrarily selected eigenfunctions of a degener-
ate energy level are not, in general, orthogonal. By a proper choice of linear

combinations of them, however, we can always obtain a set of orthogonal

(and normalised) eigenfunctions (and this can be done in infinitely many
ways; for the number of independent coefficients in a linear transformation
of n functions is n2, while the number of normalisation and orthogonality

conditions for n functions is \n{n-\-\), i.e. less than w2
).

These statements concerning the eigenfunctions of a degenerate energy
level relate, of course, not only to eigenfunctions of the energy, but also to

those of any operator. Thus only those functions are automatically ortho-

gonal which correspond to different eigenvalues of the operator concerned

;

functions which correspond to the same degenerate eigenvalue are not in

general orthogonal.

If the Hamiltonian of the system is the sum of two (or more) parts,

H = ^+^2, one of which contains only the co-ordinates qx and the other
only the co-ordinates q2 , then the eigenfunctions of the operator H can be
written down as products of the eigenfunctions of the operators 3X and i?2 ,

and the eigenvalues of the energy are equal to the sums of the eigenvalues of
these operators.

The spectrum of eigenvalues of the energy may be either discrete or
continuous. A stationary state of a discrete spectrum always corresponds to
a finite motion of the system, i.e. one in which neither the system nor any
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part of it moves off to infinity. For, with eigenfunctions of a discrete spec-

trum, the integral j |Y| 2 dq, taken over all space, is finite. This certainly

means that the squared modulus |Y| 2 decreases quite rapidly, becoming
zero at infinity. In other words, the probability of infinite values of the co-

ordinates is zero ; that is, the system executes a finite motion, and is said to

be in a bound state.

For wave functions of a continuous spectrum, the integral
J"
|T| 2 dq diverges.

Here the squared modulus |T| 2 of the wave function does not directly deter-

mine the probability of the various values of the co-ordinates, and must be

regarded only as a quantity proportional to this probability. The divergence

of the integral
J"
|T| 2 dq is always due to the fact that |T| 2 does not become

zero at infinity (or becomes zero insufficiently rapidly). Hence we can say

that the integral
J"

|*F|
2 dq, taken over the region of space outside any arbi-

trarily large but finite closed surface, will always diverge. This means that,

in the state considered, the system (or some part of it) is at infinity. For a

wave function which is a superposition of the wave functions of various

stationary states of a continuous spectrum, the integral
J"

pF| 2 dq may
converge, so that the system lies in a finite region of space. However, it can

be shown that, in the course of time, this region moves unrestrictedly, and

eventually, the system moves off to infinity.^ Thus the stationary states of a

continuous spectrum correspond to an infinite motion of the system.

§11. Matrices

We shall suppose for convenience that the system considered has a discrete

energy spectrum ; all the relations obtained below can be generalised at once

to the case of a continuous spectrum. Let *P = 1,an
,¥n be the expansion of

an arbitrary wave function in terms of the wave functions \Fn of the stationary

states. If we substitute this expansion in the definition /= jW^f^V dq of

| This can be seen as follows. The superposition of wave functions of a continuous spectrum has
the form

T = f aEe-WEtyEiq) d£.

The squared modulus of *F can be written in the form of a double integral:

|T| 2 =
J*J"

aEaE'*^l^E
'-E

^iljE{q)4'E-*{q) dEdE'.

If we average this expression over some time interval T, and then let T tend to infinity, the mean values

of the oscillating factors eC/AK-8'-*)1
, and therefore the whole integral, tend to zero in the limit. Thus

the mean value, with respect to time, of the probability of finding the system at any given point of

configuration space tends to zero. This is possible only if the motion takes place throughout infinite

space.

We note that, for a function *F which is a superposition of functions of a discrete spectrum, we should

have

|T| 2 = SS anam*e^l^m-^t^m* = S \an^n{q)\\nm n

i.e. the required probability remains finite on averaging over time.
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the mean value of some quantity /, we obtain

f=maSamfum(t)> (H.1)
n m

where fnm(t) denotes the integral

fnJt) = \Vn*fVm dq. (11.2)

The set of quantitiesfnm(t) with all possible n and m is called the matrix^ ofthe

quantity/, and each of the/nm(i) is called the matrix element corresponding

to the transition from state n to state m.%

The dependence of the matrix elements fnm(f) on time is determined (if

the operator / does not contain the time explicitly) by the dependence of the

functions Tn on time. Substituting for them the expressions (10.1), we find

that

UJt) =fnmeia,™ t
, (11.3)

where

"nm = (En-Em)/h (11.4)

is what is called the transition frequency between the states n and m, and the

quantities

fnm = j<l>«*fK*<l (H.5)

form the matrix of the quantity / which is independent of time, and which

is commonly used. j| We note that the "frequencies" conm satisfy the ob-

vious relation

w»m+w«i = w„|. (11.6)

The matrix elements of the derivative / are obtained by differentiating the

matrix elements of the quantity / with respect to time; this follows directly

from the fact that the mean value / is equal to /, i.e.

/= 22 an*amfntn(t).nm

From (11.3) we thus have for the matrix elements of/

fnmit) = i<*>nmfnm(t) (H-7)

or (cancelling the time factor e<aW from both sides) for the matrix elements

independent of time

(/)«m = io>nmfnm = (ijH)(En-Em)fnm . (11,8)

f The matrix representation of physical quantities was introduced by Heisenberg in 1925, before

Schrodinger's discovery of the wave equation. "Matrix mechanics" was later developed by M.
Born, W. Heisenberg and P. Jordan.

J In some cases, when each of the suffixes n and m has to be written in the form of several letters,

we shall use the notation

/

mn instead of/nm. The notation (n\f \m) is also used.

||
It must be borne in mind that, because of the indeterminacy of the phase factor in normalized

Wave functions (see §2), the matrix elements/„m (and/nflt(i)) also are determined only to within a factor

of the form eihm-ar). Here again this indeterminacy has no effect on any physical results.
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To simplify the notation in the formulae, we shall derive all our relations

below for the matrix elements independent of time ; exactly similar relations

hold for the matrices which depend on the time.

For the matrix elements of the complex conjugate/* of the quantity/ we
obtain, taking into account the definition of the Hermitian conjugate operator,

(/•).« = / 4>n*f
+

*l>m dq = j +n*f*K dq = j tJ*tn* dq -

or

(f*)nm = (fmn)*. (11.9)

For real physical quantities, which are the only ones we usually consider,

we consequently have

/nra = /m« (11.10)

{fmn* stands for (fmn)*). Such matrices, like the corresponding operators,

are said to be Hermitian.

Matrix elements with n = m are called diagonal elements. These are

independent of time, and (11.10) shows that they are real. The element fnn
is the mean value of the quantity/in the state ipn .

It is not difficult to obtain the "multiplication rule" for matrices. To do
so, we first observe that the formula

fyn = $fmnif>m (11.11)

holds. This is simply the expansion of the function fipn in terms of the func-
tions iftm , the coefficients being determined in accordance with the general

formula (3.5). Remembering this formula, let us write down the result of

the product of two operators acting on the function ipn :

fg'Pn = ftg*pn) =/ S gkn*frk = 2 gknfyk =2 gknfmk^m .

ic k fc,m

Since, on the other hand, we must have

fgtn = S {fg)mrrtm,

we arrive at the result that the matrix elements of the product fg are deter-

mined by the formula

(fg)mn = Xfmkgkn- (H-12)

This rule is the same as that used in mathematics for the multiplication of

matrices.

If the matrix is given, then so is the operator itself. In particular, if the

matrix is given, it is in principle possible to determine the eigenvalues of the

physical quantity concerned and the corresponding eigenfunctions.

We shall now consider the values of all quantities at some definite instant,

and expand an arbitrary wave function \F (at that instant) in terms of the

eigenfunctions of Hamilton's operator H, i.e. of the wave functions ipm of

the stationary states (these wave functions are independent of time)

:

T=S^m , (11.13)m
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where the expansion coefficients are denoted by cm . We substitute this expan-

sion in the equation /T =f¥ which determines the eigenvalues and eigen-

functions of the quantity/. We have

2 Cmifym) —f 2 Cmijjm.m m

We multiply both sides of this equation by iffn* and integrate over q. Each
of the integrals

J"
i/*n*fym d<7 on the left-hand side of the equation is the cor-

responding matrix element fnm . On the right-hand side, all the integrals

J il/n*tpm &q with m ^ n vanish by virtue of the orthogonality of the functions

tpm , and J n*j/fn dq = 1 by virtue of their normalisation. Thus

^JnmCm == J^mm

or

S(/„m-/SnmVm = 0, (11.14)m

where 8nm = for m # n and = 1 for m = n.

Thus we have obtained a system of homogeneous algebraic equations of

the first degree (with the cm as unknowns). As is well known, such a system

has solutions different from zero only if the determinant formed by the

coefficients in the equations vanishes, i.e. only if

I fnm—finml = 0-

The roots of this equation (in which / is regarded as the unknown) are the

possible values of the quantity/. The set of values cm satisfying the equations

(11.14) when /is equal to any of these values determines the corresponding

eigenfunction.

If, in the definition (11.5) of the matrix elements of the quantity/, we take

as iftn the eigenfunctions of this quantity, then from the equation ftfin =fnijjn
we have

fnm =
J

«An*/«A«» d? = fm
J

>f>n*tpm d?.

By virtue of the orthogonality and normalisation of the functions j/rm , this

gives fnm = for n ^ m and fmm = fm . Thus only the diagonal matrix

elements are different from zero, and each of these is equal to the correspond-

ing eigenvalue of the quantity/. A matrix with only these elements different

from zero is said to be put in diagonal form. In particular, in the usual

representation, with the wave functions of the stationary states as the functions

iffn , the energy matrix is diagonal (and so are the matrices of all other physical

quantities having definite values in the stationary states). In general, the

matrix of a quantity /, defined with respect to the eigenfunctions of some
operator £, is said to be the matrix offin a representation in which g is diagonal.

We shall always, except where the subject is specially mentioned, understand

in future by the matrix of a physical quantity its matrix in the usual repre-

sentation, in which the energy is diagonal. Everything that has been said
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above regarding the dependence of matrices on time refers, of course, only
to this usual representation.f

By means of the matrix representation of operators we can prove the

theorem mentioned in §4: if two operators commute with each other, they
have their entire sets of eigenfunctions in common. Let / and g be two
such operators. From fg = gf and the matrix multiplication rule (11.12),

it follows that

jfjmkSkn = 4? gmkjkn-

If we take the eigenfunctions of the operator /as the set of functions iftn with
respect to which the matrix elements are calculated, we shall have fmk =
for m # k, so that the above equation reduces to fmmgmn = gmnfnnl or

SmnKJm Jn) == U.

If all the eigenvaluesfn of the quantity/ are different, then for all m ^n we
nave fm—fn # 0» so that we must have gmn = 0. Thus the matrix gmn is

also diagonal, i.e. the functions ifjn are eigenfunctions of the physical quantity

g also. If, among the values

/

n , there are some which are equal (i.e. if there

are eigenvalues to which several different eigenfunctions correspond), then
the matrix elements gmn corresponding to each such group of functions tpn
are, in general, different from zero. However, linear combinations of the

functions ifin which correspond to a single eigenvalue of the quantity / are

evidently also eigenfunctions of/; one can always choose these combinations
in such a way that the corresponding non-diagonal matrix elements gmn are

zero, and thus, in this case also, we obtain a set of functions which are

simultaneously the eigenfunctions of the operators / and g.

The matrixfnm can be regarded as the operator /in the energy representa-

tion. For the set of coefficients cn in the expansion (11.13) in terms of the

eigenfunctions ipn of the Hamiltonian can be considered (cf. §5) as the wave
function in the "E representation" (the variable being the suffix n which
gives the number of the stationary state). The formula

n m

for the mean value of the quantity/then corresponds to the general expression

for the quantum-mechanical mean value of a quantity in terms of its operator

and the wave function of the state concerned.

PROBLEM
The Hamiltonian of a system, and therefore the eigenvalues En of the energy, are functions

of some parameter A. Show that

(0H/SA)„„ = dEnldX.

Solution. Differentiating the equation (&—En)>]>n = with respect to A and then

f Bearing in mind the diagonality of the energy matrix, it is easy to see that equation (11.8) is the
operator relation (9.2) written in matrix form.
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multiplying on the left by <fin*, we obtain

On integration with respect to q, the left-hand side gives zero, since the operatori? is Hermitian
and therefore

J
rf,n*(fi-En)—dq =

J
~{n-En)*4,n*dq.

The right-hand side gives the required equation.

§12. Transformation of matrices

The matrix elements of a given physical quantity can be defined with
respect to various sets of wave functions, for example the wave functions of
stationary states described by various sets of physical quantities, or the wave
functions of stationary states of the same system in various external fields.

The problem therefore arises of the transformation of matrices from one
representation to another.

Let ipn(q) and ifsn'{q) (n = 1,2,...) be two complete sets of orthonormal
functions, related by some linear transformation

:

ifjn = 2 Smn tfim , (12.1)

which is simply an expansion of the function i//n
' in terms of the complete set

of functions ipn . This transformation may be conventionally written in the
operator form

«£«' = fyn. (12.2)

The operator S must satisfy a certain condition in order that the functions

tpn should be orthonormal if the functions ifsn are. Substituting (12.2) in

the condition

J
tym*$n &q = 8mn,

and using the definition of the transposed operator (3.14), we have

j (Sfa)£fm* dq = j $„*§•£$* dq = Bmn .

If these equations hold for all m and n, we must have §*§ = 1, or

£* = §+ = £-i
f (12.3)

i.e. the inverse operator is equal to the Hermitian conjugate operator.
Operators having this property are said to be unitary. Owing to this property,
the transformation ijin = S-1^' inverse to (12.1) is given by

tffn = 2 Snm*xfjm'.
(12.4)
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Writing the equations 3+S = 1 and SS+ = 1 in matrix form, we obtain

the following forms of the unitarity condition

:

S Sim*Sin = 8mn , (12.5)

E Smi*Sn i
= 8mn . (12.6)

Let us now consider some physical quantity / and write down its matrix

elements in the "new" representation, i.e. with respect to the functions ipn '.

These are given by the integrals

j 0m'*$n' d? =
J

(S*iPm*)(fSiPn) dq

=
J
^m*S*f§iJjn dq

= jif>m*S-lfSifjn dq.

Hence we see that the matrix of the operator / in the new representation is

equal to the matrix of the operator

/' = S-ifS (12.7)

in the old representation.

The sums of the diagonal elements of matrices are of importance in certain

calculations in quantum mechanics. Such a sum is called the trace or spur\

of the matrix and denoted by tr/:

tr/=2/ww . (12.8)

It may be noted first of all that the trace of a product of two matrices is

independent of the order of multiplication

:

trtfc) = trfe/), (12-9)

since the rule of matrix multiplication gives

tr (fg) = 2 Yffnkgkn = S "Zg/cnfnk = tr (gf).

Similarly we can easily see that, for a product of several matrices, the trace

is unaffected by a cyclic permutation of the factors; for example,

tr(fgh) = tr(hfg) = tr(ghf). (12.10)

An important property of the trace is that it does not depend on the choice

of the set of functions with respect to which the matrix elements are defined,

since

(tr/)' = tr (S-ifS) = tr (SS^f) = tr/.

t From the German word Spur. The notation sp/ is also used. The trace can be defined, of course,

only if the sum over n is convergent; we shall assume that this condition is satisfied.
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§13. The Heisenberg representation of operators

In the mathematical formalism of quantum mechanics described here, the
operators corresponding to various physical quantities act on functions of the
co-ordinates and do not usually depend explicitly on time. The time depen-
dence of the mean values of physical quantities is due only to the time
dependence of the wave function of the state, according to the formula

f(t) = jW*(q,t)/T(q,t)dq. (13.1)

The quantum-mechanical treatment can, however, be formulated also in a
somewhat different but equivalent form, in which the time dependence is

transferred from the wave functions to the operators. Although we shall not
use this Heisenberg representation of operators in the present volume, a state-
ment of it is given here with a view to applications in the relativistic theory.
We define the operator

S = exp[-(*/£)#*],
(13-2)

where R is the Hamiltonian of the system. By definition, its eigenfunctions
are the same as those of the operator fi, i.e. the stationary-state wave functions
*ffn(q)y where

%(<?) = e-wn)EntMq) , (13>3)

Hence it follows that the expansion (10.3) of an arbitrary wave functionT in terms of the stationary-state wave functions can be written in the
operator form

V(q,t) = &¥(q,0), (13.4)

i.e. the effect of the operator £ is to convert the wave function of the system
at some initial instant into the wave function at an arbitrary instant.

According to the definition (3.16), using the fact that the operator fi is
Hermitian, we have

S+ = expfeM = expZ-tfA = £-1,

i.e. 3 is a unitary operator, as it should be, since formula (13.4) (with the
time t as a parameter) may be regarded as a particular case of the transforma-
tion (12.1).

Defining, as in (12.7), the time-dependent operator

, /(*) = &-W, (13.5)we have v '

f(t) = jV*(q,0)f(t)Y(q,0)dq, (13.6)

and thus obtain the formula (3.8) for the mean value of the quantity / in a
form in which the time dependence is entirely transferred to the operator (for
our definition of an operator rests on formula (3.8)).
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It is evident that the matrix elements of the operator (13.5) with respect

to the stationary-state wave functions are the same as the time-dependent

matrix elements fnm(t) defined by formula (11.3).

Finally, differentiating the expression (13.5) with respect to time (assuming

that the operators / and H do not themselves involve t), we obtain

U{t) = Utif-fti), (13.7)
ot n

which is similar in form to (9.2) but has a somewhat different significance:

the expression (9.2) defines the operator / corresponding to the physical

quantity/, while the left-hand side of equation (13.7) is the time derivative

of the operator of the quantity/ itself.

§14. The density matrix

Let us consider a system which is a part of some closed system. We
suppose that the closed system as a whole is in some state described by the

wave function Y(<7, x), where x denotes the set of co-ordinates of the system

considered, and q the remaining co-ordinates of the closed system. This

function in general does not fall into a product of functions of x and of q
alone, so that the system does not have its own wave function,f

Let / be some physical quantity pertaining to the system considered. Its

operator therefore acts only on the co-ordinates x, and not on q. The mean
value of this quantity in the state considered is

/=
J/ Y»fo, *)/*•(&*) dfld*. (14.1)

We introduce the function p(x', x) defined by

9{x\ x) = j Y*(2, x')W(q, x) dq, (14.2)

where the integration is extended only over the co-ordinates q ; this function

is called the density matrix of the system. From the definition (14.2) it is

evident that the function is "Hermitian":

P*(x,x') = P(x',x). (14.3)

The "diagonal elements" of the density matrix

p(x,x) = j\¥(qt
x)\*6q

evidently determine the probability distribution for the co-ordinates of the

system.

f In order that W(q, x) should (at a given instant) fall into such a product, the measurement as a

result of which this state was brought about must completely describe the system considered and the

remainder of the closed system separately. In order that Wiq, x) should continue to have this form at

subsequent instants, it is necessary in addition that these parts of the closed system should not interact

(see §2). Neither of these conditions is now assumed.
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Using the density matrix, the mean value / can be written in the form

?= j\jP(x',x)] x>=x dx. (14.4)

Here / acts only on the variables x in the function p(x', x) ; after calculating

the result of its action, we put x' = x. We see that, if we know the density

matrix, we can calculate the mean value of any quantity characterising the

system. It follows from this that, by means of p(x', x), we can also determine
the probabilities of various values of the physical quantities in the system.

Thus we reach the conclusion that the state of a system which does not have a

wave function can be described by means of a density matrix. This does not
contain the co-ordinates q which do not belong to the system concerned,

though, of course, it depends essentially on the state of the closed system
as a whole.

The description by means of the density matrix is the most general form
of quantum-mechanical description of the system. The description by means
of the wave function, on the other hand, is a particular case of this, cor-

responding to a density matrix of the form p{x'
y
x) = ¥*(*')¥(*). The

following important difference exists between this particular case and the

general one.f For a state having a wave function there is always a complete
set of measuring processes such that they lead with certainty to definite

results (mathematically, this means thatT is an eigenfunction of some opera-

tor). For states having only a density matrix, on the other hand, there is no
complete set of measuring processes whose result can be uniquely predicted.

Let us now suppose that the system is closed, or became so at some instant.

Then we can derive an equation giving the change in the density matrix with
time, similar to the wave equation for theY function. The derivation can be
simplified by noticing that the required linear differential equation for

p(x', x, t) must be satisfied in the particular case where the system has a wave
function, i.e.

P(x',x,t)=W*(x',tyF(x,t).

Differentiating with respect to time and using the wave equation (8.1), we
have

dp dY(x,t) W(x',t)
ih~ = ihY*(x\ t)—K

-LL+ifW(x, t) —
dt dt dt

= Y»(*\ *)#¥(*, *)-¥(*, *)#'*Y*(*', t),

where A is the Hamiltonian of the system, acting on a function of *,

and A' is the same operator acting on a function of x'. The functions

¥*(*', t) and Y(#, t) can obviously be placed behind the respective operators

tt and U\ and we thus obtain the required equation :

ih dp{x', x, t)JBt = (fi-fi'*)p(x',x, t). (14.5)

f States having a wave function are sometimes called "pure" states, as distinct from "mixed"
states, which are described by a density matrix.
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Let Wn(x, t) be the wave functions of the stationary states of the system,

i.e. the eigenfunctions of its Hamiltonian. We expand the density matrix

in terms of these functions ; the expansion consists of a double series in the

functions Tw(#, t) and ^¥n(x', t), which we write in the form

9{x\ x, t) = SS awnYM*(*', t)YJx, t)

= SS amnifjn*(x')tf;m(x)^f^En-E^ (i4<6)
tn n

For the density matrix, this expansion plays a part analogous to that of the

expansion (10.3) for wave functions. Instead of the set of coefficients an ,

we have here the double set of coefficients amn . These clearly have the pro-

perty of being "Hermitian", like the density matrix itself:

anm* = amn . (14.7)

For the mean value of some quantity/ we have, substituting (14.6) in (14.4),

/= SS amn jYn*(x, t)f<¥m{x, t) dx,

/= SZ amnfnJt) = SS amnfnm
&/MEn-Em)t

} (14 .8)

or

where fmn are the matrix elements of the quantity /. This expression is

similar to formula (ll.l).f

The quantities amn must satisfy certain inequalities. The "diagonal

elements" p(x, x) of the density matrix, which determine the probability

distribution for the co-ordinates, must obviously be positive quantities. It

therefore follows from the expression (14.6) (with x' = x) that the quadratic

form

constructed with the coefficients anm (where the £n are arbitrary complex
quantities) must be positive. This places certain conditions, known from the

theory of quadratic forms, on the quantities anm . In particular, all the

"diagonal" quantities must clearly be positive:

ann >0, (14.9)

and any three quantities ann , amm and amn must satisfy the inequality

> Kn| 2
- (14.10)*nn'*mm

To the "pure" case, where the density matrix reduces to a product of

functions, there evidently corresponds a matrix amn of the form

We shall indicate a simple criterion which enables us to decide, from the

f The description of a system by means of the quantities amn was introduced independently by
L. Landau and F. Bloch in 1927.
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form of the matrix %», whether we are concerned with a "pure" or a

"mixed" state. In the pure case we have

(
a )mn = ^ amkakn

= S ak*aman*ak

= aman* X\ak \

2

k

or

(0
2
)«m = tf«m> (14.11)

i.e. the density matrix is equal to its own square.

§15. Momentum
Let us consider a system of particles not in an external field. Since all

positions in space of such a system as a whole are equivalent, we can say, in

particular, that the Hamiltonian of the system does not vary when the system

undergoes a parallel displacement over any distance. It is sufficient that this

condition should be fulfilled for an arbitrary small displacement.

An infinitely small parallel displacement over a distance Sr signifies a trans-

formation under which the radius vectors ra of all the particles (a being the

number of the particle) receive the same increment Sr : ra -> r -f- Sr. An
arbitrary function tfjfa, r2 , ... ) of the co-ordinates of the particles, under
such a transformation, becomes the function

^(rj+Sr, r2+Sr, ... ) = ^xlt r2 , ... )+Sr . S Va^

= (l+8r.2Va¥(ri,r2,...)
a

(V a denotes a "vector" whose components are the operators djdxa , d[dya ,

djdz a). The expression in parentheses, i.e.

1+Sr . 2 V«,
a

can be regarded as the operator of an infinitely small displacement, which
converts the function «/r(r1} r2, ... ) into the function

^fo+Sr, r2+Sr, ... ).

The statement that some transformation does not change the Hamiltonian

means that, if we make this transformation on the function i?«/r, the result is

the same as if we make it only on the function if/ and then apply the operator i?.

Mathematically, this can be written as follows. Let be the operator which
effects the transformation in question. Then we have 0(fiip) = fi{Oift), whence

6ft-fi6 = o,

i.e. the Hamiltonian must commute with the operator 0.

In the case considered, the operator is the above-mentioned operator

of an infinitely small displacement. Since the unit operator (the operator

of multiplying by unity) commutes, of course, with any operator, and the
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constant factor Sr can be taken in front of 6, the condition OS—IiO =
reduces here to

(S V«)#-#(S V„) = 0. (15.1)
a a

As we know, the commutability of an operator (not containing the time

explicitly) with i? means that the physical quantity corresponding to that

operator is conserved. The quantity whose conservation for a closed system

follows from the homogeneity of space is called momentum. Thus the relation

(15.1) expresses the law of conservation of momentum in quantum mechanics

;

the operator SV« must correspond, apart from a constant factor, to the

total momentum of the system, and each term V a °f tne sum t° the momen-
tum of an individual particle.

The coefficient of proportionality between the operator p of the momentum
of a particle and the operator V can be determined by means of the passage

to the limit of classical mechanics. Putting p = cV and using the limiting

expression (6.1) for the wave function, we have

pT = (i/h) caF/MVS = c(i(hy¥S7S,

i.e. in the classical approximation the effect of the operator p reduces to

multiplication by (ijfijcS/S. The gradient S/S is, as we know from mech-

anics, the momentum p of the particle; hence we must have (ilti)c= 1,

i.e. c = — ih.

Thus the operator of the momentum of a particle is p = —ih\J, or, in

components,

px = —ikd/dx, p v = —ihd/dy,
ftz
= —ihdjdz. (15.2)

It is easy to see that these operators are Hermitian, as they should be.

For, with arbitrary functions ifs(x) and <f>(x) which vanish at infinity, we have

<f>pxip dx — —ih
<f>
— d# = ih ip— d# = *ppx*<f> d#,

and this is the condition that the operator should be Hermitian.

Since the result of differentiating functions with respect to two different

variables is independent of the order of differentiation, it is clear that the

operators of the three components of momentum commute with one another:

W,-M- = o. AA-M. = °» AA-A?. = o- (is.3)

This means that all three components of the momentum of a particle can

simultaneously have definite values.

Let us find the eigenfunctions and eigenvalues of the momentum operators.

They are determined by the equations

-ihdiMdx=p3xl>, -ihd/dy =pvf, -ihfy/dz = prf. (15.4)

The solution of the first of these equations is
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where /is independent of x. This solution remains finite for all values of x,

for any real value of px . Thus the eigenvalues of the component px of the

momentum form a continuous spectrum extending from — oo to +00; the

same is true, of course, of the components p y and p z .

The three equations (15.4) have, in particular, common solutions, which

correspond to states with definite values of all three momentum components

forming the vector p. These solutions are of the form

= C^/»>P-r
,

(15.5)

where C is a constant. If all three components of the momentum are given

simultaneously, we see that this completely determines the wave function

of the particle. In other words, the quantities ^/ty, pz form one of the poss-

ible complete sets of physical quantities.

Let us determine the normalisation coefficient in (15.5). According to the

rule (5.4) for normalising the eigenfunctions of a continuous spectrum, we
must have

J*
<Mp* dV = S(p'- p) (15.6)

(where dV = dxdydz), the integration being extended over all space; S(p'—p)
is the three-dimensional delta function, defined similarly to the one-dimen-

sional function (the delta function of one variable).f The integration can

be immediately effected by means of the formulaj

(1/2tt)
J

el«x dx = 8(a). (15.7)

We have

f «£p/ p
* dV = C2 I e<*/»XP'-P).r dV

= C2(2^)3S(p'-p).

Hence we see that we must have C^ilirKf = 1. Thus the normalised func-

tion «/r is

^p = (277-^)-3 /2^/»)P-r
. (15.8)

t The three-dimensional function S(r) can, in particular, be represented as a product of delta

functions of the Cartesian components of the vector r: S(r) = 8(*)8(y)S(sr).

I The conventional meaning of this formula is that the function on the left-hand side has the

property of the delta function expressed by the equation

J/(*)8(*)d*=/(0).

This follows from the Fourier integral formula

f(x') = (1/2tt) \\f{x)e*x
~x'* dada,

if we put *' = 0.

Separating the real part, we can also write formula (15.7) in the form
00

(1/277-)
J

cosouc d;v = 8(a). (15.7a)
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The expansion of an arbitrary wave function ^(r) of a particle in terms
of the eigenfunctions «/r

p
of its momentum operator is simply the expansion

as a Fourier integral:

0(r) = j a(p)Mr) d3
/> = (2^)-3 /2

J
a(p)e^l^-r d*p (15.9)

(where d3
/> = dp xdp ydp z). The expansion coefficients a(p) are, according

to formula (5.3),

«(P) = J
0(r)0P*(r) dF = (2tt^)-3 /2

J
0(r)<r<W dF. (15.10)

The function a(p) can be regarded (see §5) as the wave function of the

particle in the "p representation"; \a(p)\ 2 d3p is the probability that the

momentum has a value in the interval d3p. The formulae (15.9) and (15.10)
give the relation between the wave functions in the two representations.

Just as the operator p corresponds to the momentum, determining its

eigenfunctions in the "r representation", we can introduce the idea of the
operator f of the radius vector of the particle in the "p representation". It

must be defined so that the mean value of the co-ordinates can be represented
in the form

r=
J
a*(p)*a(p) &p. (15.11)

On the other hand, this mean value is determined from the wave function

0(r) by

r = jif,*rjdV.

Writing «/r(r) in the form (15.9) we have (integrating by parts)f

r0(r) = (Zirh)-3 '2 f ra(p)^/«p-r d^

= (2tt/*)-3 /2 f *M/«P-r
[da(p)/dp] &p.

Using this expression and (15.10), we find

f=j 0*r^ dV = (2ttH)-s /2

jj
0*(r)#*[dtf(p)/dpy*"/A)p.r d3pdV

=
J
iha*(p)[da(p)/dp] d*p.

Comparing with (15.11), we see that the radius vector operator in the "p
representation" is

r = ihd/dp. (15.12)

t The derivative with respect to the vector p is understood as the vector whose components are the
derivatives with respect to pz , py , pt .



§15 Momentum 45

The momentum operator in this representation reduces simply to multipli-

cation by p.

PROBLEMS
Problem 1. Express the operator Ta of a parallel displacement over a finite distance a

in terms of the momentum operator.

Solution. By the definition of the operator Ta we must have

T*l>{r) = flr+a).

Expanding the function ^(r+a) in a Taylor series, we have

0(r+a) = 0(r)+a . &£(r)/dr+ ...

,

or, introducing the operator p = —ih\J,

«A(r+a) = £l+ia -P+~(^ -p)
2+ ••• ]tf(r).

The expression in brackets is the operator

This is the required operator of the finite displacement.

Problem 2. Find the law of transformation of the wave function under a Galilean trans-
formation.

Solution. We shall carry out the transformation on a wave function of free motion of
a particle (a plane wave). Since any function T can be expanded in terms of plane waves,
this gives also the transformation law for an arbitrary wave function.

The wave functions of free motion in frames of reference K and K' (where K' moves
relative to K with velocity V) are

T = constant xe (*/*> <!»•*-**>,

Y' = constant x ««'»"»»'•*'-*'*>,

with r = r'+\t, and the momenta and energies in the two systems are related byt

p = p'+ wV,

E = E'+V.p'+^mV2
.

Substituting these expressions for r, p and £ in T, we obtain

Y =Y' exp\-mV.(r'+ iVt) 1

= T'expUmV.i(r+r')l. (1)

In this form the formula involves no quantities characterising the free motion of the particle,

and gives the required general law of transformation of the wave function of an arbitrary
state of the particle. For a system of particles a sum over the particles appears in the ex-
ponent in (1).

t See Mechanics,
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§16. Uncertainty relations

Let us derive the rules for commutation between momentum and co-

ordinate operators. Since the result of successively differentiating with
respect to one of the variables x, y, z and multiplying by another of them
does not depend on the order of these operations, we have

Pxy~ypx = 0, pxz-zpx = 0, (16.1)

and similarly for P v , ft z .

To derive the commutation rule for p x and x, we write

(ftxX—xfixJtp = —ih d(xifi)ldx+ihx difi/dx

= —ihifj.

We see that the result of the action of the operator $xX—xp x reduces to

multiplication by —ih; the same is true, of course, of the commutation ofpy
with y and p s with z. Thus we havef

pxx—xpx = —ih, pvy—ypy = —ih, pzz—zpg = —ih. (16.2)

All the relations (16.1) and (16.2) can be written in the form

fiiXk—xkfii = —ihSik (i,k = x,y,z). (16.3)

Before going on to examine the physical significance of these relations and
their consequences, we shall derive two formulae which will be useful later.

Let /(r) be some function of the co-ordinates. Then

p/(r)-/(r)P = -«»V/. (16.4)

For

(p/-/p)<A = -«[V(#)-/V0] - -«tyV/.

A similar relation holds for the commutation of r with a "function" /(p) of

the momentum operator:

/(P)r-r/(p) = -ihdfldp. (16.5)

It can be derived in the same way as (16.4) if we calculate in the p representa-

tion, using the expression (15.12) for the co-ordinate operators.

The relations (16.1) and (16.2) show that the co-ordinate of a particle along

one of the axes can have a definite value at the same time as the components
of the momentum along the other two axes ; the co-ordinate and momentum
component along the same axis, however, cannot exist simultaneously. In

particular, the particle cannot be at a definite point in space and at the same
time have a definite momentum p.

Let us suppose that the particle is in some finite region of space, whose
dimensions along the three axes are (of the order of magnitude of) A#, Ay, Az.

t These relations, discovered in matrix form by Heisenberg in 1925, formed the genesis of modern
quantum mechanics.
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Also, let the mean value of the momentum of the particle be p . Mathe-

matically, this means that the wave function has the form ijs = M(r)e<f /A>p«*r
>

where u(t) is a function which differs considerably from zero only in the

region of space concerned. We expand the function ip in terms of the eigen-

functions of the momentum operator (i.e. as a Fourier integral). The co-

efficients a(p) in this expansion are determined by the integrals (15.10) of

functions of the form u(r)e<i/n^p'~p>-r
. If this integral is to differ consider-

ably from zero, the periods of the oscillatory factor g(*/»)(Po-p)-r must not be

small in comparison with the dimensions Ax, Ay, Az of the region in which
the function u(r) is different from zero. This means that a(p) will be con-

siderably different from zero only for values of p such that (llh)(p0x—p x)Ax <;

1, etc. Since |«(p)|
2 determines the probability of the various values of the

momentum, the ranges of values oip x , p y , p z m which a(p) differs from zero

are just those in which the components of the momentum of the particle may
be found, in the state considered. Denoting these ranges by Apx , Ap v , Ap et

we thus have

ApJ^x ~ h, ApyAy ~ h, ApzAz ~ h. (16.6)

These relations, known as the uncertainty relations, were obtained by
Heisenberg.

We see that, the greater the accuracy with which the co-ordinate of the

particle is known (i.e. the less Ax), the greater the uncertainty Ap x in the

component of the momentum along the same axis, and vice versa. In parti-

cular, if the particle is at some completely definite point in space (Ax =
Ay = Az = 0), then Ap x = Apy = Ap z

= co. This means that all values

of the momentum are equally probable. Conversely, if the particle has a

completely definite momentum p, then all positions of it in space are equally

probable (this is seen directly from the wave function (15.8), whose squared

modulus is quite independent of the co-ordinates).

As an example, let us consider a particle in a state described by the wave
function

ift = constant x (MUM**-***I™ (16.7)

(for simplicity, we consider a one-dimensional case, with the wave function

depending on only one co-ordinate). The probabilities of the various values

of the co-ordinates are

|0|
2 = constant x e~aX*ln

,

i.e. are distributed about the origin of co-ordinates (the mean value x = 0)

according to a Gaussian law, with a standard deviation \Z[(AxY] = -\/(^/2a)

(Ax denotes the difference x— x)-\. If the expansion coefficients a(p x) of

f As is well known, the Gaussian distribution for the probability w(x) of the values of some quantity
x has the form

w(x) = [27r(Aj(
;)2]-l/2e-(A a;)V2(Ax)

2
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this function are calculated as a Fourier integral according to the formula

a(px) = (2irA)-i/2
j ^(x)e-a/h)Px

x dX)

we obtain an expression of the form

a(px) = constant x e-fcv-pJ'/M**.

The distribution of probabilities of values of the momentum is \a\ 2 =
constant X erl'i-'x)*/**, an(j consequently is also of Gaussian form, with a

standard deviation

(where &p x =p x—p )- The product of the standard deviations of co-
ordinate and momentum is thus

V[(A/02 (A*)2]=p, (16.8)

in agreement with the relation (16.6).f
Finally, we shall derive another useful relation. Let / and g be two

physical quantities whose operators obey the commutation rule

M-gf=-ihc, (16.9)

f It can be shown that this value of the product of the standard deviations is the least possible.
To do this, we give the following formal derivation (H. Weyl). Let the state of the particle be de-
scribed by the function *ji(x); for simplicity, we suppose the mean values of co-ordinate and momen-
tum in this state to be zero. We consider the obvious inequality

I dx
dx >0,

where a is an arbitrary real constant (the equality sign holds for a function of the form (16.7), and for
no other). On calculating this integral, noticing that

!

we obtain

*2|0|
2 d* = (A*)2

,

Kx—f+xif,*— ) dx = f
*— dx = - f M 2 dx = -

1,
dx dx/ J dx J

r d0* diL r d2<A 1 r „ 1

a2(A*)2-a+(l//*2)(A/g2 > 0.

If this quadratic (in a) trinomial is positive for all a, the condition

4(A*)2 (1//*
2)(A^)2 >1

V[(A*)2
(A/>x)

2]>P (16.8a)
must be fulfilled.
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where 6 is the operator of some physical quantity c. On the right-hand side

of the equation the factor h is introduced in accordance with the fact that in

the classical limit (i.e. as h -» 0) all operators of physical quantities reduce

to multiplication by these quantities and commute with one another. Thus,
in the "quasi-classical" case, we can, to a first approximation, regard the right-

hand side of equation (16.9) as being zero. In the next approximation, the

operator c can be replaced by the operator of simple multiplication by the

quantity c. We then have

f£-£f= -fa-

This equation is exactly analogous to the relation pxX—xPx = —ih, the only

difference being that, instead of the constant h, we havef the quantity he.

We can therefore conclude, by analogy with the relation AxAp x ~ h, that

in the quasi-classical case there is an uncertainty relation

A/<V ~ he (16.10)

for the quantities/ and g.

In particular, if one of these quantities is the energy (/=i?) and the

operator (§) of the other does not depend explicitly on the time, then by
(9.2) c = g, and the uncertainty relation in the quasi-classical case is

&EAg~hg. (16.11)

f The classical quantity c is the Poisson bracket of the quantities / and g; see the footnote in §9.



CHAPTER III

SCHRODINGER'S equation

§17. Schrodinger's equation

Let us now turn to determining the form of the Hamiltonian—a problem of

the greatest importance, since its solution determines the form of the wave
equation.

We shall begin by considering one free particle, i.e. a particle which is not
in any external field. Because of the complete homogeneity of space for such
a particle, its Hamiltonian cannot explicitly contain the co-ordinates, and
must be expressible in terms of the momentum operator only. Moreover,
for a free particle both the energy and the momentum are conserved, and
hence both these quantities can exist simultaneously. Since the value of the

momentum vector completely determines the state of the particle, the eigen-

values of the energy E must be expressible in the form of functions of the

value of the momentum in the same state. Here E is a function only of the

absolute value of the momentum, and not of its direction ; this follows from
the complete isotropy of space relative to the free particle, i.e. the equivalence

of all directions in space. The actual form of the function E(p) is completely

determined by the requirements of what is called Galileo's relativity principle,

which must hold in non-relativistic quantum mechanics just as much as in

classical (non-relativistic) mechanics. As is found in mechanics,! this re-

quirement leads to a quadratic dependence of the energy on the momentum

:

E = p
2j2m, where the constant m is called the mass of the particle.

If the relation E = p
2j2m holds for every eigenvalue of the energy and

momentum, the same relation must hold for their operators also:

# = (l/2«)tf.«+/,»+M (17.1)

Substituting here from (15.2), we obtain the Hamiltonian of a freely moving
particle in the form

#=-(#/2m)A, (17.2)

where A = d2/dx
2+ d2jdy

2+ d2jdz2 is the Laplacian operator.

If we have a system of non-interacting particles, its Hamiltonian is equal

to the sum of the Hamiltonians of the separate particles

:

#=-P*S(l/ma)A (17.3)
a

(the suffix a is the number of the particle; A a is the Laplacian operator in

f See Mechanics, §4.

50
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which the differentiation is with respect to the co-ordinates of the ath
particle).

The form of the Hamiltonian for a system of particles which interact with
one another cannot be derived from the general principles of quantum mech-
anics alone. It is found that it has in fact a form similar to that of Hamilton's
function in classical mechanics: it is obtained by adding to the Hamiltonian
of the non-interacting particles a certain function U(rly r2 , ... ) of their co-
ordinates :

#=-** S A^ma+Z/(r1,rlf ...). (17.4)
a

The first term can be regarded as the operator of the kinetic energy and the
second as that of the potential energy. The latter reduces to simple multipli-
cation by the function U, and it follows from the passage to the limiting case
of classical mechanics that this function must coincide with the one which
gives the potential energy in classical mechanics. In particular, the Hamil-
tonian for a single particle in an external field is

ti =p2/2m+ U(x,y, z) = -(h*/2m)A+ U(x,y, *), (17.5)

where U(x, y, z) is the potential energy of the particle in the external field.

The eigenvalues of the kinetic energy operator are positive; this follows
at once from the fact that this operator is equal to the sum of the squares
of the operators of the momentum components with positive coefficients.
Hence the mean value of the kinetic energy in any state is also positive.

Substituting the expressions (17.2) to (17.5) in the general equation (8.1),
we obtain the wave equations for the corresponding systems. We shall write
out here the wave equation for a particle in an external field:

ih BV/dt = -(h*/2m)Ax¥+ U{x,y, zj¥. (17.6)

The equation (10.2), which determines the stationary states, takes the form

(h*/2m)A*fi +[E- U(x,y, z)]f = 0. (17.7)

The equations (17.6) and (17.7) were obtained by Schrodinger in 1926 and
are called Schrddinger's equations, with and without the time respectively.

For a free particle, Schrodinger's equation (17.7) has the form

(h*/2m)A<P+E+ = 0. (17.8)

This equation has solutions finite in all space for any positive (or zero) value
of the energy E. These solutions can be taken to be the common eigenfunc-
tions (15.5) of the operators of the three momentum components. The com-
plete wave functions of the stationary states will then have the form

¥ = constant x^/^W/fllP-r (g _ pZj2m). (17.9)

Each such function describes a state in which the particle has a definite
energy E and momentum p. This is a plane wave propagated in the direction

3
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of p and having an angular frequency E\h and wavelength 2irh\p (the latter

is called the de Broglie wavelength of the particle).-)-

The energy spectrum of a freely moving particle is thus found to be con-

tinuous, extending from zero to + 00. Each of these eigenvalues (except

E = 0) is degenerate, and the degeneracy is infinite. For there corresponds

to every value of E, different from zero, an infinite number of eigenfunctions

(17.9), differing in the direction of the vector p, which has a constant absolute

magnitude.

Let us enquire how the passage to the limit of classical mechanics occurs

in Schrodinger's equation, considering for simplicity only a single particle

in an external field. Substituting in Schrodinger's equation (17.6) the limit-

ing expression (6.1) for the wave function, T = fle<
i/a

>s
, we obtain, on per-

forming the differentiation,

dS da a ih . ih n h?
a ih—+—(VS)2 aAS \/S . \/a Aa+C/a = 0.

dt Bt 2m 2m m 2m

In this equation there are purely real and purely imaginary terms (we recall

that S and a are real); equating each separately to zero, we obtain two

equations
dS 1 *a

a—+-(\/S)*+U-—Aa = 0,

dt 2m 2ma

da a . 1_+_AS+—S/S . Vfl = 0.

dt 2m m

Neglecting the term containing h2 in the first of these equations, we obtain

-^+i-(V5)2+t/ = 0, (17.10)
dt 2m

that is, the familiar classical Hamilton-Jacobi equation for the action S of a

particle, as it should be. We see, incidentally, that, as h -> 0, classical mech-

anics is valid as far as quantities of the first (and not only the zero) order in

h inclusive.

The second equation obtained above, on multiplication by 2a, can be re-

written in the form ™
+diJa*El)=0. (17.11)

dt \ m J

This equation has an obvious physical meaning: a2 is the probability density

for finding the particle at some point in space (|T*|2 = a2); VSj/i = p/p

is the classical velocity v of the particle. Hence equation (17.11) is simply

the equation of continuity, which shows that the probability density "moves"

according to the laws of classical mechanics with the classical velocity v at

every point.

f The idea of a wave related to a particle was first introduced by L. db Broglie in 1924.
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§18. The fundamental properties of Schrodinger's equation

The conditions which must be satisfied by solutions of Schrodinger's
equation are very general in character. First of all, the wave function must
be single-valued and continuous in all space. The requirement of continuity
is maintained even in cases where the field U(x, y, z) itself has a surface of
discontinuity. At such a surface both the wave function and its derivatives
must remain continuous. Concerning the continuity of the derivatives, how-
ever, it must be added that this does not hold if there is some surface beyond
which the potential energy U becomes infinite. A particle clearly cannot
penetrate at all into a region of space where U = oo, i.e. we must have
if/ = everywhere in this region. The continuity of if* means that ifi vanishes
at the boundary of this region; the derivatives of i(j, however, in general are
discontinuous in this case.

If the field U(x, j, z) nowhere becomes infinite, then the wave function
also must be finite in all space. The same condition must hold in cases where
U becomes infinite at some point but does so only as l/rs with s < 2 (see
also §35).

Let Umin be the least value of the function U(x, y, z). Since the Hamil-
tonian of a particle is the sum of two terms, the operators of the kinetic
energy (T) and of the potential energy, the mean value E of the energy in any
state is equal to the sum T+ V. But all the eigenvalues of the operator t
(which is the Hamiltonian of a free particle) are positive; hence the mean
value T > 0. Recalling also the obvious inequality V > £/min , we find that
& > ^min- Since this inequality holds for any state, it is clear that it is valid
for all the eigenvalues of the energy:

En>Umin. (18.1)

Let us consider a particle moving in an external field which vanishes at
infinity

;
we define the function U(x, y y

z), in the usual way, so that it vanishes
at infinity. It is easy to see that the spectrum of negative eigenvalues of the
energy will then be discrete, i.e. all states with E < in a field which vanishes
at infinity are bound states. For, in the stationary states of a continuous
spectrum, which correspond to infinite motion, the particle reaches infinity
(see §10); however, at sufficiently large distances the field may be neglected,
the motion of the particle may be regarded as free, and the energy of a freely
moving particle can only be positive.

The positive eigenvalues, on the other hand, form a continuous spectrum
and correspond to an infinite motion; for E > 0, Schrodinger's equation
in general has no solutions (in the field concerned) for which the integral

/ \if>\
2 dV converges.

f

Attention must be drawn to the fact that, in quantum mechanics, a particle
in a finite motion may be found in those regions of space where E < U;

t However it must be mentioned that, for some particular mathematical forms of the function
U(*, y, z) (which have no physical significance), a discrete set of values may be absent from the
otherwise continuous spectrum.
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the probability |«/r|
2 of rinding the particle tends rapidly to zero as the distance

into such a region increases, yet it differs from zero at all finite distances.

Here there is a fundamental difference from classical mechanics, in which

a particle cannot penetrate into a region where U > E. In classical mechanics

the impossibility of penetrating into this region is related to the fact that,

for E < U, the kinetic energy would be negative, that is, the velocity would

be imaginary, which is meaningless. In quantum mechanics, the eigen-

values of the kinetic energy are likewise positive; nevertheless, we do not

reach a contradiction here, since, if by a process of measurement a particle

is localised at some definite point of space, the state of the particle is changed,

as a result of this process, in such a way that it ceases in general to have any

definite kinetic energy.

If U(x,y, z) > in all space (and U -» at infinity), then, by the inequality

(18.1), we have En > 0. Since, on the other hand, for E > the spectrum

must be continuous, we conclude that, in this case, the discrete spectrum

is absent altogether, i.e. only an infinite motion of the particle is possible.

Let us suppose that, at some point (which we take as origin), U tends to

— oo in the manner
U « -ocr-s (a > 0). (18.2)

We consider a wave function finite in some small region (of radius r ) about

the origin, and equal to zero outside this region. The uncertainty in the

values of the co-ordinates of a particle in such a wave packet is of the order

of r ; hence the uncertainty in the value of the momentum is ~ hjrQ . The

mean value of the kinetic energy in this state is of the order of h2jmr 2
,
and

the mean value of the potential energy is ~ — a/r *. Let us first suppose

that s > 2. Then the sum
h2lmr 2— a/r s

takes arbitrarily large negative values for sufficiently small r . If, however,

the mean energy can take such values, this always means that the energy has

negative eigenvalues which are arbitrarily large in absolute value. The mo-

tion of the particle in a very small region of space near the origin corresponds

to the energy levels with large \E\. The "normal" state corresponds to a

particle at the origin itself, i.e. the particle "falls" to the point r = 0.

If, however, s < 2, the energy cannot take arbitrarily large negative values.

The discrete spectrum begins at some finite negative value. In this case the

particle does not ' 'fall" to the centre. It should be mentioned that, in classical

mechanics, the "fall" of a particle to the centre would be possible in principle

in any attractive field (i.e. for any positive s). The case 5 = 2 will be specially

considered in §35.

Next, let us investigate how the nature of the energy spectrum depends on

the behaviour of the field at large distances. We suppose that, as r -* oo,

the potential energy, which is negative, tends to zero according to the power

law (18.2) (r is now large in this formula), and consider a wave packet "filling"

a spherical shell of large radius r and thickness Ar <^ r . Then the order
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of magnitude of the kinetic energy is again £2/m(Ar)2
, and of the potential

energy, — <x/r *. We increase r , at the same time increasing Ar, in such a
way that Ar increases proportionally to r . If s < 2, then the sum h2jm(Ar)2—
<x/r * becomes negative for sufficiently large r . Hence it follows that there
are stationary states of negative energy, in which the particle may be found,
with a fair probability, at large distances from the origin. This, however,
means that there are levels of arbitrarily small negative energy (it must be
recalled that the wave functions rapidly tend to zero in the region of space
where U > E). Thus, in this case, the discrete spectrum contains an infinite

number of levels, which become denser and denser towards the level E = 0.

If the field diminishes as — \\r* at infinity, with s > 2, then there are not
levels of arbitrarily small negative energy. The discrete spectrum terminates
at a level with a non-zero absolute value, so that the total number of levels is

finite.

Schrodinger's equation (without the time) is real, as are the conditions
imposed on its solution. Hence its solutions ifs can always be taken as real.f
The eigenfunctions of non-degenerate values of the energy are automatically
real, apart from the unimportant phase factor. For ifj* satisfies the same
equation as tfi, and therefore must also be an eigenfunction for the same value
of the energy; hence, if this value is not degenerate, i/t and «/»* must be essen-
tially the same, i.e. they can differ only by a constant factor (of modulus unity).
The wave functions corresponding to the same degenerate energy level need
not be real, however, but by a suitable choice of linear combinations of them
we can always obtain a set of real functions.

The complete wave functions Y are determined by an equation in whose
coefficients i appears. This equation, however, retains the same form if we
replace t in it by — t and at the same time take the complex conjugate.%
Hence we can always choose the functions Y in such a way that Y and Y*
differ only by the sign of the time, a result which we know already from
formulae (10.1) and (10.3).

As is well known, the equations of classical mechanics are unchanged by
time reversal, i.e. when the sign of the time is reversed. In quantum mechanics,
the symmetry with respect to the two directions of time is expressed, as we
see, in the invariance of the wave equation when the sign of t is changed and
Y is simultaneously replaced by Y*. However, it must be recalled that this
symmetry here relates only to the equation, and not to the concept of
measurement itself, which plays a fundamental part in quantum mechanics
(as we have explained in detail in §7).

§19. The current density
In classical mechanics, the velocity of a particle is equal to its momentum

divided by its mass. We shall show that the same relation holds in quantum
mechanics, as we should expect.

t These assertions are not valid for systems in a magnetic field (see Chapter XV).
| It is assumed that the potential energy U does not depend explicitly on the time: the system

is either closed or in a constant (non-magnetic) field.



56 Schrodinger *s Equation §19

According to the general formula (9.2) for the differentiation of operators

with respect to time, we have for the velocity operator v = f

v = (Hh){8t-tfl).

Using the expression (17.5) for fi and formula (16.5), we obtain

v=p/m. (19.1)

Similar relations will clearly hold between the eigenvalues of the velocity

and momentum, and between their mean values in any state.

The velocity, like the momentum of a particle, cannot have a definite value

simultaneously with the co-ordinates. But the velocity multiplied by an

infinitely short time interval dt gives the displacement of the particle in the

time dt. Hence the fact that the velocity cannot exist at the same time as

the co-ordinates means that, if the particle is at a definite point in space at

some instant, it has no definite position at an infinitely close subsequent

instant.

We may notice a useful formula for the operator / of the derivative, with

respect to time, of some quantity/(r) which is a function of the radius vector

of the particle. Bearing in mind that/ commutes with U(r)
t
we find

/= (i/k)(8f-ffi) = (il2mh)(&f-m.

Using (16.4), we can write

p
2/ = P • (/P-^V/) = p/ • P-ihP . V/,

/P2 = (P/+*W/).P = p/.p+^V/.p.

Substituting in the formula for/, we obtain the required expression:

/= (l/2m)(£ . V/+V/-P). (19-2)

Next, let us find the acceleration operator. We have

v = (P)(#v - v#) = (i/mh)(fip - p#) = (ilmh)(Up -pU)

(all the terms in i? except U(r) commute with p).

Using formula (16.4), we find

mfi = -\/U. (19.3)

This operator equation is exactly the same in form as the equation of motion

(Newton's equation) in classical mechanics.

The integral / |T| 2 dV, taken over some finite volume V, is the probability

of finding the particle in this volume. Let us calculate the derivative of this

probability with respect to time. We have

j /. f / gvp** dx¥\ i r
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Substituting here

fi = 8* = -(#/2m)A+ U(x,y, z)

and using the identity

TFAXF*-XF*AT = div (TV^-T*VY),
we obtain

v

where i denotes the vector

—JVpdF=- fdividF,

i = (^/2m)(YVxF*-T*V 1F). (19.4)

The integral of div i can be transformed by Gauss's theorem into an integral
over the closed surface S which boundsf the volume V:

d

It
JV|»dF=- fi.df. (19.5)

It is seen from this that the vector i may be called theprobability current density
vector. The integral of this vector over a surface is the probability that the
particle will cross the surface during unit time. The vector i and the prob-
ability density |T| 2 satisfy the equation

apF|2/dH-divi = 0, (19.6)

which is analogous to the classical equation of continuity.

Introducing the momentum operator, we can write the vector i in the form

i = (l/2/n)CFp*r*+*F*pF). (19j)

It is useful to show how the orthogonality of the wave functions of
states with different energies follows immediately from Schrodinger's
equation. Let tf>m and t//n be two such functions; they satisfy the equations

-(h*/2m)A,l,m+Ufm = Emfmi

-(*V2»)A£»+ Etyn* = BJS.

We multiply the first of these by n* and the second by i/,m and subtract
corresponding terms ; this gives

(£m-2?n)«M«* = (£
2
/2m)(«AroA^B*-&*A«

= (k*l2m) div tymV«A»*-^„*7W.
If we now integrate both sides of this equation over all space, the right-hand

t The surface element df is denned as a vector equal in magnitude to the area d/ of the element
and directed along the outward normal.
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side, on transformation by Gauss's theorem, reduces to zero, and we obtain

whence, by the hypothesis Em # En , there follows the required orthogonality

relation

§20. The variational principle

Schrodinger's equation, in the general form Zfy = Etff, can be obtained

from the variational principle

8
J"

«/»*(#-£)«£ d? = 0. (20.1)

Since <p is complex, we can vary iff and $* independently. Varying «/r*, we

have

\ Stfj*(fi-E)ip dq = 0,

whence, because Sip* is arbitrary, we obtain the required equation Biff = Eif/.

The variation of if* gives nothing different. For, varying iff and using the

fact that the operator i? is Hermitian, we have

f i}j*(fi-E)8iJj dq =
J
80(#*-£)«/<* dq = 0,

from which we obtain the complex conjugate equation i?*«/r* = Eifs*.

The variational principle (20.1) requires an unconditional extremum of

the integral. It can be stated in a different form by regarding J? as a Lagran-

gian multiplier in a problem with the conditional extremum requirement

sJ^ifyd^O, (20.2)

the condition being

j ifjif,* dq = 1. (20.3)

The least value of the integral in (20.2) (with the condition (20.3)) is the first

eigenvalue of the energy, i.e. the energy E of the normal state. The func-

tion ift which gives this minimum is accordingly the wave function «/»o of the

normal state,f The wave functions ifsn (n > 0) of the other stationary states

correspond only to an extremum, and not to a true minimum of the integral.

In order to obtain, from the condition that the integral in (20.2) is a mini-

mum, the wave function «/a and the energy E\ of the state next to the normal

one, we must restrict our choice to those functions ifs which satisfy not only the

f In the rest of this section we shall suppose the wave functions tf> to be real; they can always be

so chosen (if there is no magnetic field).
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normalisation condition (20.3) but also the condition of orthogonality with
the wave function $ of the normal state: j i[n[/ dq = 0. In general, if the

wave functions i(fQy X , ... , if}n_x of the first n states (arranged in order of in-

creasing energy) are known, the wave function of the next state gives a mini-
mum of the integral in (20.2) with the additional conditions

J>d$ = l, J#ro d? = (m = 0,1, 2,... ,fi-l). (20.4)

We shall give here some general theorems which can be proved from the

variational principle,f
The wave function i/f of the normal state does not become zero (or, as we

say, has no nodes) for any finite values of the co-ordinates. £ In other words,
it has the same sign in all space. Hence, it follows that the wave functions

i//n (n > 0) of the other stationary states, being orthogonal to tjt0t must have
nodes (if tfjn is also of constant sign, the integral j ift if/n dq cannot vanish).

Next, from the fact that i/i has no nodes, it follows that the normal energy
level cannot be degenerate. For, suppose the contrary to be true, and let

«Ao> to be two different eigenfunctions corresponding to the level EQ . Any
linear combination Ci// -\-c't/j

f

will also be an eigenfunction ; but by choosing
the appropriate constants c, c\ we can always make this function vanish at

any given point in space, i.e. we can obtain an eigenfunction with nodes.
If the motion takes place in a bounded region of space, we must have

ifj = at the boundary of this region (see §18). To determine the energy
levels, it is necessary to find, from the variational principle, the minimum
value of the integral in (20.2) with this boundary condition. The theorem that

the wave function of the normal state has no nodes means in this case that
«/r does not vanish anywhere inside this region.

We notice that, as the dimensions of the region containing the motion
increase, all the energy levels En decrease; this follows immediately from
the fact that an extension of the region increases the range of functions which
can make the integral a minimum, and consequently the least value of the
integral can only diminish.

The expression

J*
0#0 dq =

f
[- S (£2/2ma)«AAa0+ Ut/fi] dq

for the states of the discrete spectrum of a particle may be transformed into

another expression which is more convenient in practice. In the first term
of the^integrand we write

4>Aa*l> = diva(0Va«A)-(Va«A)2
.

t The proof of theorems concerning the zeros of eigenfunctions (see also §21) is given by M. A.
Lavrent'ev and L. A. Lyusternik, The Calculus of Variations (Kurs variatsionnogo ischisleniya),
2nd edition, chapter IX, Moscow 1950; R. Courant and D. Hilbert, Methods of Mathematical
Physics, volume I, chapter VI, Interscience, New York 1953.

% This theorem and its consequences are not in general valid for the wave functions of systems
consisting of several identical particles (see footnote at the end of §63).
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The integral of diva (^Va^) over all space is transformed into an integral

over an infinitely distant closed surface, and since the wave functions of the

states of a discrete spectrum tend to zero sufficiently rapidly at infinity, this

integral vanishes. Thus

j0f dq = j [S (h*l2ma)(Va<£)2+ £ty
2
] dq. (20.5)

§21. General properties of motion in one dimension

If the potential energy of a particle depends on only one co-ordinate (x),

then the wave function can be sought as the product of a function ofy and z

and a function of x only. The former of these is determined by Schro-

dinger's equation for free motion, and the second by the one-dimensional

Schrodinger's equation

-l+-[E-U(xM = Q. (21.1)
dxz

ft
2

Similar one-dimensional equations are evidently obtained for the problem of

motion in a field whose potential energy is U(x, y, z) = Ui(x)+ Uz{y)+ U^{z),

i.e. can be written as a sum of functions each of which depends on only one

of the co-ordinates. In §§22-24 we shall discuss a number of actual examples

of such "one-dimensional" motion. Here we shall obtain some general

properties of the motion.

We shall show first of all that, in a one-dimensional problem, none of the

energy levels of a discrete spectrum is degenerate. To prove this, suppose

the contrary to be true, and let iftx and ip
2 be two different eigenfunctions

corresponding to the same value of the energy. Since both of these satisfy

the same equation (21.1), we have

or *lti"*l't~- l
l
ti",

l
li
s= (the prime denotes differentiation with respect to x).

Integrating this relation, we find

0i'02-"~0i02' — constant. (21.2)

Since ifsx
=

tfj2
= at infinity, the constant must be zero, and so

or ipx'tyi
= 0«7^2- Integrating again, we obtain ^ = constant x ^2» i.e. the

two functions are essentially identical.

The following theorem (called the oscillation theorem) may be stated for the

wave functions iftjx) of a discrete spectrum. The function *jtn(x) correspond-

ing to the (n+l)th eigenvalue En (the eigenvalues being arranged in order of

magnitude), vanishes n times (for finitef values of x).

t If the particle can be found only on a limited segment of the x-axis, we must consider the zeros

of *l>n(x) within that segment.
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We shall suppose that the function U(x) tends to finite limiting values as

x -> ± oo (though it need not be a monotonic function). We take the limiting

value U(+ oo) as the zero of energy (i.e. we put U(+ oo) = 0), and we denote

U(—co) by U , supposing that U > 0. The discrete spectrum lies in the

range of energy values for which the particle cannot move off to infinity; for

this to be so, the energy must be less than both limiting values C/(±oo),

i.e. it must be negative:

E < 0, (21.3)

and we must, of course, have in any case E > t/min , i.e. the function U(x)

must have at least one minimum with Umia < 0.

Let us now consider the range of positive energy values less than U :

0<E<U . (21.4)

In this range the spectrum will be continuous, and the motion of the particle

in the corresponding stationary states will be infinite, the particle moving off

towards x = + oo. It is easy to see that none of the eigenvalues of the energy

in this part of the spectrum is degenerate either. To show this, it is sufficient

to notice that the proof given above (for the discrete spectrum) still holds if

the functions if/v if>2 are zero at only one infinity (in the present case they tend

to zero as x -> — oo).

For sufficiently large positive values of x, we can neglect U(x) in Schro-
dinger's equation (21.1):

0"+(2»#W = 0.

This equation has real solutions in the form of a stationary plane wave

if* = a cos(fcc+8), (21.5)

where a and 8 are constants, and the wave number k = pjh = ^(ImE)^.
This formula determines the asymptotic form (for x ->+ oo) of the wave
functions of the non-degenerate energy levels in the range (21.4) of the

continuous spectrum. For large negative values of x, Schrodinger's equation
is

«£"-(2m/£2
)(£/o-£)0 = 0.

The solution which does not become infinite as x -> — oo is

if> = be*x
t where k = V[2m{U -E)]/h. (21.6)

This is the asymptotic form of the wave function as x -> — oo. Thus the
wave function decreases exponentially in the region where E < U.

Finally, for

E > UQ (21.7)

the spectrum will be continuous, and the motion will be infinite in both
directions. In this part of the spectrum all the levels are doubly degenerate.
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This follows from the fact that the corresponding wave functions are deter-

mined by the second-order equation (21.1), and both of the two independent
solutions of this equation satisfy the necessary conditions at infinity (whereas,

for instance, in the previous case one of the solutions became infinite as

x -> — oo, and therefore had to be rejected). The asymptotic form of the

wave function as x -> + oo is

if, = aie
ikx+a2e-

ikx
, (21.8)

and similarly for x -> — oo. The term eikx corresponds to a particle moving
to the right, and e~ikx corresponds to one moving to the left.

Let us suppose that the function U(x) is even [U(—x) = U(x)]. Then
Schrodinger's equation (21.1) is unchanged when the sign of the co-

ordinate is reversed. It follows that, if tf/(x) is some solution of this equation,

then iff(-x) is also a solution, and coincides with ip(x) apart from a constant

factor: if*(—x) = ap(x). Changing the sign of x again, we obtain if/(x) =
c2ifj(x), whence c = ±1. Thus, for a potential energy which is symmetrical

(relative to x = 0), the wave functions of the stationary states must be either

even [ip(— x) = ifi(x)] or odd [ifi— {x) = —
^(*)].f In particular, the wave

function of the ground state is even, since it cannot have a node, while an
odd function always vanishes for x — [^(0) = —$(0) = 0].

To normalise the wave functions of one-dimensional motion (in a continu-

ous spectrum), there is a simple method of determining the normalisation

coefficient directly from the asymptotic expression for the wave function for

large values of \x\.

Let us consider the wave function of a motion infinite in one direction,

i.e. of a stationary state in the range (21.4) of the continuous spectrum.

The normalisation integral diverges as x -> oo (as x -> — oo, the function

decreases exponentially, so that the integral rapidly converges). Hence, to

determine the normalisation constant, we can replace «/r by its asymptotic

value (for large positive x), and perform the integration, taking as the lower

limit any finite value of x, say zero ; this amounts to neglecting a finite quantity

in comparison with an infinite one. We shall show that the wave function

normalised by the delta function of p (the momentum of the particle at

infinity) must have the asymptotic form (21.5) with a = ^(IJrrh), i.e.

iftp « V(2M) cos(kx+8) = \/(l/27rA)[e«feB^>+e-'**<-»>]. (21.9)

Since we do not intend to verify the orthogonality of the functions corre-

sponding to different^), on substituting the functions (21.9) in the normali-

sation integral J $p*typ dx we shall suppose the momenta p to be arbitrarily

close; we can therefore put 8 = 8' (in general 8 is a function of p). Next, we

t In this discussion it is assumed that the stationary state is not degenerate, i.e. the motion is not

infinite in both directions. Otherwise, when the sign of x is changed, two wave functions belonging

to the energy level concerned may be transformed into each other. In this case, however, although

the wave functions of the stationary states need not be even or odd, they can always be made so (by

choosing appropriate linear combinations ofrthe original functions).
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retain in the integrand only those terms which diverge for p = p'\ in other

words, we omit terms containing the factor e±*(fc+fc')£. Thus we obtain

f i/jp*iPP ' dx = {Ijlrrh) ( j e«*'-*>* dx+ j
«-«*'-*>*dA

or

f $f$v > dx = (1/2tt£) f «<*'-*)* d*.

This integral, however, is identical with the normalisation integral for the

wave function of free motion

tfjp = (27rA)-i/2e**« (21.10)

which is normalised by the delta function of momentum (cf. (15.8)).

The change to normalisation by the delta function of energy is effected, in

accordance with (5.14), by multiplying i/jp by s/{dpjdE) = lj-y/v, where v is

the velocity. Thus for free motion we have

4sE = {2irhv)-Vty*x. (21.11)

The probability current density in this wave is

©|0*|2 = 1/2tt*. (21.12)

Dividing the function (21.9) by \/v and using equation (21.12), we can

formulate the following rule for the normalisation of the wave function for a

motion infinite in one direction by the delta function of energy: having

represented the asymptotic expression for the wave function in the form of

a sum of two plane waves travelling in opposite directions, we must choose

the normalisation coefficient in such a way that the probability current

density in the wave travelling towards (or away from) the origin is I/IttH.

Similarly, we can obtain an analogous rule for normalising the wave func-

tions of a motion infinite in both directions. The wave function will be

normalised by the delta function of energy if the sum of the probability cur-

rents in the waves travelling towards the origin from x = + oo and x = — oo

is H2ttH.

§22. The potential well

As a simple example of one-dimensional motion, let us consider motion in

a square potential well, i.e. in a field where U(x) has the form shown in Fig. 1

:

U(x) = for < x < a, U(x) = U for x < and x > a. It is evident

a priori that for E < U the spectrum will be discrete, while for E > U
we have a continuous spectrum of doubly degenerate levels.

In the region < x < a we have SchrSdinger's equation

^'+(2mlhz)Ei/t = (22.1)

(the prime denotes differentiation with respect to x)
y
while in the region
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uix)

a

Fig. 1

outside the well

f+(2»/#)(£-UM = 0. (22.2)

For # = and a; = a the solutions of these equations must be continuous
together with their derivatives, while for x = ± oo the solution of equation

(22.2) must remain finite (for the discrete spectrum when E < U , it must
vanish).

For E < U , the solution of equation (22.2) which vanishes at infinity is

tfi = constant xe***, where k = V[(2mJh2)(U -E)]; (22.3)

the signs — and + in the exponent refer to the regions x > a and * <
respectively. The probability \ift\

2 of finding the particle decreases exponen-
tially in the region where E < U(x). Instead of the continuity of t// and tfj'

at the edge of the potential well, it is convenient to require the continuity of

iff and of its logarithmic derivative ip'/ift. Taking account of (22.3), we obtain

the boundary condition in the form

f/0 = =F*. (22.4)

We shall not pause here to determine the energy levels in a well of arbitrary

depth U (see Problem 2), and shall analyse fully only the limiting case of

infinitely high walls (U -> oo).

For U = oo, the motion takes place only between the points x = and
x = a and, as was pointed out in §18, the boundary condition at these points

must be

# = 0. (22.5)

(It is easy to see that this condition is also obtained from the general condition

(22.4). For, when U -> oo, we have also k -> oo and hence tf/'ji// -+ oo;

since ip' cannot become infinite, it follows that ift = 0.) We seek a solution

of equation (22.1) inside the well in the form

ift = c sin(foc+8), where k = </(2mEI&). (22.6)

The condition ^ = for x = gives S = 0, and then the same condition for
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x = a gives sin ka = 0, whence ka — rnr, n being a positive integer,! or

En = (7T
2^2/2ma2)»2, n = 1,2,3,.... (22.7)

This determines the energy levels of a particle in a potential well. The
normalised wave functions of the stationary states are

*l>n
= vWO sin(7rnxla). (22.8)

From these results we can immediately write down the energy levels for a

particle in a rectangular "potential box", i.e. for three-dimensional motion

in a field whose potential energy U = QforO < x < a
y <y <b,0 < z <c

and U = oo outside this region. In fact, these levels are given by the sums

ir
2h2 /n, 2 Wo2 «3

2 \
*w, = T-( ^-+1F+-T- ) (*» W2

'
n* = 1,2,3,...), (22.9)128 2m \ a2 62 c2 /

and the corresponding wave functions by the products

/ 8 Trnx 7rw2 rm3
0«i",««

= H~ sin—^^sin—^ysin

—

z. (22.10)
1 s

' V abc a b c

It may be noted that the energy Eq of the ground state is, by (22.7) or

(22.9), of the order of h2fml2 , where / is the linear dimension of the region

in which the particle moves. This result is in accordance with the uncertainty

relation ; when the uncertainty in the co-ordinate is ~ /, the uncertainty in

the momentum, and therefore the order of magnitude of the momentum
itself, is ~ hjl. The corresponding energy is ~ (hjl)2lm.

PROBLEMS
Problem 1. Determine the probability distribution for various values of the momentum

for the normal state of a particle in an infinitely deep square potential well.

Solution. The coefficients a(p) in the expansion of the function tp
t (22.8) in terms of the

eigenfunctions (21.10) of the momentum are

a(p) = tf/j*^ dx = sinf -* )«-&/*>»>* dx.

J -\/{iTah) J \a /

Calculating the integral and squaring its modulus, we obtain the required probability distri-

bution :

47rhza pa
|a(/>)|

2 = cos2—.
' ^ ' (p2a2-7r2^2

)
2 2H

Problem 2. Determine the energy levels for the potential well shown in Fig. 2.

Solution. The spectrum of energy values E < Uu which we shall consider, is discrete.

In the region * < the wave function is

= aefi't where kx
= ^/[{ImJh^U^-E)},

f For « = 0we should have = identically.



66 Schrodinger's Equation

u(x)

§22
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<A

Fig. 2

while in the region x > a

if, = c2e-"*
x

, where /c2 = V[(2m/h2)(U2-E)].

Inside the well (0 < x < a) we look for >p in the form

iff = c sin(foc+8), where k=^(2mE/h2
).

The condition of the continuity of ifi'/*fi at the edges of the well gives the equations

k cot 3 = kx = V[(2™lh2)U1-k2
], k cot(ka+S) = -k2

= -^/[(2m/h2)U2-k2
] y

or

sin 8 = kh/ViZmUJ, sin(&*+8) = -kh/V(2mU2).

Eliminating S, we obtain the transcendental equation

ka = rnr-sirr^kh/V(2m C/j)]- sivr1[khl^{2mU2)] (1)

(where n = 1, 2, 3, ... , and the values of the inverse sine are taken between and Jtt), whose
roots determine the energy levels E = k2hz/2m. For each n there is in general one root;
the values of n number the levels in order of increasing energy.

Since the argument of the inverse sine cannot exceed unity, it is clear that the values of k
can lie only in the range from to V(2mU1/h

2
). The left-hand side of equation (1) increases

monotonically with k, and the right-hand side decreases monotonically. Hence it is neces-
sary, for a root of equation (1) to exist, that for k = V(2mU1/h

i
) the right-hand side should

be less than the left-hand side. In particular, the inequality

ay/ilmU^fh >frr-sm-i</(UJUJ, (2)

which is obtained for « = 1, is the condition that at least one energy level exists in the well.
We see that for given and unequal Uu U2 there are always widths a of the well which are so
small that there is no discrete energy level. For t/j = U2 , the condition (2) is evidently always
satisfied.

For Ui = U2 = U (a symmetrical well), equation (1) reduces to

sm-1[hk/V(2mU )] = \{mr-hd). (3)

Introducing the variable £ = \ka, we obtain for odd n the equation

COS £ = ±yi, where y = {t\\a)^{2\mVJ)
y (4)

and those roots of this equation must be taken for which tan g > 0. For even n we obtain
the equation

sin $ = ±ygt (5)

and we must take those roots for which tan £ < 0. The roots of these two equations deter-
mine the energy levels E = 2£2h2/ma2

. The number of levels is finite when y ^ 0.
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In particular, for a shallow well in which U < h2/ma2
, we have y> 1 and equation (5)

has no root. Equation (4) has one root (with the upper sign on the right-hand side),
s = 1/y—l/2y3 . Thus the well contains only one energy level,

E £ U -(ma*l2HV)Uo*,

which is near the top of the well.

Problem 3. Determine the pressure exerted on the walls of a rectangular "potential
box" by a particle inside it.

Solution. The force on the the wall perpendicular to the #-axis is the mean value of the
derivative -dH/da of the Hamilton's function of the particle with respect to the length of
the box in the direction of the *-axis. The pressure is obtained by dividing this force by the
area be of the wall. According to the formula derived in §11, Problem, the required mean
value is found by differentiating the eigenvalue (22.9) of the energy. The result is

pU) _ -nZffin^jtnaZbc.

§23. The linear oscillator

Let us consider a particle executing small oscillations in one dimension
(what is called a linear oscillator). The potential energy of such a particle
is well known to be %mco2x2, where co is, in classical mechanics, the character-
istic (angular) frequency of the oscillations. Accordingly, the Hamiltonian
of the oscillator is

& =iP2/m+ \mco2x2. (23.1)

Since the potential energy becomes infinite for x = ±00, while its least
value (at x = 0) is zero, it is clear from general principles that the energy
spectrum of the oscillator is discrete and the energy values are positive.

Let us determine the energy levels of the oscillator, using the matrix
methodf. We shall start from the "equations of motion" in the form (19.3)

;

in this case they give

x+co2x = 0. (23.2)

In matrix form, this equation reads

(x)mn+<*>*xmn = 0.

For the matrix elements of the acceleration we have, according to (11.8),
(*)«m = lcomn(x)mn = —^mn^mn' Hence we obtain

(wWB
2-w2

)*mM = 0.

Hence it is evident that all the matrix elements xmn vanish except those for
which tomn = at or comn = - co. We number all the stationary states so that
the frequencies ± co correspond to transitions n ->w+ 1, i.e. con,r^i = ± co.

Then the only non-zero matrix elements are xn ,n±1 .

t This was done by Heisenberg in 1925, before Schrodinger's discovery of the wave equation.
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We shall suppose that the wave functions iftn are taken real. Since x is a real

quantity, all the matrix elements xmn are real. The Hermitian condition

(11.10) now shows that the matrix xmn is symmetrical:

To calculate the matrix elements of the co-ordinate which are different

from zero, we use the commutation rule

&x—x& = —thjm,

written in the matrix form

(xx)mn-(xx)mn = -(ihlm)8mn .

By the matrix multiplication rule (11.12) we hence have for m = n

i 2 ((*inlXnlXln—Xnlo»lnXm) = 2* 2 a>nlXnl
2 = —th/m.

I •

In this sum, only the terms with / = n ± 1 are different from zero, so that

we have

(Xn+l,nY-{n,Xn-lY = h/lmw. (23.3)

From this equation we deduce that the quantities (#n+i,n)* form an arith-

metic progression, which is unbounded above, but is certainly bounded

below, since it can contain only positive terms. Since we have as yet fixed

only the relative positions of the numbers n of the states, but not their abso-

lute values, we can arbitrarily choose the value of n corresponding to the first

(normal) state of the oscillator, and put this value equal to zero. Accordingly

x _! must be regarded as being zero identically, and the application of equa-

tions (23.3) with n = 0, 1, ... successively leads to the result

(*n,n-i)
2 = nh\2moi.

Thus we finally obtain the following expression for the matrix elements of

the co-ordinate which are different from zero:f

*«,«-! = *-l« = vW2»c). (23 -4)

The matrix of the operator tt is diagonal, and the matrix elements Hnn

are the required eigenvalues En of the energy of the oscillator. To calculate

them, we write

= \m[ S ioinlxnliwlnxln+oi
2 S xnixln]

=|wS(a>2+con?
2
)^n

2
.

In the sum over /, only the terms with /= n±\ are different from zero;

t We choose the indeterminate phases o„ (see the third footnote to §11) so as to obtain the plus

sign in front of the radical in all the matrix elements (23.4). Such a choice is always possible for a

matrix in which only those elements are different from zero which correspond to transitions between

states with adjacent numbers.
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substituting (23.4), we obtain

En = (n+$)ha>, n = 0,1,2 (23.5)

Thus the energy levels of the oscillator lie at equal intervals of hot from
one another. The energy of the normal state (« = 0) is \ha\ we call atten-
tion to the fact that it is not zero.

The result (23.5) can also be obtained by solving Schrodinger's equation.
For an oscillator, this has the form

dV 2w
~^-^<E-lmo^x^ = 0. (23.6)

Here it is convenient to introduce, instead of the co-ordinate x, the dimension-
less variable g by the relation

£ = ^{moijh)x. (23.7)

Then we have the equation

r+[(2Elko)-£2W = 0; (23.8)

here the prime denotes differentiation with respect to £.

For large £, we can neglect lEjhco in comparison with £
2

; the equation
«/," = ^tf, has the asymptotic integrals = c±«' (for differentiation of this
function gives ifi" = ^j, on neglecting terms of order less than that of the
term retained). Since the wave function fi must remain finite as g ->±oo,
the index must be taken with the minus sign. It is therefore natural to make
in equation (23.8) the substitution

^ = «"f8/2
*(£)• (23.9)

For the function x{£) we obtain the equation (with the notation {lEjhoi)— 1 =
2n; since we already know that E > 0, we have n > —

£)

x"-2&'+2»x = 0, (23.10)

where the function x must be finite for all finite £, and for $ -»± oo must not
tend to infinity more rapidly than every finite power of $ (in order that the
function tf> should tend to zero).

Such solutions of equation (23.10) exist only for positive integral (and
zero) values of n (see §a of the Mathematical Appendices); this gives the
eigenvalues (23.5) for the energy, which we know already. The solutions of
equation (23.10) corresponding to various integral values of n are x = con-
stantxHn(£), where Hn(g) are what are called Hermite polynomials; these
are polynomials of the nth degree in £, defined by the formula

Hn(€) = (-l)V>(<r**)/d£n. (23.11)
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Determining the constants so that the functions ijsn satisfy the normalisation

condition
oo

j ifrn
2(x) dx = 1,

—GO

we obtain (see (a. 7))

-r) on/, //
e-m^y^Hn(xV[mcolh]). (23.12)

Thus the wave function of the normal state is

O(«)
= (mwlTrh) 1^-™"**/™. (23.13)

It has no zeros for finite x, which is as it should be.

By calculating the integrals J iftn*pm€ d£, we can determine the matrix ele-

ments of the co-ordinate; this calculation leads, of course, to the same

values (23.4).

Finally, we shall show how the wave functions ipn may be calculated by the

matrix method. We notice that, in the matrices of the operators £±icox,

the only elements different from zero are

(x—tW)„_1>n = —{x+io}x)nn_x = —{^(liohn/m). (23.14)

Using the general formula- (11.11), and taking into account the fact that

ift-i = 0, we conclude that

(£—ia}x)tfi = 0.

After substituting the expression £ = —{(hjmjdldx, we obtain the equation

difijdx = —(mcolh)xif/Qt

whose normalised solution is (23.13). And, since

(£+ia)x)if/n_1 = (x+iu)x)n3t^_xtfjn = i^(2coknlm)iftn ,

we obtain the recurrence formula

tyn = y/(ml2o)hn)[—(hlm) d/dx+coxtyn^

i / a \ i d

V(2«)\ dg J V(2«) d£

when this is applied n times to the function (23.13), we obtain the expression

(23.12) for the normalised functions ipn -

PROBLEMS
Problem 1. Determine the probability distribution of the various values of the momentum

for an oscillator.

Solution. Instead of expanding the wave function of the stationary state in terms of the

eigenfunctions of momentum, it is simpler in the case of the oscillator to start directly from
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1

Schrodinger's equation in the "p representation". Substituting in (23.1) the co-ordinate
operator £ = ihdjdp (15.12), we obtain the Hamiltonian in the p representation,

GER'i

d2a(/>) 2

dp2 rnuPW'

The corresponding Schrodinger's equation Ba(p) — Ea(p) for the wave function a(p) in
the p representation is

(
E-typ)= °-

This equation is of exactly the same form as (23.6); hence its solutions can be written down
at once by analogy with (23.12) (replacing xVitno/h) in this formula by p/V(mtoft)). Thus
we find the required probability distribution to be

2nn\y{Trma>n)

Problem 2. Determine the lower limit of the possible values of the energy of an oscillator,
using the uncertainty relation (16.8a).

Solution. We have for the mean value of the energy of the oscillator

or, using the relation (16.8a),

E > (Ap)2/2m+ma)2h2/8(Ap)\

On determining the minimum value of this expression (regarded as a function of (Ap) 2
), we

find the lower limit of the mean values of the energy, and therefore that of all possible values

:

E>ihco.

Problem 3. Determine the energy levels for a particle moving in a field of potential enerev
(Fig. 3)

U(x) = A(e-%ax— 2e~ax)
(P. M. Morse).

'

Solution. The spectrum of positive eigenvalues of the energy is continuous (and the levels
are not degenerate), while the spectrum of negative eigenvalues is discrete.

Schrodinger's equation reads

We introduce a new variable

2V(2mA)
£ = e-ax

Cf.k
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(taking values from to oo) and the notation (we consider the discrete spectrum, so that

E<0)
s = ^(—2mE)laLh, n = V(2mA)/*h-(s+$). (1)

Schrodinger's equation then takes the form

rv,+ (-<
n+s+$ s

2

> 0.

As £ -> oo, the function $ behaves asymptotically as e ± if, while as £ -v it is proportional to

£±*. From considerations of finiteness we must choose the solution which behaves as e~it

as £ -> oo and as £s as £ -» 0. We make the substitution

= e-t'Hsz»($)

and obtain for w the equation

£w"+(2*+ 1-|)«>'+««; = 0, (2)

which has to be solved with the conditions that w is finite as £ -> 0, while as £ -> oo, w tends

to infinity not more rapidly than every finite power of £. Equation (2) is the equation for a

confluent hypergeometric function (see §d of the Mathematical Appendices)

:

to = F(-n,2s+l
y g).

A solution satisfying the required conditions is obtained for non-negative integral n (when
the function F reduces to a polynomial). According to the definitions (1), we thus obtain

for the energy levels the values

-En = A^\
a.h

.(»+*)]'
V(2mA)

where n takes positive integral values from zero to the greatest value for which \/(2mA)[a.h >
n-\- J (so that the parameter s is positive in accordance with its definition). Thus the discrete

spectrum contains only a limited number of levels. If V(2mA)JctH < %, there is no discrete

spectrum at all.

Problem 4. The same as Problem 3, but with U = — L7 /cosh2 ax (Fig. 4).

Solution. The spectrum of positive eigenvalues of the energy is continuous, while that of

negative values is discrete ; we shall consider the latter. Schrodinger's equation is

dV 2m/_L+_(£+-
cbc2 h2 \ cosb^aa:.

Up \

sh2aa: /
0.
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We put £ = tanh auc and use the notation

e = V(-2w£)//wc, 2mC/ /a2^2 = *(s+l),

5[('-p?]*[*t"-ii>- 1

This is the equation of the associated Legendre polynomials; it can be brought to hyper-
geometric form by making the substitution «/- = (1— £

2
)
e/2 w(£) and temporarily changing

the variable to « = J(l— £):

M(l-ttK' + (e+l)(l-2z/)«;'-(e -s)(e+ s+i)a> = 0.

The solution finite for £ = 1 (i.e. for * = oo) is

If tfi remains finite for £ = — 1 (i.e. for x = — oo), we must have e—s = —n, where
n = 0, 1, 2, ...; then F is a polynomial of degree n, which is finite for f = —1.
Thus the energy levels are determined by s— € = «, or

/*
2
<x
2 r .... //. 8mUnWC)8m

There is a finite number of levels, determined by the condition e > 0, i.e. « < $.

§24. Motion in a homogeneous field

Let us consider the motion of a particle in a homogeneous external field.

We take the direction of the field as the axis of x; let F be the force acting
on the particle in this field. In an electric field of intensity E, this force is

F = eE, where e is the charge on the particle.

The potential energy of the particle in the homogeneous field is of the
form U = —Fx+constant; choosing the constant so that U = for x = 0,
we have U = —Fx. Schrodinger's equation for this problem is

d2
if,ldx

2+(2m/h2)(E+Fx)if, = 0. (24.1)

Since U tends to + oo as x -> — oo, and vice versa, it is clear that the energy
levels form a continuous spectrum occupying the whole range of energy
values £from -co to +oo. None of these eigenvalues is degenerate, and
they correspond to motion which is finite towards x = — oo and infinite to-
wards X = +00.

Instead of the co-ordinate x, we introduce the dimensionless variable

f = (x+ElF)(2mF/&)V*. (24.2)

Equation (24.1) then takes the form

*"+# = 0. (24.3)
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This equation does not contain the energy parameter. Hence, if we obtain a

solution of it which satisfies the necessary conditions of finiteness, we at

once have the eigenfunction for arbitrary values of the energy.

The solution of equation (24.3) which is finite for all x has the form (see

§b of the Mathematical Appendices)

m = A®(-£)
t (24.4)

where

<D(£) = cos(£tt3+«!) du
\/tt Jv

is called the Airy function, while A is a normalisation factor which we shall

determine below.

As | -> — oo, the function ifj(g) tends exponentially to zero. The asymp-

totic expression which determines «/r(|) for large negative values of £ is (see

(b.4))

'A(a
~2J^

eXp[" fI ^|3/2] ' (24 "5)

For large positive values of £, the asymptotic expression for ?/r(|) is (see

(b.5))t

</,(£) = AiJT^> sin(f^/2+|7r). (24.6)

Using the general rule (5.4) for the normalisation of eigenfunctions of a

continuous spectrum, let us reduce the function (24.4) to the form normalised

by the delta function of energy, for which

jW(f) d* = 8(E'-E). (24.7)

In §21 we gave a simple method of determining the normalisation coefficient

by means of the asymptotic expression for the wave functions. Following

this method, we represent the function (24.6) as the sum of two travelling

waves

:

0(0 a^^-1 /4exp(f[f^/2-|7r])+|^-1 /4 exp(-t[f^/2-i7r]).

The probability current density v |^|
2

, calculated from each of these two terms,

must be \\2rnh:

«/[2(E+Fx)ltn](AI2pi*)* = A\2hFyi*l4m*l* = 1/2^,

whence we find

(2m)1 /»

A =——-
. (24.8)

^1/2^1/6^2/3

f It may be noted, by way of anticipation, that the asymptotic expressions (24.5) and (24.6) cor-

respond to the quasi-classical expressions (47.1) and (47.4a) for the wave function.
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PROBLEM
Determine the wave functions in thep representation for a particle in a homogeneous field.

Solution. The Hamiltonian operator in the p representation is

fl = p*/2m-ihF d/dp,

so that Schrodinger's equation for the wave function a(p) has the form

da fp% \
-ihF—+[-—E)a = Q.

dp \2m J

Solving this equation, we find the required functions

aE(p) = (277-^F)-i/2^'/ft^^P-P
3
/6m).

These functions are normalised by the condition

jaE*(p)a E{p)dp = S(E'-E).

§25. The transmission coefficient

Let us consider the motion of particles in a field of the type shown in

Fig. 5 : U(x) increases monotonically from one constant limit
(U = as

x -> — oo) to another (U = UQ as x -> +oo). According to classical mech-
anics, a particle of energy E < U moving in such a field from left to right,

on reaching such a "potential wall", is "reflected" from it, and begins to move
in the opposite direction ; if, however, E > U , the particle continues to

move in its original direction, though with diminished velocity. In quantum
mechanics, a new phenomenon appears : even for E > UQ , the particle may
be "reflected" from the potential wall. The probability of reflection must in

principle be calculated as follows.

Fig. 5

Let the particle be moving from left to right. For large positive values of

x, the wave function must describe a particle which has passed "above the
wall" and is moving in the positive direction of x, i.e. it must have the asymp-
totic form

for * -> oo, « Aeik*x
, where k2 = (l/h)y/[2m(E— UQ)] (25.1)

and A is a constant. To find the solution of Schrodinger's equation which
satisfies this boundary condition, we calculate the asymptotic expression for
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x -> — oo ; it is a linear combination of the two solutions of the equation of
free motion, i.e. it has the form

for x -» - oo, tjt « eile*x+Be-ik*x
t where ^ = ^/(2mE)/h. (25.2)

The first term corresponds to a particle incident on the "wall" (we suppose
if> normalised so that the coefficient of this term is unity) ; the second term
represents a particle reflected from the "wall". The probability current
density in the incident wave is kly in the reflected wave k^B] 2

, and in the
transmitted wave £2 I^I

2
- We define the transmission coefficient D of the par-

ticle as the ratio of the probability current density in the transmitted wave
to that in the incident wave

:

D = (*A)M». (25.3)

Similarly we can define the reflection coefficient R as the ratio of the density
in the reflected wave to that in the incident wave. Evidently R = 1—D:

R = \B\ 2 = l-(k2lk1)\A\
2

(25.4)

(this relation between A and B is automatically satisfied).

If the particle moves from left to right with energy E < U , then k2 is

purely imaginary, and the wave function decreases exponentially as # -» + oo.

The reflected current is equal to the incident one, i.e. we have "total reflec-

tion" of the particle from the potential wall. We emphasise, however, that

in this case the probability of finding the particle in the region where E < U
is still different from zero, though it diminishes rapidly as x increases.

In the general case of an arbitrary stationary state (with energy E > C/o),

the asymptotic form of the wave function is given, both for x ->— oo and for

x -> + oo, by a sum of waves propagated in each direction:

di = A\eiklX+B\erilc ^x for x -> — oo,

(25.5)

*fi = A2,eik *x +B2firik *x for x -> +oo.

Since these expressions are asymptotic forms of the same solution of a linear

differential equation, there must be a linear relation between the coefficients

Ai, B± and A2, B%. Let A% = a.Ai+f$B\, where a, j8 are constants (in general

complex) which depend on the specific form of the field U(x). The corres-

ponding relation for B2 can then be written down from the fact that Schro-
dinger's equation is real. This shows that, if ip is a solution of a given

Schrodinger's equation, the complex conjugate function iff* is also a solution.

The asymptotic forms

«/»* = A1*e~ik ^x+ B±*eiklX for *-^— 00,

tjj# = A2
*e-ik2x+B2*eik *x for *->+oo

differ from (25.5) only in the nomenclature of the constant coefficients; we
therefore have B2

* = aBi*+fiAi* or B2 = ol*Bi+P*Ai. Thus the coefficients
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in (25.5) are related by equations of the form

A2 = o^i+jSBi, j?2 = jS*^i+a*#i. (25.6)

The condition of constant probability current along the jc-axis leads to

the relation

k^A^-^) = k*{\A2\*-\B2\%

Expressing A2 , B2 in terms of Ai, B\ by (25.6), we find

|a| 2 -|j3|
2 = hlk2 . (25.7)

Using the relation (25.6), we can show, in particular, that the reflection

coefficients are equal (for a given energy E > Uq) for particles moving in the

positive and negative directions of the x-axis ; the former case corresponds to

putting B2 = in (25.5), and the latter case to A\ = 0. The corresponding

reflection coefficients are

Ri = |#i/^i|2 = |£*/a*|2,

R2 = \A2jB2 \* = |)3/a*|2,

whence it is clear that R± = R2 .

PROBLEMS
Problem 1. Determine the reflection coefficient of a particle from a rectangular potential

wall (Fig. 6) ; the energy of the particle E > U .

U(x)

Fig. 6

Solution. Throughout the region x > 0, the wave function has the form (25.1), while in
the region x < its form is (25.2). The constants A and B are determined from the condi-
tion that i/i and dift/dx are continuous at * = :

1+B=A, kx{\-B) =M,
whence

A = 2kxi{kx+kt\ B = {kx-k2)l{kx+k2).

The reflection coefficient f is (25.4)

R =
/v-^y = /p±-p2

\*

\kx+kj Kpx+pi)'

For E = U (k3 = 0), R becomes unity, while for E -> oo it tends to zero as (C7 /4J?)2 .

f In the limiting case of classical mechanics, the reflection coefficient must become zero. The
expression obtained here, however, does not contain the quantum constant at all. This apparent
contradiction is explained as follows. The classical limiting case is that in which the de Broglie
wavelength of the particle A ~ hip is small in comparison with the characteristic dimensions of the
problem, i.e. the distances over which the field U(x) changes noticeably. In the schematic example
considered, however, this distance is zero (at the point x = 0), so that the passage to the limit cannot
be effected.
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Problem 2. Determine the transmission coefficient fora rectangular potential barrier (Fig. 7).

U„

y(x)

Fig. 7

Solution. Let E be greater than U , and suppose that the incident particle is moving from
left to right. Then we have for the wave function in the different regions expressions of the
form

for * < 0, iff = eiki
x+Ae-ik

i
x

,

for0<x<a,ip= Beik*
x+B'e-iki

x
,

for * > a, ifi = Ceiki
x

(on the side x > a there can be only the transmitted wave, propagated in the positive direc-
tion of x). The constants A, B, B' and C are determined from the conditions of continuity
of tfi and dtfi/dx at the points x = and a. The transmission coefficient is determined as

D = ^|C| 2
/^i = |C| 2

. On calculating this, we obtain

D =
lf\i f\a

For E < U , &a is a purely imaginary quantity; the corresponding expression for D is

obtained by replacing k% by ik2 , where Hkz
= \/[2m(U — E)]:

D =

lantity

;

= V[2m(

t/Jj /c2

(&!
2+/c2

2
)
2 sinh«fl#c8+4ife1

af2a
'

Problem 3. Determine the reflection coefficient for a potential wall defined by the formula
U(x) = J7 /(l +e~ax) (Fig. 5); the energy of the particle is E > U .

Solution. Schrodinger's equation is

d2
if/ 2m/d2
«/r 2m/ U \—-+—[E °—U =

d*2 h2\ l+e-^J

We have to find a solution which, as x -> +oo, has the form

iff = constant x eik*
x

.

We introduce a new variable

£ = — e~aX

(which takes values from -co to 0), and seek a solution of the form

= £-**,/««;(£),

where w(£) tends to a constant as £ -> (i.e., as x -> co). For w(£) we find an equation of

hypergeometric type:

£(l-£)w"+(l-2ikjK)(l-0w'^k2*-k1*)wl«? = 0,
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which has as its solution the hypergeometric function

w = F(i[^1-^2]/a,-^1+A2]/a,-2^2/a+l, $)

(we omit a constant factor). As £ -> 0, this function tends to 1, i.e. it satisfies the condition
imposed.

The asymptotic form of the function ^ as £ -* — oo (i.e. x -» — oo) isf

if, « |-^,/«[C1(-|)
i(V*;i)/»+C

2(-^fci+A:
i>/a] = (-l)-**./°[C1e

<*i*+Cae-«*i
a!

],

where

r(-2*
1/a)r(-2tfe2/a+ 1)C1

=

c, =

r(_z-(^1+^)/a)r(-^1+A2)/a+l)

T(2ife
1/a)r(-2«fe2/a+l)

r(^1
-^

2)/a)r(t(^-^2)/a+
1)*

The required reflection coefficient is R = IC2/CJ 2
; on calculating it by means of the well-

known formulae

we have

T(x+1) =xT(x), r(*)r(l-*) =7r/sin7r^,

r =
/sinhfrrfo-fej/tt] \ 2

Vsinh[7r(^1+^2)/a] /

For E = U (&2 = 0), i? becomes unity, while for E -> co it tends to zero as

7rUn \ 2 2m/7rU \ z 2m
e-i*\/(2mE)/ah,

In the limiting case of classical mechanics, R becomes zero, as it should.

Problem 4. Determine the transmission coefficient for a potential barrier denned by the
formula

U(x) = UQlcosh
2ctx

(Fig. 8) ; the energy of the particle is E < UQ .

U(x)

Fig. 8

Solution. The Schrodinger's equation is the same as that obtained in the solution of
Problem 4, §23 ; it is necessary merely to alter the sign of Uo and to regard the energy E
now as positive. A similar calculation gives the solution

4> = (l~P)-ik'2"F[-iklx-s, -ik/x+s+1, -ik/a+ !,&!-£)], (1)

f See formula (e.6), in each of whose two terms we must take only the first term of the expansion
i.e. replace the hypergeometric functions of 1/a by unity.
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where

$ = tanh cox, k = y/{lmE)\%,

SmU -

-i-»A<-m
This solution satisfies the condition that, as x -* oo (i.e. as $ -> 1, (1 — f) *» 2e~x), the wave
function should include only the transmitted wave (~e*fcz

). The asymptotic form of the
wave function as x -> — oo (£ -* ~ 1) is found by transforming the hypergeometric function
with the aid of formula (e.7)

:

rmm - ik) rr- ik)va - ik)
j, „ e-ikx

v ' v
L +eikx 1 L± i . (2)

T(-s)T(l+s) T(-ik-s)r(-ik+s+l)
K J

Talcing the squared modulus of the ratio of coefficients in this function, we obtain the follow-

ing expression for the transmission coefficient D = 1 — R

:

sinh2(7r£/a)

(if 8mt/o/£2<x2 <l), or

D =

sinh2(7rfc/a)

+

cos2[£tt V( 1-8mU /h2oi.
2
)]

sinh2(7r£/a)

sinh2(7r£/a)+cosh2|>- V(8m£y#2a2- 1)]

(if 8tnUo/h2 ofi > 1). The first of these formulae holds also for the case Uo < 0, i.e. when
the particle is passing over a potential well instead of a potential barrier. It is interesting to

note that in that case D = 1 if 1 +8m\Uo\lfr2a? = (2«+ l)2 ; thus, for certain values of the
depth | Uq\ of the well, particles passing over it are not reflected. This is evident from equation
(2), where the term in e~ikx vanishes for positive integral s.



CHAPTER IV

ANGULAR MOMENTUM

§26. Angular momentum
In §15, to derive the law of conservation of momentum, we have made use
of the homogeneity of space relative to a closed system of particles. Besides
its homogeneity, space has also the property of isotropy: all directions in it

are equivalent. Hence the Hamiltonian of a closed system cannot change
when the system rotates as a whole through an arbitrary angle about an
arbitrary axis. It is sufficient, as in §15, to require the fulfilment of this con-
dition for an infinitely small rotation.

Let 8<p be the vector of an infinitely small rotation, equal in magnitude
to the angle

8<f>
of the rotation and directed along the axis about which the

rotation takes place. The changes Sra (in the radius vectors ra of the par-
ticles) in such a rotation are well known to be

8r = 8<p x ra .

An arbitrary function j/rfo, r2 , ... ) is thereby transformed into the function

^1+8^,^+8^,...) = «A(r1,r2,...)+S8r . V a^

= #*i» r2, ... )+S 8<p x ra . Va^

= (l+8<p.SraxVa)0(r1,r2,...).

The expression

l+8<p.Sra xV«

can be regarded as the "operator of an infinitely small rotation". The fact

that an infinitely small rotation does not alter the Hamiltonian of the system
is expressed (see §15) by the commutability of the "rotation operator" with
the operator i?. Since the operator of multiplication by unity commutes
with any operator, while 8<p is a constant vector, this condition reduces to the
relation

(2 ra x V«)#-#(2 ra x V a) = 0, (26.1)

which expresses a certain law of conservation.

The quantity whose conservation for a closed system follows from the
property of isotropy of space is the angular momentum of the system. Thus
the operator Sra x V a must correspond exactly, apart from a constant factor,
to the total angular momentum of the system, and each of the terms ra x V a
of this sum corresponds to the angular momentum of an individual particle.

81
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The coefficient of proportionality must be put equal to —ih\ this follows

immediately, because then the expression for the angular momentum operator

of a particle is —ihrx V = rxp and corresponds exactly to the familiar

classical expression rxp. Henceforward we shall always use the angular

momentum measured in units of h. The angular momentum operator of a

particle, so defined, will be denoted by 1, and that of the whole system by L.

Thus we have for the angular momentum component operators of a particle

the expressions

htx = ypz—zpy, hty = zpx—xpz , hlz = xpy—ypx . (26.2)

For a system which is in an external field, the angular momentum is in

general not conserved. However, it may still be conserved if the field has a

certain symmetry. Thus, if the system is in a centrally symmetric field, all

directions in space at the centre are equivalent, and hence the angularmomen-
tum about this centre will be conserved. Similarly, in an axially symmetric
field, the component of angular momentum along the axis of symmetry is

conserved. All these conservation laws holding in classical mechanics are

valid in quantum mechanics also.

In a system where angular momentum is not conserved, it does not have

definite values in the stationary states. In such cases the mean value of the

angular momentum in a given stationary state is sometimes of interest. It is

easily seen that, in any non-degenerate stationary state, the mean value of the

angular momentum is zero. For, when the sign of the time is changed, the

energy does not alter, and, since only one stationary state corresponds to a

given energy level, it follows that when t is changed into — t the state of the

system must remain the same. This means that the mean values of all

quantities, and in particular that of the angular momentum, must remain

unchanged. But when the sign of the time is changed, so is that of the angular

momentum, and we have L = — L, whence it follows that L = 0. The same
result can be obtained by starting from the mathematical definition of the

mean value L as being the integral of i/i*Lift. The wave functions of non-
degenerate states are real (see the end of §18). Hence the expression

L = —ih
J
0(Sro x V o)0d#

is purely imaginary, and since L must, of course, be real, it is evident that

L=0.
Let us derive the rules for commutation of the angularmomentum operators

with those of co-ordinates and linear momenta. By means of the relations

(16.2) we easily find

{!x,x} = 0, {lx,y} = tar, {tx,z} = —iy,

tfv»3'}= » &»*}=**» {/„*}= —tar,
\ (26.3)

{/„*} = 0, {tz,x} = iy, {tz,y} = -ix.
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For instance,

Ly-yL = (m)(yh-4v)y-y(yfa-4v)(W)

= -(zlh){$v,y} = iz-

All the relations (26.3) can be written in tensor form as follows:

{h,xk} =temxu (26.4)

where eiU is the antisymmetric unit tensor of rank three,f and summation is

implied over those suffixes which appear twice (called dummy suffixes).
It is easily seen that a similar commutation rule holds for the angular

momentum and linear momentum operators

:

{4h) = i*ikipi- (26.5)

By means of these formulae, it is easy to find the rules for commutation of
the operators !x , ty , lz with one another. We have

HUv-tJx) = L(zfix-xPz)-(zpx-x$g)L

= (lxZ-zL)Px—x(tx}z—$Jx)

= —iyfrx+ixpy = ihtz .

{lvJz}=iL {tzJx}=ilv, {/«,/,}=«/„ (26.6)

Thus

or

{4,4} =**«,/,. (26.7)

Exactly the same relations hold for the operators Lx,Ly,L z of the total
angular momentum of the system. For, since the angular momentum oper-
ators of different individual particles commute, we have, for instance,

5'«»|''«— S/asS/ay = 2>{hvhz—hzhv) = »S tax.

Thus

{t vt lz}=iLx ,
{Lz,lx} =ity ,

{Lx,Ly}=iLz . (26.8)

The relations (26.8) show that the three components of the angular momen-
tum cannot simultaneously have definite values (except in the case where all

three components simultaneously vanish: see below). In this respect the
angular momentum is fundamentally different from the linear momentum,
whose three components can simultaneously have definite values.

f The antisymmetric unit tensor of rank three, em (also called the unit axial tensor), is denned as a
tensor antisymmetric in all three suffixes, with enz = 1 . It is evident that, of its 27 components, only 6
are not zero, namely those in which the suffixes i, k, I form some permutation of 1, 2, 3. Such a com-
ponent is +1 if the permutation i, k, I is obtained from 1, 2, 3 by an even number of transpositions
ot pairs of figures, and is - 1 if the number of transpositions is odd. Clearly emeikm = 2Sim
emenci = 6. The components of the vector C = AxB which is the vector product of the two vectorsA and B can be written by means of the tensor em in the form

c, =
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From the operators Lx , L yy L z we can form the operator Lx
2+L y

2+L*,
which can be regarded as the operator of the square of the modulus of the

angular momentum vector, and which we denote by L2
:

L* = Lf+Lf+L*. (26.9)

This operator commutes with each of the operators Lx ,L yi L e :

{L\tx}=0, {L*,Z„}=0, {L*,4}=0. (26.10)

Using (26.8), we have

{lx\lz} =lx{lx,lz}+{Lx,tz}lx

= l^Lgljy+LyLgc),

{Ly
t
Lg} = l^Lgljy+ LyL;,)),

{L,\L.} =o.

Adding these equations, we have {L2
, L z)

= 0. Physically, the relations

(26.10) mean that the square of the angular momentum, i.e. its modulus, can

have a definite value at the same time as one of its components.

Instead of the operators Lx , Ly it is often more convenient to use the

complex combinations

L+ = Lx+iLy, £- = Lx—iLy. (26.11)

It is easily verified by direct calculation using (26.8) that the following

commutation rules hold

:

{L+ , I-} = 2tz ,
{Lz , L+} =L + ,

{lz,l-}=-l- t

and it is also not difficult to see that

L2 = t+t-+tz*-lz

= L-L++Lz*+l*. (26.13)

Finally, we shall give some frequently used expressions for the angular

momentum operator of a single particle in spherical polar co-ordinates.

Defining the latter by means of the usual relations

* = r sin 8 cos
<f>, y = r sin 6 sin

<f>,
z = r cos 0,

we have after a simple calculation

U = -A (26.14)

/. = e±**[ + — +* cot 9— ). (26.15)
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Substitution in (26.13) gives the squared angular momentum operator of the
particle

:

12 r 1 ^ 1 d f d \i

It should be noticed that this is, apart from a factor, the angular part of the
Laplacian operator.

§27. Eigenvalues of the angular momentum
In order to determine the eigenvalues of the component, in some direction,

of the angular momentum of a particle, it is convenient to use the expression
for its operator in spherical polar co-ordinates, taking the direction in question
as the polar axis. According to formula (26.14), the equation ty = 1$ can
be written in the form

-i ty/ty = Irf. (27.1)
Its solution is

*!> = /(r,0)A*

where/(r, 0) is an arbitrary function of r and 0. If the function $ is to be single-
valued, it must be periodic in

<f>,
with period 2tt. Hence we findf

h = m, where m = 0, ±1,± 2, ...

.

(27.2)

Thus the eigenvalues lz are the positive and negative integers, including
zero. The factor depending on <j>, which characterises the eigenfunctions of
the operator t„ is denoted by

Qn(t) = (27r)-W»* (27.3)

These functions are normalised so that

j ®m*(<t>)®m<<!>) d0 = hmm'. (27.4)

The eigenvalues of the ^-component of the total angular momentum of the
system are evidently also equal to the positive and negative integers:

Ls = M, whereM = 0,±1, ±2, ... (27.5)

(this follows at once from the fact that the operator Lz is equal to the sum of
the commuting operators 4 for the individual particles).

Since the direction of the ^-axis is in no way distinctive, it is clear that the
same result is obtained for Lx, iy and in general for the component of the
angular momentum in any direction: they can all take integral values only.
At first sight this result may appear paradoxical, particularly if we apply
it to two directions infinitely close to each other. In fact, however, it must

i

f J
hVUS

l°
mary no

r
tation

.

fo
,

r the eigenvalues of the angular momentum component is m, whichalso denotes the mass of a particle, but this should not lead to any confusion.
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be remembered that the only common eigenfunction of the operators

Lx , Ly , L z corresponds to the simultaneous values

Lx = L y
= Lz = u;

in this case the angular momentum vector is zero, and consequently so is its

projection upon any direction. If even one of the eigenvalues L x,L y,L s is

not zero, the operators L x,L y,L e have no common eigenfunctions. In other

words, there is no state in which two or three of the angular momentum

components in different directions simultaneously have definite values differ-

ent from zero, so that we can say only that one of them is integral.

The stationary states of a system which differ only in the value of L z have

the same energy; this follows from general considerations, based on the

fact that the direction of the sr-axis is in no way distinctive. Thus the

energy levels of a system whose angular momentum is conserved (and is not

zero) are always degenerate,f
Let us now look for the eigenvalues of the square L2 of the angular momen-

tum. We shall show how these values may be found, starting from the

commutation conditions (26.8) only. We denote by
\Jjm the wave functions

of the stationary states belonging to one degenerate energy level and distin-

guished by the value of L z
= M. Besides the energy, the square L2 of the

angular momentum also has a (single) definite value in these states. J

First of all, we note that since the difference

L2-42 = £*2+

V

is equal to the operator of the essentially positive physical quantity Lx
2+L y

2
,

it follows that, for a given value of the squared angular momentum L2 and

any possible eigenvalue of the quantity L s , the inequality L2 ^ Ls
2

,
or

- VL2 < Lz < + VL2
,

(27.6)

must hold. Thus the possible values of L z (for a given L2
) are bounded by

certain upper and lower limits; we denote by L the integer corresponding

to the greatest value of \L Z \.

Next, by applying the operator L ZL± to the eigenfunction j/tm of the

operator Lz and using the commutation rule {L z , £±} = ±L± (26.12), we

obtain
LzLJjM = {M± l)£±0a*.

t This is a particular case of the general theorem, mentioned in §10, which states that the levels

are degenerate when two or more conserved quantities exist whose operators do not commute. Here

the components of the angular momentum are such quantities.

t Here it is supposed that there is no additional degeneracy leading to the same value of the energy

for different values of the squared angular momentum. This is true for a discrete spectrum (except

for the case of what is called accidental degeneracy in a Coulomb field; see §36) and in general untrue

for the energy levels of a continuous spectrum. However, even when such additional degeneracy is

present, we can always choose the eigenfunctions so that they correspond to states with definite values

of L2
, and then we can choose from these the states with the same values ofE and L2

. This is mathe-

matically expressed by the fact that the matrices of commuting operators can always be simultaneously

brought into diagonal form. In what follows we shall, in such cases, speak, for the sake of brevity, as

if there were no additional degeneracy, bearing in mind that the results obtained do not in fact depend

on this assumption, by what we have just said.
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Hence we see that the function Lj,M is (apart from a normalisation constant)
the eigenfunction corresponding to the value M± 1 of the quantity Lz

- we
can write

'

fa+i = constantxL+fa, ^m-i = constant x Z_0M . (27.7)

If we put M = L in the first of these equations, we must have identically

£-4l = 0, (27.8)

since there is by definition no state M > L. Applying the operator L-
to this equation and using the relation (26.13), we obtain

LXrfL = (Ifi-lf-L^ = o.

Since, however, the fa are common eigenfunctions of the operators L2 and
L z , we have

so that the equation found above gives

L2=Z(£+1). (279)

Formula (27.9) determines the required eigenvalues of the square of the
angular momentum; the number L takes all positive integral values, including
zero. For a given value of Z, the component L z

= M of the angular momen-
tum can take the values

M = L,L-1,...,-L, (27.10)

i.e. 2L+ 1 different values in all. The energy level corresponding to the
angular momentumf L thus has (2L+ l)-fold degeneracy. A state with
angular momentum L = (when all three components are also zero) is not
degenerate; we notice that the wave function of such a state is spherically
symmetric. This follows from the mere fact that, when acted on by the
angular momentum operator, it becomes zero, i.e. it is unchanged as a result
of any infinitely small rotation.

For the angular momentum of a single particle we write formula (27.9) in
the form

I
2 ='('+!)> (27.11)

i.e. we denote the angular momentum of an individual particle by the small
letter /.

J

Let us calculate the matrix elements of the quantities Lx and Ly in a
representation in which Lz and V, as well as the energy, are diagonal
(M. Born, W. Heisenberg and P. Jordan 1926). First of all, we note that,
since the operators Lx and Ly commute with the operator 8, their matrices
are diagonal with respect to the energy, i.e. all matrix elements for transitions

t We shall often, for the sake of brevity, and in accordance with custom, speak of the "angularmomentum L of a system, understanding by this a momentum whose greatest possible component
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between states of different energy (and different angular momentum L)

are zero. Thus it is sufficient to consider the matrix elements for transitions

within a group of states with different values of M, corresponding to a single

degenerate energy level.

It is seen from formulae (27.7) that, in the matrices of the operators

L+ and L-, only those elements are different from zero which correspond

to transitions M+ 1 ->M and M— 1 ->M respectively. Taking this into

account, we find the diagonal matrix elements on both sides of the equation

(26.13), obtainingf

L(L+1) = (L+)m,M-i(L-)m-i,m+M*-M.

Noticing that, since the operators Lx and L y are Hermitian,

(L-)m-1,M = (L+)*m,m-i>

we can rewrite this equation in the form

\(L+)m,m-i\
2 = L(L+1)-M(M-1)

= (L-M+1)(L+M),

whencej

(L+)m,m-i = (L-)m-i,m

= V[(L+M)(L-M+1)]. (27.12)

Hence we have for the non-zero matrix elements of the quantities L x and L y

themselves

(Lx)m,m-i = (Lx)M-i,m = * V[(L+M)(L-M+ 1)],

{Lv)m,m-x = -(Ly)M-i,M = -VV[(L+M)(L-M+1)].

In the corresponding formulae for the angular momentum of a particle, we
must write /, m instead of L, M.

§28. Eigenfunctions of the angular momentum

The wave function of a particle is not completely determined when the

values of l
2 and lz are prescribed. This is seen from the fact that the expres-

sions for the operators of these quantities in spherical polar co-ordinates

contain only the angles 6 and
<f>,

so that their eigenfunctions can contain an

arbitrary factor depending on r. We shall here consider only the angular

part of the wave function which characterises the eigenfunctions of the

f In the symbols for the matrix elements, we omit for brevity all suffixes with respect to which

they are diagonal (including L).

% The choice of sign in this formula corresponds to the choice of the phase factors in the eigenfunc-

tions of the angular momentum.



§28 Eigenfunctions of the angular momentum 89

angular momentum, and denote this by Y^fi, with the normalisation
condition

J|rj»do«i,

where do = sin 6 ddd<f> is an element of solid angle.
We shall see that the problem of determining the common eigenfunctions

of the operators i2 and ls admits of separation of the variables B and
<f> and

these functions can be sought in the form

Ylm = «Ufl©,„(0), (28.1)

where Om(<f>) are the eigenfunctions of the operator /3 , which are given by
formula (27.3). Since the functions Om are already normalised by the condi-
tion (27.4), the 0,m must be normalised by the condition

V

J|0,w |

2 sin0d0 = l.
(28.2)

o

The functions Ylm with different / or m are automatically orthogonal:

/ /
YVm* Yim sin ddd<f> = M..', (28.3)

o o

as being the eigenfunctions of angular momentum operators corresponding
to different eigenvalues. The functions OJfl separately are themselves
orthogonal (see (27.4)), as being the eigenfunctions of the operator le cor-
responding to different eigenvalues m of this operator. The functions (0)
are not themselves eigenfunctions of any of the angular momentum operators •

they are mutually orthogonal for different /, but not for different m.
The most direct method of calculating the required functions is by directly

solving the problem of finding the eigenfunctions of the operator I2 written
in spherical polar co-ordinates (formula (26.16)). The equation f2<£ = IV is

Substituting in this equation the form (28.1) for 0, we obtain for the function
&im the equation

1 d /. d0Zw \ m2

5n7SV
Sm'^rJ-^ -+/(/+1) - - °- (28.4)

This equation is well known in the theory of spherical harmonics. It has
solutions satisfying the conditions of finiteness and single-valuedness for
positive mtegral values of / >

|

m |, in agreement with the eigenvalues of the
angular momentum obtained above by the matrix method. The correspond-
ing solutions are what are called associated Legendre polynomials P?(cos 6)
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(see §c of the Mathematical Appendices). Using the normalisation condition

(28.2), we findf

€U0) = {-l)miWmi+W-^)W+m)\]Pim(cos9). (28.5)

Here it is supposed that m ^ 0. For negative m, we use the definition

©i.-i»i=(-1)"®«i«i- (28 -6)

In other words, @im for m < is given by (28.5) with \m\ instead of m and

the factor (— l)m omitted. For m = 0, the associated Legendre polynomials

are called simply Legendre polynomials Pi(cos 6) ; we have

0*o = il V[«2/+ l)]P,(oo8 0). (28.7)

Thus the eigenfunctions of the angular momentum are mathematically

just spherical harmonic functions normalised in a particular way. From (27.3)

and (28.6) it is seen that functions differing in the sign of m are related by the

equation

(-l) l
-mYl,-m = Ylm*. (28.8)

We shall make some remarks concerning the eigenfunctions of the angular

momentum. For / = (so that m = also) this function reduces to a con-

stant. In other words, the wave functions of the states of a particle with

zero angular momentum depend only on r, i.e. they have complete spherical

symmetry.

For a given m, the values of / starting from \m\ denumerate the successive

eigenvalues of the quantity / in order of increasing magnitude. Hence, from

the general theory of the zeros of eigenfunctions ( §21), we can deduce that the

function @ lm becomes zero for l—\m\ different values of the angle 6; in

other words, it has as nodal lines /— \m\ "lines of latitude" on the sphere. If

the complete angular functions are taken with the real factors cos m<j> or

sin m<f> instead ofJ «±*»#, they have as further nodal lines \m\ "lines of longi-

tude"; the total number of nodal lines is thus /.

Finally, we shall show how the functions S lm may be calculated by the

matrix method. This is done similarly to the calculation of the wave func-

tions of an oscillator in §23. We start from the equation (27.8)

:

t+Ya = 0.

Using the expression (26.15) for the operator /+ and substituting

Yu = (27r)-V7*0w(0), we obtain for ®u the equation

d0„/d0-Zcot0 0„ =0,

t The choice of the phase factor is not, of course, determined by the normalisation condition.

The definition (28.5) used in this book is the most natural from the viewpoint of the theory of addition

of angular momenta (see Chapter XIV). It differs by a factor i
l from the one usually adopted.

X Each such function corresponds to a state in which lz does not have a definite value, but can have

the values ±m with equal probability.
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whence ®u = constantX sin'0. Determining the constant from the normali-
sation condition, we find

% = (-*M£(2/+1)!]2-'(1/Z!) sin'0. (28.9)

Next, using (27.12), we write

*-^,w+l = ('-)m,m+l^im

= V[(l-m)(l+m+l)]Yln .

A repeated application of this formula gives

V[(l-m)\l(l+m)\]Ylm = [(20!]-1/2(/_)^F„.

The right-hand side of this equation is easily calculated by means of the
expression (26.15) for the operator L. We have

L[f(ey™<t>] = e^m-m &{ni-me d(/sin^)/d(cos d).

A repeated application of this formula gives

{!_)l-m
e-04>®n = fdrrul, ^-mg d*-m(sin* q 0^)/d(cos Qf-m^

Finally, using these relations and the expression (28.9) for ZZ , we obtain
the formula

which is the same as (28.5).

§29. Matrix elements of vectors

Let us again consider a closed system of particles ;f let/ be any scalar
physical quantity characterising the system, and /the operator corresponding
to this quantity. Every scalar is invariant with respect to rotation of the
co-ordinate system. Hence the scalar operator / does not vary when acted
on by a rotation operator, i.e. it commutes with a rotation operator. We know,
however, that the operator of an infinitely small rotation is the same, apart
from a constant factor, as the angular momentum operator, so that

{/, L.) = {/,Lj = {/ 4} = (29.1)

(and also {/, L2
} = 0).

From the commutability of / with the angular momentum operator it
follows that, in a representation where L2 and Lz are diagonal, the matrix of
the quantity / will also be diagonal with respect to the suffixes LM. We
shall conventionally denote by n all the remaining suffixes which define the

t AH the results in this section are valid also for a particle in a centrally symmetric field (and ingeneral whenever the total angular momentum of the system is conserved).
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state of the system, and we shall show that the matrix elements f^L are

independent of the suffix M. To do this, we use the commutability of/with

/£+-£+/= 0.

Let us write down the matrix element of this equation corresponding to the

transition «, L, M -> «', L, M— 1. Taking into account the fact that the

matrix of the quantity L+ has only elements with n,L,M-+ n, L, M—l, we
obtain

nLM n'LM nLM nL,M-l
J n'LM{^+)n'L,M-l— \L>+)nL,M-lJ n'L,M-l = «,

and since the matrix elements of the quantity L+ are independent of the suffix

n, we find

nLM nL,M-l
J n'LM =Jn'L,M-l,

whence it follows that all the quantities ffilh for different M (the other

suffixes being the same) are equal.

Thus the matrix elements of the quantity / that are different from zero

will be

nLM nL •

J n'LM =Jn'L, (29.2)

whereffiL denotes quantities depending on the values of the suffixes «, «', L.

If we apply this result to the Hamiltonian itself, we obtain our previous

result that the energy of the stationary states is independent of M, i.e. that

the energy levels have (2L+l)-fold degeneracy.

Next, let A be some vector physical quantity characterising a closed

system. When the system of co-ordinates is rotated (and, in particular, when
the operator of an infinitely small rotation, i.e. the angular momentum opera-

tor, is applied), the components of a vector are transformed into linear

functions of one another. Hence, as a result of the commutation of the

operators Lt with the operators At> we must again obtain components of the

same vector, A%. The exact form can be found by noticing that, in the

particular case where A is the radius vector of the particle, the formulae

(26.3) must be obtained. Thus we find the commutation rules

{lx,Ax} = 0, {lx,Ay} = iAz ,
{LX,AZ}= -iAy , ... (29.3)

(the remaining rules are obtained by cyclic permutation of the suffixes

x, y, z), or

{lu Ak} = iemAx . (29.4)

These relations enable us to obtain several results concerning the form
of the matrices of the components of the vector A (M. Born, W. Heisenberg

and P. Jordan 1926). First of all, it is possible to derive selection rules which

determine the transitions for which the matrix elements can be different

from zero. We shall not go through the fairly lengthy calculations here,

however, since it will appear later (§107) that these rules are actually a direct
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consequence of the general transformation properties of vector quantities
and can be derived from the latter with hardly any calculation at all. Here
we shall merely give the rules, without proof.

The matrix elements of all the components of a vector can be different
from zero only for transitions in which the angular momentum L changes by
not more than one unit

:

L-+L or L±l. (29.5)

There is a further selection rule which forbids transitions between any two
states with L = 0. This rule is an obvious consequence of the complete
spherical symmetry of states with angular momentum zero.

The selection rules for the angular momentum componentM are different
for the different components of a vector: the matrix elements can be different
from zero for transitions where M changes as follows:

for A+ = Ax+iAy , M-+M-1, n

for A- = Ax-iAy , M-+M+1, (29.6)

for Az , M^M. J

Moreover, it is possible to determine a general form for the matrix elements
of a vector as functions of the number M. These important and frequently
used formulae are given here, also without proof, since they are actually
a particular case of more general relations derived in §107 for any tensor
quantities.

The non-zero matrix elements of the quantity A z are given by the formulae

M
(A^n^M = A^LWn'LM

V[L(L+1)(2L+1)fn'L>

W^1 .M =
y£(2£_ 1)(2£+1)

.̂,-1 . | (29.7)

yL2—M2

L(2L-1)(2L+1) nL

Here the A L̂. are quantities! independent ofM and related by the "Her-
mitian" condition

aI>l> = (^£?>. (29.8)

which follows directly from the fact that the operator Az is Hermitian.

t These quantities are sometimes called reduced matrix elements. The appearance in formulae
(29.7) and (29.9) of denominators which depend on L is in accordance with the general notation used
in §107. The convenience of these denominators is shown, in particular, by the simple form of equation
(29.12) for the matrix elements of the scalar product of two vectors.

It may be noted for reference that for the vector L itself the reduced matrix elements are

L\ = VW+l)(2L+l)l L^1 = Ll_x
= 0,

since the matrix of Lz is diagonal with respect to L and the diagonal elements are equal to M. The
same values are, of course, obtained from a comparison of formulae (29.9) and (27.12).
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The matrix elements of the quantities A- and A+ are also determined by
the A^\j. The non-zero matrix elements of A- are

(A \nL ,M-1 _ 12 /v ' An LWwlm -J L(L+l)(2L+ir n 'L '

(A \nL,M-l _ ± '2 L/jnL
1 -V,l-i,m ./ L{2L-1)(2L+1) n '' L~v

(A )n,L-l,M-l - _ ^l^Zl^l^lAn,L-l

(29.9)

(L+M-1)(L+M)

L(2L-1)(2L+1)

The matrix elements of A+ need not be written out separately: since Ax
and Ay are real we have, using (11.9),

(4)ZI&M> = U-)nLM
M ']*- (29.10)

It is useful to notice a formula which expresses the matrix elements of a

scalar A . B (where A, B are two vector physical quantities) in terms of the
coefficients A^, Bn

J-L , in formulae (29.7)-(29.9); in applications such
products are usually involved. The calculation is conveniently carried out
by writing the operator A . B in the form

A . B = i(A+B-+A~B+)+AzBz . (29.11)

It is evident a priori that the matrix ofA . B (like that of any scalar) is diagonal
with respect to L and M. A calculation by means of formulae (29.7)-(29.9)
gives the result

(A.B)»f*
f =

i
^-r2^-i"B»"'f. (29.12)

n",L"

where L" takes the values L, L ± 1.

PROBLEMS
Problem 1. Determine the matrix elements (with respect to the eigenfunctions of the

angular momentum) of a unit vector n along the radius vector of the particle.

Solution. The matrix elements of a polar vector for an individual particle are non-zero
only for transitions / -* l± 1 (see §30). Their dependence on the quantum number m is given
by the general formulae (29.7)-(29.9), so that it is sufficient to calculate the coefficient
n\-i

=
(nl

X
)* (corresponding to A

%
_ t

in those formulae). To do this, we can find, for
example, the matrix element of nz = cos 6 as follows:

7
1

n

(^I 1)(2/+ i)
"J"

1 = (C°S d)"~'° =
/ 0;-1 ' * cos 6

•
®10 sin 6 dd

>

with the functions ©jo given by (28.7); the integral is calculated from formula (107.15)
with h = \,h = 1—1. The result is

Problem 2. Average the tensor nitik—^ik (where n is a unit vector along the radius vector
of a particle) over a state where the magnitude but not the direction of the vector 1 is given
(i.e. lz is indeterminate).
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Solution.^ The required mean value is an operator which can be expressed in terms of
the operator 1 alone. We seek it in the form

nink ~ %$ik — a[hh + tJi— §Sifc/(/+ 1)]

;

this is the most general symmetrical tensor of rank two with zero trace that can be formed
from the components of I. ^ To determine the constant a we multiply this equation on the left

by U and on the right by h (summing over i and k). Since ^the vector n is perpendicular to
the vector M = rxp, we have mU = 0. The product UlihU = (l2)

2 is replaced by its

eigenvalue l\l+\)z
, and the product UUUh is transformed by means of the commutation

relations (26.7) as follows:

hhhh = hhhh—iemhhh

= fi
2
)
2-¥emk(tih-hli)

= (l2)
2 +ieikieikmUm

= (12)2 _ J2

= /2(/+l)2-/(/+l)

(using the fact that ememki = 2Sjm ). After a simple reduction we obtain the result

a= -l/(2/-l)(2/+3).

§30. Parity of a state

Besides the parallel displacement of the co-ordinate system (used in §15)

and the rotation of it (used in §26), there is another transformation which

leaves unaltered the Hamiltonian of a closed system,f This is what is called

the inversion transformation, which consists in simultaneously changing

the sign of all the co-ordinates. In classical mechanics, the invariance of

Hamilton's function with respect to inversion does not lead to a conser-

vation law, but the situation is different in quantum mechanics.

Let us denote by / the inversion operator; its effect on a function is to

change the sign of all the co-ordinates. The invariance of ff with respect to

inversion means that

fil-lfi = 0. (30.1)

The operator / also commutes with the angular momentum operators

:

{/,Lx} = {/,Ly) = {/,Lz} = o, {/, L*} = o (30.2)

(on inversion, both the co-ordinates themselves and the operators of differ-

entiation with respect to them change sign, so that the angular momentum
operators remain unchanged).

It is easy to find the eigenvalues J of the inversion operator, which are deter-

mined by the equation

U = fy.

f The same is true of a system in a centrally symmetric field.
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To do this, we notice that a double application of the operator / amounts to

identity : no co-ordinate is altered. In other words, we have

Piff = Pift — fa i.e. P = 1, whence

/ = ±1. (30.3)

Thus the eigenfunctions of the inversion operator are either unchanged or

change in sign when acted upon by this operator. In the first case, the wave
function (and the corresponding state) is said to be even, and in the second

it is said to be odd.

The equation (30.1) thus expresses the "law of conservation of parity";

if the state of a closed system has a given parity (i.e. if it is even, or odd),

then this parity is conserved.

The physical meaning of equations (30.2) is that the system can have defin-

ite values of L andM and, at the same time, a definite parity of its state. We
can also say that all states differing only in the value of M have the same
parity. This can be shown by starting from the relation

L4-1U = o

and proceeding in exactly the same way as in obtaining the result (29.2).

When the inversion transformation is applied to scalar quantities, either

they do not change at all (true scalars) or they change sign (what are called

pseudoscalars).-\ If a physical quantity / is a true scalar, its operator com-
mutes with /:

7/-// = 0. (30.4)

It follows from this that, if the matrix of I is diagonal, then the matrix of

/ is diagonal with respect to the suffix which shows the parity of the state, i.e.

only the matrix elements for transitions u -> u and g ->• g are not zero (the

suffixes g and u denote even and odd states respectively).

For the operator of a pseudoscalar quantity we have //= —//, or

//+// = 0; (30.5)

/ anticommutes with /. The matrix element of this equation for a transition

and since Igg =1 we have fgg = (we omit all suffixes apart from that

showing the parity). Similarly we find that fuu — 0. Thus, in the matrix

of a pseudoscalar quantity, only those elements can be different from zero

which are non-diagonal with respect to the parity suffix (transitions with

change of parity).

\ An example of a pseudoscalar is the scalar product of an axial and a polar vector.
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Similar results are obtained for vector quantities. The operators of a
polar vectorf anticommute with /, and in their matrices (in a representation

where 1 is diagonal) only the elements for transitions with change of parity

are not zero. The operators of an axial vector, however, commute with /

,

and their matrices have non-zero elements only for transitions without change
of parity.

It is useful to point out another method of obtaining these results. For
example, the matrix element of a scalar / for a transition between states of

opposite parity is the integral fug = $ tftu*ftfig dq, where the function \\t
g is

even and tj/u is odd. When all the co-ordinates change sign, the integrand

does so if/ is a true scalar; on the other hand, the integral taken over all

space cannot change when the variables of integration are re-named. Hence
it follows that/u? = -/ua , i.e. /w s 0.

Let us determine the parity of the state of a single particle with angular
momentum /. The inversion transformation (x -> — x, y -> —y, z -> —z)
is, in spherical polar co-ordinates, the transformation

r^r, 6-+TT-9, ^->tt+0. (30.6)

The dependence of the wave function of the particle on the angle is given by
the eigenfunction YJm of the angular momentum, which, apart from a constant

which is here unimportant, has the form P,m(cos &)eim *. When <j> is replaced

by ir+<f>, the factor eim * is multiplied by (— l)m , and when 6 is replaced by
77—0, P,m(cos0) becomes P^-cos 0) = (-l) l-mP

J

wl(cos 0). Thus the

whole function is multiplied by (— l)
1 (independent of m, in agreement with

what was said above), i.e. the parity of a state with a given value of / is

/ = (-1) 1
. (30.7)

We see that all states with even I are even, and all those with odd / are odd.

A vector physical quantity relating to an individual particle can have non-
zero matrix elements only for transitions with / -> / or /±1 (§29). Remem-
bering this, and comparing formula (30.7) with what was said above regarding

the change of parity in the matrix elements of vectors, we reach the result

that the matrix elements of a polar vector are non-zero only for transitions

with / -> 7±1, and those of an axial vector for transitions with / -> /.

§31. Addition of angular momenta
Let us consider a system composed of two parts whose interaction is weak.

If the interaction is entirely neglected, then for each part the law of conserva-

tion of angular momentum holds. The angular momentum L of the whole
system can be regarded as the sum of the angular momenta Li and L2 of its

parts. In the next approximation, when the weak interaction is taken into

f Ordinary (polar) vectors change sign under the inversion transformation, whilst axial vectors
(for instance, the vector product of two polar vectors) are unchanged by this transformation.
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account, Li and L2 are not exactly conserved, but the numbers L\ and L2

which determine their squares remain "good" quantum numbers suitable for

an approximate description of the state of the system. Regarding the angular

momenta in a classical manner, we can say that in this approximation Li and
L2 rotate round the direction of L while remaining unchanged in magnitude.

For such systems the question arises regarding the "law of addition" of

angular momenta : what are the possible values of L for given values of L\
and L2 1 The law of addition for the components of angular momentum is

evident: since Lz = L\ z + L2z , it follows that M = M\+M2 . There is no
such simple relation for the operators of the squared angular momenta, how-
ever, and to derive their "law of addition" we reason as follows.

If we take the quantities L-,
2

, L2
2

, LXz , L2z as a complete set of physi-

cal quantities,f every state will be determined by the values of the numbers
Lx , L2 , Mx , M2 . For given Lx and L2 , the numbers Mx and M2 take (21^+1)
and (2L2+1) different values respectively, so that there are altogether

(2L1+1)(2L2+1) different states with the same Lx and L2 . We denote the

wave functions of the states for this representation by
<f>L LiMM .

Instead of the above four quantities, we can take the four quantities

Li2
, L2

2
, L2

, L z as a complete set. Then every state is characterised by
the values of the numbers Lx , L2 , L, M (we denote the corresponding wave
functions by ^l^lm)- For given Lx and L2 , there must of course be
(2L1 +1)(2L2+1) different states as before, i.e. for given Lx and L2 the pair

of numbers L and M must take (2L1+1)(2L2+1) pairs of values. These
values can be determined as follows.

To each value of L, there correspond 2L+ 1 different possible values of M,
from —L to +L. The greatest possible value ofM in the states ^ (for given

Lx and L2) is M = Lx+L2 , which is obtained when Mx
= Lx and M2

= L2 .

Hence the greatest possible value of M in the states iff is Lj+1,2, and this is

therefore the greatest possible value of L also. Next, there are two states
<f>

with M = L±+L2
— 1, namely those where Mx

= LX,M2 —

L

2
—\ and

Mx = Lx
— 1, Af2 = L2 . Consequently, there must also be two states ifj with

this value ofM ; one of them is the state with L = Lx+L2 (andM = L— 1),

and the other is clearly that with L = L^+L^— 1 (and M = L). For the

value M = Lx+L2
—2 there are three different states <j>, with the following

pairs of values of Mlf M2 : (Lly
L2
—

2), (Lx— 1, L2
— 1), and (LX—2,L2).

This means that, besides the values L = Lx+L2 , L = Lx+L2 —1, the value

L = Lx+L2
— 2 can occur.

The argument can be continued in this way so long as a decrease ofM by
1 increases by 1 the number of states with a given M. It is easily seen that

this is so until M reaches the value \L± —L2 \. WhenM decreases further, the

number of states no longer increases, remaining equal to 2L2+ 1 (if L2 ^ L{).

Thus \L\ — L2 \

is the least possible value of L, and we arrive at the result

f Together with such other quantities as form a complete set when combined with these four.

These other quantities play no part in the subsequent discussion, and for brevity we shall ignore
them entirely, and conventionally call the above four quantities a complete set.
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that, for given L\ and L% the number L can take the values

L = Li+Z^+La-l, ..., I^-L^, (31.1)

that is 2L2+1 different values altogether (supposing that L2 < jy. It is

easy to verify that we do in fact obtain (2L1 +1)(2L2+1) different values of

the pair of numbers M, L. Here it is important to note that, if we ignore

the 2L+\ values ofM for a given L, then only one state will correspond to

each of the possible values (31.1) of L.

This result can be illustrated by means of what is called the vector model.

If we take two vectors Ll5 L2 of lengths Lx and L2 , then the values of L are

represented by the integral lengths of the vectors L which are obtained by
vector addition of Lx and Lg; the greatest value of L is Lx -\-L2 , which is

obtained when L2 and L2 are parallel, and the least value is \LL—L2 \, when
Li and L2 are antiparallel.

The addition rule for angular momenta which we have obtained also makes
it possible, of course, to add any number (more than two) of angular momenta
by successive applications of this rule.

In states with definite values of the angular momenta Z^, L2 and of the

total angular momentum L, the scalar products Lx . L2 , L . Lx and L . L2 also

have definite values. These values are easily found. To calculate Lx . L2 ,

we write L = I^+Lg or, squaring and transposing,

Replacing the operators on the right-hand side of this equation by their

eigenvalues, we obtain the eigenvalue of the operator on the left-hand side:

Lx . L2 = J{X(L+1)-L1(Z1+ !)-£,(£,+ 1)}. (31.2)

Similarly we find

L . Lx = ^^+l)+L1(Ll+l)-L^Lt+l)}. (31.3)

Let us now determine the "addition rule for parities". As we know, the

wave function T of a system consisting of two independent parts is the pro-

duct of the wave functions W± andT2 of these parts. Hence it is clear that, if

the latter are of the same parity (i.e. both change sign, or both do not

change sign, when the sign of all the co-ordinates is reversed), then the

wave function of the whole system is even. On the other hand, if Tx and
T2 are of opposite parity, then the function Y is odd.

This rule can, of course, be generalised at once to the case of a system
composed of any number n of non-interacting parts. If these parts are in

states with definite parities determined by the corresponding eigenvalues

Ii = ± 1 of the operator /, then the parity I of the state of the whole system
is given by the product

/=7
1 72 .../n . (31.4)
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In particular, if we are concerned with a system of particles in a centrally

symmetric field (the mutual interaction of the particles being supposed weak),
then It = (— l)

1
*, where lt is the angular momentum of the *'th particle

(see (30.7)), so that the parity of the state of the whole system is given by

7 = (-l)Wwtf„.
(31.5)

We emphasise that the exponent here contains the algebraic sum of the
angular momenta lif and this is not in general the same as their "vector sum",
i.e. the angular momentum L of the system.

If a closed system disintegrates (under the action of internal forces), the
total angular momentum and parity must be conserved. This circumstance
may render it impossible for a system to disintegrate, even if this is energetic-

ally possible.

For instance, let us consider an atom in an even state with angular momen-
tum L = 0, which is able, so far as energy considerations go, to disintegrate

into a free electron and an ion in an odd state with the same angular momen-
tum L = 0. It is easy to see that in fact no such disintegration can occur
(it is, as we say, forbidden). For, by virtue of the law of conservation of angu-
lar momentum, the free electron would also have to have zero angular momen-
tum, and therefore be in an even state (I = (— 1)° = +1); the state of the
system ion+electron would then be odd, however, whereas the original state

of the atom was even.



CHAPTER V

MOTION IN A CENTRALLY SYMMETRIC FIELD

§32. Motion in a centrally symmetric field

The problem of the motion of two interacting particles can be reduced in
quantum mechanics to that of one particle, as can be done in classical mech-
anics. The Hamiltonian of the two particles (of masses mi, mz) interacting in
accordance with the law U(r) (where r is the distance between the particles)
is of the form

# = -—Ax-—

A

2+ U(r), (32.1)
2m

x 2m%

where Ai arid A2 are the Laplacian operators with respect to the co-ordinates
of the particles. Instead of the radius vectors rx and r2 of the particles, we
introduce new variables R and r:

r = r2—*i> R =
(miri+™jr2)l(mx+m2); (32.2)

r is the vector of the distance between the particles, and R the radius vector
of their centre of mass. A simple calculation gives

8 = -
0/ ,

An—-A+ I7(r), (32.3)
2(m1+m2) 2m v J

where AR and A are the Laplacian operators with respect to the components
of the vectors R and r respectively, mx+m2 is thetotal mass of the system, and
m = m1ni2l(m1+mi) is what is called the reduced mass. Thus the Hamiltonian
falls into the sum of two independent parts. Hence we can look for 0(rlf r2)
in the form of a product ^(R)^r(r), where the function ^(R) describes the mo-
tion of the centre of mass (as a free particle of mass m^m^), and «/r(r) describes
the relative motion of the particles (as a particle of mass m moving in the cen-
trally symmetric field U(r)).

Schrodinger's equation for the motion of a particle in a centrally sym-
metric field is

A0+(2m//*2)[£- U(r)W = 0. (32.4)

Using the familiar expression for the Laplacian operator in spherical polar
co-ordinates, we can write this equation in the form

1 0/ &K lr 1 d/ M\ 1 Sty! 2m

(32.5)

101
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If we introduce here the operator i
2
(26.16) of the squared angular momentum

we obtainf

h2r 18/ dib\ I
2

"I

£L
-7a;raVj+DW*-*- (326)

The angular momentum is conserved during motion in a centrally sym-
metric field. We shall consider stationary states in which l

2 and lz have
definite values. In other words, we shall seek the common eigenfunctions
of the operators i?, i2 and lz .

The requirement that iff is an eigenfunction of the operators i
2 and lz

determines its angular dependence. We thus seek solutions of equation
(32.6) in the form

^ = R(r)Ylm(9,<f>), (32.7)

where the functions Y lm(6, <f>)
are defined by the formulae of §28.

Since l
2Ylm = l(l+l)Ylm , we obtain for the radialfunction R(r) the equa-

tion

1 d / dR\ 1(1+1) 2m

We note that this equation does not contain the value of lz
= m at all, in

accordance with the (2/+l)-fold degeneracy of the levels, with which we are
already familiar.

Let us investigate the radial part of the wave functions. By the substitu-
tion

R(r) = x(r)/r (32.9)

equation (32.8) is brought to the form

d2
x r2m 1(1+1)1_+ [_(£_ C0_l_l], =0 .

(32,0)

If the potential energy U(r) is everywhere finite, the wave function if/ must
also be finite in all space, including the origin, and consequently so must its

radial part R(r). Hence it follows that x{
r) must vanish for r = :

X(0)=0. (32.11)

t If we introduce the operator of the radial component pr of the linear momentum, in the form

1 2 /d 1\
prf = -ih-—(r$) = -ih( —+- U,

r or \or rj

the Hamiltonian can be written in the form

H = (l/2m)(/r
2+M2/r2)+E/(r),

which is the same in form as the classical Hamilton's function in spherical polar co-ordinates.



§32 Motion in a centrally symmetric field 103

This condition actually holds also (see §35) for a field which becomes infinite

as r -> 0.

The normalisation condition for the radial function R(r) is determined by
the integral J \R\ 2r2 dr, and therefore that for the function x(r) is determined
by the integral

J" |x|
2 dr.

Equation (32.10) is formally identical with Schrodinger's equation for

one-dimensional motion in a field of potential energy

h2 Z(Z+1)
£/,(r) = £/(,)+ J_J-, (32.12)

2m rl

which is the sum of the energy U(r) and a term

M(/+l)/2mr2 = hH*l2mr\

which may be called the centrifugal energy. Thus the problem of motion in a

centrally symmetric field reduces to that of one-dimensional motion in a

region bounded on one side (the boundary condition for r = 0).

In one-dimensional motion in a region bounded on one side, the energy
levels are not degenerate ( §21). Hence we can say that, if the energy is given,

the solution of equation (32.10), i.e. the radial part of the wave function, is

completely determined. Bearing in mind also that the angular part of the

wave function is completely determined by the values of / and m, we reach
the conclusion that, for motion in a centrally symmetric field, the wave func-
tion is completely determined by the values of E, I and m. In other words,
the energy, the squared angular momentum and the ^-component of the

angular momentum together form a complete set of physical quantities for

such a motion.

The reduction of the problem of motion in a centrally symmetric field to a

one-dimensional problem enables us to apply the oscillation theorem (see

§21). We arrange the eigenvalues of the energy (discrete spectrum) for a

given / in order of increasing magnitude, and give them numbersnr , the lowest

level being given the number % = 0. Then nr determines the number of

nodes of the radial part of the wave function for finite values of r (excluding
the point r = 0). The number nr is called the radial quantum number. The
number / for motion in a centrally symmetric field is sometimes called the

azimuthal quantum number, and m the magnetic quantum number.
There is an accepted notation for states with various values of the angular

momentum / of the particle: they are denoted by Latin letters, as follows:

Z = 01234567...
s p d f g h i k ...

The normal state of a particle moving in a centrally symmetric field is

always the s state; for, if / # 0, the angular part of the wave function in-

variably has nodes, whereas the wave function of the normal state can have
no nodes. We can also say that the least possible eigenvalue of the energy,
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for a given /, increases with /. This follows from the fact that the presence
of an angular momentum involves the addition of the essentially positive

term /*
2/(/+l)/2mr2

, which increases with /, to the Hamiltonian.
Let us determine the form of the radial function near the origin. Here

we shall suppose that

lim U(r)r2 = 0.
r-*0

We seek R(r) in the form of a power series in r, retaining only the first term
of the series for small r; in other words, we seek R(r) in the form R = con-
stantXr1

. Substituting this in the equation

d(r2 d#/dr)/dr-/(/+l)i? = 0,

which is obtained from (32.8) by multiplying by r2 and taking the limit as
r -> 0, we find

s(s+l) =1(1+1).

Hence

s = I or s = — (/+1).

The solution with s = —(/+1) does not satisfy the necessary conditions;
it becomes infinite for r = (we recall that / ^ 0). Thus the solution with
s = I remains, i.e. near the origin the wave functions of states with a given /

are proportional to r l
:

R
t £ constant xr*. (32.13)

The probability of a particle's being at a distance between r and r+dr from
the centre is determined by the value of r*\R\ 2 and is thus proportional to

r2(i+i) we see tjlat
-

lt becomes 2ero at ^ origin tne more rapidly, the
greater the value of /.

§33. Free motion (spherical polar co-ordinates)

The wave function of a freely moving particle

t/tp = constant xc(t'/A)P- r

describes a stationary state in which the particle has a definite momentum p
(and energy E = p

2j2m). Let us now consider stationary states of a free

particle in which it has a definite value, not only of the energy, but also of the

absolute value and component of the angular momentum. Instead of the

energy, it is convenient to introduce the wave number

k=p/h = V(2mE)/h. (33.1)

The wave function of a state with angular momentum / and projection
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thereof m has the form

lAwm =RMYlm(df <j>), (33.2)

where the radial function is determined by the equation

2 r Z(/+l)n
*«"+-*h'+

L*

1"""^]^ = °
(33 -3>

(equation (32.8) with U(r) = 0). The wave functions ^Wm satisfy the condi-
tions of normalisation and orthogonality:

/ kffm+fiumW = Sll'KmW-k).

The orthogonality for different /, /' and m, m' is ensured by the angular func-
tions. The radial functions must be normalised by the condition

oo

jrW^Rudr-Sik'-k). (33.4)

o

If we normalise the wave functions, not on the "k scale", but on the "energy
scale", i.e. by the condition

oo

j rtR^REt dr = 8(E'-E),

o

then, by the general formula (5.14), we have

Rbi = Ra VCdkJdE) = (l/h) V(m/k)Rkl . (33.5)

For / = 0, equation (33.3) can be written

d2
(r**o)

dr2
•khRn = 0;

its solution finite for r = and normalised by the condition (33 4) is fcf

(21.9))
v

72 sin kr
.

77 r
(33.6)

To solve equation (33.3) with / ^ 0, we make the substitution

Ru = i*Xki- (33.7)

For Xfci we have the equation

X»"+2(/+lW/r+**«=0.

If we differentiate this equation with respect to r, we obtain

W"+^,"+[^-^>tt
'=0.
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By the substitution xui = rXk,i+i it becomes

2(1+2)
Xfc,l+i"H Xk,l+i'+k

2
xk,i+1 = 0,

r

which is in fact the equation satisfied by xn,i+i- Tnus the successive func-
tions Xki are related by

Xm+i = Xki/r, (33.8)

and hence

,'1 dV
Xkl ~ {;&)*»*

wnere Xko = Rko is determined by formula (33.6) (this expression can, of
course, be multiplied by an arbitrary constant).

Thus we finally have the following expression for the radial functions in
the free motion of a particle

:

/ *s7 I
2 rl Z 1 dV sin^

(the factor k~ l
is introduced for normalisation purposes—see below—and

the factor (— l)
1 for convenience).!

To obtain an asymptotic expression for the radial function (33.9) at large
distances, we notice that the term which decreases least rapidly as r -» oo is

obtained by differentiating sin kr I times

:

12 1 d*
Rki ~ (— 1) / — 77- —7 sin kr.

V 77 k l
r dr l

d
• , / dV— smkr =ksm(kr-%7r),..., I

J
sinkr = # sin (Ar- A/77),

t The functions Ru can be expressed in terms of Bessel functions of half-integral order, in the form

Ru = V(k/r)Jl+1/2(kr). (33.9a)

The first few functions Rkl are

:

\2 sinkr
Rkn = l-k

kr

2 rsin&r coskr"y2 rsmkr cos&r"]

7t L (kr)z k~r~J

(l r/ 3 1\ 3cosArT
#*2 = -k\ ( hinkr .

V77 L\(kr)* kr) (kr)2 J
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we have the following asymptotic expression

:

V2
sin(kr—Utt)—

.

(33.10)
it r

The normalisation of the functions R kl can be effected by means of their

asymptotic expressions, as was explained in §21. Comparing the asymptotic
formula (33.10) with the normalised function R kQ (33.6), we see that the func-
tions R kl , with the coefficient used in (33.9), are in fact normalised as they
should be.

Near the origin (r small) we have, retaining only the term containing the
lowest power of r,

1 dVsin&r /l d\*^ #2n+ir2n/l dysin&r /ldVy #Jn+ir2n

\r drj r ~ \r drj ^ (2«+l)I

/l dV^+V2'

= (-m—

)

\rdr/(2/+l)I

2. 4... 21
= (_ l)^+i

(2/+1)!

= (-l)^+V1.3...(2/+l).

Thus the functions i?
fci near the origin have the formf

in agreement with the general result (32.13).

In some problems it is necessary to consider wave functions which do not
satisfy the usual conditions of finiteness, but correspond to a flux of particles

from the origin. The wave function which describes such a flux of particles

with angular momentum / = is obtained by taking, instead of the "station-

ary spherical wave" (33.6), a solution in the form of an "outgoing spherical

wave",

#ft0
+ = AeikrJr. (33.12)

This function becomes infinite at the origin.

Similarly, a flux of particles incident on the centre (with angular momen-
tum / = 0) is described by a wave function in the form of an "ingoing
spherical wave",

Rk0
~ = Ae~ikrjr. (33.13)

f The symbol !! denotes the product of all integers of the same parity up to and including the num-
ber in question.
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In the general case of an angular momentum / which is not zero, we obtain
a solution of equation (33.3) in the formf

, r1 /l d \ le±ikr^ =(_^_(._)_. (33,+)

The asymptotic expression for these functions is

Rkl± « Ae±{<kr-ln^Jr. (33.15)

Near the origin, it has the form

(2/-1)!!
22„± « A— H-1

. (33.16)

We normalise these functions so that they correspond to the emission (or
absorption) of one particle per unit time. To do so, we notice that, at large
distances, the spherical wave can be regarded as plane in any small interval,
and the probability current density in it is i = viffif,*, where v = kh/m is the
velocity of a particle. The normalisation is determined by the condition
§idf =1, where the integration is carried out over a spherical surface of
large radius r, i.e. j ir% do = 1, where do is an element of solid angle. If the
angular functions are normalised as before, the coefficient A in the radial
function must be put equal to

A =1/Vv = V(mjkh). (33.17)

An asymptotic expression similar to (33.10) holds, not only for the radial
part of the wave function of free motion, but also for motion (with positive
energy) in any field which falls off sufficiently rapidly with distance.:}: At
large distances we can neglect both the field and the centrifugal energy in
Schrodinger's equation, and there remains the approximate equation

1 d*(rRkl)

r drz

The general solution of this equation is

R*
*J IT

2 sin(Ar—^/tt+Si)

unct:

rd.2),

(33.18)

t These functions can be expressed in terms of Hankel functions

:

Rm± = ±iA V(^/2r)H?4W), (33.14a)

of the first and second kinds for the signs + and — respectively. The asymptotic expansion of the
functions i?*j± for large r is

e±i(kr-ln/2) p /(/+ 1) (/-l)/(/+l)(/+2)r
1

*(f+i) (f-i)*(*+i)(/+2) -j

1 l!2^r 2\(2ikrY
T "jr L l!2^r 2\(2ikrf

% As we shall show in §123, the field must decrease more rapidly than 1/r.
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where S
t
is a constant, called the phase shift, and the common factor is chosen

in accordance with the normalisation of the wave function on the "k scale".t

The constant phase shift S
z
is determined by the boundary condition (Ria

is finite as r -» 0) ; to do this, the exact Schrodinger's equation must be
solved, and 8

Z
cannot be calculated in a general form. The phase shifts S,

are, of course, functions of both / and k, and are an important property of the
eigenfunctions of the continuous spectrum.

PROBLEMS
Problem 1 . Determine the energy levels for the motion of a particle with angular momen-

tum / = in a centrally symmetric potential well:

U(r)[= —U for r < a, U(r) = for r > a.

Solution. For / = the wave functions depend only on r. Inside the well, Schrodinger's
equation has the form

~ TiWH*** = 0, * = - V[2m(U - |tf|)].

r dra n

The solution finite for r = is

For r > a, we have the equation

sinkr

1 d2
1

"77^)-*V - °» «=r V(2m\E\).
r drz n

The solution vanishing at infinity is

ifi = A'erKr/r.

The condition of the continuity of the logarithmic derivative of rtf> at r = a gives

k cot ka = -k = - V[(2mU /h2)-k2
], (1)

or

sinka = ±V(h*l2ma2U )ka. (2)

This equation determines in implicit form the required energy levels (we must take those
roots of the equation for which cot ka < 0, as follows from (1)). The first of these levels

(with / = 0) is at the same time the deepest of all energy levels whatsoever, i.e. it corresponds
to the normal state of the particle.

If the depth U of the potential well is small enough, there are no levels of negative energy,
and the particle cannot "stay" in the well. This is easily seen from equation (2), by means of
the following graphical construction. The roots of an equation of the form ± sin * = ax
are given by the points of intersection of the line y = oue with the curves y = ±sin x, and
we must take only those points of intersection for which cot x < ; the corresponding parts
of the curve y = sin x are shown in Fig. 9 by a continuous line. We see that, if a is

sufficiently large (U small), there are no such points of intersection. The first such point
appears when the line y = atx occupies the position Oa, i.e. for a = 2/w, and is at * = Jtt.

t The term — \Itt in the argument of the sine is added so that Si = when the field is absent.
Since the sign of the wave function as a whole is not significant, the phase shifts Si are determined to
within nir (not 2nir). Their values may therefore always be chosen in the range between and n.
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Fig. 9

Putting a = h/V(2ma2U ), x = ka, we hence obtain for the minimum well depth to give a
single negative level

^o.min = **h*l8ma*. (3)

This quantity is the greater, the smaller the well radius a. The position of the first level
Z?i at the point where it first appears is determined from ka = \tt and is Ex

= 0, as we should
expect. As the well depth increases further, the normal level Ex descends.

Problem 2. Determine the order of the energy levels with various values of the angular
momentum / in a very deep potential well (Uo > %%\mcF) (W. Elsasser 1933).

Solution. The condition at the boundary of the well requires that -> as Uo -> oo
(see §22). Writing the radial wave function within the well in the form (33.9a), we thus have
the equation

Jl+l/2(ka) = 0,

whose roots give the position of the levels above the bottom of the well (Uo— \E\ = H2k2l2m)
for various values of I. The order of the levels from the ground state is found to be

1*, lp, Id, 2s, If, 2p, \g, 2d, \h, 3s, 2/, ...

.

The numbers preceding the letters give the sequence of levels for each /.f

Problem 3. Determine the order of appearance of levels with various I as the depth
Uo of the well increases.

Solution. When it first appears, each new level has energy E = 0. The corresponding
wave function in the region outside the well, which vanishes asr-> oo, is

Ri = constant x r~ (l+U

(the solution ofequation (33.3) with k = 0). From the continuity of i? ? and Ri' at the boundary
of the well it follows, in particular, that the derivative (rl+xR{)' is continuous, and so we have
the following condition for the wave function within the well:

(ri+iRtf = for r = a.

This is equivalent to the condition for the function Ri-± to vanish and, from (33.9a), we
obtain the equation

Ji-i/2(aV(2mU )lh) = 0;

for I = the function 7?_i/2 must be replaced by the cosine. This gives the following order
of appearance of new levels as Uo increases

:

1*, lp, Id, 2s, If, 2p, \g, 2d, 3s, \h, 2f, ...

.

It may be noted that differences from the order of levels in a deep well occur only for compar-
atively high levels.

t This notation is customary for particle levels in the nucleus (see Chapter XVI).
% According to (33.7) and (33.8) we have (r~ lRi)' ~ r-'Ri+1 . Since the equation (33.3) is unaltered

when / is replaced by — /— 1, we also have (r1+1R-i-i)' ~ r'+ii?_ ( . Finally, since the functions i?_j
and Ri-i satisfy the same equation, we obtain (rl+1Ri)' ~ rl+1Ri_i, the formula used in the text.
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Problem 4. Determine the energy levels of a three-dimensional oscillator (a particle in a
field U — $fi(o*r

2
), their degrees of degeneracy, and the possible values of the orbital angular

momentum in the corresponding stationary states.

Solution. Schrodinger's equation for a particle in a field U = $na>2(x*+yt +z*) allows
separation of the variables, leading to three equations like that of a linear oscillator. The
energy levels are therefore

En = foofa+wj+ns+f) = ha>{n+f).

The degree of degeneracy of the nth level is equal to the number of ways in which n can be
divided into the sum of three positive integral (or zero) numbers ;f this is

K»+i)(»+2).

The wave functions of the stationary states are

«£WlW,n 3 = constant x e-^V2Hn^)HnJ<
pLy)Hn3{a.z), (1)

where a = \/(ma>lfi) and m is the mass of the particle. When the sign of the co-ordinate
is changed, the polynomial Hn is multiplied by (— 1)". The parity of the function (1) is

therefore (— l)»i+»s+»8 = (— 1)". Taking linear combinations of these functions with a
given sum ni+m+ nz = n, we can form the functions

4>nim = constant x e-* 2r 2
l*rn®im{d)e±im <l>, (2)

where m = 0,1, ..., / and I takes the values 0, 2, ..., n for even n and 1, 3, ..., « for odd n.
This is evident from a comparison of the parities (— 1)" of the functions (1) and (— I) 1 of the
functions (2), which must be the same. This determines the possible values of the orbital
angular momentum corresponding to the energy levels considered.
The order of levels of the three-dimensional oscillator is, therefore, with the same notation

as in Problems 2 and 3,

(Is), (l/>), (Id, 2.), (1/, 2p), (\g, 2d, 3s), ...
,

where the parentheses enclose sets of degenerate states.

§34. Resolution of a plane wave
Let us consider a free particle moving with a given momentum p = kk

in the positive direction of the ^-axis. The wave function of such a particle

is of the form

iff = constant xeikz .

Let us expand this function in terms of the wave functions rjiklm oi free motion
with various angular momenta. Since, in the state considered, the energy
has the definite value k2h2]2m, it is clear that only functions with this k will

appear in the required expansion. Moreover, since the function eikz has
axial symmetry about the ^-axis, its expansion can contain only functions
independent of the angle

<f>,
i.e. functions with m = 0. Thus we must have

t In other words, this is the number of ways in which n similar balls can be distributed among
three urns.
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where the ai are constants. Substituting the expressions (27.3), (28.7) and
(33.9) for the functions <I>, 0, R, we obtain

v^ /r\ l /l dVsinAr
e,te= gc,p,(-*)(-)(--)_ <»-»»•>.

where the C, are other constants. These constants are conveniently deter-

mined by comparing the coefficients of (r cos 6)
n in the expansions of the two

sides of the equation in powers of r. On the right-hand side of the equation
this term occurs only in the nth summand ; for / > n, the expansion of the

radial function begins at a higher power of r, while for / < n the polynomial
P

i
(cos 6) contains only lower powers of cos 0. The term in cos * 6 in P, (cos 6)

has the coefficient (2/)!/2*(/!)
2 (see formula (c.2)). Using also formula

(33.11), we find the desired term of the expansion ofthe right-hand side ofthe

equation to be

2'(Z!)
2 (2/+1)H

On the left-hand side of the equation the corresponding term (in the expansion
of e

ikr cos d
) is

(ikr cos eyIII

Equating these two quantities, we find C, = (—*y(2/+l). Thus we finally

obtain the required expansion:

<- -g^^+DIM^Q (--)—

.

(34.1)

At large distances this relation takes the asymptotic form

eikz ~ _y ;/(2/+ l)P,(cos 6) sm(kr-ilir). (34.2)
kr r—'

We normalise the wave function eik* to give a probability current density

of unity, i.e. so that it corresponds to a flux of particles (parallel to the #-axis)

with one particle passing through unit area in unit time. It is easy to see that

this function is

xfj
= v-i/2etkz = v(m/&#)e**z> (34.3)

where v is the velocity of the particles. Multiplying both sides of equation

(34.1) by y/{mjkh) and introducing on the right-hand side the normalised

functions ^ffl
± = R kl±(r)Ylm(d,<f>), we obtain

1
<» 1

—em = 2 VK2/+l)]-(^ro
+-^ -).
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The squared modulus of the coefficient of ipkW~ (or <pkt0+) in this expansion
determines, according to the usual rules, the probability that a particle in a
current converging to (or diverging from) the centre has an angular momen-
tum / (about the origin). Since the wave function «rV** corresponds to a

current of particles of unit density, this "probability" has the dimensions of
length squared; it can be conveniently interpreted as the magnitude of the
"cross-section" (in the *y-plane) on which the particle must fall if its angular
momentum is /. Denoting this quantity by ah we have

ex, = ir(2l+1W = *W2ir)«(2/+ 1), (34.4)

where A is the de Broglie wavelength of the particle.

For large values of /, the sum of the cross-sections over a range A/ of I

(such that 1 <^ A/ < /) is

2 it ih2

<t, £ —2/AZ = 2tt—A/.

Al R P

On substituting the classical expression for the angular momentum, hi = pp
(where p is what is called the impact parameter), this expression becomes

27TpAp
t

in agreement with the classical result. This is no accident; we shall see
below that, for large values of /, the motion is quasi-classical (see Chapter
VII).

§35. "Fall" of a particle to the centre

To reveal certain properties of quantum-mechanical motion it is useful to
examine a case which, it is true, has no direct physical meaning: the motion
of a particle in a field where the potential energy becomes infinite at some
point (the origin) according to the law U(r) « -£/r2

, > 0; the form of the
field at large distances from the origin is here immaterial. We have seen in

§18 that this is a case intermediate between those where there are ordinary
stationary states and those where a "fall" of the particle to the origin takes
place.

Near the origin, Schrodinger's equation in the present case is

R"+2R'lr+yRlr* = 0, (35.1)

where R(r) is the radial part of the wave function, and we have introduced
the constant

Y «2«0/*»-Z(Z+l) (35.2)

and have omitted all terms of lower orders in 1/r; the value of the energy E
is supposed finite, and so the corresponding term in the equation is omitted
also.
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Let us seek R in the form R ~r s
; we then obtain for s the quadratic

equation

*(*+l)+y =0,

which has the two roots

*i
= -B- V(i-y), *, = -*-V(i-y). (35.3)

For further investigations it is convenient to proceed as follows. We draw
a small region of radius r round the origin, and replace the function — yjr2

in this region by the constant — y/r 2
. After determining the wave functions

in this "cut off" field, we then examine the result of passing to the limit

'o->0.
Let us first suppose that y < \. Then sx and s2 are real negative quantities,

and sx > s2 . For r > rQy the general solution of Schrodinger's equation

has the form (always restricting ourselves to small r),

R = Ar\+Br\ (35.4)

A and B being constants. For r < r , the solution of the equation

R"+2R'/r+yRlr * =

which is finite at the origin has the form

sin&r
R = C , k = Vylr . (35.5)

r

For r = r , the function R and its derivative R' must be continuous. It is

convenient to write one of the conditions as a condition of continuity of the

logarithmic derivative of rR. This gives the equation

^i+lK Sl+£(*2+l)V' t 7= k cot kr .

i4r *»+1+-Br ».+1

or

= Vy cot \/y.
Ar **+Br *>

On solving for the ratio B/A, this equation gives an expression of the form

B/A = constant xr s^-^. (35.6)

Passing now to the limit r -> 0, we find that BjA -*• (recalling that

h > h)- Thus, of the two solutions of Schrodinger's equation (35.1) which

diverge at the origin, we must choose that which becomes infinite less rapidly:

R = A/rW. (35.7)
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Next, let y > £. Then sx and s2 are complex:

*i = -i+*V(y-£), *2 = V-
Repeating the above analysis, we again arrive at equation (35.6), which, on
substituting the values of ^ and s2 ,

gives

B/A = constant xr^^H. (35.8)

On passing to the limit r -» 0, this expression does not tend to any definite
limit, so that a direct passage to the limit is not possible. Using (35.8), the
general form of the real solution can be written

R = constantxrW cos( V(y-£) log (r/r )+ constant). (35.9)

This function has a number of zeros which increases without limit as r
decreases. Since, on the one hand, the expression (35.9) is valid for the
wave function (when r is sufficiently small) with any finite value of the energy
E of the particle, and, on the other hand, the wave function of the normal
state can have no zeros, we can infer that the "normal state" of a particle in
the field considered corresponds to the energy E = - oo. In every state of a
discrete spectrum, however, the particle is mainly in a region of space where
E > U. Hence, for E -> - oo, the particle is in an infinitely small region
round the origin, i.e. the particle "falls" to the centre.
The "critical" field Ucr for which the "fall" of a particle to the centre

becomes possible corresponds to the value y = J. The smallest value of the
coefficient of -1/r2

is obtained for / = 0, i.e.

Ucr = -h2/8mr2 . (35.10)

It is seen from formula (35.3) (for sx) that the permissible solution of Schro-
dinger's equation (near the point where U~ 1/r2) diverges, as r -> 0, not
more rapidly than 1/yV. If the field becomes infinite, as r -> 0, more slowly
than 1/r2

,
we can neglect U{r), in Schrodinger's equation near the

origin, in comparison with the other terms, and we obtain the same solutions
as for free motion, i.e. if, ~ r l

(see §33). Finally, if the field becomes infinite
more rapidly than 1/r2 (as -1/r 8 with s > 2), the wave function near the
origin is proportional to r**-i (see §49, Problem). In all these cases the
product rip tends to zero at r = 0.

Next, let us investigate the properties of the solutions of Schrodinger's
equation in a field which diminishes at large distances according to the lawU « -£/r2

,
and has any form at small distances. We first suppose that

y <h It is easy to see that in this case only a finite number of negative
energy levels can exist.f For with energy E = Schrodinger's equation
at large distances has the form (35.1), with the general solution (35.4). The
function (35.4), however, has no zeros (for r # 0); hence all zeros of the
required radial wave function lie at finite distances from the origin, and their

t It is assumed that for small r the field is such that the particle does not "fall".

5
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number is always finite. In other words, the ordinal number of the level

E = which terminates the discrete spectrum is finite.

If y > I, on the other hand, the discrete spectrum contains an infinite

number of negative energy levels. For the wave function of the state with

E = has, at large distances, the form (35.9), with an infinite number of

zeros, so that its ordinal number is always infinite.

Finally, let the field be U = -jS/r2 in all space. Then, for y > £, the

particle "falls", but if y < £ there are no negative energy levels. For the

wave function of the state with E = is of the form (35.7) in all space ; it has

no zeros at finite distances, i.e. it corresponds to the lowest energy level (for

the given /).

§36. Motion in a Coulomb field (spherical polar co-ordinates)

A very important case of motion in a centrally symmetric field is that of

motion in a Coulomb field
U = ±«/r

(where a is a positive constant). We shall first consider a Coulomb attraction,

and shall therefore write U = —<xjr. It is evident from general considera-

tions that the spectrum of negative eigenvalues of the energy will be discrete

(with an infinite number of levels), while that of the positive eigenvalues will

be continuous.

Equation (32.8) for the radial functions has the form

d2R 2dR 1(1+1) nt 2m/——-1

—

2m/ a\
.#+_(£+-)# =0. (36.1)

H2 \ rjdr2 r dr

If we are concerned with the relative motion of two attracting particles, m
must be taken as the reduced mass.

In calculations connected with the Coulomb field it is convenient to use,

instead of the ordinary units, special units for the measurement of all quanti-

ties, which we shall call Coulomb units. As the units of measurement of

mass, length and time, we take respectively

m, h2/mx, ft?Ima.
2

.

All the remaining units are derived from these ; thus the unit of energy is

mx2
/ft

2
.

From now on, in this section and the following one, we shall always (unless

explicitly stated otherwise) use these units.f

t Ifm = 911xl0_28 gis the mass of the electron, anda = e2 (where e is the charge on the electron),

the Coulomb units are the same as what are called atomic units. The atomic unit of length is

ft
2\me2 = 0-529 x lO"8 cm

(what is called the Bohr radius). The atomic unit of energy is

me^lh2 = 4-36 XIO"11 erg = 27-21 electron-volts.

The atomic unit of charge is e = 4-80 X 10-10 esu. We formally obtain the formulae in atomic units

by putting e = m = H = 1 . For a = Ze2 the Coulomb and atomic units are not the same.
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Let us rewrite equation (36.1) in the new units:

d2R 2 dR 7(7+1) / 1\

Instead of the parameter E and the variable r, we introduce the new quantities

n = l/V(-2£), P = 2r/n. (36.3)

For negative E (which we shall first consider), n is a real positive number.
The equation (36.2), on making the substitutions (36.3), becomes

2 r n 7(7+1) n#"+-#'+ -£+—- L \R=o (36.4)
P L p p

2 J

(the primes denote differentiation with respect to p).

For small p, the solution which satisfies the necessary conditions of finite-

ness is proportional to p
l
(see (32.13)). To calculate the asymptotic be-

haviour of R for large p, we omit from (36.4) the terms in 1/p and 1/p
2 and

obtain the equation

R" = IR,

whence R = e±iP . The solution in which we are interested, which vanishes
at infinity, consequently behaves as e~ip for large p.

It is therefore natural to make the substitution

R = P
le-Pl*w{p\ (36.5)

when equation (36.4) becomes

pw"+(2l+2-p)w'+(n-l-l)w = 0. (36.6)

The solution of this equation must diverge at infinity not more rapidly than
every finite power of p, while for p = it must be finite. The solution which
satisfies the latter condition is the confluent hypergeometric function

to = F(-n+l+l, 27+2, p) (36.7)

(see §d of the Mathematical Appendices).f A solution which satisfies the
condition at infinity is obtained only for negative integral (or zero) values of

—n+7+1, when the function (36.7) reduces to a polynomial of degree
n—l—1. Otherwise it diverges at infinity as eP (see (d.14)).

Thus we reach the conclusion that the number n must be a positive integer,

and for a given 7 we must have

n>l+l. (36.8)

Recalling the definition (36.3) of the parameter n, we find

E = -l/2n\ n = l,2,.... (36.9)

t The second solution of equation (36.6) diverges as p
-2 '-1 as p -> 0.
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This solves the problem of determining the energy levels of the discrete

spectrum in a Coulomb field. We see that there are an infinite number of

levels between the normal level Ei = — \ and zero. The distances between

successive levels diminish as n increases; the levels become more crowded

as we approach the value E = 0, where the discrete spectrum closes up into

the continuous spectrum. In ordinary units, formula (36.9) isf

E = -ma?l2h*n2
. (36.10)

The integer n is called the principal quantum number. The radial quantum

number defined in §32 is

n r = n—l—l.

For a given value of the principal quantum number, / can take the values

Z = 0,l,...,w-1, (36.11)

i.e. n different values in all. Only n appears in the expression (36.9) for the

energy. Hence all states with different / but the same n have the same energy.

Thus each eigenvalue is degenerate, not only with respect to the magnetic

quantum number m (as in any motion in a centrally symmetric field) but

also with respect to the number /. This latter degeneracy (called accidental) is

a specific property of the Coulomb field. To each value of / there correspond,

as we know, 2/+1 different values of m. Hence the degree of degeneracy

of the nth. energy level is

S
X

(2/+1)=«2
. (36.12)

1=0

The wave functions of the stationary states are determined by formulae

(36.5) and (36.7). The confluent hypergeometric functions with both

parameters integral are the same, apart from a factor, as what are called the

generalised Laguerre polynomials (see §d of the Mathematical Appendices).

Hence

_ 7 /or 2I+l
Rni

= constant xpl
e-<>' 2Ln+i (p).

The radial functions must be normalised by the condition

j Rn i
2r2 dr = 1.

t Formula (36.10) was first derived by N. Bohr in 1913, before the discovery of quantum mechanics.

In quantum mechanics it was derived by W. Pauli in 1926 using the matrix method, and a few months

later by E. Schrodinger using the wave equation.
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Their final form isf

2
/ («+/)/ (n+l)\

V (n-/-1)!
(
2^-r/^(-«+/+l, 2/+ 2, 2r/n)

;

«'+2(2/+l)! V(n-/-l)I
(36.13)

the normalisation integral is calculated by (f.6)4

Near the origin, Rni has the form

At large distances,

Rnl « (-l)n-l-l
rn-le-r/n ,35 15)

The wave function R10 of the normal state decreases exponentially at distances
of the order r ~ 1, i.e. r ~ h^jnix in ordinary units.

The mean values of the various powers of r are calculated from the formula

00

rk =
J*

^+2^2 dr<

The general formula for rk can be obtained by means of formula (f.7). Here
we shall give the first few values of r* (for positive and negative k)

:

r =i[3n»-/(/+l)], r* =4»*[5»*+l-3/(/+l)]
f

^=r =l/»2, r"=i = l/„3(/+ J).

(36.16)

t We give the first few functions Rnl explicitly:

#20=(1/V2>-^(1-^),

R21 =(l/2V6)e-r/2r
,

R30 = (2/3 v3)e-'/3A--r+-A

fl31 = (8/27V6)e-^/3/l—X
R32

= (4/81 V30)e-r/3r2.

X The normalisation integral can also be calculated by substituting the expression (d.13) for the
Laguerre polynomials and integrating by parts (similarly to the calculation of the integral (c.ll) for
the Legendre polynomials).
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The spectrum of positive eigenvalues of the energy is continuous and

extends from zero to infinity. Each of these eigenvalues is infinitely degener-

ate ; to each value of E there corresponds an infinite number of states, with

/ taking all integral values from to oo (and with all possible values of m for

the given /).

The number n and the variable p, defined by the formulae (36.3), are now
purely imaginary

:

n = _;/v(2E) = -ijk, P = 2ikr (36.17)

(we have introduced the wave number k = y/(2E) in place of the energy).

The radial eigenfunctions of the continuous spectrum are of the form

R» = —^—(2krye-ik'F(ilk+l+l, 21+2, 2ikr), (36.18)

where the Ck are normalisation factors. They can be represented as a

complex integral (see §d)

:

1 r / 2ikr\-i lk-l
-'i

,

RM = C^krfe^— i> et(l
—J t*~2 df,

(36.19)

which is taken along the contourf shown in Fig. 10. The substitution

,, i-zikr

Fig. 10

| = 2ikr(t+ £) converts this integral to the more symmetrical form

(-2kr)~1
-1 r

Rkl = ck
- — &> <*l*r*(t+l)i /k-*-1(t-t)-*'

k-i-1 dt; (36.20)

the path of integration passes in the positive direction round the points

t = ± \. It is seen at once from this representation that the functions R kl

are real.

The asymptotic expansion (d.14) of the confluent hypergeometric function

enables us to obtain immediately a similar expansion for the wave functions

Rkt . The two terms in (d.14) give two complex conjugate expressions in the

| Instead of this contour we could use any closed loop passing round the singular points £ = and

£ = 2ikr in the positive direction. For integral /, the function V(g) = ^Jn-l^—2ikr)n^ (see §d)

returns to its initial value on passing round such a contour.



§36 Motion in a Coulomb field {spherical polar co-ordinates) 121

function Rhh and as a result we obtain

e-"/2k te-Hkr-irQ+i)/ 2+(l Ik) log 2kr]

Rh = Ck
——re G(/+l+i/*, i/*-Z, -2ftr)
&r ( r(Z+l— */&)

(36.21)

If we normalise the wave functions on the "k scale" (i.e. by the condition

(33.4)), the normalisation coefficient is

Ch = V(2/7r)fo"/2*|r(Z+l-*7A)|. (36.22)

For the asymptotic expression for R kl when r is large (the first term of the

expansion (36.21)) is then of the form

/2 1 1

Rki ~ / - -sin(Ar+- log 2kr—|Ztt+Sj),

V irr k
(36.23)

8,=argr(/+l-*/*),

in agreement with the general form (33.18) of the normalised wave functions

of the continuous spectrum in a centrally symmetric field. The expression

(36.23) differs from (33.18) by the presence of a logarithmic term in the argu-

ment of the sine ; however, since log r increases only slowly compared with r

itself, the presence of this term is immaterial in calculating a normalisation

integral which diverges at infinity.

The modulus of the gamma function which appears in the expression

(36.22) for the normalisation factor can be expressed in terms of elementary

functions. Using the familiar properties of gamma functions:

we have

and also

r(*+l) =zT(z), r(s)r(l-*) =7r/sin7rs,

r(/+i+f/*) = (/+»/*) ... (i+»/*)(i/ft)r(i/*),

ry+i-i/k) = (i-ilk) ... (i-i/k)r(i-i/k),

|r(/+i-t/ft)| = [r(/+i-^)r(/+i+^)] 1/2

-J\i\J(?+i)***l
Thus

2Vk

V(l-g-2"/*)

for / = the product is replaced by unity

tlJi***)''
(3624)
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The radial functions REl normalised on the "energy scale" are obtained

from the functions R kl by dividing by \/k: REl = k~iR Jel
(see (33.5)). By

passing to the limit as E -» (i.e. k -> 0), we can correctly obtain from Rm
the normalised radial function Rol for the particular case of zero energy,f
The limit of the series F(ijk+l+l, 2/+2, likr) as k -> is

r% try \«

1 —+ — ... = (2/+l)!(2r)-*-i/2/2l+1( V[8r]),
(2/+ 2)1! (2/+2)(2/+3)2!

where J21+1 is the Bessel function of order 21+ 1. The coefficient C& (36.24)

behaves as 2k~l+1/2 as k -> 0. We hence easily obtain

RQl
= V(2/r)J2l+1(V[8r]). (36.25)

The asymptotic form of this function for large r isj

RQl « (2/7rV)i/4 Sin(v[8r]-/7r-j7r). (36.26)

In a repulsive Coulomb field (U = a/r) there is only a continuous spectrum

of positive eigenvalues of the energy. Schrodinger's equation in this field

can be formally obtained from the equation for an attractive field by changing

the sign of r. Hence the wave functions of the stationary states are found

immediately from (36.18) by the same alteration. The normalisation co-

efficient is again determined from the asymptotic expression, and as a result

we obtain

RH = —j^—(2kr)¥^F(ilk+l+l, 21+2, -2ikr)
t

2
-ke-"l*k\T(l+ l+i/k)\

=
v(*2*/*-i) \J v V

+
*v

(36 '27)

The asymptotic expression for this function for large r is

Rm ~ /--sinf &-—-log2&r—J/w+8,J,

B
t
=arg r(/+l +*y&).

(36.28)

PROBLEMS
Problem 1. Determine the probability distribution of various values of the momentum

in the ground state of the hydrogen atom.

t It is found that in fact the function RBi normalised on the energy scale remains finite as E -> 0,

while Rki -> as k -* 0.

% It may be noted that this function corresponds to the quasi-classical approximation (§49) applied

to motion in the region (/+i)
2 <^ r <^ k~ 2

.
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Solution.! The wave function of the ground state is «A = R10Y00 = (l/\Z"-)«~r . The
wave function of this state in the p representation is then given by the integral

a(p) = (2tt)-3/2 f 0(r)<r*p.r dV

(see (15.10)). The integral is calculated by changing to spherical polar co-ordinates with the
polar axis along p; the result is$

«(p) =
77 (1+^2

)
2

and the probability density in p-space is |a(p)| 2
.

Problem 2. Determine the mean potential of the field created by the nucleus and the
electron in the ground state of the hydrogen atom.

Solution. The mean potential <f>e created by an "electron cloud" at an arbitrary point r
is most simply found as the spherically symmetric solution of Poisson's equation with charge
density p = — \ifi\

2
:

1 d2

—rirh) = 4e
~2r

-

r dr1

Integrating this equation, and choosing the constants so that
<f>e(0) is finite and <£e(oo) = (),

and adding the potential of the field of the nucleus, we obtain

t = -+Mr
) = (-+iV2r

-

For r^lwe have <f>
~ 1/r (the field of the nucleus), and for r > 1 the potential 4> ^ e~2r

(the nucleus is screened by the electron).

Problem 3. Determine the energy levels of a particle moving in a centrally symmetric
field with potential energy U = A/r2—B/r (Fig. 11).

Solution. The spectrum of positive energy levels is continuous, while that of negative
levels is discrete; we shall consider the latter. Schrodinger's equation for the radial func-
tion is

d2i? 2dR 2m/ h* 1 A B\+ +— ( E /(/+ 1) +— )R = 0. (1)
dr2 r dr h*\ 2rn V r* r J

l '

We introduce the new variable

p =2V(-2mE)r/h,

and the notation

2mAJha+l(l+l) =s(s+l),
(2)

BV(m/-2E)Jh =n. (3)

f In Problems 1 and 2, atomic units are used.

% The wave functions in the p representation for excited states in a Coulomb field are given by
H. A. Bethe and E. E. Salpeter, Handbuch der Physik 35, 88, Springer, Berlin 1957. These functions
were analysed by V. A. Fok and applied by him to calculate a number of complicated sums (Izvestiya
Akademii Nauk SSSR, Seriya fizicheskaya No. 2, 169, 1935).
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u(r)

§36

Fig. 11

Then equation (1) takes the form

2

P

2 /In s(s+ 1)\
#"+-*'+( --+—^—- )R = 0,

P \ 4 p p
2 /

which is formally identical with (36.4). Hence we can at once conclude that the solution

satisfying the necessary conditions is

R = p»e-Pl*F(-n+s+l, 2s+2, p),

where n—s— 1 = p must be a positive integer (or zero), and s must be taken as the positive

root of equation (2). From the definition (3) we consequently obtain the energy levels

En =
2B2m

h*
-RM-1+ V{(2/+l)24-8m,4//*2}]-2.

Problem 4. The same as Problem 3, but with U = A/^+Br2 (Fig. 12).

Solution. There is only a discrete spectrum. Schrodinger's equation is

d2R 2dR 2mr k2l(l+l) A
1 1— I E Br2

dr2 r dr h2L 2mr2 r2
]*- 0.

Introducing the variable

| = V(2mB)ri/H

Fig. 12
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and the notation

/(/+ 1)+2m,4//*2 = 2s(2s+l),

V(2m/B)Elh = 4(n+s)+3,

we obtain the equation

#r+-ir+[n+H-|-tf-*(*+i)/fl* = o.

The solution required behaves asymptotically as e~$£ when £ -> co, while for small f it is

proportional to £*, where s must be taken as the positive quantity

s = i[-l+ V{(2/+l)2+8m^2
}].

Hence we seek a solution in the form

R = e-UH'zo,

obtaining for w the equation

£w"+(2s+—nw'+nw = 0,

whence

w = F(-n,2s+-^y

where n must be a non-negative integer. We consequently find as the energy levels the infinite

set of equidistant values

En =^V(5/2m)[4n+2+V{(2/+l)2+8m^2}],n =0,1,2,....

§37. Motion in a Coulomb field (parabolic co-ordinates)

The separation of the variables in Schrodinger's equation written in

spherical polar co-ordinates is always possible for motion in any centrally

symmetric field. In the case of a Coulomb field, the separation of the variables

is also possible in what are called parabolic co-ordinates. The solution of the

problem of motion in a Coulomb field in terms of parabolic co-ordinates is

useful in investigating a number of problems where a certain direction in

space is distinctive; for example, for an atom in an external electric field

(see §77).

The parabolic co-ordinates £, 77, (f>
are defined by the formulae

x = V(£})W, y = V(£})sin<£, * =l(£—q),

r = v(*2
+:y

2+22
) = &£+!?),

or conversely

|=r+*, r, =r-z, <j>=tBir1
{ylxy, (37.2)

f and rj take values from to 00, and <j> from to 2tt. The surfaces £ =
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constant and rj = constant are paraboloids of revolution about the z-sotis,

with focus at the origin. This system of co-ordinates is orthogonal. The
element of length is given by the expression

(dZ)* = ^(d^+^Cd^+^d^, (37.3)

and the element of volume is

dV = £(£+77)d£Vty. (37.4)

From (37.3) we have the Laplacian operator

4 rd / d\ d / d\~] 1 8*

A=sAii(^K(%)]w (375)

Schrodinger's equation for a particle in an attractive Coulomb field with

U = -1/r = -2/(|+ i7) is

4 rd/ddt\ d / 8ifr\-i 1 2Ni / 2 \

irfii(y
+4wJ+i^+rw -

°-
(376)

Let us seek the eigenfunctions «/r in the form

=mm-nyim\ (37.7)

where m is the magnetic quantum number. Substituting this expression in

equation (37.6) multiplied by £(£+*?)» and separating the variables £ and rj,

we obtain for/i and/2 the equations

d/ d/i\

^-(^)+[^-Jm^+)82]/2 =0,

(37.8)

diy \ d?7

where the separation parameters j8i, /?2 are related by

ft+Ai = 1. (37.9)

Let us consider the discrete energy spectrum (E < 0). We introduce in

place of E, £, 77 the quantities

« = 1IV(-2E), Px = €V(-2E) = £ln, p2
= ,/», (37.10)

whereupon we obtain the equation for /1

"P7+-—+ -!+-(——+«i)-— /1 = 0, (37.11)
d/>i

2
Pi dPl L Pi \ 2 / 4Pl

2 J
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and a similar equation for/2, with the notation

"1 = -MM+ l)+"ft, n2 = -£(|m|+ l)+njS2 . (37.12)

Similarly to the calculation for equation (36.4), we find thatyj behaves as

e'tP 1 for large px and as p±
iw

for small px . Accordingly, we seek a solution

of equation (37.11) in the form

A(Pi) = r^w^^,
and similarly for/2, obtaining for zoi the equation

Pi«'i"+(M+ 1—Pi)wi+niwi
=°-

This is again the equation for a confluent hypergeometric function. The
solution satisfying the conditions of finiteness is

wi =F(—n1 ,
|w|+ l,px),

where n\ must be a non-negative integer.

Thus each stationary state of the discrete spectrum is determined in para-

bolic co-ordinates by three integers : the parabolic quantum numbers «i and

«2, and the magnetic quantum number m. For n, the principal quantum
number, we have from (37.9) and (37.12)

n =w1+«2+|m|+ l. (37.13)

For the energy levels, of course, we obtain our previous result (36.9).

For given «, the number \m\ can take n different values from to n— \.

For fixed n and \m\ the number nx takes n—\m\ values, from to n— \m\ — 1.

Taking into account also that for given \m\ we can choose the functions with

m = ±N|, we find that for a given n there are altogether

n-l
2 2 («-ot)+(k-0) = w2
m—l

different states, in agreement with the result obtained in §36.

The wave functions ifin^m of the discrete spectrum must be normalised

by the condition

00 00 2W

j I^J 2 dV = J JJJ l-An^l
2^) d^d, = 1. (37.14)

000

The normalised functions are

V2 / £\ /*?\ e
im*

*.%- - *A»(jJA-kh^ (37' 15)

where

1 /(/>+|m|)!

fpm(p) =— /
^(-A M+ 1. /»)^V""». (37.16)
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The wave functions in parabolic co-ordinates, unlike those in spherical
polar co-ordinates, are not symmetrical about the plane z = 0. For n± > w2

the probability of finding the particle in the direction z > is greater than
that for z < 0, and vice versa for n\ < n%.

To the continuous spectrum (E > 0) there corresponds a continuous spec-
trum of real values of the parameters ft, ft in equations (37.8) (connected as
before, of course, by the relation (37.9)). We shall not pause to write out here
the corresponding wave functions, since it is not usually necessary to employ
them. Equations (37.8), regarded as equations for the "eigenvalues" of the
quantities ft, ft, have also (for E > 0) a spectrum of complex values of ft
and ft. The corresponding wave functions are written out in §133, where
we shall use them to solve a problem of scattering in a Coulomb field.

In classical motion of a particle in a Coulomb field there is a conservation
law peculiar to this type of field :f

A = pxl— x\r = constant. (37.17)

In quantum mechanics the three components of this vector cannot simul-
taneously have definite values, since the operators^,Ay ,Az do not commute.
Any one of these operators, Az say, commutes (like the ^-component of any
vector; see (29.3)) with lz , but does not commute with the conserved square
of the angular momentum, I2 . The existence of another conserved quantity
which does not commute with the others leads (see §10) to an additional
degeneracy of the levels, and this is the accidental degeneracy peculiar to a
Coulomb field.

The description of motion in a Coulomb field by means of the wave
functions ijtnlm in spherical polar co-ordinates corresponds to states in which
not only the energy but also the square of the angular momentum and its

sr-component have definite values. The wave functions ifjnin,n in parabolic
co-ordinates, on the other hand, describe stationary states in which lz and A z
have definite values. It can be shown that the value ofA z is given in terms of
the quantum numbers n\, n%, n by

Az = (nz-n{)\n. (37.18)

t See Mechanics, §15.



CHAPTER VI

PERTURBATION THEORY

§38. Perturbations independent of time

The exact solution of Schrodinger's equation can be found only in a com-

paratively small number of the simplest cases. The majority of problems

in quantum mechanics lead to equations which are too complex to be solved

exactly. Often, however, quantities of different orders of magnitude appear

in the conditions of the problem ; among them there may be small quantities

such that, when they are neglected, the problem is so much simplified that its

exact solution becomes possible. In such cases, the first step in solving the

physical problem concerned is to solve exactly the simplified problem, and

the second step is to calculate approximately the errors due to the small terms

that have been neglected in the simplified problem. There is a general

method of calculating these errors; it is called perturbation theory.

Let us suppose that the Hamiltonian of a given physical system is of the

form

where V is a small correction {ox perturbation) to the unperturbed operator i? .

In §§38, 39 we shall consider perturbations V which do not depend explicitly

on time (the same is assumed regarding i? also). The conditions which are

necessary for it to be permissible to regard the operator V as "small" com-

pared with the operator fi will be derived below.

The problem of perturbation theory for a discrete spectrum can be formu-

lated as follows. It is assumed that the eigenfunctions «/rn
(0) and eigenvalues

Enw of the discrete spectrum of the unperturbed operator ff are known, i.e.

the exact solutions of the equation

#«# > = &°ty<» (38.1)

are known. It is desired to find approximate solutions of the equation

ify= (#0+^)0=^, (38.2)

i.e. approximate expressions for the eigenfunctions iftn and eigenvalues En of

the perturbed operator i?.

In this section we shall assume that no eigenvalue of the operator i? is

degenerate. Moreover, to simplify our results, we shall suppose that there

is only a discrete spectrum of eigenvalues ; all the formulae can be at once

generalised to the case where there is a continuous spectrum.

The calculations are conveniently performed in matrix form throughout

129
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To do this, we expand the required function $ in terms of the functions

&*
(0)

:

t = Zcmi/,m«».
(38.3)

Substituting this expansion in (38.2) we obtain

multiplying both sides of this equation by i/;k
W* and integrating, we find

{E-E^)ck = S Vkmcm . (38.4)

Here we have introduced the matrix Vkm of the perturbation operator V,
defined with respect to the unperturbed functions <^m (0)

:

Vkm =j^*^m(o) dq , (38>5)

We shall seek the values of the coefficients cm and the energy E in the form
of series

E = #»+jEa>+jE»+ ... , Cm = cj»+cmu+cj»+

where the quantities E™ and cJU are of the same order of smallness as the
perturbation P, the quantities £<2

> and cm <2 > are of the second order of small-
ness (if V is of the first order), and so on.

Let us determine the corrections to the nth. eigenvalue and eigenfunction,
putting accordingly *B <°> = 1, cm <°> = for m # n. To find the first approxi-
mation, we substitute in equation (38.4) E = En^+En

(x \ ck = ckW+cJ*\
and retain only terms of the first order. The equation with k = n gives

En{1) = Vnn =j +®*fy® dq. (38.6)

Thus the first-order correction to the eigenvalue £M°> is equal to the mean
value of the perturbation in the state tpn

(0)
.

The equation (38.4) with k ^ n gives

'*
(1) = V^KE^-E^) for k^n,

while cn
<u remains arbitrary; it must be chosen so that the function tpn =

*Pn
0)+ l

f'n
(1) is normalised up to and including terms of the first order. For

this we can put c
TC

(1 > = 0. For the functions

m ^n L'm

(the prime means that the term with m = n is omitted from the sum) are
orthogonal to n <«>, and hence the integral of l^^+^l 2 differs from unity
only by a quantity of the second order of smallness.
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Formula (38.7) determines the correction to the wave functions in the first
approximation. Incidentally, we see from this formula the condition for the
applicability of the above method of perturbation theory. This condition is
that the inequality

\Vmn \ <\E®-EJ>\ (38.8)

must hold, i.e. the matrix elements of the operator ^must be small compared
with the corresponding differences between the unperturbed energy levels.

Next, let us determine the correction to the eigenvalue £n <°> in the second
approximation. To do this, we substitute in (38.4) E = En<°)+EnM+E (2)

ck = £fc
(0)

+£ft
(1) +c& (2)

, and examine the terms of the second order of small-
ness. The equation with k = n gives

E ®>C <°> = S' V r CD

whence

E,«
(2) =2

' \V I

2
mn\

E <®—E <°>
(38.9)

(we have substituted cj" = VmJ(EnW-Em^) t
and used the fact that, since

the operator V is Hermitian, Vmn = Vnm*).

We notice that the correction in the second approximation to the energy
of the normal state is always negative; for, since £n <°> then corresponds to
the lowest value of the energy, all the terms in the sum (38.9) are negative.
The further approximations can be calculated in an exactly similar manner.
The results obtained can be generalised at once to the case where the

operator H has also a continuous spectrum (but the perturbation is applied,
as before, to a state of the discrete spectrum). To do so, we need only add to
the sums over the discrete spectrum the corresponding integrals over the
continuous spectrum. We shall distinguish the various states of the continu-
ous spectrum by the suffix v, which takes a continuous range of values; by v
we conventionally understand an assembly of values of quantities sufficient
for a complete description of the state (if the states of the continuous spec-
trum are degenerate, which is almost always the case, the value of the energy
alone does not suffice to determine the state).f Then, for instance, we must
write instead of (38.7)

and similarly for the other formulae.
It is useful to note also the formula for the perturbed value of the matrix

element of a physical quantity/, calculated as far as terms of the first order
by using the functions n = ^<°>+0n tt>

f with ^a)
given by (38.7). The

t Here the wave functions «£„(») must be normalised by delta functions of the quantities v.
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following expression is easily obtained:

^' *W*m(0) ^' VkmfnkW
f =f (o)+ > u > (38 U)

k *-"n. ^k k ^m ^k

In the first sum k ^ n, while in the second k ^ m.

PROBLEMS
Problem 1. Determine the correction ^„(2) in the second approximation to the eigen-

functions.

Solution. The coefficients Ck(2) (k ^ n) are calculated from equations (38.4) with k ^ n,

written out up to terms of the second order, and the coefficient c„<
2

> is chosen so that the

function t(in = ^n(0) +^n(1) +^»(2) is normalised up to terms of the second order. As a result

we find

*•* =22 j£S^-*-2 ^---**.-2'fe^m k
ulnkwnm m '* wnm m n wnm

where we have introduced the frequencies

Problem 2. Determine the correction in the third approximation to the eigenvalues of the

energy.

Solution. Writing out the terms of the third order of smallness in equation (38.4) with

k — n, we obtain

„
(3) _ V"V' ^nmYmkVkn NT^' \Vn,

Problem 3. Determine the energy levels of an anharmonic linear oscillator whose Hamil-

tonian is

Solution. The matrix elements of x3 and ** can be obtained directly according to the

rule of matrix multiplication, using the expression (23.4) for the matrix elements of x. We
find for the matrix elements of x3 that are not zero

(^)n-3 ,« = («)..-. = (hlmcof/W[Mn-l)(n-2)],

(*)-!.. = (^)«,«-i =(W3/V(M8).
The diagonal elements in this matrix vanish, so that the correction in the first approximation

due to the term ax3 in the Hamiltonian (regarded as a perturbation of the harmonic oscillator)

is zero. The correction in the second approximation due to this term is of the same order as

that in the first approximation due to the term fa*. The diagonal matrix elements of a:
4 are

(**)«,« = (h/mojy . |(2»2+2W+1).

Using the general formulae (38.6) and (38.9), we find the following approximate expression

for the energy levels of the anharmonic oscillator:

15 a2 / h \V 11\ 3 / h \ 2

En =ha>{n+l)--—{— )
(»+„+_ )+-p(_) <w2+w+*)-

4 hat \mco/ \ 30/ 2 \mco/
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§39. The secular equation

Let us now turn to the case where the unperturbed operator # has de-
generate eigenvalues. We denote by </rn <°>, ^n,<o)

f
... the eigenfunctions be-

longing to the same eigenvalue £n <°> of the energy. The choice of these func-
tions is, as we know, not unique; instead of them we can choose any s (where
s is the degree of degeneracy of the level £n <°>) independent linear combina-
tions of these functions. The choice ceases to be arbitrary, however, if we
subject the wave functions to the requirement that the change in them'under
the action of the small applied perturbation should be small.
At present we shall understand by if,n «>\ fnS<>\ ... some arbitrarily selected

unperturbed eigenfunctions. The correct functions in the zeroth approxima-
tion are linear combinations of the form %<°tyn <°> + cn > «»ipn ' «»+.... The co-
efficients in these combinations are determined, together with the corrections
in the first approximation to the eigenvalues, as follows.

We write out equations (38.4) with £=»,»',..., and substitute in them,
in the first approximation, E = £n«»+£(i)

;
for the quantities ch it suffices

to take the zero-order values cn = cn <°\ cn . = cj°\ ... ; cm = for m # n,
n', ... . We then obtain

or

S(Fnn,-#»Swn0^<°>=0, (39.1)

where n, n' take all values denumerating states belonging to the given un-
perturbed eigenvalue £

TC
<°>. This system of homogeneous linear equations

for the quantities c„<0) has solutions which are not all zero if the determinant
of the coefficients of the unknowns vanishes. Thus we obtain the equation

|Fnn,-2?a>Snn,|=(). (39.2)

This equation is of the rth degree in E™ and has, in general, s different real
roots. These roots are the required corrections to the eigenvalues in the first

approximation. Equation (39.2) is called the secular equation.} We notice
that the sum of its roots is equal to the sum. of the diagonal matrix elements
Vnn > Vnn; »• (tnis being the coefficient of [2?fl)]*-i in the equation).

Substituting in turn the roots of equation (39.2) in the system (39.1) and
solving, we find the coefficients <:n

< > and so determine the eigenfunctions
in the zeroth approximation.

We notice that, as a result of the perturbation, an originally degenerate
energy level ceases in general to be degenerate (the roots of equation (39.2)
are in general distinct); the perturbation removes the degeneracy, as we say.
The removal of the degeneracy may be either total or partial (in the latter
case, after the perturbation has been applied, there remains a degeneracy of
degree less than the original one).

t The name is taken from celestial mechanics.
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It may happen that all the matrix elements for transitions between the

states «, n\ ... with a single energy are zero. The correction to the energy

then vanishes in the first approximation. Let us calculate the correction in

the second approximation for this case. In equation (38.4) with k = n we
put on the left-hand side E = Enw+E®\ and write cn

w in place of cn . Only

the terms with m ^ w, »', ... on the right-hand side are different from zero,

and since cmw = we have

EPcf* = S Vnmc^\ (39.3)m

The equation (38.4) with k = m ^ n, ri

,

... , on the other hand, gives, correct

to terms of the first order,

n

whence

c 0> = V Vmn
'

c .<o>

n

Substituting in (39.3), we obtain

£(2)c (0) = V c ,(0)VM!!!ln
Z-,

n
Z-, e <°>— £• <°>

'

This system of equations for the cn
(0) now replaces the system (39.1); the

condition that these equations are compatible is

xr-^ V V >^ nm mn -&%nn .

£i F. (o)—E (°)—E <°>

= 0. (39.4)

Thus here also the corrections to the energy are calculated as the roots of a

secular equation, in which, instead of the matrix elements Vnn >, we now have

the sums
'

2* nm* mn'

E (°)—E (o)

PROBLEMS
Problem 1. Determine the corrections to the eigenvalue in the first approximation and

the correct functions in the zeroth approximation, for a doubly degenerate level.

Solution. Equation (39.2) here has the form

Vu-E»> V12

V» V,,-E^
=

(the suffixes 1 and 2 correspond to two arbitrarily chosen unperturbed eigenfunctions i/^ *
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and 0a (o) of the doubly degenerate level in question). Solving, we find

£(1) = *[(FU+ v22)±v{(v11
- v22y+4\ F12p}]. (i)

Solving also equations (39.1) with these values of £<D, we obtain for the coefficients in the
correct normalised function in the zeroth approximation, i/r«» = ci< >«Ai<°) + c2< ><A2<°> the
values '

w= f
v12 r . F,i-F« 1U

br

ca
<°>

fl± ^^ I)*
|L V{(^i-^2)

2+4|F12|2}J/ ,

(2)

- =fc l^LTlT ^^ I)*
(2| V12 \ I V{(VX1

-V22)*+4\ F12p}Jj
'

Problem 2. Derive the formulae for the correction to the eigenfunctions in the first
approximation and to the eigenvalues in the second approximation.

Solution. We shall suppose that the correct functions in the zeroth approximation are
chosen as the functions *„(»>. The matrix Vnn, defined with respect to these is clearly diagonal
with respect to the suffixes n, n' (belonging to the same group of functions of a degenerate

Zfxi*^ di
f
go
?
al elements V-> Vww are equal to the corresponding corrections

*V \ i4n»* ', ... in the first approximation.
Let us consider a perturbation of the eigenfunction if>nM, so that in the zeroth approxima-

tion E = En (0)
,
c„(°) = 1, c»(°) = for m # n. In the first approximation E = En^ + Vnn

c» - 1 +c»(1,
» Cr» = cmM. We write out from the system (38.4) the equation with k ^ n n'

retaining in it terms of the first order: ' ''"'

W-E^p = Vkncn«» = Vkn ,

whence

<*(1) = VjJVZjn-EP) for h ± n, n\ ...

.

(1)

Next we write out the equation with k = n\ retaining in it terms of the second order:

En<»cn 'to = Vn >n > c„'<«-f E' V > c «

(the terms with m = n, n', ... are omitted in the sum over m). Substituting E <*> = V and
the expression (1) for cmW, we obtain for n' # n

" ""

1 xrV V > V
(X)

~ X ' n m r mn

V — V • > ^-i F (0)_ F (0)

'

(2)

(In this approximation the coefficient c»U> is zero.) Formulae (1) and (2) determine the
correction 0.W = Sc^tyJ") to the eigenfunctions in the first approximation.

Finally, writing out the second-order terms in equation (38.4) with k = n, we obtain for
the second-order corrections to the energy the formula

V V' nm v mn
2) = y _Vnm_

r E«
(0)--£<<»' (3)

which is formally identical with (38.9).

Problem 3. At the initial instant * = 0, a system is in a state &<») which belongs to adoubly degenerate level. Determine the probability that, at a subsequent instant t, the
system will be in the state &«» with the same energy; the transition occurs under the action
of a constant perturbation.

Solution. We form the correct functions in the zeroth approximation,
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where clt ct ; c^, ct
' are two pairs of coefficients determined by formulae (2) of Problem 1

(for brevity, we omit the index (°) on all quantities).

Conversely,

«Ai
=

;
—

The functions ifi and ifi' belong to states with perturbed energies E+EW and E+EW, where
EW and EW are the two values of the correction (1) in Problem 1. On introducing the time
factors we pass to the time-dependent wave functions

:

g-dfldEt

Tx
=

;
—[c^e-QlMEt-Citft'e-QlME <]

tjtg — ^l ^2

(at time t = 0, Tj = fa). Finally, again expressing tft, tfi' in terms of fa, fa, we obtain Yj
as a linear combination of fa and fa, with coefficients depending on time. The squared modu-
lus of the coefficient of fa determines the required transition probability w12 . Calculation

gives
/ Q

\

e-(i/h)E
Kl't_

e-(i/h)E
Kl

'

<|2
j

or, substituting formulae (1) and (2) from Problem 1,

2|rM|»

MV12\'+(V11-V22f
l-cos^-VliV^-V^f+^V^ty^ . (1)

We see that the probability varies periodically with time, with frequency (EW—EW)jH.
For times t which are small compared with the period in question, the expression in the

braces, and therefore W12, is proportional to t
2

: W12 = \Vi2\ 2
t2/Hz . This formula can be very

simply obtained by the method given in the next section (using equation (40.4)).

§40. Perturbations depending on time

Let us now go on to study perturbations depending explicitly on time. We
cannot speak in this case of corrections to the eigenvalues, since, when the

Hamiltonian is time-dependent (as will be the perturbed operator & = $Q+
+ !?"(£)), the energy is not conserved, so that there are no stationary states.

The problem here consists in approximately calculating the wave functions

from those of the stationary states of the unperturbed system.

To do this, we shall apply a method analogous to the well-known method
of varying the constants to solve linear differential equations (P. A. M. Dirac
1926). Let Y& (0) be the wave functions (including the time factor) of the

stationary states of the unperturbed system. Then an arbitrary solution of the

unperturbed wave equation can be written in the form of a sum:
T = 2flfc¥V°). We shall now seek the solution of the perturbed equation

ih dW/dt = (# + P)¥ (40.1)

in the form of a sum

T = S<z
fc
(0T

fc

<o>,
(40.2)

where the expansion coefficients are functions of time. Substituting (40.2)
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in (40.1), and recalling that the functions Y^ satisfy the equation

we obtain

k "t k

Multiplying both sides of this equation on the left by TOT
(0)* and integrating,

we have

where

are the matrix elements of the perturbation, including the time factor (and

it must be borne in mind that, when V depends explicitly on time, the quanti-

ties Vmk also are functions of time).

As the unperturbed wave function we take the wave function of the nth

stationary state, for which the corresponding values of the coefficients in

(40.2) are an
(0) = 1, akw = for k # n. To find the first approximation,

we seek ah in the form a k = a k
w+ak

a)
, substituting ak = ak

{0) on the

right-hand side of equation (40.3), which already contains the small quantities

Vmk . This gives

ihdakV>ldt = Vkn(t)- (40.4)

In order to show the unperturbed function to which the correction is being

calculated, we introduce a second suffix in the coefficients a k , writing

Yn = Safcn(*)V.

Accordingly, we write the result of integrating equation (40.4) in the form

a*»(1) = -(«/*)
J*
Vkn(t) & = -(ilh) j Vkne*»*nt dt, (40.5)

where we have introduced the frequencies (okn = (Ekw—En
{0)

)lh. This

determines the wave functions in the first approximation.

We can similarly determine the subsequent approximations (in practice,

however, the first approximation is adequate in the majority of cases).

Let us now consider in more detail the case of a perturbation which is

periodic with respect to time, of the form

p z= pe-i<ot+@eic*t i (40.6)
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where P and are operators independent of time. Since V is Hermitian,

we must have Vnm = Vmn*, or

J? p-ioit 1/7 oittit _ K1 *pi(oiir; #p-io>t

from which

which determines the relation between the operators and P. Using this

relation, we have

= Ftoe*a*-ai*+Fia *e
1la>*»+ ai*. (40.8)

Substituting in (40.5) and integrating, we obtain the following expression for

the expansion coefficients of the wave functions

:

Fto/to**-"* Fnl *e*-Mkn+<»V

K(<x)kn—aj) H(ajkn+co)

These expressions are applicable if none of the denominators vanishes,! i.e.

if for all k (and the given n)

EjP-E® * ±hco. (40.10)

In a number of applications it is useful to have expressions for the matrix

elements of an arbitrary quantity /, defined with respect to the perturbed

wave functions. In the first approximation we have

JnmSJ) = Jnm \f)ijnm \r)i

where

fnm(°Kt) = jTnW*/Tw(0)d? =/BJ¥M
/™(1)

(0 = jW0)
*/V+^«(1)*/^0)

] dq.

Substituting here Tn
<1) = S a&n

cl,,*V0)
» with «

fcTC
(1) determined by formula

(40.9), it is easy to obtain the required expression

fnnP(t) = -*"*"*V [\
f<*®F*» +

f*»®F** 1
e-^<+^ lL^(a)fcm— cu) ^(eo^+a^J

+
r/A* A^V-i^a

(40 .n)
L^(coftTO+co) n{oikn— u))j )

f More precisely, if none is so small that the quantities ajenW are no longer small compared with

unity.
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This formula is applicable if none of its terms becomes large, i.e. if none of
the frequencies o)^n , co^m is too close to co. For <o = we return to formula
(38.11).

In all the formulae given here, it is understood that there is only a discrete

spectrum of unperturbed energy levels. However, these formulae can be
immediately generalised to the case where there is also a continuous spectrum
(as before, we are concerned with the perturbation of states of the discrete

spectrum) ; this is done by simply adding to the sums over the levels of the
discrete spectrum the corresponding integrals over the continuous spectrum.
Here it is necessary for the denominators a)kn±eo in formulae (40.9), (40.11)

to be non-zero when the energy Ek
w takes all values, not only of the discrete

but also of the continuous spectrum. If, as usually happens, the continuous
spectrum lies above all the levels of the discrete spectrum, then, for instance,

the condition (40.10) must be supplemented by the condition

EnJQ-E® > ha>, (40.12)

where J?min
(0) is the energy of the lowest level of the continuous spectrum.

PROBLEM
Determine the change in the nth and mth solutions of Schrodinger's equation in the

presence of a periodic perturbation (of the form (40.6)), of frequency a» such that £'m< >—EJ'1
= h(a>+e), where e is a small quantity.

Solution. The method developed in the text is here inapplicable, since the coefficient

aj1
' in (40.9) becomes large. We start afresh from the exact equations (40.3), with Vmlc(t)

given by (40.8). It is evident that the most important effect is due to those terms, in the
sums on the right-hand side of equations (40.3), in which the time dependence is determined
by the small frequency tomn— to. Omitting all other terms, we obtain a system of two equa-
tions :

ihdajdt = Fmne*<°mn-<»)tan = Fmne™ani

ihdajdt = Fmn*e-^am .

We make the substitution

a eiet = h

and obtain the equations

ihdm = Fmnbnt th(bn—t€bn) = Fmn*am .

Eliminating am , we have

hn-kbn+\Fmn\*bnl¥ = 0.

We can take as two independent solutions of these equations

an = AeW, am = ~Ah^
x
e^\Fm *

(1)

and

an = Be-W, am = Bkx^-W/F^*, (2)
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where A and B are constants (which have to be determined from the normalisation condition),

and we have used the notation

«1 = -h+Vih2+\Fmn\ 2m a2 =h+V[k2+\Fmn\Wl

Thus, under the action of the perturbation, the functions Y„(°>, Tm<°) become an¥n<°>+
+amYTO

<°), with an and am given by (1) and (2).

Let the system be in the state Tm<°> at the initial instant (t — 0). The state of the system
at subsequent instants is given by a linear combination of the two functions which we have
obtained, which becomes Yro

<°) for t — 0:

I*"
win 1—e-^/2sinV[ie2+|Fmn|2/^

2
]« Tn«». (3)

The squared modulus of the coefficient ofYn
(°) is

^•\r mr>

/*
2
e2+4|^„

^l-cosV[€2+4|^wn |

2/^]0. (4)

This gives the probability of finding the system in the state VFn(°> at time t. We see that it is a

periodic function with period 2irh(e2 h2 +4\Fmn \

z)~ i
, and varies from to 4l.FmB|V(J*

2 e 2 4-

+4| JFran
|

2
).

For e = (exact resonance) the probability (4) becomes

*(l-cos2|Fmn|^).

It varies periodically, with period nH/\Fmn \, between and 1; in other words, the system
makes periodic transitions from the state Tm<°) to the state Y,,* ).

§41. Transitions under a perturbation acting for a finite time

Let us suppose that the perturbation V(t) acts only during some finite

interval of time (or that V(t) diminishes sufficiently rapidly as t -> ± oo).

Let the system be in the nth stationary state (of a discrete spectrum) before

the perturbation begins to act (or in the limit as t -> — oo). At any subsequent
instant the state of the system will be determined by the function T =
2 a k1^¥kw , where, in the first approximation,

«*n = ak
v> = -- f V^e^Jdt for k*n,

ann = l+aBn<« = 1-- I Vn

(41.1)

d*;

the limits of integration in (40.5) are taken so that, as t -> — oo, all the tf&n
(1>

tend to zero. After the perturbation has ceased to act (or in the limit t ->

+ oo), the coefficients ahn take constant values akn{co), and the system is in
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the state with wave function

Y = S«ftn(a>W0)
,

which again satisfies the unperturbed wave equation, but is different from
the original function ¥n <0)

. According to the general rule, the squared
modulus of the coefficient akn(co) determines the probability for the system
to have an energy Ek <°\ i.e. to be in the Mi stationary state.

Thus, under the action of the perturbation, the system may pass from its

initial stationary state to any other. The probability of a transition from
the original (wth) to the Ath stationary state is

h*\J
V*^°>*f dt (41.2)

Let us now consider a perturbation which, once having begun, continues
to act for an indefinite time (always, of course, remaining small). In other
words, V(t) tends to zero as t -» — oo and to a finite non-zero limit as t ->

+ oo. Formula (41.2) cannot be applied directly here, since the integral in
it diverges. This divergence, however, is physically unimportant and can
easily be removed. To do this, we integrate by parts

:

-—IJ^*--[^T+J—— *•

The value of the first term vanishes at the lower limit, while at the upper
limit it is formally identical with the expansion coefficients in formula (38.7);
the presence of an additional periodic factor e

%0iknt
is merely due to the fact

that the akn are the expansion coefficients of the complete wave function T,
while the ckn in §38 are the expansion coefficients of the time-independent
function

*Jj.
Hence it is clear that its limit as t -* oo gives simply the change

in the original wave function *Fn
(0

> under the action of the "constant part"
F(+ oo) of the perturbation, and consequently has no relation to transitions

into other states. The probability of a transition is given by the squared
modulus of the second term and is

wnk = — **"*' dtW I J dt/
(41.3)

The derivation is also valid when the transition is from a state of the discrete

spectrum to a state of the continuous spectrum. The only difference is that
here we have the probability of the transition from a given (nth) state to states

in a range of values of v (see §38) from v to v + dv, so that, for example, formula
(41.2) must be written

°°

1 I /* 2

dwnv = — Vvnei(°vnt dt dv. (41.4)
h2

\ J
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If the perturbation V(t) varies little during time intervals of the order of

the period l/co fcn the value of the integral in (41.2) or (41.3) will be very
small. In the limit when the applied perturbation varies arbitrarily slowly, the

probability of any transition with change of energy (i.e. with a non-zero
frequency cakn) tends to zero. Thus, when the applied perturbation changes
sufficiently slowly {adiabatically), a system in any non-degenerate stationary

state will remain in that state (see also §53).

In the opposite limiting case of a very rapid, "instantaneous" application of

the perturbation, the derivatives dVjcn/dt become infinite at the "instant of

application". In the integral of (8Vknldt)ei ' ^ t
, we can take outside the

integral the comparatively slowly varying factor e*w*»* and use its value at

this instant. The integral is then found at once, and we obtain

v>nk=\Vkn
\

2/h*a>kn*. (41.5)

The transition probabilities in instantaneous perturbations can also be
found in cases where the perturbation is not small. Let the system be in a

state described by one of the eigenfunctions ifjn (Q) of the original Hamiltonian
Ho. If the change in the Hamiltonian occurs instantaneously (i.e. in a time
short compared with the periods l/toto of transitions from the given state n
to other states), then the wave function of the system is "unable" to vary and
remains the same as before the perturbation. It will no longer, however, be
an eigenfunction of the new Hamiltonian H of the system, i.e. the state

j/fw <°> will not be a stationary state. The probabilities wnk for transitions of

the system into the new stationary states are determined, according to the
general rules of quantum mechanics, by the coefficients in the expansion of the

function iftn (°> in terms of the eigenfunctions *pn of the Hamiltonian i?:

™nk =
| \WmH* <*/. (41.6)

We shall show how this general formula becomes (41.5) if the change
V = A— i? in the Hamiltonian is small. We multiply the equations

by ifjjc* and i/%<°)* respectively, integrate with respect to q and subtract.

Using also the self-conjugacy of the operator ]2, we obtain

(Ek-En™) j <A**<An
(0) d? = j 0**Jty»(O) 6q.

If the perturbation V is small, in the first approximation we can replace

Ejc by the adjoining unperturbed level E^, and the wave function ifj^ (on

the right-hand side of the equation) by the corresponding function i/jjc^.

This gives

f «A*W0) dq = [ W<»*fyn
{0) dq,

J natjcn J

and formula (41.6) becomes (41.5).
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PROBLEMS
Problem 1. A uniform electric field is suddenly applied to a charged oscillator in the

ground state. Determine the probabilities of transitions of the oscillator to excited states

under the action of this perturbation.

Solution. The potential energy of the oscillator in the uniform field (which exerts a
force F on it) is

U(x) = \moi2x2—Fx

= %maj2(x—xo)2+ constant

(where xo = F/mw2
), i.e. has still the pure oscillator form but with the equilibrium position

shifted. Hence the wave functions of the stationary states of the perturbed oscillator are
<lik(x—xo), where >/ijc(x) are the oscillator functions (23.12); the initial wave function is

tfio(x) (23.13). Using these functions and the expression (23.11) for the Hermite polynomials,
we find

00 00

f (-1)* r d*
«£o

(0
ty* dx = — —e-£o<>/2 e-Uo e-^+2Ko d£,

J y/(2*irk\) J d£*
-00 v \ / _K)

with the notation |o = xo-\Z(tnu)jh). On integrating k times by parts, the integral on the
right becomes

00

—00

Thus the transition probability (41.6) is

£
2*

As a function of the number k it represents a Poisson distribution for which the mean value
of k is

k = #„z = F*l2mha>*.

Perturbation theory is applicable when F is small, so that k <^ 1. Then the excitation

probabilities are small, and decrease rapidly with increasing k. The largest is woi = k.

In the opposite case of large F (k ^> 1), excitation of the oscillator occurs with very high

probability: the probability that the oscillator will remain in the normal state is woo = e~*.

Problem 2. The nucleus of an atom in the normal state receives an impulse which gives
it a velocity v; the duration t of the impulse is assumed short in comparison both with the
electron periods and with ajv, where a is the dimension of the atom. Determine the probability
of excitation of the atom under the influence of such a "jolt" (A. B. Migdal 1939).

Solution. We use a frame of reference K' moving with the nucleus after the impact.
By virtue of the condition r <^ afv, the nucleus may be regarded as practically stationary
during the impact, so that the co-ordinates of the electrons in K' and in the original frameK
immediately after the perturbation are the same. The initial wave function in K' is

*i>o = ^0 exp(— tq . 2 rfl), q = mvjh,

where ^o is the wave function of the normal state with the nucleus at rest, and the summation
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in the exponent is over all Z electrons in the atom; see §15, Problem 2. The required prob-
ability of transition to the Ath excited state is now given, according to (41.6), by

WOK
J fa* exp(-iq . 2 ra)^ dFi ... dVz \2 .

In particular, if qa <^ 1 , then by expanding the exponential factor in the integrand and noting
that the integral of <pk*<jio is zero because the functions ifio and ipk are orthogonal, we obtain

»0*
|
f^»(q.Sro)0odFi...dKz| 2

.

J a

Problem 3. Determine the total probability of excitation and ionisation of an atom of
hydrogen which receives a sudden "jolt" (see Problem 2).

Solution. The required probability can be calculated as the difference

1 -WOO = 1 -
1 J

Wer*** d j/|2
f

where woo is the probability that the atom will remain in the ground state (^o = TT~U2e~rla

being the wave function of the ground state of the hydrogen atom, with a the Bohr radius).
Calculation of the integral gives

l-«oo= l-l/(l+&2«2
)
4

.

In the limiting case qa <^ 1 this probability tends to zero as q
2a2

, while for qa ^> 1 it tends to
unity as 1 — (2/qa) s

.

Problem 4. Determine the probability that an electron will leave the K-shell of an atom
with large atomic number Z when the nucleus undergoes /3-decay. The velocity of the
^-particle is assumed large in comparison with that of the iC-electron (A. B. Migdal and
E. L. Feinberg 1941).

Solution.! In the conditions stated the time taken by the ^-particle to pass through the
iC-shell is small compared with the period of revolution of the electron, so that the change in
the nuclear charge can be regarded as instantaneous. The perturbation is here represented
by the change V = 1/r in the field of the nucleus when the change in its charge is small
(1 compared with Z). According to (41.5) the transition probability for one of the two iC-shell
electrons with energy Eo = —\Z2 (here and below we use the fact that the state of the K-
electrons is hydrogen-like; see §74) to a state of the continuous spectrum with energy
E = $k2 in the range dE = k dk is

dw = 2 d&.
(£2+ Z2)2

In the range which determines the matrix element Voic, the important part is that of short
distances (~l/Z) from the nucleus, in which the hydrogen-like expression can again be used
for the wave function of a state of the continuous spectrum. The final state of the electron
must have angular momentum I = (the same as that of the initial state). By means of the
functions Rio and i?&o (normalised on the k scale) derived in §36 and formula (f.3) in the
Mathematical Appendices we findJ

1 \ 4Vk ( 1 + tkjZ)W*( 1 - ikjZ)-iz/k

\r/okOk y/(l-er*»V*) 1+&2/Z2

t In Problems 4 and 5, atomic units are used.

| In the calculation it is convenient to use Coulomb units and then return to atomic units in the
final result.
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and, since

|(l+w)</«| 2 = exp[-(2/a)tan-1 a],

we obtain finally

dw = f(k/Z)k dk,

with

1

/(°0 = : TT exP[~(4/a) tan"1 a].

The limiting values of the function /(a) are e~4 for a <^ 1 and v.\2-n for a > 1.

The total probability of ionisation of the X-shell is obtained by integration of dw over all

energies of the emergent electron. A numerical evaluation gives w = 0-652T2 .

Problem 5. Determine the probability of emergence of an electron from the i^-shell
of an atom with large Z in oc-decay of the nucleus. The velocity of the oc-particle is small
compared with that of the ^-electron, but the time which it takes to leave the nucleus is small
in comparison with the time of revolution of the electron.!

Solution. After the emergence of the oc-particle, the perturbation acting on the electron
is adiabatic. The required effect is therefore determined essentially by the interval of time
close to the "instant of application' ' of the perturbation which destroys the adiabaticity, when
the a-particle, leaving the nucleus and moving freely, is still at a distance small compared with
the radius of the iC-orbit. The perturbation V which causes the ionisation of the atom is
here represented by the deviation of the combined field of the nucleus and the a-particle
from the purely Coulomb field Zjr. The dipole moment of two particles with atomic weights
4 and A—\, and charges 2 and Z—2, at a distance vt apart (where v is the relative velocity of
the nucleus and the a-particle), is{

2(4- 4)-(Z- 2)4 2(A-2Z)
vt = vt.

A A
Hence the dipole term in the field of the nucleus and the a-particle is||

2(A-2Z) z
V = vt—,

A f3'

where the 2-axis is in the direction of the velocity v. The matrix element of this perturbation
reduces to that of z: taking the matrix element of the equation of motion of the electron
z = —Zz/r3

, we obtain

(zlr*)ok = (E-E )*z iclZ.

The required transition probability for one of the two electrons in the K-shell is, by (41.2),

dw = 2|
J

Voke^Eo-Eu dt\ dk

o

$(A-2Z)2v2

A2Z*
Fo*|

2 dk;

t This problem was first discussed by A. B. Migdal (1941).

} The necessity of simultaneously considering the motion of the a-particle and that of the nucleus
in this problem has been pointed out by J. S. Levinger (1953).

||
If the difference A— 2Z is small, it may be necessary to take account of the next (quadrupole)

term also.
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to calculate the integral, we include in the integrand an additional damping factor e~M with
A > 0, and then make A -> in the result. To calculate the matrix element of z — r cos 6,
we note that, since the orbital angular momentum in the initial state is I = 0, cos has a non-
zero matrix element only for the transition to a state with 1=1, and

|(cos0)oi|2 = (COS0)OO = |
and M 2 = i\r0k

\

2
.

Calculating rok by means of the radial functions Roo and Rki, we find

211(A-2ZW
dzv = f(k/Z)k dk,

3A2Z%l+k*IZ2)S

the function / being as in Problem 4.

§42. Transitions under the action of a periodic perturbation

The results are different for the probability of transitions to the states of

the continuous spectrum under the action of a periodic perturbation. Let
us suppose that, at some initial instant t = 0, the system is in the wth station-

ary state of the discrete spectrum. We shall assume that the frequency co of

the periodic perturbation is such that

hco>Emin-E^\ (42.1)

where Emin is the value of the energy where the continuous spectrum begins.

It is evident from the results of §40 that the chief part will be played by
states with energies Ev very close to the resonance energy Enw +hco, i.e. those

for which the difference covn—co is small.f For this reason it is sufficient to

consider, in the matrix elements (40.8) of the perturbation, only the first

term (with the frequency co vn— co close to zero). Substituting this term in

(40.5) and integrating, we obtain

"vn = -t K„(t) dt = -F- _. (42.2)
hj %n-w)

The lower limit of integration is chosen so that avn = for t =0, in accord-

ance with the initial condition imposed.

Hence we find for the squared modulus of avn

KJ 2 = l*UI
2

• 4 sin*[Kc^-a,)*]//*V,,„-")2
. (42.3)

It is easy to see that, for large t, this function can be regarded as propor-

tional to t. To show this, we notice that

sin2a£
lim = 8(a). (42.4)
f->oo Trta?

For when a # this limit is zero, while for a = we have (sin2otf)/ta2 = t,

so that the limit is infinite; finally, integrating over a from — oo to +a>,

f We recall that the suffix v refers to the continuous spectrum (see the end of §38).
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we have (with the substitution at = £)

1 r sin2af 1 j* sin2£1 r sm2xt 1 f sin2£
- ——da =- d$ = 1.

77-J to2 77 J £2

Thus the function on the left-hand side of equation (42.4) in fact satisfies all
the conditions which define the delta function. Accordingly, we can write
for large t

kJ 2 = (i/£VJ 2^s(K«-K),

or, substituting hcovn = Ev-En™ and using the fact that 8(ax) = (l/a)8(«),

\avn\* = (2*lh)\FJWBv-Enm-ha>)t.

The expression |am |

2 dv is the probability of a transition from the original
state to one in the interval from v to v+dv (cf. §5). We see that, for large t,

it is proportional to the time interval elapsed since t = 0. The probability
dzvnv of the transition per unit time isf

d«v = (2iT/h)\FJ*8(E,,-EM-hco) dv. (42.5)

As we should expect, it is zero except for transitions to states with energy
Ev = EnW+hco. If the energy levels of the continuous spectrum are not
degenerate, so that v can be taken as the value of the energy alone, then the
whole "interval" of states dv reduces to a single state with energy E = Enw+
+ hm, and the probability of a transition to this state is

VnE = {27rlh)\FEn\\ (42.6)

§43. Transitions in the continuous spectrum
One of the most important applications of perturbation theory is to calculate

the probability of a transition in the continuous spectrum under the action
of a constant (time-independent) perturbation. We have already mentioned
that the states of the continuous spectrum are almost always degenerate.
Having chosen in some manner the set of unperturbed wave functions cor-
responding to some given energy level, we can put the problem as follows.
It is known that, at the initial instant, the system is in one of these states;
it is required to determine the probability of the transition to another state
with the same energy. If we denote the initial state by the suffix v , then
for transitions to states between v and v+dv we have at once from (42.5)
(putting co = and changing the notation)

<K.„ = (27r^)l Vw} 2KE-Ev) dv. (43.1)

This expression is, as we should expect, zero except for EV =EV : under

.*!•«?
iS

i

CaSy t0 ™rify th&t
l °? tBking acCOunt of the second term in <40 -8>' which we have omitted,

additional expressions are obtained which, on being divided by t, tend to zero as *-» +00.
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the action of a constant perturbation, transitions occur only between states

with the same energy. It must be noticed that, for transitions from states

of the continuous spectrum, the quantity dwVtV
cannot be regarded directly

as the transition probability; it is not even of the right dimensions (1/time).

Formula (43.1) represents the number of transitions per unit time, and its

dimensions depend on the chosen method of normalisation of the wave

functions of the continuous spectrum.

Let us calculate the perturbed wave function which at the initial instant

coincides with the initial unperturbed function $Vt
w

. According to formula

(42.2) (putting co = and changing the notation) we have

AilMEv-E )t_\

aa) = V**HM w It'll"• EvrEv

The perturbed wave function has the form

T„
o

=T
v
W+J^T/)dv,

or

r r \- e(iimEVo
-Ev

)t -,

1 J Ev ~Ev J
(43.2)

where the integration is extended over the whole continuous spectrum.f

Let us ascertain the limiting form of this function for large t. To do so,

we separate from dv the differential dEv of the energy (writing dv = dEv dr,

where dr is the product of the differentials of the remaining quantities which

determine a state in the continuous spectrum), and formally regard Ev as a

complex variable. The integral

f

\— e{i/MEVo
-Ev)t

r-*'m
E..-E..

"*

in (43.2) is taken along the real axis. We slightly displace the path of inte-

gration into the lower half-plane; this can be done without changing the

value of the integral, since the integrand has no singularities on the real axis.

The integral can then be divided into two parts

r dE r Vw <AV
(0)

J
vv^v Ev -Ev J Ev

-E
v

(these integrals have no meaning when the integration is along the real axis,

since they diverge at the point Ev
= Ev). Since im Ev < on the contour

of integration, the second of the above integrals tends to zero as t tendsJ:o

t If there is also a discrete spectrum, then we must add to the integral in this formula (and subse-

quent ones) the appropriate sum over the states of the discrete spectrum.
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infinity (because of the factor exp[fr-iim(£
w)*] in the integrand). In the first

integral, we can again make the path of integration the real axis, but pass
round the point Ev = Ev^ below. This method of integration can be conven-
iently represented in another form by adding to the constant E„ in the
denominator of the integrand a small positive imaginary quantity tS. The
pole of the integrand is thereby shifted into the upper half-plane, and the
integration can be taken simply along the real axis (which now passes below
the pole), after which 8 is allowed to tend to zero.

Thus we obtain for the wave function the expression

T
». = [fvt

m+
j E

"°

E +i8
W0) dJje-UmE^ S^o+ . (43.3)

The time factor shows that this function belongs, as it should, to the same
energy E

Vt
as the initial unperturbed function. In other words, the function

K =K {0)+ »

—

^(0)d»

satisfies Schrodinger's equation (# + P)^ = Ev$n . For this reason it
is natural that the expression above should correspond exactly to formula
(38.7).f
The calculations given above correspond to the first approximation of

perturbation theory. It is not difficult to calculate the second approximation
as well. To do this, we must derive the formula for the next approximation
to Y

Vo ;
this is easily effected by using the method of §38 (now that we know

the method of dealing with the "divergent" integrals). A simple calculation
gives the formula

with the same method of indentation in the integrals.

Comparing this expression with formula (43.3), we can write down the
corresponding formula for the probability (or, more precisely, the number)
of transitions, by direct analogy with (43.1):

dzo = —
n

r VVV.VV .V,
2

Kv+ F -p dv ' 8^.~^) d". (43.5)

It may happen that the matrix element Vvv% for the transition considered

>u
f Sta

iS
ng fr

u
m
l
he latter formuIa

> the way ^ which the integral must be taken can be found from

!»L
C
^f?0!? " *? "J"** *? ^Pression for ^. at large distances must contain only an outgoing(and not an ingoing) wave (see §134).

" is"«'s
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vanishes. The effect is then zero in the first approximation, and we have for

the number of transitions

^ Ji\i^ d^-E^- (43 '6)

In applications of this formula, the point Ev , = E
Va

is not usually a singularity

of the integrand; the manner of integrating with respect to Ev, is therefore

unimportant in general, and the integral can be taken along the real axis.

The states v for which Vvv , and Vv .

Vv
are not zero are usually called

intermediate states for the transition v -> v. It may happen that the transi-

tion v -> v can take place not through one but only through several successive

intermediate states. Formula (43.6) can be at once generalised to such cases.

Thus, if two intermediate states are needed, we have

2tt\ r r VwnVv.'v.Vv^,
7/

2

dw = — I I dv dv
"•" h\)](Ev

-Ev
.){E-Ev .)

8(E-E
Vo
)dv.

(43.7)

§44. The uncertainty relation for energy

Let us consider a system composed of two weakly interacting parts. We
suppose that it is known that at some instant these parts have definite values

of the energy, which we denote by E and e respectively. Let the energy be

measured again after some time interval At; the values E', e obtained are

in general different from E, e. It is easy to determine the order of magnitude

of the most probable value of the difference E'+ e —E— e which is found as a

result of the measurement.

According to formula (42.3) with <o = 0, the probability of a transition of

the system (after time t), under the action of a time-independent perturbation,

from a state with energy E to one with energy E' is proportional to

sm*[(E'-E)tl2h]l(E'-E)\

Hence we see that the most probable value of the difference E'—E is of the

order of hjt.

Applying this result to the case we are considering (the perturbation being

the interaction between the parts of the system), we obtain the relation

\E+ €-E'-€'\At~h. (44.1)

Thus the smaller the time interval A*, the greater the energy change that is

observed. It is important to notice that its order of magnitude HjAt is inde-

pendent of the amount of the perturbation. The energy change determined

by the relation (44.1) will be observed, however weak the interaction between

the two parts of the system. This result is peculiar to quantum theory and has

a deep physical significance. It shows that, in quantum mechanics, the law
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of conservation of energy can be verified by means of two measurements only
to an accuracy of the order of h/At, where At is the time interval between the
measurements.

The relation (44. 1) is often called the uncertainty relationfor energy. How-
ever, it must be emphasised that its significance is entirely different from
that of the uncertainty relation ApAx ~ h for the co-ordinate and momen-
tum. In the latter, Ap and Ax are the uncertainties in the values of the
momentum and co-ordinate at the same instant; they show that these two
quantities can never have entirely definite values simultaneously. The
energies E, e, on the other hand, can be measured to any degree of accuracy
at any instant. The quantity (E+e)-(E'+e f

) in (44.1) is the difference
between two exactly measured values of the energy E+e at two different
instants, and not the uncertainty in the value of the energy at a given instant.

If we regard E as the energy of some system and e as that of a "measuring
apparatus", we can say that the energy of interaction between them can be
taken into account only to within h/At. Let us denote by AE, As, ... the
errors in the measurements of the corresponding quantities. In the favour-
able case when € , e' are known exactly (Ae = Ae' = 0), we have

A(E-E')~hlAt. (44.2)

From this relation we can derive important consequences concerning the
measurement of momentum. The process of measuring the momentum of a
particle (for definiteness, we shall speak of an electron) consists in a collision
of the electron with some other ("measuring") particle, whose momenta
before and after the collision can be regarded as known exactly.f If we apply
to this collision the law of conservation of momentum, we obtain three equa-
tions (the three components of a single vector equation) in six unknowns
(the components of the momentum of the electron before and after the col-
lision). The number of equations can be increased by bringing about a
series of further collisions between the electron and "measuring" particles,
and applying to each collision the law of conservation of momentum. This)
however, increases the number of unknowns also (the momenta of the electron
between collisions), and it is easy to see that, whatever the number of col-
lisions, the number of unknowns will always be three more than the number
of equations. Hence, in order to measure the momentum of the electron,
it is necessary to bring in the law of conservation of energy at each collision,'
as well as that of momentum. The former, however, can be applied, as we
have seen, only to an accuracy of the order of kjAt, where At is the time be-
tween the beginning and end of the process in question.
To simplify the subsequent discussion, it is convenient to consider an

imaginary idealised experiment in which the "measuring particle" is a
perfectly reflecting plane mirror; only one momentum component is then
of importance, namely that perpendicular to the plane of the mirror. To

tailed
1 thC PrCSent analysis h is °f n0 imPOrtance how the energy of the "measuring" particle is ascer-
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determine the momentum P of the particle, the laws of conservation of

momentum and energy give the equations

p'+P'-p-P = 0, (44.3)

\

€
'+E'-e-E\ ~ h/At, (44.4)

where P, E are the momentum and energy of the particle, and p, e those of

the mirror ; the unprimed and primed quantities refer to the instants before

and after the collision respectively. The quantities p, p\ e, e' relating to the

"measuring particle" can be regarded as known exactly, i.e. the errors in

them are zero. Then we have for the errors in the remaining quantities,

from the above equations

:

AP = AP', AE'-AE~ hiAt.

But AE = (BE/dP)AP = vAP, where v is the velocity of the electron (before

the collision), and similarly AE' = v'AP' = v'AP. Hence we obtain

(v'x-vx)APx ~hlAt. (44.5)

We have here added the suffix x to the velocity and momentum, in order to

emphasise that this relation holds for each of their components separately.

This is the required relation. It shows that the measurement of the

momentum of the electron (with a given degree of accuracy AP) necessarily

involves a change in its velocity (i.e. in the momentum itself). This change

is the greater, the shorter the duration of the measuring process. The change

in velocity can be made arbitrarily small only as At -» oo, but measurements

of momentum occupying a long time can be significant only for a free particle.

The non-repeatability of a measurement of momentum after short intervals

of time, and the "two-faced" nature of measurement in quantum mechanics

—

the necessity of a distinction between the measured value of a quantity and

the value resulting from the process of measurement—are here exhibited with

particular clarity,f
The conclusion reached at the beginning of this section, which was based

on perturbation theory, can also be derived from another standpoint by con-

sidering the decay of a system under the action of some perturbation. Let

E be some energy level of the system, calculated without any allowance for

the possibility of its decay. We denote by t the lifetime of this state of the

system, i.e. the reciprocal of the probability of decay per unit time. Then

we find by the same method that

\E -E-e\~hlr, (44.6)

where E, e are the energies of the two parts into which the system decays.

The sum £+e, however, gives us an estimate of the energy of the system

before it decays. Hence the above relation shows that the energy of a system,

t The relation (44.5) and the elucidation of the physical significance of the uncertainty relation for

energy are due to N. Bohr (1928).
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in some "quasi-stationary" state, which is free to decay can be determined
only to within a quantity of the order of hjr. This quantity is usually called
the width Y of the level. Thus

T ~ hJT. (447)

§45. Potential energy as a perturbation

The case where the total potential energy of the particle in an external
field can be regarded as a perturbation merits special consideration. The
unperturbed Schrodinger's equation is then the equation of free motion of
the particle:

A0<o)+ #ty(o> = 0> k = V(2mElh*) =pjh, (45.1)

and has solutions which represent plane waves. The energy spectrum of
free motion is continuous, so that we are concerned with an unusual case of
perturbation theory in a continuous spectrum. The solution of the problem
is here more conveniently obtained directly, without having recourse to
general formulae.

The equation for the correction 0<*> to the wave function in the first ap-
proximation is

A^i)+AV(1) = {2mV\W)^\ (45.2)

where U is the potential energy. The solution of this equation, as we know
from electrodynamics, can be written in the form of retarded potentials, i.e.
in the formf

^\x, y, z) = -(m/lnfr)
J
^)U{x'

ty\ z')e"<r ^v'\r
% (45.3)

where

dV = dx'dy'dz', r2 = (*-*')2+(v-/)2+(*-*')2
.

Let us find what conditions must be satisfied by the field Urn order that
it may be regarded as a perturbation. The condition of applicability of per-
turbation theory is contained in the requirement that 0&> <^ ^<»). Let a be
the order of magnitude of the dimensions of the region of space in which the
field is noticeably different from zero. We shall first suppose that the energy
of the particle is so small that ka is at most of the order of unity. Then the
factor e^r in the integrand of (45.3) is unimportant in an order-of-magnitude
estimate, and the integral is of the order of ifjM\U\a2

, so that

iP ~ m\ U\a*i]J®lh2
,

t This is a particular integral of equation (45.2), to which we may add any solution of the sameequauon with zero on the right-hand side, i.e. the unperturbed equation (45.1).
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and we have the condition

\U\ < h2lma2 (for ka < 1). (45.4)

We notice that the expression on the right has a simple physical meaning;

it is the order of magnitude of the kinetic energy which the particle would

have if enclosed in a volume of linear dimensions a (since, by the uncertainty

relation, its momentum would be of the order of hja).

Let us consider, in particular, a potential well so shallow that the condition

(45.4) holds for it. It is easy to see that in such a well there are no negative

energy levels (R. Peierls 1929); this has been shown, for the particular case

of a spherically symmetric well, in §33, Problem. For, when E = 0, the

unperturbed wave function reduces to a constant, which can be arbitrarily

taken as unity: j/»
(0) = 1. Since «/»

(1) <4
(o)

, it is clear that the wave function

tf,
= 1 +if/<U for motion in the well nowhere vanishes ; the eigenfunction,

being without nodes, belongs to the normal state, so that E = remains the

least possible value of the energy of the particle. Thus, if the well is suffi-

ciently shallow, only an infinite motion of the particle is possible : the particle

cannot be "captured" by the well. Attention must be paid to the fact that

this result is peculiar to quantum theory; in classical mechanics a particle can

execute a finite motion in any potential well.

It must be emphasised that all that has been said refers only to a three-

dimensional well. In a one- or two-dimensional well (i.e. one in which the

field is a function of only one or two co-ordinates), there are always negative

energy levels (see the Problems at the end of this section). This is related to

the fact that, in the one- and two-dimensional cases, the perturbation theory

under consideration is inapplicable for an energy E which is zero (or very

small).f

For large energies, when ka > 1, the factor e
ikr in the integrand plays an

important part, and markedly reduces the value of the integral. The solution

(45.3) in this case can be transformed; the alternative form, however, is more

conveniently derived by returning to equation (45.2). We take as #-axis the

direction of the unperturbed motion; the unperturbed wave function then

has the form ^
(0) = e

ikx (the constant factor is arbitrarily taken as unity).

Let us seek a solution of the equation

AifW+ktyV = {2m\}i%)TJeikx

in the form ip {1) = eikxf; in view of the assumed large value of k, it is suffi-

cient to retain in A<£ (1) only those terms in which the factor e
ikx

is differen-

tiated one or more times. We then obtain for / the equation

2ik 8/1dx = 2mUlh2
,

t In the two-dimensional case^ is expressed (as is known from the theory of the two-dimensional

wave equation) as an integral similar to (45.3), in which, instead of eikr dx'dy'dz'jr, we hwtiirH^Kkr)

dx'dy', where HQ
W is the Hankel function of the first kind, of zero order, andr2 = (x— x') +(y—y ) .

As k -> 0, the Hankel function, and therefore the whole integral, tend logarithmically to infinity.

Similarly, in the one-dimensional case, we have, in the integrand, 2meikr dx'IK where r = \x— x'\,

and as k -> i/*'
1

) tends to infinity as Ijk.
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whence

0(D = eikxy = -(im/^k)eikx ! Udx. (45.5)

An estimation of this integral gives |0&>| ~ mUajfPk, so that the condition

of applicability of perturbation theory in this case is

\U\ ^ (h2jmaz)ka = hvja {ka > 1), (45.6)

where v = khjm is the velocity of the particle. It is to be observed that this

condition is weaker than (45.4). Hence, if the field can be regarded as a

perturbation at small energies of the particle, it can always be so regarded at

large energies, whereas the converse is not necessarily true.f

The applicability of the perturbation theory developed here to a Coulomb
field requires special consideration. In a field where U = <x/r, it is impossible

to separate a finite region of space outside which U is considerably less than

inside it. The required condition can be obtained by writing in (45.6) a

variable distance r instead of the parameter a ; this leads to the inequality

a//fo <^ 1. (45.7)

Thus, for large energies of the particle, a Coulomb field can be regarded as a

perturbation.:}:

Finally, we shall derive a formula which approximately determines the

wave function of a particle whose energy E everywhere considerably exceeds

the potential energy U (no other conditions being imposed). In the first

approximation, the wave function depends on the co-ordinates in the same
way as for free motion (whose direction is taken as the x-axis). Accordingly,

let us look for ifs in the form if* = eikxF, where F is a function of the co-

ordinates which varies slowly in comparison with the factor eikx (but we
cannot in general say that it is close to unity). Substituting in Schrodinger's
equation, we obtain for F the equation

2ik dF/8x = (2m/#2
) UF, (45 . 8)

whence

if, = eikxF = constant xeikxe^/hv)^dx
. (45.9)

This is the required expression. It should, however, be borne in mind that

this formula is not valid at large distances. In equation (45.8) a term AF
has been omitted which contains second derivatives of F. The derivative

d2F/8x2
, together with the first derivative dFjdx, tends to zero at large

distances, but the derivatives with respect to the transverse co-ordinates y
and z do not tend to zero, and can be neglected only if x <^ ka2

.

f In the one-dimensional case the condition for perturbation theory to be applicable is given by
the inequality (45.6) for all ka. The derivation of the condition (45.4) given above for the three-
dimensional case is not valid in the one-dimensional case, owing to the divergence of the resulting
function ift^ (see the preceding footnote).

% It must be borne in mind that the integral (45.5) with a field U = aijr diverges (logarithmically)
when xl\/(yz+z2

) is large. Hence the wave function in a Coulomb field, obtained by means of pertur-
bation theory, is inapplicable within a narrow cone about the ar-axis.
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PROBLEMS
Problem 1. Determine the energy level in a one-dimensional potential well whose depth

is small. It is assumed that the condition (45.4) is satisfied.

Solution. We make the hypothesis, which will be confirmed by the result, that the

energy level \E\ <^ \U\. Then, on the right-hand side of Schrodinger's equation

dY/d*8 = (2tn]h*)[U{x)-Ey,,

we can neglect E in the region of the well, and regard ip as a constant, which without loss of

generality can be taken as unity:

dV/d*2 = 2mU/h2
.

We integrate this equation with respect to x between two points ±*x such that a <^ xx <^ l//c,

where a is the width of the well and k = \/(2m\E\lh2
). Since the integral of U(x) converges,

the integration on the right can be extended to the whole range from — oo to + oo

:

d,-*/™- (1)

1 —00

At large distances from the well, the wave function is of the form <\i = e±KX. Substituting

this in (1), we find

-2k = (2mjk2
) j U dx

\E\ = (m\2W) h dx

We see that, in accordance with the hypothesis, the energy of the level is a small quantity of a

higher order (the second) than the depth of the well.

Problem 2. Determine the energy level in a two-dimensional potential well U(r) (where
00

r is the polar co-ordinate in the plane) of small depth; it is assumed that the integral J rU dr

converges. °

Solution. Proceeding as in the previous problem, we have in the region of the well the

equation

1 d / d«/r\ 2m-—(r— ) =—U.
r dr\ dr J h2

Integrating this with respect to r from to rt (where a <^ rx <^ l//c), we find

[d</ri 2m }

o

At large distances from the well, the equation of free motion in two dimensions is

1 d / di£\ 2m

r dr\ dry h2

and has a solution (vanishing at infinity) ifr = constant x Ko(Kr), where Ko is the Hankel

function of the first kind, of zero order and imaginary argument; for small values of the

argument, the leading term in Ko(*cr) is proportional to log kt. Bearing this in mind, we
equate the logarithmic derivatives of ^ for r~ a inside the well (the right-hand side of (1))
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and outside it, obtaining

1 2m r

=77- U(r)rdr,
a log K.a nza Jlog

whence

h* ( h2

\E\ -exp(
[
jlC/jrdrl-A.

ma2
[ m \_j j )

We see that the energy of the level is exponentially small compared with the depth of this

well.



CHAPTER VII

THE QUASI-CLASSICAL CASE

§46. The wave function in the quasi-classical case

If the de Broglie wavelengths of particles are small in comparison with the

characteristic dimensions which determine the conditions of a given problem,

then the properties of the system are close to being classical, j- just as wave
optics passes into geometrical optics as the wavelength tends to zero.

Let us now investigate more closely the properties of "quasi-classical"

systems. To do this, we make in Schrodinger's equation

V 2m«

the substitution

= ««/»)* (46.1)

For the function a we obtain the equation

y—(V acr)2- V l—H aa = E- U. (46.2)t—1 2ma
*-* 2m„

a a a a

Since the system is supposed almost classical in its properties, we seek a in

the form of a series

:

a = ff +(A/«>1+(A/«)
8a8+ ...

,

(46.3)

expanded in powers of h.

We begin by considering the simplest case, that of one-dimensional motion

of a single particle. Equation (46.2) then reduces to

a'*l2m-iha"l2m = E-U{x), (46.4)

where the prime denotes differentiation with respect to the co-ordinate x.

In the first approximation we write a = a and omit from the equation the

term containing h

:

(T
'2/2m = E- U(x).

f We may point out, in particular, that the states of the discrete spectrum with large values of the

quantum number n are quasi-classical. For the number n (the ordinal number of the state) determines

the number of nodes of the eigenfunction (see §21). The distance between adjoining nodes, however,

is of the same order of magnitude as the de Broglie wavelength. For large n this distance is small,

so that the wavelength is small in comparison with the dimensions of the region of motion.

158
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Hence we find

c = ± j \/{Zm[E-U{x)]} dx.

The integrand is simply the classical momentum p(x) of the particle, expres-

sed as a function of the co-ordinate. Defining the function p{x) with the -f

sign in front of the radical, we have

a =±jpdx, p = ^/[2m{E-U)], (46.5)

as we should expect from the limiting expression (6.1) for the wave function.-)-

The approximation made in equation (46.4) is legitimate only if the second

term on the left-hand side is small compared with the first, i.e. we must have

h\<j"la'
2

\
4 1 or

\d(h/a')ldx\ < 1.

In the first approximation we have, according to (46.5), a' =p, so that the

condition obtained can be written

|d(A/27r)/d*| <^ 1, (46.6)

where X(x) = 2irhlp(x) is the de Broglie wavelength of the particle, expressed,

as a function of x by means of the classical function p(x). Thus we have

obtained a quantitative "quasi-classical" condition: the wavelength of the:

particle must vary only slightly over distances of the order of itself. The

formulae here derived are not applicable in regions of space where this condi-

tion is not satisfied.

The condition (46.6) can be written in another form by noticing that

dft d ntdU m\F\

dx dx p dx p

where F = —dUjdx is the classical force acting on the particle in the external

field. In terms of this force we find

mh\F\/p* <4 1. (46.7)

It is seen from this that the quasi-classical approximation becomes inapplic-

able if the momentum of the particle is too small. In particular, it is clearly

inapplicable near turning points, i.e. near points where the particle, according

to classical mechanics, would stop and begin to move in the opposite direction.

These points are given by the equation p(x) = 0, i.e. E = U(x). As p -> 0,

the de Broglie wavelength tends to infinity, and hence cannot possibly be

supposed small.

t As is well known, J p dx is the time-independent part of the action. The total mechanical action

5 of a particle is S = —Et± J p dx. The term —Et is absent from o , since we are considering a time-

independent wave function tfi.
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Let us now calculate the next term in the expansion (46.3). The first-order

terms in % in equation (46.4) give

whence

a/ = -a "/2a ' = -p'\lp.

Integrating, we find

o1 = -ilogp, (46.8)

omitting the constant of integration.

Substituting this expression in (46.1) and (46.3), we find the wave function

in the form

tjj = c1
p-1^i^JP dx+C2

p-1^e^i /n)JP dx
. (46.9)

The subsequent terms in the expansion (46.3) lead to the appearance, in the

coefficients of the exponentials, of terms in the first and higher powers of h\

it is not usually necessary to calculate these terms.

The presence of the factor \jy/p in the wave function has a simple inter-

pretation. The probability of finding the particle at a point with co-ordinate

between x and x+dx is given by the square |«/f|
2

, i.e. is essentially propor-

tional to ljp. This is exactly what we should expect for a "quasi-classical"

particle, since, in classical motion, the time spent by a particle in the segment
dx is inversely proportional to the velocity (or momentum) of the particle.

In the "classically inaccessible" parts of space, where E < U(x), the func-

tion p(x) is purely imaginary, so that the exponents are real. The wave func-

tion in these regions can be written in the form

C ' C

'

V\P\ V\P\
'

'
}

PROBLEM
Determine the wave function in the quasi-classical approximation up to terms of the

order of H in the coefficient of the exponent.

Solution. The terms of order h2 in equation (46.4) give

<V<V+

W

2+W = o,

whence (substituting (46.5) and (46.8) for a and a±)

G2'

=p"l4p2-3p'*l8p3.

Integrating (by parts in the first term) and introducing the force F — pp'/tn, we obtain

o-2 = lmF/p*+$m*
J*
{F*lp) dx.
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The wave function in this approximation is of the form

= £tlKp = «tf/M».+»1(l—^[(ja)

constant r , „ r

= [\-limhFlp z-\ihmH (F2
/p

5
) dx]eWMb d*.

VP J

§47. Boundary conditions in the quasi-classical case

Let x — a be a turning point, so that U(a) = E, and let U > E for all

x > a, so that the region to the right of the turning point is classically

inaccessible. The wave function must be damped in this region. Sufficiently

far from the turning point, it has the form

C / 1 I r |\

tb = expf ad* ) for x > a, (47.1)

corresponding to the first term in (46.10). To the left of the turning point,

the wave function must be represented by a real combination (46.9) of two

quasi-classical solutions of Schrodinger's equation:

*
=^KiJH +

:S
expH.M for x<a- (47 -2)

a a

To determine the coefficients in this combination we must follow the

variation in the wave function for positive x—a (where (47.1) holds) to

negative x— a. In doing so, however, it would be necessary to pass through

a region near the turning point where the quasi-classical approximation is

invalid, and the exact solution of Schrodinger's equation must be con-

sidered.f

This can be avoided if we formally regard f asa function of a complex

variable x and go from positive to negative x— a along a path which is always

sufficiently far from the point a, so that the quasi-classical condition is formally

satisfied.

Let us first examine the variation of the wave function (47.1) on passing

round the point afrom right to left along a semicircle of large radius in the upper

half-plane of the complex variable x. For clarity, we may rewrite (47.1) in

the form

X

ftx) = iC[2m(U- E)]-U* exp (- ^
f y/[U(x)- E] dx\

, (47.3

)

t Near the turning point, E—U^.Fo(x—a) (where Fq = [— dU/dx] x=a); the corresponding

exact solution of Schrodinger's equation is given by the formulae derived in §24.
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where the function p(x) has been written explicitly. It is evident a priori

that, as a result of passing along the path indicated above, the function (47.3)

must become the second term in (47.2), since along the whole of the path

this term predominates over the first term, which decreases exponentially into

the upper half-plane; and in fact, when x varies along this path, the phase

of the difference U(x) — E, like that of x— a, increases by it. Consequently

the function (47.3) becomes the second term in (47.2) with coefficient

C*2 = \Ce~in,A . Similarly, on passing from right to left along a semicircle in

the lower half-plane, the function (47.3) becomes the first term in (47.2) with

coefficient C\ = \Ceinl*.

Thus the wave function (47.1) for x > a corresponds for x < a to the

functionf

ib = cosf- p dx+hr )

V'P VU /
a

a

= sinf- p dx+hr), for x < a. (47.4)

Vp \*J /
X

The functions (47.1) and (47.4) are approximate expressions to the right and

left of the turning point for the same exact solution of Schrodinger's equa-

tion (H. A. Kramers 1926).

If the classically accessible region is bounded (at x = a) by an infinitely

high "potential wall", the boundary condition for the wave function at x = a

is ifj = (see §18). The quasi-classical approximation is then valid up to

the wall itself, and the wave function is

1 C
ib = sin- I p dx for x < a,

hj

C

Vp HJ
x

(47.5)
a

ib = for x > a.

§48. Bohr and Sommerfeld's quantisation rule

The results which we have obtained enable us to derive the condition which

determines the quantum energy levels in the quasi-classical case. To do this

we consider a finite one-dimensional motion of a particle in a potential well

:

t If the region U < E lay to the right of a turning point x = b, (47.4) would be replaced by

b

c
ib = cos

VP
(i
j p *,+*,) = -£ sing j p d*+i„). (47.4a)
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the classically accessible region b ^ x ^ a is bounded by two turning points.f

The boundary condition at x = b gives (in the region right of this point) the

wave function (47.4a)

:

= — sirX-
J
p dx+fr\. (48.1)

b

Applying formula (47.4) to the region left of the point x = a, we obtain the

same function in the form

^ =S sin

G/' d*+i4VP
X

If these two expressions are the same throughout the region, the sum of their

phases (which is a constant) must be an integral multiple of it:

a

hi
pdX+ilT =(»+1)tT,

withC = (-l)"C". Hence

ipdx = 2irh(n+i), (48.2)

a

where §pdx=2$pdxis the integral taken over the whole period of the

quasi-classical motion of the particle. This is the condition which determines

the stationary states of the particle in the quasi-classical case. It corresponds

to Bohr and Sommerfeld's quantisation rule in the old quantum theory.

It is easy to see that the integer n is equal to the number of zeros of the

wave function, and hence it is the ordinal number of the stationary state.

For the phase of the wave function (48.1) increases from ^n at x — b to

(«+ f)7r at x = a
y so that the sine vanishes n times in this range (outside

the range b ^ x < a, the wave function decreases monotonically and has

no zeros at a finite distance) .% We recall, incidentally, that the quasi-classical

f In classical mechanics, a particle in such a field would execute a periodic motion with period (time

taken in moving from * = b to x = a and back)

a u

T = 2 f dxjv = 1m
J

dxjp,

b b

where v is the velocity of the particle.

J Strictly speaking, the zeros should be counted by means of the exact form of the wave
function near the turning points. If this is done, the result given in the text is confirmed.
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approximation, and therefore the quantisation rule (48.2), are applicable

only when n is large,f
In normalising these wave functions, the integration of J^fJ

2 can be restricted

to the range b ^ x ^ a, since outside this range «/r decreases exponentially.

Since the argument of the sine in (48.1) is a rapidly varying function, we can
with sufficient accuracy replace the squared sine by its mean value \. This
gives

b
rK '

~ 7rC2l2m<o = 1,

where w = InJT is the frequency of the classical periodic motion. Thus
the normalised quasi-classical function is

* =f^ sin

[ll
pdx+iir} (483)

b

It must be recalled that the frequency co is in general different for different

levels, being a function of energy.

The relation (48.2) can also be interpreted in another manner. The
integral j> p dx is the area enclosed by the closed classical phase trajectory

of the particle (i.e. the curve in the px-plane, which is the phase space of the

particle). Dividing this area into cells, each of area 2ttH, we have n cells

altogether ; n, however, is the number of states with energies not exceeding

the given value (corresponding to the phase trajectory considered). Thus
we can say that, in the quasi-classical case, there corresponds to each quantum
state a cell in phase space of area 2mh. In other words, the number of states

belonging to the volume element ApAx of phase space is

ApAx/27rk. (48.4)

If we introduce, instead of the momentum, the wave number k =p/h, this

number can be written

AIiAx/2tt.

It is, as we should expect, the same as the familiar expression for the number
of proper vibrations of a wave field.J

Starting from the quantisation rule (48.2), we can ascertain the general

nature of the distribution of levels in the energy spectrum. Let AE be the

f In some cases the exact expression for the energy levels E(n) (as a function of the quantum
number «), obtained from the exact Schrodinger's equation, is such that it retains its form as n — co

;

examples are the energy levels in a Coulomb field, and those of a harmonic oscillator. In these cases,

of course, Bohr's quantisation rule, although really applicable only for large n, gives for the function
E(n) an expression which is the exact one.

J See, for example, The Classical Theory of Fields, §52.
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distance between two neighbouring levels, i.e. levels whose quantum numbers

n differ by unity. Since AE is small (for large n) compared with the energy

itself of the levels, we can write, from (48.2),

AE i (dp/dE) dx = 2-nh.

But dEjdp = v, so that

i (dp/dE) dx = i dxjv = T.

Hence we have

AE = IttH/T = hco. (48.5)

Thus the distance between two neighbouring levels is hco. The frequencies

co may be regarded as approximately the same for several adjacent levels (the

difference in whose numbers n is small compared with n itself). Hence we

reach the conclusion that, in any small range of a quasi-classical part of the

spectrum, the levels are equidistant, at intervals of hco. This result could

have been foreseen, since, in the quasi-classical case, the frequencies cor-

responding to transitions between different energy levels must be integral

multiples of the classical frequency co.

It is of interest to investigate what the matrix elements of any physical

quantity / become in the limit of classical mechanics. To do this, we start

from the fact that the mean value / in any quantum state must become, in

the limit, simply the classical value of the quantity, provided that the state

itself gives, in the limit, a motion of the particle in a definite path. A wave

packet (see §6) corresponds to such a state ; it is obtained by superposition of

a number of stationary states with nearly the same energy. The wave func-

tion of such a state is of the form

n

where the coefficients an are noticeably different from zero only in some

range Aw of values of the quantum number n such that 1 < An <^ n\ the

numbers n are supposed large, because the stationary states are quasi-classical.

The mean value of/ is, by definition,

/ = j T*/T d* = 22 am*anfmn#»™\

or, replacing the summation over n and m by a summation over n and the

difference m —n = s,

where we have put comn = sco in accordance with (48.5).
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The matrix elements fnm calculated by means of the quasi-classical wave
functions decrease rapidly in magnitude as the difference m—n increases,

though at the same time they vary only slowly with n itself (m—n being fixed).

Hence we can write approximately

/ = SS a*anf/<»« = 2 K|* S//*—,

where we have introduced the notation fs =f-+s -, n being some mean value
of the quantum number in the range An. But 2 \an \

2 = 1 ; hence

dost

The sum obtained is in the form of an ordinary Fourier series. Since /
must, in the limit, coincide with the classical quantity f(t), we arrive at the

result that the matrix elements fmn in the limit become the components fm_n
in the expansion of the classical function f(t) as a Fourier series.

Similarly, the matrix elements for transitions between states of the con-
tinuous spectrum become the components in the expansion of/(/) as a Fourier
integral. Here the wave functions of the stationary states must be normalised
by (l//z) times the delta function of energy.

All the above results can be generalised immediately to systems with
several degrees of freedom, executing a finite motion for which the problem
in classical mechanics allows a complete separation of the variables in the

Hamilton-Jacobi method (called a conditionally periodic motionf). After

separation of the variables for each degree of freedom, the problem reduces to

a one-dimensional problem, and the corresponding quantisation conditions

are

j>pi dqi = 2Trh(ni+ yi), (48.6)

where the integral is taken over the period of variation of the generalised

co-ordinate qi, and yi is a number of the order of unity which depends on
the nature of the boundary conditions for the degree of freedom considered .J

In the general case of an arbitrary (not conditionally periodic) motion in

several dimensions, there are no quantum numbers nt. The concept of

cells in phase space is, however, always valid in the quasi-classical approxima-
tion. This is clear from the relationship noted above with the number of
proper vibrations of the wave field in a given volume of space. In the general

t See Mechanics, §50.

X For example, in motion in a centrally symmetric field we have

j>pr dr = 2Trh(nr+%), j>pd d6 = 2iTh(l—m+\)
> j>p^ d<f> = 2-nhm,

where nr = n— I— 1 is the radial quantum number. The last of the three equations simply expresses
the fact that ptj> is the z-component of the angular momentum, equal to Hm.
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case of a system with s degrees of freedom, there are

AIV = A2i ... A?5A£i ... ^ps|(2^^hy (48.7)

quantum states in a volume element in phase space.

PROBLEMS
Problem 1 . Determine (approximately) the number of discrete energy levels of a particle

moving in an arbitrary (not central) field C7(r) which satisfies the quasi-classical condition.

Solution. The number of states belonging to a volume of phase space which corresponds

to momenta in the range ^ p < £max and particle co-ordinates in the volume element dV
is fTrpmax

3 dVI(2irh)3 . For given r the particle can have (in its classical motion) a momentum
satisfying the condition E = p2/2m + U(r) «£ 0. Substituting />max = V[— 2m£7(r)], we

obtain the total number of states of the discrete spectrum:

V
(-Ufl*&V,

3tt2 #*

where the integration is over the region of space in which U < 0. This integral diverges

(i.e. the number of states is infinite) if U decreases at infinity as r~s with s< 2, in accordance

with the results of §18.

Problem 2. The same as Problem 1, but for a quasi-classical centrally symmetric field

U(r) (V. L. Pokrovskii).

Solution. In a centrally symmetric field the number of states is not the same as the

number of energy levels, on account of the degeneracy of the latter with respect to the

direction of the angular momentum. The required number can be found by noting that the

number of levels with a given value of the angular momentumM is the same as the number

of (non-degenerate) levels for a one-dimensional motion in a field with potential energy

Uett = U(r)+M2
l2tnr'

2
. The maximum possible value of the momentum pr for given r and

energies E =s£ is /v.max = V(—2mUeti). The number of states (i.e. the required number of

levels) is therefore

f^#r = V(2m)r
/(_ u_^!\ dr

J Ink 2tt% J V V 2mry

The required total number of discrete levels is obtained from this by integration with respect

to M/H (which replaces in the quasi-classical case the summation with respect to I), and is

(m/4£2) j(-U)rdr.

§49. Quasi-classical motion in a centrally symmetric field

In motion in a centrally symmetric field the wave function of a particle

falls, as we know, into an angular and a radial part. Let us first consider the

former.

The dependence of the angular wave function on the angle
<f>
(determined

by the quantum number m) is so simple that the question of finding approxi-

mate formulae for it does not arise. The dependence on the polar angle 9 is,

according to the general rule, quasi-classical if the corresponding quantum

number / is large (this condition will be more precisely formulated below).
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We shall here confine ourselves to deriving the quasi-classical expression

for the angular function for the case (the most important one in applications)

of states whose magnetic quantum number is zero (m = 0). This function

is, apart from a constant factor, the Legendre polynomial P, (cos0) (see

(28.7)), and satisfies the differential equation

d2Pj/d02+cot d dP
tldd+l(l+ l)Pt = 0. (49.1)

The substitution

Pi(cos0) = x(0)/Vsin0 (49.2)

reduces this to

x"+[('+£)
2+i cosec20]x = 0, (49.3)

which does not contain the first derivative and is similar in appearance to

the one-dimensional Schrodinger's equation.

In equation (49.3), the part of the de Broglie wavelength is played by

A = 2tt [(/+$)«+£ cosec^J-i/a.

The requirement that the derivative d(A/27r)/da: is small (the condition (46.6))

gives the inequalities

61 > 1, (77-0)/ > 1, (49.4)

which are the conditions that the angular part of the wave function is quasi-

classical. For large / these conditions hold for almost all values of 0, exclud-

ing only a range of angles very close to or n.

When the conditions (49.4) are satisfied, we can neglect the second term
in the brackets in (49.3) compared with the first:

x"+{i+lfx = o.

The solution of this equation is

x = Vsin e ^(cos 0) = A sin[(/+i)0+ a], (49.5)

where A and a are constants.

For angles <^ 1, we can put in equation (49.1) cot 6 ^ 1/0; replacing

also 1(1+1) by the approximation (/+|)
2

, we obtain the equation

d2P, 1 dPj
-+ i+(/+^)2P

I = 0,
d02 d0

V '

which has as solution the Bessel function of zero order

:

P,(cos0) =M(l+i)0]> 6<1- (49.6)

The constant factor is put equal to unity, since we must have P
z
= 1 for

0=0. The approximate expression (49.6) for P, is valid for all angles

<^ 1. In particular, it can be applied for angles in the range 1// <^ <^ 1,
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where it must agree with the expression (49.5), which holds for all dp 1//.

For 61 > 1 the Bessel function can be replaced by its asymptotic expression

for large values of the argument, and we obtain

2 8in[(Z+l)0+lir]
/-
N ttI VO

(we can neglect \ in the coefficient compared with /). On comparison with

(49.5), we find that A = V(2/w/), a = \n. Thus we obtain finally the

following expression for P,(cos 0), applicable in the quasi-classical case:f

Pl(cos9) S /-
U
7!

;

fl

. (49.7)

V ttI ysinfl

The normalised wave function © l0 is obtained, according to (28.7), by

multiplying by V"\/(l+\) = i
l y/l'.

\2 sin[(Z4-i)0+ Jtt]

V it ysin0

Let us now turn to the radial part of the wave function. It has been

shown in §32 that the function x{r) = rR(r) satisfies an equation identical

with the one-dimensional Schrodinger's equation, with the potential energy

h2 1(1+1)
U

l
(r) = U(r)+-±-^.

2m r2

Hence we can apply the results obtained in the previous sections, if the

potential energy is understood to be the function C/,(r).

The case / = is the simplest. The centrifugal energy vanishes and, if

the field U(r) satisfies the necessary condition (46.6), the radial wave

function will be quasi-classical in all space. For r = we must have x = 0,

and hence the quasi-classical function %(r) is determined by formulae (47.5).

If / # 0, the centrifugal energy also must satisfy the condition (46.6). In

the region of small r, where the centrifugal energy is of the same order as

the total energy, the wavelength A = Qmhjp ~ rjl, and the condition (46.6)

gives / > 1 . Thus, if / is small, the quasi-classical condition is violated by the

centrifugal energy in the region of small r. It is easily seen that we obtain

the correct value of the phase of the quasi-classical wave function %[r) by

calculating it from the formulae for one-dimensional motion, replacing the

coefficient /(/+1) in the potential energy U^r) by (/+|)24

Ui(r)=U(r)+—±-^-. (49.9)
2m r2

t Attention is drawn to the fact that, as a result of replacing /(/+ 1) by (/+i)2» we have obtained an

expression which is multiplied by (—1)' when 6 is replaced by it— 0; this is as it should be for the

function Pi(cos 6).

% For example, in the simple case of free motion (U = 0) the phase of the function calculated from

formula (47.4) with Ui from (49.9) will be kr— JwZ for large r, as it should be.



170 The Quasi-Classical Case §49

The question of the applicability of the quasi-classical approximation to a

Coulomb field U = ±a/r requires special consideration. The most import-
ant part of the whole region of the motion is that corresponding to distances

r for which \U\ ~ \E\, i.e. r ~ cc/|£|. The condition for quasi-classical

motion in this region amounts to the requirement that the wavelength
A ~ h/ y/(2m\E\) is small compared with the dimensions <x.j\E\ of the
region; this gives

\E\ ^ ma2
//*

2
, (49.10)

i.e. the absolute value of the energy must be small compared with the energy
of the particle in the first Bohr orbit. This condition can also be written in

the form

d/Hv > 1, (49.11)

where v ~ <s/(\E\jm) is the velocity of the particle. It should be noticed
that this condition is the opposite of the condition (45.7) for the applicability

of perturbation theory to a Coulomb field.

The region of small distances ( | U{r)
\
> E) is without interest in a repulsive

Coulomb field, since for U > E the quasi-classical wave functions diminish
exponentially. In an attractive field, however, when / is small it is possible
for the particle to penetrate into the region where \U\ p E, so that we have
to consider the limits of applicability of the quasi-classical approximation in

this case. We use the general condition (46.7), putting there

F = -dU/dr = - a/r2
, p ~ y/(2m\ U\) ~ y/(mijr).

As a result, we find that the region of applicability of the quasi-classical

approximation is restricted to distances such that

r>/*2/ma, (49.12)

i.e. distances large in comparison with the "radius" of the first Bohr orbit.

PROBLEM
Determine the behaviour of the wave function near the origin, if the field becomes infinite

as ± oc/rs , with s > 2, when r -» 0.

Solution. For sufficiently small r, the wavelength A ~ hl\/(m\U\) ~ Hr*l2j\/(maL),
so that dA/dr ~ hr*'2

- 1
/V0»°0 <€ 1 1 thus the quasi-classical condition is satisfied. In an

attractive field Ui -> — oo when r -> 0. The region near the origin is in this case classically
accessible, and the radial wave function x ~ 1/Vp, whence

if,
~ y*/4-l #

In a repulsive field, the region of small r is classically inaccessible. In this case the wave
function tends exponentially to zero as r -> 0. Omitting the coefficient of the exponential
function, we have

T

HH]'
2v/(2*«a)

exp| —
-| |

p dr\ |,or ^r~exp{ r-{s/2-i)

(s—2)h
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§50. Penetration through a potential barrier

Let us consider the motion of a particle in a field of the type shown in

Fig. 13, characterised by the presence of a potential barrier, i.e. a region in

which the potential energy U(x) exceeds the total energy E of the particle.

Fig. 13

In classical mechanics, a potential barrier is "impenetrable" to a particle;

in quantum mechanics, however, a particle can pass "through the barrier":

the probability of this is not zero (see also §25, Problem 2). If the field U(x)

satisfies the quasi-classical conditions, the transmission coefficient for the bar-

rier can be calculated in a general form. We may remark that, in particular,

these conditions give the result that the barrier must be "wide", and hence

the transmission coefficient is small in the quasi-classical case.

In order not to interrupt the subsequent calculations, we shall first solve

the following problem. Let the quasi-classical wave function in the region

to the right of the turning point x = b (where U(x) < E) have the form of a

travelling wave

:

C ri } 1
ip = expl - I p 6.x—\vn I.

y/p LHJ J
(50.1)

We require to find the wave function of this state in the regionf x < b. We
shall seek it in the form

C" rl) f n
ib = exp - p dx\

,V
V\P\ Ul J U

(50.2)

which increases as we go into the region x < b. The exponentially decreasing

term is neglected in comparison with the increasing one. To determine the

coefficient C we proceed as follows. We notice that, according to formulae

| In the problem of penetration through a potential barrier, we are concerned with a motion infinite

in both directions; the corresponding levels are doubly degenerate (see §21), and hence the wave

functions need not be real.



172 The Quasi-Classical Case §50

(47.1) and (47.4a), there is a correspondence between the functions

X
1

^
=
2VpL

eXP
|^ J

P d*-i£7r)+exp{-^ J
P <**+!**}] for x > b,

(50.3)

On the other hand, between two different exact solutions
X and 2 of the one-

dimensional Schrodinger's equation we have the relation (21.2)

tits'—020i' = constant.

We apply this relation with
*fjx the solution given by formulae (50.1), (50.2),

and
2 the solution (50.3). To the left of the point x = b, we have

fcfc'-fck' = -ffl&IW = C7A,

while to the right we have

Mt-Mi = &W0i)' = -icjh.

Equating these two expressions, we obtain C" = —iC. Thus the required
quasi-classical wave function is of the form

iC
for * < b, 1I1 = exp

VlPl fl/Hl-

c
- (50 -4)

for * > 6, = expl- I p dx—liiA.

b

Let us now go on to calculate the coefficient for the penetration of the
barrier by a particle. Let the particle be incident on the barrier from left

to right. Since the probability of penetrating the barrier is small in the quasi-
classical case, we can with sufficient accuracy write the wave function in
region I (Fig. 13), in front of the barrier, the same as if the barrier were
completely impenetrable, i.e. in the form (47.4):

xf> =— cosl- \p d^+^rj, (50.5)
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where we have introduced the velocity v = p\m\ see below regarding the

choice of the normalisation coefficient. If this is written as the sum of two

complex expressions,

a a

the first term (which becomes a plane wave ifi ~ e
{i/n)px as x -> -oo)

represents a particle incident on the barrier, and the second a particle reflected

from the barrier. The normalisation chosen corresponds to a unit probability

current density in the incident wave.

On the other side of the turning point x = a (in region II, inside the

barrier), the wave function (50.5) corresponds, according to the results of

§47, to the function

x

-^[-SHl (50 -6)

a

Writing this in the form

6 x

i r ii r i
ii f n

«£ = exp -- pM+t\ PM ,
(50.7)

V
VN L h\ J I h\ J U

a J>

and applying formula (50.4), we find the wave function in region III:

b x

if,
= exp| — I

|
pdxW- p&x+liir . (50.8)

\A> L W J \
nj J

v
a b

The current density in region III, calculated by means of this function, is

6

D=exp
[~il \

pdx
W'

(50 '9)

Since the current density in the wave incident on the barrier is taken as unity,

D is in fact the required transmission coefficient for the barrier. We emphasise

that this formula is applicable only when the exponent is large, so that D
itself is small.

It has been assumed in the foregoing that the field U(x) satisfies the quasi-

classical condition over the whole extent of the barrier (excluding only the

immediate neighbourhood of the turning points). In practice, however, we

often have to deal with barriers where the potential energy curve on one side

drops so steeply that the quasi-classical approximation is inapplicable. The
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exponential factor in D remains the same in this case as in formula (50.9),
but the coefficient of the exponential (equal to unity in (50.9)) is different.

To calculate it we must, essentially, calculate the exact wave function in the
"non-quasi-classical" region and determine the quasi-classical wave function
inside the barrier in accordance with this. In formula (50.6) a coefficient

P # 1 then appears, and in (50.9) a coefficient £2
.

PROBLEMS
Problem 1. Determine the transmission coefficient for the potential barrier shown in

Fig. 14: U(x) = for * < 0, U(x) = U —Fx for x > 0; only the exponential factor need
be calculated.

UM

Fig. 14

Solution. A simple calculation gives the result

V(2m)
D >exp

ZhF
{U -E)*/j.

Problem 2. Determine the probability that a particle (with zero angular momentum) will
emerge from a centrally symmetric potential well with U(r) = — Ua for r < r„ U(r) = air
for r > r (Fig. 15).

W

Fig. 15

Solution. The centrally symmetric problem reduces to a one-dimensional one, so that
the formulae obtained above can be applied directly. We have

a/E

H-ii7Kr*)] d
j
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Evaluating the integral, we finally obtain

175

W r*->M-m-fi-M'-m
In the limiting case r -> 0, this formula becomes

W ~ e-{™/nW&m/E) _ e
-2ira/nv

m

These formulae are applicable when the exponent is large, i.e. when ajhv > 1. This condi-

tion agrees, as it should, with the condition (49.11) for quasi-classical motion in a Coulomb

field.

Problem 3. The field U(x) consists of two symmetrical potential wells (I and II in Fig.

16), separated by a barrier. If the barrier were impenetrable to a particle, there would be energy

levels corresponding to the motion of the particle in one or other well, the same for both

wells. The fact that a passage through the barrier is possible results in a splitting of each of

these levels into two neighbouring ones, corresponding to states in which the particle moves

simultaneously in both wells. Determine the magnitude of the splitting (the field U(x) is

supposed quasi-classical).

Solution. Let 2?,, be some level for the motion of the particle in one well (I, say), and

ifi (x) the corresponding wave function (so normalised that the integral of ip * over well I is

unity). When the small probability of penetration through the barrier is taken into account,

the level splits into levels Et and Et with wave functions which are symmetric and anti-

symmetric combinations of ^o0*0 and 'I'oi—x):

M*) = (W2)[«Ao(*)+0o(-*)]» M*) = (WQM*)-M-*)]- (!)

The quasi-classical function tfi (x) diminishes exponentially outside the well, and in particular

VW

Fig. 16

in the direction of negative x. Hence, within well I, t/> (
_x) is vanishingly small in compari-

son with <Ao(*)> and vice versa in well II. The functions (1) are so normalised that their

squares integrated over wells I and II are unity.

Schrodinger's equations are

,A "+(2m/£
2
)(£o-Wo = 0, ^'+(2tnj^){E1-U)4,1 = 0;

we multiply the former by <l>i
and the latter by ^ , subtract corresponding terms, and integrate
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over * from to oo. Bearing in mind that, for * = 0, ^ = \Z2^ and <Ai'
= 0, and that

OO 00

J 0o0i <** S — j 0o
2 dx = 1/V2,

we find

£i-#o = -(^/^)0o(O)<Ao'(O).

Similarly, we find for E2—E the same expression with the sign changed. Thus

E2-Ex
= (2/z»0o(O)0o'(O).

By means of formula (47.1), with the coefficient C from (48.3), we find that

a

ya> r 1 /* n mz;,,— exp|_--j,„d,J, vm—jfm,
o

where t> = V[2((7 -£ )/m]. Thus

a

a>/* r 1 r -]

Ei-E1
= —exp^--

J
|/>| d*J.

—a

Problem 4. Determine the exact value of the transmission coefficient D for the passage
of a particle through a parabolic potential barrier U(x) = — £fe*2 (supposing that D is mo*
small) (E. Kemble 1935).t

Solution. Whatever the values of k and E, the motion is quasi-classical at sufficiently
large distances |*|, with

p = V[2m(E+%kx2
)] ~ x^(mk)+E^(m/k)fx,

and the asymptotic form of the solutions of Schrodinger's equation is

= constant xe^
2

/ 2^'6-1/2
,

where we have introduced the notation

$ = ximk/h2
)
1 ^, e = (EJhW(mlk).

We are interested in the solution which, as x -> + oo, contains only a wave which has
passed the barrier, i.e. is propagated from left to right. We put

as X -> OO, i/j = Be^
2

/2^-1?2
, (1)

as * -> — 00, ifs
= e-i^

a
/2|||-ie-i/2 +^£8

/2|£|«-i/2
> (2)

In the expression (2), the first term represents the incident wave, and the second the reflected
wave (the direction of propagation of a wave is that in which its phase increases). The
relation between A and B can be found by using the fact that in this case the asymptotic
expression for tft is valid in the whole of a sufficiently distant region of the plane of the complex
variable £. Let us follow the variation of the function (1) as we go round a semicircle of large
radius in the upper half-plane of £ (cf. §47). Over the whole of this path the term in e*^2 is

the dominant part of the solution, and hence the function (1) must be converted, by traversing

t The solution of this problem can also be applied to penetration sufficiently near the top of any
barrier U(x) whose dependence on x near the maximum is quadratic.
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this path, into the second term of the function (2). Hence we find

A = B^)"-1/2 = —iBe-™.

On the other hand, the condition that the number of particles should be conserved is

\A\*+\B\* = 1.

From these two relations we find the required transmission coefficient D = \B\*:

D = l/(l+e-2ffe
).

This formula holds for any E. When E is large and negative, it gives JD £ e~mM, in accord-

ance with formula (50.9). For E > 0, the quantity R = 1 —D = 1/(1 +e27te
) is the coefficient

of reflection "above the barrier".

§51. Calculation of the quasi-classical matrix elements

A direct calculation of the matrix elements of any physical quantity/ with

respect to the quasi-classical wave functions presents great difficulty. We may

suppose that the energies of the states between which the matrix element is

calculated are not close to each other, so that the element does not reduce to

the Fourier component of the quantity/ ( §48). The difficulties arise because,

owing to the fact that the wave functions are exponential (with a large imagin-

ary exponent), the integrand oscillates rapidly, and this makes it very

troublesome to obtain even an approximate estimate of the integral.

We shall consider a one-dimensional case (motion in a field U(x)), and sup-

pose for simplicity that the operator of the physical quantity is merely a func-

tion/^) of the co-ordinate. Let^ and «/»2 be the wave functions correspond-

ing to some values Ex and E2 of the energy of the particle (with E2 > Ex ,

Fig. 17) ; we shall suppose that ^ and if/2 are taken real. We have to calculate

the integral

/l2 = J 0l/&
d*« (51.1)

\U(x)

Fig. 17
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The wave function ifjx in the regions on both sides of the turning point
* = alt but not in its immediate neighbourhood, is ofthe form (47.1), (47.4a):

for x < alt ifjx

C\
-exp[-|jA d,|],

W\Pi\ L A|

(51.2)

for * > fll , if,x
= —-L cosf - pj d*—Jfl-V

a
1

and similarly for j/t
2 (replacing the suffix 1 by 2).

However, the calculation of the integral (51.1) by substituting in it these
asymptotic expressions for the wave functions would not give the correct
result. The reason is, as we shall see below, that this integral is an exponen-
tially small quantity, whereas the integrand is not itself small. Hence even a
relatively small change in the integrand will in general change the order of
magnitude of the integral. This difficulty can be circumvented as follows.
We represent the function ip2 as a sum if>2 = ip2

+ +i/if, expressing the cosine
(in the region x > a2) as the sum of two exponentials. According to formulae
(50.4), we have

for*<*2) ^ = _=g. exp
Q|J

fodj(
|],

x
(51.3)

the function fa- is the complex conjugate of tfs2
+

: i/t2
~ =

(iff2
+)*.

The integral (51.1) is also divided into the sum of two complex conjugate
integrals /i2 =/i2+ 4-/i2~, which we shall proceed to calculate. First of all,

we note that the integral

00

fl2
+ = / 0l/^2+ d*

—oo

converges. For, although the function «/r
2
+ tends exponentially to infinity in

the region x < a2 , the function ifjx , in the region x < alt tends exponentially
to zero still more rapidly (since we have \px \ > \p2 \

everywhere in the region
x < a2).
We shall regard the co-ordinate # as a complex variable, and displace the

path of integration off the real axis into the upper half-plane. When x
receives a positive imaginary increment, an increasing term appears in the
function tp

x (in the region * > a^, but the function i/j
2
+ decreases still more
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rapidly, since we have p2 > px everywhere in the region x > ax . Hence the

integrand decreases.

The displaced path of integration does not pass through the points * = alt

a2 on the real axis, near which the quasi-classical approximation is inapplic-

able. Hence we can use for i]ix and ip2
+

, over the whole path, the functions
which are their asymptotic expressions in the upper half-plane. These are

«Ai
= expf- [^{ImCU-Ei)} &x\

2[2m(?7-£'
1
)]i/4 FUJ J

(51.4)

&j
+ =- — expf— [ ^{2m(U-E2)}dx\

where the roots are taken so as to be positive on the real axis for x < a2 .

In the integral

—ZCjC2

/ia
+ =

, ,L ? f expl"- fv{2m(C/-£'1)} dx— (v{2m(U-E2)} dxl x

(51.5)

4V(2m)

f(x) dx

[(U-Ei)(U-E)]V*

we desire to displace the path of integration in such a way that the exponential
factor is diminished as much as possible. The exponent has an extreme value
only where U(x) = co (for E± # E2 , its derivative with respect to x vanishes

at no other point). Hence the displacement of the contour of integration into

the upper half-plane is restricted only by the necessity of passing round the

singular points of the function U(x) ; according to the general theory of linear

differential equations, these coincide with the singular points of the wave
function ifi(x). The actual choice of the contour depends on the actual form
of the field U(x). Thus, if the function U(x) has only one singular point
x = x in the upper half-plane, the integration can be effected along the type
of path shown in Fig. 18. The immediate neighbourhood of the singular

point plays the important part in the integral, so that the matrix element

/12 = 2 re/i2+ required is practically proportional to an exponentially small
expression of the form

/12 - expj- -imf"
J

^[2m(E2- U)] dx- f V[2m(£i- U)] dal! (51.6)

(L. Landau 1932).f

t In deriving formulae (51.5) and (51.6), we have replaced the wave functions by their asymptotic
expressions, since, in the integral taken along the contour shown in Fig. 18, the order of magnitude
of the integral is determined by that of the integrand; hence a relatively small change in the latter
does not have any great effect on the value of the integral.
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Fig. 18

The lower limits of the integrals may be any points in the classically

accessible regions ; their particular values evidently do not affect the imaginary

parts of the integrals. If the function U(x) has several singular points in the

upper half-plane, xo in (51.6) must be taken as that for which the exponent is

smallest in absolute value.f

The quasi-classical matrix elements for motion in a centrally symmetric

field must be calculated by the same method. However, we must now replace

U(r) by the effective potential energy (the sum of the potential energy and

the centrifugal energy), which will be different for states with different /.

In view of further applications of the method in question, we shall write the

effective potential energies in the two states in a general form, as Ui(r) and

Uzir). Then the exponent in the exponential factor in the integrand in (51.5)

has an extreme value not only at the points where U\{r) or U2(r) becomes

infinite, but also at those where

U^-U^r) = E2-Ev (51.7)

Hence, in the formula

r r

fe~ exd--im[ ( ^[2m(E2-U2)]dr- JV[2m(£i- U{)] drJJ (51.8)

the possible values of r include not only the singular points of Ux{r) and

C/2(r)» but also the roots of equation (51.7).

The centrally symmetric case differs also in that the integration over r in

(51.1) is taken from (and not from -co) to oo:

/12 =
J
Xifx* dr.

o

Here two cases must be distinguished. If the integrand is an even function

t We assume that the quantity f(x) itself has no singular points.
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of r, the integration can be formally extended to the whole range from -oo
to oo, so that there is no difference from the previous case. This may occur
if Ux{r) and U2(r) are even functions of r [U(-r) = U(r)]. Then the wave
functions Xl(r) and Xi(r) are either even or odd functionsf (see §21), and,
if the function /(r) is also even or odd, the product x±fx% may be even.

If, on the other hand, the integrand is not even (as always happens if U(r)
is not even), the start of the path of integration cannot be moved away from
the point r = 0, and this point must be included among the possible values of
r in (51.8).

PROBLEMS

field*?/^Ue-a?
10"1** thC quasi-classical matrix elements (exponential factor only) in a

• ^L
YP°£;

U(X) becomes infinite °nly for x -> -oo. Accordingly, we put * oo
in (51.6). We can extend the integration to + oo.
Each of the integrals diverges at the lower limit. Hence we first calculate them from -x

to oo, and then pass to the limit x -> oo. We find

/l2 r^/ e^mfaMva-Vi)

where vi = V(2fii/«), c* = V(2E2lm) are the velocities of the particle at infinity (* -> oo)
where the motion is free.

"

Problem 2 The same as Problem 1, but in a Coulomb field U = et/r, for transitions be-tween states with / = 0.

Solution The only singular point of the function U(r) is r = 0. The corresponding
integral has been calculated in §50, Problem 2. As a result we have by formula (51.8)

f12 ~ exp — ( —
Lh\v2 vjj

§52. The transition probability in the quasi-classical case
Penetration through a potential barrier is an example of a process which

is entirely impossible in classical mechanics. Another example is "reflection
above the barrier" of a particle whose energy exceeds the height of the barrier.
In the quasi-classical case the probability of such processes is exponentially
small. The relevant exponent can be determined as follows.

Considering a transition of any system from one state to another, we
solve the corresponding classical equations of motion and find the "path" of
the transition; this, however, is complex, in accordance with the fact that the
process cannot occur in classical mechanics. In particular, it is found that
in general, the "transition point" q at which the formal transition of the
system from one state to the other occurs is complex; the position of this
point is determined by the classical conservation laws. We next calculate
the action Si(?i, q )+S2(q , ?2) for the motion of the system in the first
state from some initial position qi to the "transition point" q , and then in the

ftl to bS^fa ^rTSLS??^ iS CVen (°r °dd) when ' is even (or odd
>'
- is seen
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second state from qo to the final position q<i. The required probability of the

process is then given by the formulaf

exp im [Si (qi,q ) + S2 (qo,qz)] • (52.1)

If the position of the "transition point" is not unique, it must be chosen

so that the exponent in (52.1) has the smallest absolute value (which must yet,

of course, be sufficiently large for formula (52.1) to be valid).

$

Formula (52.1) is in accordance with the rule derived in §51 for calculating

the quasi-classical matrix elements. It should be emphasised, however, that

it would not be correct to use the square of the matrix element in calculating

the coefficient before the exponential in the probability of such transitions.

If formula (52.1) is applied to "reflection above the barrier" of a particle

(in the one-dimensional case), qo must be taken as the complex co-ordinate

xo of the "turning point" at which the particle reverses its direction of

motion, i.e. the complex root of the equation U(x) = E. We shall show how

the reflection coefficient can then be calculated more precisely, including

the coefficient of the exponential.

We must again (as in §50) establish the relation between the wave functions

far to the right of the barrier (the transmitted wave) and far to the left (the

incident and reflected waves). This is easily done by a method similar to

that used in §47, regarding as a function of the complex variable x.

We write the transmitted wave in the form

X

Xi

where x± is any point on the real axis, and follow its variation on passing along

a path C in the upper half-plane which encloses (at a sufficient distance) the

turning point x (Fig. 19) ; the whole of the latter part of this path must

lie so far to the left that the error in the approximate (quasi-classical) wave

function of the incident wave is less than the required small quantity iff-.

Passage round the point x causes a change in the sign of the root \/[E- C/(^)],

and after the return to the real axis the function if/+ therefore becomes

«/r_, a wave propagated to the left (i.e. the reflected wave).
||

Since the ampli-

tudes of the incident and transmitted waves may be regarded as equal, the

t If the transition point is real but lies in the classically inaccessible region, formula (52.1) corres-

ponds (in the simple case of one-dimensional motion) to formula (50.9) for the probability of penetra-

tion through the potential barrier. An example of the application of formula (52.1) to a problem with

several degrees of freedom (the stripping of a deuteron in the field of a nucleus) is given by E. M.

Lifshitz, Zhurnal eksperimental'noi i teoreticheskoi fiziki 8, 930, 1938.

% If the potential energy of the system has itself singular points, these also must be considered as

possible values of go.

|| A passage along a path below the point *o (simply going along the real axis, for example) converts

the function tp+ into the incident wave.
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Fig. 19

required reflection coefficient R is simply the ratio of the squared moduli
of «/r_ and ift+

:

R = = expf im pdxj. (52.2)

Having derived this formula, we can deform the path of integration in the
exponent in any manner; if we convert it into the path C shown in Fig. 19,

the integral jp dx reduces to twice the integral from x± to x
, givingf

*0

R = expf im p dxf

.

(52.3)

Xi

Since p is real everywhere on the real axis, the choice of x\ does not affect

the imaginary part of the integral in the exponent.

As already mentioned, among the possible values of xo we must select the

one for which the exponent in (52.3) is smallest in absolute magnitude (and
this value must be large compared with unity).J It is also implied that, if

the potential energy U(x) itself has singularities in the upper half-plane,

the integral

im- I

hj
p dx

has larger values for such points; otherwise the exponent would be deter-

mined by one of these points, but the coefficient of the exponential would not
be unity as in (52.3). This condition is certainly not satisfied with increasing

t This formula with the coefficient of the exponential (equal to unity) was first obtained by V. L.
Pokrovskh, S. K. Sawinykh and F. R. Ulinich (1958).

t Of course, only points *o are considered for which

x

im I p dx > 0,

i.e. points lying in the upper half-plane.
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energy E if U{x) becomes infinite anywhere in the upper half-plane: ulti-

mately the point xq at which U = E becomes so close to the point #«, where

U = oo that the two points give comparable contributions to the reflection

coefficient (the integral

im-
\
p dx ~ 1),

and formula (52.3) becomes invalid. In the limit where E is so large that this

integral is small compared with unity, perturbation theory becomes applicable

(see Problem l).f

PROBLEMS

Problem 1. Determine the coefficient of reflection above the barrier for particle energies

such that perturbation theory is applicable.

Solution. Formula (43.1) is used, the initial and final wave functions being plane waves

propagated in opposite directions and normalised respectively by unit current density and the

delta function of momentum, with dv = dp' and p' the momentum after reflection. Carrying

out the integration with respect to p' (taking account of the delta function), we obtain

m? I f

Wp*\ J
(1)

—00

This formula is valid if the conditions for perturbation theory to be applicable are satisfied

:

Ua/Hv <^ 1, where a is the width of the barrier (see the third footnote to §45), and also

pa/H £ 1. The latter condition ensures that the function R(p) is not exponential; otherwise

the question of the validity of formula (1) would require further investigation.

Problem 2. Determine the coefficient of reflection above the barrier for a quasi-classical

barrier when the function U(x) has a discontinuity of slope.

Solution. If the function U(x) has a singularity for real x, the reflection coefficient is

determined mainly by the field near that point, and perturbation theory can be formally

applied to calculate it, without having to be valid for all x ; the fulfilment of the quasi-classical

condition is sufficient. We then have formula (1) of Problem 1 , the only difference being that

the momentum of the incident particle must be replaced by the value ofp(x) at the singular

point.

In this case we take the point of discontinuous slope as * = 0, and thus have near this point

U = — F\x for * > 0, U = —F2x for x < 0,

with different Fi and F%. The integration with respect to x is effected by including in the

integrand a damping factor e±Xx and then letting A -> 0. The result is

m2H2

where po = p(0).

t An intermediate case is discussed by V. L. Pokrovskii and I. M. Khalatnikov, Soviet Physics

JETP 13, 1207, 1961.
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§53. Transitions under the action of adiabatic perturbations

It has already been mentioned in §41 that, in the limit of a perturbation

which varies arbitrarily slowly with time, the probability of a transition of

a system from one state to another tends to zero. Let us now consider this

problem quantitatively, by calculating the transition probability under the

action of a slowly varying (adiabatic) perturbation.

Let the Hamiltonian of the system be a slowly varying function of time,

tending to definite limits as t -> ± oo, and let ifin(q, t) and En{t) be the eigen-

functions and the eigenvalues of the energy (depending on time as a para-

meter) obtained by solving Schrodinger's equation i?(*)0» = Entyn ; on
account of the adiabatic variation of i? with time, the time variation of En
and iftn with time will also be slow. The problem is to determine the proba-

bility «?i2 of finding the system in a certain state 02 as t -> + oo, if it was in

the state 0i as t -> — oo.

The slow variation of the perturbation means that the duration of the

"transition process" is very long, and therefore the change in the action during

this time (given by the integral — J E(t) dt) is large. In this sense the problem
is quasi-classical, and the required probability is mainly determined by the

values to of t for which

Ei(t ) = E2(t ) (53.1)

and which correspond, as it were, to the "instant of transition" in classical

mechanics (cf. §52); in reality, of course, such a transition is classically

impossible, as is shown by the fact that the roots of equation (53.1) are

complex. It is therefore necessary to examine the properties of the solutions

of Schrodinger's equation for complex values of the parameter t in the

neighbourhood of the point t = to at which the two eigenvalues of the energy

become equal.

As we shall see, the eigenfunctions 0i, 02 vary rapidly with t near this

point. To determine this dependence, we first define linear combinations

01, 02 of 0i, 02 which satisfy the conditions

j fa* dq = j 02
2 dq = 0,

J*
fafa dq = 1. (53.2)

This can always be achieved by suitable choice of the complex coefficients

(which are functions of t). The functions 0i, 02 have no singularity at t = to.

We now seek the eigenfunctions as linear combinations

= «i0i+a202. (53.3)

Here it must borne in mind that, when the "time" t is complex, the operator

fi(t) (of the form (17.4)) is still equal to its transpose (i? = i?), but is no

longer Hermitian (i? # i?*), since the potential energy U(t) ^ U*(t).

We substitute (53.3) in Schrodinger's equation, multiply on the left by
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fa or fa, and integrate with respect to q. With the notation

Htk(t) = jfififadq, (53.4)

and using the fact that H±2 = H21 owing to the above-mentioned property

of the Hamiltonian, we obtain the equations

Hna1+H12a2 = Ea2 ,

(53.5)
Hi2a1+H22a2 = Ea-y.

The condition for these equations to have non-zero solutions is (#12— E)2 =
H11H22, and the roots of this give the energy eigenvalues

E = H12 ±V(HiiH22). (53.6)

Then (53.5) gives

a2/ai = ±V(HnlH22). (53.7)

It is seen from (53.6) that, for a coincidence at the point t = Jo of the two

eigenvalues, either Hn or H22 must vanish at that point ; let Hn vanish there.

At a regular point, a function in general vanishes as t— to, and therefore

E(t)- E(t ) = ± constant x y/(t-

1

), (53.8)

i.e. E(t) has a branch point at t = to. We also have #2 ~ V(*— *o)> an<^ so

there is at the point t = to only one eigenfunction, fa.

We now see that the problem is formally completely analogous to the

problem of reflection above the barrier discussed in §52. We have a wave

function *F(£) which is "quasi-classical" with respect to time, instead of the

function quasi-classical with respect to the co-ordinate in §52, and wish to

find the term of the form C2fae~iE£ln in the wave function for t -> + 00,

if the wave function \F(f) = fae~iEtln as t -> — 00. This is analogous to the

problem of determining the reflected wave for x -> — 00 from the transmitted

wave for x -> + 00. The required transition probability w±2 = |c2|
2

- The
action S = —

J E(t) dt is given by the time integral of a function having

complex branch points (just as the function p(x) in the integral jp dx had

complex branch points). The problem under consideration is therefore

dealt with by means of a contour in the plane of the complex variable t

from large negative to large positive values, just as in §52 for the plane of the

variable x, and we shall not repeat the derivation here.

We shall suppose that E2 > E\ on the real axis. Then the contour must lie

in the upper half-plane of the complex variable t (where the ratio

g-iEfihje-iEjih increases). The resulting formula (analogous to (52.2)) is

«12 = exp ( - - im
J

E(t) dt\

,

(53.9)

c

where the integration is along the contour shown in Fig. 19 (from left to

right).
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On the left-hand branch of this contour E = Ei, and on the right-hand
branch E = E2 . We can therefore write (53.9) in the form

to

wi2 = exp ( - 2 im j a>2i(t) dtj
, (53.10)

where o>2i = {E^-E^fh, and t± is any point on the real axis of t\ t must be
taken as that root of equation (53.1) lying in the upper half-plane for which
the exponent in (53.10) is smallest in absolute value.f In addition, besides
the direct transition from state 1 to state 2, there may be possible paths
through various intermediate states; the probabilities of these are given by
analogous formulae. For example, for a transition 1 -> 3 -> 2 the integral
in (53.10) is replaced by a sum of integrals:

f (31) t (23)

J
<*Ki(t)dt+

J
oi2s,{t)dt

y

where the upper limits are the "points of intersection" of the terms #i(*),E3(t) and E3(t), E2(t) respectively. This result is obtained by means of a
contour which encloses both these complex points.J

t The possible values of t must include points at which E(t) becomes infinite; for such points the
coefficient of the exponential in (53.9) will not be unity.

t The intermediate states of a continuous spectrum require a special discussion.



CHAPTER VIII

SPIN

§54. Spin

Let us consider a system, such as an atomic nucleus, which executes some

motion as a whole. We shall suppose that the internal energy of the nucleus

has a definite value. The internal state of the nucleus, however, is in general

not completely determined by this value; for the "internal" angular mo-

mentum L of the nucleus (i.e. the angular momentum of the particles in

their motion within the nucleus) may still have various directions in space.

The number of different possible orientations of this angular momentum
is, as we know, 2L+1. Thus, in considering the motion of the nucleus (in

a given internal state) as a whole, we must examine, as well as its co-ordinates,

another discrete variable: the projection of its internal angular momentum
on some chosen direction in space.

Consequently, we see that the formalism of quantum mechanics allows us,

in considering the motion of any particle, to introduce, besides its co-ordinates,

another variable quantity specific to any given particle, which can take a

limited number of discrete values. We have no reason to suppose, a priori,

that this variable is absent when the particle is elementary. In other words,

we must in general suppose that, in quantum mechanics, some "intrinsic"

angular momentum must be ascribed to an elementary particle, regardless of

its motion in space. This property of elementary particles is peculiar to

quantum theory (it disappears in the limit h ->
; see the second footnote to

this section), and hence is essentially incapable of a classical interpretation.

In particular, it would be wholly meaningless to imagine the "intrinsic"

angular momentum of an elementary particle as being the result of its rotation

about "its own axis".

The intrinsic angular momentum of a particle is called its spin, as distinct

from the angular momentum due to the motion of the particle in space,

called the orbital angular momentum.^ The particle concerned may be either

elementary, or composite but behaving in some respect as an elementary

particle (e.g. an atomic nucleus). The spin of a particle (measured, like the

orbital angular momentum, in units of h) will be denoted by s.

In the preceding chapters we have always supposed that the three co-

ordinates of a particle form a complete set of quantities, so that, if they are

given, its state is completely determined. We now see that this is in general

t The physical idea that an electron has an intrinsic angular momentum was put forward by

G. Uhlenbeck and S. Goudsmit in 1925. Spin was introduced into quantum mechanics in 1927 by

W. Pauli.

188
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not true : for a complete description of the state of a particle, not only its co-

ordinates, but also the direction of the spin vector, must be specified. Hence

the wave function of a particle must be a function of four variables : the three

co-ordinates, and the spin variable which gives the value of the projection of

the spin on a selected direction in space, and takes a limited number of

discrete values. These values can be added as a suffix to the wave functions.

Thus the wave function of a particle which has a non-zero spin is in fact not

one function, but a set of several different functions of the co-ordinates,

differing in their spin suffixes.

The quantum-mechanical operator corresponding to the spin of the particle,

on being applied to the wave function, acts on the spin variable. In other

words, it in some way linearly transforms the functions differing only in

the spin suffix into one another. The form of this operator will be established

later. However, it is easy to see from very general considerations that the

operators §x , iy , s z satisfy the same commutation conditions as the operators

of the orbital angular momentum.
The angular momentum operator is essentially the same as that of an

infinitely small rotation. In deriving, in §26, the expression for the orbital

angular momentum operator, we considered the result of applying the rotation

operator to a function of the co-ordinates. In the case of the spin, this

derivation becomes invalid, since the spin operator acts on the spin variable,

and not on the co-ordinates. Hence, to obtain the required commutation

relations, we must consider the operation of an infinitely small rotation in a

general form, as a rotation of the system of co-ordinates. If we successively

perform infinitely small rotations about the *-axis and the jy-axis, and then

about the same axes in the reverse order, it is easy to see by direct calculation

that the difference between the results of these two operations is equivalent

to an infinitely small rotation about the #-axis (through an angle equal to the

product of the angles of rotation about the x and j-axes). We shall not pause

here to carry out these simple calculations, as a result of which we again

obtain the usual commutation relations between the operators of the com-

ponents of angular momentum ; these must therefore hold for the spin oper-

ators also:

{$vJe}=isx ,
{sz> sx}=isy,

{fx,$y}=i$z, (54.1)

together with all the physical consequences resulting from them.

The commutation relations (54.1) enable us to determine the possible

values of the absolute magnitude and components of the spin. All the results

derived in §27 (formulae (27.7)-(27.9)) were based only on the commutation

relations, and hence are fully applicable here also; we need only replace L
in these formulae by s. It follows from formula (27.7) that the eigen-

values of the sr-component of the spin form a sequence of numbers differing

by unity. However, we cannot now assert that these values must be integral,

as we could for the component L z of the orbital angular momentum (the

derivation given at the beginning of §27 is invalid here, since it was based



190 Spin §54

on the expression (26.14) for the operator lz , which holds only for the orbital

angular momentum).
Moreover, we find that the sequence of eigenvalues s z is limited above and

below by values equal in absolute magnitude and opposite in sign, which we
denote by ±s. The difference 2s between the greatest and least values of se

must be an integer or zero. Consequently s can take the values 0, |, 1, f , ... .

Thus the eigenvalues of the square of the spin are

s2 = s{s+\), (54.2)

where s can be either an integer (including zero) or half an integer. For given

s, the component sg of the spin can take the values s, s— 1, ... ,
— s, i.e. 2s+

1

values in all. From what was said above, we conclude that the state of a

particle whose spin is s must be described by a wave function which is a set

of 2s+ 1 functions of the co-ordinates,f
Experiment shows that the majority of the elementary particles (electrons,

positrons, protons, neutrons, jit-mesons and all hyperons (A, 2, H)) have a spin

of |. There are also elementary particles, the 7r-mesons and the .K-mesons,

whose spin is zero.

The total angular momentum of a particle is composed of its orbital angular

momentum 1 and its spin s. Their operators act on functions of different

variables, and therefore, of course, commute. The eigenvalues of the total

angular momentum
j = 1+s (54.3)

are determined by the same "vector model" rule as the sum of the orbital

angular momenta of two different particles (§31). That is, for given

values of / and s, the total angular momentum can take the values l+s,

l+s— 1, ... ,
\l— s\. Thus, for an electron (spin |) with non-zero orbital angular

momentum /, the total angular momentum can be j = /±|; for / = the

angular momentum j has, of course, only the one value/ = \.

The operator of the total angular momentum J of a system of particles is

equal to the sum of the operators of the angular momentum j of each particle,

so that its values are again determined by the vector model rules. The angular

momentum J can be put in the form

J = L+ S, L = 2 la , S = 2 sa , (54.4)
a

where S may be called the total spin and L the total orbital angular momentum

of the system. We notice that, if the total spin of the system is half-integral

(or integral), the same is true of the total angular momentum, since the orbital

angular momentum is always integral. In particular, if the system consists

of an even number of similar particles, its total spin is always integral, and

therefore so is the total angular momentum.

f Since s is fixed for each kind of particle, the spin angular momentum Hs becomes zer o in the limit

of classical mechanics (H-> 0). This consideration does not apply to the orbital angular momentum,

since I can take any value. The transition to classical mechanics is represented by H ten ding to zero

and / simultaneously tending to infinity, in such a way that the product hi remains finite

.
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The operators of the total angular momentum j of a particle (or J, of a

system of particles) satisfy the same commutation rules as the operators of

the orbital angular momentum or the spin, since these rules are general com-

mutation rules holding for any angular momentum. The formulae (27.13)

for the matrix elements of angular momentum, which follow from the com-

mutation rules, are also valid for any angular momentum, provided that the

matrix elements are defined with respect to the eigenstates of this angular

momentum. Formulae (29.7)—(29.10) for the matrix elements of arbitrary

vector quantities also remain valid (with appropriate change of notation).

PROBLEM
A particle with spin J is in a state with a definite value sz = %. Determine the probabilities

of the possible values of the component of the spin along an axis z' at an angle 9 to the s'-axis.

Solution. The mean spin vector s is evidently along the ar-axis and has magnitude J.

Taking the component along the s'-axis, we find that the mean value of the spin in that

direction is sT' = i cos 0. We also have s7' = i(w+—w~), where io± are the probabilities

of the values Sz- = ±£. Since w++w- — 1, we find w+ = cos2J0, w- = sin2£0.

§55. Spinors

Let if/(x, y, z; a) be the wave function of a particle with spin a; a denotes

the ^-component of the spin, and takes values from — s to +s. We shall call

the functions ip(a) with various values of a the "components" of the wave

function. We impose on the choice of these "components" the condition

that the integral J |«/r(a)
|

2 dV determines the probability that the ^-component

of the spin of the particle is equal to a. The probability that the particle is in
s

an element of volume dV in space is dV 21 |j^(cr)
|

2
. If the particle is in a state

cr = -s

with a definite a-value o- , only the component ifj(o) with a = a is not zero,

i.e. the wave function is of the form

il*(x,y,z; a) = i/^.jy,*^.

In this chapter we shall not be interested in the dependence of the wave func-

tion on the co-ordinates. For example, in speaking of the behaviour of the

function ifi(a) when the system of co-ordinates is rotated, we can suppose that

the particle is at the origin, so that its co-ordinates remain unchanged by

such a rotation, and the results obtained will characterise the behaviour of the

function ^r(o-) with regard to the spin variable a.

Let us effect an infinitely small rotation through an angle
8(f>

about the

sr-axis. The operator of such a rotation can be expressed in terms of the

angular momentum operator (in this case the spin operator), in the form

1 +i8(f> . ss . Hence, as a result of the rotation, the functions ^r(a) become

ifj(cr)+ Sifj(<r), where 8ip(cr) =i8<f> . szt[i(a). But fs^(a) = o^r(cr), so that

8if/(a) = iaift(a)8(f>. By a rotation through a finite angle
<f>

the functions ift{a)

are therefore transformed into

f(a) =«^(<t). (55.1)
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In particular, by a rotation through an angle 2tt, they are multiplied by a
factor e27ria, which is the same for all a and is (- l)2s (2a is always of the same
parity as 2s). Thus we see that, when the system of co-ordinates is com-
pletely rotated about an axis, the wave functions of a particle of integral spin
return to their original values, while those of a particle of half-integral spin
change sign.

The variable a differs from the ordinary variables (the co-ordinates) by
being discrete. The most general form of a linear operator acting on func-
tions of a discrete variable a is

(/fl(cr) = S/^aO, (55.2)

where the f^ are constants. The parentheses round fift emphasise that the
spin argument a which follows does not relate to the original function «/» but
to that which results from it when the operator/ is applied. It is easy to see that
the quantities/^' are the same as the matrix elements of the operator/ defined
in the usual manner. For the "eigenfunction" of the operator sz corresponding
to the value sz = ct is ip(a) = S^. For this function we have

Ao* = g/aA'a,, =/aV
The right-hand side of this equation can be rewritten in the form ]}faf

a, 8aa'
and then

Aw. = S/a'aA*" (55.3)

This equation, however, agrees with the usual definition of the matrix of the
operator / with respect to the eigenfunctions of the operator sz .

Thus the operators acting on functions of a can be represented in the form
of (2*+l)-rowed matrices. In particular, we have for the operators of the
spin components themselves

(4Mff)= 2(^0(a')» (55.4)

and similarlyf for sy > K- According to what has been said above, the matrices
sx ,

sy ,
s g are identical with the matrices Lx , Ly , L z obtained in §27, where the

letters L and M need only be replaced by s and a. Thus the non-vanishing
matrix elements of the spin operators are

isx)a,a-l = (**)<r-l,a = i\/[(*+ °)(s- (7+ 1)], \

(sv)o,o-i = -(sy)<r-i,a = -¥V[(s+o)(s-a+l)]
t (55.5)

In the important case of a spin of \{s = £, a = ± £), these matrices have

t Attention is drawn to the fact that the sequence of suffixes in the matrix elements on the right-hand
side of equation (55.4) is the reverse of the usual sequence (in (55.3)).
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two rows, and are of the form

<*•>-€ 3- w "€ "J-
w=iC -D-

(556)

These are called (without the factor ^) Pauli matrices. We may also give the

matrices of the complex combinations s± = sx ±isy :

rO In r0 °T
(s+)

=[o J w =[i 0}
(557)

By direct multiplication of the Pauli matrices, it is easy to verify that the

relations

2sJz
= isx , 2sJx = isv, 2sJv = iSt (55.8)

hold. Combining these with the usual commutation rules (54.1) we find that

sJv+sJx =0, 4vK4=0, $Jg+§Jy =Q, (55.9)

i.e. the Pauli matrices anticommute with one another.

By means of these relations, we can easily verify the following useful formulae

:

§2 = |, (55.10)

(s.a)(s.b) = i(a.b)+ii§.(axb), (55.11)

where a and b are any vectors.f

It may be noted that any expression quadratic in the components of s thus

reduces to terms independent of s and terms linear in s. Hence it follows that

any function of the operator s (of spin \) reduces to a linear function (see

Problem 1).

Let us consider more closely the "spin" properties of wave functions.

When the spin is zero, the wave function has only one component, ^(0). When
the spin operators act upon it, the result is zero

:

SXlp = Sylfj = Sz*ji = 0.

Since the spin operators are related to the rotation operators, this means that

the wave function of a particle with spin zero is invariant under rotation of

the co-ordinate system, i.e. it is a scalar.

The wave functions of particles with spin \ have two components, i}j{\) and

^(— £). For convenience in later generalisations, we shall call these compo-

nents i/j
1 and i/j

2 respectively (with upper indices 1 and 2). In any rotation of

the co-ordinate system, tp1 and ip
2 undergo a linear transformation

:

0v = a^+j^2
, V

2 ' = rl>
x+W- (55.12)

t The terms on the right which are independent of s must, of course, be understood as constants

multiplying the unit two-by-two matrix.
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The coefhcientsf a, jS, y, 8 are in general complex and functions of the angles
of rotation. They are connected by a relation which we derive by considering
the bilinear form

0^-0^1, (55.13)

where (ifi
1

,
xjj
%
) and (<£\ cf>

2
) are two wave functions transformed according to

(55.12). A simple calculation gives

0i'02'-02'0i' =
(a8- i8y)(^2-^i)

)

i.e. the quantity (55.13) is transformed into itself when the co-ordinate system
is rotated. If, however, there is only one function which is transformed into
itself, it can be regarded as corresponding to zero spin, and therefore must be
a scalar, i.e. must remain unchanged when the co-ordinate system is rotated
in any manner. Hence we have

aS-j8y = 1. (55.14)

This is the required relation.

The linear transformations (55.12) which leave the bilinear form (55.13)
invariant are called binary transformations. A quantity having two compo-
nents which undergoes a binary transformation when the co-ordinate system
is rotated is called a spinor. Thus the wave function of a particle with spin \
is a spinor.

It is possible to put the algebra of spinors in a form analogous to that

of tensor algebra. This is done by introducing a vector space of two dimen-
sions, in which the metric is defined by an antisymmetrical "metric tensor":

The vectors in this space are spinors. Besides the contravariant components
0\ ^

2 of the spinor, we may introduce the covariant components in accordance
with the usual formulae of tensor algebra

:

fa = 5«v^,

so that

fa = <A
2
, fa = -V- (55.16)

The binary transformations for the covariant components of a spinor are

obviously of the form

fa' = Zfa-yfa, fa' = -j3<Ai+a«A2 . (55.17)

t Called the Cayley-Klein parameters.
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The converse transformation from covariant to contravariant components

can be written in the form

«A
A = S^tyM , (55.18)

where the contravariant "metric tensor" g^ has the components

which are the same as the components g^.
The invariant combination (55.13) can be written as a "scalar product"

+Hx = Wi+tfVi = W-0V = 5VA
A^; (55.20)

here, and in what follows, summation is implied over repeated {dummy)

indices, as in tensor algebra. We may note the following rule which has to

be borne in mind in spinor algebra. We have

tfVa = Wi+tfVi = -M2-^1 = -MA
-

Thus

*Va = ~^A
- (55.21)

Hence it is evident that the scalar product of any spinor with itself is zero

:

^ = 0. (55.22)

The expression
|^l|2+ |02|2 = ^l*^^

which gives the probability of finding the particle at a given point in space,

must clearly be a scalar. Comparing it with the scalar (55.20), we see that

the components j/t
1*, 2* of the wave function which is the complex conjugate

of j/t
1

, ifs
2 are transformed as covariant components of a spinor, i.e. as ip2,—^1

respectively

:

0i*' = 801*— yifi
2*, if>

2*' = —j80
1#+a^2*.

On the other hand, by taking the complex conjugate equations to (55.12)

0i*' = a*^1*-^*^2
*,

2*' = y*0!*+8*02*

and comparing them with the above, we find that the coefficients a, jS, y, S

are related also by

a =5*, j8 = -y*. (55.23)

By virtue of the relations (55.14), (55.23), the four complex quantities

a, jS, y, S actually contain only three independent real parameters, correspond-

ing to the three angles which define a rotation of a three-dimensional system

of co-ordinates.
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The fact that 1*, iff
2* are transformed as if/

2
, —if*

1 is closely related to the

symmetry with respect to a change in the sign of the time. As was remarked
in §18, in quantum mechanics a change in the sign of the time corresponds

to a replacement of the wave function by its complex conjugate. When the

sign of the time is changed, however, so is that of the angular momentum.
Hence the functions which are the complex conjugates of the components
1
, ifj

2 corresponding to projections of the spin a = \ and a = —\ must be
equivalent in their properties to the components corresponding respectively

to projections of the spin a = — \ and a = \.

PROBLEMS
Problem 1. Reduce an arbitrary function of the scalar a+2b . s (where s is the operator

of spin i) to another linear function of s.

Solution. To determine the coefficients in the required formula f(a+ 2b . s) =
oc+2/?b . s/b, we note that, when the sr-axis is taken in the direction of b, the eigenvalues of
the operator a+ 2b . s are a ± b, and the corresponding eigenvalues of the operator f(a +2b . s)
are/(a±6). Hence we find a = h[f(a+ b)+f(a-b)], j3 = £[/(a +&)_/(a _£)].

Problem 2. Determine the values of the scalar product si . S2 of spins (£) of two particles
in states in which the total spin of the system, S = Si +S2, has definite values (0 or 1).

Solution. From the general formula (31.2), which is valid for the addition of any two
angular momenta, we find si . S2 = i for S = 1, Si . S2 = —J for S = 0.

Problem 3. Which powers of the operator s of an arbitrary spin s are independent?

Solution. The operator

(Sz -s)(sz-s+l) ... (sz+ s),

formed from the differences between S z and all possible eigenvalues s z , gives zero when it is

applied to any wave^ function, and is therefore itself zero. Hence it follows that (S z)
28+1 is

expressed in terms of lower powers of the operator S z , so that only its powers from 1 to 2s are
independent.

§56. Spinors of higher rank

Analogously to the transition from vectors to tensors in ordinary tensor

algebra, we can introduce the idea of spinors of higher rank. Thus, a quantity

ip^
t
having four components which are transformed as the products j/t\^*

of the components of two spinors of rank one, is called a spinor of rank two.

Besides the contravariant components «/rV we can consider the covariant

components j/t^ and the mixed components 0^ which are transformed as

the products ifix<f>n and ipx^ respectively. The transition from one set of

components to another is effected by means of a "metric tensor" gx„, in

accordance with the usual formulae

Thus ip12 = —ip!1 = —iff
21

, 0ii = *Pi
2 = ip22 , and so on. Spinors of any

rank are similarly defined. The quantities g^ themselves form an anti-

symmetrical spinor of rank two. It is easy to see that the values of its com-
ponents remain unchanged under binary transformations.
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It is easily verified that the product g\vg^
v

is, as it should be, a unit spinor

of rank two, i.e. a spinor with components 8\ = S| = 1, Sf = S2 = 0. Thus

ibF* = V- (56.1)

As in ordinary tensor algebra, there are two fundamental operations in

spinor algebra: multiplication, and contraction with respect to a pair of in-

dices. The multiplication of two spinors gives a spinor of higher rank ; thus,

from two spinors of ranks two and three, iff^ and ipvPa, we can form a spinor

of rank five, i/fXfilP
vpa

' Contraction with respect to a pair of indices (i.e. sum-
mation of the components over corresponding values of one covariant and

one contravariant index) decreases the rank of a spinor by two. Thus, a

contraction of the spinor ^x^ 9" with respect to the indices ju and v gives the

spinor ^A^po °f rank three; the contraction of the spinor ^y* gives the scalar

tp\*. Here there is a rule similar to that expressed by formula (55.21): if we
interchange the upper and lower indices with respect to which the contraction

is effected, the sign is changed (i.e. ^A = — if**\). Hence, in particular, it

follows that, if a spinor is symmetrical with respect to any two of its indices,

the result of a contraction with respect to these indices is zero. Thus, for a

symmetrical spinor ijj
X/l of rank two, we have ift\^ = 0.

A spinor of rank n symmetrical with respect to all its indices is called a

symmetrical spinor of rank n. From an asymmetrical spinor we can construct a

symmetrical one by the process of symmetrisation, i.e. summation of the compo-

nents obtained by all possible interchanges of the indices. From what has

been said above, it is impossible to construct (by contraction) a spinor of lower

rank from the components of a symmetrical spinor.

Only a spinor of rank two can be antisymmetrical with respect to all its

indices. For, since each index can take only two values, at least two out of

three or more indices must have the same value, and therefore the compo-

nents of the spinor are zero identically. Any antisymmetrical spinor of rank

two is a scalar multiple of the unit spinor g^. We may notice here the fol-

lowing relation

:

gAv&v+g^X+g^ = (56.2)

(where ip\ is any spinor), which follows from the above; this rule is simply a

consequence of the fact that the expression on the left is (as we may easily

verify) an antisymmetrical spinor of rank three.

The spinor which is the product of a spinor j/^ with itself, on contraction

with respect to one pair of indices, becomes antisymmetrical with respect to

the other pair:

Hence, from what was said above, this spinor must be a scalar multiple of

the spinor gx^. Defining the scalar factor so that contraction with respect to

the second pair of indices gives the correct result, we find

hAv = -W*^Tsv (56 -3 )
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The components of the spinor ^M
* which is the complex conjugate of

f/fXfi... are transformed as the components of the contravariant spinor tp^f1—,

and conversely. The sum of the squared moduli of the components of any
spinor is consequently invariant.

§57. The wave functions of particles with arbitrary spin

Having developed a formal algebra for spinors of any rank, we can now
turn to our immediate problem, to study the properties of wave functions of

particles with arbitrary spin.

This subject is conveniently approached by considering an assembly of

particles with spin |. The greatest possible value of the ^-component of the

total spin is |w, which is obtained when sg = \ for every particle (i.e. all the

spins are directed the same way, along the #-axis). In this case we can
evidently say that the total spin S of the system is also \n.

All the components of the wave function i/t(alt cr2 , ... , an) of the system
of particles are then zero, except for «/r(|, \, ...

, §). If we write the wave
function as a product of n spinors if/ty ... , each of which refers to one of the

particles, only the component with A, p, ... = 1 in each spinor is not zero.

Thus only the product j/r
1
^
1

... is not zero. The set of all these products,

however, is a spinor of rank n which is symmetrical with respect to all its

indices. If we transform the co-ordinate system (so that the spins are not
directed along the #-axis), we obtain a spinor of rank n, general in form except

that it is symmetrical as before.

The "spin" properties of wave functions, being essentially their properties

with respect to rotations of the co-ordinate system, are evidently identical for

a particle with spin 5 and for a system of n = 2s particles each with spin \
directed so that the total spin of the system is s. Hence we conclude that

the wave function of a particle with spin s is a symmetrical spinor of rank
n = 2s.

It is easy to see that the number of independent components of a sym-
metrical spinor of rank 2s is equal to 2s +1, as it should be. For all those

components are the same whose indices include 2s ones and twos; so are

all those with 2s— 1 ones and 1 two, and so on up to ones and 2s twos.

Mathematically we can say that the symmetrical spinors provide a classifica-

tion of the possible types of transformation of quantities when the co-ordinate

system is rotated. If there are 2s+1 different quantities which are transformed

linearly into one another (and which cannot be reduced in number by any
choice of linear combinations of them), then we can assert that their law of

transformation is equivalent to that of the components of a symmetrical spinor

of rank 2s."f" Any set of any number of functions which are transformed linearly

into one another when the co-ordinate system is rotated can be reduced (by

an appropriate linear transformation) to one or more symmetrical spinors.

f In other words, the symmetrical spinors form what are called irreducible representations of the
rotation group (see §98).
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Thus an arbitrary spinor ^A/xv... °f rank n can De reduced to symmetrical

spinors of ranks », n— 2, n

—

4, ... . In practice, such a reduction can be made

as follows. By symmetrising the spinor j/^... with respect to all its indices,

we form a symmetrical spinor of the same rank n. Next, by contracting the

original spinor j/^v... with respect to various pairs of indices, we obtain

spinors of rank n— 2, of the form «/f
A
Av ,

which, in turn, we symmetrise, so

that symmetrical spinors of rank n—2 are obtained. By symmetrising the

spinors obtained by contracting j/^... witn respect to two pairs of indices,

we obtain symmetrical spinors of rank n— 4, and so on.

We have still to establish the relation between the components of a sym-

metrical spinor of rank 2s and the 2s+1 functions ^(cx), where a — s, s— 1, ... ,

—s. The component

.11. ..1 22. ..2

s+a s—cr

in whose indices 1 occurs s+a times and 2 s— a times, corresponds to a value

a of the projection of the spin on the sr-axis. For, if we again consider a system

of n = 2s particles with spin ^, instead of one particle with spin s, the product

tfjty
1

. . . x
2
p
2

- • • corresponds to the above component; this product belongs to a

s+a

state in which s+a particles have a projection of the spin equal to £, and

s— a a projection of — $, so that the total projection is ?(s+ a)— %(s— a) = a.

Finally, the proportionality coefficient between the above component of

the spinor and ifj(o) is chosen so that the equation

Js
|*(a)|»- jy**-|« (57 -!)

holds; this sum is a scalar, as it should be, since it determines the probability

of finding the particle at a given point in space. In the sum on the right-hand

side, the components with (s+ a) indices 1 occur

(2*)!

(,+ ff)!(,-a)l

times. Hence it is clear that the relation between the functions ip(a) and the

components of the spinor is given by the formula

0( ^ = /r (2*)! V1-1 22-2
(57 2)G)

V U+a)!(*-<?)U s+ff *-a
'

The relation (57.2) ensures the fulfilment not only of the condition (57.1),

but also, as we easily see, of the more general condition

«A
v~£w. = 5 (- 1)

8-^)^- *)> (57 -3 )

where ifj^'" and <f>Xa...
are two different spinors of the same rank, while
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iff(<j),(f>(o) are functions derived from these spinors by formula (57.2); the
factor (— l)

s-° is due to the fact that, when all the indices of the spinor com-
ponents are raised, the sign changes as many times as there are twos among
the indices.

Formulae (55.4) determine the result of the action of the spin operator
on the wave functions ip(a). It is not difficult to find how these operators act

on a wave function written in the form of a spinor of rank 2s. For a spin £,

the functions i/f(£), «/r(— |) are the same as the components ^r1
,

2 of the spinor.

According to (55.4) and (55.6), the result of the spin operators' acting on them
will be

(40)
x =#2

, (W = -^2
, (W=#\

(40)
2 = W, {Syrfsf = W, (U)2 = -W-

7A)

To pass to the general case of arbitrary spin, we again consider a system
of 2s particles with spin |, and write its wave function as a product of 2s

spinors. The spin operator of the system is the sum of the spin operators

of each particle, acting only on the corresponding spinor, the result of this

action being given by formulae (57.4). Next, returning to arbitrary symmetri-
cal spinors, i.e. to the wave functions of a particle with spin s, we obtain

, g
..11. ..22... ..

N
.11... 82... ... . 11 ... 22

s+a 8-a ' s+a-1 s-a+1 ' T8+a+l s-a-X

, g
..11. .22... ... ..11... 22... . ..11... 22

8+a 8-a v ' 8+a-l s-a+1 v ' r
8+o+l s-a-1

,a ,.H •••22 ... .11 ...22...

(**#) = # •

s+o s-a s+a 8-a

(57.5)

We notice that, by starting from these formulae and the relations (57.2),

we could derive the expressions (55.5) for the matrix elements of the spin

operator acting on the functions ift(o).

§58. The relation between spinors and tensors

Hitherto we have spoken of spinors as wave functions of the intrinsic angular

momentum of elementary particles. Formally, however, there is no difference

between the spin of a single particle and the total angular momentum of any
system regarded as a whole, neglecting its internal structure. It is therefore

evident that the transformation properties of spinors apply equally to the

behaviour, with respect to rotations in space, of the wave functions ipjm of any
particle or system of particles with total angular momentum /, independent of

whether orbital or spin angular momentum is concerned. There must therefore

be some definite relation between the laws of transformation for the eigen-

functions ^m under rotations of the co-ordinate system and those for the

components of a symmetrical spinor of rank 2/.
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In establishing this relation we must, however, make a clear distinction

between two aspects of the dependence of the wave functions on the component

m (for a given value ofj). The wave function may be regarded as the probability

amplitude for various values of m, or may be considered for a given value of m.

These two aspects have already been discussed at the beginning of §55,

where we dealt with the "eigenfunction" S^ of the operator sz which corres-

ponds to sz = <to. The mathematical difference between them is especially

clear for a particle of spin s = |. In this case the spin function is, with respect

to the variable a, a contravariant spinor of rank 1, i.e. must be written in spinor

notation as 8°"^ . With respect to cto it is therefore a covariant spinor.

This is evidently a general result: the eigenfunctions 0ym can be put in

correspondence with the components of a covariant symmetrical spinor of

rank 2/ by means of formulae analogous to (57.2) :f

0/m = — — -011... 22...- (58.1)

V (i + tn)\(i — m)\

The eigenfunctions of integral angular momentumj are spherical harmonics,

and formula (58.1) relates them to the components of a covariant spinor of even

rank.

The case; = 1 is of particular importance. The three spherical harmonics

Ylm are

J^ee^ = TiJ^nx± in v)t

3 .. /3
Fi ±i = T i '

where n is a unit vector along the radius vector. Comparing with (58.1), we

see that the components of a spinor of rank two can be brought into corres-

pondence with the components of some vector by the formulaeJ

i i *

012 = az , 0n= -Aax+iay), 022 = —-riflx—fay), (
58 -2)

V2 v 2 v 2

t This result can also be regarded somewhat differently. If the wave function ^ of a particle in

state with angular momentum j is expanded in terms of the eigenfunctions tftjm :

ifj
= S amifijm>m

then the coefficients am are the probability amplitudes for various values of m. In this sense they

correspond to the "components" t/)(m) of a spin wave function, and this gives their law of transformation.

On the other hand, the value of at a given point in space cannot depend on the choice of the co-

ordinate system, i.e. the sum S amiffjm must be a scalar. Comparing with the scalar (57.3), we see that

am must transform as (— \)
i~m

'jsj,-m-

% Here the functions ifsjm and the components of the vector are related by

0io = iaz , 0n= —(ax+iay), 01 -1 = —r(%-«fy)- (58.2a)

V 2 V 2
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or

V = - -Z&> <£
U = —z{ax-iay\ <p = _ Jtax+iayy (58 3)

Conversely

az = iV20i2, «* = -i-(022_0ii)
5 % =

(
0ii+ 022). (58>4)

v^ V2

It is easily verified that with these definitions we have

</v£
A/<= a.b, (58.5)

where a and b are vectors corresponding to the symmetrical spinors i/t^ and
(f)^. It is also not difficult to see that the spinor ift/<f>t

iv +0/0A" corresponds
to the vector <y/2a x b.

The relations (58.2) or (58.3) are a particular case of a general rule: any sym-
metrical spinor of even rank 2j, where j is integral, can be correlated with a
symmetrical tensor of half the rank (j) which gives zero on contraction with
respect to any pair of indices; we call this an irreducible tensor.

This follows from the fact that the numbers of independent components
of the spinor and of the tensor are the same (2/+ 1), as may easily be seen.f
The relation between the components of the spinor and of the tensor can be
found by means of formulae (58.2)—(58.4), if we consider a spinor of the rank
concerned as the product of several spinors of rank two, and the tensor as a
product of vectors.

Finally, let us determine the relation between the angles of rotation of the
co-ordinate system and the coefficients <x, /?, y, 8 of the binary transformation.
This is done by noticing that, on the one hand, the cosines of the angles
between the original and final axes of co-ordinates are the coefficients in the
formulae for the transformation of the components of a vector:

<*'t =g*afi* (58.6)

and, on the other hand, this same transformation can be performed by means
of a binary transformation, using formulae (58.4), (55.12). Thus, for instance,

we have
a'z =*V2 «A

12
' =^V2 [ay^1+W22+(a3+

i8y)0
12

]

= (-ay+)88)ae+i(ay+iS8)fl,+(a8+j8y)fl.

We can similarly determine the remaining oiik , and thus obtain the following
scheme of transformation coefficients

:

(«-ik)
=

l (a2_£2_y2+ S2) ^(_a2_/J2+y
2+ S2) (-a/J+yg)"

^ai-jgi+yi-S") Ka^+yHS2
) -/(ajS+yS)

(-ay+jSS) *(«y+j88) ocS+Py

(58.7)

t Mathematically we can say that the 2/+ 1 components of an irreducible tensor of rank j (an
integer), the 2/+1 spherical harmonics Yjm , and the 2/+1 components of a symmetrical spinor of
rank 2/ give the same irreducible representation of the rotation group.
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The inverse expressions for the coefficients a, jS, y, 8 in terms of the angles

of rotation of the co-ordinate system can be found by using the Eulerian

angles to define the rotation. The matrix of the coefficients a, /?, y, S for a rota-

tion through an angle
<f>
about the sr-axis (denoted by co(<f>)), according to formula

(55.1) with cr = + J, is of the form

The matrix Q(0) expressing a rotation through an angle 6 about the x-axis

is easily calculated from formulae (58.7), in which ocXx = 1> <*-yy — <*zz — cos #>

V-yz = ~ azy = sin "> 'X-xy = Kyx = a#z = &-zx = :

[cosA0 *sinA0~|

• • i/i I '

ism*v cos*0J
(58.9)

A rotation specified by the Eulerian angles
<f>,

6, ifs (Fig. 20 ; OAT is the line of

intersection of the xy and x'y' planes) is carried out in three stages : a rotation

*>K

through an angle
<f>
about the #-axis, one through an angle 6 about the new

position of the x-axis, and finally one through an angle tfj about the final direc-

tion of the #-axis. Accordingly, the matrix of the complete transformation

is equal to the product co(i[t)Cl(d)co(<f>). By direct multiplication of the matrices,

we finally obtain

Ly 8J \j

cos^.e^+*)/ 2

sinA0.e^-*)/2

i sin \Q

COSifl

g-£(0-0)/2'

g-t(^+0)/2 ]
(58.10)
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In particular, a rotation through an angle it about the jy-axis corresponds
to Eulerian angles = 7r, 0-0 = tt, so that a = S = 0, j8 = 1, y = — 1. This
means that the spinor components are transformed by such a rotation according
to0!' = 08,02' = -01, or

0i' = 0!, 02' = 2 . (58.il)

PROBLEMS
Problem 1. Rewrite the definition (57.4) of the operator of spin J in terms of the spinor

components of the vector s.

Solution. By means of formulae (58.3), which give the relation between the vector s
and the spinor S X|X

, the definition (57.4) can be written as

i

2\/2

Problem 2. Derive formulae which determine the effect of the spin operator on a vector
wave function of a particle with spin 1

.

Solution. The relation between the components of the vector function l|> and the com-
ponents of the spinor^ is given by formulae (58.3), and from (57.5) we have

40+ — -0+, Sztfi- = 0_, szi/jz =

or

403 = -*"02/, Szlf>v = tlflz , 402 = 0.

The remaining formulae are derived from these by cyclic permutation of the suffixes x, y, z.
They can be written together as

40* = —iemvph

The complex vector %\> can be put in the form l|> = eia(u+iv), where u and v are real
vectors, which can be taken to be mutually perpendicular if the common phase a is suitably
chosen. The two vectors u and v determine a plane which has the property that the spin
component perpendicular to it can take only the values ± 1

.

§59. Partial polarisation of particles

By a suitable choice of the direction of the #-axis, we can always cause one
component (e.g. 2

) of a given spinor A
, the wave function of a particle with

spin ^, to vanish. This is evident from the fact that a direction in space is

determined by two quantities (angles), i.e. the number of disposable parameters
is just equal to the number of quantities (the real and imaginary parts of the

complex 2
) which it is desired to make zero.

Physically this means that, if a particle with spin \ (for definiteness, we shall

speak of an electron) is in a state described by a spin wave function, then there

is a direction in space in which the component of the particle spin has the

definite value a = \. We can say that in such a state the electron is completely

polarised.

There are also, however, states of an electron which may be said to be
partially polarised. Such states are not described by wave functions but only

by density matrices, i.e. they are mixed states (with respect to spin) (see §14).
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The spin density matrix of an electron is a spinor p
A <" of rank two normalised

by the condition

p/ = P1
i+

P2
2 = 1, (59.1)

and satisfying the "Hermitian" condition

(pa")* = p/- (59.2)

For a pure (i.e. completely polarised) spin state of the electron the spinor

pA-" reduces to a product of components of the wave function «/r
A

:

Pxp = (0A)#^. (59.3)

The "diagonal" components pi
1 and p2

2 of the density matrix determine the

probabilities of the values + 1 and — f of thcsr-component of the electron spin.

The mean value of this component is therefore

^ = KP11—
/»2

2
)i

or, using (59.1),

Pi
1 = H*> P2

2 = i-Tz- (59.4)

In a pure state the mean value of the quantities s± = sx ± isy is calculated as

sL = ifjtes-ifj*- = ift
2
*ifj

l

(see (55.7)). Accordingly we have in a mixed state

Pi
2 = n, P2

1 = r-. (59.5)

Thus we see that all the components of the spin density matrix of the electron

are expressed in terms of the mean values of components of its spin vector. In

other words, the real vector s entirely determines the polarisation properties of

a particle with spin J. In the limit of complete polarisation one of the com-
ponents of this vector (with an appropriate choice of the directions of the

axes) is ^ and the other two are zero. In the opposite case of an unpolarised

state all three components are zero. In the general case of an arbitrary partial

polarisation and any choice of the co-ordinate system we have ^ p ^ 1,

where

p = 2(^2+^2+ sl
2)l/2

is a quantity which may be called the degree ofpolarisation of the electron.

For a particle of arbitrary spin s, the density matrix is a spinor p\ /l ...
f"T-"

of rank 4s, symmetrical in the first 2s and the last 2s indices and satisfying the

conditions

Pa,../*- = 1, (59.6)

(PA/*...^-)* = P^...^-. (59.7)

To calculate the number of independent components of the density matrix,

we note that, among the possible sets of values of the indices A, /*, ... (or />, a, . .
.)
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there are only 2s+1 which are essentially different. Using also the fact that

the components of the spinor pX/l ...
p(T— are related by (59.6), we find that the

number of different components is (2s+l)2-l = 4s(s+l). Although these

components are complex, the relation (59.7) shows that this does not increase

the total number of independent quantities describing the state of partial

polarisation of the particle, which is therefore 4s(s+l).f For comparison, it

may be remarked that the state of complete polarisation of the particle is de-

scribed by only 4s quantities (the 2s+ 1 complex components of thewave function
j/r'M"-, related by one normalisation condition and containing one common phase
which is unimportant in the description of the state).

Like any spinor of rank 4s, the spinor ^..Z '—
is equivalent to a set of

irreducible tensors of ranks 4s, 4s -2, ... , 0. In the present case there is only

one tensor of each rank, since, on account of the symmetry properties of the

spinor
^Xfi...

p(T
"'i eacn contraction of it can be carried out in only one way:

with respect to any one of the indices A, fi, ... , and one of p, a, ... . In addition,

the scalar (tensor of rank 0) does not appear, reducing to unity by virtue of the

condition (59.6).

§60. Time reversal and Kramers' theorem

The symmetry of motion with respect to a change in the sign of the time is

expressed in quantum mechanics by the fact that, if «/r is the wave function of

a stationary state of the system, the "time-reversed" wave function (which we
denote by «/irev) describes a possible state with the same energy. At the end of

§18 it has been pointed out that */r
rev is the same as the complex conjugate

function </r*. In this simple form the statement applies to wave functions where
the spin of particles is neglected. When spin is present, a refinement is necessary.

Let us take the wave function of a particle of spin s in the form of the contra-

variant spinor A /t— (of rank 2s). On taking the complex conjugate function
^,A/*...# we obtain a set of quantities which are transformed as components of a

covariant spinor. Hence the operation of time reversal corresponds to a change
from the wave function ifi^-- to a new wave function whose covariant com-
ponents are given by

.rev

0a,... = «A^-#. (60.1)

For a given set of values of the indices A, /x, ... , the components of covariant

and contravariant spinors correspond to values of the angular-momentum
component which differ in sign. In terms of the functions «/rSo., therefore, time

reversal corresponds to a change from ifjS(T to «/fS ,_ ff,
as it should, since a change

in the sign of the time changes the direction of the angular momentum. The
exact relation is given by (60.1):

t When these quantities are given, so are the mean values of the components of the vector s and all

their powers and products 2, 3, ..., 2s at a time, which do not reduce to lower powers (see §55, Problem
3).



§60 Time reversal and Kramers' theorem 207

In other words, the operation of time reversal requires the change

^->^,-.(-l)s-*-
(60 -2)

Let us consider an arbitrary system of interacting particles. The orbital and

spin angular momenta of such a system are not in general separately conserved

when relativistic interactions are taken into account. Only the total angular

momentum J is conserved. If there is no external field, each energy level of the

system has (27+l)-fold degeneracy. When an external field is applied, the

degeneracy is removed. The question arises whether the degeneracy can be

removed completely, i.e. so that the system has only simple levels. This is

closely related to the symmetry with respect to time reversal.

In classical electrodynamics the equations are invariant with respect to a

change in the sign of the time, if the electric field is left unchanged and the sign

of the magnetic field is reversed.! This fundamental property of motion must

be preserved in quantum mechanics. Hence, not only in a closed system but in

any external electric field (there being no magnetic field), there is symmetry

with respect to time reversal.

The wave functions of the system are spinors xp^—, whose rank n is twice

the sum of the spins sa of all the particles (n = 2 2 sa); this sum may not be

equal to the total spin S of the system.

According to what was said above, we can assert that, in any electric field,

the wave function and its time reversal must correspond to states with the same

energy. If a level is non-degenerate, it is necessary that these states should be

identical, i.e. the corresponding wave functions must be the same apart from a

constant factor (both, of course, being expressed as similar (covariant or contra-

variant) spinors).

We write^v = C0A/l ... or, by (60.1),

^...* = ClflX[i f
(60.3)

where C is a constant.

Taking the complex conjugate of both sides of this equation, we obtain

^... = C*0V *.

We lower the indices on the left-hand side of the equation and correspond-

ingly raise them on the right. This means that we multiply both sides of the

equation bygaXgpn ••• an^ sum over the indices A, /*, ... ; on the right-hand side

we must use the fact that

BcSJBfy.
•••=(-l)Vâ --

As a result we have

<Aam~. = C*(-i)n<A
v"*.

t See, for example, The Classical Theory of Fields, §17, and the end of §110 below.
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Substituting 0V-* from (60.3), we find

^.. =(-i)ncc*^.
This equation must be satisfied identically, i.e. we must have (— 1)

WCC* = 1.

Since, however, \C\2 is always positive, it is clear that this is possible only
for even n (i.e. for integral values of the sum 2 sa). For odd n (half-integral

values of S sa) the condition (60.3) cannot be fulfilled.f

Thus we reach the result that an electric field can completely remove the
degeneracy only for a system with an integral value of the sum of the spins of
the particles. For a system with a half-integral value of this sum, in an
arbitrary electric field, all the levels must be doubly degenerate, and complex
conjugate spinors correspond to two different states with the same energy!
(H. A. Kramers 1930).

One further, mathematical, comment may be made. A relation of the form
(60.3) with a real constant C is mathematically the condition that the components
of the spinor may be put in correspondence with a set of real quantities, and
may be called the condition for the spinor to be "real".|| The impossibility of
fulfilling the condition (60.3) for odd n signifies that no real quantity can
correspond to a spinor of odd rank. For even n, on the other hand, the condition

(60.3) can be satisfied, and C can be real. In particular, a real vector can
correspond to a symmetrical spinor of rank two if the condition (60.3) is

satisfied with C = 1

:

<A
A"* =K

(as is easily seen by means of (58.2) and (58.3)). The condition (60.3) with
C = 1 is in fact the condition for a symmetrical spinor of any even rank to be
"real".

t When the sum S s„ is integral (or half-integral), all possible values of the total spin S of the
system are also integral (or half-integral).

X If the electric field possesses a high (cubic) symmetry, fourfold degeneracy may occur (see
§99, including the Problem).

||
It is meaningless to call the spinor real in the literal sense, since complex conjugate spinors have

different laws of transformation.



CHAPTER IX

IDENTITY OF PARTICLES

§61. The principle of indistinguishability of similar particles

In classical mechanics, identical particles (electrons, say) do not lose their

"individuality", despite the identity of their physical properties. For we

can imagine the particles at some instant to be "numbered", and follow the

subsequent motion of each of these in its path ; then at any instant the particles

can be identified.

In quantum mechanics the situation is entirely different, as follows at once

from the uncertainty principle. We have already mentioned several times

that, by virtue of the uncertainty principle, the concept of the path of an

electron ceases to have any meaning. If the position of an electron is exactly

known at a given instant, its co-ordinates have no definite values even at an

infinitely close subsequent instant. Hence, by localising and numbering the

electrons at some instant, we make no progress towards identifying them at

subsequent instants ; if we localise one of the electrons, at some other instant,

at some point in space, we cannot say which of the electrons has arrived at

this point.

Thus, in quantum mechanics, there is in principle no possibility of separ-

ately following each of a number of similar particles and thereby distinguish-

ing them. We may say that, in quantum mechanics, identical particles

entirely lose their "individuality". The identity of the particles with respect

to their physical properties is here very far-reaching: it results in the complete

indistinguishability of the particles.

This principle of the indistinguishability of similar particles, as it is called,

plays a fundamental part in the quantum-mechanical investigation of systems

composed of identical particles. Let us start by considering a system of only

two particles. Because of the identity of the particles, the states of the system

obtained from each other by merely interchanging the two particles must be

completely equivalent physically. This means that, as a result of this inter-

change, the wave function of the system can change only by an unimportant

phase factor. Let ip(glf |2) be the wave function of the system, £x and £2 con-

ventionally denoting the three co-ordinates and the spin projection for each

particle. Then we must have

where a is some real constant. By repeating the interchange, we return to

the original state, while the function is multiplied by e2toc
. Hence it follows

that e%i(X = 1, or eia = ±1. Thus

*&.&)= ±*(&,*i).
209
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We thus reach the result that there are only two possibilities: the wave
function is either symmetrical (i.e. it is unchanged when the particles are inter-

changed) or antisymmetrical (i.e. it changes sign when this interchange is

made). It is obvious that the wave functions of all the states of a given system
must have the same symmetry; otherwise, the wave function of a state which
was a superposition of states of different symmetry would be neither sym-
metrical nor antisymmetrical.

This result can be immediately generalised to systems consisting of any
number of identical particles. For it is clear from the identity of the particles

that, if any pair of them has the property of being described by, say, sym-
metrical wave functions, any other pair of such particles has the same pro-
perty. Hence the wave function of identical particles must either be un-
changed when any pair of particles are interchanged (and hence when the

particles are permuted in any manner), or change sign when any pair are

interchanged. In the first case we speak of a symmetrical wave function, and in

the second case of an antisymmetrical one.

The property of being described by symmetrical or antisymmetrical wave
functions depends on the nature of the particles. Particles described by
antisymmetrical functions are said to obey Fermi-Dirac statistics (or to be
fermions), while those which are described by symmetrical functions are

said to obey Bose-Einstein statistics (or to be bosons).^

Relativistic quantum mechanics shows that the statistics obeyed by particles

is uniquely related to their spin : particles with half-integral spin are fermions,

and those with integral spin are bosons.

The statistics of complex particles is determined by the parity of the

number of elementary fermions entering into their composition. For an
interchange of two identical complex particles is equivalent to the simul-

taneous interchange of several pairs of identical elementary particles. The
interchange of bosons does not change the wave function, while the inter-

change of fermions changes its sign. Hence complex particles containing

an odd number of elementary fermions obey Fermi statistics, while those

containing an even number obey Bose statistics. This result is, of course,

in agreement with the above rule, since a complex particle has an integral

or a half-integral spin according as the number of particles with half-integral

spin entering into its composition is even or odd.

Thus atomic nuclei of odd atomic weight (i.e. containing an odd number of

neutrons and protons) obey Fermi statistics, and those of even atomic weight
obey Bose statistics. For atoms, which contain both nuclei and electrons, the

statistics is evidently determined by the parity of the difference between the

atomic weight and the atomic number.

t This terminology refers to the statistics which describes a perfect gas composed of particles with
antisymmetrical and symmetrical wave functions respectively. In actual fact we are concerned here
not only with a different statistics, but essentially with a different mechanics. Fermi statistics was
proposed by E. Fermi for electrons in 1926, and its relation to quantum mechanics was elucidated by
P. A. M. Dirac (1926). Bose statistics was proposed by S. N. Bose for light quanta, and generalised
by A. Einstein (1924).
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Let us consider a system composed of N identical particles, whose mutual
interaction can be neglected. Let «/»1}

i/r
2 , ... be the wave functions of the vari-

ous stationary states which each of the particles separately may occupy,f
The state of the system as a whole can be denned by giving the numbers of

the states which the individual particles occupy. The question arises how
the wave function Y of the whole system should be constructed from the

functions if/ly ift2 , ...

.

Let Px,p2 , ... ,pN be the numbers of the states occupied by the individual

particles (some of these numbers may be the same). For a system of bosons,

the wave function T(£i, £2 , ..., $n) is given by a sum of products of the form

1^(6)*, (*•>•" **<**>'

with all possible permutations of the different suffixes plt p2 ,
... ; this sum

clearly possesses the required symmetry property. Thus, for example, for

a system of two particles

T&.&) = [&> (*iW, (&)+*„ ($M>p &)]/V2; (61.1)

we suppose that^ # p2 . The factor \\y/2 is introduced for normalisation

purposes; all the functions ifflt 2 , ... are orthogonal and are supposed normal-
ised.

For a system of fermions, the wave function *F is an antisymmetrical

combination of these products. It can be written in the form of a deter-

minant

iM6) M&)

Y =
VNl

l^tfi) M«

iM&) *..(&)

^ (for)
i

<Ap
2
(^)

(61.2)

Here an interchange of two particles corresponds to an interchange of two
columns of the determinant, as a result of which the latter, as is well known,
changes sign. For a system composed of two particles we have

y = [M^M^-MtoMfiWa. (61.3)

The following important result is a consequence of the expression

(61.2). If among the numbers plf p2,... any two are the same, two rows of the

determinant are the same, and it therefore vanishes identically. It will be
different from zero only when all the numbers plt p2 ,

... are different. Thus,
in a system consisting of identical fermions, no two (or more) particles can
be in the same state at the same time. This is called PaulVs principle (1925).

t If there is a strong interaction between the particles we cannot, of course, speak of such states.
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§62. Exchange interaction

The fact that Schrodinger's equation does not take account of the spin

of particles does not invalidate this equation or the results obtained by means

of it. This is because the electrical interaction of the particles does not

depend on their spins.f Mathematically, this means that the Hamiltonian

of a system of electrically interacting particles (in the absence of a magnetic

field) does not contain the spin operators, and hence, when it is applied to the

wave function, it has no effect on the spin variables. Hence Schrodinger's

equation is actually satisfied by each component of the wave function; in

other words, the wave function ^(r^ ax \ r2 , <r2 ; ...) of the system of particles

can be written in the form of a product

x(°i> ffa»—W(ri> r»—

)

of a function <j> of the co-ordinates of the particles only and a function x of the

spins. We call the former a co-ordinate or orbital wave function, and the latter

a spin wave function. Schrodinger's equation essentially determines only

the co-ordinate function
<f>,

the function x remaining arbitrary. In any

instance where we are not interested in the actual spin of the particles, we
can therefore use Schrodinger's equation and regard as the wave function

the co-ordinate function alone, as we have done hitherto.

However, despite the fact that the electrical interaction of the particles

is independent of their spin, there is a peculiar dependence of the energy

of the system on its total spin, arising ultimately from the principle of

indistinguishability of similar particles.

Let us consider a system consisting of only two identical particles. By

solving Schrodinger's equation we find a series of energy levels, to each of

which there corresponds a definite symmetrical or antisymmetrical co-

ordinate wave function </>(ri, r2). For, by virtue of the identity of the particles,

the Hamiltonian (and therefore the Schrodinger's equation) of the system

is invariant with respect to interchange of the particles. If the energy levels

are not degenerate, the function <f>(ri, r2) can change only by a constant

factor when the co-ordinates ri and r2 are interchanged; repeating this

interchange, we see that this factor can only beJ ± 1.

Let us first suppose that the particles have zero spin. The spin factor for

such particles is absent altogether, and the wave function reduces to the

co-ordinate function ^(r1? r2), which must be symmetrical (since particles with

zero spin obey Bose statistics). Thus not all the energy levels obtained by a

formal solution of Schrodinger's equation can actually exist; those to which

antisymmetrical functions <j> correspond are not possible for the system under

consideration.

t This is true only so long as we consider the non-relativistic approximation. When relativistic

effects are taken into account, the interaction of charged particles does depend on their spin.

J When there is degeneracy we can always choose linear combinations of the functions belonging

to a given level, such that this condition is again satisfied.
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The interchange of two similar particles is equivalent to the operation of

inversion of the co-ordinate system (the origin being taken to bisect the line

joining the two particles). On the other hand, the result of inversion is to

multiply the wave function <j> by (— 1)*, where / is the orbital angular momen-
tum of the relative motion of the two particles (see §30). By comparing
these considerations with those given above, we conclude that a system of two
identical particles with zero spin can have only an even orbital angular mo-
mentum.

Next, let us suppose that the system consists of two particles with spin £
(say, electrons). Then the complete wave function of the system (i.e. the

product of the function ^(r1} r2) and the spin function x(<*v cr
2)) must certainly

be antisymmetrical with respect to an interchange of the two electrons.

Hence, if the co-ordinate function is symmetrical, the spin function must
be antisymmetrical, and -vice versa. We shall write the spin function in spinor

form, i.e. as a spinor xV of rank two, each of whose indices corresponds to

the spin of one of the electrons. A symmetrical spinor (^V = x^) corre-

sponds to a function symmetrical with respect to the spins of the two particles,

and an antisymmetrical spinor (x^ = — x^) to an antisymmetrical func-

tion. We know, however, that a symmetrical spinor of rank two describes a

system with total spin unity, while an antisymmetrical spinor reduces to a

scalar, corresponding to zero spin.

Thus we reach the following conclusion. The energy levels to which there

correspond symmetrical solutions ^(r1? r2) of Schrodinger's equation can
actually occur when the total spin of the system is zero, i.e. when the spins

of the two electrons are "antiparallel", giving a sum of zero. The values of

the energy belonging to antisymmetrical functions (frfa, r2), on the other hand,
require a value of unity for the total spin, i.e. the spins of the two electrons

must be "parallel".

In other words, the possible values of the energy of a system of electrons

depend on their total spin. For this reason we can speak of a peculiar inter-

action of the particles which results in this dependence. This is called

exchange interaction. It is a purely quantum effect, which entirely vanishes
(like the spin itself) in the passage to the limit of classical mechanics.
The following situation is characteristic of the case of a system of two

electrons which we have discussed. To each energy level there corresponds
one definite value of the total spin, or 1. This one-to-one correspondence be-
tween the spin values and the energy levels is preserved, as we shall see below
(§63), in systems containing any number of electrons. It does not hold,

however, for systems composed of particles whose spin exceeds \.

Let us consider a system of two particles, each with arbitrary spin s. Its

spin wave function is a spinor of rank 4s:

Aji... po...

*~28 IT"'

half (2s) of whose indices correspond to the spin of one particle, and the other
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half to that of the other particle. The spinor is symmetrical with respect to

the indices in each group. An interchange of the two particles corresponds

to an interchange of all the indices A, [i, ... of the first group with the indices

p, a, ... of the second group. In order to obtain the spin function of a state of

the system with total spin S, we must contract this spinor with respect to

2s—S pairs of indices (each pair containing one index from X, /u, ... and one

from p, a, ...), and symmetrise it with respect to the remainder; as a result

we obtain a symmetrical spinor of rank 2S. However, the contraction of a

spinor with respect to a pair of indices means, as we know, the construction

of a combination antisymmetrical with respect to these indices. Hence,

when the particles are interchanged, the spin wave function is multiplied

by(-l)»-«
On the other hand, the complete wave function of a system of two particles

must be multiplied by (— l)2s when they are interchanged (i.e. by +1 for

integral s and by — 1 for half-integral s). Hence it follows that the symmetry

of the co-ordinate wave function with respect to an interchange of the particles

is given by the factor (— l)s , which depends only on S. Thus we reach the

result that the co-ordinate wave function of a system of two identical particles

is symmetrical when the total spin is even, and antisymmetrical when it is

odd.

Recalling what was said above concerning the relation between interchange

of the particles and inversion of the co-ordinate system, we conclude also

that, when the spin S is even (odd), the system can have only an even (odd)

orbital angular momentum.
We see that here also a certain dependence is revealed between the possible

values of the energy of the system and the total spin, but this dependence is

not necessarily one-to-one. The energy levels to which there correspond

symmetrical (antisymmetrical) co-ordinate wave functions can occur for any

even (odd) value of S.

Let us calculate how many different states of the system there are with even

and odd S. The quantity S takes 2s+1 values: 2s, 2s— 1, ..., 0. For any

given S there are 2S+1 states differing in the value of the s-component of the

spin ((2s+ 1)
2 different states altogether). Let s be integral. Then, among

the 2s+1 values of S, s+1 are even and s odd. The total number of states

with even S is equal to the sum

siUF+1 >
=(2s+1)(s+1):

the remaining s(2s+l) states have odd S. Similarly, we find that, when s is

half-integral, there are s(2s+l) states with even values of S and (s+l)(2s+l)

with odd values.

PROBLEMS
Problem 1. Determine the exchange splitting of the energy levels of a system of two

electrons, regarding the interaction of the electrons as a perturbation.

Solution. Let the particles be (when their interaction is neglected) in states with orbital
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wave functions <i>i(r) and fa(r). The states of the system with total spin S = and S = 1

correspond to symmetrised and antisymmetrised products respectively:

1

<f>
= —dMri)Mr2)±Mr2)Mri)l

The mean value of the operator of the interaction U(rz—ri) of the particles in these states

is A ± J, where

A =
J j UlMriTlU^WdVidVz,

J=
\ \ C/0i(ri)^i*(r2)^2(r2)^2*(ri) dFi dV2 ,

the latter being called the exchange integral. Omitting the additive constant A, which is not

an exchange term, we therefore find the level shifts Aj£ = J, Aj?i = —J (where the suffix

indicates the value of S). These quantities can be represented as the eigenvalues of the spin

"exchange operator" t

Pexch= -17(1+48!. s2); (1)

the eigenvalues of the product si . S2 are derived in §55, Problem 2.

If the electrons belong to different atoms, for example, the exchange integral decreases

exponentially with increasing distance R between the atoms. It is clear from the form of the

integrand that this integral is determined by the "overlap" of the wave functions of the states

<f>(ri) and ^2(1*2) ; using the asymptotic law of decrease of the wave functions of states of a

discrete spectrum (cf. (21.6)), we find that

J „ r-lKi+icm, K1 = V(2m|£i|)/£, K2 = ^/(2m\E2 \)jh,

where Ei and E2 are the energy levels of the electron in the two atoms.

Problem 2. The same as Problem 1, but for a system of three electrons.

Solution. Using formula (1), Problem 1, we can write the operator of pairwise exchange
interaction in a system of three electrons as

^exch = — 2 Ja&(^+ 2sa .S6), (1)

where the summation is over pairs of particles 12, 13 and 23. The matrix elements of the

operators sa . s& between states with different values of the pair of numbers oa> at, are given

by formulae (55.6) as

11 1 —

i

i 1

(Sa.S&)u = 4, (Sa.Sftji,-! = — 4, (sa«sfc)-i,i = 2

.

We first determine the energy corresponding to the greatest possible value of the total-spin

component Ms = 01+02+ 03, viz. Ms = 3/2. This gives the energy of the state with total

spin »S = 3/2. On calculating the corresponding diagonal matrix element of the operator

(1), we find

A-E3/2 = — (7i2+ /l3+ /23)-

Next we take states with Ms = i. This value can occur in three ways, depending on which
of the numbers 01, 02, 031s —$ (the other two being $). Thus for these states we should

have a secular equation of the third degree. The calculation can, however, be simplified

immediately by noting that one of the roots of this equation must correspond to the energy
already found for the state with 5 = 3/2, and the secular equation must therefore have the

factor AE—AE3/2. In this way the calculation of the free term in the cubic equation can
be avoided. J

t First used by Dirac.

} This device is particularly useful in similar calculations for systems with a larger number of
particles

.
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The leading terms of the equation are found to be

(A£)3+ (7i2+ /l3+ /23)(A£2
)+[/i27l3+ A2/23+A3^3-

-9(7i22+ 7l3
2+^32)/4]AE+ ... = 0.

Dividing by A£'+ J12+ J13+ J23, we find the two energy levels corresponding to states with
spins S = i:

AEl/2 = ±[(/l22+ /l3
2+ ^232)-/l2^13-il2i23-Jl3i23]1/2 .

Thus there are three energy levels, in accordance with the calculation in §63, Problem.

Problem 3. In which states can the Be8 nucleus decay into two oe-particles?

Solution. Since the a-particle has no spin, a system of two a-particles can only have an
even orbital angular momentum (equal to the total angular momentum), and its states are

even. The decay in question is therefore possible only from even states of the Be8 nucleus

with even total angular momentum.

§63. Symmetry with respect to interchange

By considering a system composed of only two particles, we have been able

to show that its co-ordinate wave functions <£(rx , r2) for the stationary states

must be either symmetrical or antisymmetrical. In the general case of a sys-

tem of an arbitrary number of particles, the solutions of Schrodinger's

equation (the co-ordinate wave functions) need not necessarily be either sym-

metrical or antisymmetrical with respect to the interchange of any pair of

particles, as the complete wave functions (which include the spin factor)

must be. This is because an interchange of only the co-ordinates of two par-

ticles does not correspond to a physical interchange of them. The physical

identity of the particles here leads only to the fact that the Hamiltonian of the

system is invariant with respect to the interchange of the particles, and hence,

if some function is a solution of Schrodinger's equation, the functions ob-

tained from it by various interchanges of the variables will also be solutions.

Let us first of all make some remarks regarding interchanges in general.

In a system of N particles, N\ different permutations in all are possible. If

we imagine all the particles to be numbered, each permutation can be

represented by a definite sequence of the numbers 1, 2, 3, ... . Every such

sequence can be obtained from the natural sequence 1, 2, 3, ... by successive

interchanges of pairs of particles. The permutation is called even or odd,

according as it is brought about by an even or odd number of such inter-

changes. We denote by P the operators of permutations of N particles, and

introduce a quantity SP which is +1 if P is an even permutation and —1
if it is odd. If

<f>
is a function symmetrical with respect to all the particles,

we have

while, if
<f>

is antisymmetrical with respect to all the particles, then

P<f> = bp4>.
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From an arbitrary function ^(r^ r2 , ... , r^), we can form a symmetrical

function by the operation of symmetrisation, which can be written

<f>sym = constant xS^, (63.1)

where the summation extends over all possible permutations. The formation

of an antisymmetrical function (an operation sometimes called alternation)

can be written as

0^ = constant x S 8PP<f>. (63.2)

Let us return to considering the behaviour, with respect to permutations,

of the wave functions ^ of a system of identical particles, j- The fact that the

Hamiltonian i? of the system is symmetrical with respect to all the particles

means, mathematically, that jff commutes with all the permutation operators

P. These operators, however, do not commute with one another, and so

they cannot be simultaneously brought into diagonal form. This means that

the wave functions^ cannot be so chosen that each of them is either symmetri-

cal or antisymmetrical with respect to all interchanges separately.];

Let us try to determine the possible types of symmetry of the functions

<f>{rx , r2 , ... , rN) of N variables (or of sets of several such functions) with

respect to permutations of the variables. The symmetry must be such that

it "cannot be increased", i.e. such that any additional operation of symmetri-

sation or alternation, on being applied to these functions, would reduce them

either to linear combinations of themselves or to zero identically.

We already know two operations which give functions with the greatest

possible symmetry: symmetrisation with respect to all the variables, and

alternation with respect to all the variables. These operations can be general-

ised as follows.

We divide the set of all the N variables r1} r2 , ... , r^ (or, what is the same

thing, the suffixes 1, 2, 3, ... , N) into several sets, containing Nly N2 ,
... ele-

ments (variables); N1+N2+ ... = N. This division can be conveniently

shown by a diagram (known as a Young diagram) in which each of the num-
bers Nlt N2 , ... is represented by a line of several cells (thus, Fig. 21 gives a

diagram of the divisions 6+4+4+3+3 +1+1 and 7+5+5+3 + 1 + 1 for

N = 22); one of the numbers 1, 2, 3, ... is to be placed in each square. If

we place the lines in order of decreasing length (as in Fig. 21), the diagram

contains not only successive horizontal rows, but also vertical columns.

Let us symmetrise an arbitrary function ^(rx , r2 , ... , rN) with respect to the

variables in each row. The alternation operation can then be performed only

with respect to the variables in different rows; alternation with respect to a

pair of variables in the same row clearly gives zero identically.

t From the mathematical point of view, the problem is to find irreducible representations of the

permutation group. A detailed account of the mathematical theory of permutation (or symmetry)
groups is given by H. Weyl, The Theory of Groups and Quantum Mechanics, Methuen, London 1931

;

D. E. Rutherford, Substitutional Analysis, University Press, Edinburgh 1948; F. D. Murnaghan,
The Theory of Group Representations, Johns Hopkins Press, Baltimore 1938.

J Except for a system of only two particles, where there is a single interchange operator, which
can be brought into diagonal form simultaneously with ff.
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Fig. 21

Having chosen one variable from each row, we can, without loss of gener-

ality, regard them as being in the first cells in each row (after symmetrisation,

the order of the variables among the cells in each row is immaterial) ; let us

alternate with respect to these variables. Having then deleted the first column,

we alternate with respect to variables chosen one from each row in the thus

"curtailed" diagram; these variables can again be regarded as being in the

first cells of the "curtailed" rows. Continuing this process, we finally have

the function first symmetrised with respect to the variables in each row and
then alternated with respect to the variables in each column. After alternation,

of course, the function in general ceases to be symmetrical with respect to

the variables in each row. The symmetry is preserved only with respect to

the variables in the cells of the first row which project beyond the other rows.

Having distributed the N variables in various ways among the rows of a

Young diagram (the distribution among the cells in each row is immaterial),

we thus obtain a series of functions, which are transformed linearly into one

another when the variables are permuted in any manner,f However, it must
be emphasised that not all these functions are linearly independent ; the number
of independent functions is in general less than the number of possible distri-

butions of the variables among the rows of the diagram. We shall not pause

here, however, to discuss this more closely. %
Thus any Young diagram determines some type of symmetry of functions

with respect to permutations. By constructing all the possible Young dia-

grams (for a given N), we find all possible types of symmetry. This amounts

to dividing the number N in all possible ways into a sum of smaller terms,

including the number N itself; thus for N = 4 the possible partitions are

4,3 + 1,2+2,2+1 + 1,1 + 1 + 1 + 1.

To each energy level of the system we can make correspond a Young dia-

gram which determines the permutational symmetry of the appropriate

solutions of Schrodinger's equation; in general, several different functions

correspond to each value of the energy, and these are transformed linearly into

f It would be possible to perform the symmetrisation and alternation in the reverse order: to alter-

nate with respect to the variables in each column, and then to symmetrise with respect to those in the

rows. This, however, would give effectively the same thing, since the functions obtained by the two
methods are linear combinations of one another.

J For particles with spin i the number of independent functions (i.e. the dimension of the irreducible

representation) is derived in the Problem below.
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each other by permutations.! However, it must be emphasised that this does

not signify any additional physical degeneracy of the energy levels. All these

different co-ordinate wave functions, multiplied by the spin functions, enter

into a single definite combination—the complete wave function—which

satisfies (according to the number of particles) the condition of symmetry or

antisymmetry.

Among the various types of symmetry there are always (for any given N)
two to each of which only one function corresponds. One of these cor-

responds to a function symmetrical with respect to all the variables, and the

other to one which is similarly antisymmetrical ; in the first case, the Young
diagram consists of a single row ofN cells, and in the second case of a single

column.

Let us now consider the spin wave functions x(crl5 tr2 , ... , aN). Their kinds

of symmetry with respect to permutations of the particles are given by the

same Young diagrams, with the components of the spins of the particles

taking the part of variables. There arises the question of what diagram must

correspond to the spin function for a given diagram of the co-ordinate func-

tion. Let us first suppose that the spin of the particles is integral. Then the

complete wave function if/ must be symmetrical with respect to all the particles.

For this to be so, the symmetry of the spin and co-ordinate functions must be

given by the same Young diagram, and the complete wave function ijj is

expressed as definite bilinear combinations of the two ; we shall not here pause

to examine more closely the problem of constructing these combinations.

Next, suppose the spin of the particles to be half-integral. Then the com-

plete wave function must be antisymmetrical with respect to all the particles.

It can be shown that, for this to be so, the Young diagrams for the co-ordinate

and spin functions must be obtained from each other by interchanging rows

and columns (as in the two diagrams shown in Fig. 21).

Let us consider in more detaii the important case of particles with spin \

(electrons, for instance). Each of the spin variables ct1? o-2 , ... here takes only

the two values ±|. Since a function antisymmetrical with respect to any

two variables vanishes when these variables take the same value, it is clear

that the function x can be alternated only with respect to pairs of variables

;

if we alternate with respect to even three variables, two of them must always

take the same value, so that we have zero identically.

Thus, for a system of electrons, the Young diagrams for the spin functions

can contain columns of only one or two cells (i.e. only one or two rows) ; in

the Young diagrams for the co-ordinate functions, the same is true of the

number of columns. The number of possible types of permutational sym-
metry for a system ofN electrons is therefore equal to the number of possible

partitions of the number N into a sum of ones and twos. When N is even,

this number is %N+1 (partitions with 0, 1, ...
,
%N twos), while if N is odd

t The existence of this "permutational degeneracy" is related to the fact that the permutation oper-
ators commuting with the Hamiltonian do not in general commute with one another (see the middle
of §10).
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it is f(iV+l) (partitions with 0, 1, ... ,
\{N— 1) twos). Thus, for instance,

Fig. 22 shows the possible Young diagrams (co-ordinate and spin) forN = 4.

It is easy to see that each of these types of symmetry (i.e. each of the

Young diagrams) corresponds to a definite total spin S of the system of

electrons. We shall consider the spin functions in spinor form, i.e. as spinors
^A/x... f rank JV, whose indices (each of which corresponds to the spin of

an individual particle) will be the variables that are arranged in the cells of

the Young diagrams. Let us examine the Young diagram consisting of two

rows with Nx and N% cells {Nx+N% = N, and Nx > iV2). In each of the first

N2 columns there are two cells, and the spinor must be antisymmetrical with

respect to the corresponding pairs of indices. With respect to the indices in

the last n = N1—N.3 ells in the first row, however, it must be symmetrical.

As we know, such a spinor of rank N reduces to a symmetrical spinor of rank

n, to which there corresponds a total spin S = \n. Returning to the Young
diagrams for the co-ordinate functions, we can say that the diagram with n

rows each of one cell corresponds to a total spin S = \n. For even N, the

total spin can take integral values from to |iV, while for oddN it can take

half-integral values from | to $N, as it should.

We emphasise that this one-to-one correspondence between the Young
diagrams and the total spin holds only for systems of particles with spin |

;

we have seen this, for a system of two particles, in the previous section.

f

PROBLEM
Determine the number of energy levels with different values of the total spin S, for a system

of N particles of spin J.

Solution. A given value of the projection of the total spin of the system,Ms = 2 a, can

be obtained in

f(Ms) = N\l(W+Ms)\(iN-Ms)\

ways; this is the number of combinations of N elements £N+MS at a time, since we put

a = £ for %N+MS particles and a = —\ for the remainder. To each energy level with a

given S, there correspond 2S+1 states with values Ms = S, S—l, ... , —S of the projected

spin. Hence it is easy to see that the number of different energy levels with a given value of

S is

n(S) =f(S)-f(S+l) =Nl (2S+ l)l(iN+S+1)\QN-S)\

f In the third footnote to §20, we have remarked that, for a system of several identical particles, we
cannot assert that the wave function of the stationary state of lowest energy is without nodes. We shall

now amplify this statement and elucidate its origin.

The wave function (that is, the co-ordinate function), if it has no nodes, must certainly be symmetri-

cal with respect to all the particles; for, if it were antisymmetrical with respect to the interchange of

any pair of particles 1, 2, it would vanish for rx = r2 . If, however, the system consists of three or

more electrons, no completely symmetrical co-ordinate wave function is possible : the Young diagram

of the co-ordinate function cannot have rows with more than two cells.

Thus, although the solution of Schrodinger's equation which corresponds to the lowest eigenvalue

is without nodes (by the theorem of the variational calculus), this solution may be physically inadmis-

sible; the smallest eigenvalue of Schrodinger's equation will not then correspond to the normal state

of the system, and the wave function of this state will in general have nodes.

For particles with a half-integral spin s, this situation occurs in systems with more than 2s+1
particles. For systems of bosons, a completely symmetrical co-ordinate wave function is always

possible.
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J

S=2 S = 1

Fig. 22

SrQ

The total number of different energy levels is

n = Sn(5)=/(0)=AT!/[(|iV)!p
s

for even N, and

»=/(i)=M/(*tf+*)!(*#-*)'

for odd JV.

§64. Second quantisation. The case of Bose statistics

In the quantum-mechanical investigation of systems consisting of a very

large number of identical particles, interacting in any manner, there is a

useful method of considering the problem, known as second quantisation.

This method is necessary in relativistic theory also, where we have to deal

with systems in which the number of particles is itself variable^ Let us

first consider systems of bosons.

We denote by 0i(£), ^2(£)> ••• some complete set of orthogonal and normal-

ised wave functions. These may, for instance, correspond to the stationary

states of a single particle in some external field. We emphasise that the choice

of this field is arbitrary ; it need not be the same as the actual field acting on

the particles in the physical system considered. As in §61, | denotes the

assembly of the co-ordinates and spin projection a of a particle.

Let us consider, in a purely formal manner, a system ofN non-interacting

particles, in the field selected. Then every particle is in one of the

states «/f
1}

?/f
2 , ... . Let Nt be the number of particles in the state ^; it may,

of course, be zero. If the numbers N±, N%, ... are given (clearly 2 Nt = N),

the state of the system as a whole is determined; we shall indicate these

numbers by suffixes to the wave function M^n,... °f tne system. Let us

seek to construct a mathematical formalism in which the occupation numbers

Nlt N2 ,
... of the states (and not the co-ordinates of the particles) play the

part of independent variables.

f The method of second quantisation was developed by P. A. M. Dirac (1927) for particles obeying
Bose statistics, and later extended to Fermi particles by E. Wigner and P. Jordan (1928).
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The function ^¥
NiNz_ is a symmetrised (the particles obeying Bose statistics)

sum of products of the functions fa. Let us write it in the form

Yur v... = VWNJ ...INI) S fa (Qfa (&) ... fa (fr). (64.1)
i. «s 1 2 N -

Here ply p2 , ...
, ^v are the ordinal numbers of the states in which the indivi-

dual particles are, and the sum is taken over all permutations of those suffixes

Pi>p2> ••• >Pn which are different. The numbers A^ show how many of the

suffixespx , p2 , ... , pN have the value i. The total number of terms in the sum
(64.1) is evidently

Nl/NjlNJi....

The constant factor in (64.1) is chosen so that the function is normalised;

by virtue of the orthogonality of the functions fa, on integrating! tne square

IT/v^... !

2 with respect to |x , £2 , ...
, gN all the terms vanish except the squared

modulus of each term in the sum.

Next, let / (1)
a be the operator of some physical quantity pertaining to the

<zth particle, i.e. acting only on functions of £a . We introduce the operator

^(1) = S/(«a , (64.2)

which is symmetrical with respect to all the particles (the summation being

over all particles), and determine its matrix elements with respect to the wave
functions (64.1). First of all, it is easy to see that the matrix elements will

be different from zero only for transitions which leave the numbers N± , N2 , ...

unchanged (diagonal elements) and for transitions where one of these numbers
is increased, and another decreased, by unity. For, since each of the operators

/<!>„ acts only on one function in the product fajiijfa^) ... fa^),
its matrix elements can be different from zero only for transitions whereby
the state of a single particle is changed ; this, however, means that the number
of particles in one state is diminished by unity, while the number in another

state is correspondingly increased. The calculation of these matrix elements

is in principle very simple ; it is easier to do it oneself than to follow an account

of it. Hence we shall give only the result of this calculation. The non-

diagonal elements are

Fll)N^N
k
=fa)ikV(NiNk). (64.3)

We shall indicate only those suffixes with respect to which the matrix element

is non-diagonal, omitting the remainder for brevity. Here/ (1)
<fc is the matrix

element

fwnc=jfa*(t)fwfa(t)dt. (64.4)

f By integration over £ we conventionally understand integration over the co-ordinates and sum-
mation over a.
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It must be borne in mind that the operators / (1) differ only in the naming of

the variables on which they act, and hence the integrals / (1)
i& are indepen-

dent of a. The diagonal matrix elements of F(1) are the mean values of the

quantity FV> in the states Yj^jy,.... Calculation gives

F» = ?/««#<• (64.5)
i

We now introduce the operators diy
which play a leading part in the method

of second quantisation; they act, not on functions of the co-ordinates, but on

the variables Nlt Nit ... , and are defined as follows. When acting on the

function Y## ., the operator dt
decreases the suffix Nt

by unity, and at the

same time it multiplies the wave function by ^Nt :

d^Nl N2 ... Ni ... =V% n2 .... *hu. (64.6)

We can say that the operator a\ diminishes by one the number of particles in

the ith state; it is called an annihilation operator. It can be represented in

the form of a matrix whose only non-zero element is

(a,VV* = VNi. (64.7)

The operator &f which is the Hermitian conjugate of di
is, by definition

(see §3), represented by a matrix with an element

i.e.

ta
+
#-i =VNi '

(64 '8)

This means that, when acting on the function x
i
r
NlNt ...,

it increases the suffix

Nt by unity:

d^¥Nl n2 ...Nt ...
= VW+Wn, n2 ...,Ni+1 (64.9)

In other words, the operator di
+ increases by one the number of particles in

the tth state, and is therefore called a creation operator.

The product of operators d^d*, acting on the wave function, evidently

multiplies it by a constant simply, leaving unchanged all the variables

Nlt N2 , ... : the operator dt
diminishes Nt by unity, and dt

+ then restores it

to its original value. Direct multiplication of the matrices (64.7) and (64.8)

shows that afdi is represented, as we should expect, by a diagonal matrix

whose diagonal elements are Nt . We can write

dt+dt = Nt
. (64.10)

Similarly, we find that

<W=iVVr-l. (64.11)
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Hence the commutation rule for the operators dt and dt
+ is

didi+—di
+di = 1. (64.12)

The operators dt and dk (or dt and dk
+
) with i and k different act on different

variables (Nt and Nk), and of course commute:

didic—dicdi = 0, didk+ -dk+di = (i ^ A). (64.13)

From the above properties of the operators dt , df it is easy to see that the
operator

/» = S/(1)a^+4 (64.14)

is the same as the operator (64.2). For all the matrix elements calculated from
(64.7), (64.8) are the same as the elements (64.3), (64.5). This is a very
important result. In formula (64. 14), the quantities/ Q-\ k are simply numbers.
Thus we have been able to express an ordinary operator (of the form (64.2)),
acting on functions of the co-ordinates, in the form of an operator acting on
functions of new variables, the occupation numbersf Nt .

The result which we have obtained is easily generalised to operators of other
forms. Let

jft2) = S/(2)a6j (6415)
a>o

where / (2)
a6 is the operator of a physical quantity pertaining to two particles

at once, and hence acts on functions of ga and gb . Similar calculations show
that this operator can be expressed in terms of the operators dt , dt

+ by

where

(f
(X = If ^(^*tfi)M(6)ao d&d*,.

The matrices calculated for (64.15) and (64.16) are the same. The generalisa-

tion of these formulae to operators of any other form symmetrical with
respect to all the particles (of the form /(3) = S/3 >

a6c etc.) is obvious.

Finally, it remains to express, in terms of the operators diy
the Hamiltonian

& of the physical system of N identical interacting particles that is actually

being considered. The operator i? is, of course, symmetrical with respect

to all the particles. In the non-relativistic approximation, J it is independent

f Formula (64.14) bears a similarity to the expression (11.1)

f = ^>fika*ak

for the mean value of a quantity/, expressed in terms of the coefficients a{ in the expansion of the wave
function of a given state in terms of the wave functions of the stationary states. This is the reason for
calling this method the second quantisation method.

% In the absence of a magnetic field.
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of the spins of the particles, and can be represented in a general form as

follows

:

i? = S^)+S^(W)+ s £/<3>(ra,r6,r c)+.... (64.17)
a a>b a>b>c

Here #(1) is the part of the Hamiltonian which depends on the co-ordinates

of the ath particle only

:

#(D
a = -(#72m)Aa+tf(1)

(»-«), (64 -18)

where C/(1)(ra) is the potential energy of a single particle in the external field.

The remaining terms in (64.17) correspond to the mutual interaction energy

of the particles; for convenience, the terms depending on the co-ordinates of

two, three, etc. particles have been separated.

This representation of the Hamiltonian enables us to apply formulae (64.14),

(64.16) and their analogues directly. Thus

# = JflW^A+^+1J^Xfli+a?d 1A+ ... • (64.19)

This gives the required expression for the Hamiltonian in the form of an

operator acting on functions of the occupation numbers.

For a system of non-interacting particles, only the first term in the expres-

sion (64.19) remains:

i,k

If the functions ^ are taken to be the eigenfunctions of the Hamiltonian

#(*> of an individual particle, the matrix H(X
\ k is diagonal, and its diagonal

elements are the eigenvalues ei of the energy of the particle. Thus

ft = S efdi+di',
i

replacing the operatora^ by its eigenvalues (64.10), we have for the energy

levels of the system the expression

E = 2 €iNit

a trivial result which could have been foreseen.

The formalism which we have developed can be put in a somewhat more

compact form by introducing the operatorsf

t Attention is drawn to the analogy between these expressions and the expansion

T = S aWt

of the wave function in terms of the eigenfunctions of an operator (cf. the third footnote to this sec-

tion).
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where the variables £ are regarded as parameters. By what has been said
above concerning the operators dit df, it is clear that the operator *F de-
creases the total number of particles in the system by one, while ¥+ increases
it by one.

It is easy to see that the operator ¥+
(f ) creates a particle at the point | .

For the result of the action of the operator of is to create a particle in a state

with wave function «/^(£). Hence it follows that the result of the action of the
operator ^(lo) is to create a particle in a state with wave function
S <Ai*(£)^(£o)> or (

bv the general formula (5.12)) with wave functionf S(£—

|

),

which corresponds to a particle with definite values of the co-ordinates (and
spin).

The commutation rules for ¥ and 4^+ are obtained at once from those for

dit dt
+

. It is evident that

*(*)¥(*')-¥(*')*(0 = 0; (64.21)

we also have

^)T+(f)-^+(n^) = 2&GrW(f),

or

n^+(n-^+(n^) = w-n (64.22)

The expression (64.14) for the operator (64.2) can be written, using these
new operators, in the form

fr>=f¥+{f)fw*(QiX, (64.23)

where it is understood that the operator

/

(1) acts on functions of the parameters

| in ^"(l)- For, substituting (64.20), we have

/» =^J4>i*(i)f
wUi)^.d^dk = s/(1W<+4,

which is the same as (64.14). Similarly, we have instead of (64.16)

pm =
|Jj

^+(|)^+(^')/(2>^(r)^(0 d*d£'. (64.24)

In particular, to a physical quantity /(£) that is simply a function of £,

there corresponds the operator (64.23), which in this case can be written in

the form

f §(£—

1

) conventionally denotes the product

8(x-x )8(y-yQ)8(z-z )8a
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Hence it is clear that ^+
(£)^(£) d| is the operator of the number of particles

in the range d|.

When expressed by means of the operators ^F, ^+
, the operator H takes

the form

ti = j {(^
2/2m)VT+(0V^(l)+ U^)^+(0^(i)} <*£+

+ ij-J
xr+(^^+(f)t/<2^,f)^(f)"¥($) d^df

+

(64.25)

We have used here the expression (64.18) for i?(1)
, and have integrated by

parts (with respect to the co-ordinates) the term containing the Laplacian.

We can clarify the formula (64.25) by noticing the following point. Sup-

pose that we have a system of particles, each of which is described (at a given

instant) by the same wave function «/»(£), which we suppose normalised so that

J \tjj\
2 d£ = N. Then it is immediately evident that, if we replace the operator

ty in the expression (64.25) by the function ifj, this expression becomes the

mean energy of the system in the state considered. This gives the following

rule for deriving the Hamiltonian in the second quantisation formalism. The
expression for the mean energy is written in terms of the wave function of an

individual particle (normalised as stated above), and this function is then

replaced by the operator T, the Hermitian conjugate operators ^+ being

written to the left of the operators T.

If the system consists of bosons of different kinds, operators a, d+ or

ty,
y
i'+ must be defined in the second quantisation method for each kind of

particle. Operators pertaining to particles of different kinds of course

commute.

§65. Second quantisation. The case of Fermi statistics

The basic theory of the method of second quantisation remains wholly

unchanged for systems of identical fermions, but the actual formulae for the

matrix elements of quantities and for the operators di are naturally different.

The wave function Tjvat
s
... now has the form (61.2):

Vnn
1 2 VNl

Mfor)

0,_(*l) 0. (& - *»-(**)

(65.1)

Because of the antisymmetry of this function, the question of its sign arises

first of all. This question did not arise in the case of Bose statistics, since,
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because of the symmetry of the wave function, its sign, once chosen, was
preserved under all permutations of the particles. In order to make definite

the sign of the function (65.1), we shall agree to choose it as follows. We
number successively, once and for all, all the states fa. We then complete
the rows of the determinant (65.1) so that always

Px<p2<P3 <-<pN, (65.2)

whilst in the successive columns we have functions of the different variables

in the order flf £2 , ...
, gN . No two of the numbers p^p2 ,

... can be equal,

since otherwise the determinant would vanish. In other words, the occupa-
tion numbers Nt can take only the values and 1.

Let us again consider an operator of the form (64.2), Fa) = S/ (1)
tt

. As
in §64, its matrix elements will be non-zero only for transitions where all the

occupation numbers remain unchanged and for those where one occupation
number (A^) is diminished by unity (becoming zero instead of one) and an-
other (Nk) is increased by unity (becoming one instead of zero). We easily

find that, for i < k,

(Fll)

Y<°* =/ tV-l)**w-*-1
\ (65.3)

V*;

where by t , l t we signify N( = 0, Nt = 1 and the symbol 2(&, /) denotes
the sum of the occupation numbers of all states from the Mi to the /thrj-

S (*,/)= S N».

For the diagonal elements we obtain our previous formula (64.5)

:

FW = ?/w,AT,. (65.4)

In order to represent the operator ^(1) in the form (64.14), the operators

d
t
must be defined as matrices whose elements are

(«*)£ = (^^(-l)*1-*-". (65.5)

On multiplying these matrices, we find, for k > i,

(ai+a^hh = («,
+
)
1A(a

ft)
* * = (-1) I(1

«

*'-
1)(- l)3i.*-iHS(*fi.*-i)

°i
1
fc °i°k Vfc

or

(aSa^ = (- l)**w. *-».
(65.6)

If/ = k, the matrix of^+ai
is diagonal, and its elements are unity for Nt

= 1,

and zero for Nt
=

; this can be written

_^^___ di+di = Nt . (65.7)

t For i > k the exponent in (65.3) becomes S (k + 1, i — 1). The sum must be taken as zero
when i = k + 1.
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On substituting these expressions in (64.14), we in fact obtain (65.3), (65.4).

Multiplying a/*", d k in the opposite order, we have

(a^+yi^ = (akyi^(ai+yiH == (_l)i(i.^-i)+i+i(*fi.A-i)+^a.*-i)+i,

or

(ajflt+ffi* = -(- l) I(i+1'
&-1)

. (65.8)

Comparing (65.8) with (65.6), we see that these quantities have opposite signs,

i.e. we can write

di
+dk+dkdi

+ = (i # k).

For the diagonal matrix aia/
f

, we find

&.&* = i-Nt . (65.9)

Adding this to (65.7), we obtain

didi++di+di = 1.

Both the above equations can be written in the form

didif+dk+di = Sik . (65.10)

On carrying out similar calculations, we find for the products did k the re-

lations

didk+dkdi = 0, (65.11)

and in particular d^ = 0.

Thus we see that the operators di
and d k (or d k

+
) for i # k anticommute,

whereas in the case of Bose statistics they commuted with one another. This

difference is perfectly natural. In the case of Bose statistics, the operators

di and d k were completely independent; each of the operators dt
acted only

on a single variable Nit and the result of this action did not depend on the

values of the other occupation numbers. In the case of Fermi statistics,

however, the result of the action of the operator dt depends not only on the

number Nt itself, but also on the occupation numbers of all the preceding

states, as we see from the definition (65.5). Hence the action of the various

operators dit d k cannot be considered independent.

The properties of the operators dif dt
+ having been thus defined, all the

remaining formulae (64.14)-(64.19) remain valid. The formulae (64.23)-

(64.25), which express the operators of physical quantities in terms of the

operators x
F(f),

1F+(£) defined by (64.20), also hold good. The commutation

rules (64.21), (64.22), however, are now obviously replaced by
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If the system consists of particles of different kinds, second quantisation

operators must be defined for each kind of particle (as already mentioned at

the end of §64). Operators belonging to bosons and fermions commute;
those belonging to different fermions may formally be regarded as either

commutative or anticommutative within the limits of non-relativistic theory.

On either assumption the results obtained by means of the second quantisa-

tion method are the same.

However, with a view to later applications in the relativistic theory, which
allows different particles to be transformed into one another, we should
assume that the creation and annihilation operators for different fermions
anticommute. This becomes evident if we regard as "different" particles

two different "internal" states of a single complex particle.



CHAPTER X

THE ATOM

§66. Atomic energy levels

In the non-relativistic approximation, the stationary states of the atom are

determined by Schrodinger's equation for the system of electrons, which

move in the Coulomb field of the nucleus and interact electrically with one

another; the spin operators of the electrons do not appear in this equation.

As we know, for a system of particles in a centrally symmetric external field

the total orbital angular momentum L and the parity of the state are conserved.

Hence each stationary state of the atom will be characterised by a definite

value of the orbital angular momentum L and by its parity. Moreover, the

co-ordinate wave functions of the stationary states of a system of identical

particles have a certain permutational symmetry. We have seen in §63 that,

for a system of electrons, a definite value of the total spin of the system cor-

responds to each type of permutational symmetry (i.e. to each Young dia-

gram). Hence every stationary state of the atom is characterised also by the

total spin S of the electrons.

The converse, however, is of course not true; if L, S and the parity are

given, the energy of the state is not uniquely determined.

The energy level having given values of S and L is degenerate to a degree

equal to the number of different possible directions in space of the vectors S

and L. The degree of the degeneracy from the directions of L and S is re-

spectively 2L+ 1 and 2S+ 1 . Consequently, the total degree of the degener-

acy of a level with given L and S is equal to the product (2L+ 1)(2S+1).

In fact, however, there is always some relativistic electromagnetic inter-

action of the electrons, which depends on their spins. It has the result that

the energy of the atom depends not only on the absolute values of the orbital

angular momentum and spin vectors, but also on their relative positions.

Strictly speaking, when the relativistic terms in the Hamiltonian operator are

taken into account, it no longer commutes with the operators L and §, i.e.

the orbital angular momentum and the spin are not separately conserved.

Only the total angular momentum J = L+S is conserved. The conservation

of the total angular momentum is an exact law which follows at once from the

isotropy of space relative to a closed system. For this reason the energy levels

must be characterised by the values / of the total angular momentum.

However, if the relativistic effects are comparatively small (as happens in

many cases), they can be allowed for as a perturbation. Under the action of

this perturbation, a level with given L and S, having (2L+l)(2S+l)-fold

degeneracy, is "split" into a number of distinct (though close) levels, which

differ in the value of the total angular momentum /. These levels are

231
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determined (in the first approximation) by the appropriate secular equation

(§39), while their wave functions (in the zeroth approximation) are definite

linear combinations of the wave functions of the initial degenerate level with
the given L and S. In this approximation we can therefore, as before, regard
the absolute values of the orbital angular momentum and spin (but not their

directions) as being conserved, and characterise the levels by the values of
L and S also.

Thus, as a result of the relativistic effects, a level with given values of L
and S is split into a number of levels with different values of /. This splitting

is called the fine structure (or the multiplet splitting) of the level. As we know,

J takes values from L+S to \L— S\ ; hence a level with given L and S is split

into 25+1 (if L > S) or 2L+ 1 (if L < S) distinct levels. Each of these is

still degenerate with respect to the directions of the vector J; the degree of
this degeneracy is 2/+ 1. It is easily verified that the sum of the numbers
2/ + 1 for all possible values of/is equal to (2L+ l)(2S+l), as it should be.
There is a generally accepted notation to denote the atomic energy levels

(or, as they are called, the spectral terms of the atoms), similar to that used
for the states of individual particles with definite values of the angular
momentum (§32): states with different values of the total orbital angular
momentum L are denoted by capital Latin letters, as follows

:

L = 0123456789 10...SPDFGHIKLMN ...

Above and to the left of this letter is placed the number 2S+1, called the
multiplicity of the term (though it must be borne in mind that this number
gives the number of fine-structure components of the level only when
L ^ S). Below and to the right of the letter is placed the value of the total

angular momentum J. Thus the symbols 2P1/2 ,

2P3/2 denote levels with
L = 1, S = h J = \ and f

.

§67. Electron states in the atom

An atom with more than one electron is a complex system of mutually
interacting electrons moving in the field of the nucleus. For such a system
we can, strictly speaking, consider only states of the system as a whole.

Nevertheless, it is found that we can, with fair accuracy, introduce the idea

of the states of each individual electron in the atom, as being the stationary

states of the motion of each electron in some effective centrally symmetric
field due to the nucleus and to all the other electrons. These fields are in

general different for different electrons in the atom, and they must all be
defined simultaneously, since each of them depends on the states of all the

other electrons. Such a field is said to be self-consistent (see §69).

Since the self-consistent field is centrally symmetric, each state of the elec-

tron is characterised by a definite value of its orbital angular momentum /.

The states of an individual electron with a given / are numbered (in order
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of increasing energy) by the principal quantum number n, which takes the

values » = /+l,/+2, ... ; this choice of the order of numbering is made in

accordance with what is usual for the hydrogen atom. However, it must be

noticed that the sequence of levels of increasing energy for various / in com-

plex atoms is in general different from that found in the hydrogen atom. In

the latter, the energy is independent of /, so that the states with larger values

of n always have higher energies. In complex atoms, on the other hand, the

level with n= 5,1=0, for example, is found to lie below that with n = 4,

1=2 (this is discussed in more detail in §73).

The states of individual electrons with different values of n and / are

customarily denoted by a figure which gives the value of the principal

quantum number, followed by a letter which gives the value of /:f thus \d

denotes the state with n = 4, / = 2. A complete description of the atom

demands that, besides the values of the total L, S and/, the states of all the

electrons should also be enumerated. Thus the symbol 1* 2p 3P denotes a

state of the helium atom in which L = 1,S = 1,J = and the two electrons

are in the Is and 2p states. If several electrons are in states with the same /

and w, this is usually shown for brevity by means of an index: thus 3p2

denotes two electrons in the 3p state. The distribution of the electrons in the

atom among states with different / and n is called the electron configuration.

For given values of n and /, the electron can have different values of the

projections of the orbital angular momentum (m) and of the spin (a) on the

#-axis. For a given /, the number m takes 2/+1 values; the number a is

restricted to only two values, ±$. Hence there are altogether 2(2/+ 1)

different states with the same n and /; these states are said to be equivalent.

According to Pauli's principle there can be only one electron in each such

state. Thus at most 2(2/+ 1) electrons in an atom can simultaneously have

the same n and /. An assembly of electrons occupying all the states with the

given n and / is called a closed shell of the type concerned.

The difference in energy between atomic levels having different L and S
but the same electron configuration:}: is due to the electrostatic interaction

of the electrons. These energy differences are usually small, and several

times less than the distances between the levels of different configurations.

The following empirical principle (Hund's rule) is known concerning the

relative position of levels with the same configuration but different L and S:

The term with the greatest possible value of S (for the given electron con-

figuration) and the greatest possible value ofL (for this S) has the lowest energy. ||

f Another terminology often used is that in which electrons with principal quantum numbers

n = 1, 2, 3, ... are said to belong to the K, L, M, . . . shells (see §74).

J We here ignore the fine structure of each multiplet level.

|| The requirement that S should be as large as possible can be explained as follows. Let us consider,

for example, a system of two electrons. Here we can have S = or S = 1 ; the spin 1 corresponds to

an antisymmetrical co-ordinate wave function <f>(rlt r2). For rx = r2 , this function vanishes; in other

words, in the state with 5=1 the probability of finding the two electrons close together is small.

This means that their electrostatic repulsion is comparatively small, and hence the energy is less.

Similarly, for a system of several electrons, the "most antisymmetrical" co-ordinate wave function

corresponds to the greatest spin.
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We shall show how the possible atomic terms can be found for a given elec-
tron configuration. If the electrons are not equivalent, the possible values
of L and S are determined immediately from the rule for the addition of
angular momenta. Thus, for instance, with the configurations np, n'p (n, ri
being different) the total angular momentum L can take the values 2, 1,0,
and the total spin S = 0, 1 ; combining these, we obtain the terms ^S,

If we are concerned with equivalent electrons, however, restrictions im-
posed by Pauli's principle make their appearance. Let us consider, for
example, a configuration of three equivalent p electrons. For 1=1 (the p
state), the projection m of the orbital angular momentum can take the values
m = 1, 0, — 1, so that there are six possible states, with the following values
of m and a:

(«)l,i (b)0,i (c)-l,i

(a') 1,-1 (b') 0,-1 (0-l,-i.

The three electrons can be one in each of any three of these states. As a
result we obtain states of the atom with the following values of the projectionsML = 2m, Ms = £<r of the total orbital angular momentum and spin:

{a+a'+b)2,\
(a+a'+c)l,i (a+b+c) 0, f

(a+b+b')l,i (a+b+c') 0,$

(a+b'+c)0,\

(a'+b+c)0,l

The states with ML or Ms negative need not be written out, since they give
nothing different. The presence of a state withML = 2, Ms = \ shows that
there must be a 2D term, and to this term there must correspond one state

(1, £) and one (0, \). Next, there remains one state with (1, Q, so that there
must be a 2P term; one of the states (0, £) corresponds to this. Finally, there
remain the states (0, f) and (0, £), corresponding to a 4S term. Thus, for a
configuration of three equivalent p electrons, the only possibilities are one
term of each of the types 2Z), 2P, *S.

Table 1 gives the possible terms for various configurations of equivalent

p and d electrons. The figures below the letters of the terms show the num-
ber of terms of the type concerned that exist for the given configuration, if

this number is more than one. For the configuration with the greatest
possible number of equivalent electrons (s2,p

6
, d10, ...), the term is always XS.

Like terms always correspond to configurations which differ in that one of
them has as many electrons as the other lacks to form a closed shell. This is

an evident result of the fact that the absence of an electron from the shell can
be regarded as a "hole", whose state is defined by the same quantum numbers
as the state of the missing electron.
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Table 1

Possible terms for configurations of equivalent electrons

235

p,ps

p*,p*

P3

*P

2PZ>

3P
45

d,d3

d\da

d3,d7

1SDG
*PDFGH

SPF
*PF

d^d* iSDFGI
2 2 2

3PDFGH
2 2

5D

d5 *SPDFGHI
3 2 2

*PDFG 6S

When Hund's rule is applied to determine the ground term of an atom

from a known electron configuration, only the unfilled shell need be con-

sidered, since the moments of electrons in closed shells cancel out. For

example, let there be four d electrons outside the closed shells in an atom.

The magnetic quantum number of the d electron can take five values:

0, ±1, ±2. Hence all four electrons can have the same spin component

<j = |, and the maximum possible total spin is S = 2. We must then assign

to the electrons different values of m so as to give the maximum value of

ML = 2w, namely 2, 1, 0, — 1, ML = 2. This means that the maximum
value of L for S = 2 is also 2, and the term is 5D.

PROBLEM
Find the orbital wave functions of the possible states of a system of three equivalent p

electrons.

Solution. In the states 4S the spins a of all the electrons are the same, and the values of

m are therefore different. The wave function is given by a determinant of the form (61.2)

composed of the functions ^o, 01, <A-i (where the suffix shows the value of w).

For the 2Z) term we consider the state with the maximum possible value Ml = 2. Two
of the components m will be 1 and the other —1. Let electrons 2 and 3 have a = + \ and

electron 1 have a = —\ (corresponding to total spin S = J). The orbital wave function

having the required symmetry is

= —-0i(l)[0o(2)^i(3)-0o(3)0i(2)] f

V 2

the argument of each function being the number of the electron to which it refers.

For the 2P term we consider the state with Ml = 1 and the same values of the electron

spin components as previously. This state can be obtained with two different sets of values

of m, so that the orbital wave function is given by the linear combination

j/j = aift-ui+ bifjioo,

0-m = «Ai(l)[«A-i(2)0i(3)-«A-i(3)0i(2)],

0ioo = 0o(l)[0i(2)0o(3)-0i(3)0o(2)].
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To determine the coefficients, we use the relation

Z+0 = (/+(!)+ /+(2>+ /+(3))0 = 0,

which must be satisfied by the wave function with Ml = M (see (27.8)). Using the matrix
elements (27.12), we find that

/+«Al = 0, l+ifj-i = -\/2i/j0y t+ipo = \Z2ifjx,

and so

L+if>=^/2(a+ b)ifj011 = 0.

Hence a + b = 0, and using also the normalisation condition, we have a = —b = \.
The wave functions of states with Ml < L are obtained from those found above by apply-

ing to them the operator £-.

§68. Hydrogen-like energy levels

The only atom for which Schrodinger's equation can be exactly solved
is the simplest of all atoms, that of hydrogen. The energy levels of the hydro-
gen atom, and of the ions He+, Li++, ... which each have only one electron,

are given by Bohr's formula (36.10)

mZ2e* 1

E =
. _. (68.1)

2h%l+mJM) n2 V '

Here Ze is the charge on the nucleus, M its mass, and m the mass of the elec-

tron. We notice that the dependence on the mass of the nucleus is only very
slight.

The formula (68.1) does not take account of any relativistic effects. In
this approximation there is an additional {accidental) degeneracy, peculiar
to the hydrogen atom, of which we have already spoken in §36; for a given
principal quantum number n, the energy is independent of the orbital angular
momentum /.

Other atoms have states whose properties recall those of hydrogen. We
refer to highly excited states, in which one of the electrons has a large principal

quantum number, and so is mostly at large distances from the nucleus. The
motion of such an electron can be regarded, to a certain approximation, as

motion in the Coulomb field of the rest of the atom, whose effective charge is

unity. The values of the energy levels thus obtained are, however, too in-

exact; it is necessary to apply to them a correction to take account of the devia-

tion of the field from the pure Coulomb field at small distances. The nature
of this correction is easily ascertained from the following considerations.

Since the states with large quantum numbers are quasi-classical, the energy
levels can be determined from Bohr and Sommerfeld's quantisation rule

(48.6). The deviation from the Coulomb field at distances from the nucleus
small compared with the "orbit radius" can be formally allowed for by an
alteration in the boundary condition imposed on the wave function at

t = 0. This brings about a change in the constant y in the quantisation

condition for radial motion. Since this condition is otherwise unchanged,
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we can conclude that we obtain for the energy levels an expression which

differs from that for hydrogen in that the radial, that is, the principal, quantum

number n is replaced by n + A/, where A* is some constant (known as

Rydberg's correction) :

m<£ 1

E = . (68.2)

1W- («+A,)2

Rydberg's correction is (by definition) independent of n, but it is of course

a function of the azimuthal quantum number / of the excited electron (which

we add as a suffix to A), and of the angular momenta L and S of the whole

atom. For given L and S, A* decreases rapidly as / increases. The greater /,

the less time the electron spends near the nucleus, and hence the energy levels

must approach more and more closely those of hydrogen as / increases.f

§69. The self-consistent field

Schrodinger's equation for atoms containing more than one electron can-

not be directly solved in practice, even by numerical methods. Approximate

methods of calculating the energies and wave functions of the stationary states

of the atoms are therefore important. The most important of these methods

is what is called the self-consistent field method. The idea of this method con-

sists in regarding each electron in the atom as being in motion in the "self-

consistent field" due to the nucleus together with all the other electrons.

As an example, let us consider the helium atom, restricting ourselves to

those terms in which both the electrons are in s states (with or without the

same n) ; the states of the whole atom will then be S states also. Let ^(ri)

and »/f
2(r2) be the wave functions of the electrons; in the s states they are

functions only of the distances rv r2 of the electrons from the nuclei. The

wave function ^(r
l5

r2) of the atom as a whole is a symmetrised

4> = H^H^+H^H^) (69-1)

or antisymmetrised

= Ur^UH)-Mr*)Uri) (69 2)

product of the two functions, according as we are concerned with states of

t As an illustration, we may give the experimental values of Rydberg's correction for the highly

excited states of the helium atom. The total spin of this atom can have the values S = and 1, while

the total orbital angular momentum L is, in the states considered, the same as the angular momentum
/ of the excited electron (the other electron being in the state Is). Rydberg's corrections are

for S = 0: A = -0-140, Ai = +0-012, A2 = -00022;

for S = 1 : A = -0-296, Ai = -0068, A2 = -00029.
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total spinf S =. or S = 1 . We shall consider the second of these. The
functions i/f

x and i{j2 can then be regarded as orthogonal. J
Let us try to determine the function of the form (69.2) which is the best

approximation to the true wave function of the atom. To do so, it is natural
to start from the variational principle, allowing only functions of the form
(69.2) to be considered; this method was proposed by V. A. Fok (1930).
As we know, Schrodinger's equation can be obtained from the variational

principle

I i/t*lJipdV
1
dV2

= minimum,

with the additional condition

(the integration is extended over the co-ordinates of both electrons in the

helium atom). The variation gives the equation

jj S<A*(#-£)«£ dVl(iV2
= 0, (69.3)

and hence, with an arbitrary variation of the wave function ip, we obtain the

usual Schrodinger's equation. In the self-consistent field method, the

expression (69.2) for ip is substituted in (69.3), and the variation is effected

with respect to the functions ^ and ifj2 separately. In other words, we seek
an extremum of the integral with respect to functions iff of the form (69.2)

;

as a result we obtain, of course, an inexact eigenvalue of the energy and an
inexact wave function, but the best of the functions that can be represented

in this form.

The Hamiltonian for the helium atom is of the form||

8 =#H-#,+ 1/ru, #x = -*Ai-2/rlf (69.4)

where r12 is the distance between the electrons. Substituting (69.2) in (69.3),

carrying out the variation, and equating to zero the coefficients of 8^ and 8ip
2

in the integrand, we easily obtain the following equations:

[lA+2/r+^-^22-G22(r)]e/-1(r)+[H12+G12(r)]^2(r) = 0,

[*A+2/r+E-H11-Gu(r)]^(r)+[ff11+G11(r)M1(r) =0,

where *

GaM =
J

«Aa(r2)<Ab(r2) dV2/r12 ,

Hab = j 0.[-4A-2/r]& dV (a, b = 1, 2). (69.6)

f The states of the helium atom with S = are usually called parahelium states, and those with
S = 1 orthohelium states.

J The wave functions tfilt ip2 , •• of the various states of the electron which are obtained by the self-

consistent field method are not in general orthogonal, since they are solutions of different equations,
not of the same equation. In (69.2), however, without altering the function tp of the whole atom, we
can replace tp

2 by tp
2
' =

2+ constantX0X ; by an appropriate choice of the constant, we can always
ensure that ipj and tfi2

' are orthogonal.

II In this section (including the Problems) we use atomic units (see the first footnote to §36).
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These are the final equations resulting from the self-consistent field method;

they can, of course, be solved only numerically,f
The equations are similarly derived in more complex cases. The wave

function of the atom to be substituted in the integral in the variational

principle is in the form of a linear combination of products of the wave func-

tions of the individual electrons. This combination must be so chosen that,

firstly, its permutational symmetry corresponds to the total spin S of the

state of the atom considered and, secondly, it corresponds to the given value

of the total orbital angular momentum L of the atom.

By using, in the variational principle, the wave function having the neces-

sary permutational symmetry, we automatically take account of the exchange

interaction of the electrons in the atom. Simpler equations (though leading

to less accurate results) are obtained if we neglect the exchange interaction

and also the dependence on L of the energy of the atom for a given electron

configuration (D. R. Hartree 1928). As an example, let us again consider the

helium atom; we can then write the equations for the wave functions of the

electrons immediately in the form of ordinary Schrodinger's equations

:

[IAa+Ea- Va(ra)]Ura) =0 (a = 1, 2), (69.7)

where Va is the potential energy of one electron moving in the field of the

nucleus and in that of the distributed charge of the other electron:

V1(r1)
= -2M- j (l!r12W(r2) dVz ,

(69.8)

and similarly for V% . In order to find the energy E of the whole atom, we

must notice that, in the sum Ex+E2 , the electrostatic interaction between the

two electrons is counted twice, since it appears in the potential energy Fifa)

of the first electron and in that

—

V2(r2)—of the second. Hence E is obtained

from the sum Ex -\-E^ by subtracting once the mean energy of this interaction;

that is,

E = Ex+E2
-

Jj
(l/r12W(rx),A2

2(r2) dV.dV,. (69.9)

To refine the results obtained by this simplified method, the exchange

interaction and the dependence of the energy on L can afterwards be taken

into account as perturbations.

PROBLEMS
Problem 1. Determine approximately the energy of the ground level of the helium atom

and helium-like ions (a nucleus of charge Z and two electrons), regarding the interaction

between the electrons as a perturbation.

Solution. In the ground state of the ion, both electrons are in s states. The unperturbed

t A comparison of the energy levels of light atoms, calculated by the self-consistent field method,

with spectroscopic data enables us to estimate the accuracy of the method at about 5 per cent.
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value of the energy is twice the ground level of a hydrogen-like ion (because of the two
electrons)

:

EP» = 2{-\Z*)=-Z*.

The correction in the first approximation is given by the mean value of the electron inter-
action energy in a state with wave function

Z3

77

(the product of two hydrogen functions with / = 0). The integral

=/HEW=
|
102 dPWa

ri2

is most simply calculated as

oo r2

EP> = 2
J

dV2 . P2— fpidVh d Fi = 47rr12dr1 ,

dV2 = 477r2
2dr2,

the energy of the charge distribution p2 = I fa I

2 in the field of the spherically symmetric
distribution pi =

| fa |2; the integrand with dF2 is the energy of the charge pn(r2 ) in the field
of the sphere n <r2 , and the factor 2 takes account of the contribution from configurations
in which n > r%. Thus we find E^ = 5Z/8, and finally

E=Ef®+#!>= -Z2+|Z.

For the helium atom (Z = 2) this gives —J? = 11/4 = 2-75; the actual value of the ground-
state energy of this atom is —E = 2-90 atomic units = 78-9 eV.

Problem 2. The same as Problem 1, but using the variational principle, approximating
the wave function by a product of two hydrogen functions with some effective nuclear charge.

Solution. We calculate the integral

IS
ifJlfdVidVz, #=-&Ai+A 2) +—

n r2 r12

with the function tji given by (1), Problem 1 , but with Zett instead of Z. The integral of fa/m
is calculated in Problem 1 ; the integral of if> Ai "A can be reduced to that of ^2/n, since, by
Schrodinger's equation,

(-*Ai )<Al = -iZen^L

The result is

jjifsffl/JdV1dV2 =Zefl2-2ZZefl+ fZefl .

This expression as a function of Zett has a minimum at Zett = Z—&. The corresponding
value of the energy is

For the helium atom this gives —E = 2-85.

It may be noted that the wave function (1) with the above value of Zett is in fact the best
not only of all functions of the form (1) but of all functions which depend only on the sum
r\ + r2 .
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§70. The Thomas-Fermi equation

Numerical calculations of the charge distribution and field in the atom by

the self-consistent field method are extremely cumbersome, especially for

complex atoms. For these, however, there is another approximate method,

whose value lies in its simplicity; its results are admittedly much less accurate

than those of the self-consistent field method.

The basis of this method (E. Fermi, and L. Thomas, 1927) is the fact that,

in complex atoms with a large number of electrons, the majority of the elec-

trons have comparatively large principal quantum numbers. In these condi-

tions the quasi-classical approximation is applicable. Hence we can apply

the concept of "cells in phase space" (§48) to the states of the individual

electrons.

The volume of phase space corresponding to electrons which have momenta

less than p and are in the volume element dV of physical space is iirp
z dV.

The number of "cells", i.e. possible states, corresponding to this volume isf

4ttP
3 dVjZilrtf, and in these states there cannot at any one time be more than

4it/>
3 pz

2-J—dV = ^—dV
3(2t7)3 3?t2

electrons (two electrons, with opposite spins, in each "cell"). In the normal

state of the atom, the electrons in each volume element dV must occupy (in

phase space) the cells corresponding to momenta from zero up to some maxi-

mum valuep . Then the kinetic energy of the electrons will have its smallest

possible value at every point. If we write the number of electrons in the

volume dV as ndV (where n is the number density of electrons), we can say

that the maximum value Po of the momenta of the electrons at every point

is related to n by

P*jZtt* = n.

The greatest value of the kinetic energy of an electron at a point where the

electron density is n is therefore

W=\{Wnyi*. (70.1)

Next, let ${r) be the electrostatic potential, which we suppose zero at

infinity. The total energy of the electron is ip
2
—<f>. It is evident that the

total energy of each electron must be negative, since otherwise the electron

moves off to infinity. We denote the maximum value of the total energy of

the electron at each point by — <£ , where <£ is a positive constant ; if this quan-

tity were not constant, the electrons would move from points with smaller

<j> to those with greater
<f>

. Thus we can write

W = <t>~K (70.2)

t In this section we use atomic units.
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Equating the expressions (70.1) and (70.2), we obtain

n = [2(^ )]
3/2/37r2

, (70.3)

a relation between the electron density and the potential at every point in the
atom.

For <j>=(j>Q the density n vanishes ; n must clearly be put equal to zero also
in the whole of the region where

<f>
< <j> , and where the relation (70.2) would

give a negative maximum kinetic energy. Thus the equation
<f>
=

<f>
deter-

mines the boundary of the atom. There is, however, no field outside a
centrally symmetric system of charges whose total charge is zero. Hence we
must have

<f>
= at the boundary of a neutral atom. It follows from this that,

for a neutral atom, the constant <£ must be put equal to zero. On the other
hand,

<f>
is not zero for an ion.

Below we shall consider a neutral atom, putting accordingly <j>Q
= 0.

According to Poisson's electrostatic equation, we have A<f> = 4irn; substitut-
ing (70.3) in this, we obtain the fundamental equation of the Thomas-Fermi
method

:

A«£ = (8V2/377-)^/
2

. (70.4)

The field distribution in the normal state of the atom is determined by the
centrally symmetric solution of this equation that satisfies the following
boundary conditions: for r -> the field must become the Coulomb field of
the nucleus, i.e. (f>r -> Z, while for r -> oo we must have^r -» 0. Introducing
here, in place of the variable r, a new variable x according to the definitions

r = xbZ-y*, b = Kf^)
2/3 = 0-885, (70.5)

and, in place of
(f>,

a new unknown function x by f

Z /rZll*\ ZW x(x)
<f>(

r)=-x(-ir)=-T-—

•

<70 -6)
r \ b J b x

we obtain the equation

xi>2 tfxjdx
2 = x

s/2
, (70.7)

with the boundary conditions x = 1 for ^ = and x = for x = oo. This
equation contains no parameters, and thus defines a universal function x(x).

Table 2 gives values of this function obtained by numerical integration of

equation (70.7). The function x(x) decreases monotonically, and vanishes
only at infinity4 In other words, the atom has no boundaries in the Thomas-
Fermi model, and formally extends to infinity.

t In ordinary units,

<f>(r) = {Ze\r)x{rZV*me*\W&5W-).

% The equation (70.7) has the exact solution \(x) — 144x~3 , which vanishes at infinity but does not
satisfy the boundary condition at x = 0. It could be used as an asymptotic expression for the function
X(x) for large x. However, this expression gives fairly exact values only for very large x, whilst the
Thomas-Fermi equation becomes inapplicable at large distances (see below).
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Table 2

Values of the function x(x)

243

X X(x) X X(x) X X(x)

0-00 1-000 1-4 0-333 6 0-0594
0-02 0-972 1-6 0-298 7 0-0461
0-04 0-947 1-8 0-268 8 0-0366
0-06 0-924 2-0 0-243 9 0-0296
0-08 0-902 2-2 0-221 10 0-0243
0-10 0-882 2-4 0-202 11 0-0202
0-2 0-793 2-6 0-185 12 0-0171
0-3 0-721 2-8 0-170 13 0-0145
0-4 0-660 3-0 0-157 14 0-0125
0-5 0-607 3-2 0-145 15 0-0108
0-6 0-561 3-4 0-134 20 0-0058
0-7 0-521 3-6 0-125 25 0-0035
0-8 0-485 3-8 0-116 30 0-0023
0-9 0-453 4-0 0-108 40 0-0011
1-0 0-424 4-5 0-0919 50 0-00063
1-2 0-374 5-0 0-0788 60 0-00039

The value of the derivative x'(x) for x = is x'(°) = —1-59. Hence, as

x -> 0, the function x(%) is of the form x = 1 — 159*, and accordingly the
potential <f>(r) is

<f>(r) ^ Z/r-l-80Z4/3 . (70.8)

The first term is the potential of the field of the nucleus, while the second

(— \%0mezZmjh2
' in ordinary units) is the potential at the origin due to the

electrons.

Substituting (70.6) in (70.3), we find for the electron density an expression
of the form

n = Z*f{rZ™\b\ f(x) = (32/9tt%/*)3/2. (70.9)

We see that, in the Thomas-Fermi model, the charge density distribution in
different atoms is similar, with Z~1/3 as the characteristic length (in ordinary
units h2/me2Z1/3

, i.e. the Bohr radius divided by Z1/3
). If we measure

distances in atomic units, the distances at which the electron density has its

maximum value are the same for all Z. Hence we can say that the majority
of the electrons in an atom of atomic number Z are at distances from the
nucleus of the order of Z~1/3

. A numerical calculation shows that half the
total electron charge in an atom lies inside a sphere of radius 1-33Z~1/3

.

Similar considerations show that the mean velocity of the electrons in the

9
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atom (taken, as an order of magnitude, as the square root of the energy) is of

the order of Z2/3
.

The Thomas-Fermi equation becomes inapplicable both at very small and

at very large distances from the nucleus. Its range of applicability for small r

is restricted by the inequality (49.12); at smaller distances the quasi-classical

approximation becomes invalid in the Coulomb field of the nucleus. Putting

in (49.12) a = Z, We find 1/Z as the lower limit of distance. The quasi-

classical approximation becomes invalid for large r also in a complex atom.

In fact, it is easy to see that, for r ~ 1, the de Broglie wavelength of the elec-

tron becomes of the same order of magnitude as the distance itself, so that the

quasi-classical condition is undoubtedly violated. This can be seen by esti-

mating the values of the terms in equations (70.2) and (70.4); indeed, the

result is obvious without calculation, since equation (70.4) does not involve

Z. Thus the applicability of the Thomas-Fermi equation is limited to dis-

tances large compared with \\Z and small compared with unity. In complex

atoms, however, the majority of the electrons in fact lie in this region.

This means that the "outer boundary" of the atom in the Thomas-Fermi

model is at r~ 1, i.e. the dimensions of the atom do not depend on Z. The
energy of the outer electrons, i.e. the ionisation potential of the atom, is

likewise independent of Z.f

By means of the Thomas-Fermi method we can calculate the total ionisa-

tion energy E
y

i.e. the energy needed to remove all the electrons from the

neutral atom. To do this, we must calculate the electrostatic energy of the

Thomas-Fermi distribution for the charges in the atom; the required total

energy is half this electrostatic energy, since the mean kinetic energy in a

system of particles interacting in accordance with Coulomb's law is (bythe virial

theorem) minus half the mean potential energy. The dependence of E on Z
can be determined a priori from simple considerations: the electrostatic

energy of Z electrons at a mean distance Z-1/3 from a nucleus of charge Z,

and moving in its field, is proportional to Z Z\Z~VZ = Z7/3
. A numerical

calculation gives the result E = 20-8Z7/3 eV. The dependence on Z is in

good agreement with the experimental data, though the empirical value of

the coefficient is close to 16.

We have already mentioned that positive (non-zero) values of the constant

cf> correspond to ionised atoms. If we define the function x by <f> —<f> = Z%\r
y

we obtain the same equation (70.7) for x as previously. We must now, how-

ever, consider only solutions which vanish not at infinity as for the neutral

atom, but for finite values x of x. Such solutions exist for any x . At the

point x = x0f the charge density vanishes together with x, but the potential

remains finite. The value of x is related to the degree of ionisation in the

following manner. The total charge inside a sphere of radius r is, by Gauss's

t This model does not, of course, show the periodic dependence of the dimensions and ionisation

potential of the atom on Z, which appears in the periodic system of the elements. Moreover, experi-

mental data indicate the existence of a slight but steady increase in dimensions and decrease in the

ionisation potential as Z increases.
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theorem, —r2
d(f>jdr = Z[x(x)—xx'(x)]. The total charge z on the ion is

obtained by putting x = x in this ; since x(xo)
= 0» we have

z = -Zx x'(x ). (70.10)

The thick line in Fig. 23 shows the curve of x(x) for a neutral atom; below
it are two curves for ions of different degrees of ionisation. The quantity

z\Z is shown graphically by the length of the segment intercepted on the

axis of ordinates by the tangent to the curve at x = x .

Fig. 23

Equation (70.7) also has solutions which are nowhere zero; these diverge
at infinity. They can be regarded as corresponding to negative values of the
constant

(f>
. Fig. 23 also shows two such curves of x(x) ; they lie above the

curve for the neutral atom. At the point x = xlt where

X(*i)-*i*'(*i) = 0, (70.11)

the total charge inside the sphere x < xx is zero (graphically, this point is

evidently the one where the tangent to the curve passes through the origin).

If we cut off the curve at this point, we can say that it defines x(x) for a neutral
atom at whose boundary the charge density remains non-zero. Physically,
this corresponds to a "compressed" atom confined to some given finite

volume.f

The Thomas-Fermi equation does not take account of the exchange inter-

action between electrons. The effects which this involves are of the next
order of magnitude with respect to Z~2/3

. Hence an allowance for the ex-
change interaction in the Thomas-Fermi method requires a simultaneous
consideration of both these effects and others of the same order of magnitude. J

t This approach may be useful in studying the equation of state of highly compressed matter.
t This has been done by A. S. Kompaneets and E. S. Pavlovskii (Soviet Physics JETP 4 328

1957) and by D. Kirzhnits (ibid. 5, 64, 1338, 1957).
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PROBLEM
Find the relation between the energy of the electrostatic interaction between electrons

and that of their interaction with the nucleus in a neutral atom, using the Thomas-Fermi

model.

Solution. The potential 4>e of the field due to the electrons is found by subtracting the

potential Zjr of the nucleus front the total potential 4>. The energy of the interaction between

the electrons is therefore

= $z(-?-dV-$[<l>ndV

-**Jr
,r-L

T-J :

(3tt2)2/3

(where
<f>

has been expressed in terms of n by means of (70.3)). The energy Uen of the

interaction between the electrons and the nucleus and their kinetic energy T are therefore

Uen =-ZJ^dV,

(3tt2)2/3

= 3- — »5/3dF.
10
/

Comparing these expressions with the previous equation, we find

Uee = —$Uen e-**

According to the virial theoremf, for a system of particles interacting according to Coulomb's

law we have IT = —U = —Uen— Uee. Thus finally

§71. Wave functions of the outer electrons near the nucleus

We have seen, on the basis of the Thomas-Fermi model, that the outer

electrons in complex atoms (Z large) are mainly at distances r ~ 1 from the

nucleus.$ A number of properties of atoms, however, depend significantly

on the electron density near the nucleus; such properties will be considered

in §§72 and 120. To determine the order of magnitude of this density we

may examine the variation of the wave function ?/»(r) of the electron in the

atom when r varies from large (r ~ 1) to small distances.

t See Mechanics, §10.

j In this section we use atomic units.
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In the region r ~ 1, the field of the nucleus is screened by the remaining

electrons, so that the potential energy U{r) ~ 1/r ~ 1. The energy of the

electron level in this field E ~ 1. At distances of the order of the Bohr
radius in the field of a charge Z, r ~ 1/Z, the field of the nucleus may be
regarded as unscreened, and U = — Zjr. In the transitional region, 1/Z < r

< 1, the potential energy
j
t7

j
is large compared with the electron energy E,

and the condition

d 1

1(1)
dr\pjpj dr ,/\U\

holds (where/> is the momentum), so that the motion of the electron is quasi-

classical. The spherically symmetrical quasi-classical wave function is

1 1 1

U(r)| for _<^1, (71.1)

the order of magnitude of the coefficient (~ 1) being determined by the con-

dition «/r ~ 1 for "joining" to the wave function for r ~ 1.

Applying the expression (71.1) in order of magnitude for r ~ 1/Z (sub-

stituting U = — Z/r), we obtain the required value of the wave function

near the nucleus :f

4l\\Z)~y/Z. (71.2)

In accordance with the general properties of wave functions in a central

field (§32), when the distance decreases further ift(r) either remains constant

in order of magnitude (for an s electron) or begins to decrease (for 7^0).
The probability of finding the electron in the region r < 1/Z is

w~\iP\W~l/Z2. (71.3)

The formulae (71.2) and (71.3) of course determine only the systematic

variation with increasing Z, and do not take into account non-systematic
variations from one element to the next.

§72. Fine structure of atomic levels

A detailed study of relativistic interactions will be given in Volume 4,

but some properties of such interactions may be mentioned here. It is found
that the relativistic terms in the Hamiltonian of an atom fall into two classes.

One of these contains terms linear with respect to the spin operators of the

electrons, while the other includes quadratic terms. The former correspond
to the interaction between the orbital motion of the electrons and their spin

(this interaction is called spin-orbit interaction), while the latter correspond
to the interaction between the spins of the electrons (spin-spin interaction).

t To determine the coefficient in this formula (when the wave function is known in the region
r ~ 1), we should have to use the expression (36.25) in the range r ;S 1/Z.
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Both interactions are of the same order (the second) with respect to vjc
y
the

ratio of the velocity of the electrons to that of light ; in practice, the spin-

orbit interaction considerably exceeds the spin-spin interaction in heavy

atoms. This is because the spin-orbit interaction increases rapidly with

the atomic number, whereas the spin-spin interaction is essentially inde-

pendent of Z (see below).

The spin-orbit interaction operator is of the form

^ = SAs .s8 (72.1)

(the summation being over all the electrons in the atom), where sa are the

spin operators of the electrons, and Aa are some "orbital" operators, i.e. opera-

tors acting on functions of the co-ordinates. In the self-consistent field

approximation the operators Aa are proportional to the operators \a of the

orbital angular momentum of the electrons, and Vs i can then be written in

the form

Vsi
= 2aala . sa . (72.2)

The coefficients in the sum are given in terms of the potential energy U(r)

of the electron in the self-consistent field by

h2 dU(ra)

2m2c2ra dra (72.3)

Since U < and
|
U(r)\ decreases away from the nucleus, all the <xa > 0.

Regarding the interaction (72.1) as a perturbation, we should, in order to

calculate the energy, average it with respect to the unperturbed state. The

main contribution to the energy is given by distances close to the nucleus,

of the order of the Bohr radius ( ~ h2/Zme2
) for a nucleus with charge Ze.

In this region the field of the nucleus is almost unscreened and the potential

energy is

£/(r)~Ze2/r~Z2»*e4//*
2

,

so that

a.~h2Ulm2c2r2

~Z\e2\hcfm<A\h2 .

The mean value of a is obtained by multiplying by the probability w of

finding the electron near the nucleus. According to (71.3), w~Z~2
, so that

we have finally that the energy of the spin-orbit interaction of the electron is

given by

/ Ze2 \ 2 me4

\ he J h2

i.e. differs from the fundamental energy of the outer electrons in the atom

(~me*/h2
) only by the factor (Ze2/hc)2 . This factor increases rapidly with

the atomic number, and reaches values of the order of unity in heavy atoms.
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The actual averaging of the operator (72.1) is done in two steps. First of

all, we average over electron states with given absolute values L and S of the

total orbital angular momentum and spin, but not with given directions of

these. After this averaging V'
sl

is still, of course, an operator, which we de-

note byf Psl' From considerations of symmetry it is evident that the mean
values of sa must be "directed" along S, which is the only spin "vector"

characterising the atom as a whole (it must be recalled that, in the zeroth ap-

proximation, the wave functions are products of a spin part and a co-ordinate

part). Similarly, the mean values of la must be "directed" along L. Thus
the operator V~8L is of the form

V8L=A%lh (72.4)

where A is a constant characterising a given (unsplit) term, i.e. depending

on S and L but not on the total angular momentum/ of the atom.

To calculate the energy of the splitting of a degenerate level (with given

S and L), we must solve the secular equation formed from the matrix elements

of the operator (72.4). In this case, however, we already know the correct

functions in the zeroth approximation, in which the matrix of V$l is diagonal.

These are the wave functions of states with definite values of the total

angular momentum J. The averaging with respect to such a state involves

replacing the operator S.L by its eigenvalues, which, according to the general

formula (31.2), are

L-S =IU(J+1)-L(L+1)-S(S+1)].

Since the values ofL and S are the same for all the components of a multiplet,

and we are interested only in their relative position, we can write the energy

of the multiplet splitting in the form

44/C7+1). (72.5)

The intervals between adjacent components (with numbers/ and /— 1) are

consequently

AEjj-! = AJ. (72.6)

This formula gives what is called Lande's interval rule (1923).

The constant A can be either positive or negative. For A > the lowest

component of the multiplet level is the one with the smallest possible /, i.e.

J = \L— S\ ; such multiplets are said to be normal. If A < 0, on the other

hand, the lowest level of the multiplet is that with J = L+S; these multi-

plets are said to be inverted.

t This averaging signifies essentially the construction of a matrix with elements

(nM'iM'sWn\nMiMs)
with all possible Mi, M'l and Ms, M's and diagonal with respect to all the other quantum numbers
(the assembly of which we denote by n).
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It is easy to determine the sign of A for the normal states of atoms if the

electron configuration is such that there is only one shell not completely

filled. If this shell is not more than half filled, then according to Hund's
rule (§67) all n electrons in it have parallel spins, so that the total spin has

the greatest possible value, S = \n. Substituting in (72.2) sa = S/n and

taking cca (which is the same for all electrons in a given shell) outside the

sum we obtain

fitt = («/2S)8.L,

i.e. A = a/2»S> 0. If the shell is more than half full, we first add and sub-

tract in (72.2) the same sum taken over the unoccupied places or "holes" in

the incomplete shell. Since, for a completely filled shell, we should have

Vs i
= 0, the operator frsi is thereby represented as a sum

V'si = -2 <xa la.sa ,

taken only over the "holes", the total spin and orbital angular momentum
of the atom being S = — 2 sa , L = — 2 la . By the same method as pre-

viously we therefore find A — — <x./2S, i.e. A < 0.

From the above we have a simple rule which gives the value of / in the

normal state of an atom with one incompletely filled shell. If this shell

contains not more than half the greatest possible number of electrons for

that shell, then/ =
\
L-S\; if the shell is more than half full, J = L + S.

As already mentioned, the spin-spin interaction, unlike the spin-orbit

interaction, is essentially independent of Z. This is evident from the fact

that it is a direct interaction between electrons and does not involve the field

of the nucleus.

For the averaged spin-spin interaction operator we should obtain, analog-

ously to formula (72.4), an expression quadratic in S. The expressions S2

and (S.L)2 are quadratic in §. The former has eigenvalues independent

of J, and therefore does not give any splitting of the term. Hence it can be

omitted, and we can write

PSS =:B(S.L)\ (72.7)

where B is a constant. The eigenvalues of this operator contain terms inde-

pendent of J, terms proportional to J(J+l), and finally a term proportional

toJ\J+ 1)
2
. The first of these do not give any splitting and hence are without

interest; the second can be included in the expression (72.5), which simply

means a change in the constant A. Finally, the last term gives an energy

iB/2C/+l)2
. (72.8)

The scheme for the construction of the atomic levels discussed in §§66-67
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is based on the supposition that the orbital angular momenta of the electrons

combine to give the total orbital angular momentum L of the atom, and their

spins to give the total spin S. As has already been mentioned, this supposi-

tion is legitimate only when the relativistic effects are small; more exactly,

the intervals in the fine structure must be small compared with the differences

between levels with different L and S. This approximation is called the

Russell-Saunders case, and we speak also of LS coupling.

In practice, however, this approximation has a limited range of applica-

bility. The levels of the light atoms are arranged in accordance with the LS
model, but as the atomic number increases the relativistic interactions in the

atom become stronger, and the Russell-Saunders approximation becomes
inapplicable.f It must also be noticed that this approximation is, in parti-

cular, inapplicable to highly excited levels, in which the atom contains an
electron which is in a state with large «, and which is therefore mainly at large

distances from the nucleus (see §68). The electrostatic interaction of this

electron with the motion of the other electrons is comparatively weak, but

the relativistic interaction in the rest of the atom is not diminished.

In the opposite limiting case the relativistic interaction is large compared
with the electrostatic (or, more precisely, compared with that part of it which
governs the dependence of the energy on L and S). In this case we cannot

speak of the orbital angular momentum and spin separately, since they are

not conserved. The individual electrons are characterised by their total

angular momenta/, which combine to give the total angular momentum/ of

the atom. This scheme of arrangement of the atomic levels is called jj coupl-

ing. In practice, this coupling is not found in the pure state, but various types

of coupling intermediate between LS and jj are observed among the levels of

very heavy atoms.J
A peculiar type of coupling is observed in certain highly excited states.

Here the rest of the atom may be in a Russell-Saunders state, i.e. may be
characterised by the values of L and S, while its coupling with the highly

excited electron is of the;)" type ; this is again due to the weakness of the elec-

trostatic interaction for this electron.

The fine structure of the energy levels of the hydrogen atom has certain

characteristic properties. It will be calculated exactly in Volume 4, but here
we shall only mention that, for a given principal quantum number n, the energy
depends only on the total angular momentum j of the electron. Thus the
degeneracy of the levels is not completely removed; to a level with given
n and/ there correspond two states with orbital angular momenta I = j ± |
(unless/ has the value « —

-J, which is the greatest possible for a given n).

t Nevertheless, it must be mentioned that, although the quantitative formulae which describe
this type of coupling become inapplicable, the method of classifying levels according to this scheme
may itself remain meaningful for heavier atoms, especially for the lowest states (including the normal
state).

% For further details regarding types of coupling and the quantitative aspect of the problem, see,
for instance, E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, Cambridge University
Press 1935
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Thus the level with n = 3 is split into three levels, of which the states

S\I2, pi/2 correspond to one, ^3/2 and ^3/2 to another, and ^5/2 to the third.

§73. The periodic system of D. I. Mendeleev

The elucidation of the nature of the periodic variation of properties, ob-

served in the series of elements when they are placed in order of increasing

atomic number, requires an examination of the peculiarities in the successive

completion of the electron shells of atoms. The theory of the periodic system

is due to N. Bohr (1922).

When we pass from one atom to the next, the charge is increased by unity

and one electron is added to the envelope. At first sight we might expect

the binding energy of each of the successively added electrons to vary

monotonically as the atomic number increases. The actual variation, how-

ever, is entirely different.

In the normal state of the hydrogen atom there is only one electron, in

the Is state. In the atom of the next element, helium, another Is electron is

added; the binding energy of the Is electrons in the helium atom is, however,

considerably greater than in the hydrogen atom. This is a natural conse-

quence of the difference between the field in which the electron moves

in the hydrogen atom and the field encountered by an electron added to the

He+ ion. At large distances these fields are approximately the same, but

near the nucleus with charge Z = 2 the field of the He+ ion is stronger than

that of the hydrogen nucleus with Z = 1. In the lithium atom (Z = 3), the

third electron enters the 2s state, since no more than two electrons can be

in Is states at the same time. For a given Z the 2s level lies above the Is

level; as the nuclear charge increases, both levels become lower. In the

transition from Z = 2 to Z = 3, however, the former effect is predominant,

and so the binding energy of the third electron in the lithium atom is con-

siderably less than those of the electrons in the helium atom. Next, in the

atoms from Be (Z = 4) to Ne (Z = 10), first one more 2s electron and then

six 2p electrons are successively added. The binding energies of these

electrons increase on the average, owing to the increasing nuclear charge.

The next electron added, on going to the sodium atom (Z = 11), enters

the 3s state, and the binding energy again diminishes markedly, since the

effect of going to a higher shell predominates over that of the increase of the

nuclear charge.

This picture of the filling up of the electron envelope is characteristic of the

whole sequence of elements. All the electron states can be divided into

successively occupied groups such that, as the states of each group are occu-

pied in a series of elements, the binding energy increases on the average, but

when the states of the next group begin to be occupied the binding energy

decreases noticeably. Fig. 24 shows those ionisation potentials of elements

that are known from spectroscopic data; they give the binding energies of

the electrons added as we pass from each element to the next.
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The different states are distributed as follows into successively occupied
groups

:

1* 2 electrons \

2s, Ip 8

3s, Zp 8

4s, 3d, \p 18

Is, 4d
t
Sp 18

(73.1)

6s, 4/, Sd, dp 32

7*,6<f,5/,... /

The first group is occupied in H and He; the occupation of the second and
third groups corresponds to the first two (short) periods of the periodic

system, containing 8 elements each. Next follow two long periods of 18 ele-

ments each, and a long period containing the rare-earth elements and 32
elements in all. The final group of states is not completely occupied in the

natural (and artificial transuranic) elements.

To understand the variation of the properties of the elements as the states

of each group are occupied, the following property of d and / states, which
distinguishes them from s and/) states, is important. The curves of the effec-

tive potential energy of the centrally symmetric field (composed of the electro-

static field and the centrifugal field) for an electron in a heavy atom have a

rapid and almost vertical drop to a deep minimum near the origin; they then

begin to rise, and approach zero asymptotically. For s andp states, the rising

parts of these curves are very close together. This means that the electron

is at approximately the same distance from the nucleus in these states. The
curves for the d states, and particularly for the / states, on the other hand,

pass considerably further to the left; the "classically accessible" region

which they delimit ends considerably closer in than that for the 5 and^ states

with the same total electron energy. In other words, an electron in the d and/
states is mainly much closer to the nucleus than in the s andp states.

Many properties of atoms (including the chemical properties of elements;

see §81) depend principally on the outer regions of the electron envelopes. The
above characteristic of the d and /states is very important in this connection.

Thus, for instance, when the 4/ states are being filled (in the rare-earth ele-

ments ; see below), the added electrons are located considerably closer to the

nucleus than those in the states previously occupied. As a result, these

electrons have practically no effect on the chemical properties, and all the

rare-earth elements are chemically very similar.

The elements containing complete d and / shells (or not containing these

shells at ail) are called elements of the principal groups; those in which the

filling up of these states is actually in progress are called elements of the inter-

mediate groups. These groups of elements are conveniently considered separ-

ately.
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Let us begin with the elements of the principal groups,

helium have the following normal states:

Hydrogen and

iH:b 251/2 2He:ls21»So

(the number with the chemical symbol always signifies the atomic number).

The electron configurations of the remaining elements of the principal groups

are shown in Table 3.

In each atom, the shells shown on the right of the table in the same line

and above are completely filled. The electron configuration in the shells

that are being filled is shown at the top, while the principal quantum number

of the electrons in these states is shown by the figure on the left of the table

in the same line. The normal states of the whole atom are shown at the bot-

tom. Thus, the aluminium atom has the electron configuration Is2 2s2 2p* 3s2

The values of L and S in the normal state of the atom can be determined

(the electron configuration being known) by means of Hund's rule (§67), and

the value of/ is determined by the rule given in §72.

Table 3

Electron configurations of the atoms of elements in the principal groups

5 s* s*p s*p* 5
4
i>» *V s*p

s s*p*

n = 2 3Li 4Be 5B eC 7N 8o 9F ioNe U*

3 iiNa 12Mg 13AI i4Si 15P ioS 17C1 iaAr 2s* 2p*

4 ioK 2oCa 3s2 3p*

4 29C11 3oZn 3iGa 32Ge 33AS 34Se 35Br 3eKr 3d10

5 37Rb ssSr 4sa Ap*

5 47Ag 48Cd 49I11 soSn 5iSb 52Te 53I 54Xe 4d10

6 55CS 56Ba 5s* 5p*

6 79AU soHg 81TI 82Pb 83Bi 84P0 85At 8eRn 4/1* 5dl°

7 87Fr ssRa 6s% 6p*

*s1/t 'So Pi/» 'Po 4S./« 'P* *Pt/t
lS

The atoms of the inert gases (He, Ne, Ar, Kr, Xe, Rn) occupy a special

position in the table: the filling up of one of the groups of states listed in

(73.1) is completed in each of them. Their electron configurations have

unusual stability (their ionisation potentials are the greatest in their respective

series). This causes the chemical inertness of these elements.

We see that the occupation of different states occurs very regularly in the

series of elements of the principal groups : first the s states and then the p
states are occupied for each principal quantum number n. The electron

configurations of the ions of these elements are also regular (until electrons

from the d and /shells are removed in the ionisation): each ion has the con-

figuration corresponding to the preceding atom. Thus, the Mg+ ion has

the configuration of the sodium atom, and the Mg++ ion that of neon.
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Let us now turn to the elements of the intermediate groups. The filling

up of the 3d, 4d, and Sd shells takes place in groups of elements called

respectively the iron group, the palladium group and the platinum group.

Table 4 gives those electron configurations and terms of the atoms in these

groups that are known from experimental spectroscopic data. As is seen from
this table, the d shells are filled up with considerably less regularity than the

s and p shells in the atoms of elements of the principal groups. Here a

Table 4

Electron configurations of the atoms of elements in the iron, palladium and
platinum groups

Iron group

2lSc 22Ti 23V 24Cr 25Mn 26Fe 27C0 28Ni

Ar envelope + 3d As2

2D3/2

3d2 4s2

*F2

3d* 4s2

*F3/2

3d6 4s

'S3

3d* 4s*

<s5/2

3d9 4s2

8#4

3d7 4s2

*Ftlt

3d6 4s2

*Ft

Palladium group

39Y 4oZr 4lNb 42M0 43TC 44RU 4sRh 4ePd

Kr envelope + 4d5s2

2D3/2

4<f2 5s2

SF2

4d*5s

"A/2

4d5 5s

'S3

4rfs 5s2

656/2

4J' 5s

5F6

4d*5s

*F9/2

4d10

'S

Platinum group

57La

Xe envelope + 5d6ss

*D3/2

7iLu 72Hf 73Ta 74W 7sRe 7eOs nlr 78Pt

Xe envelope 1

+4/"+ )

5d 6s2

2D3/2

5d* 6s2 5d* 6s2

4F3/2

5dl 6s2

6D

5d5 6s2

es6/2

5d« 6s2

5£>4

5J7 6s2 5d°6s

*D3

characteristic feature is the "competition" between the s and d states. It is

seen in the fact that, instead of a regular sequence of configurations of the
type dP s2 with increasing/), configurations of the type d&+1s or dv+2 are often

found. Thus, in the iron group, the chromium atom has the configuration

3d5 4s, and not 3d4 4s2 ; after nickel with 8 d electrons, there follows at once
the copper atom with a completely filled d shell (and hence we place this
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element in the principal groups). This lack of regularity is observed in the

terms of ions also: the electron configurations of the ions do not usually

agree with those of the preceding atoms. For instance, the V+ ion has the

configuration 3d* (and not 3d2
4-s

2 like titanium) ; the Fe+ ion has 3d6 4s

(instead of 3d5 4s2 as in manganese). We may remark that all ions found

naturally in crystals and solutions contain only d (not s or p) electrons in their

incomplete shells. Thus iron is found in crystals or solutions only as the

ions Fe++ and Fe+++ , whose configurations are 3d6 and 3d5 respectively.

A similar situation occurs in the filling up of the 4/ shell ; this takes place

in the series of elements known as the rare earths (Table 5).f The filling up

of the 4/ shell also occurs in a slightly irregular manner characterised by the

"competition" between 4/, Sd and 6s states.

The last group of intermediate elements begins with actinium. In this

group the 6d and 5/ shells are filled, similarly to what happens in the group

of rare-earth elements (Table 6).

To conclude this section, let us examine an interesting application of the

Thomas-Fermi method. We have seen that the electrons in the p shell first

appear in the fifth element (boron), the d electrons for Z = 21 (scandium),

and the/electrons for Z = 58 (cerium). These values of Z can be predicted

by the Thomas-Fermi method, as follows.

An electron with orbital angular momentum / in a complex atom moves

with an "effective potential energy"J of

The first term is the potential energy in an electric field described by the

Thomas-Fermi potential <f>(r). The second term is the centrifugal energy,

in which we put (/+i)
2 instead of /(/+1), since the motion is quasi-classical.

Since the total energy of the electron in the atom is negative, it is clear that,

if (for given values of Z and /) U
t
{r) > for all r, there can be no electrons

in the atom concerned with the given value of the angular momentum /. If

we consider any definite value of /and vary Z, it is found that in fact U^r) >
everywhere when Z is sufficiently small. As Z is increased, a value is reached

for which the curve of U
t
(r) touches the axis of abscissae, while for larger Z

there is a region where C/
Z
(r) < 0. Thus the value of Z at which electrons

with the given / appear in the atom is determined by the condition that the

curve of £/j(r) touches the axis of abscissae, i.e. by the equations

Ufc) = -t+W+Wlr2 = 0, U
t
\r) = _^(r)-(/+£)2/r* = .

Substituting here the expression (70.6) for the potential, we obtain the

equations
Z*l\{x)lx = (4/3^/3(/+i)

2
/^,

Z*l*[xx'{x)-X{x)\lx = -2(4/37r)2 /3(/+i)
2
/*

2
.

f In books on chemistry, lutetium is also usually placed with the rare-earth elements. This, how-

ever, is incorrect, since the 4/ shell is complete in lutetium; it must therefore be placed in the platinum

group, as in Table 4.

% As in §70, we use atomic units.
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Dividing each side of the second equation by the corresponding side of the

first, we find for x the equation

X'(x)lx(x) = -1/*,
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and we then calculate Z from the first of equations (73.2). A numerical

calculation gives

Z = 0- 155(2/+ 1)
3

.

This formula determines the value of Z for which electrons with a given /

first appear in the atom; the error is about 10 per cent.

Very accurate values are obtained by taking the coefficient as 017 instead

of 0155:
Z =0-17(2/+ 1)

3
. (73.3)

For / = 1, 2, 3 this formula gives respectively, after rounding to the nearest

integer, the correct values 5, 21, 58. For / = 4, formula (73.3) gives Z = 124;

this means that^ electrons should first appear only in the 124th element.

§74. X-ray terms

The binding energy of the inner electrons in the atom is so large that, if

such an electron makes a transition into an outer unfilled shell (or is removed

from the atom), the excited atom (or ion) is mechanically unstable with

respect to ionisation, which is accompanied by the reconstruction of the

electron envelope and the formation of a stable ion. However, because of the

comparatively weak interaction between the electrons in the atom, the prob-

ability of such a transition is comparatively small, so that the lifetime t of

the excited state is long. Hence the "width" k/r of the level (see §44) is so

small that it is reasonable to regard the energies of an atom with an excited

inner electron as discrete energy levels of "quasi-stationary" states of the

atom. These levels are called X-ray terms.-f

The X-ray terms are primarily classified according to the shell from which

the electron is removed, or in which, as we say, a "hole" is formed. Where

the electron goes has almost no effect on the energy of the atom, and hence

is unimportant.

The total angular momentum of the set of electrons occupying any shell is

zero. When one electron has been removed, the shell acquires some angular

momentum j. For the («, /) shell, the angular momentum j can obviously

take the values /db£. Thus we obtain levels which might be denoted by

ls1/2 , 2s1/2, 2p1/2 , 2p3/2 , ..., where the value of j is added as a suffix to the

letter giving the position of the "hole". It is usual, however, to employ

special symbols as follows

:

ls1/2 2s1/2 2p1/2 2p3/z 3s1/2 3p1/2 3p3/2 3d3/2 3d5/2 ...

K Li Lh Liu Mi Mu Miu Mw My ...

The levels with « = 4, 5, 6 are similarly denoted by the letters N, O, P.

Levels with the same n (denoted by the same capital letter) lie close together

f The name is due to the fact that transitions between these levels cause the emission of X-rays

by the atom.
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and at a distance from levels with a different n. The reason for this is that,

owing to the relative nearness of the inner electrons to the nucleus, they are

in the almost unscreened field of the nucleus, and hence their states are

"hydrogen-like"; the energy is, to a first approximation, ~Z2/2n2 (in atomic

units), i.e. depends only on n. If relativistic effects are taken into account,

terms with different j are separated (cf. the discussion in §72 of the fine

structure of the hydrogen levels), such as, for example, L\ and Lu from Lm,
and Mi and M\\ from Mm and Miy. These pairs of levels are said to be

regular (or relativistic) doublets. The separation of terms with different / and
the same 7 (for instance L\ and Lu, M\ and Mu) is due to the deviation of the

field in which the inner electrons move from the Coulomb field of the nucleus,

i.e. to the taking into account of the interaction of the electron with other

electrons. These are said to be irregular (or screening) doublets. The main
correction term to the "hydrogen-like" energy of the electron results from
the potential due to the remaining electrons in the region near the nucleus,

and is proportional to Z4/3 (see (70.8)). However, since this correction does

not depend on either n or /, it does not affect the level spacings. The principal

correction terms in the level differences are therefore due to the interaction

of one electron with those adjoining it. Since the distances between the inner

electrons are r ~ 1/Z (the Bohr radius in the field of a charge Z), the energy

of this interaction is ~ \jr ~ Z. Taking this correction into account, we can

write the energy of an X-ray term, to the same accuracy, as —(Z—8)2j2n2
,

where 8 = 8{n,l) is a quantity small compared with Z, and may be regarded

as the magnitude of the screening of the nuclear charge.

Terms with two and three "holes" may exist in the electron shells together

with the X-ray terms with one "hole". Since the spin-orbit interaction is

strong for the inner electrons, the holes are subject toji)' coupling.

The width of an X-ray term is determined by the total probability of all

possible processes by rearrangement of the electron envelope of the atom so

as to fill the "hole" in question. In the heavy atoms, transitions of the hole

from a given shell to a higher one (i.e. electron transitions in the opposite

direction) are the most important, and are accompanied by the emission of

X-ray quanta. The probability of these "radiative" transitions, and therefore

the corresponding part of the level width, increase very rapidly with the

atomic number (as Z4
) but decrease towards higher levels for a given Z.f

For lighter atoms (and higher levels) an important or even predominant

part is played by radiationless transitions, in which the energy liberated when
a hole is filled by an electron from above goes to remove another inner

electron from the atom (called the Auger effect). As a result of this process

the atom is in a state with two holes. The probabilities of these processes and

the corresponding contribution to the level width are independent of the

atomic number to a first approximation with respect to 1/Z (see the Problem).:):

t See Volume 4.

X As an example it may be mentioned that the Auger width of the K level is about 1 eV, and reaches

values of the order of 10 eV for higher levels.
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PROBLEM

Find the limiting law of dependence of the Auger width of X-ray terms on atomic number
when the latter is sufficiently large.

Solution. The Auger transition probability is proportional to the square of a matrix

element of the form

M = ( Uw^VfafcdVidVz,

where ipi, <p2 and if/^, tp'a are the initial and final wave functions of the two electrons involved

in the transition, and V = e2/ri2 is their interaction energy. When Z is sufficiently large, the

wave functions of the inner electrons may be regarded as hydrogen-like and the screening of

the field of the nucleus by other electrons may be neglected (the wave function of the ionisa-

tion electron is also hydrogen-like in the region within the atom which is of importance in the

integral M). If we carry out the calculations and all quantities are expressed in Coulomb
units (with the constant a = Ze2

; see §36), then the only quantity in the integral M which

depends on Z is V = \jZriz, so thatM ~ \\Z. The transition probability, and therefore the

Auger width AE of the level, are proportional to \jZ2
. On returning to ordinary units (the

Coulomb unit of energy being Z2meijh2), we find that AE is independent of Z.

§75. Multipole moments

In classical theory, the electrical properties of a system of particles are

described by its multipole moments of various orders, expressed in terms of

the charges and co-ordinates of the particles. In the quantum theory, the

definitions of these quantities are the same in form, but they must now be

regarded as operators.

The first multipole moment is the dipole moment, defined as the vector

d= Ser,

where the summation is over all the particles, and the suffix which numbers

the particles is omitted for brevity. The matrix of this operator, like that of

any polar vector (see §30), has non-zero elements only for transitions between

states of different parity. The diagonal elements are therefore always zero.

In other words, the mean values of the dipole moment of any system of par-

ticles (e.g. an atom) in stationary states are zero.f

The same is evidently true of all 2*-pole moments with odd /. The com-

ponents of such a moment are polynomials of odd degree / in the co-ordinates,

which, like the components of a polar vector, change sign on inversion of

the co-ordinates. The same parity selection rule therefore applies.

The quadrupole moment of a system is defined as the symmetrical tensor

Qtk ='Ze(3xiXk -8ikr2), (75.1)

t To avoid misunderstanding it should be emphasised that this refers to a closed system of particles

or to a system of particles in a centrally symmetric external electric field. For example, if the nuclei

are regarded as "fixed", the above statement is valid for the electrons in an atom, but not for those in

a molecule.

It is also assumed that there is no additional ("accidental") degeneracy of the energy level other than

that with respect to directions of the total angular momentum. If this is not so, wave functions of

stationary states can be constructed which do not have any definite parity, and the corresponding

diagonal elements of the dipole moment need not vanish.
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the sum of whose diagonal terms is zero. The determination of the values of

these quantities in a particular state of a system (an atom, say) requires an
averaging of the operator (75.1) over the corresponding wave function. This
averaging is conveniently carried out in two stages (cf. §72).

Let Qile denote the quadrupole moment operator averaged over the electron

states with a given value of the total angular momentum/ (but not of its com-
ponent Mj). The only vector which pertains to the atom as a whole is the

"vector" J. The only symmetrical tensor operator with zero trace is therefore

of the form

IQ
Q« = UtJic+Mi-mvc)- (75.2)

The constant Q is defined so that Qzz = Q in the state with Mj = J; this

quantity is usually called simply the quadrupole moment.
The operators J\ must be regarded as the known matrices of the angular

momentum with a given value ofJ but non-diagonal with respect to Mj\ the

operator j
2 can, of course, be simply replaced by its eigenvalue /(/+ 1).

For / = (so that Mj = also) all the elements of these matrices are

zero, i.e. the operators vanish identically. This occurs also when / = \.

This is easily seen by direct multiplication of the Pauli matrices (55.6),

wh ch are the matrices of the components of any angular momentum equal

to£.

This is no accident, but is a particular case of the general rule that the tensor

of a 2*-pole moment (with even /) is non-zero only for states of the system
with total angular momentum / > |/.f

PROBLEMS
Problem 1. Find the relation between the operators of the quadrupole moment of an

atom in states corresponding to various components of the fine structure of a level (i.e. states

with different values ofJ but given values ofL and S).

Solution. In states with given values ofL and S, the operator of the quadrupole moment,
a purely "orbital" quantity, depends only on the operator L, and so is given by the same
formula (75.2) with J replaced by L and with a different constant Q. The operator (75.2)
is obtained by a further averaging over the state with a given value of/:

SQj . .

Qik =
27(27- 1)

W*+-foft-&fl/+^
3Ql

2L(L-1)
[tilk+tkti-%L(L+l)8tk]. (1)

t This rule is a consequence of the general properties of symmetry with respect to rotations. The
tensor of the 2*-pole moment £)(') is an irreducible tensor of rank / (see The Classical Theory of Fields,

§41); its transformation properties correspond to those of a symmetrical spinor of rank 21 (§58).
The wave functions t/ij correspond to a spinor of rank 2J. The matrix elements of the operator
Z)W are non-zero if, in the integrals which determine them, the integrand (tfu* DW xfij) contains a
scalar part. This part is obtained by contraction with respect to all pairs of spinor indices, with each
pair belonging to different factors (tfu*, ipj and DM); otherwise the result is zero. It is clear that
such a contraction is possible only if the sum of the numbers of indices in tfu and tfu* is not less than
the number of indices in £>('), i.e. if 4/ ^ 21.
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It is required to find the relation between the coefficients Qj and Ql> To do so, we multiply

equation (1) on the left by ji and on the right by /*, sum over i and k, and take the eigen-

values of the diagonal operators. We have

where, by (31.3),

2JX =/(/+l)+L(L+l)-S(S+l).

The product ji £* Li j* can be transformed by means of the formulae

{LiLic} = ieacitu {Jiti} = ieumLm,

as in §29, Problem 2; the result is

jitkijk = (m*-j.L.
Similarly

MW* = (J
2
)
2
,

AW*/*=J2
(J

2 -i)-

Thus we obtain from (1) the relation

3J.L(2J.L- 1)-2/(7+ l)L(£+ l)

(7+l)(2/+3)L(2i-l)

In particular, for S = \ this formula gives

Qj=Ql for/ = L+J,

(L-l)(2L+3)
Qj= Ql- for 7 = L-*.
* * L(2L+1)

(3)

Problem 2. Express the quadrupole moment of an electron (charge —e) with orbital

angular momentum / in terms of the mean square of its distance from the centre.

Solution. We have to average the expression

Qzz = - er\Z cos20- 1) = -er\lnz*-\)

over a state with given angular momentum I and component m — I. The mean value of the

angle factor is found immediately from the formula derived in §29, Problem 2 (where lz

must be replaced by /) ; the result is

- 2/

Qi = er* . (4)*
2/+3

The sign of this quantity is opposite to that of the electron charge (—e), as it should be:

a particle moving with an angular momentum in the jsr-direction is mainly near the plane

z = 0, and hence cos2 < \.

For an electron with a given value of/ = / ± £, formulae (3) give

& = "2(2/-l)/(2/+2). (5)

Problem 3. Determine the quadrupole moment of an atom (in the ground state) in which
all v electrons in excess of closed shells are in equivalent states with orbital angular momen-
tum /.
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Solution. Since the total quadrupole moment of completed shells is zero, the quad-
ruple moment operator of the atom is given by the sum

Qa =
(2/-1X2/+3) 2|>+/'?'-^+D«4

taken over the v outer electrons (here we have used formula (4)).
Let us first suppose that v ^ 21+1, i.e. at most half the places in the shell are occupied.

Then, by Hund's rule (§67), the spins of all the v electrons are parallel (so that S = £v).
This means that the spin wave function of the atom is symmetrical, and the co-ordinate
wave function therefore antisymmetrical, with respect to these electrons. Thus the electrons
must all have different values of m, so that the greatest possible value of Ml (and the value
of L, which is the same) is

I

L = (ML)m&x = SJ m = \v{2l-v+\).

The required Ql is the eigenvalue Qzz for Ml = L. We therefore have

6er2

(2/-l)(2/+3)

6er2 ^-v

(2/-1Y2/+3) ^ L 3V }b

whence, on calculating the sum,

2/(2/- 2v+\) _
Ql =— -er\

(2/-l)(2/+3)

The final change from Ql to Qj is effected by means of formula (2).
The case of an atom whose outer shell is more than half filled is reduced to the previous

one by considering "holes" instead of electrons: the result is therefore given by the same
formula (6) with the opposite sign (the "hole" charge being +e), v being now taken not as
the number of electrons but as the number of unoccupied places in the shell.

Problem 4. Determine the quadrupole splitting of the levels in an axially symmetric
external electric field.f

Solution. Owing to the axial symmetry of the field (taking the axis of symmetry to be
the 2-axis) we have d^/dx2 = d^/dy2

, where <f>
is the field potential, and A<f> = from the

electrostatic equation; hence d^/dz2 = -28mdx2. The Hamiltonian of the quadrupole
moment in the external field isf

#=£
3

a2
+ 1>

whence in this case

8=AJx+L2)-2AJz
2

= A{p-ZJz%

"2/(2/- 1) dx*.

Replacing the operators by their eigenvalues, we obtain the displacement of the levels:

AE = A[J(J+l)-3Mj2].

t A similar problem for an arbitrary field is discussed in §103, Problem 5.

t See The Classical Theory of Fields, §42.
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§76. The Stark effect

If an atom is placed in an external electric field, its energy levels are altered

;

this phenomenon is known as the Stark effect.

In an atom placed in a homogeneous external electric field, we have a

system of electrons in an axially symmetric field (the field of the nucleus

together with the external field). The total angular momentum of the atom

is therefore, strictly speaking, no longer conserved; only the projection Mj
of the total angular momentum J on the direction of the field is conserved.

The states with different values of Mj have different energies, i.e. the electric

field removes the degeneracy with respect to directions of the angular

momentum. The removal is, however, incomplete: the states differing only

in the sign of Mj are degenerate as before. For an atom in a homogeneous

external electric field is symmetrical with respect to reflection in any plane

passing through the axis of symmetry (i.e. the axis passing through the nucleus

in the direction of the field; we shall take this as the sr-axis). Hence the states

obtained from one another by such a reflection must have the same energy.

On reflection in a plane passing through some axis, however, the angular

momentum about this axis changes sign (the direction of a positive revolution

about the axis becomes that of a negative one).

We shall suppose that the electric field is so weak that the additional energy

due to it is small compared with the distances between neighbouring energy

levels of the atom, including the fine-structure intervals. Then, in order to

calculate the displacement of the levels in the electric field, we can use the

perturbation theory developed in §§38 and 39. Here the perturbation

operator is the energy of the system of electrons in the homogeneous field <f,

and this is

V= -d. «?= -£d2 , (76.1)

where d is the dipole moment of the system. In the zeroth approximation,

the energy levels are degenerate (with respect to directions of the total angular

momentum); in the present case, however, this degeneracy is unimportant,

and in applying perturbation theory we can proceed as if we were dealing

with non-degenerate levels. This follows from the fact that, in the matrix

of the quantity dz (as in that of the ^-component of any vector), only the

elements for transitions without change ofMj are not zero (see §29), and hence

states with different values of Mj behave independently when perturbation

theory is applied.

The displacement of the energy levels is determined, in the first approxi-

mation, by the diagonal matrix elements of the perturbation. But all the

diagonal matrix elements of the dipole moment vanish identically (§75).

Thus the splitting of the levels in an electric field is a second-order effect

and is proportional to the square of the field.f It must be calculated according

f The hydrogen atom forms an exception; here the Stark effect is linear in the field (see the next

section). The atoms of other elements, when in highly excited states (and therefore hydrogen-like;

see §68), behave like hydrogen in sufficiently strong fields.
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to the general rules of perturbation theory, but the dependence of the dis-
placement of the levels on the quantum number Mj can be established from
more general considerations.

Being quadratic in the field, the displacement AEn of the level En must be
of the form

AEn = - £aa(n)<W*, (76.2)

where a^") is a symmetrical tensor of rank two; taking the s-axis in the
direction of the field, we obtain

AEn = -\^n)^.
(76.3)

The tensor att <»> is specific to the (unsplit) level concerned, and depends
also on the number Mj. The values of att <»> for various values of Mj can
be regarded as eigenvalues of the operator

a«(B) = KnSvc+pniJiJk+JicJi-iSap). (76.4)

This is the most general symmetrical tensor of rank 2 depending on the
vector j (cf. §75). From (76.3) and (76.4) we have

AEn = -K2K+2£„[M./2-i/C/+ 1)]}. (76.5)

It may be noted that, on summation over all values ofMj
t
the second term

in the braces vanishes, so that the first term is the displacement of the
"centre of gravity" of the split level. Moreover, according to (76.5) a level
with J =\ remains unsplit, in accordance with Kramers' theorem (§60).
The tensor a«f<») which appears in the above formulae is also the polaris-

ability of the atom in the external electric field. According to a general
formula,

(8Hld\)nn = dEnld\

(see §11, Problem). Taking the parameters A to be the components of the
vector € and putting fi = i? -^.d, we find for the mean value of the dipole
moment of the atom

dt = a^Hf*. (76.6)

If the atom is in a non-uniform external field (which varies only slightly
over the dimensions of the atom), there can also exist a splitting effect linear
in the field, due to the quadrupole moment of the atom. The operator of the
quadrupole interaction between the system and the field has the form which
corresponds to the classical expression-)- for the quadrupole energy:

^ =i^:^' (76 -7)

f See The Classical Theory of Fields, §42.



76§ The Stark effect 267

where
<f>

is the potential of the electric field (the derivatives being understood

to be taken at the position of the atom).

We can, in particular, apply this formula to a neutral atom in the field of

an electron which is at a distance large compared with atomic dimensions.

Then the field of the electron at the position of the atom satisfies the con-

dition of quasi-uniformity, and in the first approximation of perturbation

theory we find that the energy of interaction between the electron and the

atom is proportional to 1/r3 (since j> ~ 1/r).

This result applies, however, only to states with given values of the com-

ponent Mj of the total angular momentum. On averaging over all directions

of the angular momentum (i.e. over all values of Mj\ the interaction pro-

portional to 1/r3 vanishes, since Qu = 0. Furthermore, this interaction does

not exist if the angular momentum J of the atom is or |, since then Qm = ;

see §75.

The next term in powers of 1/r, which is never zero, is the interaction which

appears in the second-order perturbation theory with respect to the dipole

operator (76.1). Since the field of the electron & ~ 1/r2, the energy U of this

interaction is proportional to 1/r4 . If the atom is in the normal state, this

energy (like any second-order correction to the energy of the ground state

;

see §38) is negative, i.e. there is a force of attraction between the atom and

the electron.

This attraction is the reason why some atoms are able to form negative

ions by the attachment of an electron.! This property is not shared by all

atoms, however, the reason being that, in a field which decreases at large

distances as 1/r4 (or 1/r3), the number of levels (corresponding to a finite

motion of the electron) is always finite, and in some cases there may be no

such levels.

PROBLEMS

Problem 1. Determine the Stark splitting of the different components of a multiplet

level as a function of /.

Solution. The problem is conveniently solved by changing the order in which the per-

turbations are applied ; we first consider the Stark splitting of the level in the absence of fine

structure, and then bring in the spin-orbit interaction. Since the spin of the atom does not

interact with the external electric field, the Stark splitting of a level with orbital angular

momentum L is given by a formula of the same form (76.2), with a tensor a.ac which is ex-

pressed in terms of the operator L in the same way as oeifc in (76.4) is expressed in terms of J:

«4k = a8ik+b(LiLjc+LicLi—%8ikL2
),

the suffixes n being everywhere omitted. When the spin-orbit interaction is included, the

states of the atom must be described by the total angular momentum J. The averaging of

the operator oloc over states with a given value of the angular momentum J (but not of its

component Mj) is formally identical with the averaging carried out in §75, Problem 1. We
hus return to formulae (76.4), (76.5), with constants a,0 which are given in terms of the

f For example, the halogen atoms attach an electron with a binding energy of the order of 2 to 4 eV,

and the hydrogen atom does so with a binding energy 0*7 eV.
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constants a, b by

3J.L[2J.L-l]-2/(7+l)L(L+l)
a = a, p = b— .

7(/+l)(2/-l)(2/+3)

This determines the splitting as a function of J (but not of L and S, of course; these are
characteristics of the unsplit term on which the constants a and b also depend).

Problem 2. Determine the splitting of a doublet level (spin S = £) in an arbitrary
(not weak) electric field.

Solution. If the splitting is not small in comparison with the interval between the
components of the doublet, the perturbation from the electric field and the spin-orbit inter-
action must be taken into account simultaneously, i.e. the perturbation operator is the sum

P = AS.L-$<?2{a+2b[L z2-±L(L+l)]}

(cf. (72.4) and Problem 1). Omitting the constant terms which do not affect the splitting,
we can write this operator in the form

V = \A[S+L-+ S-L++2£zl z-b^L z
z]

(see (29.11)). For each given value of Mj the eigenvalues of this operator are determined by
the roots of the secular equation formed from its matrix elements with respect to the states

:

(2)ML = Mj+l Ms = -%.

From formulae (27.12) we find

Vn = \A(Mj-\)-b£\Mj-\)\

V22 = -lA(Mj+i)-b£2(Mj+i)2,

V12 = iAV[(L+Mj+$)(L-Mj+$].
Thus (see §39, Problem 1) the level displacement is

AE= -bg2MJ2±V[lA2(L+i)2+b<?2(b£,

2+A)Mj2], (1)

where all terms which are the same for all components of the split doublet are omitted.
This formula (with both signs of the root) applies to all levels with \Mj\ < L— J. For
Mj = L+ \ {or Mj = —(L+ i)) there is no state 2 (or 1); for this level the displacement is

given simply by the matrix element Vn (or F22), i.e., with the same choice of the additive
constant as in (1),

AE = {\A+b£*){L+\)-b£Z{L+®z.
(2)

This is the same as the result obtained from formula (1) with only one sign of the root.

Problem 3. Determine the quadrupole splitting of levels in an axially symmetric electric
field.

Solution. In a field symmetrical about the s-axis we have 2«£/&e2 = 82<f>/dy2 = a,
8^<f>ldz

2 = —2a, the remaining second derivatives being zero. The quadrupole energy
operator (76.7) is

a - - - Qo<* „

-iQxx+Qyy-2Qzz)= (J
2-3/22).

6 2/(2/- 1)

Replacing the operators by their eigenvalues, we obtain for the displacement of the levels

AE = a [J(J+ 1) - 3Mj2].
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§77. The Stark effect in hydrogen

The levels of the hydrogen atom, unlike those of other atoms, undergo

a splitting proportional to the field (the linear Stark effect) in a uniform

electric field. This is due to the occurrence of an accidental degeneracy in

the hydrogen terms, whereby states with different / (for a given principal

quantum number n) have the same energy. The matrix elements of the dipole

moment for transitions between these states are not zero, and hence the secular

equation gives a non-zero displacement of the levels, even in the first approxi-

mation.

For purposes of calculation-}- it is convenient to choose the unperturbed

wave functions so that the perturbation matrix is diagonal with respect to

each group of mutually degenerate states. It is found that this is achieved

by quantising the hydrogen atom in parabolic co-ordinates. The wave func-

tions iftnintm of the stationary states of the hydrogen atom in parabolic co-

ordinates are given by formulae (37.15) and (37.16).

The perturbation operator]: (the energy of an electron in the field &) is

Sz = \ &($—-n)> the field is directed along the positive s-axis, and the force

on the electron along the negative sr-axis. We are interested in the matrix

elements for transitions n^m -> n^n^m', for which the energy (i.e. the prin-

cipal quantum number n) is unaltered. It is easy to see that, of these, only

the diagonal matrix elements

CO0O27T

J ^..J
1'* dV =K jjj (e~V

2
)\Kn,m\

2 d^drj

=K fjfn, m
2
(Pl)fn2 m

2
(P2)(Pl

2
-P2

2
) <WP2 (77-1)

are non-zero (we have made the substitution £ = npv t] = »p2). The matrix

concerned is evidently diagonal with respect to the number m, while its

diagonality with respect to the numbers n1 , n2 follows from the orthogonality

of the functionsfniTn for different nx and the same n (see below). The integra-

tions over px and p2 in (77.1) are separable; the integrals obtained are calcu-

lated in §f of the Mathematical Appendices (integral (f.6)). After a simple

calculation, we find for the corrections to the energy levels in the first approxi-

mation
||

£(« = |£n{nx-n2\ (77.2)

or, in absolute units,

f In the following calculations we do not take account of the fine structure of the hydrogen levels.

Hence the field must be, though not strong (for perturbation theory to be applicable), yet such that

the Stark splitting is large in comparison with the fine structure.

% In this section we use atomic units.

|| This result was derived by K. Schwarzschild and P. Epstein (1916), using the old quantum
theory, and by W. Pauli and E. Schrodinger (1926) using quantum mechanics.
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The two extreme components of the split level correspond to Wj = n— 1,

«2 = and % = 0, w2 = n— 1. The distance between these two extreme
levels is, by (77.2),

Z£n{n-\\

i.e. the total splitting of the level by the Stark effect is approximately pro-
portional to n2

. It is natural that the splitting should increase with the prin-
cipal quantum number: the further the electrons are from the nucleus, the
greater the dipole moment of the atom.

The presence of the linear effect means that, in the unperturbed state, the
atom has a dipole moment whose mean value is

d~e = -fw^-^). (77.3)

This is in accordance with the fact that, in a state determined by parabolic
quantum numbers, the distribution of the charges in the atom is not sym-
metrical about the plane z = (see §37). Thus, for % > n^, the electron is

predominantly on the side of positive z, and hence the atom has a dipole
moment opposite to the external field (the charge on the electron being
negative).

In the previous section we have shown that a uniform electric field cannot
entirely remove degeneracy: there always remains a twofold degeneracy of
states differing in the sign of the projection of the angular momentum on the
direction of the field (in this case, states whose projected angular momenta
are + m). However, we see from formula (77.2) that even this removal of
the degeneracy does not occur in the linear Stark effect in hydrogen: the
displacement of the levels (for given n and n± - n2) is independent ofm and n2 .

A further removal of the degeneracy occurs in the second approximation;
the calculation of this effect is the more interesting in that the linear Stark
effect is altogether absent in states with n\ = w2 -

To calculate the quadratic effect, it is not convenient to use ordinary
perturbation theory, since it would be necessary to deal with infinite sums
of complicated form. Instead we use the following slightly modified method.

Schrodinger's equation for the hydrogen atom in a uniform electric

field is of the form

(£A+£+i/r-«f*)«A = o.

Like the equation with «f = 0, it allows separation of the variables in

parabolic co-ordinates. The same substitution (37.7) as was used in §37
gives the two equations

d / d/„ \ / m2 \

d^Vd^J
+(^_i~+i<fV /2

= ~ 2̂y

(77.4)

&+& = 1,
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which differ from (37.8) by the presence of the terms in S. We shall regard

the energy E in these equations as a parameter which has a definite value,

and the quantities jS1} j32 as eigenvalues of corresponding operators; it is easy

to see that these operators are self-conjugate. These quantities are deter-

mined, by solving the equations, as functions ofE and S, and then the condi-

tion j8i+j82 = 1 gives the required relation between E and S, i.e. the energy

as a function of the external field.

For an approximate solution of equations (77.4), we regard the terms con-

taining the field ^ as a small perturbation. In the zeroth approximation

( g = 0), the equations have the familiar solutions

A = Ve/n^e),

(77.5)

/ = Vefn
t
mM,

where the functionsfnitn are the same as in (37.16), and instead of the energy

we have introduced the parameter

€ = V(-2E). (776>

The corresponding values of &, jS2 (from the equations (37.12), in which n

must be replaced by 1/e) are

&(« = K+iM+Jh j82
«» =

(W2+i|m|+£)e. (77.7)

The functionsjx with different% for a given e are orthogonal, as are the eigen-

functions of any self-conjugate operator; we have already used this fact above

in discussing the linear effect. In (77.5) these functions are normalised by

the conditions

o o

The corrections to & and jS2 in the first approximation are determined by

the diagonal matrix elements of the perturbation:

oo oo

Calculation gives

&W = i^(6n1
2+6n1|m|+m

2+6n1+3|m|+2)/€
2

.

The expression for j82
(1) is obtained by replacing nx by n^ and changing the

sign.



272 The Atom §77

In the second approximation we have, by the general formulae of perturba-
tion theory,

<f2 ^ Kaw

The integrals appearing in the matrix elements (£2)„ „ . are calculated in S f

of the Mathematical Appendices. The only non-zero elements are

(^
2
)«

1
,«

1
-i = (P)ni -i,n = -2(2«1+M)V[h1(«1+M)]/62,

(?)nitnr2 = {¥\-2,n
x

= VM^-1)K+ |m|)K+|m|- 1)]{€*.

The differences occurring in the denominators are

As a result of the calculations we have

ft(2> = - <r2(|m|+2%+l)[4m2+17(2|m|%+2«1H|M+2n1)+18]/1665;

the expression for j82
<2 > is obtained by replacing «x by n^. Combining the

expressions obtained and substituting in the relation ft+/?2 = 1, we have
the equation

en- <r2«[17n2+51K~«2)2-9m
2+19]/16€5+3 (fw(Wi

_ M2)/€
2 = x

Solving by successive approximations, we have in the second approximation
for the energy E = — \e% the expression

1 «f2

E =
~2^2

"+l^"(ni~ M2)

~l6"
w4[17w2~ 3(Wl~ W2)2~9m2+19]

'
(77 *8)

The second term is the already familiar linear Stark effect, and the third is

the required quadratic effect (G. Wentzel, I. Waller and P. Epstein 1926).
We notice that this quantity is always negative, i.e. the terms are always
displaced downwards by the quadratic effect. The mean value of the dipole
moment is obtained by differentiating (77.8) with respect to the field; in the
states with n\ = n^ it is

dz =£M4(17»2-9m2+19)«f. (77.9)

Thus the polarisability of the hydrogen atom in the normal state (»=1, m=0)
is 9/2 (in absolute units 9(^a/we2

)
3
/2).

The absolute value of the energy of the hydrogen terms falls rapidly as the
principal quantum number n increases, while the Stark splitting is increased.

Hence it is of interest to examine the Stark effect for highly excited levels in
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fields so strong that the splitting they cause is comparable with the energy

of the level itself, and perturbation theory is inapplicable.! This can be done

by using the fact that states with large values of n are quasi-classical.

By the substitution

A=xJVe, h=xM (77-10)

the equations (77.4) are brought into the form

/ ft w2-l a \
(77.11)

drf

Each of these equations, however, is the same in form as the one-dimensional

Schrodinger's equation, the part of the total energy of the particle being

taken by \E, and that of the potential energy by the functions

ft m2-l

ft w2-l
(77.12)

2tj Sr,
2

respectively.

Figs. 25 and 26 respectively show the approximate form of these functions

(for m > 1). By Bohr and Sommerfeld's quantisation rule (48.2) we write

i,

j y/{2&E-Ujm d£ = K+iK
ix

(77.13)

VWhE-UtivWdrt =(«2+|K

where %, w2 are integers.J These equations determine implicitly the depen-

dence of the parameters & and jS2 on E. Together with the equation ft+ 2= 1

,

they therefore give the energies of the levels when displaced by the electric

field. The integrals in equations (77.13) can be reduced to elliptic integrals;

these equations can be solved only numerically.

The applicability of perturbation theory to high levels requires the perturbation to be small only

in comparison with the energy of the level itself (the binding energy of the electron), and not with the

intervals between the levels. For in the quasi-classical case (which corresponds to highly excited

states) the perturbation can be regarded as small if the force due to it is small in comparison with those

acting on the particle in the unperturbed system; and this condition is equivalent to the one given

above.

% A detailed investigation shows that a more exact result is obtained by writing mz instead of m'— 1

in the expressions for Ux and U2 . The integers nlt Wj are then equal to the parabolic quantum numbers.
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Fig. 25

The Stark effect in strong fields is complicated by another phenomenon,
the ionisation of the atom by the electric field. The potential energy £z of
an electron in the external field takes arbitrarily large negative values as
z -» — co. Added to the potential energy of the electron within the atom,
it has the effect that the region of possible motion for the electron (whose
total energy E is negative) includes, besides the region inside the atom, the
region of large distances from the nucleus in the direction of the anode.
These two regions are separated by a potential barrier, whose width dimin-
ishes as the field increases. We know, however, that in quantum mechanics
there is always a certain non-zero probability that a particle will penetrate a
potential barrier. In the case we are considering, the emergence of the elec-
tron from the region within the atom, through the barrier, is simply the
ionisation of the atom. In weak fields the probability of this ionisation is

vanishingly small. It increases exponentially with the field, however, and
becomes considerable in fairly strong fields.-f

Fig. 26

t This phenomenon may serve to illustrate how a small perturbation may alter the nature of the
energy spectrum. Even a weak field $ is sufficient to create a potential barrier and produce a region,
far from the nucleus, which is in principle accessible to the electron. As a result, the motion of the
electron becomes, strictly speaking, infinite, and hence the energy spectrum becomes continuous
instead of discrete. Nevertheless, the formal solution obtained by the methods of perturbation theory
has a physical significance: it gives the energy levels of states which are not quite but "almost" station-
ary. An atom that is in such a state at some initial instant remains in it for a long period of time.

However, the series given by perturbation theory for the Stark splitting of the levels cannot be
convergent in the strict sense, but is merely an asymptotic series : after a certain point in the series
(which becomes later as the perturbation is reduced in magnitude) the terms increase, not decrease.
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PROBLEM
Determine the probability (per unit time) of the ionisation of a hydrogen atom (in the

ground state) in a strong electric field.

Solution. In parabolic co-ordinates there is a potential barrier "along the 17 co-ordinate"
(Fig. 26); the "extraction" of the electron from the atom in the direction z -> — 00

corresponds to its passage into the region of large 17. To determine the ionisation probability,

it is necessary to investigate the form of the wave function for large 17 (and small £ ; we shall

see below that small values of £ are the important ones in the integral which determines the
total probability current for the emerging electron). The wave function of the electron in the
normal state (in the absence of the field) is

= «-tf+W2/yV. (1)

When the field is present, the dependence of iff on £ in the region in which we are interested

can be regarded as being the same as in (1), while to determine its dependence on 77 we have
the equation

d\ r 11 1

v + [-i+^
+v+K,

]
x = 0, (2)

where \ = y/-r\i\> (equation (77.11) with E = — £, m = 0, /32 = £). Let 17 be some value of 17

("within" the barrier) such that 1 <^ 7? <C l/<^. For 17 <; 179, the wave function is quasi-

classical. Since, on the other hand, equation (2) has the form of the one-dimensional
Schrodinger's equation, we can use formulae (50.4). Using the exact expression (1) for

the wave function at the point 17 = 170, we obtain in the region outside the barrier the expres-

sion

1 x l\Po\ }
X = —-€r-*

(*f"«V17o / exp[* \pdr)— f«r],

where

We shall be interested only in the square |x|
2

- Hence the imaginary part of the exponent is

unimportant. Denoting by -qx the root of the equation p(rj) = 0, we have

|x |2 = lV^exp[-2f|/>|d,-, ].

71 P i
In the coefficient of the exponential we put

in the exponent we must keep also the next term of the expansion

:

Vi Vi

\x\
2 = er€ exp[~- f y/ll-g-q) dv+ f « "|,

where ^ ^ \\S. Effecting the integration and neglecting 17 <^ compared with 1 wherever
possible, we obtain

|x|
2 = e-2/^ . (3)

TtS \Z(<a7)—l)
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The total probability current through a plane perpendicular to the ar-axis (i.e. the required

ionisation probability w) is

00

w = \*fi\Hz2TTr dr.

o

For large rj (and small £) we can put

Substituting also for the velocity of the electron

v. s V[2(-l+*^)] = VW-1),
we have

00

W=j\x\ 27rV(<?ri-l)d$

o

4 °?

^
o

that is, finally,

or, in ordinary units,

w = (4m3<?9/«f/z7)exp {-2m^\ZSh%



CHAPTER XI

THE DIATOMIC MOLECULE

§78. Electron terms in the diatomic molecule

In the theory of molecules an important part is played by the fact that the
masses of atomic nuclei are very large compared with those of the electrons.

Because of this difference in mass, the rates of motion of the nuclei in the
molecule are small in comparison with the velocities of the electrons. This
makes it possible to regard the motion of the electrons as being about fixed

nuclei placed at given distances from one another. On determining the

energy levels Un for such a system, we find what are called the electron terms

for the molecule. Unlike those for atoms, where the energy levels were
certain numbers, the electron terms here are not numbers but functions of

parameters, the distances between the nuclei in the molecule. The energy
Un includes also the electrostatic energy of the mutual interaction of the nu-
clei, so that Un is essentially the total energy of the molecule for a given
arrangement of the fixed nuclei.

We shall begin the study of molecules by taking the simplest type, the

diatomic molecules, which permit the most complete theoretical investigation.

One of the chief principles in the classification of the atomic terms was
the classification according to the values of the total orbital angular momen-
tum L. In molecules, however, there is no law of conservation of the total

orbital angular momentum of the electrons, since the electric field of several

nuclei is not centrally symmetric.

In diatomic molecules, however, the field has axial symmetry about an
axis passing through the two nuclei. Hence the projection of the orbital

angular momentum on this axis is here conserved, and we can classify the

electron terms of the molecules according to the values of this projection.

The absolute value of the projected orbital angular momentum along the
axis of the molecule is customarily denoted by the letter A; it takes the values

0, 1, 2, ... . The terms with different values ofA are denoted by the capital

Greek letters corresponding to the Latin letters for the atomic terms with
various L. Thus, forA = 0, 1, 2 we speak of S, II and A terms respectively;

higher values of A usually need not be considered.

Next, each electron state of the molecule is characterised by the total spin
S of all the electrons in the molecule. If S is not zero, there is degeneracy
of degree 2S+1 with respect to the directions of the total spin.f The number
2S+1 is, as in atoms, called the multiplicity of the term, and is written as an
index before the letter for the term; thus 3 II denotes a term with A = 1

S=l.
f We here neglect the fine structure due to relativistic interactions (see §§83 and 84 below).
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Besides rotations through any angle about the axis, the symmetry of the

molecule allows also a reflection in any plane passing through the axis. If

we effect such a reflection, the energy of the molecule is obviously unchanged.

The state obtained from the reflection is, however, not completely identical

with the initial state. For, on reflection in a plane passing through the axis

of the molecule, the sign of the angular momentum about this axis is changed.

Thus we conclude that all electron terms with non-zero values ofA are doubly

degenerate: to each value of the energy, there correspond two states which

differ in the direction of the projection of the orbital angular momentum on

the axis of the molecule. In the case where A = the state of the molecule

is not changed at all on reflection, so that the S terms are not degenerate.

The wave function of a S term can only be multiplied by a constant as a

result of the reflection. Since a double reflection in the same plane is an iden-

tity transformation, this constant is ±1. Thus we must distinguish S terms

whose wave functions are unaltered on reflection and those whose wave

functions change sign. The former are denoted by S+, and the latter by S~.

If the molecule consists of two similar atoms, a new symmetry appears,

and with it an additional characteristic of the electron terms. A diatomic

molecule with identical nuclei has a centre of symmetry at the point bisecting

the line joining the nuclei.f (We shall take this point as the origin.) Hence

the Hamiltonian is invariant with respect to a simultaneous change of sign

of the co-ordinates of all the electrons in the molecule (the co-ordinates of the

nuclei remaining unchanged). Since the operator of this transformationJ

also commutes with the orbital angular momentum operator, we have the

possibility of classifying terms with a given value of A according to their

parity: the wave functions of even (g) states are unchanged when the co-

ordinates of the electrons change sign, while those of odd (u) states change sign.

The suffixes u, g indicating the parity are customarily written with the letter

for the term: Iiu , Rg, and so on.

Finally, we shall mention an empirical rule, according to which the normal

electron state in the great majority of chemically stable diatomic molecules

is completely symmetrical: the electron wave function is invariant with

respect to all symmetry transformations in the molecule. As we shall show

in §81, the total spin S is zero too, in the great majority of cases, in the

normal state. In other words, the ground term of the molecule is XS+, and

it is
1E+

i?
if the molecule consists of two similar atoms.

||

PROBLEM
Effect the separation of variables in Schrodinger's equation for the electron terms of the

ion H2+ , using elliptic co-ordinates.

f It has also a plane of symmetry perpendicularly bisecting the axis of the molecule. This element

of symmetry need not be considered separately, however, since the existence of such a plane follows

automatically from the existence of a centre of symmetry and of an axis of symmetry.

% Not to be confused with that of inversion of the co-ordinates of all the particles in the molecule

||
Exceptions to these rules are formed by the molecules 2 (whose normal term is

3S~g) and NO
(normal term 2II).
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Solution. Schrodinger's equation for an electron in the field of two protons at rest

is (using atomic units)

^+2(e+—+—y =o-
\ r\ r2 /n rZi

The elliptic co-ordinates £, 17 are defined by

£ = (n + r2)IR, v = (rz-r^R; 1<£<oo, -1<i?<1,

and the third co-ordinate <£ is the angle of rotation about an axis passing through the two
nuclei at a distance R apart.f The Laplacian operator in these co-ordinates is

4 rd 8 8 8n
A = —(^

2 — 1) 1 (1 — t?
2
)
— +

4 r8 8 8 8~[ 1 8*

\ =
R\{

Putting

|J2(|2_1)(1_^2) 0^2

= X(g)Y(riy**,

we obtain for X and Y the equations

dr dX~] / A2 \

dr dY~] ( A2 \i 1 -'!2)^] + (-^v^-w) y =
'

where A is the separation parameter.

Each electron term is described by three quantum numbers : A, and two numbers ng , tin

which determine the number of zeros of the functions X(£) and Y(-q). Since all these numbers
are related to functions of different variables, there is in general nothing to prevent the inter-

section of terms E(R) having different values of any two quantum numbers, including the

pair ng , «tj with the same A, even though such terms have the same symmetry (see the footnote

to §79).

§79. The intersection of electron terms

The electron terms in a diatomic molecule are functions of a single para-

meter, the distance r between the nuclei. They can be represented graphically

by plotting the energy as a function of r. It is of considerable interest to

examine the intersection of the curves representing the different terms.

Let Ux
{r), U2

(r) be two different electron terms. If they intersect at some
point, then the functions U1 and U2 will have neighbouring values near this

point. To decide whether such an intersection can occur, it is convenient to

put the problem as follows. Let us consider a point r where the functions

Ux(r), U%(r) have very close but not equal values (which we denote by Ev E2),

and examine whether or not we can make Ux and U2 equal by displacing the

point a short distance 8r. The energies Ex and E2 are eigenvalues of the

Hamiltonian ff of the system of electrons in the field of the nuclei, which
are at a distance r from each other. If we add to the distance r an increment

f See Mechanics, §48.
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8r, the Hamiltonian becomes fiQ +1/, where V = 8r . dffjdr is a small cor-

rection ; the values of the functions Ult U2 at the point r + 8r can be regarded

as eigenvalues of the new Hamiltonian. This point of view enables us to

determine the values of the terms Ux(r), U2(r) at the point r +8r by means of

perturbation theory, V being regarded as a perturbation to the operator

The ordinary method of perturbation theory is here inapplicable, however,

since the eigenvalues Ev E2 of the energy in the unperturbed problem are very

close to each other, and their difference is in general small compared with the

magnitude of the perturbation; the condition (38.8) is not fulfilled. Since,

in the limit as the difference E2—Ex tends to zero, we have the case of degener-

ate eigenvalues, it is natural to attempt to apply to the case of close eigenvalues

a method similar to that developed in §39.

Let tf/v «/r
2 be the eigenfunctions of the unperturbed operator 3 which

correspond to the energies Ex , E2 . As an initial zero-order approximation we
take, instead of fa and fa themselves, linear combinations of them of the form

<A
= cxfa+c2fa. C

79 - 1 )

Substituting this expression in the perturbed equation

&+?)</,= Efa (79.2)

we obtain

cx{Ex+V-E)fa+cz{E2+t-E)fa = 0.

Multiplying this equation on the left by fa* and 02* in turn, and integrating,

we have two algebraic equations

:

Ci(E1+V11-E)+c 2V12 = 0,

CiVn+ct(Et+ V2t-E) = 0,

where Vik = j" «^
#

ty*fjk dq. Since the operator V is Hermitian, the quantities

Vn and F22 are real, while Vx%
= V2X

*. The compatibility condition for these

equations is

E1+Vn-E Vu '

V21 E2+V22-E

whence we obtain after some calculation

= 0,

E = K£i+£2+ Vu+ Vtt)±V\WB1-E*+ Vn- V22?+\ V12\*]. (79.4)

This formula gives the required eigenvalues of the energy in the first approxi-

mation.

If the energy values of the two terms become equal at the point r + 8r

(i.e. the terms intersect), this means that the two values of E given by formula
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(79.4) are the same. For this to happen, the expression under the radical in

(79.4) must vanish. Since it is the sum of two squares, we obtain, as the

condition for there to be points of intersection of the terms, the equations

E1-E2+V11-V22
=0

1
F12

=0. (79.5)

However, we have at our disposal only one arbitrary parameter giving the

perturbation V, namely the magnitude Sr of the displacement. Hence the

two equations (79.5) cannot in general be simultaneously satisfied (we sup-

pose that the functions tf/lt
«/r
2 are chosen to be real, so that V12 also is real).

It may happen, however, that the matrix element V12 vanishes identically

;

there then remains only one equation (79.5), which can be satisfied by a suit-

able choice of 8r. This happens in all cases where the two terms considered

are of different symmetry. By symmetry we here understand all possible forms

of symmetry: with respect to rotations about an axis, reflections in planes,

inversion, and also with respect to interchanges of electrons. In the diatomic

molecule this means that we may be dealing with terms of different A, differ-

ent parity or multiplicity, or (for S terms) £+ and 2~ terms.

To prove this statement it is essential that the operator V (like the Hamil-

tonian itself) commutes with all the symmetry operators for the molecule:

the operator of the angular momentum about an axis, the reflection and in-

version operators, and the operators of interchanges of electrons. It has been

shown in §§29 and 30 that, for a scalar quantity whose operator commutes
with the angular momentum and inversion operators, only the matrix elements

for transitions between states of the same angular momentum and parity are

non-zero. This proof remains valid, in essentially the same form, for the

general case of an arbitrary symmetry operator. We shall not pause to repeat

it here, especially since in §97 we shall give another general proof, based on

group theory.

Thus we reach the result that, in a diatomic molecule, only terms of differ-

ent symmetry can intersect, while the intersection of terms of like symmetry is

impossible (E. Wigner and J. von Neumann 1929). If, as a result of some
approximate calculation, we obtain two intersecting terms of the same
symmetry, they are found to move apart on calculating the next approxi-

mation, as shown by the continuous lines in Fig. 27.f
We emphasise that this result not only is true for the diatomic molecule,

but is a general theorem of quantum mechanics ; it holds for any case where
the Hamiltonian contains some parameter and its eigenvalues are consequently

functions of that parameter.

In a polyatomic molecule, the electron terms are functions of not one but
several parameters, the distances between the various nuclei. Let s be the

number of independent distances between the nuclei ; in a molecule of iV(> 2)

atoms, this number is s = 3N— 6 for an arbitrary arrangement of the nuclei.

t There is a curious exception to this rule in the case where the problem of determining the electron
terms allows a complete separation of the variables (see §78, Problem).
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U(r)

Fig. 27

Each term Un{rly ... , r s) is, from the geometrical point of view, a surface in

a space of s+ 1 dimensions, and we can speak of the intersections of these

surfaces in manifolds of varying numbers of dimensions, from (intersection

in a point) to s— 1. The derivation given above is wholly valid, except that

the perturbation V is here determined not by one but by s parameters, the

displacements 8rx , ... , 8r
s . Even with two parameters, the two equations

(79.5) can in general be satisfied. Thus we conclude that, in polyatomic

molecules, any two terms may intersect. If the terms are of like symmetry,

the intersection is given by the two conditions (79.5), from which it follows

that the number of dimensions of the manifold in which the intersection

occurs is s—2. If the terms are of different symmetry, on the other hand,

there remains only one condition, and the intersection takes place in a mani-

fold of s—1 dimensions.

Thus for s = 2 the terms are represented by surfaces in a three-dimensional

system of co-ordinates. The intersection of these surfaces occurs in lines

(s— 1 = 1) when the symmetry of the terms is different, and in points

(s

—

2 = 0) when it is the same. It is easy to ascertain the form of the surfaces

near the point of intersection in the latter case. The value of the energy near

the points of intersection of the terms is given by formula (79.4). In this

expression the matrix elements Vu , V^, V12 are linear functions of the dis-

placements 8rlt 8r2 , and hence are linear functions of the distances rlt r2

themselves. Such an equation determines an elliptic cone, as we know from

analytical geometry. Thus, near the points of intersection, the terms are

represented by the surface of an arbitrarily situated double elliptic cone

(Fig. 28).

§80. The relation between molecular and atomic terms

As we increase the distance between the nuclei in a diatomic molecule, we
have in the limit two isolated atoms (or ions). The question thus arises of

the correspondence between the electron terms of the molecule and the states

of the atoms obtained by moving them apart. This relation is not one-to-one

;

if we bring together two atoms in given states, we may obtain a molecule in

various electron states.
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Fig. 28

Let us first suppose that the molecule consists of two different atoms. Let

the isolated atoms be in states with orbital angular momenta L^, L2 and spins

Slt S2 , and let Z^ ^ L2 . The projections of the angular momenta on the

line joining the nuclei take the values M1
= —Lv —Lx +1, ... , L^ and

M2
= —L2 , —

L

2 +l, ... , L2 . The absolute value of the sum Mj+ik/a deter-

mines the angular momentum A obtained on bringing the atoms together.

On combining all possible values ofMx and M2 , we find the following values

for the numbers of times that we obtain the various values ofA= jiW^+Mjl

:

A = Lx+L2

Lx+L2-l

twice

four times

Lx—L2

Lx-£2-l

2(2L2+1) times

2(2L2+1) times

2(2L2+1) times

2L2+1 times.

Remembering that all terms with A ^ are doubly degenerate, while

those with A = are not degenerate, we find that there will be

1 term with A = Lx-\-L2y

2 terms with A = L1-\-L2
— 1,

2L2+1 terms with A = Lx—

L

2

2L2+1 terms with A = L1—L2—l,

2L2+1 terms with A = 0;

(80.1)
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in all, (2L2+1)(L1+ 1) terms with values ofA from to Lx -\-L2 .

The spins Slt S2 of the two atoms combine to form the total spin of the

molecule in accordance with the general rule for the addition of angular

momenta, giving the following possible values of S:

S = S1+S2 , S^Sz-l, ..., | Si-Sal

.

(80.2)

On combining each of these values with each value ofA in (80.1), we obtain

the complete list of all possible terms in the molecule formed.

For 2 terms there is also the question of sign. This is easily resolved by
noticing that the wave functions of the molecule can be written, as r -» oo,

in the form of products (or sums of products) of the wave functions of the

two atoms. An angular momentum A = can be obtained either by adding

two non-zero angular momenta of the atoms such thatMx
= —M2 , or from

M1
= M2 = 0. We denote the wave functions of the first and second atoms

by «A
(1)m 1

> ^ (2W ForM = \MX \
= \M2 \ # 0, we form the symmetrised and

antisymmetrised products

A reflection in a vertical plane (i.e. one passing through the axis of the mole-

cule) changes the sign of the projection of the angular momentum on the

axis, so that ifj
a)M, «A

(2)m are changed into ^a)-M > <A
(2)-m respectively, and vice

versa. The function \Js
+ is thereby unchanged, while ifs~ changes sign; the

former therefore corresponds to a 2+ term and the latter to a 2~ term. Thus,
for each value of M, we obtain one 2+ and one 2~ term. Since M can take

L% different values (M = 1, ... , L2), we have in all L2
2+ terms and L2

2~

terms.

If, on the other hand, M1
= M2 = 0, the wave function of the molecule

is of the form j/f = ^f (1) ^ (2)
- In order to ascertain the behaviour of the func-

tion ?/r (1) on reflection in a vertical plane, we take a co-ordinate system with

its origin at the centre of the first atom, and the #-axis along the axis of the

molecule, and we notice that a reflection in the vertical xs-plane is equivalent

to an inversion with respect to the origin, followed by a rotation through 180°

about the ^-axis. On inversion, the function (1)
o is multiplied by Ilt where

Ix = Jb 1 is the parity of the given state of the first atom. Next, the result

of applying to the wave function the operation of an infinitely small rotation

(and therefore that of any finite rotation) is entirely determined by the total

orbital angular momentum of the atom. Hence it is sufficient to consider

the particular case of an atom having one electron, with orbital angular

momentum / (and a .sr-component of the angular momentum m = 0) ; on
putting L in place of / in the result, we obtain the required solution for any

atom. The angular part of the wave function of an electron with m= is, apart

from a constant coefficient, P/(cos 6) (see (28.7)). A rotation through 180°

about the j-axis is the transformation x -> — x, y -> j, z -> —z or, in
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spherical polar co-ordinates, r -+r, 6 -+n— 0, <£->7r—
(f>.

Then cos 6 ->

— cos 6, and the function Pj(cos 6) is multiplied by (— 1)*.

Thus we conclude that, as a result of reflection in a vertical plane, the func-

tion «^
(1) is multiplied by (

—

V)LlIx. Similarly, i/j
(2) is multiplied by (

—

1)
L 2/2,

so that the wave function «/r =
«A

(1)
«A

(2) is multiplied by (— l)Ll+L27172 . The
term is 2+ or 2~ according as this factor is +1 or — 1.

Summarising the results obtained, we find that, of the total number

2L2+1 of S terms (each of the appropriate multiplicity), L2+l terms are

2+ andL2 are 2", if (- 1)
L

>
+LtI1I2= + 1 , and vice versa if (- l)Ll +L*IJ2 = - 1

.

Let us now turn to a molecule consisting of similar atoms. The rules for

the addition of the spins and orbital angular momenta of the atoms to form

the total S and A for the molecule remain the same here as for a molecule

composed of different atoms. The difference is that the terms may be even

or odd. Here we must distinguish two cases, according as the combined

atoms are in the same or different states.

If the atoms are in different states,f the total number of possible terms is

doubled in comparison with the number when the atoms are different. For a

reflection with respect to the origin (this being the point bisecting the axis of

the molecule) results in an interchange of the states of the two atoms. Sym-

metrising or antisymmetrising the wave function of the molecule with respect

to an interchange of the states of the atoms, we obtain two terms (with the

same A and S), of which one is even and the other odd. Thus we have al-

together the same number of even and odd terms.

If, on the other hand, both atoms are in the same state, the total number of

states is the same as for a molecule with different atoms. An investigation

which we shall not give here on account of its lengthJ leads to the following

results for the parity of these states. LetNg , Nu be the numbers of even and

odd terms with given values of A and S. Then
ifA is odd, Ng = Nu ;

if A is even and S is even (S = 0, 2, 4, ... ), Ng = Nu+ 1

;

if A is even and S is odd (S = 1, 3, 5, ... ), Nu = Ng+1.

Finally, we must distinguish, among the 2 terms, between 2+and 2-. Here,

if S is even, Ng+ = iW+l = L+l

;

if S is odd, Nu
+ = Ng~+1 = L+l,

where Lx
= L2

= L. All the 2+ terms are of parity (— 1)
&', and all 2-

terms are of parity (— l)
s+1

.

Besides the problem that we have examined of the relation between the

molecular terms and those of the atoms obtained as r -> oo, we may also

propose the question of the relation between the molecular terms and those

of the "composite atom" obtained as r -> 0, i.e. when both nuclei are brought

to a single point (for example, between the terms of the H2 molecule and those

of the He atom). The following rules can be deduced without difficulty.

t In particular, we may be discussing the combination of a neutral and an ionised atom.

% It can be found in the original paper by E. Wigner and E. Witmer, Zeitschrift fur Physik 51,

859, 1928.
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From a term of the "composite" atom having spin S, orbital angular momen-
tum L and parity /, we can obtain, on "moving the constituent atoms apart",

molecular terms with spin S and angular momentum about the axis A =
0, 1, ... , L, with one term for each of these values of A. The parity of the

molecular term is the same as the parity / of the atomic term (g for / = +1
and u for / = — 1). The molecular term with A = is a 2+ term if

(-1)LI= + 1, and a 2- term if (-1)^7= -1.

PROBLEMS
Problem 1. Determine the possible terms for the molecules H2 , N2 , 2 , Cl2 which can

be obtained by combining atoms in the normal state.

Solution. According to the rules given above, we find the following possible terms:
H2 molecule (atoms in the 2S state)

:

*2+ 32+ •

N2 molecule (atoms in the *S state)

:

12+ 32+ 52+ 72+ •

Cl2 molecule (atoms in the 2P state)

:

2XE+ X T.- iTT iTT iA„ 2«2+
tt ,

3S-
fl>

3n„
3n„, 3AU

Oa molecule (atoms in the 3P state)

:

2*2+,, *2-
M , mg,

in., iA
ff ,

232\, 32-,, mw 3n„ 3A,

25S+„, *2-
tt , *ng , ^nM , *\.

The figures in front of the symbols indicate the number of terms of the type concerned, if

this number exceeds unity.

Problem 2. The same as Problem 1, but for the molecules HC1, CO.

Solution. When unlike atoms are combined, the parity of their states is important
also. From formula (31.5) we find that the normal states of the H, O and C atoms are even,

while that of the CI atom is odd (see Table 3 for the electron configurations of these atoms).

From the rules given above, we have

HC1 molecule (atoms in the 2Sg and
2PU states)

:

1,3S+ 1.3TJ;

CO molecule (both atoms in the *Pg state)

:

21.3,5S+ 1,3.5S- 2L3.5II, WA.

§81. Valency

The property of atoms of combining with one another to form molecules

is described by means of the concept of valency. To each atom we ascribe

a definite valency, and when atoms combine their valencies must be mutually

satisfied, i.e. to each valency bond of an atom there must correspond a

valency bond of another atom. For example, in the methane molecule

CH4, the four valency bonds of the quadrivalent carbon atom are satisfied

by the four univalent hydrogen atoms. In going on to give a physical inter-

pretation of valency, we shall begin with the simplest example, the com-
bination of two hydrogen atoms to form the molecule H2 .
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Let us consider two hydrogen atoms in the ground state (
2S). When they

approach, the resulting system may be in the molecular state 1S+S or 3E+„.

The singlet term corresponds to an antisymmetrical spin wave function, and

the triplet term to a symmetrical function. The co-ordinate wave function,

on the other hand, is symmetrical for the *E term and antisymmetrical for the

3E term. It is evident that the ground term of the H2 molecule can only be

the XE term. |For an antisymmetrical wave function (f>(rly
r2) (where rx and r2

are the radius vectors of the two electrons) always has nodes (since it vanishes

for rx = r2), and hence cannot belong to the lowest state of the system.

A numerical calculation shows that the electron term XS in fact has a deep

minimum corresponding to the formation of a stable H2 molecule. In the

3E state, the energy U(r) decreases monotonically as the distance between

the nuclei increases, corresponding to the mutual repulsion of the two hydro-

gen atomsf (Fig. 29).

\U{r)

Fig. 29

Thus, in the ground state, the total spin of the hydrogen molecule is zero,

5 = 0. It is found that the molecules of practically all chemically stable

compounds of elements of the principal groups have this property. Among

inorganic molecules, exceptions are formed by the diatomic molecules 2

(ground state 3E) and NO (ground state 2II) and the triatomic molecules

N02 , C102 (total spin S = \). Elements of the intermediate groups have

special properties which we shall discuss below, after studying the valency

properties of the elements of the principal groups.

The property of atoms of combining with one another is thus related to

their spin (W. Heitler and H. London 1927). The combination occurs in

t Here we ignore the van der Waals attraction forces between the atoms (see §89). The existence

of these forces causes a minimum (at a greater distance) on the U(r) curve for the 3S term also. This

minimum, however, is very shallow in comparison with that on the XE curve, and would not be per-

ceptible on the scale of Fig. 29.
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such a way that the spins of the atoms compensate one another. As a quanti-
tative characteristic of the mutual combining powers of atoms, it is convenient
to use an integer, twice the spin of the atom. This is equal to the chemical
valency of the atom. Here it must be borne in mind that the same atom may
have different valencies according to the state it is in.

Let us examine, from this point of view, the elements of the principal
groups in the periodic system. The elements of the first group (the first

column in Table 3, the group of alkali metals) have a spin S = I in the normal
state, and accordingly their valencies are unity. An excited state with a higher
spin can be attained only by exciting an electron from a completed shell.

Accordingly, these states are so high that the excited atom cannot form a stable
molecule,f
The atoms of elements in the second group (the second column in Table 3,

the group of alkaline-earth metals) have a spin S = in the normal state.
Hence these atoms cannot enter into chemical compounds in the normal state.

However, comparatively close to the ground state there is an excited state
having a configuration sp instead of s2 in the incomplete shell, and a total
spin S = 1. The valency of an atom in this state is 2, and this is the principal
valency of the elements in the second group.

The elements of the third group have an electron configuration s
2p in the

normal state, with a spin S — \. However, by exciting an electron from the
completed s-shell, an excited state is obtained having a configuration sp2 and a
spin S = 3/2, and this state lies close to the normal one. Accordingly, the
elements of this group are both univalent and tervalent. The first two ele-
ments in the group (boron, aluminium) behave only as tervalent elements.
The tendency to exhibit a valency 1 increases with the atomic number, and
thallium behaves equally as a univalent and as a tervalent element (for example,
in the compounds T1C1 and T1C13). This is due to the fact that, in the first

few elements, the binding energy in the tervalent compounds is greater than
for the univalent compounds, and this difference exceeds the excitation energy
of the atom.

In the elements of the fourth group, the ground state has the configuration
s
2
p

2 with a spin of 1, and the adjacent excited state has a configuration sp3

with a spin 2. The valencies 2 and 4 correspond to these states. As in the
third group, the first two elements (carbon, silicon) exhibit mainly the higher
valency (though the compound CO, for example, forms an exception), and
the tendency to exhibit the lower valency increases with the atomic number.

In the atoms of the elements of the fifth group, the ground state has the
configuration s2p

3 with a spin S =3/2, so that the corresponding valency
is three. An excited state of higher spin can be obtained only by the transi-
tion of one of the electrons into the shell with the next higher value of the
principal quantum number. The nearest such state has the configuration
sph' and a spin S = 5/2 (by s' we conventionally denote here an s state of an

t See the end of this section for the elements copper, silver and gold.
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electron with a principal quantum number one greater than in the state s).

Although the excitation energy of this state is comparatively high, the

excited atom can still form a stable compound. Accordingly, the elements of

the fifth group behave as both tervalent and quinquevalent elements (thus,

nitrogen is tervalent in NH3 and quinquevalent in HN03).

In the sixth group of elements, the spin is 1 in the ground state (configura-

tion s^p9
), so that the atom is bivalent. The excitation of one of thep electrons

leads to a state s*p3s' of spin 2, while the excitation of an s electron in addition

gives a state sph'p' of spin 3. In both excited states the atom can enter into

stable molecules, and accordingly exhibits valencies of 4 and 6. The first

element of the sixth group (oxygen) shows only the valency 2, while the sub-

sequent elements show higher valencies also (thus, sulphur in H2S, S02 ,
S03

is respectively bivalent, quadrivalent and sexivalent).

In the seventh group (the halogen group), the atoms are univalent in the

ground state (configuration s
2
^
5
, spin S = . $). They can, however, enter into

stable compounds when they are in excited states having configurations

s2p*s', s2p3s'p', spss'p'2 with spins 3/2, 5/2, 7/2 and valencies 3, 5, 7 respec-

tively. The first element in the group (fluorine) is always univalent, but the

subsequent elements also exhibit the higher valencies (thus, chlorine in HC1,

HC102 , HC103 , HC104 is respectively univalent, tervalent, quinquevalent

and septivalent).

Finally, the atoms of the elements in the group of inert gases have com-

pletely filled shells in their ground states (so that the spin S = 0), and their

excitation energies are high. Accordingly, the valency is zero, and these

elements are chemically inactive.f

The following general remark should be made concerning all these discus-

sions. The assertion that an atom enters into a molecule with a valency per-

taining to an excited state does not mean that, on moving the atoms apart to

large distances, we necessarily obtain an excited atom. It means only that the

distribution of the electron density in the molecule is such that, near the

nucleus of the atom in question, it is close to that in the isolated and excited

atom; but the limit to which the electron distribution tends as the distance

between the nuclei is increased may correspond to non-excited atoms.

When atoms combine to form a molecule, the completed electron shells in

the atoms are not much changed. The distribution of the electron density

in the incomplete shells, on the other hand, may be considerably altered. In

the most clearly denned cases of what is called heteropolar binding, all the

valency electrons pass over from their own atoms to other atoms, so that we

t The elements xenon and radon (and less easily krypton) nevertheless form stable compounds

with fluorine. These valencies may be due to a transfer of electrons from the outermost complete

shell to the incomplete / or d states, whose energies are comparatively near.

There is also an attraction which occurs in the interaction of an inert gas atom with an excited atom

of the same element. This is due to the doubling in the number of possible states obtained on bringing

together two atoms, if these atoms are of the same element but in different states (see §80). The transi-

tion of the excitation from one atom to the other here replaces the exchange interaction which brings

about the ordinary valency. The molecule He2 is an example of such a molecule. The same type of

bond occurs in molecular ions composed of two similar atoms (for instance, H2+).
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may say that the molecule consists of ions with charges equal (in units of e)

to the valency. The elements of the first group are electropositive : in hetero-
polar compounds they lose electrons, forming positive ions. As we pass to
the subsequent groups the electropositive character of the elements becomes
gradually less marked and changes into electronegative character, which is

present to the greatest extent in the elements of the seventh group. Regard-
ing heteropolarity the same remark should be made as was made above con-
cerning excited atoms in the molecule. If a molecule is heteropolar, this does
not mean that, on moving the atoms apart, we necessarily obtain two ions.

Thus, from the molecule KC1 we should in fact obtain the ions K+ and CI
-

,

but the molecule NaCl gives in the limit the neutral atoms Na and CI (since
the affinity of chlorine for an electron is greater than the ionisation potential
of potassium but less than that of sodium).

In the opposite limiting case of what is called homopolar binding, the atoms
in the molecule remain neutral on the average. Homopolar molecules, un-
like heteropolar ones, have no appreciable dipole moment. The difference
between the heteropolar and homopolar types is purely quantitative, and any
intermediate case may occur.

Let us now turn to the elements of the intermediate groups. Those of
the palladium and platinum groups are very similar to the elements of the
principal groups as regards their valency properties. The only difference is

that, owing to the comparatively deep position of the d electrons inside the
atom, they interact only slightly with the other atoms in the molecule. As a
result, "unsaturated" compounds, whose molecules have non-zero spin
(though in practice not exceeding £), are often found among the compounds
of these elements. Each of the elements can exhibit various valencies, and
these may differ by unity, and not only by two as with the elements of the
principal groups (where the change in valency is due to the excitation of some
electron whose spin is compensated, so that the spins of two electrons are
simultaneously released).

The elements of the rare-earth group are characterised by the presence of an
incomplete / shell. The / electrons lie much deeper than the d electrons,
and therefore take no part in the valency. Thus the valency of the rare-
earth elements is determined only by the s and p electrons in the incomplete
shells.f However, it must be borne in mind that, when the atom is excited,

/ electrons may pass into s and p states, thereby increasing the valency by
one. Hence the rare-earth elements too exhibit valencies differing by unity
(in practice they are all tervalent and quadrivalent).

The elements of the actinium group occupy a unique position. Actinium
and thorium have no / electrons, and their valencies involve d electrons.

In their chemical properties they are therefore analogous to elements of the
palladium and platinum groups, not to the rare earths. The uranium atom in

t The d electrons which are found in the incomplete shells of the atoms of some rare-earth elements
are unimportant, since these atoms in practice always form compounds in excited states where there
are no d electrons.
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the normal state contains / electrons, but in its compounds it too has no /
electrons. Finally, the atoms of the elements neptunium, plutonium,

americium and curium contain/electrons in compounds also, but the electrons

which participate in their valencies are again s and d electrons. In this sense

they are homologues of uranium. The maximum possible number of "un-

paired" s and d electrons is one and five respectively, and so the maximum
valency of elements in the actinium group is six, whereas the maximum
valency of the rare-earth elements (with 5 and p electrons participating in

the valency) is 1 + 3 = 4.

The elements of the iron group occupy, as regards their valency properties,

a position intermediate between the rare-earth elements and those of the palla-

dium and platinum groups. In their atoms, the d electrons lie comparatively

deep, and in many compounds take no part in the valency bonds. In these

compounds, therefore, the elements of the iron group behave like rare-earth

elements. Such compounds include those of ionic type (for instance FeCl2 ,

FeCl3), in which the metal atom enters as a simple cation. Like the rare-

earth elements, the elements of the iron group can show very various valencies

in these compounds.

Another type of compound of the iron-group elements is formed by what

are called complex compounds. These are characterised by the fact that the

atom of the intermediate element enters into the molecule not as a simple

ion, but as part of a complex ion (for instance the ion Mn04
~~ in KMn04 , or

the ion Fe(CN)6
4_ in K4Fe(CN)6). In these complex ions, the atoms are

closer together than in simple ionic compounds, and in them the d electrons

take part in the valency bond. Accordingly, the elements of the iron group

behave in complex compounds like those of the palladium and platinum groups.

Finally, it must be mentioned that the elements copper, silver and gold,

which in §73 we placed among the principal groups, behave as intermediate

elements in some of their compounds. These elements can exhibit valencies

of more than one, on account of a transition of an electron from a d shell to a

p shell of nearly the same energy (for example, from 3d to 4p in copper). In

such compounds the atoms have an incomplete d shell, and hence behave as

intermediate elements : copper like the elements of the iron group, and silver

and gold like those of the palladium and platinum groups.

PROBLEM
Determine the electron terms of the molecular ion H2+ obtained when a hydrogen atom in

the normal state combines with an H+ ion, for distances R between the nuclei large compared
with the Bohr radius.

Solution. This problem is analogous in form to §50, Problem 3: instead of two
one-dimensional potential wells we have here two three-dimensional wells (round the two
nuclei) with axial symmetry about the linejoining the nuclei. The levelf E0 = —i (the ground
level of the hydrogen atom) is split into two levels Ug(R) and UU(R) (the terms 2 S

ff
+ and

2 EU+), corresponding to the electron wave functions

1

<A<7,uO*y>#) = —-[Mx>y>z)±M- x>y>z)l
v 2

t Here we are using'atomic units.
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which are symmetrical and antisymmetrical about the plane x = which bisects the line

joining the nuclei (which are at (±iR, 0, 0)). Here *f>o(x, y, z) is the wave function of the
electron in one of the potential wells. Exactly as in §50, Problem 3, we find

ndfo
00 dydz, (1)

8x

where the integration is over the plane x = 0.

The function ^o (corresponding to motion around nucleus 1, say, at x = %R) is sought
in the form

h = -^e-r*, (2)

V 77-

where a is a slowly varying function (for a hydrogen atom, a = 1). The function ^o must
satisfy Schrodinger's equation

/ 1 1 1 \
£A<A+(-£-- + - + - <£ = o,

\ R n r2 /
(3)

where n, r% are the distances of the electron from nuclei 1 and 2. In this equation the total

energy of the electron is Eo— l/R, since Eq itself includes the energy 1/R of the Coulomb
repulsion of the nuclei.

Since the function tfio decreases rapidly away from the #-axis, only the region where y
and z are small compared with R is important in the integral (1). For y, z <^ R, substitution
of (2) in (3) gives

da a a— + - = 0;
dx \R+x R

here we have neglected the second derivatives of the slowly varying function a and put
?2 S iR+x. The solution of this equation which becomes unity as x -* %R (i.e. in the
neighbourhood of nucleus 1) is

2R
exp

R+2x a->}
Formula (1) now gives

Ug,u-Eo=+— I
e-^i . 2ttt1 dr±- Sire J

R/2

= +(2/e)Re-R

At sufficiently large distances this expression decreases exponentially and becomes less

than the effect in the second approximation with respect to the dipole interaction of the H
atom and the H+ ion. Since the polarisability of the hydrogen atom in the normal state is

9/2 (see (77.9)), and the field of the H"' ion is $ = 1/R2
, the corresponding interaction energy

is —9/4R4
, and when this is taken into account we have

Ug ,u(R)- Eo = + -Re-*-—

.

(4)
e 4/c4

The second term becomes comparable with the first when R = 10-8. It may also be noted
that the term Uu has aminimum of — 5 -8 x 10~5 atomic unit (— 1 -6 x 10~3 eV) whenR = 12-6.f

t This minimum, which is due to van der Waals forces, is very shallow compared with that of the
term Ug(R) which corresponds to the normal state of the stable ion H2+ : the latter minimum is

-0-60 atomic unit (-16-3 eV), at R = 2-0.



§82 Vibrational and rotational structures of singlet terms 293

§82. Vibrational and rotational structures of singlet terms in the

diatomic molecule

As has been pointed out at the beginning of this chapter, the great differ-

ence in the masses of the nuclei and the electrons makes it possible to divide

the problem of determining the energy levels of a molecule into two parts.

We first determine the energy levels of the system of electrons, for nuclei at

rest, as functions of the distance between the nuclei (the electron terms).

We can then consider the motion of the nuclei for a given electron state ; this

amounts to regarding the nuclei as particles interacting with one another in

accordance with the law Un(r), where Un is the corresponding electron term.

The motion of the molecule is composed of its translational displacement as a

whole, together with the motion of the nuclei about their centre of mass. The
translational motion is, of course, without interest, and we can regard the

centre of mass as fixed.

For convenience of discussion, let us first consider the electron terms in

which the total spin S of the molecule is zero (the singlet terms). The
problem of the relative motion of two particles (the nuclei) which interact

according to the law U(r) reduces, as we know, to that of the motion of a

single particle of massM (the reduced mass of the two particles) in a centrally

symmetric field U(r). By U(r) we mean the energy of the electron term

considered. The problem of motion in a centrally symmetric field U(r),

however, reduces in turn to that of a one-dimensional motion in a field where

the effective energy is equal to the sum of U(r) and the centrifugal energy.

We denote by K the total angular momentum of the molecule, composed

of the orbital angular momentum L of the electrons and the angular momen-
tum of the nuclei. Then the operator of the centrifugal energy of the nuclei

B(r)(K-L)\

where we have introduced the notation

B(r) = H2/2Mr2
(82.1)

for a convenient simplification of the formulae in the theory of diatomic

molecules. Averaging this quantity (for a given r), we obtain the centrifugal

energy as a function of r, which must appear in the effective potential energy

UK(r). Thus

UK(r) = t/(r)+5(r)(K-L)*,

where the line denotes the average mentioned. Expanding the square and

recalling that the square K2 of a conserved total angular momentum has the

definite value K(K+1) (where K is integral), we can rewrite this expression

in the form

UK(r) = U(r)+B(r)K(K+l)+B(r)(l}-2L . K); (82.2)

we omit the line over the quantity K, since it is conserved.
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In a state with a definite value of L z
= A, the mean values of the other two

components of the orbital angular momentum are zero, L x = L
y
= 0; this

follows at once from the fact that, in a representation in which L z is diagonal,

the diagonal matrix elements of the operators Lx and L are zero (see §27).

Hence the mean value of the vector L is plirected along the sr-axis and we can

write

L = nA,

where n is a unit vector along the axis of the molecule. Next, in classical

mechanics the angular momentum of a system of two particles (the nuclei) is

directed perpendicular to the line joining them ; in quantum mechanics the

same is true for the angular momentum operator. Hence we can write

(R—L) . n = 0, and R . n = L . n. Hence, for the eigenvalues,

K.n=L.n=A. (82.3)

Thus the projection of the total angular momentumK on the axis of the mole-

cule is also A. Hence it follows that, in a state with a given value of A, the

quantum number K can take only values from A upwards

:

K > A. (82.4)

Finally, substituting in (82.2) L . K = An . K = A2
, we obtain

UK(r) = U(r)+B(r)K(K+l)+B(r)(V-2A*). (82.5)

The last term on the right-hand side is some function of r, depending only

on the electron state, and not on the quantum number K. This function

can be included in the energy U(r), and (82.5) then takes the form

UK(r) = U(r)+B(r)K(K+l). (82.6)

On solving the one-dimensional Schrodinger's equation with this potential

energy, we obtain a series of energy levels. We arbitrarily number these

levels (for each given K) in order of increasing energy, using a number
v = 0, 1, 2, ... ; v = corresponds to the lowest level. Thus the motion

of the nuclei causes a splitting of each electron term into a series of levels

characterised by the values of the two quantum numbers K and v.

The number of these levels (for a given electron term) may be either finite

or infinite. If the electron state is such that, as r -> oo, the molecule becomes
two isolated neutral atoms, then as r -> oo the potential energy U(r) (and

therefore UK(r)) tends to a constant limiting value U(oo) (the sum of the

energies of the two isolated atoms) more rapidly than 1/r tends to zero (see

§89). The number of levels in such a field is finite (see §18), though in actual

molecules it is very large. The levels are so distributed that, for any given

value of K, there is a definite number of levels (with different values of v),

while the number of levels with the same K diminishes as K increases, until

a value of K is reached for which there are no levels at all.
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If, on the other hand, as r -» oo the molecule disintegrates into two ions,

at large distances U(r)— U(oo) becomes the energy of the attraction of the

ions according to Coulomb's law (^ 1/r). In such a field there is an infinite

number of levels, which become closer and closer as we approach the limiting

value E/(oo). We may remark that, for the majority of molecules, the previous

case is found in the normal state ; only a comparatively small number of mole-

cules become pairs of ions when their nuclei are moved apart.

The dependence of the energy levels on the quantum numbers cannot be

completely calculated in a general form. Such a calculation is possible only

for low excited levels which lie not too far above the ground level.f Small

values of the quantum numbers K and v correspond to these levels. It is

with such levels that we are in fact most often concerned in the study of

molecular spectra, and hence they are of particular interest.

The motion of the nuclei in slightly excited states can be regarded as small

vibrations about the equilibrium position. Accordingly we can expand U(r)

in a series of powers of £ = r—r e , where r e is the value of r for which U(r)

has a minimum. Since U'(r
e)
— 0, we have as far as terms of the second

order

U(r) = t/8+|Mov^,

where Ue
= U(r e), and a> e is the frequency of the vibrations.J

In the second term in (82.6)—the centrifugal energy—it is sufficient to

put r = r e , since it already contains the small quantity K(K+1). Thus we

have

UK(r) = U.+BJC{K+l)+tM<**?, (82.7)

where B e
= W>\2Mr? = h%\71 is what is called the rotational constant

(I ='"Mr e
2 is the moment of inertia of the molecule).

The first two terms in (82.7) are constants, while the third corresponds

to a one-dimensional harmonic oscillator. Hence we can at once write down

the required energy levels

:

E = Ue+BeK(K+l)+hcoe(v+l). (82.8)

Thus, in the approximation considered, the energy levels are composed of

three independent parts

:

E = Eel+Er+Ev . (82.9)

Here Ea = Ue is the electron energy (including the energy of the Coulomb

interaction of the nuclei for r = r e),

Er =BeK{K+\) (82.10)

t We refer always to levels belonging to the same electron term.

J We here use the notation customary in the theory of diatomic molecules.
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is the rotational energy from the rotation of the molecule,f and

Ev = h<*e{v+\) (82.11)

is the energy of the vibrations of the nuclei within the molecule. The number
v denumerates, by definition, the levels with a given K in order of increasing

energy; it is called the vibrational quantum number.

For a given form of the potential energy curve U(r), the frequency <o e is

inversely proportional to ^JM. Hence the intervals AEV between the

vibrational levels are proportional to 1[\/M. The intervals AEr between
the rotational levels contain in the denominator the moment of inertia /, and
are therefore proportional to \jM. The intervals AE

el
between the electron

levels, however, are independent of M, like the levels themselves. Since mjM
(m being the electron mass) is a small parameter in the theory of diatomic

molecules, we see that

AEel > AEV > AEr .

Thus the distribution of the energy levels of the molecule is rather unusual.

The vibrational motion of the nuclei splits the electron terms into levels lying

comparatively close together. These levels, in turn, exhibit a fine splitting

due to the rotational motion of the molecule.J
In subsequent approximations, the separation of the energy into indepen-

dent vibrational and rotational parts is impossible; rotational-vibrational

terms appear, which contain both K and v. On calculating the successive

approximations, we should obtain the levels E as an expansion in powers of the

quantum numbers K and v.

We shall calculate here the next approximation after (82.8). To do this,

we must continue the expansion of U(r) in powers of £ up to terms of the

fourth order (cf. the problem of an anharmonic oscillator in §38). Similarly,

the expansion of the centrifugal energy is extended as far as the terms in |
2

.

We then obtain

UK{r) = Ue+iM^e+(h2l2Mre^)K(K+l)~

-a£*+b?-(h2IMr*)K(K+ l)£+(3k*l2Mr
t
*)K(K+ 1)£

2
. (82.12)

Let us now calculate the correction to the eigenvalues (82.8), using

perturbation theory and regarding the last four terms in (82.12) as the per-

turbation operator. Here it is sufficient, for the terms in |
2 and £

4
, to take the

first approximation of perturbation theory, but for those in f and £
3 we must

t A rotating system of two rigidly connected particles is often called a rotator. Formula (82.10)
gives the quantum-mechanical energy levels for a rotator. The wave functions of the stationary states

of a rotator evidently correspond to the case A = and are ordinary spherical harmonic functions
(see the Problem at the end of this section).

J As an example, we give the values of Ue , hu>e and Be (in electron-volts) for a few molecules

:

H2 N2 2

-Ue 4-7 7-5 5-2

Hcoe 0-54 0-29 0-20

103x5e 7-6 0-25 0-18
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calculate the second approximation, since the diagonal matrix elements of |

and |
3 vanish identically. All the matrix elements needed for the calculation

are derived in §23 and in §38, Problem 3. As a result, we obtain an expres-

sion which is usually written in the form

E - Etl+ha>Jiv+\)-x-hco6{v+}tf+BvK{K+ \)-D€K%K+ 1)
2

, (82.13)

where
Bv = Be— a.e(v+%) = B —ccev. (82.14)

The constants xey
B e, <x e, D e are related to the constants appearing in (82.12)

by

Be
= /*

2
/27, D = ABe

z
lh*<*e\

6B*Y ah I 2 \ 3 /h Yf5 a%
b\

(82.15)

The terms independent of v and K are included in E el .

PROBLEM
Determine the angular part of the wave function for a diatomic molecule with zero spin

(F. Reiche 1926).

Solution. The required functions are just the eigenfunctions of the total angular momen-
tum K of the molecule. The operator of the total angular momentum is the sum

R =rxp+ Sra xp ,

where p is the linear momentum of the relative motion of the nuclei, r the radius vector be-

tween them, r„ and ptt the radius vectors and linear momenta of the electrons (relative to the

centre of mass of the molecule). Introducing the polar angle 6 and the azimuthal angle
<f>

of

the axis of the molecule relative to a fixed system of co-ordinates *, y, z, we have for the

components of the operator & expressions similar to (26.14), (26.15), so that

& = exH \-i cot0— )+L+,

—+ i cot e— )+£_,
dd d<f>J

(i)

it.
d '

ti \-Lz ,

where L . = Lx + ilj.

. / 8 8 \

are the operators of the angular momenta of the electrons; the primes on djdd and djd<j>

signify that the differentiation is to be performed for constant xa , ya, Za-

Besides the fixed system of co-ordinates x, y, z, we introduce a moving system £, t), £, with

the same origin, the £-axis directed along the axis of the molecule, and the £-axis lying in the



298 The Diatomic Molecule §82

«y-plane. The co-ordinates £a , ya, U of the electrons in this system are related to the co-
ordinates Xa , ya, Za by

€a = —xa sin <f>+ya coscf),

-qa = —xa cos 6 cos<f>—ya cos0 sin^+.s'a sin0,

ta = xa sin 6 cos <f>+ya sin 9 sin (f>+za cos 6.

Using these formulae, we can transform the derivatives:

8 8 d
= sin0 [-cosd , etc.,

fea fya %a

d 8 Z\ 8d 8$a 86 8Va 86 8tJ

8 \? / d 8 \

where 9/90 and djd<f> (unprimed) denote differentiation for constant £a , 17a, U- As a result,

we have for the operators of the components of the total angular momentum relative to the
fixed system the expressions

K+ = e«P [
—\-i cot0 — )+ L,,

\86 8<f>J sin 6 ^

£z
= -i8j8<j>,

where

is the operator of the angular momentum of the electrons about the axis of the molecule.
Let

*PnAKMK = <f>nAK(€a > Va, £a"> r)pnAK(r)@AKMK(9)^>MK (<f>) (3)

be the wave function of a state with definite values of the absolute value K and ^-component
Mk of the total angular momentum of the molecule, and a definite value A of the ^-component
of the electron angular momentum ; n denotes the assembly of the remaining quantum num-
bers which determine the state of the molecule. <f>nAK is the electron wave function, depend-
ing on r as a parameter, pnAK is the "radial part" of the nuclear wave function, &AKMK is the
required function of the angle 0, and the dependence of ifi on the angle

<f>
is obvious

:

1

*>**&) = —^rreiMR<l>
'

v(27r
)

When the operators J2"z , £j act on the function (3), we can replace them by their eigenvalues
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Mr, A, so that

/d \ ex<f

g = em MK cot0 )
+ A,

\dd / sin 9

^ ,/ 3 \ e"^
it- = e-^( Mx cot0 )+ A.

\ 36 J sin9

The subsequent argument exactly follows that at the end of §28. When the operator

&+ acts on the function «A„Akk (with Mr = K), the result is zero; hence we have the

equation

d A \
Kcot6+ )®AKK = 0,

G
whose solution ist

(2*1+1)

2*k+i(K+A)\(K-A)\

the function is normalised by the condition

®AKK=(-i)K I
(2^+1)!

x(l-cos^-A)/2(l +cos^+A)/2; (4)AKK K
' V 2^+UK+A)\(K-A)\

jeAKK2 sin ede = 1,

and the normalisation integral reduces to Euler's beta function.

The remaining functions are then calculated from the formula

-—— -Qakm =R-k-Mk&akk,
V (K+MK)\

and as a result we obtain

/ (2K+1)\(K+MK)\ (I - cos 8)(
a-Mk) 12

G\ KT71l/r = t-.i\K / 1 _ 1 x XVAKMK \ )
,J (

K+fi)]
(
K_ A) l(K_MK)\ (l + cOsdyA+M«)V

KQ
k K-Mk -i

) (l-cos^-A(l+cos^+A .

d cos 9 J J

For A = these functions become ordinary spherical harmonic functions, as they should:

®0KM = constant x P^*(cos 6),

and are the wave functions of a rotator (eigenfunctions of the free angular momentum K).

§83. Multiplet terms. Case a

Let us now turn to the question of the classification of molecular levels with

non-zero spin S. In the zero-order approximation, when relativistic effects

are entirely neglected, the energy of the molecule, like that of any system of

particles, is independent of the direction of the spin (the spin is "free"), and

this results in a (2S+l)-fold degeneracy of the levels. When relativistic

f The choice of the phase factor accords with the definition of the eigenfunctions of the free angular

momentum (§28), which are obtained for A = 0.
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effects are taken into account, however, the degenerate levels are split, and
the energy consequently becomes a function of the projection of the spin on
the axis of the molecule. We shall refer to relativistic interactions in mole-
cules as the spin-axis interaction. The chief part in this is played (as in the
case of atoms) by the interaction of the spins with the orbital motion of the
electrons.^

The nature and classification of molecular levels depend markedly on the
relative parts played by the interaction of the spin with the orbital motion,
on the one hand, and the rotation of the molecule, on the other. The part
played by the latter is characterised by the distances between adjacent rota-
tional levels. Accordingly, we have to consider two limiting cases. In one,
the energy of the spin-axis interaction is large compared with the energy
differences between the rotational levels, while in the other it is small. The
first case is usually called case (or coupling type) a, following Hund, and the
second is called case b.

Case a is the one most often found. An exception is formed by the 2
terms, where case b chiefly occurs, since the effect of the spin-axis interaction
is very small for these terms! (see below). For other terms, case b is some-
times found in the lightest molecules, since the spin-axis interaction is here
comparatively weak, while the distances between the rotational levels are
large (the moment of inertia being small).

Of course, cases intermediate between a and b are also possible. It must
also be borne in mind that the same electron state may pass continuously
from case a to case b as the rotational quantum number changes. This is due
to the fact that the distances between adjacent rotational levels increase with
the rotational quantum number, and hence, when this is large, the distances
may become large compared with the energy of the spin-axis coupling (case
b), even if case a is found for the lower rotational levels.

In case a, the classification of the levels is in principle little different from
that of the terms with zero spin. We first consider the electron terms for
nuclei at rest, i.e. we neglect rotation entirely; besides the projectionA of the
orbital angular momentum of the electrons, we must now take into account the
projection of the total spin on the axis of the molecule. This projection is

denoted by|| S; it takes the values S, 5-1, ... , -S. We arbitrarily regard
2 as positive when the projection of the spin is in the same direction as
that of the orbital angular momentum about the axis (we recall thatA denotes
the absolute value of the latter). The quantities A and S combine to give
the total angular momentum of the electrons about the axis of the molecule

:

Q=A+S; (83.1)

f Besides the spin-orbit and spin-spin interactions there is also an interaction of the spin and orbital
motion of the electrons with the rotation of the molecule. This part of the interaction is very small,
however, and it is of possible interest only for terms with spin S = J (see §84).

X A special case is the normal electron term of the molecule 2 (the term SS). For this we have a
type of coupling intermediate between a and b (see §84, Problem 3).

||
Not to be confused with the symbol for terms with A == 0.
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this takes the values A+S, A+S-l, ... , A-S. Thus the electron term

with orbital angular momentum A is split into 25+1 terms with different

values of ft; this splitting, as with atomic terms, is called the^ine structure

or multiplet splitting of the electron levels. The value of H is usually indicated

as a suffix to the symbol for the term: thus, for A = 1, S = \ we obtain the

terms 2
IIi/2,

2n3/2.

When the motion of the nuclei is taken into account, vibrational and rota-

tional structures appear in each of these terms. The various rotational levels

are characterised by the values of the quantum number /, which gives the

total angular momentum of the molecule, including the orbital and spin

angular momenta of the electrons and the angular momentum of the rotation

of the nuclei.f This number takes all integral values from \€i\ upwards:

7>|0|, (83 -2)

which is an obvious generalisation of (82.4).

Let us now derive quantitative formulae to determine the molecular levels

in case a. First of all, we consider the fine structure of an electron term.

In discussing the fine structure of atomic terms in §72, we used formula

(72.4), according to which the mean value of the spin-orbit interaction is

proportional to the projection of the total spin of the atom on the orbital

angular momentum vector. Similarly, the spin-axis interaction in a diatomic

molecule (averaged over electron states for a given distance r between the

nuclei) is proportional to the projection S of the total spin of the molecule on

its axis, so that we can write the split electron term in the form

C/(r)+^(r)S,

where U(r) is the energy of the original (unsplit) term, and A(r) is some func-

tion of r; this function depends on the original term (and in particular on A),

but not on S. Since one usually uses the quantum number Q. and not 2,

it is more convenient to put AQ. in place of AZ; these expressions differ by

AA, which can be included in U(r). Thus we have for an electron term the

expression /M „
U(r)+A(r)Cl. (83.3)

We may notice that the components of the split term are equidistant from

one another: the distance between adjacent components (with values of Q.

differing by unity) is A(r), independent of £1.

It is easy to see from general considerations that the value of A for S terms

is zero. To show this, we perform the operation of changing the sign of the

time. The energy must then remain unchanged, but the state of the mole-

cule changes in that the direction of the orbital and spin angular momenta

about the axis is reversed. In the energy ^4(r)S, the sign of S is changed, and

if the energy remains unchanged A(r) must change sign. If A # 0, we can

f The notation K is, as usual, reserved for the total angular momentum of the molecule without

allowance for its spin. In case a there is no quantum number K, since the angular momentum K is

not even approximately conserved.
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draw no conclusions regarding the value of A(r), since this depends on the

orbital angular momentum, which itself changes sign. If A = 0, however,
we can say that A(r) is certainly unchanged, and consequently it must vanish
identically. Thus, for the S terms, the spin-orbit interaction causes no split-

ting in the first approximation; splitting (proportional to S2
) would occur

only on taking account of this interaction in the second approximation or the
spin-spin interaction in the first approximation, and would be relatively

small. This is the reason for the fact, already mentioned, that case b usually

occurs for 21 terms.

When the multiplet splitting has been determined, we can take account of
the rotation of the molecule as a perturbation, just as in the derivation given
at the beginning of §82. The angular momentum of the rotation of the nuclei
is obtained from the total angular momentum by subtracting the orbital

angular momentum and spin of the electrons. Hence the operator of the
centrifugal energy now has the form

B(r)(J-L-S)\

Averaging this quantity with respect to the electron state and adding to

(83.3), we obtain the required effective potential energy Uj(r):

Uj(r) = U(r)+A(r)Q+B(r)(]-L-Sf

= tf(r)+^(r)Q+£(r)[J2-2J.(L+S)+L2+2L. S+S2
].

The eigenvalue of J
2 is /(/+ 1). Next, by the same argument as in §82, we

have

L = nA, S = nS, (83.4)

and also (J—L— S) . n = 0, whence we have for the eigenvalues

J.n =(L+S).n =A+S = O. (83.5)

Substituting these values, we find

Uj(r) = U(r)+A(r)£l+B(r)[J(J+l)-2Q.2+V+2L.S+S2
].

The averaging with respect to the electron state is effected by means of the

wave functions of the zero-orderf approximation. In this approximation,
however, the magnitude of the spin is conserved, and hence S2 = S^S+l).
The wave function is the product of the spin and co-ordinate functions ; hence
the averaging of the angular momenta L and S takes place independently, and
we obtain

L.S =An.S =AS.

f That is, the zero-order approximation with respect to both the effect of the rotation of the mole-
cule and the spin-axis interaction.



§84 Multiplet terms 303

Finally, the mean value of the squared orbital angular momentum L2 is

independent of the spin, and is some function of r characterising the given

(unsplit) electron term. All the terms which are functions of r but indepen-

dent of J and S can be included in U(r), while the term proportional to S
(or, what is the same thing, to Q.) can be included in the expression A{r)Cl.

Thus we have for the effective potential energy the formula

Uj(r) = U(r)+A(r)£l+B(r)[J(J+l)-2&]. (83.6)

The energy levels of the molecule can be obtained from this by the same

method as in §82 when using the formula (82.6). Expanding U(r) and A(r)

in series of powers of £, and retaining the terms up to and including the

second order in the expansion of U(r), but only the terms of zero order in the

second and third terms, we obtain the energy levels in the form

E = U6+A6a+h<*e{v+\)+Be[](J+\)-2Wl (83.7)

where A e
= A(re) and B e are constants characterising the given (unsplit)

electron term. On continuing the expansion to higher terms, we obtain a

series of terms in higher powers of the quantum numbers, but we shall not

pause to write these out here.

§84. Multiplet terms. Case b

Let us now turn to case b. Here the effect of the rotation of the molecule

predominates over the multiplet splitting. Hence we must first consider the

effect of rotation, neglecting the spin-axis interaction, and then the latter

must be taken into account as a perturbation.

In a molecule with "free" spin, not only the total angular momentum J

but also the sum K of the orbital angular momentum of the electrons and the

angular momentum of the nuclei are conserved; the latter is related to J by

J=K+S. (84.1)

The quantum number K distinguishes different states of a rotating molecule

with free spin that are obtained from a given electron term. The effective

potential energy Uj^r) in a state with a given value of K is evidently deter-

mined by the same formula (82.6) as for terms with S = 0:

UK(r) = U(r)+B(r)K(K+l), (84.2)

where K takes the values A, A+l, ... .

When the spin-axis interaction is included, there is a splitting of each

term into 2S+1 terms in general (or 2K+1 if K < S), which differ in the

value of the total angular momentum! /. According to the general rule for

the addition of angular momenta, the number / takes (for a given K) values

f In case b, the projection n.S of the spin on the axis of the molecule does not have definite

values, so that there is no quantum number S (or Q).
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from K+S to \K-S\:

\K-S\<J<K+S. (84.3)

To calculate the energy of the splitting (in the first approximation of per-
turbation theory), we must determine the mean value of the operator of the
spin-axis interaction energy for the state in the zero-order approximation
(with respect to this interaction). In the case considered, this means averag-
ing with respect to both the electron state and the rotation of the molecule
(for a given r). The result of the first averaging is, as we know, an operator
of the form A(r)n . S, which is proportional to the projection n . S of the spin
operator on the axis of the molecule. Next we average this operator with
respect to the rotation of the molecule, taking the direction of the spin vector

to be arbitrary; then n . § = h . S. The mean value n is a vector which,
from considerations of symmetry, must have the same direction as the
"vector" R, the only vector which characterises the rotation of the molecule.
Thus we can write

n = constant x £.

The coefficient of proportionality is easily determined by multiplying both
sides of this equation by R; noting that the eigenvalues of n . K and K2 are
respectivelyA (see (82.3)) and K(K+ 1), we find the constant to beAIKIK+ 1).

Thus

n.S =AR.S/K(K+l).

Finally, the eigenvalue of the product K . S, according to the general formula
(31.2), is

K. S = W(J+V-K(K+1)-S(S+1)]. (84.4)

As a result, we arrive at the following expression for the required mean
value of the energy of the spin-axis interaction

:

Ar)A[J(J+ 1)-S(S+ \)-K{K+ 1)]I2K(K+ 1)

= Ar)A[(J-S)(J+S+l)]l2K(K+l)-lA(r)A.

This expression must be added to the energy (84.2). The term \A(r)A, being
independent ofK and /, can be included in U(r), so that we have finally for

the effective potential energy the expression

UK(r) = U(r)+B(r)K(K+l)+A(r)A(J-S)(J+S+l)l2K(K+l). (84.5)

An expansion in powers of £ = r—

r

e gives, in the usual manner, an expres-

sion for the energy levels of the molecule in case b

:

E = Ue+h<*e{v+\)+BeK{K+\)+AeA{J-S){J+S+\)}K{K+\). (84.6)
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As has been pointed out in the previous section, the spin-orbit interaction

for 2 terms does not give a multiplet splitting in the first approximation, and

to determine the fine structure we must take into account the spin-spin

interaction, whose operator is quadratic with respect to the spins of the elec-

trons. We are at present interested not in this operator itself, but in the result

of averaging it with respect to the electron state of the molecule, as was done

for the operator of the spin-orbit interaction. It is evident from considera-

tions of symmetry that tie required averaged operator must be proportional

to the squared projection of the total spin of the molecule on the axis, i.e.

it can be written in the form

a(r)(S.n)2
,

(84.7)

where a(r) is again some function of the distance r, characterising the given

electron state. Symmetry allows also a term proportional to S2
, but this is

immaterial since the absolute value of the spin is just a constant. We shall

not pause here to derive the lengthy general formula for the splitting due to

the operator (84.7) ; in Problem 1 of this section we give the derivation of the

formula for triplet 21 terms.

The doublet S terms form a special case. According to Kramers' theorem

(§60), the double degeneracy in a system of particles with total spin S = \

certainly persists, even when the internal relativistic interactions in the system

are fully allowed for. Hence the 2
I! terms remain unsplit, even when we

take account of both the spin-orbit and the spin-spin interaction, and in any

approximation.

The splitting is obtained here only by taking into account the relativistic

interaction of the spin with the rotation of the molecule; this effect is very

small. The averaged operator of this interaction must evidently be of the

form y& . S, and its eigenvalues are determined by the formula (84.4), in

which we must put S = $, / = K±%. As a result, we obtain for the 2S
terms the formula

E = Ue+h<*e(v+$+BeK(K+l)±b>(K+$; (84.8)

a constant — £y is included in Ue .

PROBLEMS
Problem 1. Determine the multiplet splitting of a 32 term in case b (H. A. Kramers

1929).

Solution. The required splitting is determined by the operator (84.7), which must be
averaged with respect to the rotation of the molecule. We write it in the form <xeninicSiSk,

where oee = oc(ro). Since the vector S is conserved, only the products mmc need be averaged.

According to the formula derived in §29, Problem 2, we have

KiKjc+KjcKi
ntnjc = h ... ;

(2a:-i)(2*:+3)

here we have not written out the terms proportional to 8a whose contribution to the energy

is independent ofJ and therefore does not cause any splitting of the type under consideration.
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Thus the splitting is given by the operator

(2K-l)(2K+3)

Since S commutes with &,

SiSicRtK* = SiKiSjcK* = (S . K)2,

where the eigenvalue S . K is given by (84.4). We also have

StSjcKjcKi = SiSjcKiKjc+iSiSjceMiKi

= (S . E)*+U£iSt-£kSt)ieai&i

= (S . K)2 +^encien,;mi§mKi
= (S.K)2+ S.K.

The values/ = K, K± 1 correspond to the three components EK of the triplet 3S (S = 1).
For the intervals between these components we find

K+\ K
Ek+i - EK = — g< £#_! ~ EK = —a.

'2K+1'
e

2K-l

Problem 2. Determine the energy of a doublet term (with A#0) for cases intermediate
between a and 6 (E. Hill and J. H. van Vleck 1928).

Solution. Since the rotational energy and the energy of the spin-axis interaction are
supposed of the same order of magnitude, they must be considered together in perturbation
theory, so that the perturbation operator is of the formf

As wave functions in the zero-order approximation it is convenient to use those of states in
which the angular momenta .Kand / have definite values (i.e. those of case b). Since S — £
for a doublet term, the quantum number K, for a given /, can take the values K = /±J.
To construct the secular equation, we must calculate the matrix elements VZIkv (« denoting
the assembly of quantum numbers defining the electron term), where K,K' take the above
values. The matrix of the operator K 2

is diagonal ; the diagonal elements are K(K+ 1). The
matrix elements of n . S are calculated from the general formula (109.5), in which we must
putji = S, 72 = K; the matrix elements of n are given by (87.1). Calculation gives the
secular equation

Be(J+m+%)-AAI(2J+ 1)-£W AvUm)2-A2
]/(2/+ 1)

^V[C/+i)2-A2]/(2/+l) Be(J+W-l)+AAI(2J+l)-EV

Solving this equation and adding E^ to the unperturbed energy, we have

E = ue+h^v+±)+Bej{j+\)±^[B*u+W-ABA+lA2
Y,

a constant \B e is included in Ue . The inequality A e ^> B eJ corresponds to case a, and the
opposite one to case b.

Problem 3. Determine the intervals between the components of a triplet level 3Sina
case intermediate between a and b.

= o.

t The averaging with respect to vibrations must be done before that with respect to rotation.
Hence, restricting ourselves to the first terms of the expansions in £, we have replaced the functions
B(r ) and A(r) by the values Be and A e ,

and the unperturbed energy levels are 2?(°> = Ue+ Hcoe(v+ J).
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Solution. As in Problem 2, the rotational energy and the energy of the spin-spin inter-

action are considered together in the perturbation theory. The perturbation operator is of

the form

t = 5e&2+a6(n.S)
2

.

As wave functions in the zero-order approximation we use those of case b. The matrix elements

(n . S)f . (we omit all suffixes with respect to which the matrix is diagonal) are again calcu-

lated from (109.5) and (87.1), this time with A = 0, S = 1. The non-zero elements are of

the form

(n.S)^ = VK7+i)/(2/+i)L (
n - s

)/+1
= VL//(2J+i)].

For a given /, the number K can take the values K = J, J±\. For the matrix elements V&

,

we find

VJj = BeJ(J+\)+*e , V£l = Be{J-\)J+*e{J+\)l{2J+\),

V
jtl

= V
i-l = aeV[/(/+l)]/(2/+l).

We see that there are no transitions between states with K = J and those withK = J±.\.

Hence one of the levels is simply Ex
= Vj. The other two (E2 , Ea) are obtained by solving

the quadratic secular equation formed from the matrix elements VJ
j~\, VJ

j%\, F/+i- Since

we are here interested only in the relative position of the components of the triplet, we
subtract the constant a e from all three energies Elt E2 , E3 . As a result we obtain

*i =*./(/+!),

E2S = JB6(7
2+/+l)-K±V[Be

2(2/+l)2-aeJ5e+K2
].

In case b (a small), by considering three levels with the same K and different J (J = K,

K±l), we again obtain the formulae of Problem 1.

§85. Multiplet terms. Cases c and d

Besides cases of a and b coupling and those intermediate between them,

there are also other types of coupling. These originate as follows. The
occurrence of the quantum numberA is due ultimately to the electric interac-

tion of the two atoms in the molecule, which results in the axial symmetry

of the problem of determining the electron terms (this interaction in the

molecule is called the coupling between the orbital angular momentum and

the axis). The distances between terms with different values of A give a

measure of the magnitude of this interaction. Previously we have tacitly

supposed this interaction so strong that these distances are large both com-

pared with the intervals in the multiplet splitting and compared with those

in the rotational structure of the terms. There are, however, opposite cases

where the interaction of the orbital angular momentum with the axis is com-

parable with or even small compared with the other effects ; in such cases, of

course, we cannot in any approximation speak of a conservation of the pro-

jection of the orbital angular momentum on the axis, so that the number A
is no longer meaningful.
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If the coupling of the orbital angular momentum with the axis is small

in comparison with the spin-orbit coupling, we say that we have case c. It

is found in molecules which contain an atom of a rare-earth element. These
atoms are characterised by the presence of/ electrons with uncompensated

angular momenta ; their interaction with the axis of the molecule is weakened

by the deep position of the / electrons in the atom. Cases intermediate be-

tween the a and c types of coupling are found in molecules consisting of

heavy atoms.

If the coupling of the orbital angular momentum with the axis is small

compared with the intervals in the rotational structure, we say that we have

case d. This case is found for high rotational levels (with large J) in some elec-

tron terms of the lightest molecules (H2 , He2). These terms are characterised

by the presence in the molecule of a highly excited electron, whose interaction

with the remaining electrons (or, as we say, with the "core" of the mole-

cule) is so weak that its orbital angular momentum is not quantised along the

axis of the molecule (whereas the "core" has a definite angular momen-
tum Acore about the axis).

As the distance r between the nuclei increases, the interaction between the

atoms is diminished, and finally becomes small compared with the spin-orbit

interaction within the atoms. Hence, if we consider the electron terms for

fairly large r, we shall have case c. This must be borne in mind when
ascertaining the relation between the electron terms of the molecule and the

states of the atoms obtained as r -> oo. In §80 we have already discussed this

relation, neglecting the spin-orbit interaction. When the fine structure of

the terms is included, there arises also the question of the relation between

the values Jx and /2 of the total angular momenta of the isolated atoms and

the values of the quantum number Q, for the molecule. We shall give the

results here, without reiterating arguments which are entirely similar to those

of §80.

If the molecule consists of different atoms, the possible values off |0|

obtained on combining atoms with angular momenta Jlt J2 (Jx ^ J2) are

given by the same table (80.1), in which we must put^i, J2 m place of L
ly
L2 ,

and jO| in place of A. The only difference is that, for half-integral Jx+Jz ,

the smallest value of \C1
\
is not zero as shown in the table, but \. For integral

7i+/2 , on the other hand, there are 2/2+l terms with Q. = 0, for which (as

for S terms when the fine structure is neglected) we have to decide the

question of sign. If Jx and/2 are each half-integral, the number 2/2+l is

even, and there are equal numbers of terms, which we shall denote by +

and 0~. IfJx and/2 are both integral, however, then/2+l terms are 0+ and

J2 are 0" (if (-lf^IJ, = 1) or vice versa (if {-\)
J^J*IJ2 = -1).

If the molecule consists of similar atoms in different states, the resulting

molecular states are the same as in the case of different atoms, the only

f In adding the two total angular momenta Jlt Jt of the atoms to form the resultant angular momen-
tum Q, the sign of Q is clearly immaterial.
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difference being that the total number of terms is doubled, with each term

appearing once as an even and once as an odd term.

Finally, if the molecule consists of similar atoms in the same state (with

angular momentaJx
= J2 = J), the total number of states is the same as in

the case of different atoms, while their distribution in parity is such that,

if/ is integral and Q, is even, Ng
= Nu+1;

ifJ is integral and Q. is odd, Ng
= Nu ;

ifJ is half-integral and Q is even, Nu = Ng ;

ifJ is half-integral and Q. is odd, Nu = Ng
+1.

All the 0+ terms are even and all the 0~ terms odd.

As the nuclei approach, a coupling of type c usually passes into one of

type a\. Here the following interesting circumstance may arise. As already

mentioned, the term with A = belongs to case b, and as regards the classi-

fication of case a this means that multiplet levels with different values of Q,

(and the same A = 0) have the same energy; but such levels can occur on

the approach of atoms which are in different fine-structure states.

Thus it may happen that the same molecular term corresponds to different

pairs of atomic fine-structure states. A similar situation may occur for terms

with O = which, on the approach of the nuclei, become a molecular term

with A # (and therefore S = —A). Such levels are doubly degenerate,

since in case a the same energy corresponds to the terms 0+ and 0~

(which may arise from different pairs of atomic states).

J

§86. Symmetry of molecular terms

In §78 we have already examined some symmetry properties of the terms

of a diatomic molecule. These properties characterised the behaviour of the

wave functions in transformations which leave the co-ordinates of the nuclei

unaltered. Thus the symmetry of the molecule with respect to reflection in

a plane passing through its axis brings about the difference between 2+ and
S~ terms ; the symmetry with respect to a change in sign of the co-ordinates

||

of all the electrons (for molecules composed of like atoms) gives rise to the

classification of terms into even and odd. These symmetry properties char-

acterise the electron terms, and are the same for all rotational levels belonging

to the same electron term.

The states of the molecule, like those of any system of particles (see §30),

are characterised by their behaviour with respect to inversion, i.e. a simul-

taneous change in sign of the co-ordinates of all the electrons and the nuclei.

For this reason, all the terms for the molecule can be divided into positive

(whose wave functions are unaltered when the sign of the co-ordinates of the

f The correspondence between the classification of terms of types a and c cannot be derived in a
general form. Its derivation necessitates a consideration of the actual potential energy curves, taking
into account the rule that levels of like symmetry cannot intersect (§79).

t We here neglect what is called A-doubling (see §88).

||
The origin is supposed to be taken on the axis of the molecule, and half-way between the two

nuclei.
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electrons and nuclei is reversed) and negative (whose wave functions change

sign on inversion).f

For A # 0, each term is doubly degenerate, on account of the two possible

directions of the angular momentum about the axis of the molecule. As a

result of inversion, the angular momentum itself does not change sign, but

the direction of the axis of the molecule is reversed (since the atoms change

places), and hence the direction of the angular momentum A relative to the

axis of the molecule is reversed. Hence two wave functions belonging to the

same energy level are transformed into each other, and from them we can

always form a linear combination that is invariant with respect to inversion

and one that changes sign under this transformation. Thus we obtain for

each term two states, of which one is positive and the other negative. In

practice, every term with A ^ is split, however (see §88), and so these two

states correspond to different values of the energy.

The S terms require special consideration to determine their sign. First

of all, it is clear that the spin bears no relation to the sign of the term : the

inversion operation changes only the co-ordinates of the particles, leaving

the spin part of the wave function unaltered. Hence all the components of

the multiplet structure of any given term have the same sign. In other words,

the sign of the term depends only on K, and not on J.\
The wave function of the molecule is the product of the electron and

nuclear wave functions. It has been shown in §82 that, in a S state, the motion

of the nuclei is equivalent to that of a single particle, of orbital angular

momentum K, in a centrally symmetric field U(r). Hence we can say that,

when the sign of the co-ordinates is changed, the nuclear wave function is

multiplied by (-1)K (see (30.7)).

The electron wave function characterises the electron term, and to ascertain

its behaviour under inversion we must consider it in a system of co-ordinates

rigidly connected to the nuclei and rotating with them. Let x, y, z be a sys-

tem of co-ordinates fixed in space, and £, rj, £ a. rotating system of co-ordinates

in which the molecule is fixed. The direction of the axes of |, rj, £ is defined

so that the £-axis coincides with the axis of the molecule from (say) nucleus

1 to nucleus 2, and the relative position of the positive directions of the axes

of £, rj, £ is the same as in the system x, y, z (i.e. if the system x, y, z is left-

handed, the system £, rj, £ is so too). As a result of the inversion operation,

the direction of the axes of x, y, z is reversed, and the system changes from

left-handed to right-handed. The system £, rj, £ must also become right-

handed, but the £-axis, being rigidly connected to the nuclei, retains its

former direction. Hence the direction of either one of the axes of £, rj must

f We retain the customary terminology. It is unfortunate, however, since in the case of an atom

the behaviour of the terms with respect to the operation of inversion is referred to as parity and not

sign.

The sign of which we are here speaking must not be confused with the + and — which are added

as indices to S terms.

J We recall that case b usually holds for S terms, and so it is necessary to use the quantum numbers

K and /.
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be reversed. Thus the operation of inversion in the fixed system of co-

ordinates is equivalent in the moving system to a reflection in a plane passing

through the axis of the molecule. Under such a reflection, however, the

electron wave function of a 2+ term is unaltered, while that of a 2~" term

changes sign.

Thus the sign of the rotational components of a 2+ term is determined by

the factor (— 1)^; all the levels with even K are positive, while those with

odd K are negative. For a 1r term, the sign of the rotational levels is deter-

mined by the factor (— 1)
K+1

; all levels with even K are negative, while those

with odd K are positive.

If the molecule consists of similar atoms, f its Hamiltonian is also invariant

with respect to an interchange of the co-ordinates of the two nuclei. A term

is said to be symmetric with respect to the nuclei if its wave function is un-

altered when they are interchanged, and antisymmetric if its wave function

changes sign. The symmetry with respect to the nuclei is closely related to

the parity and sign of the term. An interchange of the co-ordinates of the

nuclei is equivalent to a change in sign of the co-ordinates of all the particles

(electrons and nuclei), followed by a change in sign of the co-ordinates of the

electrons only. Hence it follows that, if the term is even and positive (or

odd and negative), it is symmetric with respect to the nuclei. If, on the other

hand, it is even and negative (or odd and positive), then it is antisymmetric

with respect to the nuclei.

At the end of §62 we have established a general theorem that the co-ordinate

wave function of a system of two identical particles is symmetrical when the

total spin of the system is even, and antisymmetrical when it is odd. If we
apply this result to the two nuclei of a molecule composed of similar atoms,

we find that the symmetry of a term is related to the parity of the total spin

/ obtained by adding the spins i of the two nuclei. The term is symmetric

when i" is even, and antisymmetric when I is odd. % In particular, if the nuclei

have no spin (i = 0), / is zero also ; hence the molecule has no antisymmetric

terms. We see that the nuclear spin has an important indirect influence on

the molecular terms, although its direct influence (the hyperfine structure of

the terms) is quite unimportant.

When the spin of the levels is taken into account, an additional degeneracy

of the levels results. Again in §62, we have calculated the number of states

with even and odd values of / that are obtained on adding two spins i. Thus,

when i is half-integral, the number of states with even / is i(2«+l), and with

odd / is (j+1)(2*"+1). From what was said above, we conclude that the

ratio of the degrees g8, ga of the degeneracy
||
of symmetric and antisymmetric

f The two atoms must be not only of the same element, but also of the same isotope.

% Recalling the relation between the parity, sign and symmetry of terms, we conclude that, when the

total spin I of the nuclei is even, the positive levels are even and the negative levels odd, and vice

versa when J is odd.

||
The degree of degeneracy of a level is often referred to in this connection as its statistical weight.

Formulae (86.1), (86.2) determine the ratio of the nuclear statistical weights of symmetric and anti-

symmetric levels.
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terms for terms with half-integral i is

gslga=il(i+V- (86.1)

For integral /, we similarly find that this ratio is

SJga =(i+m (86.2)

We have seen that the sign of the rotational components of a S+ term is

determined by the number (—1)K. Hence, for example, the rotational com-
ponents of a 2+0 term for even K are positive, and therefore symmetric, while

for odd K they are negative and consequently antisymmetric. Bearing in

mind the results obtained above, we conclude that the nuclear statistical

weights of the rotational components of a S+
ff
level with successive values of

K take alternate values, in the ratios (86.1) or (86.2). A wholly similar situa-

tion is found for E+M , 1r
g
and S~M levels. In particular, for i = the

statistical weights of levels with even K for S+
M and T,~g terms, and of levels

with odd K for T,+
g
and S~M terms, are zero. In other words, in the electron

states 2+M , Trg
there are no rotational states with even K, and in 2+

, Hru
states there are none with odd K.

Because of the extremely weak interaction of the nuclear spins with the

electrons, the probability of a change in / is very small, even in collisions of

molecules. Hence molecules differing in the parity of /, and accordingly

having only symmetric or only antisymmetric terms, behave almost as differ-

ent forms of matter. Such, for instance, are orthohydrogen and parahydro-

gen; in the molecule of the former, the spins i = \ of the two nuclei are

parallel (/ = 1), while in that of the latter they are antiparallel (/ = 0).

§87. Matrix elements for the diatomic molecule

In calculating the matrices of various quantities in the diatomic molecule,

let us begin with the matrix elements for transitions between states with

zero spin.

Let n be a unit vector along the axis of the molecule. The vector n, re-

garded as an operator, commutes with the operator of the energy of the

electrons and with that of the vibrational energy, but not with the angular

momentumK of the molecule. Hence the matrix ofn is diagonal with respect

to all the quantum numbers except K and MK (where by MK we denote the

magnitude of the projection of the angular momentum K on a #-axis fixed

in space). Omitting all suffixes but these two, we write the matrix elements

in the form (K''M''k\o\KMk)- Their dependence on Mr is given directly

by the general formulae (29.7), (29.9), in which L and M must be replaced

by K and Mr, and the suffix n may be omitted. We denote the coefficients

in these formulae by n^,, for the present case, so that, for example,

(KMK \nz\KMK)
= «f

.
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To calculate the quantities n%, we start from the equations n . £ = A,

n2 = 1, written in the form (see (29.11))

\n+R.++\n-£.-+nz&z = A,

n+n-+nz
2 = 1,

and the commutation relation

ngn+— n+rig = 0.

Taking the diagonal matrix elements of these equations (the matrix elements

of K being determined from the general formulae (27.12) with K, MK in

place of L, M), we obtain, after some calculations which we here- omit, the

following formulae for the quantities required (H. Honl and F. London
1925):

H
*
= AJw^) i W*

_1 = (W*_l)* = iV[(K2-A2)IK̂ ' (87 ' 1}

For A = these formulae give

nK = 0, nK~i = WK;K K v »

these correspond, as we should expect, to the matrix elements of a unit vector

for motion in a centrally symmetric field (see §29, Problem 1).

Next, let A be some vector physical quantity characterising the state of

the molecule when the nuclei are fixed.f Let us first consider this quantity

in the system of co-ordinates |, r\, £, which rotates with the molecule (the

£-axis coinciding with the axis of the molecule). The results of §29 cannot

here be applied in their entirety, since the angular momentum of the mole-

cule with respect to the system of co-ordinates £ rj, £ (i.e. the electron angular

momentum L) is not conserved ; only its ^-component A is conserved. The
results concerning the selection rule for the quantum number A (M in §29)

evidently remain fully valid, however. Thus the matrix elements of the vector

A that are not zero are

we denote by n the assembly of quantum numbers for the electron term, with

the exception of A.

If both the terms are S terms, we must also bear in mind the selection rule

arising from the symmetry with respect to reflection in a plane passing through
the axis of the molecule (the £-axis). Under such a reflection, the £-com-
ponent of an ordinary (polar) vector is unchanged, while that of an axial vector

changes sign. Hence we conclude that, for a polar vector, A
c
has non-zero

matrix elements only for the transitions S+ -» S+ and S~ -> S~, while for

t For example, the dipole moment or magnetic moment of the molecule.
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an axial vector the elements are non-zero for the transitions 2+ -> S~. We
need not discuss the components A ^, Av , since for these no transitions with-

out change ofA are possible.

If the molecule consists of similar atoms, there is also a selection rule re-

garding parity. The components of a (polar) vector change sign under inver-

sion. Hence their matrix elements are non-zero only for transitions between

states of different parity (the reverse is true for an axial vector). In particular,

all the diagonal matrix elements of the components of a polar vector vanish

identically.

The question arises how the matrix elements (87.2) are related to those of

the same vector A in a fixed system of co-ordinates. In this system we can

again use the general formulae (29.7), (29.9), which give the dependence of

the matrix elements (nAKMK\A\n f

A'K'M'k) on the quantum number Mr-
The coefficients in these formulae are naturally denoted by A^j^, ; we have

to relate these to the quantities (87.2).

It is seen from (87.2) that there are matrix elements diagonal with respect

to A only for the component along the axis of the molecule. Hence we can

write the equation

(nAKMK\A\nAK'M'K) = {nAKMK\Ap\riAK'
M'

K).

In particular,

(nAKMK\Az\nAK'MK) = (A Â{KMK\nz\K'MK).

Separating out the dependence on MK , we hence have

AnAK =nKtA \*\ (87.3)

where the n%, are determined by formulae (87.1). Thus we have found some

of the relations which we desire.

To find the remaining relations (for the components non-diagonal with

respect to A), we notice that, since the quantity A refers to the molecule with

fixed nuclei, the operators Ag, A
v , A^ evidently commute with the vector n.

The components of the vector A in the system x, y, z are linear combinations

of the components in the system |, r], £, the coefficients in these combinations

being functions of n x , n y , n z . HenceAx , Ay , Az also commute with the vector

n. In particular

Aznz—nz4z = 0.

Taking from this equation the matrix elements for the transitions A,

K -> A— 1, K' with K' = K, K±\, we obtain three equations, from which

the dependence on K of the required quantities A^^ElK, can be found.

The coefficients in the resulting formulae can be related to the quantities

(87.2) by comparing the matrix elements of the scalar A2
, these being calcu-

latedf in the two systems of co-ordinates x,y, z and £, rj, £. As a result,

t The calculation is conveniently performed directly from the formula (29.12), where we must

put A = B, replace L by K, and take n as w, A.
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we obtain the following final formulae

:

A
T.a-i.k ^m+^v^Vl^K+lXK+AXK-A+iyKiK+l)], n

A
1**-i.k-x

= ~*<^+^CSui V[(K+A)(K+A-1)IK], [(87.4)

A
2tf-i!K

= K^+iA^yiiK-AXK-A+iyK].

The components with A— 1 -* A are the complex conjugates of those given.

Finally, we must find how the formulae we have obtained should be modi-
fied for transitions between states with non-zero spin. Here it is important

to know whether the states belong to case a or to case b.

First, let the two states belong to case a. The unit vector n commutes
with the spin vector S, and hence its matrix is diagonal with respect to the

quantum numbers S and 2 (or, what is the same thing, S and Q., since

£1 = A+ 2, and this matrix is diagonal with respect toA also). The quantum
numbers K and MK do not exist, and instead we have the total angular

momentum / and its projection M on the #-axis. Instead of the relation

n . K = A, which we used to derive (87.1), we now have n . J = Q.. Accord-
ingly, we again obtain the same formulae (87.1), except that K and A must
now be replaced by / and Q, respectively (we omit the diagonal suffix S).

The same is true for any orbital vector A (i.e. one which does not depend
on the spin). Such a vector commutes with S also, and hence its matrix is

diagonal with respect to S and 2 ; if we use the quantum number Q. in place

of 2, it changes together with A in the non-zero matrix elements (i.e. if

A' = A± 1, then Q' = Cl± 1). The formulae (87.3) and (87.4) are unchanged
except that we must add the suffixes Q. and Q', and everywhere (except the

suffixes) replace K andA by/ and CI.

Ifthe vectorA depends on the spin, however, the selection rules are different.

The vector S commutes with the orbital angular momentum, and also with
the Hamiltonian, and hence its matrix is diagonal with respect to n and A;
we omit these suffixes. It is, however, not diagonal with respect to 2 (or CI).

The matrix elements of the components of S in the system $, rj, £ are deter-

mined by formulae (27.13), with S and 2 in place of L and M, and then the

transition to the system x, y, z is effected by the formulae (87.3), (87.4),

where we must everywhere (including the suffixes) replace K and A by/ and
Q.

Now let both states belong to case b. The calculation of the matrix ele-

ments is here performed in two stages. First we consider the rotating mole-
cule without taking into account the addition of the spin to the angular
momentum K; the matrix elements are then determined by the same formulae
(87.1)-(87.4). The vector A is supposed orbital, so that, like n, it commutes
with S, and so the matrices are diagonal with respect to the quantum number
S, which we omit from the suffixes. The angular momentum K is then
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added to S to form the total angular momentum J, and the transition to the new
matrix elements is effected by the general formulae (109.3). The part of jx
in these formulae is here taken by S, that of j2 by K, and we write n, A in

place of n±.

If one of the states belongs to case a and the other to case b, the calculation

of the matrix elements for transitions between the states is more involved

;

we shall not here pause to consider this problem,f

PROBLEMS
Problem 1. Determine the Stark splitting of the terms for a diatomic molecule having

a constant dipole moment, in the case where the term belongs to case a.

Solution. The energy of a dipole d in an electric field <f is —d . <f . From considera-

tions of symmetry, it is evident that the dipole moment of a diatomic molecule is directed

along its axis ; d = dn, where d is a constant. Taking the direction of the field as the sr-axis,

we obtain the perturbation operator in the form —dnz$.
Determining the diagonal matrix elements of n z in accordance with the formulae derived

above, we find that in case a the splitting of the levels is given by the formulaj

AEMj = -£dMjQIJ(J+l).

Problem 2. The same as Problem 1, but for the case where the term belongs to case b

(and A # 0).

Solution. By the same method we have

AEM = —SdMjK .

2K(K+1)J(J+1)

Problem 3. The same as Problem 2, but for a *2 term.

Solution. For A = the linear effect is absent, and we must go to the second approxi-

mation of perturbation theory. In the summation in the general formula (38.9), it is sufficient

to retain only those terms which correspond to transitions between rotational components of

the electron term concerned; for other terms the energy differences in the denominators are

large. Thus we find

„*MKMk\<K- X >
MK)\* UKMKlnzlK+^MK)]*

AiiAf =dz z
{ 1

K
\ Ek—Ek-i Ek—Ek+i

where Ek = BK(K+1). A simple calculation gives

«2 K(K+1)-3MK*

&EM =
* B 2K(K+l)(2K-l)(2K+3)

§88. A-doubling

The double degeneracy of the terms with A ^ (§78) is in fact only

approximate. It occurs only so long as we neglect the effect of the rotation

t See E. Hill and J. van Vleck, Physical Review 32, 250, 1928.

t It may seem that there is here a contradiction of the general assertion that there is no linear

Stark effect (§76). In fact, of course, there is no contradiction, since the presence of a linear Stark

effect is here due to the double degeneracy of the levels with CI ^ 0; the formula obtained is therefore

applicable provided that the energy of the Stark splitting is large compared with that of what is called

the A-doubling (§88).
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of the molecule on the electron state (and also the higher approximations with

respect to the spin-orbit interaction), as we have done throughout the above

theory. When the interaction between the electron state and the rotation is

taken into account, a term with A # is split into two levels close together.

This phenomenon is called A-doubling (E. Hill and J. H. van Vleck, and

R. de L. Kronig, 1928).

To consider this effect quantitatively, we again begin with the singlet

terms (S = 0). We have calculated (in §82) the energy of the rotational

levels in the first approximation of perturbation theory, determining the

diagonal matrix elements (i.e. the mean value) of the operator

B(r)(R-L)«.

To calculate the subsequent approximations, we must consider the elements

of this operator that are not diagonal with respect to A. The operators &2

and L2 are diagonal with respect to A, so that we need consider only the oper-

ator -2B&.L.
The calculation of the matrix elements of R . L is conveniently effected

by means of the general formula (29.12), in which we must put A = K,

B = L ; the parts of L andM are taken by K andMK , while in place of n we
must put n, A, where n denotes the assembly of quantum numbers (other

than A) which determine the electron term. Since the matrix of the vector

K, which is conserved, is diagonal with respect to «, A, while that of the

vector L contains non-diagonal elements only for transitions in which A
changes by unity (cf. what was said in §87 concerning an arbitrary vector A),

we find, using formulae (87.4),

(nAKMKlK.Lln^A-UKM^^^+iL^^VKK^AXK+l-A)^ (88.1)

There are no non-zero matrix elements corresponding to any greater change

in A.

The perturbing effect of the matrix elements with A -> A— 1 can cause

the appearance of an energy difference between states with ±A only in the

2Ath approximation of perturbation theory. Accordingly, the effect is pro-

portional to B2A
, i.e. to (mjM)2A , where M is the mass of the nuclei and m

that of the electron. For A > 1, this quantity is so small that it is of no

interest. Thus the A-doubling effect is of importance only for II terms

(A = 1), which are considered below.

For A = 1 we must go to the second approximation. The corrections to

the eigenvalues of the energy can be determined from the general formula

(38.9). In the denominators of the terms in the sum occurring in this equa-

tion we have energy differences, of the form EnAK—En, A_1K . In these

differences, the terms containing K cancel, since, for a given distance r be-

tween the nuclei, the rotational energy is the same quantity, B(r)K(K+l),
for all the terms. Hence the dependence on K of the required splitting Ai?

is entirely determined by the squared matrix elements in the numerators.
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Among these are the squared elements for transitions in which A changes

from 1 to and from to — 1 ; these both give, by (88.1), the same depen-

dence on K, and we find that the splitting of the 1II term is of the form

AE = constant xK(K+ 1), (88.2)

where the constant is of the order of magnitude of B2
] e, e being the order of

magnitude of the differences between neighbouring electron terms.

Let us pass now to terms with non-zero spin
(
2II and 3II terms; higher

values of S are not found in practice). If the term belongs to case b, the

multiplet splitting has no effect on the A-doubling of the rotational levels,

which is determined as before by formula (88.2).

In case <z, however, the effect of the spin is important. Here each electron

term is characterised by the number Q. as Well as A. If we simply replace

A by —A, then Q = A+ 2 is changed, so that we obtain an entirely different

term. The levels with A, Q. and —A, —Q are mutually degenerate. This

degeneracy can here be removed not only by the effect, considered above, of

the interaction between the orbital angular momentum and the rotation of

the molecule, but also by the effect of the spin-orbit interaction. The con-

servation of the projection Q. of the total angular momentum on the axis of

the molecule is (if the nuclei are fixed) an exact conservation law, and so

cannot be destroyed by the spin-orbit interaction; the latter can, however,

change A and 2 (i.e. there are matrix elements for the corresponding transi-

tions) in such a way that Q. remains unchanged. This effect, alone or in

combination with the orbit-rotation interaction (which alters A but not 2),

may cause A-doubling.

Let us first consider the 2II terms. For the 2n i/2 term (A= 1, 2 =— \,

Q, = |), the splitting is obtained on taking into account simultaneously the

spin-orbit and orbit-rotation interactions, each in the first approximation.

For the former gives the transition A = 1, 2= — ^ -> A = 0, 2= J, and

then the latter converts the state A = 0, 2 = | into A = —1, 2 == \, which

differs from the initial state by the signs ofA and Q. being reversed. The mat-

rix elements of the spin-orbit interaction are independent of the rotational

quantum number /, while the dependence of those for the orbit-rotation

interaction is determined by formula (88.1), in which (under the radical)

we must replace K and A by / and Q. Thus we have for the A-doubling

of a 2 II 1/2 term the expression

AE1/2
= constant x {J+Q, (88.3)

where the constant is of the order of AB\ e. For a 2n3/2 term, on the other

hand, the splitting can be found only in higher approximations, so that in

practice &E3/2,
= 0.

Finally, let us consider 3 II terms. For a 3II term (A = 1, 2 = —1), the

splitting is obtained on taking into account the spin-orbit interaction in the

second approximation (because of the transitions A = 1, 2 = —1 ->- A = 0,

2 = -> A = — 1, 2=1). Accordingly, the A-doubling in this case is
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entirely independent of /:

&E = constant ~ A2
je. (88.4)

For a 3I11 term, 2 = 0, and so the spin has no effect on the splitting; hence

we again have a formula like (88.2), but with K replaced by /

:

AEX
= constant x/(/+l). (88.5)

For a 3II
2 term, higher approximations are needed, so that we can suppose

A£2
= 0.

One of the levels of the doublet resulting from A-doubling is always posi-

tive, and the other negative; we have already discussed this in §86. An
investigation of the wave functions of the molecule enables us to establish

the regularities of the alternation of positive and negative levels. Here we
shall give only the results of the investigation.f It is found that if, for some
value of J, the positive level is below the negative one, then in the doublet

for /+ 1 the order is opposite, the positive level being above the negative

one, and so on; the order varies alternately as the total angular momentum
takes successive values. We are speaking here of case a terms; for case b, the

same holds for successive values of the angular momentum K.

PROBLEM
Determine the A-splitting for a *A term.

Solution. Here the effect appears in the fourth approximation of perturbation theory.

Its dependence on K is determined by the products of the four matrix elements (88.1) for

transitions with change of A : 2 -> 1, 1 -»- 0, -> —1, —1 -> —2. This gives

AE = constant x(K-l)K(K+l)(K+ 2),

where the constant is of order of -B4/*
3

-

§89. The interaction of atoms at large distances

Let us consider two atoms in S states which are at a great distance from

each other (relative to their size), and determine the energy of their interaction.

In other words, we shall discuss the determination of the form of the electron

terms Un(r) when the distance between the nuclei is large.

To solve this problem we apply perturbation theory, regarding the two

isolated atoms as the unperturbed system, and the potential energy of their

electrical interaction as the perturbation operator. As we know from electro-

statics, the electrical interaction of two systems of charges at a large distance r

apart can be expanded in powers of 1/r, and successive terms of this expansion

correspond to the interaction of the total charges, dipole moments, quad-

rupole moments, etc., of the two systems. For neutral atoms, the total charges

are zero. The expansion here begins with the dipole-dipole interaction

(~ 1/r3); then follow the dipole-quadrupole terms (~ 1/r4), the quadrupole-

quadrupole (and dipole-octupole) terms (^ 1/r5), and so on.

f This may be found in E. Wigner and E. WiTMER, Zeitschriftfur Physik 51, 859, 1928.
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In the first approximation of perturbation theory, the required energy of

the interaction of the atoms is determined as the diagonal matrix element of

the perturbation operator, calculated with respect to the unperturbed wave
functions of the system (expressed in terms of products of the unperturbed

functions for the atoms).f In S states, however, the diagonal matrix elements,

i.e. the mean values of the dipole, quadrupole, etc." moments, are zero ; this

follows at once from considerations of symmetry, since the distribution of

charges in an atom in the S state is spherically symmetrical on the average.

Hence each of the terms of the expansion of the perturbation operator in

powers of \\r gives zero in the first approximation of perturbation theory. J
In the second approximation it is sufficient to restrict ourselves to the dipole

interaction in the perturbation operator, since this decreases least rapidly

as r increases, i.e. to the term

V = [-dx . d2+3(dx . n)(d2 . n)]/r\ (89.1)

where n is a unit vector in the direction joining the two atoms. Since the

non-diagonal matrix elements of the dipole moment are in general different

from zero, we obtain in the second approximation of perturbation theory a

non-vanishing result which, being quadratic in V, is proportional to 1/r6 .

The correction in the second approximation to the lowest eigenvalue is, as we
know, always negative (§38). Hence we obtain for the interaction energy of

atoms in their normal states an expression of the form
||

U(r) = -constant/r6
, (89.2)

where the constant is positive (F. London 1928).

Thus two atoms in normal S states, at a great distance apart, attract each

other with a force (—dU/dr) which is inversely proportional to the seventh

power of the distance. The attractive forces between atoms at large distances

are usually called van der Waals forces. These forces cause the appearance

of minima on the potential energy curves of the electron terms even for

atoms which do not form a stable molecule. These depressions, however,

are very shallow (being only tenths or even hundredths of an electron-volt

in depth) and lie at distances several times greater than the distances between

atoms in stable molecules.

If only one of the atoms is in the S state, the same result (89.2) is obtained

for the interaction energy, since, for the first approximation to vanish, it is

f Here we neglect the exchange effects, which decrease exponentially with distance (see §62,

Problems).

% This, of course, does not imply that the mean value of the interaction energy of the atoms is pre-

cisely zero. It diminishes exponentially with distance, i.e. more rapidly than every finite power of 1/r,

and hence each term of the expansion vanishes. This occurs because the expansion of the interaction

operator in terms of the multipole moments involves the assumption that the charges of the two atoms
are at a large distance r apart, whereas in quantum mechanics the electron density distribution has

finite (though exponentially small) values even at large distances.

||
For brevity, we here and later omit the unimportant constant term in U(r), i.e. the value of U(co),

which is the sum of the energies of the two isolated atoms.
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sufficient for the dipole (etc.) moment of only one atom to be zero. The
constant in the numerator of (89.2) here depends, not only on the states of

the two atoms, but also on their mutual orientation, i.e. on the value Q. of the

projection of the angular momentum on the axis joining the atoms.

If both atoms have non-zero orbital and total angular momenta, however,

the situation is changed. The mean value of the dipole moment is zero in

every state of the atom (§75). The mean values of the quadrupole moment in

states with L # 0, / # or \ are not zero, however. Hence the quadrupole-

quadrupole term in the perturbation operator gives a non-zero result even

in the first approximation, and we find that the interaction energy of the

atoms diminishes as the fifth, not the sixth, power of the distance

:

U(r) = constant/r5 . (89.3)

Here the constant may be either positive or negative, i.e. we may have either

attraction or repulsion. As in the previous case, this constant depends not

only on the states of the atoms, but also on the state of the system formed

by the two atoms.

A special case is the interaction of two similar atoms in different states.

The unperturbed system (the two isolated atoms) has here an additional de-

generacy due to the possibility of interchanging the states of the atoms.

Accordingly, the correction in the first approximation will be given by the

secular equation, in which the non-diagonal matrix elements of the perturba-

tion appear as well as the diagonal ones. If the states of the two atoms have

different parities, and angular momenta L differing by ± 1 or but not both

zero (the same restriction being placed on J), then the non-diagonal matrix

elements of the dipole moment for transitions between these states are in

general not zero. Hence an effect in the first approximation is obtained from

the dipole term in the perturbation operator. Thus the interaction energy

of the atoms is here proportional to 1/r3 :

U(r) = constant/r3
, (89.4)

where the constant may have either sign.

Usually, however, what is of interest is the interaction of the atoms aver-

aged over all possible states of the system which they form (for given states

of the atoms), including all possible orientations of the angular momenta

of the atoms.-|-

As a result of this averaging, all effects linear in the dipole or quadrupole

moment of each atom (i.e. all effects in the first approximation of perturba-

tion theory) vanish. The averaged interaction forces between atoms at large

distances therefore always follow the law (89.2)J.

t Such averaging is necessary, for example, in the problem of determining the interaction of atoms

in a gas.

t This law, derived on the basis of the non-relativistic theory, is Valid only so long as the retardation

of electromagnetic interactions is unimportant. For this to be so, the distance r between the atoms

must be small compared with c/cuon, where won are the frequencies of transitions between the ground

state and the excited states of the atom.
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PROBLEM
Derive a formula giving the van der Waals forces in terms of the matrix elements of dipole

moments for two like atoms in S states.

Solution. The answer is obtained by applying the general formula (38.9) of perturbation

theory to the operator (89.1). On account of the isotropy of the atoms in the S state it is

evident a priori that, on summation over all intermediate states, the squared matrix elements
of the three components of each of the vectors di and d2 give equal contributions, while the

terms which contain products of different components give zero. The result is

T7/ ,
6 ^-a (dz)on

2(dz)on'2

U(r) = > ,

r«^2EQ-En-En >

n,n'

where Eo and En are the unperturbed values of the energies of the ground state and excited

states of the atom. Since by hypothesis L = in the ground state, the matrix elements

(rfz)on are non-zero only for transitions to P states (L = l).t Using formulae (29.7), we bring

U(r) to the final form

U(r)= > ^ relM n V
,

3r6 ^ 2E -Enl -En'i
n,n'

where in the matrix suffixes nL the second suffix gives the value of L and the first represents

the assembly of the remaining quantum numbers which determine the energy level.J

§90. Pre-dissociation

A basic premise of the theory of diatomic molecules as given in this chapter

is the assumption that the wave function of the molecule falls into the product

of an electron wave function (depending on the distance between the nuclei

as a parameter) and a wave function for the motion of the nuclei. This sup-

position amounts to neglecting, in the exact Hamiltonian of the molecule,

certain small terms corresponding to the interaction of the nuclear and

electron motions.

When these terms are taken into account and perturbation theory is applied,

transitions between different electron states appear. || Physically, the transi-

tions between states of which at least one belongs to the continuous spectrum

are of particular importance.

Fig. 30 shows curves for the potential energy of two electron terms.ff The
energy E' (the lower dashed line in Fig. 30) is the energy of some vibrational

level of a stable molecule in the electron state 2. In state 1, this energy lies

in the range of the continuous spectrum. In other words, in passing from

state 2 to state 1 the molecule automatically disintegrates ; this phenomenon

is called pre-dissociation.%% As a result of pre-dissociation, the state of the dis-

crete spectrum corresponding to curve 2 has in reality a finite lifetime. This

t The spin of the atoms is not involved here.

% Calculation gives for the coefficient in U = — Ar~6 (with all quantities in atomic units) the values

A = 6 -5 for two hydrogen atoms and A = 1*6 for helium atoms.

|(
As well as the splitting of the levels by A-doubling (§88).

tf Strictly speaking, these curves must represent the effective potential energy Uj in some given

rotational states of the molecule.

{J Curve 1 may have no minimum at all if it corresponds to purely repulsive forces between the

atoms.
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means that the discrete energy level is broadened, i.e. acquires a certain width

(see the end of §44).

Fig

If, on the other hand, the total energy E lies above the dissociation limit

in both states (the upper dashed line in Fig. 30), the transition from one

state to the other corresponds to what is called a collision of the second kind.

Thus the transition 1 -> 2 signifies the collision of two atoms, as a result of

which the atoms are left in excited states, and separate with diminished

kinetic energy (for r -> oo, curve 1 passes below curve 2; the difference

C/2(oo)
— U^oo) is the excitation energy of the atoms).

Because of the large masses of the nuclei their motion is quasi-classical.

The problem of determining the probabilityof the transitions under considera-

tion is therefore of the kind discussed in §52. From the general considera-

tions given there we can say that the transition probability will be mainly

determined by the point at which the transition could occur classically.

f

Since the total energy of the system of two atoms (the molecule) is conserved

in the transition, the condition for it to be "classically possible" is that the

effective potential energies should be equal: Uji(r) = C/j2(r). On account

of the conservation of the total angular momentum of the molecule also, the

centrifugal energies are the same in the two states, and so this condition

means that the potential energies are equal:

Vl{r) = U2(r), (90.1)

the angular momentum not being involved at all.

If equation (90.1) has no real roots in the classically accessible region

(where E > Uji, Uj2), the transition probability according to §52 is expo-

nentially small.J Transitions occur with an appreciable probability only if

t Or else by the point r — at which the potential energy becomes infinite.

t A peculiar situation must occur in the case of a transition involving a molecular term which can

arise from two different pairs of atomic states (see the end of §85), i.e. when the potential energy curve

is, as it were, split into two branches with increasing distance. In this case the transition probability

should be considerably greater, but the problem has not yet been discussed in the literature.
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the potential energy curves intersect in the classically accessible region
(as shown in Fig. 30). Then the exponent in formula (52.1) is zero (and this
formula is therefore, of course, invalid) ; accordingly, the transition probability
is determined by a non-exponential expression which will be derived below.
The condition (90.1) can then be interpreted as follows. If the potential (and
total) energies are the same, so are the linear momenta. Hence the condition
(90.1) may also be written in the form

ri = r2 , Pi = p*> (90.2)

where p is the momentum of the relative radial motion of the nuclei, and the
suffixes 1 and 2 refer to the two electron states. Thus we can say that the
distance between the nuclei and their relative momentum remain unchanged
at the instant when the transition occurs (this is called Franck and Condon's
principle). Physically, this is due to the fact that the electron velocities are
large compared with those of the nuclei, and "during an electron transition"
the nuclei cannot noticeably change their position or velocity.

It is not difficult to establish the selection rules for the transitions in ques-
tion. First of all, there are two obvious exact rules. The total angular
momentum / and the sign of the term (positive or negative; see §86) cannot
change in a transition. This follows at once from the fact that the conserva-
tion of the total angular momentum and of the behaviour of the wave function
under inversion of the co-ordinate system are exact laws for any (closed)
system of particles.

Next, the rule which forbids (for molecules composed of similar atoms)
transitions between states of unlike parity is very nearly accurate. For the
parity of the state is uniquely determined by the nuclear spin and the sign of
the term. The conservation of the sign of the term is an exact law, however,
while the nuclear spin is very nearly conserved by virtue of the weakness of
its interaction with the electrons.

The requirement that there should be a point of intersection of the potential
energy curves means that the terms must be of different symmetry (see §79).
Let us consider transitions occurring in the first approximation of perturba-
tion theory; the probability of transitions which occur only in higher approxi-
mations is relatively small. First of all, we notice that the terms in the
Hamiltonian which lead to the transitions in question are just those which
cause the A-doubling of the levels. Among these terms are, firstly, terms
representing the spin-orbit interaction. They are the product of two axial

vectors, of which one is of spin character (i.e. is composed of the operators
of the electron spins), and the other is of co-ordinate character ; we emphasise,
however, that these vectors are not simply the vectors S and L. Hence they
have non-zero matrix elements for transitions in which S and A change by
0, ±1. The case where AS and AA are both zero (and A # 0) must be
omitted, since the symmetry of the term would then be unchanged in the

transition. The transition between two 2 terms is possible if one of them is
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a 2+ term and the other a S~ term; an axial vector has non-zero matrix

elements only for transitions between 2+ and 2~ (see §87).

The term in the Hamiltonian which corresponds to the interaction between

the rotation of the molecule and its orbital angular momentum is proportional

to j . L. Its matrix elements are non-zero for transitions with AA = ±1
without change of spin (only the ^-component of the vector, i.e. Lv has ele-

ments with AA = 0, but L
c

is diagonal with respect to the electron states).

As well as the terms we have considered, there is also a perturbation due

to the fact that the operator of the kinetic energy of the nuclei (i.e. the operator

of differentiation with respect to the co-ordinates of the nuclei) acts, not only

on the wave function of the nuclei, but also on the electron function, which

depends on r as a parameter. The corresponding terms in the Hamiltonian

are of the same symmetry as the unperturbed Hamiltonian. Hence they can

lead only to transitions between electron terms of like symmetry, the prob-

ability of which is negligible in view of the non-intersection of these terms.

Let us go on to the actual calculation of the transition probability. For

definiteness, we shall consider a collision of the second kind. According to

the general formula (43.1), the required probability is given by the expression

2
w

h
= -T /xnuc,2*^)Xnuc,l dy (90.3)

where x =
f'/'nuc ('/w Denlg the wave function of the radial motion of the

nuclei) and V(r) is the perturbing energy; we have taken, as the quantity v in

(43.1), the energy E and integrated with respect to it. The final wave func-

tion Xnuc,2 must be normalised by the delta function of energy. The quasi-

classical function (47.4a), thus normalised, is

*"WiHi/* d'-4 (904)

a,

The normalising factor is determined by the rule given at the end of §21. The

wave function of the initial state can be written in the form

^-^""fi/**-*-}-
(90-5)

It is normalised so that the current density is unity in each of the two travelling

waves into which the stationary wave (90.5) can be resolved; vx and v2 are

the velocities of the relative radial motion of the nuclei. On substituting

these functions in (90.3), we obtain the dimensionless transition probability

w. It can be regarded as the transition probability for the nuclei to pass

twice the point r = r (the point of intersection of the levels). It must be

borne in mind that the wave function (90.5) corresponds, in a certain sense,
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to a double passage through this point, since it contains both the incident and
the reflected travelling waves.

The matrix element of V(r), calculated with respect to the functions
(90.4), (90.5), contains in the integrand a product of cosines, which can be
written in terms of the cosines of the sum and difference of the arguments.
On integrating near the point r = r where the terms intersect, only the
second cosine is important, so that

V(r) dr4
1 f T 1 T ,

1 C lV(r)dr
= id cos t Px dr p2 dr —

The integral rapidly converges as we move away from the point of intersec-
tion. Hence we can expand the argument of the cosine in powers of £ = r—

r

and integrate over £ from — oo to + oo (replacing the slowly varying coeffi-

cient of the cosine by its value at r = r ). Bearing in mind that, at the point
of intersection, px

= p2 , we find

r r

where S is the value of the difference of the integrals at the point r = r .

The derivative of the momentum can be expressed in terms of the force
P= -dU/dr: differentiating the equation p^jlfi+ Ux

= p^jljn+ U2 (where

H is the reduced mass of the nuclei), we have vx dpjdr—v^ dpjdr = ^—F^.
Thus

r r

Jftdr-J
Jf

-pi

p% dr~S9
+-±--e,

2v

where v is the common value of vx and v2 at the point of intersection. The
integration is effected by means of the well-known formula

oo

f cos(a+j8F) d£ = /^cos(a+^r),

and as a result we have

8nV2 /S,
w = cos

hv\F2-Fx \

<r*> (90.6)

The quantity SQjh is large and varies rapidly with the energy E. Hence,
on averaging over even a small interval of energy, the squared cosine can be
replaced by its mean value. As a result we obtain the formula

to = 4t7F2/^|F2-F1 | (90.7)
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(L. Landau 1932). All the quantities on the right-hand side of the equation

are taken at the point of intersection of the potential-energy curves.

In the application to pre-dissociation, we are interested in the probability

of the disintegration of the molecule in unit time. In this time, the nuclei

in their vibrations pass 2(o>/2tt) times through the point r = r (where co is

the angular frequency of the vibrations). Hence the required pre-dissociation

probability is obtained by multiplying w (the probability for a double passage)

by o>/2tt, i.e. it is

IV^lhv^-F^. (90.8)

The following remark must be made concerning these calculations. In

speaking of the intersection of terms, we have had in mind the eigenvalues

of the "unperturbed" Hamiltonian i? of the electron motion in the molecule

;

in this, the terms V which lead to the transitions concerned are not taken into

account. If we include these terms in the Hamiltonian, the intersection of

the terms becomes impossible, and the curves move apart slightly, as shown

in Fig. 3 1 . This follows from the results of §79 when regarded from a slightly

different point of view.

Let UJX(r) and UJ2(r) be two eigenvalues of the operator 3 (in which r

is regarded as a parameter). In the region near the point r where the curves

UJX{r) and Ujz(r) intersect, to determine the eigenvalues U(r) of the perturbed

operator i? +^ we must use the metn°d given in §79, as a result of which

we obtain the formula

u(r) = K^x+^+^n+^iV[K^i-^2+^ii-^22)
2
+l^i2 |

2
];

(90.9)

the matrix elements VUf F"22, F12 , like Uj-^ and UJ2 , are functions of r. The

interval between the two levels is now

At/ = V[(^/l-^/2+^ll-^22)
2+4iri2|2]. (90.10)
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Hence it is clear that, if there are transitions between the two states (i.e. the
matrix element VX2 is not zero), the intersection of the levels disappears. The
least distance between the curves is now

A=2|F12 |.

The formulae obtained above for the transition probability are applicable
only so long as the "divergence" of the curves is fairly small. If the latter
becomes considerable, the transition probability cannot be calculated by
ordinary perturbation theory.

To examine this problem, we use the following method (C. Zener 1932).
Let i/»i, «/r2 be the wave functions of the electron states corresponding to the
"unperturbed" terms Ujx and UJ2 , i.e. these functions are solutions of the
equations

#o^i = Ujifa, fi ip2
= Uj2xft2 .

Let us seek the solution of the perturbed wave equation

iH&P/dt =(# +P)Y

in the form

T = bx{t)^x+b2{t)^2 . (90.11)

Substituting this expression in the wave equation, multiplying the latter

firstly by ip
x and secondly by «/r

2 , and integrating, we obtain two equations
for the functions bx{t) and b2(t):

ihdbjdt = UJxbx+Vb2 , ifrdbjdt = Uj2b2+Vbx ; (90.12)

we here include Vxx , V22 in UJX, UJ2 , and denote VX2 by V(r) simply, in agree-
ment with the notation in the preceding formulae. We consider the motion
of the nuclei quasi-classically. Accordingly, the variables r and * are related

by drjdt = v, where v is the classical velocity of the nuclei.

Near the point r where the curves of Uj^r) and UJ2(r) intersect (shown by
the dashed line in Fig. 31), we can expand Ujx and UJ2 as series of powers of
£ — r—r , writing

VJx = Uj-FJx£, UJ2 = Uj-Fj^ (90.13)

where Uj is the common value of UJX and UJ2 at the point r = r , and we
have introduced the notation Fj = -{dUjldr)u . Introducing also new un-
knowns ax , a% in place of bx , b2 by means of

bx = ajerVmvj, b2
= a2

e-QWuJf
, (90.14)

and replacing the differentiation with respect to t by one with respect to $
(d/dt = t;d/d£), we obtain from equations (90.12)

ihadajdg = -FJx£ai+Va2 , ihv da2/d$ = -Fj2fr2+ Valt (90.15)
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where v and V may be taken with sufficient accuracy to have their values at

the point of intersection.

If we solve equations (90.15) with the boundary condition ax = 1, a% —
as £j -> +oo, then |0i(-oo)| 2 determines the probability that, as the nuclei

pass through the point £ = 0, the molecule remains in the electron state lf

indicating a transition from the curve 12' to the curve 21' (see Fig. 31).

Similarly, \a^- oo)
|

2 = 1- \ax{
- oo)

|

2 is the probability of a transition to the

electron state «^2 , i.e. the probability that the molecule remains on the curve

12'. The transition from curve 1 to curve 2 (as £ -> + oo) in a double passage

through the point of intersection can be effected in two ways: either by

1 -+ V -> 2 (as the nuclei approach, the transition from curve 12' to curve

21' occurs, and as they recede the molecule remains on the curve 21'), or by

1 _> 2' -> 2. Hence the required probability for such a transition is

W =2K(-oo)|*{lH*i(-°°)l
2
}-

We shall not pause here to explain the manner of solution of equations (90.15)

(they reduce to a single equation of the second order, which can be solved by

Laplace's method), but give only the final result :f

(the difference Fj^—F^ is replaced by the equal difference F2—Fx). Thus

w = 2e-2vV^Ft-F^{l—e-2nV^nvlF*-F^}. (90.16)

We see that the probability of the transition in question is small in two

limiting cases, when V is fairly small and fairly large. For V2
<^ hv\F2—Fx \,

formula (90.16) becomes (90.7).

Finally, let us consider the phenomenon, akin to pre-dissociation, of what

are called perturbations in the spectra of diatomic molecules. If two discrete

molecular levels Ex
and E2

corresponding to two intersecting electron terms

are close together, the possibility of a transition between the two electron

states results in a displacement of the levels. According to the general

formula (79.4) of perturbation theory, we have for the displaced levels the

expression

K£i+£2)±V[m-Ezy+\ v12tRUC\*],
(90.17)

where Fi2fnuc is the matrix element of the perturbation for the transi-

tion between the molecular states 1 and 2; the matrix elements Vllnuc and

Voo must, of course, be included in & and E2 . From this formula we see

that the two levels are moved apart, being displaced in opposite directions

(the higher level is raised and the other lowered). The amount of the dis-

placement is the greater, the smaller the difference \EX—E2 \.

The matrix element ri2nuc is calculated in exactly the same way as for

determining the probability of a collision of the second kind. The only

t See C. Zener {Proceedings of the Royal Society A 137, 696, 1932).
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difference is that the wave functions Xnuc§1 and Xnuc2 belong to the discrete
spectrum, and hence must be normalised to unity. ' According to (48.3) we
have for these functions

w ~y;? "fiiJ*
dr-H

A comparison with formulae (90.3) to (90.5) shows that the matrix element
Pi2,nuc nere considered is related to the transition probability w for a double
passage through the point of intersection by

I ^i2,nud
2 = w(^<o1/27r)(^co2/27r). (90.18)

PROBLEMS
Problem 1. Determine the total effective cross-section for collisions of the second kind,

as a function of the kinetic energy E of the colliding atoms, for transitions pertaining to the
spin-orbit interaction.

Solution. On account of the quasi-classical motion of the nuclei, we can introduce the
concept of the impact parameter p (the distance at which the nuclei would pass if there were
no interaction between them) and define the effective cross-section da as the product of the
"target area" 2np dp and the transition probability w(p) per collision, f The total effective
cross-section a is obtained by integrating with respect to p.

For spin-orbit interaction, the matrix element V(r) is independent of the angular momen-
tumM of the colliding atoms. We write the velocity v at the point r = r , where the curves
intersect, in the form

v = ViWME-U-MiptirS)-] = VK2/ix)(E-U-fElr *)].

Here U is the common value of Ux and U2 at the point of intersection, p. is the reduced mass
of the atoms, and the angular momentumM = ppvao, where v«> is the relative velocity of the
atoms at infinity. The zero of energy is chosen so that the interaction energy of the atoms in
the initial state is zero at infinity; then E = ip,vm*. Substituting this expression in (90.7),
we find

8tt2F2 pdp
da = 2vp dp . w =

*l*r-*il V[2(E-U-p*E/r *)lp.]

ust be taken from zero uj

ave

The integration with respect to p must be taken from zero up to the value for which the
velocity v vanishes. As a result we have

HlFt-FJl E

Problem 2. The same as Problem 1, but for transitions pertaining to the interaction be-
tween the rotation of the molecule and its orbital angular momentum.

t Cf. Mechanics, §18.
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Solution. The matrix element V is of the form V(r) = MD\[ir%
, where D(r) is the matrix

element of the electron orbital angular momentum. By the same method as in Problem 1 we

obtain

16V27r2Z>2 (E-U)*'*

3hVn\F*-Fi\ E
'

Problem 3. Determine the transition probability for energies E close to the value Uj

of the potential energy at the point of intersection.

Solution. For small values of E-Uj, formula (90.7) is inapplicable, since the velocity

v of the nuclei cannot be regarded as constant near the point of intersection, and hence it

cannot be taken outside the integral as it was in deriving (90.7).

Near the point of intersection we replace the curves of Uju Ujt by the straight lines (90.13).

The wave functions Xnuc,i and Xn™,2 in this region are wave functions of one-dimensional

motion in a homogeneous field (§24). The calculations are conveniently effected by means

of wave functions in the momentum representation. The wave function normalised by the

delta function of energy is of the form (see §24, Problem)

a9 =
V{2*h\FJz\)

exp \-^ri(E- uj)P~Pz
l6ri

}
•

while the wave function normalised to unit current density in the incident and reflected waves

is obtained by multiplying by \/(2irH)

:

1 (
i

* --^n ex
^\jw-

[{E- Uj)p-pzl6tl]

V\FJi\ WJi
On integrating, the perturbing energy (matrix element) V may again be taken outside the

integral, replacing it by its value at the point of intersection;

°°

2tt\ r
2

to = —\V c^a^dp
h • J

— 00

As a result we obtain

47rF2(2/Li)2 /3̂3 r /2/A 1/3 / 1 1 \
2/3

"l

where $(£) is the Airy function (see §b of the Mathematical Appendices). For large E—Uj,
this formula reduces to (90.7).



CHAPTER XII

THE THEORY OF SYMMETRY

§91. Symmetry transformations

The classification of terms in the polyatomic molecule is fundamentally
related to its symmetry, as in the diatomic molecule. Hence we shall begin
by examining the types of symmetry which a molecule can have.
The symmetry of a body is determined by the assembly of all those re-

arrangements after which the body is unaltered; these rearrangements are
called symmetry transformations. Any possible symmetry transformation can
be represented as a combination of one or more of the three fundamental
types of transformation. These three essentially different types are: the
rotation of the body through a definite angle about some axis, the reflection

of it in some plane, and the parallel displacement of the body over some
distance. Of these, the last evidently is applicable only to an infinite medium
(a crystal lattice). A body of finite dimensions (in particular, a molecule)
can be symmetrical only with respect to rotations and reflections.

If the body is unaltered on rotation through an angle lirjn about some
axis, then that axis is said to be an axis of symmetry of the nth order. The
number n can take any integral value: n = 2, 3, ... . The value n = 1

corresponds to a rotation through an angle of 2n or, what is the same thing,

of 0, i.e. it corresponds to an identical transformation. We shall symbolically

denote by Cn the operation of rotation through an angle 2rt\n about a given
axis. Repeating this operation two, three, ... times, we obtain rotations

through angles 2(2?r/«), 3(27r/«), ... , which also leave the body unaltered;

these rotations may be denoted by Cn2 , Cn3 , .... It is obvious that, if p
divides n,

Cn
p = Cn/P . (91.1)

In particular, performing the rotation n times, we return to the initial position,

i.e. we effect an identical transformation. The latter is customarily denoted

by E, so that we can write

Cn
n = E. (91.2)

If the body is left unaltered by a reflection in some plane, this plane is said

to be a plane of symmetry. We shall denote by the symbol a the operation

of reflection in a plane. It is evident that a double reflection in the same
plane is the identical transformation

:

<r
2 = E. (91.3)

332
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A simultaneous application of the two transformations (rotation and

reflection) gives what are called the rotary-reflection axes. A body has a

rotary-reflection axis of the nth order if it is left unaltered by a rotation

through an angle lirjn about this axis, followed by a reflection in a plane

perpendicular to the axis (Fig. 32). It is easy to see that this is a new form

1

oP

Kl
Fig. 32

of symmetry only when n is even. For, if n is odd, an w-fold repetition of the

rotary-reflection transformation would be equivalent to a simple reflection

in a plane perpendicular to the axis (since the angle of rotation is 2tt, while

an odd number of reflections in the same plane amounts to a simple reflection).

Repeating this transformation a further n times, we have as a result that the

rotary-reflection axis reduces to the simultaneous presence of an axis of

symmetry of the nth order and an independent plane of symmetry perpen-

dicular to this axis. If, however, n is even, an w-fold repetition of the rotary-

reflection transformation returns the body to its initial position.

We denote the rotary-reflection transformation by the symbol Sn .

Denoting by ah a reflection in a plane perpendicular to a given axis, we can

put, by definition,

Sn = Cnch = ahCn \ (91.4)

the order in which the operations Cn and ah are performed clearly does not

affect the result.

An important particular case is a rotary-reflection axis of the second

order. It is easy to see that a rotation through an angle tt, followed by a

reflection in a plane perpendicular to the axis of rotation, is the inversion

transformation, whereby a point P of the body is carried into another point

P', lying on the continuation of the line which joins P to the intersection O
of the axis and the plane, and such that the distances OP and OP' are the same.

A body symmetrical with respect to this transformation is said to have a

centre of symmetry. We shall denote the operation of inversion by /, so that

we have

I=S2
= C2ch .

(91.5)

It is also evident that Iah = C2 , 7C2
= a h \ in other words, an axis of the
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second order, a plane of symmetry perpendicular to it and a centre of sym-
metry at their point of intersection are mutually dependent: if any two of
these elements are present, the third is automatically present also.

We shall now give various purely geometrical properties of rotations and
reflections which it is useful to bear in mind in studying the symmetry of
bodies.

A product of two rotations about axes intersecting at some point is a

rotation about some third axis also passing through that point. A product
of two reflections in intersecting planes is equivalent to a rotation ; the axis

of this rotation is evidently the line of intersection of the planes, while
the angle of rotation is easily seen, by a simple geometrical construction, to

be twice the angle between the two planes. If we denote a rotation through
an angle about an axis by C(<f), and reflections in two planes passing through
that axis by the symbols! av and a' v , the above statement can be written as

av a'v = C(2cf>), (91.6)

where <j> is the angle between the two planes. It must be noted that the order
in which the two reflections are performed is not immaterial. The trans-

formation avo' v gives a rotation in the direction from the plane of a' v to

that of av ; on interchanging the factors we have a rotation in the oppo-
site direction. Multiplying equation (91.6) on the left by av , we obtain

a'v = GvC(2<f>); (91.7)

in other words, the operation of rotation, followed by reflection in a plane

passing through the axis, is equivalent to a reflection in another plane

intersecting the first at half the angle of rotation. In particular, it follows

from this that an axis of symmetry of the second order and two mutually
perpendicular planes ofsymmetry passing through it are mutually dependent

;

if two of them are present, so is the third.

We shall show that the product of rotations through an angle tt about two
axes intersecting at an angle

<f>
(Oa and Ob in Fig. 33) is a rotation through

p'

Fig. 33

"f The suffix v customarily denotes a reflection in a plane passing through a given axis (a "vertical'

plane), and the suffix h a reflection in a plane perpendicular to the axis (a "horizontal" plane).
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an angle 2^ about an axis perpendicular to the first two (PP' in Fig. 33).

For it is obvious that the resulting transformation is also a rotation; after

the first rotation (about Oa) the point P is carried into P', and after the second

(about Ob) it returns to its original position. This means that the line PPr

remains fixed, and is therefore an axis of rotation. To determine the angle

of rotation, it is sufficient to note that, in the first rotation, the axis Oa

remains fixed, while after the second it takes the position Oa\ which makes

an angle 24 with Oa. In the same way we can see that, when the order of the

two transformations is reversed, we obtain a rotation in the opposite direction.

Although the result of two successive transformations in general depends

on the order in which they are performed, in some cases the order of opera-

tions is immaterial : the transformations commute. This is so for the following

transformations

:

(1) Two rotations about the same axis.

(2) Two reflections in mutually perpendicular planes (equivalent to a

rotation through it about their line of intersection).

(3) Two rotations through rr about mutually perpendicular axes (equivalent

to a rotation through -it about the third perpendicular axis).

(4) A rotation and a reflection in a plane perpendicular to the axis of

rotation.

(5) Any rotation or reflection and an inversion with respect to a point

lying on the axis of rotation or in the plane of reflection; this follows

from (1) and (4).

§92. Transformation groups

The set of all the symmetry transformations for a given body is called its

symmetry transformation group (or simply its symmetry group). Hitherto we
have spoken of these transformations as geometrical rearrangements of the

body. However, in quantum-mechanical applications it is more convenient

to regard symmetry transformations as transformations of the co-ordinates

which leave the Hamiltonian of the system in question invariant. It is obvious

that, if the system is left unaltered by some rotation or reflection, the cor-

responding transformation does not change its Schrodinger's equation.

Thus we shall speak of a transformation group with respect to which a given

Schrodinger's equation is invariant.!

f This point of view enables us to include in our considerations not only the rotation and reflection

groups discussed here, but also other types of transformation which leave Schrodinger's equation

unaltered. These include the interchange of the co-ordinates of identical particles forming part of the

system considered (a molecule or atom). The set of all possible permutations of identical particles

in a given system is called its permutation group (we have already met these permutations in §63).

The general properties of groups given below apply to permutation groups also; we shall not pause

to study this type of group in more detail here.

The following remark should be made concerning the notation which we use in this chapter. Sym-
metry transformations are essentially operators just like those which we consider all through the book

(in particular, we have already considered the inversion operator in §30). They ought, therefore, to

be denoted by letters with circumflexes. We do not do this, in view of the generally accepted notation,

and because this omission cannot lead to misunderstandings in the present chapter. For the same
reason we denote the identical transformation by the customary symbol E, and not by 1, which would
correspond to the notation in the other chapters.
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Symmetry groups are conveniently studied with the help of the general

mathematical techniques of what is called group theory, the fundamentals of

which we shall explain below. At first we shall consider groups, each of which
contains a finite number of transformations (known as finite groups). Each of

the transformations forming a group is said to be an element of the group.

Symmetry groups have the following important properties. Each group
contains the identical transformation E (called the unit element of the group).

The elements of a group can be "multiplied" by one another; by the product

of two (or more) transformations we mean the result of applying them in

succession. It is obvious that the product of any two elements of a group is

also an element of that group. For the multiplication of elements we have
the associative law (AB)C — A(BC), where A, B, C are elements of a group.

There is evidently no general commutative law; in general, AB ^ BA.
For each element A of a group there is in the same group an inverse element

A-1 (the inverse transformation), such that AA~X = E. In some cases an
element may be its own inverse ; in particular, E_1 = E. It is evident that

mutually inverse elements A and A-1 commute.
The element inverse to the product AB of two elements is

(AB)-1 = Br*-A~\

and similarly for the product of a greater number of elements ; this is easily

seen by effecting the multiplication and using the associative law.

If all the elements of a group commute, the group is said to be Abelian.

A particular case of Abelian groups is formed by what are called cyclic groups.

By a cyclic group we mean a group, all of whose elements can be obtained by
raising one of them to successive powers, i.e. a group consisting of the

elements

A, A\ A\ ... , An = E,

where n is some integer.

Let G be some group.f If we can separate from it some set of elements

H such that the latter is itself a group, then the group H is called a sub-group

of the group G. A given element of a group may appear in several of its

sub-groups.

By taking any element A of a group and raising it to successive powers,

we finally obtain the unit element (since the total number of elements in the

group is finite). If n is the smallest number for which An = E, then n is

called the order of the element A, and the set of elements A, A2
, ... , An = E

is called the period of A. The period is denoted by {A} ; it is itself a group, i.e.

it is a sub-group of the original group, and is cyclic.

In order to find whether a given set of elements of a group is a sub-group

of it, it is sufficient to find whether, on multiplying any two of its elements,

we obtain another element of the set. For in that case we have, together with

t We shall denote groups by bold italic letters.
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each element A, all its powers, including An~x (where n is the order of A),

which is the inverse of A (since An~x A = An = E); and there will obviously

be a unit element.

The total number of elements in a group is called its order. It is easy

to see that the order of a sub-group is a factor of the order of the whole group.

To show this, let us consider a sub-group H of a group G, and let Gx be

some element of G which does not belong to H. Multiplying all the elements

of H (on the right, say) by Gly we obtain a set (or complex, as it is called)

of elements, denoted by HGX . All the elements of this complex clearly belong

to the group G. However, none of them belongs to H; for, if for any two

elements Ha , Hb belonging to H we had HaGx
= Hb, it would follow that

Gx
= Ha

~xHb , i.e. Gx would also belong to the sub-group H, which is

contrary to hypothesis. Similarly we can show that, if G2 is an element of G
not belonging to H or to HGX , none of the elements of the complex HG2

will belong to H or to HGV Continuing this process, we finally exhaust

all the elements contained in the finite group G. Thus all the elements are

divided among the complexes

H, HGlt HG2 , ... , HGm
(where m is some integer), each of which contains h elements, h being the

order of the sub-group H. Hence it follows that the order g of the group G
is g = km, and this proves the theorem.

If the order of a group is a prime number, it follows at once from the

above that the group has no sub-groups (except itself and E). The converse

theorem is also valid: a group having no sub-groups is of prime order and in

addition must be cyclic (since otherwise it would contain elements whose

period would form a sub-group).

We shall now introduce the important concept of conjugate elements. Two
elements A and B are said to be conjugate if

A = CBC-1
,

where C is also an element of the group ; multiplying this equation on the

right by C and on the left by C_1
, we have the converse equation B = C~XAC.

An important property of conjugate elements is that, if A is conjugate to B,

and B to C, then A is conjugate to C; for, if B = P-XAP, C = Q~XBQ
(P and Q being elements of the group), it follows that C = (P0~M(P0.
For this reason we can speak of sets of conjugate elements of a group.

Such sets are called classes of the group. Each class is completely determined

by any one element A of it ; for, given A, we obtain the whole class by forming

the products GAG~X
, where G is successively every element of the group

(of course, this may give each element of the class several times). Thus we
can divide the whole group into classes ; each element of the group can clearly

appear in only one class. The unit element of the group is a class by itself,

since for every element of the group GEG~X = E. If the group is Abelian,

each of its elements is a class by itself; since all the elements, by definition,
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commute, each element is conjugate only to itself. We emphasise that a

class of a group (not being E) is not a sub-group of it; this is evident from the

fact that it does not contain a unit element.

All the elements of a given class are of the same order. For, if n is the

order of the element A (so that An = E), then for a conjugate element

B = CMO1 we have {CAC-X
)
n = CA»C~X =* E.

Let H be a sub-group of G, and Gx an element of G not belonging to H.

It is easy to see that the set of elements GiHG-f1 has all the properties of a

group, i.e. it also is a sub-group of the group G. The sub-groups H and
GxHG-f

x are said to be conjugate; each element of one is conjugate to one
element of the other. By giving Gt various values, we obtain a series of

conjugate sub-groups, which may partly coincide. It may happen that all

the sub-groups conjugate to H are H itself. In this case H is called a normal

divisor of the group G. Thus, for example, every sub-group of an Abelian

group is clearly a normal divisor of it.

Let us consider a group A with n elements A, A', A", ... , and a group
B with m elements B, B', B", ... , and suppose that all the elements of A
(apart from the unit E) are different from those of B but commute with

them. If we multiply every element of group A by every element of group B,

we obtain a set of nm elements, which also form a group. For, for any two
elements of this set we have AB . A'B' = AA' . BB' = A"B", i.e. another

element of the set. The group of order nm thus obtained is denoted by
A xB, and is called the direct product of the groups A and B.

Finally, we shall introduce the concept of the isomorphism of groups.

Two groups A and B of the same order are said to be isomorphous if we can

establish a one-to-one correspondence between their elements, such that, if

the element B corresponds to the element A, and B' to A', then B" = BB'
corresponds to A" = AA' . Two such groups, considered in the abstract,

clearly have identical properties, though the actual meaning of their elements

may be different.

§93. Point groups

Transformations which appear in the symmetry group of a body of finite

dimensions (in particular, a molecule) must be such that at least one point of

the body remains fixed when any of these transformations is applied. In

other words, all axes and planes of symmetry of a molecule must have at least

one common point of intersection. For a successive rotation of the body

about two non-intersecting axes or a reflection in two non-intersecting planes

results in a translation of the body, which obviously cannot then be left

unaltered. Symmetry groups having the above property are calledpointgroups.

Before going on to construct the possible types of point group, we shall

explain a simple geometrical procedure whereby the elements of a group may
be easily divided into classes. Let Oa be some axis, and let the element A
of the group be a rotation through a definite angle about this axis. Next, let G
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be a transformation (rotation or reflection) in the same group, which on being

applied to the same axis Oa carries it to the position Ob. We shall show that

the element B = GAG'1 then corresponds to a rotation about the axis Ob

through the same angle as that of the rotation about Oa to which the element

A corresponds. For, let us consider the effect of the transformation GAG'1

on the axis Ob itself. The transformation G_1 inverse to G carries the axis

Ob to the position Oa, so that the subsequent rotation A leaves it in this

position; finally, G carries it back to its initial position. Thus the axis Ob
remains fixed, so that B is a rotation about this axis. Since A and B belong

to the same class, their orders are the same; this means that they effect

rotations through the same angle.

Thus we reach the result that two rotations through the same angle belong

to the same class if there is, among the elements of the group, a transformation

whereby one axis of rotation can be carried into the other. In exactly the same

way, we can show that two reflections in different planes belong to the same

class if some transformation in the group carries one plane into the other.

The axes or planes of symmetry whose directions can be carried into each

other are said to be equivalent.

Some additional comments are necessary in the case where both rotations

are about the same axis. The element inverse to the rotation Cnk (k =
1, 2, ... , n— 1) about an axis of symmetry of the «th order is the element

Cn
~k = Cnn

~k
, i.e. a rotation through an angle (n—k)2irjn in the same

direction or, what is the same thing, a rotation through an angle 2hn\n in

the opposite direction. If, among the transformations in the group, there is

a rotation through an angle it about a perpendicular axis (this rotation reverses

the direction of the axis under consideration), then, by the general rule

proved above, the rotations Cnk and Cn
~k belong to the same class. A

reflection an in a plane perpendicular to the axis also reverses its direction

;

however, it must be borne in mind that the reflection also changes the direction

of rotation. Hence the existence of ah does not render Cnk and Cn
~k conju-

gate. A reflection <jv in a plane passing through the axis, on the other hand,

does not change the direction of the axis, but changes the direction of rota-

tion, and therefore Cn
~k = ovCnkcrv , so that Cnk and Cn

~k belong to the same

class if such a plane of symmetry exists. If rotations about an axis through the

same angle in opposite directions are conjugate, we shall call it bilateral.

The determination of the classes of a point group is often facilitated by the

following rule. Let G be some group not containing the inversion /, and Ci

a group consisting of the two elements / and E. Then the direct product

G x Ci
is a group containing twice as many elements as G ; half ofthem are the

same as the elements of the group G, while the remainder are obtained by

multiplying the latter by /. Since / commutes with any other transformation

of a point group, it is clear that the group GxCt
contains twice as many

classes as G ; to each class A of the group G there correspond the two classes

A and AI in the group G x Ct
. In particular, the inversion I always forms

a class by itself.
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Let us now go on to enumerate all possible point groups. We shall con-
struct these by starting from the simplest ones and adding new elements of

symmetry. We shall denote point groups by bold italic Latin letters with

appropriate suffixes.

!• cn groups

The simplest type of symmetry has a single axis of symmetry of the wth

order. The group Cn is the group of rotations about an axis of the nth order.

This group is evidently cyclic. Each of its n elements forms a class by itself.

The group Cx contains only the identical transformation E, and corresponds

to the absence of any symmetry.

U- szn groups

The group S2n is the group of rotary-reflections about a rotary-reflection

axis of even order 2n. It contains 2n elements and is evidently cyclic. In

particular, the group S2 contains only two elements, E and /; it is also denoted

by C^ We may note also that, if the order of a group is a number of the form
2n = 4^+2, inversion is among its elements; it is clear that (S4p+2)

2p+1

= C2 ah = I. Such a group can be written as a direct product S^p+2 — C2p+1
xCt ; it is also denoted by C2p+1 4 .

In » cnh groups

These groups are obtained by adding to an axis of symmetry of the «th

order a plane of symmetry perpendicular to it. The group Cnh contains

2m elements: n rotations of the group Cn and n rotary-reflection trans-

formations Cnkah , k = 1, 2, ... , n (including the reflection Cnnah = ah).
All the elements of the group commute, i.e. it is Abelian; the number of

classes is the same as the number of elements. If n is even (n = 2p), the group
contains a centre of symmetry (since C2ppah = C2ah = /). The simplest

group, Clh , contains only two elements, E and ah \ it is also denoted by Cs .

IV - cnv groups

If we add to an axis of symmetry of the «th order a plane of symmetry
passing through it, this automatically gives another n— 1 planes intersecting

along the axis at angles of 7r/«, as follows at once from the geometrical

theoremf (91.7) stated in §91. The group Cnv thus obtained therefore con-

tains 2« elements : n rotations about the axis of the «th order, and n reflections

av in vertical planes. Fig. 34 shows, as an example, the systems of axes and

planes of symmetry for the groups C3V and Civ .

To determine the classes, we notice that, because of the presence of planes

of symmetry passing through the axis, the latter is bilateral. The actual

distribution of the elements among the classes depends on whether n is

even or odd.

f It is easy to see that, in a finite group, there cannot be two planes of symmetry intersecting at an
angle which is not a rational fraction of 2w. If there were two such planes, it would follow that there

were an infinite number of other planes of symmetry, intersecting along the same line and obtained by
reflecting one plane in the other ad infinitum. In other words, if there are two such planes, there must
be complete axial symmetry.
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If n is odd (n = 2/>+ l), successive rotations C2p+1 carry each of the

planes successively into each of the other 2p planes, so that all the planes of

symmetry are equivalent, and the reflections in them belong to a single class.

Among rotations about the axis there are 2p operations apart from the identity,

and these are conjugate in pairs, forming p classes each of two elements

(C2p+i
fc and C2p+rk

, k = 1, 2, ... ,p); moreover, E forms an extra class.

Thus there arep+2 classes altogether.

X
l/Sl

^

C4¥

Fig. 34

If, on the other hand, n is even (n = 2p), only every alternate plane can

be interchanged by successive rotations C2p ; two adjacent planes cannot be

carried into each other. Thus there are two sets of p equivalent planes, and

accordingly two classes of p elements (reflections) each. Of the rotations

about the axis, C2p2p = E and C2pv = C2 each form a class by themselves,

while the remaining 2p—2 rotations are conjugate in pairs and give another

p— 1 classes, each of two elements. The group C2p „ thus has />+3 classes

altogether.

V. Dn groups

If we add to an axis of symmetry of the nth order an axis of the second

order perpendicular to it, this involves the appearance of a further n— 1

such axes, so that there are altogether n horizontal axes of the second order,

intersecting at angles irjn. The resulting group Dn contains 2n elements:

n rotations about an axis of the nth order, and n rotations through an angle

77 about horizontal axes (we shall denote the latter by U2 > reserving the notation

C2 for a rotation through an angle it about a vertical axis). Fig. 34 shows, as

an example, the systems of axes for the groups D3 and D4 .

In an exactly similar manner to case IV, we may verify that the axis of the

nth order is bilateral, while the horizontal axes of the second order are all

equivalent if n is odd, or form two non-equivalent sets if n is even. Con-

sequently, the group D2p has the following/)+3 classes: E, 2 classes each of

p rotations U2, the rotation C2, and p— 1 classes each of two rotations about

the vertical axis. The group D2p+1, on the other hand, has p+2 classes:

E, 2p+ 1 rotations C/2, and p classes each of two rotations about the vertical

axis.
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An important particular case is the group D2 . Its system of axes is

composed of three mutually perpendicular axes of the second order. This

group is also denoted by V.

VI - Dnh groups

If we add to the system of axes of a group Dn a horizontal plane of sym-
metry passing through the n axes of the second order, n vertical planes

automatically appear, each of which passes through the vertical axis and one

of the horizontal axes. The group Dnh thus obtained contains 4« elements;

besides the 2n elements of the group Dn , it contains also n reflections av

and n rotary-reflection transformations Cnkah . Fig. 35 shows the system

of axes and planes for the group D3h .

^
h^V

1/\J

u3h

The reflection ah commutes with all the other elements of the group;

hence we can write Dnh as the direct product Dnh = DnxCs , where C
s
is

the group consisting of the two elements E and ah . For even n the inversion

operation is among the elements of the group, and we can also write

D
2j>,fc

= Z>
23,xCV

Hence it follows that the number of classes in the group Dnh is twice the

number in the group Dn . Half of them are the same as those of the group

Dn (rotations about axes), while the remainder are obtained by multiplying

these by ah . The reflections av in vertical planes all belong to a single class

(if n is odd) or form two classes (if n is even). The rotary-reflection trans-

formations ahCnk and ahCn
~k are conjugate in pairs.

VI1 - Dnd groups

There is another way of adding planes of symmetry to the system of axes

of the group Dn . This is to draw vertical planes through the axis of the nth

order, midway between each adjacent pair of horizontal axes of the second

order. The adding of one such plane again involves the appearance of another

(»— 1) planes. The system of axes and planes of symmetry thus obtained

determines the group Dnd . Fig. 35 shows the axes and planes for the groups

D2d andD3d .
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The group Dnd contains An elements. To the 2« elements of the group

Dn are added n reflections in the vertical planes (denoted by a d—the "diago-

nal" planes) and n transformations of the form G = U2a d . In order to

ascertain the nature of these latter, we notice that the rotation U2 can, by

(91.6), be written in the form U2
= ahav , where av is a reflection in the verti-

cal plane passing through the corresponding axis of the second order. Then

G = anava d (the transformations a v , ah alone are not, of course, among

the elements of the group). Since the planes of the reflections av and a d

intersect along an axis of the wth order, forming an angle (2&+l)7r/2w,

where &=l,...,(n— 1) (since here the angle between adjacent planes is

tt/2w), it follows that, by (91.6), we have ava d = C2n2k+1 . Thus we find that

G = ahC2n2k+1 = S2n2k+1 , i.e. these elements are rotary-reflection trans-

formations about the vertical axis, which is consequently not a simple axis

of symmetry of the nth. order, but a rotary-reflection axis of the 2»th order.

The diagonal planes reflect two adjacent horizontal axes of the second

order into each other ; hence, in the groups under consideration, all axes of

the second order are equivalent (for both even and odd n). Similarly, all

diagonal planes are equivalent. The rotary-reflection transformations

S2n2k+1 and S2n~2k
~1 are conjugate in pairs.f

Applying these considerations to the group D2p d, we find that it contains

the following 2p+3 classes: E, the rotation C2 about the axis of the nth

order, (p— 1) classes each of two conjugate rotations about the same axis,

one class of the 2p rotations U2 , one class of 2p reflections a d , and^ classes

each of two rotary-reflection transformations.

For odd n (= 2p+\), inversion is among the elements of the group; this

is seen from the fact that, in this case, one of the horizontal axes is perpen-

dicular to a vertical plane. Hence we can write D2p+ld = D2p+1 xCit

so that the group D2p+1 d contains 2p+4 classes, which are obtained at

once from the p+2 classes of the group D2p+1.

VIII. The group T (the tetrahedron group)

The system of axes of this group is the system of axes of symmetry of a

tetrahedron. It can be obtained by adding to the system of axes of the group

V four oblique axes of the third order, rotations about which carry the three

axes of the second order into one another. This system of axes is conveniently

represented by showing the three axes of the second order as passing through

the centres of opposite faces of a cube, and those of the third order as the

spatial diagonals of the cube. Fig. 36 shows the position of these axes in a

cube and in a tetrahedron (one axis of each type is shown).

The three axes of the second order are mutually equivalent. The axes of

the third order are also equivalent, since they are carried into one another by

f For we have

"A*1**1
** = WV**1

** = WV*«<r, = a/An"2*-1 = s2n
-2*-i
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Fig. 36

the rotations C2 , but they are not bilateral axes. Hence it follows that the

twelve elements in the group T are divided into four classes : E, the three

rotations C2 , the four rotations C3 and the four rotations C3
2

.

IX. The group T d

This group contains all the symmetry transformations of the tetrahedron.

Its system of axes can be obtained by adding to the axes of the group T planes

of symmetry, each of which passes through one axis of the second order and

two of the third order. The axes of the second order thereby become rotary-

reflection axes of the fourth order (as in the case of the group D2d). This

system is conveniently represented by showing the three rotary-reflection

axes as passing through the centres of opposite faces of a cube, the four

axes of the third order as its spatial diagonals, and the six planes of symmetry
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as passing through each pair of opposite edges (Fig. 37 shows one of each

kind of axis and one plane).

Since the planes of symmetry are vertical with respect to the axes of the

third order, the latter are bilateral axes. All the axes and planes of a given

kind are equivalent. Hence the 24 elements of this group are divided into

the following five classes: E, eight rotations C3 and C3
2

, six reflections in

planes, six rotary-reflection transformations 54 and 54
3

, and three rotations

C — S 2

X. The group Th

This group is obtained from T by adding a centre of symmetry: Th

= TxCp As a result, three mutually perpendicular planes of symmetry

appear, passing through each pair of axes of the second order, and the axes of

the third order become rotary-reflection axes of the sixth order (Fig. 38

shows one of each kind of axis and one plane).

/
' A

'A

(~\-

K
n__

7

7
4-^

V-j,'
Fig. 38

The group contains 24 elements divided among eight classes, which are

obtained at once from those of the group T.

XI. The group O (the octahedron group)

The system of axes of this group is the system of axes of symmetry of a

cube: three axes of the fourth order pass through the centres of opposite
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faces, four axes of the third order through opposite corners, and six axes of the

second order through the midpoints of opposite edges (Fig. 39).

It is easy to see that all the axes of a given order are equivalent, and each

of them is bilateral. Hence the 24 elements are divided among the following

five classes: E, eight rotations C3 and C3
2

, six rotations C4 and C4
3

, three

rotations C4
2 and six rotations C2 .

XII. The group O h

This is the group of all symmetry transformations of the cube.f It is

obtained by adding to the group O a centre of symmetry: O h = OxC^
The axes of the third order in the group O are thereby converted into rotary-

reflection axes of the sixth order (the spatial diagonals of the cube); in

addition, another six planes of symmetry appear, passing through each pair

of opposite edges, and three planes parallel to the faces of the cube (Fig.

40). The group contains 48 elements divided among ten classes, which

Fig. 40

can be at once obtained from those of the group O ; five classes are the same

as those of the group O, while the remainder are : /, eight rotary-reflection

transformations S6 and 56
5
, six rotary-reflection transformations C^a^

C4
3ah about axes of the fourth order, three reflections ah in planes horizontal

with respect to the axes of the fourth order, and six reflections a v in planes

vertical with respect to these axes.

XIII, XIV. The groups Y, Yh {the icosahedron groups)

These groups are of no physical interest, since they do not occur in

Nature as symmetry groups of molecules. Hence we shall here only mention

that Y is a group of 60 rotations about the axes of symmetry of the icosa-

hedron (a regular solid with twenty triangular faces) or of the pentagonal

dodecahedron (a regular solid with twelve pentagonal faces); there are six

axes of the fifth order, ten of the third and fifteen of the second. The group

Yh is obtained by adding a centre of symmetry: Yh = YxCit and is the

f The groups T, Td, Th, O, 0% are often called cubic.
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complete group of symmetry transformations of the above-mentioned poly-

hedra.

This exhausts all possible types of point group containing a finite number

of elements. In addition, we must consider what are called continuous point

groups, which contain an infinite number of elements. This we shall do in

§98.

§94. Representations of groups

Let us consider any symmetry group, and let fa be some one-valued func-

tion of the co-ordinates."}* Under the transformation of the co-ordinate

system which corresponds to an element G of the group, this function is

changed into some other function. On performing in turn all the g transfor-

mations in the group {g being the order of the group), we in general obtain

g different functions from fa. For certain fa, however, some of these functions

may be linearly dependent. As a result we obtain some number f(<g) of

linearly independent functions fa, fa, ... , ifjf , which are transformed into

linear combinations of one another under the transformations belonging to

the group in question. In other words, as a result of the transformation G,

each of the functions fa (i = 1, 2, 3, ... ,/) is changed into a linear combina-

tion of the form

where the Gik are constants depending on the transformation G. The array

of these constants is called the matrix of the transformation.J
In this connection it is convenient to regard the elements G of the group

as operators acting on the functions tft^ so that we can write

* = S«; (94.1)

the functions fa can always be chosen so as to be orthonormal. Then the

concept of the matrix of the transformation is the same as that of the matrix

of the operator, in the form defined in §11:

Gik =jfa*Gfadq. (94.2)

To the product of two elements G and H of the group there corresponds

the matrix obtained from the matrices of G and H by the ordinary rule

of matrix multiplication (11.12):

{GH)ik = ZGaHlk . (94.3)

The set of matrices of all the elements in a group is called a representation

t In the configuration space of the physical system concerned.

t Since the functions i[n are assumed one-valued, a definite matrix corresponds to each element of
the group.
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of the group. The functions tf/1} ... , tf/f
with respect to which these matrices

are defined are called the basis of the representation. The number/ of these

functions gives what is called the dimension of the representation.

Let us consider the integral j \ip\
2 dq, where \\s is some function of the

co-ordinates. Since the integral is taken over all space, it is evident that

its value is unchanged by any rotation or reflection of the co-ordinate system.

Hence, for any symmetry transformation G, we can write

f (0*<P*)(OiJj) dq = f 0*0 dq.

Introducing the transposed operator 0, we have

f (0*ift*)(Otf>) dq = ! 0(5(5*0* dq = ! 0*0 dq,

whence, from the fact that is arbitrary, it follows that 00* = 1, or

0* = 0~\

i.e., the operators are unitary.

Thus a representation of a symmetry group in terms of orthonormal

base functions is unitary, i.e. the group is represented by unitary matrices.

Suppose that we perform on the system of functions 0i, . .
. , 0/ the linear

unitary transformation
0'

f =£0*. (94.4)

This gives a new system of functions 0'i, . .
. ,

0'/, which are also orthonormal

(see §12).| If we now take, as the basis of the representation, the functions

ifj'i, we obtain a new representation of the same dimension. Such representa-

tions, obtained from one another by a linear transformation of their base

functions, are said to be equivalent ; it is evident that they are not essentially

different.

The matrices of equivalent representations can be simply expressed in terms

of one another. According to (12.7), the matrix of the operator in the new
representation is the matrix of the operator

0' =S-iO§ (94.5)

in the old representation.

The sum of the diagonal elements (i.e. the trace) of the matrix representing

an element G of a group is called its character; we shall denote it by x(G).

It is a very important result that the characters of the matrices of equivalent

f It may also be noted that the unitary transformation leaves invariant the sum of the squared

moduli of the functions: using (12.6), we have

E|0' i\
2 =

J

ZSktfaSlifp

= S^i0i«8jM = S|$t| 2
.
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representations are the same (see the end of §12). This circumstance gives

particular importance to the description of group representations by stating

their characters: it enables us to distinguish at once the fundamentally

different representations from those which are equivalent. Henceforward

we shall regard as different representations only those which are not

equivalent.

If we take 5 in (94.5) to be that element of the group which relates the

conjugate elements G and G', we have the result that, in any given represen-

tation of a group, the characters of the matrices representing elements of the

same class are the same.

The identical transformation corresponds to the unit element E of the

group. Hence the matrix representing the latter is diagonal in every represen-

tation, and the diagonal elements are unity. The character x(E) is con-

sequently just the dimension of the representation

:

X(E) =/• (94.6)

Let us consider some representation of dimension/. It may happen that,

as a result of a suitable linear transformation (94.4), the base functions

divide into sets of fvf2 ,
... functions (/i4-/a+- =/)> in such a way that,

when any element of the group acts on them, the functions in each set are

transformed only into combinations of themselves, and do not involve

functions from other sets. In such a case the representation in question is

said to be reducible.

If, on the other hand, the number of base functions that are transformed

only into combinations of themselves cannot be reduced by any linear trans-

formation of them, the representation which they give is said to be irreducible.

Any reducible representation can, as we say, be decomposed into irreducible

ones. This means that, by the appropriate linear transformation, the base

functions divide into several sets, of which each is transformed by some

irreducible representation when the elements of the group act on it. Here

it may be found that several different sets transform by the same irreducible

representation; in such a case this irreducible representation is said to be

contained so many times in the reducible one.

Irreducible representations are an important characteristic of a group, and

play a fundamental part in all quantum-mechanical applications of group

theory. We shall give the chief properties of irreducible representations.f

It may be shown that the number of different irreducible representations

of a group is equal to the number r of classes in the group. We shall distin-

guish the characters of the various irreducible representations by indices

;

the characters of the matrices of the element G in the representations are

xd)(G), X <2>(G), ... , X <->(G).

t The proof of these properties may be found in books on group theory, for example E. Wigner,

Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra, Academic Press,

New York 1959 (Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren,

Vieweg, Brunswick 1931); H. Weyl, The Theory of Groups and Quantum Mechanics, Methuen,

London 1931.
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The matrix elements of irreducible representations satisfy a number of ortho-

gonality relations. First of all, for two different irreducible representations

the relations

SGW
ttGW>Im*=0 (94.7)

hold, where a and /J (a # j8) refer to the two irreducible representations, and the

summation is taken over all the elements of the group. For any irreducible

representation the relations

|GW=^A,» (94.8)

Ja.

hold, i.e. only the sums of the squared moduli of the matrix elements are not

zero:

§|G<«y 2 =£//a .

The relations (94.7), (94.8) can be combined in the form

S &«\kGV»lm* = fs^Am- (94.9)

JOL

In particular, we can obtain from this an important orthogonality relation

for the characters of the representations. Summing both sides of equation

(94.9) over equal values of the suffixes i, k and /, m, we have

S x(«)(G)x^(G)*=^Sa/? . (94.10)

For a = j8 we have

glx
(a,

(G)l
2 =£,

i.e. the sum of the squared moduli of the characters of an irreducible represen-

tation is equal to the order of the group. We may notice that this relation

can be used as a criterion of the irreducibility of a representation; for a

reducible representation, this sum is always greater than g (it is ng, where n

is the number of irreducible representations contained in the reducible

one).

It also follows from (94.10) that the equality of the characters of two

irreducible representations is not only a necessary but also a sufficient con-

dition for them to be equivalent.

Since the characters of elements of the same class are equal, the sum
(94.10) actually contains only r independent terms, and can be written in

the form

^gcx^{C)X^{C)*=go^ (94.11)
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where the summation is over the r classes of the group (arbitrarily denoted

by C) and^c is the number of elements in class C.f

The relation (94.10) enables any reducible representation to be very easily

decomposed into irreducible ones if the characters of both are known. Let

x(G) be the characters of some reducible representation of dimension /,

and let the numbers a (1)
, a {2)

, ... , a {r) indicate how many times the corres-

ponding irreducible representations are contained in it, so that

£ d% =/, (94.12)
p-i

where fp are the dimensions of the irreducible representations. Then the

characters x(G) can be written

X(G) = 2 a^x^(G). (94.13)
p -l

Multiplying this equation by x
(a)(^)* an& summing over all G, we have by

(94.10)
i

a*">=-Sx(G)x(«>(G)*. (94.14)

§
°

Let us consider a representation of dimension f— g, given by the g
functions 0$, tft being some general function of the co-ordinates (so that

all the g functions Oi/j obtained from it are linearly independent); such a

representation is said to be regular. It is clear that none of the matrices of

this representation will contain any diagonal elements, with the exception of

the matrix corresponding to the unit element ; hence x(G) = for G =£ E,

while x{E) = S- Decomposing this representation into irreducible ones, we

have for the numbers a^\ by (94.14), the values a™ = (llg)gf
(0L) =/(a)

,
i.e.

each irreducible representation is contained in the reducible one under

consideration as many times as its dimension. Substituting this in (94.12),

we find the relation

/i
2+/2

2+...+/r
2
=iT, (94-15)

the sum of the squared dimensions of the irreducible representations of a

group is equal to its order.J Hence it follows, in particular, that for Abelian

groups (where r = g) all the irreducible representations are of dimension one

(/i=/a = ..•= /,= !)•

t Since the number of irreducible representations is equal to the number of classes, the quantities

fac = \/(<gclg)x^XC) form a square matrix of r2 quantities.

The orthogonality relations for the first suffix (2/ac//3c* = Sa/3) then automatically give those for

the second suffix: S/ac/ac'* = hcc'. Hence, besides (94.11), we have

Sx (a)(C)x(a)(C")* = — Sec-. (94.11a)
a gc

% It may be mentioned that, for point groups, equation (94.15) for given r and g can in practice

be satisfied in only one way by a set of integers

/

1( ... ,/r .
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We may also remark, without proof, that the dimensions of the irreducible

representations of a group divide its order.

Among the irreducible representations of any group there is always a

trivial one, given by a single base function invariant under all the trans-

formations in the group. This one-dimensional representation is called the

unit representation ; in it, all the characters are unity.

Let us consider two different systems of functions $t
(a)

, ... , if)f
(a) and

ti^K ... , "A/g^, which form two irreducible representations of a group.

By forming the products «A<
(a)

«/'jfc

(/?) we obtain a system offafp new functions,

which can serve as the basis for a new representation of dimension fufp.
This representation is called the direct product of the other two; it is irreduc-

ible only iffa orfp is unity. It is easy to see that the characters of the direct

product are equal to the products of the characters of the two component
representations. For, if

I m

then

hence we have for the characters, which we denote by (x^Xx^X^D*

(x
(a)
Xx^)(<?) = xgjcog^ = 2 G w s Gtt(0,

i.e.

(x
«*)Xx(/?))(G) = x

m(G)x^(G). (94.16)

The two irreducible representations so multiplied may, in particular, be
the same; in this case we have two different sets of functions if/ly ... , iftf

and
<f)x , ... ,

<f)f giving the same representation, while the direct product of

the representation with itself is given by the f2 functions ifti<f>k , and has the

characters

(xXxXG) = b((G)]
2

-

This reducible representation can be at once decomposed into two represen-

tations of smaller dimension (although these are, in general, themselves

reducible). One of them is given by the i/(/+l) functions ^&+^a;<^> the

other by the \f{f— 1) functions 0^&— «Afc<^, i ¥= k; it is evident that the func-

tions in each of these sets are transformed only into combinations of them-
selves. The former is called the symmetric product of the representation with

itself, and its characters are denoted by the symbol [x
2J(G);the latter is

called the antisymmetric product, and its characters are denoted by {x
2
}
(G).

To determine the characters of the symmetric product, we write

G(rpi<f>k+*pk$i) =£ GMGr

?nfc
(j/f,^m+^tn^J)

= I ^(GuGrnk+GmiGt^ifiicfin+tfimfa).
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Hence we have for the character

[X
2](G) = \ §(<?«<?»+<?*<?«).

But S(?w =x(G), and £ GikGki = x(G2
) ; thus we finally obtain the

formula

\X*](G) = ttbc(G)?+x(G*)}> (94.17)

which enables us to determine the characters of the symmetric product of a

representation with itself from the characters of the representation. In an

exactly similar manner, we find for the characters of the antisymmetric

product the formula

(X
2}(G) = m(G)]*-x(G*)}. (94.18)

If the functions tfti
and <^ are the same, we can evidently construct from

them only the symmetric product, formed by the squares ^2 and the pro-

ducts iff^k, i ¥" k. In applications, symmetric products of higher orders are

also encountered; their characters may be obtained in a similar manner.

An important property of direct products is the following. The resolution

of the direct product of two different irreducible representations into irre-

ducible parts never involves the unit representation, but the direct product

of an irreducible representation with itself (that is, of course, its symmetric

part) always contains (and only once) the unit representation. In order to

know whether the unit representation is present in the representation

(94.16), we simply sum its characters with respect to G and divide the result

by the order g of the group, in accordance with (94.14). From (94.10) it is

seen that this gives zero if a ^ j3 and unity if a = j8.

For applications it is useful to know a formula which enables us to represent

an arbitrary function iff as a sum of functions transformed by the irreducible

representations of the group, i.e. in the form

= SE&<a>, (94.19)

where the functions «/f
i
(a)

(i = 1, 2, ... ,/a) are transformed by the ath

irreducible representation. The problem consists in determining the func-

tions <
<a > from the function tft, and is solved by the formula

rfjfoo = {5L2 Gi^Gj*. (94.20)

8 G

To prove this, it suffices to show that the expression on the right-hand

side of the equation reduces to ^r
4
(a) identically if we put ijj = ^ (a)

, and

to zero if we put tft = ipk
W with k # i or j8 # a; both these results follow

at once from the orthogonality relations (94.7), (94.8), putting G$k
W

= S G lk^^\
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If we substitute (94.20) in (94.19) and effect the summation over t, we
obtain a simpler expansion of the arbitrary function xjj into functions ^t (a)

belonging to the various irreducible representations, but not to any definite

rows of these representations

:

= 2
«A

(a)
,

</-«*> = — S x
<a>(G)*&A. (94.21)

Finally, we shall make a few remarks regarding the irreducible represen-

tations of a group which is the direct product of two other groups (not

to be confused with the direct product of two representations of the same
group). If the functions «/r

f
(a) give an irreducible representation of the group

A, and the functions
<f>k
W give one of the group B, the products ^A (/?)^f

(ot)

are the basis of an

/

a/^-dimensional representation of the group A xB, and
this representation is irreducible. The characters of this representation are

obtained by multiplying the corresponding characters of the original represen-

tations (cf. the derivation of formula (94.16)); to an element C= AB of
the group A xB there corresponds the character

X(Q= XM(A)XW(B). (94.22)

Multiplying together in this way all the irreducible representations of the

groups A and B, we obtain all the irreducible representations of the group
AxB.

§95. Irreducible representations of point groups

Let us pass now to the actual determination of the irreducible represen-

tations of those point groups which are of physical interest. The great

majority of molecules have axes of symmetry only of the second, third,

fourth or sixth order. Hence it is unnecessary to consider the icosahedron
groups Y, Yh ; we shall examine the groups Cn , Cnhi Cnv , Dn , Dnh only for

the values n = 1, 2, 3, 4, 6, and the groups S2ny Dnd only for n = 1, 2, 3.

The characters of the representations of these groups are shown in Table 7.

Isomorphous groups have the same representations and are given together.

The numbers in front of the symbols for the elements of a group in the upper
rows show the numbers of elements in the corresponding classes (see §93).

The left-hand columns show the conventional names usually given to the

representations. The one-dimensional representations are denoted by the

letters A, B, the two-dimensional ones by E, and the three-dimensional

ones by F; the notation E for a two-dimensional irreducible representation

should not be confused with the unit element of a group.f The base functions

of A representations are symmetric, and those of B representations antisym-

metric, with respect to rotations about a principal axis of the nth. order.

t The reason why two complex conjugate one-dimensional representations are shown as one
two-dimensional one is explained in §96.
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The functions of different symmetry with respect to a reflection an are

distinguished by the number of primes (one or two), while the suffixes

g and u show the symmetry with respect to inversion. Beside the symbols

for the representations are placed the letters x, y, z; these show the repre-

sentations by which the co-ordinates themselves are transformed (with a view

to later quantum-mechanical applications). The z-axis is always taken along

Table 7

Characters of irreducible representations ofpoint groups

cx E ct

c2

Cs

E

E

E

c2

a

c3 E C3 C8

A 1 A\z 1 1 1

E;x±iy
j

1

1

e e2

A g A;z A';x,y 1 1 e2 e

Au\ x,y,z B;x,y A"\z 1 -1

(-2h E c2 Oh /

c2e E c2 a v O'v

V^D2 E c2
* c2

y c2
*

Ag Al;z A 1 1 l 1

Bg B2 ;y B 3;x 1 -1 -l 1

Au\ z A2 Bt ;z 1 1 -l -1

Bu\ X, y Bx ;x B2 ;y 1 -1 l -1

^3« E 2CS 3<7„

Dz E 2CS 3C/2

At ;z A1 1 1 1

A2 A2 \ z 1 1 -1

E;x, y E;x,y 2 -1

c. E d C2 C4
S

st E S4 C2 S4
*

A\z A 1111
B B;z 1-11 -1

E;x±iy E;x±iy \

1 i -1 -i

1 -i -1 i

Ct E C6 c3 c2 C3
2 cv

A;z 1 1 1 1 1

B -1 1 -1 1 -1

f
O)

2 —m 1 CO
2 — CO

E1

I — a> u,* 1 — CO CO
2

CO CO
2 -1 — CO -co2

E2 ; x ±iy
1 -to2 — CO -1 to* CO
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Table 7

—

continued

§95

c 4c E c2 2C4 2<7„ 2a'

\

Dt E c% 2C4 2U2 2U\

D2d E c2 2St 2U2 2a a

Ax \z At A1 1 1 1 1 1

A2 A2 \ z A2 1 1 1 -1 -1

B1 B1 B1 1 1 -1 1 -1

B2 B2 B2 ;z 1 1 -1 -1 1

E;x,y E;x,y E;x,y 2 -2

D* E c2 2C8 2Ce 3U2 3U'2

^60 E c2 2C8 2C6 3ff„ 3ct'„

Dah E Oh 2C8 2S3 3U2 3cr'„

Ax Aaz AS 1 1 1 1 1 1

A2 \z A% A,' 1 1 1 1 -1 -1

B1 B2 A," 1 -1 1 -1 1 -1

B2 B, A2 ;
z 1 -1 1 -1 -1 1

E2 E2 E';x y 2 2 -1 -1

Ex ;x,y Ei;x,y E" 2 -2 -1 1

o E 8C3 3C2 6C2 6Ct

T E 3Ca 4C8 4C3
2 T d E 8C8 3C2 6a,i 6S^

A 1 1 1 1 A, A1 1 1 1 1 1

*
{

1 1 e e* A2 A2 1 1 1 -1 -1

I 1 1 e* e E E 2 -1 2

F; x, y, z 3 -1 F2

Ftix

F2 ;x,

y,z Fj.

y,z 3

3

-1 1 -1

-1 -1 1
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the principal axis of symmetry. The letters e and a> denote

e = «**/», to = e2ffi/6 = -co4.

The simplest problem is to determine the irreducible representations for

the cyclic groups (Cn , Sn). A cyclic group, like any Abelian group, has only

one-dimensional representations. Let G be a generating element of the group

(i.e. one which, on being raised to successive powers, gives all the elements

of the group). Since Ge = E (where g is the order of the group), it is clear

that, when the operator acts on a base function ip, the latter can be multi-

plied only by l
1/*, i.e.f

Cty^ftvaf (A = 1,2, ...,£).

The group C2n (and the isomorphous groups C2v and D2) is Abelian, so

that all its irreducible representations are one-dimensional, and the characters

can only be ± 1 (since the square of every element is E).

Next we consider the group C3V . As compared with the group C3,
the

reflections av in vertical planes (all belonging to one class) are here added.

A function invariant with respect to rotation about the axis (a base function

of the representation A of the group C3) may be either symmetric or anti-

symmetric with respect to the reflections av . Functions multiplied by €

and e2 under the rotation C3 , on the other hand (base functions of the com-

plex conjugate representations £), change into each other on reflection. J

It follows from these considerations that the group Csv (and D 3 ,
which is

isomorphous with it) has two one-dimensional irreducible representations

and one two-dimensional, with the characters shown in the table. The fact

that we have indeed found all the irreducible representations may be seen

from the result l 2+ l 2+22 = 6, which is the order of the group.

Similar considerations give the characters of the representations of other

groups of the same type (C4 „, C6V).

The group T is obtained from the group V by adding rotations about

four oblique axes of the third order. A function invariant with respect to

transformations of the group V (a basis of the representation A) can be

multiplied, under the rotation C3 , by 1, e or e2 . The base functions of the

three one-dimensional representations Bly B2 , Bz of the group V change into

one another under rotations about the axis of the third order (this is seen,

for example, if we take as these functions the co-ordinates x, y, z themselves).

Thus we obtain three one-dimensional irreducible representations and one

three-dimensional (l2+ l2+ l2 + 32 = 12).

Finally, let us consider the isomorphous groups O and T d . The group

T d is obtained from the group T by adding reflections a d in planes each of

Which passes through two axes of the third order. A base function of the

f For the point group Cn we can, for example, take as the functions ift the functions etk*, k = 1,

2, ... ,n, where
<f>

is the angle of rotation about the axis, measured from some fixed direction.
'

% These functions may, for example, be taken as fa == c'*, fa = e~i<l>. On reflection in a vertical

plane,
<f>

changes sign.
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unit representation A of the group T may be symmetric or antisymmetric
with respect to these reflections (which all belong to one class), and this

gives two one-dimensional representations of the group T d . Functions
multiplied by e or e2 under a rotation about an axis of the third order (the

basis of the complex conjugate representations E of the group T) change into
each other on reflection in a plane passing through this axis, so that one
two-dimensional representation is obtained. Finally, of three base functions
of the representation F of the group T, one is transformed into itself on
reflection (and can either remain unaltered or change sign), while the other
two change into each other. Thus we have altogether two one-dimensional
representations, one two-dimensional and two three-dimensional.

The representations of the remaining point groups in which we are inter-

ested can be obtained immediately from those already given, if we notice
that the remaining groups are direct products of those already considered
with the group C

i (or C
s) :

^3h = C'sXCg

Ceh = CeXC,-

D2h = D 2xC€

D,h = D4xQ
"6 = ^3XCt

-

D3d = D^xCt

D6h = D6xCf

Th = TxCt

oh =OxCi

Each of these direct products has twice as many irreducible representations
as the original group, half of them being symmetric (denoted by the suffix g)
and the other half antisymmetric (suffix u) with respect to inversion. The
characters of these representations are obtained from those of the representa-
tions of the original group by multiplying by + 1 (in accordance with the
rule (94.22)). Thus, for instance, we have for the group Dza the repre-
sentations :

D3d E 2C3 3*72 I 256 3(7,,

AXo 1 1 1 1

A2g 1 -1 1 -1

K 2 — 1 2 — 1

A-iu 1 1 -1 — 1 -1

A2u 1 -1 -1 — 1 1

Eu 2 — 1 -2

§96. Irreducible representations and the classification of terms

The quantum-mechanical applications of group theory are based on the

fact that the Schrodinger's equation for a physical system (an atom or
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molecule) is invariant with respect to symmetry transformations of the system.

It follows at once from this that, on applying the elements of a group to a

function satisfying Schrodinger's equation for some value of the energy (an

eigenvalue), we must again obtain solutions of the same equation for the same

value of the energy. In other words, under a symmetry transformation the

wave functions of the stationary states of the system belonging to a given

energy level transform into linear combinations of one another, i.e. they give

some representation of the group. An important fact is that this representa-

tion is irreducible. For functions which are invariably transformed into linear

combinations of themselves under symmetry transformations must belong

to the same energy level ; the equality of the eigenvalues of the energy cor-

responding to several groups of functions (into which the basis of a reducible

representation can be divided), which are not transformed into combinations

of one another, would be an utterly improbable coincidence (provided that

there is no special reason for such equality ; see below).

Thus, to each energy level of the system, there corresponds some irreduc-

ible representation of its symmetry group. The dimension of this represen-

tation determines the degree of degeneracy of the level concerned, i.e. the

number of different states with the energy in question. The fixing of the

irreducible representation determines all the symmetry properties of the

given state, i.e. its behaviour with respect to the various symmetry trans-

formations.

Irreducible representations of dimension greater than one are found only

in groups containing non-commuting elements; Abelian groups have only

one-dimensional irreducible representations. It is apposite to recall here that

the relation between degeneracy and the presence of operators which do not

commute with one another (but do commute with the Hamiltonian) has

already been found above from considerations unrelated to group theory

(§10).

The following important reservation should be made regarding all these

statements. As has already been pointed out (§18), the symmetry (valid in

the absence of a magnetic field) with respect to a change in the sign of the

time has, in quantum mechanics, the result that complex conjugate wave

functions must belong to the same eigenvalue of the energy. Hence it follows

that, if some set of functions and the set of complex conjugate functions give

different irreducible representations of a group, these two complex conjugate

representations must be regarded, from the physical point of view, as forming

together a single representation of twice the dimension. In the preceding

section we had examples of such representations. Thus the group C
3 has

only one-dimensional representations; however, two of these are complex

conjugates, and correspond physically to doubly degenerate energy levels.

(In the presence of a magnetic field there is no symmetry with respect to a

change in the sign of the time, and hence complex conjugate representations

correspond to different energy levels.)

Let us suppose that a physical system is subjected to the action of some
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perturbation (i.e. the system is placed in an external field). The question
arises to what extent the perturbation can result in a splitting of the degener-
ate levels. The external field has itself a certain symmetry.-}- If this symmetry
is the same as or higherJ than that of the unperturbed system, the symmetry
of the perturbed Hamiltonian & = fi + f is the same as the symmetry
of the unperturbed operator fi . It is clear that, in this case, no splitting
of the degenerate levels occurs. If, however, the symmetry of the pertur-
bation is lower than that of the unperturbed system, then the symmetry of
the Hamiltonian i? is the same as that of the perturbation V. The wave
functions which gave an irreducible representation of the symmetry group
of the operator i? will also give a representation of the symmetry group
of the perturbed operator #, but this representation may be reducible, and
this means that the degenerate level is split.

We shall show by means of an example how the mathematical techniques
of group theory enable us to solve the problem of the splitting of any given
level.

Let the unperturbed system have symmetry Ta, and let us consider a
triply degenerate level corresponding to the irreducible representation F2
of this group. The characters of this representation are

E 8C3 3C2 6ad 6S4

3 0-11-1
Let us assume that the system is subjected to the action of a perturbation
with symmetry Csv (with the third-order axis coinciding with one of those of
the group Ta). The three wave functions of the degenerate level give a
representation of the group Czv (which is a sub-group of the group Ta), and
the characters of this representation are equal to those of the same elements
in the original representation of the group Ta, i.e.

E 2C3 3gv

This representation, however, is reducible. Knowing the characters of the
irreducible representations of the group Czv, it is easy to decompose it into
irreducible parts, using the general rule (94.14). Thus we find that it consists

of the representations A\ and E of the group C%v . The triply degenerate
level F2 is therefore split into one non-degenerate level A\ and one doubly
degenerate level E. If the same system is subjected to the action of a per-
turbation of symmetry Czv, which is also a sub-group of the group Ta, then

t For example, in the case of the energy levels of the d and/ shells of ions in a crystal lattice which
interact slightly with the surrounding atoms, the perturbation (the external field) is the field acting
on an ion due to the other atoms.

% If a symmetry group H is a sub-group of the group G, we say that H corresponds to a lower
symmetry and Gtoa higher symmetry. It is evident that the symmetry of the sum of two expressions,
one of which has the symmetry of G and the other that of H, is the lower symmetry, that of H.
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the wave functions of the same level F2 give a representation with characters

3 ~i i r

Decomposing this into irreducible parts, we find that it contains the repre-

sentations Ai, Bi, B2 . Thus in this case the level is completely split into three

non-degenerate levels.

§97. Selection rules for matrix elements

Group theory not only enables us to carry out a classification of the terms

of any symmetrical physical system, but also gives us a simple method of

finding the selection rules for the matrix elements of the various quantities

which characterise the system.

This method is based on the following general theorem. Let «/»/«> be one

of the base functions of an irreducible (non-unit) representation of a symmetry

group. Then the integral of this function over all spacef vanishes identically

:

f ,/,.(«) d? =0. (97.1)

The proof is based on the evident fact that the integral over all space is

invariant with respect to any transformation of the co-ordinate system,

including any symmetry transformation. Hence

J
#* dq =

J &A/
a

> dq =
J*

S Gtpty,?* dq.

We sum this equation over all the elements of the group. The integral on

the left is simply multiplied by g, the order of the group, and we have

g^Wdq-ZJ^ZG^dq.

However, for any non-unit irreducible representation we have identically

S Gk
M = 0;

G k%

this is a particular case of the orthogonality relations (94.7), when one of

the irreducible representations is the unit representation. This proves the

theorem.

If j/r is a function belonging to some reducible representation of a group,

the integral J «/» dq will be zero except when this representation contains the

unit representation. This theorem is a direct consequence of the previous

one.

t That is, the configuration space of the physical system concerned.
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Let / be the operator of some scalar physical quantity. By definition,

it is invariant with respect to all symmetry transformations. Its matrix
elements are the integrals

j *f,M*fykW dq, (97.2)

where the indices a, j8 distinguish different terms of the system, and the
suffixes j, k denumerate the wave functions of states belonging to the same
degenerate term. We denote the irreducible representations of the symmetry
group of the system concerned that are given by the functions >> and if/k

W
by the symbols D™ and W>. The products faM fc

W give the representa-
tion D<«>xZ)W; since the operator /itself is invariant with respect to all

transformations, the whole expression in the integrand belongs to this

representation. The direct product of two different irreducible represen-
tations, however, does not contain the unit representation (see §94), whilst
the direct product of an irreducible representation with itself always contains
the unit representation, and only once; the integrals (97.2) are a constant
(independent of i and k) times 8ik . Thus we reach the conclusion that, for a
scalar quantity, the matrix elements are non-zero only for transitions between
states of the same type (i.e. belonging to the same irreducible representation).

This is the most general form of a theorem of which we have already met
several particular cases.

Let us next consider some vector physical quantity A. The three compo-
nents A x , A y , A z transform into linear combinations of themselves under
symmetry transformations, and therefore give some representation of the
symmetry group, which we shall denote by| DA . The products «Ai

(a)A^&
(^ )

give the representation D <-a) xDA xD^ )
; the matrix elements are non-zero

if this representation contains the unit representation. In practice, it is more
convenient to decompose into irreducible parts the direct product Z) (os) x DA ;

this gives us immediately all the types Z)W of states for transitions into which
(from a state of type D (a)

) the matrix elements are not zero.

The diagonal matrix elements (unlike those for transitions between diff-

erent states of the same type) require special consideration. In this case we
have only one system of functions ^//>>, not two different ones, and their

products in pairs give the symmetric product [Z) (a >2
] of the representation

Z> (a) with itself, not the direct product Z>(a>xD<a >. Hence the presence of
diagonal matrix elements of a vector quantity means that the unit represen-
tation is present in the decomposition of the product [Z) (a)2

] XDA , or, what
is the same thing, that DA is present in [Z) (a)2

]|.

Similarly we can find the selection rules for the matrix elements of a tensor.

Examples of the application of these rules are given in the following Problems.

f In general Da is different for polar and axial vectors.

J We did not make this remark in considering the scalar quantity/, seeing that the symmetric pro-
duct [D*")2

], like the direct product Z)(a>xZ)<a ), always contains the unit representation. Hence the
diagonal matrix elements of a scalar quantity are, in general, different from zero.
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PROBLEMS
Problem 1. Find the selection rules for the matrix elements of a polar vector when

symmetry O is present.

Solution. The components of a vector are transformed by the irreducible representation

Fx . The decompositions of the direct products of Fx with the other representations of the

group O are

FxxAx
= Fly F±xA2

= F2 , F±xE = Fx+F2 ,

FxxFx
= Ax+E+Fx+Fty

FxxF2 = A^E+F^F^
(1)

Hence the non-zero non-diagonal matrix elements are those for the transitions

F1
<^. Alf E, Fly

F2 , F2
4-> A2 , E, F2 .

The symmetric products of the irreducible representations of the group O are

W] = W] = A, [E2
] = Ax+E, [*?] = [Ff] = Ax+E+Fv (2)

Fx is contained in none of these; hence the diagonal matrix elements vanish.

Problem 2. The same as Problem 1, but for symmetry Z> 3<f.

Solution. The ^-component of the vector is transformed by the representation Am, the

* and y components by Eu - We have

EuxAlg
= EuxA2g

= Eu , EUXA1U = EuxA2u = Eg ,

EuxEu = Alg+A2g+Eg , EuxEg
= Alu+A2u+Eu .

Hence the non-diagonal matrix elements oiA x,A v are non-zero for the transitions Eu <—>Aig ,

A29 , Eg',Eg <-+ A1U , A2U . In the same way we find the selection rules for the matrix elements

of At : Aig <-> Aw , A2B <-» A1U , Eg <-> Eu .

The symmetric products of the irreducible representations are

[A1B
2
] = [Au2

] = W] = [AJ] = Au ,

[Eg
2
] = [Eu*] = Eg

+Alg .

These do not contain either A2U or Eu \ hence the diagonal matrix elements vanish for both

At and A x , A y .

Problem 3. Find the selection rules for the matrix elements of a symmetrical tensor A ik

of rank two (with Axx+A yy +Azz = 0) when symmetry O is present.

Solution. The components A xy , A X z, A yz are transformed by F% . Decomposing the

direct products of F2 with all the representations of the group O, we find the selection rules

Fl <r^Ai , E, Flt F2 ; F2 <->AU E, Flt F2 . The diagonal matrix elements exist (as we see from

(2), Problem 1) for the states Fx and F2 .

The sums Axx+ sA yy+ s*Azz, Axx+ e?A yy+ sA zz (e = e
2"*/3

) are transformed by the

representation E. The selection rules for the non-diagonal elements are E<->Alt A it E;

Fi^-^Fi, F2 ; F2 <r^F2 . The diagonal elements are non-zero for the states E, Flt F2 .

Problem 4. The same as Problem 3, but for symmetry D3d .

Solution. Azz is transformed by Aig , i.e. A Zz behaves as a scalar. The components

A xx—A yy and Axy are transformed by Eg ; the same is true of the components A X z, A yz.

Decomposing the direct products of Eg with all the representations of the group Dad, we
find the selection rules for the non-diagonal matrix elements ; Eg <—> Aig, A2g , Eg ; Eu <—>A1U ,

A2U , Eu . The diagonal elements are not zero (as we see from (2), Problem 2) only for the

states Eg and Eu .
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§98. Continuous groups

As well as the point groups enumerated in §93, there exist also what are

called continuous point groups, having an infinite number of elements. These
are the groups of axial and spherical symmetry.

The simplest axial symmetry group is the group Cm , which contains rota-

tions C(<f>) through any angle
<f>
about the axis of symmetry ; this is called the

two-dimensional rotation group. It may be regarded as the limiting case of

the groups Cn as n -> oo. Similarly, as limiting cases of the groups Cnh ,

cnv> Dn, Dnh we obtain the continuous groups Cmht C,,, D MI Dxh .

A molecule has axial symmetry only if it consists of atoms lying in a straight

line. If it meets this condition, but is asymmetric about its midpoint, its

point group will be the group C^, which, besides rotations about the axis,

contains also reflections av in any plane passing through the axis. If, on
the other hand, the molecule is symmetrical about its midpoint, its point

group will be D ooh = CmvxCt . The groups C
ro , Cwft , D^ cannot appear as

the symmetry groups of a molecule.

The group of complete spherical symmetry contains rotations through any
angle about any axis passing through the centre, and reflections in any plane
passing through the centre; this group, which we shall denote by Kh , is

the symmetry group of a single atom. It contains as a sub-group the group
K of all spatial rotations (called the three-dimensional rotation group, or simply
the rotation group). The group Kh can be obtained from the group K by
adding a centre of symmetry (Kh — K x Cf).

The elements of a continuous group may be distinguished by one or more
parameters which take a continuous range of values. Thus, in the rotation

group, the parameters might be the two angles determining the direction of

the axis, and the angle of rotation about this axis.

The general properties of finite groups described in §92, and the concepts

appertaining to them (sub-groups, conjugate elements, classes, etc.), can be
at once generalised to continuous groups. Of course, the statements which
directly concern the order of the group (for instance, that the order of a sub-
group divides the order of the group) are no longer meaningful.

In the group Coov all planes of symmetry are equivalent, so that all reflec-

tions a v form a single class with a continuous series of elements ; the axis of

symmetry is bilateral, so that there is a continuous series of classes, each
containing two elements C(±<£). The classes of the group D ooh are obtained

at once from those of the group CmVi since D ooh = CaavxCi .

In the rotation group K, all axes are equivalent and bilateral; hence the

classes of this group are rotations through an angle of fixed absolute magnitude

\<f>\
about any axis. The classes of the group Kh are obtained at once from

those of the group K.

We have already found, in essence, the irreducible representations of the

three-dimensional rotation group (without using the terminology of group
theory), when determining the eigenvalues and eigenfunctions of the total
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angular momentum. For the angular momentum operator is (apart from a

constant factor) the operator of an infinitely small rotation, and its eigenvalues

characterise the behaviour of the wave functions with respect to spatial

rotations. To a valued of the angular momentum there correspond 2/ + 1

different eigenfunctions ip]m > differing in the values of the component m of

the angular momentum and all belonging to one (2/ + l)-fold degenerate

energy level. Under rotations of the co-ordinate system, these functions are

transformed into linear combinations of themselves, and thus give irreducible

representations of the rotation group. Thus, from the group-theory point of

view, the numbers j number the irreducible representations of the rotation

group, and one (2/+ 1)-dimensional representation corresponds to each j.

The number j takes integral and half-integral values, so that the dimension

2/+ 1 of the representation takes all the integral values 1, 2, 3, . . . .

The base functions of these representations have been, in essence, investi-

gated in Chapter VIII. The basis of a representation of given/ is formed by

the 2j+ 1 independent components of a symmetrical spinor of rank 2/ (which

are equivalent to the set of 2j+ 1 functions fym).

The irreducible representations of the rotation group which correspond

to half-integral values of j are distinguished by an important property.

Under a rotation through 2tt, the base functions of the representations

change sign (being components of a spinor of odd rank). Since, however,

a rotation through 2n is the same as the unit element of the group, we

reach the result that representations with half-integral j are, as we say,

two-valued; to each element of the group (a rotation through an angle

cf>, ^ ^ 2tt, about some axis) there correspond in such a representation

not one but two matrices, with characters differing in sign.f

An isolated atom has, as we have already remarked, the symmetry Kh

= KxCt . Hence, from the group-theory point of view, there corresponds

to each term of the atom some irreducible representation of the rotation

group K (determining the value of the total angular momentum J of the atom)

and an irreducible representation of the group C^ (determining the parity

of the state).J

When the atom is placed in an external electric field, its energy levels are

split. The number of different levels resulting and the symmetry of the

corresponding states can be determined by the method described in §96.

t It must be mentioned that "two-valued representations" of a group are not representations in

the true sense of the word, since they are not given by one-valued base functions; see also §99.

J Moreover, the Hamiltonian of the atom is invariant with respect to interchanges of the electrons.

In the non-relativistic approximation, the co-ordinate and spin wave functions are separable, and we
can speak of representations of the permutation group that are given by the co-ordinate functions. If

the irreducible representation of the permutation group is given, the total spin S of the atom is deter-

mined (§63). When the relativistic interactions are taken into account, however, the separation of the

wave functions into co-ordinate and spin parts is not possible. The symmetry with respect to simul-

taneous interchange of the co-ordinates and spins of the particles does not characterise the term,

since Pauli's principle admits only those total wave functions which are antisymmetric with respect

to all the electrons. This is in accordance with the fact that, when the relativistic interactions are

taken into account, the spin is not, strictly speaking, conserved; only the total angular momentum /
is conserved.
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It is necessary to decompose the (27+l)-dimensional representation of the
symmetry group of the external field (given by the functions ifjJM) into

irreducible representations of this group. This requires a knowledge of the
characters of the representation given by the functions iJjjm-

By a rotation through an angle <£ about an axis the wave functions iftjM
are, as we know, multiplied by eiM$, whereM is the component of the angular
momentum along that axis. The transformation matrix for the functions
i/jjm will therefore be diagonal, with character

^4 eUJ+l)$_ e-u<t>
> lJ)

(<f>)
= y eiM <t> =
m=-J eW—\

or

sin(7+A)(£

X
{J)

(<1>) = . J . (98.1)
sinf<p

With respect to inversion I, all the functions iffJM with different M behave
in the same way, being multiplied by + 1 or - 1 according as the state of the
atom is even or odd. Hence the character

X
{J)(I)= ±(27+1). (98.2)

Finally, the characters corresponding to reflection in a plane a and rotary

reflection through an angle
<f>

are found by writing these symmetry trans-

formations as

CT = /C2 , S((f>)= IC(7T+
<f>).

Let us pause to consider also the irreducible representations of the
axial symmetry group Cmv . This problem has, in essence, been solved when
we ascertained the classification of the electron terms of a diatomic molecule
having this symmetry Caav (i.e. when the two atoms are different). To the

terms 0+ and 0~ (with Q. = 0) there correspond two one-dimensional
irreducible representations : the unit representation A\ and the representation

A2, in which the base function is invariant under all rotations and changes
sign under reflections in planes aVy while to the doubly degenerate terms with
Q, = 1, 2, ... there correspond two-dimensional representations denoted by
Ei, E2, .... Under a rotation through an angle

<f>
about the axis, the base

functions are multiplied by e±iQ^, while on reflection in planes av they change
into each other.

The irreducible representations of the group D^ h = CoavxCi are ob-
tained at once from those of the group Coav (and correspond to the classifi-

cation of the terms of a diatomic molecule composed of like nuclei).

If we take half-integral values for Q., the functions e±in^ give two-valued
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irreducible representations of the group C^ v , corresponding to the terms of

the molecule having half-integral spin.f

§99. Two-valued representations of finite point groups

To the states of a system with half-integral spin (and therefore half-

integral total angular momentum) there correspond two-valued represen-

tations of the point symmetry group of the system. This is a general property

of spinors, and therefore holds for both continuous and finite point groups.

The necessity thus arises of finding the two-valued irreducible representa-

tions of finite point groups.

As we have already remarked, the two-valued representations are not

really true representations of a group. In particular, the relations discussed

in §94 do not apply to them, and where all irreducible representations were

considered in these relations (for example, in the relation (94.15) for the sum

of the squared dimensions of the irreducible representations), only the true

one-valued representations were meant.

To find the two-valued representations, it is convenient to employ the

following artifice (H. Bethe 1929). We introduce, in a purely formal

manner, the concept of a new element of the group (denoted by Q) ;
this is a

rotation through an angle of 2tt about an arbitrary axis, and is not the unit

element, but gives the latter when applied twice : Q2 = E. Accordingly,

rotations Cn about the axes of symmetry of the «th order will give identical

transformations only after being applied 2w times (and not n times)

:

Cnn = Q, Cn
*" = E. (99.1)

The inversion /, being an element which commutes with all rotations,

must give E as before on being applied twice. A twofold reflection in a plane,

however, gives Q, not E:

g2 = Q, c* = E; (99.2)

this follows, since the reflection can be written in the form ah = IC% . As a

result we obtain a set of elements forming some fictitious point symmetry

group, whose order is twice that of the original group ; such groups we shall

call double point groups. The two-valued representations of the actual point

group will clearly be one-valued (i.e. true) representations of the correspond-

ing double group, so that they can be found by the usual methods.

The number of classes in the double group is greater than in the original

group (but not, in general, twice as great). The element Q commutes with all

f Contrary to the result for the three-dimensional rotation group, it would here be possible, by a

suitable choice of fractional values of CI, to obtain not only one-valued and two-valued representations,

but also those of three or more values. However, the physically possible eigenvalues of the angular

momentum, which is the operator of an infinitely small rotation, are determined by the representations

of the aforementioned three-dimensional rotational group. Hence the three (or more)-valued repre-

sentations of the two-dimensional rotation group (and of any finite symmetry group), though mathe-

matically determinate, are without physical significance.
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the other elements of the group,f and hence always forms a class by itself. If

the axis of symmetry is bilateral, the elements Cnk and Cn2n
~k = QCnn~k are

conjugate in the double group. Hence, when axes of the second order are

present, the distribution of the elements among classes depends also on
whether these axes are bilateral (in ordinary point groups this is unimportant,

since C2 is the same as the opposite rotation C2
-1

).

Thus, for instance, in the group T the axes of the second order are equiva-

lent, and each of them is bilateral, while the axes of the third order are equiva-

lent but not bilateral. Hence the 24 elements of the double groupJ T' are

distributed in seven classes : E, Q, the class of three rotations C2 and three

C2Q, and the classes 4C3 , 4C3
2
, 4C3£, 4C3

2£.
The irreducible representations of a double point group include, firstly,

representations which are the same as the one-valued representations of the

simple group (a unit matrix corresponding to both Q and E)\ secondly,

the two-valued representations of the simple group, a negative unit matrix

corresponding to Q. It is these latter representations in which we are now
interested.

The double groups Cn' (n = 1, 2, 3, 4, 6) and 54
', like the corresponding

simple groups, are cyclic. || All their irreducible representations are one-

dimensional, and can be found without difficulty as shown in §95.

The irreducible representations of the groups Dn
' (or Cnv', which are

isomorphous with them) can be found by the same method as for the cor-

responding simple groups. These representations are given by functions

of the form e±ik^
y
where <j> is the angle of rotation about an axis of the nth

order, and k is given half-integral values (the integral values correspond to

the ordinary one-valued representations). Rotations about horizontal axes

of the second order change these functions into one another, while the rota-

tion Cn multiplies them by e±2"ik/n.

It is a little less easy to find the representations of the double cubic groups.

The 24 elements of the group T" are divided among seven classes. Hence
there are altogether seven irreducible representations, of which four are

the same as those of the simple group T. The sum of the squared dimensions

of the remaining three representations must be 12, and hence we find that

they are all two-dimensional. Since the elements C2 and C2Q belong to the

same class, x(C2) = xiQQ) = ~ x(Q)> whence we conclude that x(Q) =
in all three representations. Next, at least one of the three representations

must be real, since complex representations can occur only in conjugate

pairs. Let us consider this representation, and suppose that the matrix of

the element C3 is brought to diagonal form, with diagonal elements a1} a^.

Since C3
3 = Q, ax

3 = a2
3 = — 1. In order that x(Cs) — ai+az may De real>

we must take ax
= eni/3 , a2

= r^/ 3
. Hence we find that x(C3)

= 1, x(Qa
)

"f This is obvious for rotations and inversion; for a reflection in a plane, it follows since the reflec-

tion can be represented as the product of an inversion and a rotation.

J We distinguish the double groups by primes to the symbols for the ordinary groups.

||
The groups S2

' = C/, S6
' = C8,', however, which contain the inversion J, are Abelian but not

cyclic.
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= a^-\-a£ = — 1. Thus one of the required representations is obtained. By

comparing its direct products with the two complex conjugate one-dimensional

representations of the group T, we find the other two representations.

By means of similar arguments, which we shall not pause to give here, we

may find the representations of the group O'. Table 8 gives the characters

of the representations of the double groups mentioned above. Only those

representations are shown which correspond to two-valued representations

of the ordinary groups. The isomorphous double groups have the same

representations.

The remaining point groups are isomorphous with those we have con-

sidered, or else are obtained by direct multiplication of the latter by the group

C
t , so that their representations do not need to be specially calculated.

For the same reasons as for ordinary representations, two complex con-

jugate two-valued representations must be regarded, from the physical

point of view, as one representation of twice the dimension. It is necessary

to pair one-dimensional two-valued representations even when they have

real characters. For (see §60) in systems with half-integral spin, complex

conjugate wave functions are linearly independent. Hence, if we have a

two-valued one-dimensional representationf with real characters (given

by some function if/), then, although the complex conjugate function i/j* is

transformed by the same representation, we can nevertheless see that ifj and

^r* are linearly independent. Since, on the other hand, the complex conjugate

wave functions must belong to the same energy level, we see that in physical

applications this representation must be doubled.

PROBLEM
Determine how the levels of an atom (with given values of the total angular momentum J)

are split when it is placed in a field having the cubic symmetryJ O.

Solution. The wave functions of the states of an atom with angular momentum / and

various values Mj give a (2/+l)-dimensional reducible representation of the group O, with

characters determined by the formula (98.1). Decomposing this representation into irreduc-

ible parts (one-valued for integral / and two-valued for half-integral /), we at once find the

required splitting (cf. §96). We shall list the irreducible parts of the representations corres-

ponding to the first few values of J:

7=0 A 1

1/2 E{

1 *"i

3/2 G'

2 E+F2

5/2 E2'+G'

3 A 2+F1+F2

t Such representations are found in the group Cn' for odd n; the characters are x(C„*) = (—!)*•

% For example, an atom in a crystal lattice. The presence or absence of a centre of symmetry in

the symmetry group of the external field is immaterial to this problem, since the behaviour of the

wave function on inversion (the parity of the level) is unrelated to the angular momentum J.
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Table 8

Two-valued representations ofpoint groups

A' E Q
C2

<*>

C2
<*>0

C2
<*>

C2<">£>

c2
<*>

C2
<2>£>

E' 2 -2

*>»' E Q
c3 c 3

2

c3p 3C/2 3C/2

.,|
1

1

-l

-l

-1

-1

1

1

i

—

i

—i

i

E%
'

2 -2 1 -1

D* E
c2

C2Q
c3

CJQ
c3

2

C3Q
c 6

C 6
6

c6
5

C6£
3C/2
3C72

3C7'2

3C7'2

Ex' 2 -2 1 -1 V3 -V3

E%
'

2 -2 1 -1 -V3 V3

Es

'

2 -2 -2 2

d; E
c2

C2

c4

C7Q
C4

3

C4Q
2£/2 2TJ\

2U\Q

Ex
'

2 -2 V2 -V2

E2
'

2 -2 -V2 V2

T E 4C, 4C 3
2 4C 3Q 4C3

2

3C2

3C2Q

E' 2 -2 1 -1 -1 1

°'l
2 -2 e -e2 — s e2

{ 2 -2 e2 — s -e2 s

O' E Q
4C3

4C3*£>

4C3
2

4C3£>

3C4
2

3C4
2

3C4

3C4
3

3C4
3

3C4

6C2

ec2Q

E^ 2 -2 1 -1 V2 -V2

Et

'
2 -2 1 -1 -V2 V2

G' 4 -4 -1 1



CHAPTER XIII

POLYATOMIC MOLECULES

§100. The classification of molecular vibrations

In its applications to polyatomic molecules, group theory first of all resolves

at once the problem of the classification of their electron terms, i.e. of the

energy levels for a given situation of the nuclei. They are classified according

to the irreducible representations of the point symmetry group appropriate

to the configuration of the nuclei. Here, however, we must emphasise what

is really obvious, that the classification thus obtained belongs to the definite

nuclear configuration considered, since the symmetry is in general destroyed

when the nuclei are displaced. We usually discuss the configuration cor-

responding to the equilibrium position of the nuclei. In this case the classi-

fication continues to possess a certain amount of meaning even when the

nuclei execute small vibrations, but of course becomes meaningless when
the vibrations can no longer be regarded as small.

In the diatomic molecule this question did not arise, since its axial sym-

metry is of course preserved under any displacement of the nuclei. A
similar situation occurs for triatomic molecules also. The three nuclei

always lie in a plane, which is a plane of symmetry of the molecule. Hence

the classification of the electron terms of the triatomic molecule with respect

to this plane (wave functions symmetric or antisymmetric with respect to

reflection in the plane) is always possible.

For the normal electron terms of polyatomic molecules there is an empirical

rule according to which, in the great majority of molecules, the wave function

of the normal electron state is completely symmetrical (this rule, for diatomic

molecules, has already been mentioned in §78). In other words, the wave

function is invariant with respect to all the elements of the symmetry group

of the molecule, i.e. it belongs to the unit irreducible representation of the

group.

The application of the methods of group theory is particularly significant

in the investigation of molecular vibrations (E. Wigner 1930). Before

beginning a quantum-mechanical investigation of this problem, a purely

classical discussion of the vibrations of the molecule is necessary, in which

it is regarded as a system of several interacting particles (the nuclei).

A system ofN particles (not lying in a straight line) has 3N— 6 vibrational

degrees of freedom; of the total number of degrees of freedom 3N, three

correspond to translational and three to rotational motion of the system as

a wholef. The energy of a system of particles executing small vibrations

t See Mechanics, §§23, 24. If all the particles lie in a straight line, the number of vibrational degrees

of freedom is 3N— 5 ; in this case, only two co-ordinates correspond to rotation, since it is meaningless
to speak of the rotation of a linear molecule about its axis.

13 371
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can be written

E = * Be"^"fc+i5 kikUiUk >
(100. 1)

where mik , kik are constant coefficients, and the ut
are the components of

the vector displacements of the particles from their equilibrium positions

(the suffixes *, k denumerate both the components of the vector and the

particles). By a suitable linear transformation of the quantities ut, we can

eliminate from (100.1) the co-ordinates corresponding to translational motion

and rotation of the system, and take the vibrational co-ordinates in such a

way that both the quadratic forms in (100.1) are transformed into sums of

squares. Normalising these co-ordinates so as to make all the coefficients

in the expression for the kinetic energy unity, we obtain the vibrational energy

in the form

E = i s QJ+i S <oa
2

f QJ. (100.2)

The vibrational co-ordinates Qai are said to be normal; the coa are the fre-

quencies of the corresponding independent vibrations. It may happen that

the same frequency (which is then said to be multiple) corresponds to several

normal co-ordinates ; the suffix a to the normal co-ordinate gives the number
of the frequency, and the suffix i = 1, 2, ... ,/a numbers the co-ordinates

belonging to a given frequency (J^ being the multiplicity of the frequency).

The expression (100.2) for the energy of the molecule must be invariant

with respect to symmetry transformations. This means that, under any

transformation belonging to the point symmetry group of the molecule, the

normal co-ordinates Qai , i = 1, 2, ... ,fa (for any given a) are transformed

into linear combinations of themselves, in such a way that the sum of the

squares £ Qai
2 remains unchanged. In other words, the normal co-ordinates

i

belonging to any particular eigenfrequency of the vibrations of the molecule

give some irreducible representation of its symmetry group ; the multiplicity

of the frequency determines the dimension of the representation. The
irreducibility follows from the same considerations as were given in §96 for

the solutions of Schrodinger's equation. The equality of the frequencies

corresponding to two different irreducible representations would be an

improbable coincidence. An exception is again formed by the irreducible

representations with complex conjugate systems of characters. Since the

normal co-ordinates are by their physical nature real quantities, two complex

conjugate representations correspond physically to one eigenfrequency of

twice the multiplicity.

These considerations enable us to carry out a classification of the eigen-

vibrations of a molecule without solving the complex problem of actually

determining its normal co-ordinates. To do so, we must first find (by the

method described below) the representation given by all the vibrational

co-ordinates together, which we shall call the total representation; this
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representation is reducible, and on decomposing it into irreducible parts we
determine the multiplicities of the eigenfrequencies and the symmetry
properties of the corresponding vibrations. Here it may happen that the

same irreducible representation appears several times in the total represen-

tation; this means that there are several different frequencies of the same
multiplicity and with vibrations of the same symmetry.
To find the total representation, we start from the fact that the characters

of a representation are invariant with respect to a linear transformation of the

base functions. Hence they can be calculated by using as base functions not
the normal co-ordinates, but simply the components ut of the vectors of the

displacements of the nuclei from their equilibrium positions.

First of all, it is evident that, to calculate the character of some element
G of a point group, we need consider only those nuclei which (or, more exactly,

whose equilibrium positions) remain fixed under the given symmetry trans-

formation. For if, under the rotation or reflection G in question, nucleus 1

is moved to a new position, previously occupied by a similar nucleus 2,

this means that under the operation G a displacement of nucleus 1 is trans-

formed into a displacement of nucleus 2. In other words, there will be no
diagonal elements in the rows of the matrix Gik which correspond to this

nucleus (i.e. to its displacement u{). The components of the displacement

vector of a nucleus whose equilibrium position is not affected by the operation

G, on the other hand, are evidently transformed into combinations of them-
selves, so that they may be considered independently of the displacement

vectors of the remaining nuclei.

Let us first consider a rotation C{<j>) through an angle <£ about some sym-
metry axis. Let ux , uy , u z be the components of the displacement vector

of some nucleus, whose equilibrium position is on the axis, and hence is

unaffected by the rotation. Under the rotation these components are

transformed, like those of any ordinary (polar) vector, according to the for-

mulae (the #-axis being the axis of symmetry)

u'x = ux cos<£+#„ sin<£,

u' y = —ux sm<f>-\-uv cos(f> t

u\ =11,.

The character, i.e. the sum of the diagonal terms of the transformation matrix,

is 1+2 cos<f>. If altogether Nc nuclei lie on the axis in question, the total

character is

Nc(l+2cos<f>). (100.3)

However, this character corresponds to the transformation of all the 3iV
displacements ut ; hence it is necessary to separate the part corresponding to

the transformations of translation and (small) rotation of the molecule as a

whole. The translation is determined by the displacement vector U of the

centre of mass of the molecule ; the corresponding part of the character is
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therefore 1+2 cos^. The rotation of the molecule as a whole is determined

by the vector 8SI of the angle of rotation.f The vector 8£l is axial, but with

respect to rotations of the co-ordinate system an axial vector behaves like

a polar vector. Hence a character of 1 +2 cos <j> also corresponds to the vector

8€l. Altogether, therefore, we must subtract from (100.3) a quantity

2(1 +2 cos<£). Thus we finally have the character x(C) of the rotation C(<f>)

in the total vibrational representation

:

X(C) = (7Vc-2)(l+2 cos<£). (100.4)

The character of the unit element is evidently just the total number of

vibrational degrees of freedom: x(E) = 3JV-6 (as is obtained from (100.4)

when Nc = N,
<f>
= 0).

In an exactly similar manner, we calculate the character of the rotary-

reflection transformation S(<f>) (a rotation through an angle
<f>

about the

^-axis and a reflection in the xy-plane). Here a vector is transformed accord-

ing to the formulae
u' x = ux cos0+Mj, sin<£,

u' y
= —ux sm(f>+Uy COS(f>,

u'z = —uz,

to which there corresponds a character — 1+2 cos
<f>.

Hence the character

of the representation given by all the 3AT displacements ui
is

iV,s(-l+2cos<£), (100.5)

where Ns is the number of nuclei left unmoved by the operation S(<j>) ;
this

number is evidently either none or one. To the vector U of the displacement

of the centre of mass there corresponds a character —1+2 cos<f>. The vector

8SI, being an axial vector, is unchanged by an inversion of the co-ordinate

system ; on the other hand, the rotary-reflection transformation S(<f>) can be

represented in the form

S(cf>) = C(<f>)ah = C{4>)C2I = C(tt+0)/,

i.e. as a rotation through an angle 7T+0, followed by an inversion. Hence

the character of the transformation S(<f>) applied to the vector 8SI is equal

to the character of the transformation C{tt-\-(J>) applied to an ordinary vector,

i.e. it is 1 +2 cos (it +<£) = 1 —2 cos
<f>.

The sum (— 1 +2 cos
<f>) +(1 —2 cos cf>)

= 0, so that we reach the conclusion that the expression (100.5) is equal to

the required character x(S) of the rotary-reflection transformation S((f>) in

the total representation

:

x(5) = Ns(-l+2 cos<£). (100.6)

In particular, the character of reflection in a plane (<£ = 0) is x( CT) = Nai

while that of an inversion
(<f>
= rr) is xCO = — 3AT7 .

f As is well known, the angle of a small rotation can be regarded as a vector 8SI, whose modulus is

equal to the angle of rotation and which is directed along the axis of rotation in the direction deter-

mined by the corkscrew rule. The vector 8£l so denned is clearly axial.
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Having thus determined the characters x °f tne total representation, we
have only to decompose it into irreducible representations, which is done by
formula (94.14) and the character tables given in §95 (see the Problems at the

end of the present section).

To classify the vibrations of a linear molecule there is no need to have

recourse to group theory. The total number of vibrational degrees of freedom

is 3iV— 5. Among the vibrations, we must distinguish those in which the

atoms remain in a straight line, and those where this does not happen,f The
number of degrees of freedom in the motion ofN particles in a straight line

is N; of these, one corresponds to the translational motion of the molecule

as a whole. Hence the number of normal co-ordinates of the vibrations

which leave the atoms in a straight line is N— 1; in general, N— 1 different

eigenfrequencies correspond to them. The remaining (3iV—5)—(N— 1)

= 22V—4 normal co-ordinates relate to vibrations which destroy the col-

linearity of the molecule; to these, there correspond N—2 different double

frequencies (two normal co-ordinates, corresponding to the same vibrations

in two mutually perpendicular planes, belong to each frequency).

J

PROBLEMS
Problem 1. Classify the normal vibrations of the molecule NH3 (an equilateral triangular

pyramid, with the N atom at the vertex and the H atoms at the corners of the base; Fig. 41).

Solution. The point symmetry group of the molecule is CSv . Rotations about an axis

of the third order leave only one atom (N) fixed, while reflections in planes each leave two
atoms fixed (N and one H). From formulae (100.4), (100.6) we find the characters of the

total representation

:

E lCo 3 g„

6 2

Decomposing this representation into irreducible parts, we find that it contains the repre-

sentations Ax and E twice each. Thus there are two simple frequencies corresponding to

vibrations of the type Au which conserve the complete symmetry of the molecule (what are

called totally symmetric vibrations), and two double frequencies with corresponding normal
co-ordinates which are transformed into combinations of each other by the representation E.

Problem 2. The same as Problem 1, but for the molecule H2 (Fig. 42).

Solution. The symmetry group is C2v . The transformation C2 leaves the O atom fixed

;

the transformation o„ (a reflection in the plane of the molecule) leaves all three atoms fixed

;

f If the molecule is symmetrical about its centre, a further characteristic of the vibrations appears

;

see Problem 10 at the end of this section.

J Using the notation for the irreducible representations of the group CKV (see §98), we can say
that there are N— 1 vibrations of the type Alt and N— 2 of the type £^.
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Fig. 42

the reflection a'v leaves only the O atom fixed. The characters of the total representation are

E Co a„ a'.,

3 13 1

This representation divides into the irreducible representations 2AX , \Blt i.e. there are two

totally symmetric vibrations and one with the symmetry given by the representation B1 ; all

the frequencies are simple. Fig. 42 shows the corresponding normal vibrations.

Problem 3. The same as Problem 1, but for the molecule CHC13 (Fig. 43a).

Solution. The symmetry group of the molecule is C3v . By the same method we find

that there are three totally symmetric vibrations Ax and three double vibrations of the type E.

Problem 4. The same as Problem 1 , but for the molecule CH4 (the C atom is at the centre

of a tetrahedron with the H atoms at the vertices; Fig. 43b).

Solution. The symmetry of the molecule is Td . The vibrations are 1AU IE, 2F2 .

Problem 5. The same as Problem 1, but for the molecule C 6H 6 (Fig. 43c).

Solution. The symmetry of the molecule is Dth . The vibrations are 2Aig , lAzg , lAiU ,

lBig , lBiu, \B%g , 3B2U, lExg, oEiu, ^E^g, 2E2U-

Problem 6. The same as Problem 1, but for the molecule OsF8 (the Os atom is at the

centre of a cube with the F atoms at the vertices; Fig. 43d).

Solution. The symmetry of the molecule is O^. The vibrations are lAig , XA^u, \Eg,

1EU , 2i?1u> 2F2g, 1jF2U.

Problem 7. The same as Problem 1 , but for the molecule UF« (the U atom is at the centre

of an octahedron with the F atoms at the vertices; Fig. 43e).

Solution. The symmetry of the molecule is Of,. The vibrations are lAig , \Eg , 2F1U ,



§100 The classification of molecular vibrations

» H H

377

(a)

(d) y y
F.

Os
o

V

y A
(g)

Fig. 43

Problem 8. The same as Problem 1, but for the molecule QHg (Fig. 43f).

Solution. The symmetry of the molecule is DM . The vibrations are ZAxg , 1A1U , 2AiU ,

"SEg, 2Eu-

Problem 9. The same as Problem 1, but for the molecule C2H4 (Fig. 43g; all the atoms
are coplanar).

Solution. The symmetry of the molecule is D2h . The vibrations are 3Aig, IA1U , 2Big ,

\B1U , 2Bau , 1B2 g, 2B2U ', the axes of co-ordinates are taken as shown in the figure.

Problem 10. The same as Problem 1, but for a linear molecule ofN atoms symmetrical
about its centre.

Solution. To the classification of the vibrations of a linear molecule considered in the
text, we must add the classification from the behaviour with respect to inversion in the centre.

There are two distinct cases, according as JV is even or odd.
If N is even (JV = 2p), there is no atom at the centre of the molecule. On giving to the

p atoms in one half of the molecule independent displacements along the line, and to the re-
maining p atoms equal and opposite displacements, we find that p of the vibrations leaving
the atoms in line are symmetrical with respect to the centre, while the remaining (2p— 1) —p =
p—\ vibrations of this type are antisymmetrical. Next, p atoms have 2p degrees of freedom
for motions in which the atoms do not remain in line. On giving equal and opposite displace-
ments to symmetrically placed atoms, we should obtain 2p symmetrical vibrations; of these,
however, the two corresponding to a rotation of the molecule must be removed. Thus there
are p —1 double frequencies of vibrations which bring the atoms out of line and are symmetri-
cal about the centre, and the same number [(2p—2)—(p— 1) = p— 1] which are antisym-
metrical. Using the notation for the irreducible representations of the group D<x>h (see
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the end of §98), we can say that there are p vibrations of the type Aig and p—\ of the types

A-xu, E\g, Em-
itN is odd (N = 2p+ l), similar arguments show that there are p vibrations of each of the

types Aig , A1U , E1U and p— 1 of the type Eig .

§101. Vibrational energy levels

From the viewpoint of quantum mechanics, the vibrational energy of a

molecule is determined by the eigenvalues of the Hamiltonian

f f

&* = | S .2 4<2+i J aJ&QJ, (101.1)

where P^i = —^I^Qoci are tne momentum operators corresponding to the

normal co-ordinates Qai . Since this Hamiltonian falls into the sum of in-

dependent terms K^t^+^Ga*2
)* tne energy levels are given by the sums

ES* = h S coa S K,+i) = S /KK+iU (101.2)

where ^a = S ^ai , and /a is the multiplicity of the frequency a>a . The wave

functions are given by the products of the corresponding wave functions for

linear harmonic oscillators

:

0=n0„ (101.3)
a

where «/ra = constant xexp{-|ca
2 S ^ai

2}n HvJc„<Qaa)* (101.4)

where i/„ denotes the Hermite polynomial of order v, and ca = ^(wjh).

If there are multiple frequencies among the a>a , the vibrational energy levels

are in general degenerate. The energy (101.2) depends only on the sums

va = S vai . Hence the degree of degeneracy of the level is equal to the

number of ways of forming the given set of numbers va from the va{ . For a

single number va it isj-

(f«+/«-i)W(/«-i)i.

Hence the total degree of degeneracy is

n — (101.5)
>.!(/«-l)l

For double frequencies, the factors in this product are vx+ l, while for triple

frequencies they are i(^a+l)(^a +2).

It must be borne in mind that this degeneracy occurs only so long as we

consider purely harmonic vibrations. When terms of higher order in the

normal co-ordinates are taken into account in the Hamiltonian {anharmonic

vibrations), the degeneracy is in general removed, though not completely

(see §104 for a further discussion of this point).

t This is the number of ways in which »a balls can be distributed among

/

a urns.
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The wave functions (101.3) belonging to the same degenerate vibrational

term give some representation (in general reducible) of the symmetry group

of the molecule. The functions belonging to different frequencies are

transformed independently of one another. Hence the representation given

by all the functions (101.3) is the product of the representations given by the

functions (101.4), so that we need consider only the latter.

The exponential factor in (101.4) is invariant with respect to all the

symmetry transformations. In the Hermite polynomials, the terms of any

given degree are transformed only into similar terms; a symmetry trans-

formation evidently does not change the degree of any term. Since, on the

other hand, each Hermite polynomial is completely determined by its highest

term, it follows that it is sufficient to consider only the highest term, writing

/«

T^HiJc&rt) = constant x&aM>e*
r
«' - Qocf/«'«+

+ terms of lower degree.

The functions for which the sum va = 2 vai has the same value belong

to the same term. Thus we have a representation given by the products of

va quantities Qai ; this is just the symmetric product (see §94) of the irreducible

representation given by the Qai with itself va times.

For one-dimensional representations, the finding of the characters of their

symmetric products with themselves v times is trivial :f

Xv(G) = [x(G)]».

For two- and three-dimensional representations it is convenient to use the

following mathematical device.J The sum of the squared base functions of

an irreducible representation is invariant with respect to all symmetry

transformations. Hence we can formally regard these functions as the com-

ponents of a vector in two or three dimensions, and the symmetry transfor-

mations as some rotations (or reflections) applied to these vectors. We
emphasise that there is in general no relation between these rotations and

reflections and the actual symmetry transformations, the former depending

(for any given element G of the group) also on the particular representation

considered.

Let us consider two-dimensional representations more closely. Let x(^)

be the character of some element of the group in the two-dimensional repre-

sentation concerned, with x(G) # 0. The sum of the diagonal elements of

the transformation matrix for the components x, y of a two-dimensional

vector on rotation through an angle <j> in a plane is 2 cos
<f>.

Putting

2cos<f> = X(G), (101.6)

we find the angle of the rotation which formally corresponds to the element

f We use the notation Xv(&) *n place of the cumbersome [x
c
] (G).

X It was applied to this problem by A. S. Kompaneets (1940).
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G in the irreducible representation considered. The symmetric product of

the representation with itself v times is the representation whose basis is

formed by the v+ 1 quantities *", x^^y, ... , y
v

. The characters of this

representation aref

Xv(G) =sin(*>+l)#5in0. (101.7)

The case where x(G) = requires special consideration, since a zero charac-

ter corresponds both to a rotation through \n and to a reflection. If

x(G2
) = —2, we have a rotation through \tt, and for Xv(G) we obtain

X*(G) = —*[l+(— 1)']. (101.8)

If x(G2
) — 2, on the other hand, x(G) must be regarded as the character

of a reflection (i.e. a transformation x -> x, y -> —y) ; then

xv(G)=m+(-m- (ioi.9)

We can similarly obtain the formulae for the symmetric products of three-

dimensional representations. The finding of the rotation or reflection which
formally corresponds to an element of the group in a given representation is

easily accomplished with the aid of Table 7. This is the transformation which
corresponds to the given x(G) in that isomorphous group in which the

co-ordinates are transformed by the representation in question. Thus, for

the representation Ft of the groups O and T d we must take a transformation

from the group O, but for the representation F2 we must take one from the

group T d . We shall not pause here to derive the corresponding formulae for

the characters Xv(G)-

§102. Stability of symmetrical configurations of the molecule

For a symmetrical position of the nuclei, an electron term of the molecule

may be degenerate, if there are among the irreducible representations of the

symmetry group one or more whose dimensions exceed unity. We may ask

whether such a symmetrical configuration is a stable equilibrium configura-

tion of the molecule. Here we shall entirely neglect the effect of spin (if any),

since this effect is usually insignificant in polyatomic molecules. The degene-

racy of the electron terms of which we shall speak is therefore only the "orbi-

tal" degeneracy, and is unrelated to the spin.

If the configuration in question is stable, the energy of the molecule as a

function of the distances between the nuclei must be a minimum for the given

position of the nuclei. This means that the change in the energy due to a small

displacement of the nuclei must contain no terms linear in the displacements.

*|* For purposes of calculation it is convenient to take the base functions in the form

(x+iy)v
,
{x+iyY'^x—iy), ... ,

(x— iy)
v

;

the matrix of the rotation is then diagonal, and the sum of the diagonal elements takes the form
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Let fi be the Hamiltonian of the electron state of the molecule, the

distances between the nuclei being regarded as parameters. We denote by i?

the value of this Hamiltonian for the symmetrical configuration considered.

The quantities defining the small displacements of the nuclei can be taken

as the normal vibrational co-ordinates Q^. The expansion of A in powers

of the Qai is of the form

tf =# + S Va&ai+Ji
W0liMQ0liQfik+ ...

.

(102.1)

The expansion coefficients V, W, ... are functions only of the co-ordinates of

the electrons. Under a symmetry transformation, the quantities Qai are

transformed into combinations of one another, and the sums in (102.1) are

changed into other sums of the same form. Hence we can formally regard

the symmetry transformation as a transformation of the coefficients in these

sums, the Qai remaining unchanged. Here, in particular, the coefficients

Vai (for any given a) will be transformed by the same representation of the

symmetry group as the corresponding co-ordinates Qai . This follows at

once from the fact that, by virtue of the invariance of the Hamiltonian under

all symmetry transformations, the group of terms of any given order in its

expansion must be invariant also, and in particular the linear terms must be

invariant.!

Let us consider some electron term EQ which is degenerate in the sym-

metrical configuration. A displacement of the nuclei which destroys the

symmetry of the molecule generally results in a splitting of the term. The

amount of the splitting is determined, as far as terms of the first order in

the displacements of the nuclei, by the secular equation formed from the

matrix elements of the linear term in the expansion (102.1),

V, -g&iJlM^d* (102.2)

where tp
p

, tpa are the wave functions of electron states belonging to the

degenerate term in question (and are chosen to be real). The stability of the

symmetrical configuration requires that the splitting linear in Q should be

zero, i.e. all the roots of the secular equation must vanish identically. This

means that the matrix Vpa must itself be zero. Here, of course, we must

consider only those normal vibrations which destroy the symmetry of the

molecule, i.e. we must omit the totally symmetric vibrations (which corres-

pond to the unit representation of the group).

Since the Qai are arbitrary, the matrix elements (102.2) vanish only if

all the integrals

t Strictly speaking, the quantities F"a ,- must be transformed by the representation which is the com-

plex conjugate of that by which the Qai are transformed. However, as we have already pointed out,

if two complex conjugate representations are not the same, they must physically be considered to-

gether as one representation of twice the dimension. The above remark is therefore unimportant.
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vanish. Let Z)el be the irreducible representation by which the electron

wave functions ip
p
are transformed, and Da the same for the quantities Vai ;

as we have already remarked, the representations Da are those by which the

corresponding normal co-ordinates Qai are transformed. According to the

results of §97, the integrals (102.3) will be non-zero if the product
[£)(ei)2j xDa contains the unit representation or, what is the same thing, if

|7)(ei)2j contains Da . Otherwise all the integrals vanish.

Thus a symmetrical configuration is stable if the representation [Z> (el >2
]

does not contain any (except the unit representation) of the irreducible

representations Da which characterise the vibrations of the molecule. This
condition is always satisfied for non-degenerate electron states, since the sym-
metric product of a one-dimensional representation with itself is the unit

representation.

Let us consider, for instance, a molecule of the type CH4 , in which one
atom (C) is at the centre of a tetrahedron, with four atoms (H) at the vertices.

This configuration has the symmetry T d . The degenerate electron terms
correspond to the representations E, Flt F2 of this group. The molecule has
one normal vibration Ax (a totally symmetric vibration), one double vibration

E, and two triple vibrations F2 (see §100, Problem 4). The symmetric pro-
ducts of the representations E, F^ F2 with themselves are

[£"] = A±+E, [Ffl = [FJ] = A,+E+F2 .

We see that each of these contains at least one of the representations E, F2 ,

and hence the tetrahedral configuration considered is unstable when there

are degenerate electron states.

This result constitutes a general rule (H. A. Jahn and E. Teller 1937). A
more thorough investigation! than that given above, considering all possible

types of symmetrical configuration of the nuclei, shows that, when there is a

degenerate electron state, any symmetrical position of the nuclei (except when
they are collinear) is unstable. As a result of this instability, the nuclei

move in such a way that the symmetry of their configuration is destroyed, the
degeneracy of the term being completely removed. In particular, we can
say that the normal electron term of a symmetrical (non-linear) molecule
can only be non-degenerate.

As we have just mentioned, the linear molecules alone form an exception.

This is easily seen, without using group theory. A displacement of a nucleus

whereby it moves off the axis of the molecule is an ordinary vector with £
and r] components (the £-axis being along the axis of the molecule). We
have seen in §87 that such vectors have matrix elements only for transitions

in which the angular momentum A about the axis changes by unity. On the

other hand, to a degenerate term of a linear molecule there correspond states

with angular momenta A and —A about the axis (A ^ 1). A transition be-

tween them changes the angular momentum by at least 2, and therefore the

t See H. A. Jahn and E. Teller, Proceedings of the Royal Society A 161, 220, 1937.
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matrix elements always vanish. Thus the linear position of the nuclei in the

molecule may be stable, even if the electron state is degenerate.

§103. Quantisation of the rotation of a rigid body

The investigation of the rotational levels of a polyatomic molecule is often

hampered by the necessity of considering the rotation simultaneously with

the vibrations. As a preliminary example, let us consider the rotation of a

molecule as a solid body, i.e. with the atoms "rigidly fixed".

Let £, r], I be a system of co-ordinates with axes along the three principal

axes of 'inertia of a rigid body, and rotating with it. The corresponding

Hamiltonian is obtained by replacing the components J^ Jv J^ of the angular

momentum of the rotation, in the classical expression for the energy, by the

corresponding operators

:

g =W(ll+ll+Jl\ (103.1)

\ IA Ib 1C /

where IA , IB , Ic are the principal moments of inertia of the body.

The commutation rules for the operatorsJ^JV,J C
of the angular momen-

tum components in a rotating system of co-ordinates are not obvious, since

the usual derivation of the commutation rules relates to the components

Jx> Jv> Jz in a fixed system of co-ordinates. They are, however, easily

obtained by using the formula

(J.a)(J.b)-(J.b)(J.a) = -/J.axb, (103.2)

where a, b are any two commuting vectors which characterise the body in

question. This formula is easily verified by calculating the left-hand side

of the equation in the fixed system of co-ordinates *, y, z, using the general

rules for the commutation of angular momentum components with one

another and with the components of an arbitrary vector.

Let a and b be unit vectors along the £ and y axes. Then axb is a umt

vector along the £-axis, and (103.2) gives

UJ,-UJi = -ft- <103 -3>

Two other relations are obtained similarly. Thus we reach the result that

the commutation rules for the operators of the angular momentum com-

ponents in the rotating system of co-ordinates differ from those in a fixed

system only in the sign on the right-hand side of the equation. Hence it

follows that all the results which we have previously obtained from the com-

mutation rules, relating to the eigenvalues and matrix elements, hold for

j.j y j also, with the difference that all expressions must be replaced by

their complex conjugates. In particular, the eigenvalues of / ?
(as of Jz)

are the integers k = —J, ...,/•

The finding of the eigenvalues of the energy of a rotating body (a top,
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as it is called) is simplest for the case where all three principal moments of
inertia of the body are equal: IA = IB = IC = I

(
a spherical top). This

holds for a molecule in cases where it has the symmetry of one of the cubic
point groups. The Hamiltonian (103.1) takes the form

fi = frp/21,

and its eigenvalues are

E = &J(J+1)I2I. (103.4)

Each of these energy levels is degenerate with respect to the 2J+ 1 directions
of the angular momentum relative to the body itself (i.e. with respect to the
values of J%= A).|

There is also no difficulty in calculating the energy levels in the case where
only two of the moments of inertia of the body are the same: IA — IB ^ I
(a symmetrical top). This holds for molecules having one axis of symmetry of
order above the second. The Hamiltonian (103.1) takes the form

# = k2
(j£

2+Jv
2
)I2IA+H*Jfl2Ic

= Wl2IA+&(L-l>)]t. (103 .5)

Hence we see that, in a state with given values of/ and k, the energy is

E .^-JU+Vi+wQ-Ly, (103.6)

which determines the energy levels of a symmetrical top.
The degeneracy with respect to values of k which occurred for a spherical

top is here partly removed. The values of the energy are the same only for
values of k differing in sign alone, corresponding to opposite directions of
the angular momentum relative to the axis of the top. Thus the energy
levels of a symmetrical top are (for k # 0) doubly degenerate.
For IA # IB # Ic (an asymmetrical top), the calculation of the energy

levels in a general form is impossible. The degeneracy with respect to the
directions of the angular momentum relative to the body is here removed
completely, so that 2J+ 1 different non-degenerate levels correspond to any
given /. The calculation of these levels involves the solution of Schrod-
inger's equation in matrix form; this amounts to solving a secular equation
of degree 2J+ 1, formed from the matrix elements Hj\. with the given value
of/ (O. Klein 1929). The matrix elements Hj% are defined with respect to
the wave functions ipJk of states in which the absolute value and the
^-component of the angular momentum have definite values (but the energy
has no definite value). On the other hand, in the stationary states of an

t Here and subsequently we ignore the (2/+l)-fold degeneracy with respect to the directions of
the angular momentum relative to a fixed co-ordinate system. This degeneracy always occurs and isnot physically important. If it is included, the total degree of degeneracy of the enenrv levels of a
spherical top is (27+ 1)

2
.
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asymmetrical top the projection J^ of the angular momentum has, of course,

no definite values, i.e. no definite values of k can be assigned to the energy

levels.

The operators ]^ Jv
have matrix elements only for transitions in which

k changes by unity, whileJ^ has only diagonal elements (see formulae (27.13),

in which we must write /, k instead of L, M). Hence the operators J^
2

,

J 2
, /j

2
, and therefore fi, have matrix elements only for transitions with

k -> k or &±2. The absence of matrix elements for transitions between

states with even and odd k has the result that the secular equation of degree

2y + l immediately falls into two independent equations of degrees J and

/+ 1. One of these contains matrix elements for transitions between states

with even k, and the other contains those for transitions between states

with odd k. Each of these equations, in turn, can be reduced to two equations

of lower degree. To do this, we must use the matrix elements defined, not

With respect to the functions iffJ]e , but with respect to the functions

«A/fc
+ = (fo*+fo-*)/V2 . /

103 7
n

for = (fo*-fo-*)/\/2 (**0);

the function ifiJ0 is, of course, the same as ifiJ0+. Functions differing in the

index + and — are of different symmetry (with respect to a reflection in a

plane passing through the £-axis, which changes the sign of k), and hence

the matrix elements for transitions between them vanish. Consequently we

can form the secular equations separately for the + and — states.

The Hamiltonian (103.1), and the commutation rules (103.3), have an

unusual symmetry: they are invariant with respect to a simultaneous change in

sign of any two of the operators J^JV , Jv This symmetry formally corres-

ponds to the group D2 . Hence the levels of an asymmetrical top can be

classified in accordance with the irreducible representations of this group.

Thus there are four types of non-degenerate level, corresponding to the

representations A, Bly
B2, Bz (see Table 7).

It is easy to establish which states of the asymmetrical top belong to each

of these types. To do so, we must find the symmetry properties of the func-

tions (103.7), where the functions fofc may be taken as simply the complex

conjugate functions to the eigenfunctions of the angular momentum (which

have the same symmetry; the complex conjugates are taken because of the

change in sign on the right-hand sides of the commutation relations (103.3))

:

where and
<f>

are spherical angles in £rj£-space. A rotation through an

angle it about the £-axis (i.e. the symmetry operation C2
(0

) multiplies this

function by (—1)*:

C2<0: <A/*^(-l)*fo*.

The operation C2^> may be regarded as the result of successively per-

forming an inversion and a reflection in the |£-plane; the first operation
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multiplies fok by (~l)J, and the second (a change in sign of
<f>)

is equivalent
to changing the sign of k. Using the definition (28.6) of the functions

©j,-fc> we therefore have

C2
(*>: <l>Jk->{-\)

J+
Hj,-ic.

Finally, the operation C2® = C2<'>C2^> gives

Using these transformation rules, we find that the states corresponding
to the functions (103.7) belong to the following types of symmetry:

4>Jk
.+1

A

B!

B2

\

$Jk <

(103.8)

'J even, k even

J even, k odd

J odd, k even

KJ odd, k odd

fJ even, k even i?i

/ even, k odd 2?2

y odd, k even ^4

/ odd, k odd U3

By simple counting it is easy to find the number of states of each type for
a given value of/. The following numbers of states correspond to the types
A and each of Bh jB2 , B3:

A Bi, B2, B$

*7+iJ even u
(103.9)

J odd ij-i |7+|

Finally, we may add some remarks concerning the calculation of the matrix
elements of various physical quantities characterising the top (or molecule).
These are, of course, matrix elements with respect to the true rotational wave
functions of the stationary states of the molecule (its electron state and
vibrational state remaining unchanged).

The wave functions of the symmetrical top are essentially the same as the
angular part of the wave function of a diatomic molecule (with appropriate
changes in the notation for the quantum numbers) : if the rotation is de-
scribed by means of the Eulerian angles d,

<f>, $ (Fig. 20, §58), the wave
function of the state with quantum numbers k, J, Mj is

fojMj = —eiM->*eiW®lcJM (e),

Ltt
(103.10)

where @ are the functions calculated in §82, Problem.
The dependence of the matrix elements for a symmetrical top on the

quantum numbers / and Mj is given by the formulae derived in §87 for a
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diatomic molecule (of zero spin). In formulae (87.1) — (87.4) K, Mr and A
must be replaced respectively by the angular momentum / of the top, its

projection Mj on the fixed .s-axis, and the projection k on the moving

£-axis.

The calculation of the matrix elements for the asymmetrical top is more

complex. The solution of the secular equation derived from the matrix

HJ
j\ gives linear combinations of the functions i/jjjc defined above which

diagonalise the Hamiltonian. Replacing ifij^ in these combinations by the true

wave functions (103.10) of the symmetrical top (with the same values of Mj
in all these functions), we obtain the true wave functions of the stationary

states of the asymmetrical top, described by values of the pair of numbers

J, Mj. As a result, the calculation of the matrix elements of any quantity for

the asymmetrical top reduces to that of the matrix elements for the sym-

metrical top, which are already known.

For the asymmetrical top there are selection rules for the matrix elements

of transitions between states of the types A, Blt B2 , Bz \ these rules are easily

obtained from symmetry considerations in the usual way. Thus, for the

components of a vector physical quantity A we have the selection rules

for ,4g : A<->B3®, B^^B^\

forA
v

: A++Bf», B^+^B^,

for At : A<-> B^>, Bf*<-> B^.

For clarity we show, as an index to the symbol for the representation, the

axis about which a rotation has the character +1 in the representation

concerned.

PROBLEMS

Problem 1. Calculate the matrix elements HJ
j\, for an asymmetrical top.

Solution. From formulae (27.13) we find

Ui%=Ur,% =*[/(/+ 1)"*2
]*

:
( / 2)*+2 =

'ft+2 we 'Jc
w ' 'Jfe+2w)L -wr = -w>l = -ujr*

for brevity, we everywhere omit the diagonal suffixes /, / of the matrix elements. Hence
we have for the required matrix elements of H:

1 1

h*= ^(j+j^) U(J+i)-k*]+hWi2ic ,

H
l+z

= HT =ih2(^-J^Vi(J-k)(J-k-l)(J+k+l)(J+k+2)].
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The matrix elements with respect to the functions (103.7) are expressed in terms of the
elements in formulae (1) by

#£ = #1- =#*(*#!). &± = &+&,, &-=&-&,
*+ 1+

(fc+2)+ (fc+2)- fc+2 V r h 2+ V
2

(2)

PROBLEM 2. Determine the energy levels for an asymmetrical top with / = 1.

Solution. The secular equation, of the third degree, falls into three linear equations.
One of these is Ex

= H°+ whence

E± =W(i
+r} (3)

From this we can at once write down the other two energy levels, since it is obvious that the
three moments of inertia Ia, Ib, Ic enter the problem in a symmetrical manner. Hence it is

sufficient simply to replace the moments of inertia Ia, Ib once by 1A , Ic and once by Ib, Ic-
Thus

E*= ihih+r}
E*= ihirB+T} W

The levels Eu E2 , E3 belongf to the types Bu B2 , B3 respectively, if IA , IB , Ic are the moments
of inertia about the $, 17, £ axes.

Problem 3. The same as Problem 2, but for / = 2.

Solution. The secular equation, of the fifth degree, falls into three linear equations and
one quadratic. One of the linear equations is of the form Et

= H2~, whence

2k2 / 1 1 \

(5)

a level of the type Bx . Hence we at once conclude that there must be two other levels, of the
types B2 and Ba :

2h2 / 1 1 \

The equation of the second degree is

2h2 / 1 1 \
E
°=lu

+ihiTB+T}

H°+-E FP+
0+ 0+

#2+
0+

H*+-E
2+

= 0. (6)

Solving this, we obtain

** -*(H+
^)

±^[(^rt)
,

- 3

Gs;
H7i+i)]-(7)

These levels belong to the type A.

Problem 4. The same as Problem 2, but for / = 3.

f This follows at once from considerations of symmetry. The energy Elt for instance, is symmetri-
cal with respect to the moments of inertia Ia and Ib, and this property belongs to the energy of a state

whose symmetry about the £ and 17 axes is the same, i.e. a state of the type B\.
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Solution. The secular equation, of the seventh degree, falls into one linear equation and
three quadratic. The linear equation is of the form Et = H%2, whence

/J_
1 1\

\TA
+TB+TJ'

E^ 2h\TA+TB+Tcy <8)

a level of the type A. One of the quadratic equations is equation (6) of Problem 3, with a

different value of J. Its roots are

5h2 /l 1\ h2 ,r / 1 1\ 2
1 1 1 In

E™
^
T\Ta

+Tb)+Tc±
h
*JL\TA~TB)

+
^IaTb'JaTc'JbTcS^

a level of the type B^. The remaining levels are obtained from these by permuting Ia, Ib
and Ic.

Problem 5. Determine the splitting of the levels of a system having a quadrupole
moment, in an arbitrary external electric field.

Solution. Taking as co-ordinate axes the principal axes of the tensor d2<f>/8xi8xjc (see

§75, Problem 4), we bring the quadrupole part of the Hamiltonian of the system to the form

8 = Ajj+Bjf+ CjA A+B+C = 0.

Owing to the complete formal analogy between this expression and the Hamiltonian (103.1),

the problem under consideration is equivalent to that of finding the energy levels of an
asymmetrical top, the only difference being that here the sum of the coefficientsA+B+ C= 0,

and the angular momentum can have half-integral values also. For these the calculations must
be done afresh by the same method, but for integral J we can use the results of Problems 2
to 4, obtaining the following values for the energy displacement AE for the first few values

of J:

7=1: AE= -A,-B,-C;

7=3/2: AE = ± VP(^2+52+C2
)/2];

7=2: AE = 3A,3B,3C,±^/[6(A2+ B2+ C2)].

For J = 3/2 the energy levels remain doubly degenerate, in accordance with Kramers'
theorem (§60).

§104. The interaction between the vibrations and the rotation of the
molecule

Hitherto we have regarded the rotation and the vibrations as independent

motions of the molecule. In reality, however, the simultaneous presence of

both motions results in a peculiar interaction between them (E. Teller,

L. Tisza and G. Placzek 1932-33).

Let us start by considering linear polyatomic molecules. A linear molecule

can execute vibrations of two types (see the end of §100): longitudinal vibra-

tions with simple frequencies and transverse ones with double frequencies.

We shall here be interested in the latter. A molecule executing transverse

vibrations has in general some angular momentum. This is evident from

simple mechanical considerations,-}- but it can also be shown by a quantum-
mechanical discussion. The latter also enables us to determine the possible

values of this angular momentum in a given vibrational state.

f For example, two mutually perpendicular transverse vibrations with a phase difference of in
can be regarded as a pure rotation of a bent molecule about a longitudinal axis.
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Let us suppose that some one double frequency a>a has been excited in

the molecule. The energy level with the vibrational quantum number va
is (z;a +l)-fold degenerate. To this level there correspond the va+l wave

functions

Kdfa, = constant x e-c^Q^+Q.^H.J^Q^H^^Q^),

where ^ai+ â2 = ^a > or any independent linear combinations of them.

The total degree (in Qal and Qa2 together) of the polynomial by which the

exponential factor is multiplied is the same in all these functions, and is equal

to va . It is evident that we can always take, as the fundamental functions,

linear combinations of the functions iftv v of the form
^ai^ai

*,*. = constant x e-ca'(Qai
J+Qa,

8

)/2
[{Qal+iQ^r^)l^Q^-iQ^^)l2+ ... j.

(104.1)

The square brackets contain a determinate polynomial, of which we have

written out only the highest term. /a is an integer, which can take the va -\-l

different values va , va —2,v(X
—4;..., —v^.

The normal co-ordinates Qal , Qa2 of the transverse vibration are two

mutually perpendicular displacements off the axis of the molecule. Under a

rotation through an angle cf> about this axis, the highest term of the poly-

nomial (and therefore the whole function ipv z ) is multiplied by

gi0(i>a+7a)/2£-i<Mva-Za)/2 _ gi*a#.

Hence we see that the function (104.1) corresponds to a state with angular

momentum /a about the axis.

Thus we reach the result that, in a state where the double frequency a>a

is excited (with quantum number va), the molecule has an angular momentum
(about its axis) which takes the values

l« = »«, ^~2
> ®«-4» - .

-»«• (104.2)

This is called the vibrational angular momentum of the molecule. If several

transverse vibrations are excited simultaneously, the total vibrational angular

momentum is equal to the sum S/a . On being added to the electron orbital

angular momentum, it gives the total angular momentum / of the molecule

about its axis.

The total angular momentum / of the molecule cannot be less than the

angular momentum about the axis (just as in a diatomic molecule), i.e. J
takes the values

In other words, there are no states with J = 0, 1, ... , |/| — 1.

For harmonic vibrations, the energy depends only on the numbers v^ and

not on la . The degeneracy of the vibrational levels (with respect to the
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values of /a) is removed by the presence of anharmonic vibrations. The

removal is not complete, however: the levels remain doubly degenerate, the

same energy belonging to states differing by a simultaneous change of sign of

all the /a and of /. In the next approximation (after that of harmonic motion),

a term quadratic in the angular momenta la , of the form S ga/Jfi

(the gufi

being constants), appears in the energy. This remaining double degeneracy

is removed by an effect similar to the A-doubling in diatomic molecules.

When we turn to non-linear molecules, we must first of all make the

following remark, which has a purely mechanical significance. For an arbi-

trary (non-linear) system of particles, the question arises how we can at all

separate the vibrational motion from the rotation; in other words, what we are

to understand by a "non-rotating system". At first sight it might be thought

that the vanishing of the angular momentum,

S mrxv = (104.3)

(the summation being over the particles in the system), could serve as a

criterion of the absence of rotation. However, the expression on the left-

hand side is not the complete derivative, with respect to time, of any function

of the co-ordinates. Hence the above equation cannot be integrated with

respect to time in such a way as to be formulated as the vanishing of some

function of the co-ordinates. This, however, is necessary if a reasonable

definition of the concepts of "pure vibrations" and "pure rotation" is to be

possible.

As a definition of the absence of rotation, we must therefore use the

condition

S mr xv = 0, (104.4)

where r are the radius vectors of the equilibrium positions of the particles.

Putting r = r +u, where u are the displacements in small vibrations, we

have v = f = u. The equation (104.4) can be integrated with respect to

time, giving

2wr xu=0. (104.5)

The motion of the molecule will be regarded as a combination of the purely

vibrational motion, in which the condition (104.5) is satisfied, and the

rotation of the molecule as a whole.f

Writing the angular momentum in the form

2 mrxv = S mr Xv+ 2 muxv,

we see that, in accordance with the definition (104.4) of the absence of

rotation, the vibrational angular momentum must be understood as the sum

Smuxv. However, it must be borne in mind that this angular momentum,

f The translational motion is supposed removed from the start, by choosing a system of co-ordinates

in which the centre of mass of the molecule is at rest.
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being only a part of the total angular momentum of the system, is not con-
served. Hence only a mean value of the vibrational angular momentum can
be ascribed to each vibrational state.

Molecules having no axis of symmetry of order above the second belong to

the asymmetrical-top type. In a molecule of this type, all the frequencies

are simple (their symmetry groups have only one-dimensional irreducible

representations). Hence none of the vibrational levels is degenerate. In any
non-degenerate state, however, the mean angular momentum vanishes (see

§26). Thus, in a molecule of the asymmetrical-top type, the mean vibra-
tional angular momentum vanishes in every state.

If, among the symmetry elements of the molecule, there is one axis of order
higher than the second, the molecule is of the symmetrical-top type. Such a

molecule has vibrations with both simple and double frequencies. The mean
vibrational angular momentum of the former again vanishes. To the double
frequencies, however, there corresponds a non-zero mean angular momentum
component along the axis of the molecule.

It is easy to find an expression for the energy of the rotational motion of the
molecule (of the symmetrical-top type), taking into account the rotational

angular momentum. The operator of this energy differs from (103.5) in that

the rotational angular momentum of the top is replaced by the difference

between the total (conserved) angular momentum J of the molecule and its

vibrational angular momentum J(»)

:

tfrot =——(J-K> 2+P2
(^ i-XJs-Ja2

- (104.6)

The required energy is the mean value HTOt. The terms in (104.6) which
contain the squared components of J give a purely rotational energy which is

the same as (103.6). The terms which contain the squared components of
J(f) give constants independent of the rotational quantum numbers and may
be omitted ; the terms which contain products of components of J and JW
constitute the interaction here considered between the vibrations of the
molecule and its rotation. This is called the Coriolis interaction (since it

corresponds to the Coriolis forces in classical mechanics). In averaging these

terms it must be borne in mind that the mean values of the transverse (£,17)

components of the vibrational angular momentum are zero. The energy of
the Coriolis interaction is therefore

Ecox=-h*kkvIIc, (104.7)

where the integer k is, as in §103, the component of the total angular momen-
tum along the axis of the molecule, and kv = 1^ is the mean value of

the component of the vibrational angular momentum for the vibrational

state concerned; kv, unlike k, is not an integer.

Finally, let us consider molecules of the spherical-top type. These include

molecules whose symmetry is that of any of the cubic groups. Such molecules
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have simple, double and triple frequencies (there being one-, two- and three-

dimensional irreducible representations of the cubic groups). The degeneracy

of the vibrational levels is, as usual, partly removed by the presence of

anharmonic motion; when these effects have been taken into account there

remain, apart from the non-degenerate levels, only doubly and triply degene-

rate levels. Here we shall discuss these levels that are split by the presence of

anharmonic motion.

It is easy to see that, for molecules of the spherical-top type, the mean

vibrational angular momentum is zero not only in the non-degenerate

vibrational states but also in the doubly degenerate ones. This follows from

simple considerations based on symmetry properties. The mean angular

momentum vectors in two states belonging to the same degenerate energy

level must be transformed into each other in all possible symmetry trans-

formations of the molecule. None of the cubic symmetry groups, however,

allows the existence of two directions transformed only into each other;

only sets of three or more directions are so transformed.

From these arguments it follows that, in states corresponding to triply

degenerate vibrational levels, the mean vibrational angular momentum is

non-zero. After averaging over the vibrational state, this angular momentum
is represented by an operator whose matrix elements correspond to transitions

between three mutually degenerate states. In accordance with the number of

these states, this operator must have the form £l, where 1 is the operator of

an angular momentum of unity (for which 2/+ 1 = 3) and £ is a constant

characterising the vibrational level in question. The Hamiltonian of the

rotational motion of the molecule is

tfrot^WXJ-H

and, after averaging, becomes the operator

fc2 fe2-^— ffi

#rot = -J2+ J<*>2_ £2j.i. (104.8)
21 21 I

The eigenvalues of the first term give the ordinary rotational energy (103.4);

the second term gives an unimportant constant, which does not depend on the

rotational quantum number. The last term in (104.8) gives the desired energy

of the Coriolis splitting of the vibrational level. The eigenvalues of the

quantity J . 1 are calculated in the usual way ; it has (for a given J) three

different values corresponding to the values /+1, /— 1, / of the vector

J+ l. The result is

EcoTiJ+1) =-hHJII,
^

j?Corw-i) = hH(J+ 1)//, (104.9)

Ecot(J) =h%II. J
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§105. The classification of molecular terms

The wave function of a molecule is the product of the electron wave func-
tion, the wave function of the vibrational motion of the nuclei, and the rota-

tional wave function. We have already discussed the classification and types
of symmetry of these functions separately. It now remains for us to examine
the question of the classification of molecular terms as a whole, i.e. of the
possible symmetry of the total wave function.

It is clear that, if the symmetry of all three factors with respect to some
transformation is given, the symmetry of the product with respect to that
transformation is determined. For a complete description of the symmetry of
the state, we must also specify the behaviour of the total wave function when
the co-ordinates of all the particles in the molecule (electrons and nuclei)

are inverted simultaneously. The state is said to be negative or positive,

according as the wave function does or does not change sign under this

transformation.-}-

It must be remembered, however, that the characterisation of the state

with respect to inversion is significant only for molecules which do not
possess stereoisomers. If stereoisomerism is present, the molecule assumes
on inversion a configuration which can by no rotation in space be made to

coincide with the original configuration; these are the "right-hand" and
"left-hand" modifications of the substance.J Hence, when stereoisomerism
is present, the wave functions obtained from each other on inversion belong
essentially to different molecules, and it is meaningless to compare them.

||

We have seen in §86 that, for diatomic molecules, the spin of the nuclei
exerts an important indirect effect on the arrangement of the molecular
terms by determining their degree of degeneracy, and in some cases entirely

forbidding levels of a certain symmetry. The same is true for polyatomic
molecules. Here, however, the investigation of the problem is considerably
more complex, and requires the application of the methods of group theory
to each particular case.

The idea of the method is as follows. The total wave function must con-
tain, besides the co-ordinate part (the only part we have considered so far), a

spin factor, which is a function of the projections of the spins of all the nuclei
on some chosen direction in space. The projection a of the spin of a nucleus
takes 2/+1 values (where i is the spin of the nucleus); by giving to all the
oj, a2 , ... , aN (where N is the number of atoms in the molecule) all possible
values, we obtain altogether (2^+ 1) (2/2+l) ... (2^+ 1) different values of
the spin factor. In each symmetry transformation, certain nuclei (of the same
kind) change places, and if we imagine the spin values to "remain fixed",

the transformation is equivalent to an interchange of spin values among

t We use the same customary, though unfortunate, terminology as for diatomic molecules (§86).
% For stereoisomerism to be possible, the molecule must have no symmetry element pertaining to

reflection (i.e. no centre of symmetry, plane of symmetry, or rotary-reflection axis).

||
Strictly speaking, quantum mechanics always gives a non-zero probability for the transition from

one modification to the other. This probability, however, which relates to the passage of nuclei
through a barrier, is so small that the phenomenon can always be neglected.
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the nuclei. Accordingly, the various spin factors will be transformed into

linear combinations of one another, thus giving some representation (in

general reducible) of the symmetry group of the molecule. Decomposing

this into irreducible parts, we find the possible types of symmetry for the

spin wave function.

A general formula can easily be written down for the characters xsp(^)

of the representation given by the spin factors. To do this, it is sufficient

to notice that, in a transformation, only those spin factors are unchanged in

which the nuclei changing places have the same aa \ otherwise, one spin

factor changes into another and contributes nothing to the character. Bearing

in mind that aa takes 24+1 values, we find that

XsP
(G0=II(2*a+l), (105.1)

where the product is taken over the groups of atoms which change places

under the transformation G considered (there being one factor in the product

from each group).

We are, however, interested not so much in the symmetry of the spin

function as in that of the co-ordinate wave function (by which we mean its

symmetry with respect to interchanges of the co-ordinates of the nuclei, the

co-ordinates of the electrons remaining unchanged). These two symmetries

are directly related, however, since the total wave function must remain

unchanged or change sign when any pair of nuclei are interchanged, accord-

ing as they obey Bose statistics or Fermi statistics (in other words, it must be

multiplied by (— 1)
2\ where i is the spin of the nuclei that are interchanged).

Introducing the appropriate factor in the characters (105.1), we obtain the

system of characters x(G) for the representation containing all the irreducible

representations by which the co-ordinate wave functions are transformed:

X(G) = n(2f.+ l)(-l)^».-« (105.2)

where na is the number of nuclei in each group which change places under the

transformation in question. Decomposing this representation into irreducible

parts, We obtain the possible types of symmetry of the co-ordinate

wave functions of the molecule, together with the degrees of degeneracy of

the corresponding energy levels (here and later we mean the degeneracy with

respect to the different spin states of the system of nuclei).f

Each type of symmetry of the states is related to definite values of the

total spins of the groups of equivalent nuclei in the molecule (i.e. groups of

nuclei which change places under the various symmetry transformations of

the molecule). This relation is not one-to-one; each type of symmetry of

states can, in general, be brought about with various values of the spins of

equivalent groups. The relation can also be established, in any particular

case, by means of group theory.

t The degree of degeneracy of the level in this respect is often called its nuclear statistical weight;

see the last footnote to §86.
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As an example, let us consider a molecule of the asymmetrical-top type, the
ethylene molecule C^H^ (Fig. 43g), with the symmetry group D2h . The
index to the chemical symbol indicates the isotope to which the nucleus
belongs; this indication is necessary, since the nuclei of different isotopes
have different spins. In this case, the spin of the H1 nucleus is \, while the
C12 nucleus has no spin. Hence we need consider only the hydrogen atoms.
We take the system of co-ordinates shown in Fig. 43g; the z-zxis is per-

pendicular to the plane of the molecule, while the #-axis is along the axis

of the molecule. A reflection in the ry-plane leaves all the atoms fixed,

while other reflections and rotations interchange the hydrogen atoms in
pairs. From formula (105.2) we have the following characters of the represen-
tation :

E <j(xy) o(xz) a{yz) I C2(x) C2(y) C2(z)

16 16 4 4 4 4 4 4

Decomposing this representation into irreducible parts, we find that it con-
tains the following irreducible representations of the group Dih : 7Ag , 3Blg ,

3B2u , 3B3u . The figures show the number of times each irreducible represen-
tation appears in the reducible one; these numbers are also the nuclear
statistical weights of the levels with the corresponding symmetry.f
The classification of the states of the ethylene molecule thus obtained

relates to the symmetry of the total (co-ordinate) wave function, including
the electron, vibrational and rotational parts. Usually, however, it is of
interest to arrive at these results from a different point of view. Knowing
the possible symmetries of the total wave function, we can find at once which
rotational levels are possible (and with what statistical weights) for any
prescribed electron and vibrational state.

Let us consider, for instance, the rotational structure of the lowest vibra-
tional level (that for which the vibrations are not excited at all) of the normal
electron term, assuming that the electron wave function of the normal
state is completely symmetrical (as is the case for practically all polyatomic
molecules). Then the symmetry of the total wave function with respect to
rotations about the axes of symmetry is the same as the symmetry of the
rotational wave function. Comparing this with the results obtained above, we
therefore conclude that in the ethylene molecule the rotational levels of the
types A and B± (see §103) are positive with statistical weights 7 and 3,

while those of the types B2 and B3 are negative with statistical weight 3.

As with diatomic molecules (see the end of §86), owing to the extreme
weakness of the interaction between the nuclear spins and the electrons,

transitions between states of different nuclear symmetry in the ethylene
molecule do not occur in practice. Hence molecules in such states behave
like different modifications of the substance. Thus ethylene C12

2H14 has
four modifications, with nuclear statistical weights 7, 3, 3, 3.

t The relation between the symmetry of states and the values of the total spin of the four hydrogen
nuclei in the ethylene molecule is derived in Problem 1.
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In reaching this conclusion it is important that states with different

symmetry belong to different energy levels (the intervals between which are

large compared with the interaction energy of nuclear spins). The conclusion

is therefore invalid for molecules in which there exist states of different

nuclear symmetry belonging to the same degenerate energy level.

Let us consider another example, the ammonia molecule N14H1
3 , of the

symmetrical-top type (Fig. 41), whose symmetry group is C3v . The spin of

the nucleus N14 is 1, and that of H1 is £. Using formula (105.2), we find the

characters of the representation of the group C3v in which we are interested:

E 2Cq 3 <7„

24 6 -12

It contains the following irreducible representations of the group C3v : 12A2 ,

6E. Thus two types of level are possible; their nuclear statistical weights

aref 12 and 6.

The rotational levels of a symmetrical top are classified (for a given /)
according to the values of the quantum number k. Let us consider, as in the

previous example, the rotational structure of the normal electron and

vibrational state of the NH3 molecule (i.e. we suppose the electron and vibra-

tional wave functions to be completely symmetrical). In determining the

symmetry of the rotational wave function, we must bear in mind that it is

meaningful to speak of its behaviour only with respect to rotations about axes.

Hence we replace the planes of symmetry by axes of symmetry of the second

order perpendicular to them, a reflection in a plane being equivalent to a

rotation about such an axis, followed by an inversion. In the present case,

therefore, instead of the group C3v we have to consider the isomorphous point

group D 3 .

The rotational wave functions with k = ±\k\ are multiplied by e±2lTiW/z

respectively under a rotation C3 about a vertical axis of the third order,

while under a rotation U2 about a horizontal axis of the second order they

change into each other, thus giving a two-dimensional representation of the

group Ds . If \k\ is not a multiple of three, this representation is irreduc-

ible; it is E. The representation of the group C3V corresponding to the total

wave function is obtained by multiplying the character x(U2) by 1 or — 1,

according as the term is positive or negative. Since, however, in the repre-

sentation E we have x(^) = 0> we obtain the same representation E in

either case (but this time as a representation of the group C3v ,
and not D 3).

Bearing in mind the results obtained above, we thus conclude that, when \k\

is not a multiple of three, both positive and negative levels are possible, with

nuclear statistical weights of 6 (the symmetry of the total co-ordinate wave

function being of the type E).

When \k\ is a multiple of three (but not zero), the rotational functions

t A total spin of the hydrogen nuclei of 3/2 corresponds to the terms of symmetry A2 , and one of

1/2 to those of symmetry E.
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give a representation (of the group D
3) with characters

E 2C3 3U2

2 2

This representation is reducible, and divides into the representations Ax , A%.

In order that the total wave function should belong to the representation A2 of

the group C3 „, the rotational level Ax must be negative and A% positive.

Thus, when \k\ is a multiple of three and not zero, both positive and negative

levels are possible, with nuclear statistical weights of 12 (levels of the type
A 2).

Finally, only one rotational function corresponds to an angular momentum
component k = 0; it gives a representation with charactersf

E 2C, 3U9

1 1 (~iy

If the total wave function has the symmetry A2 , its behaviour with respect to

inversion must therefore be given by the factor (— 1)
J+1

. Thus, for k = 0,

levels with even and odd / can only be negative and positive respectively;

the statistical weight is 6 in either case (levels of the type A2).

Summarising these results, we have the following table of possible states

for various values of the quantum number k for the normal electron and
vibrational term of the molecule N14H1

3 (the symbols + and - denoting
positive and negative states).

+ -
|
k

|
not a multiple of 3 6E 6E

|
A

|
a multiple of 3 12^42 12^2

h _ n / J even _ 6A*
* ~ U

\ J odd 6A2

For given J and k, the energy levels of the NH3 molecule are in general

degenerate (see also the table for ND3 in Problem 3). This degeneracy is

partly removed by a peculiar effect due to the flat shape of the ammonia
molecule and the small mass of the hydrogen atoms. By a fairly small vertical

displacement of the atoms in this molecule a transition can be brought about
between two configurations obtained from one another by a reflection in a

plane parallel to the base of the pyramid (Fig. 44). These transitions cause a

splitting of the levels, separating positive and negative levels (an effect

similar to the one-dimensional case considered in §50, Problem 3). The
magnitude of the splitting is proportional to the probability of passage of the

atoms through the "potential barrier" separating the two configurations of

the molecule. Although this probability is comparatively high in the ammonia

t On rotation through an angle w, the eigenfunction of the angular momentum with magnitude J
and component zero is multiplied by (— \)

J
.
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molecule, owing to the above-mentioned properties, the splitting is still

small (1 x 10-4 eV).

An example of a molecule of the spherical-top type is discussed in

Problem 5.

C2(y) C2(x)

1 1

2 2

PROBLEMS
Problem 1. Find the relation between the symmetry of the state of the C122H1

4 molecule

and the total spin of the hydrogen nuclei in the molecule.

Solution^ The total spin of the four H1 nuclei can take the values / = 2, 1, 0, and its

component Mi takes values from 2 to —2. Let us consider the representations given by the

spin factors for each value of Mi, beginning with the largest.

The value Mi = 2 corresponds to only one spin factor, in which all the nuclei have a spin

component + i- The value Mi = 1 corresponds to four different spin factors differing as

regards the nucleus which has spin component -£. Finally, the value Mi = is given

by six spin factors, depending on the pair of nuclei which have spin components — \. The

characters of the three corresponding representations are as follows:

E a(xy) a(xz) o(yz) I Cz(z)

Mi = 2 1 1 1 1 1 1

Mi = \ 4 4

Mi = 6 6 2 2 2 2

The first of these representations is the unit representation Ag ;
since the value Mi = 2

can occur only for J = 2, we conclude that a state with symmetry Ag corresponds to spin

1 = 2.

The value Mi = 1 can occur for both / = 1 and / = 2. Subtracting the first representa-

tion from the second and decomposing the result into irreducible parts, we find that states

Big, Bzu , Bzu correspond to spin 1 = 1.

Finally, the value Mi = can occur in all cases where Mi = 1 is possible, and also for

1 = 0. Subtracting the second representation from the third, we find two states Ag corres-

ponding to spin 1 = 0.

Problem 2. Determine the types of symmetry of the total (co-ordinate) wave functions,

and the statistical weights of the corresponding levels, for the molecules C12
2H%, C'^H1^

N14
2

14
4 (all these molecules are of the same form; the spins are i(H*) = 1, i(C13

) = £,

t(N14) = 1).

Solution. By the method shown in the text for the molecule C^H^, we find the follow-

ing states (the axes of co-ordinates being taken the same as above)

:

Molecule + —

C 12
2H2

4 27Ag , lSBig lSBzu, WBau
Ci32H 14 16Ag , \2Big \2Bzu, 2\Bzu

Ni42oi 6
4 6Ag 3i?3u

f A method of solving problems of this kind, based on the theory of permutation groups,

is given by E. G. Kaplan, Soviet Physics JETP 37(10), 747, 1960.
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Problem 3. The same as Problem 2, but for the molecule N14Ha
3 .

Solution. In the way shown in the text for the molecule N14!!1
., we find the states 30.4,,

3A2 , 2AE.

In the normal electron and vibrational state, the following terms are possible for various
values of the quantum number k :

\k\ not a multiple of 3

\k\ a multiple of 3

* = «{ JST
Problem 4. The same as Problem 2, but for the molecule C^H1

, (see Fig. 43f; the
symmetry is Da d).

Solution. The possible states are of the types 7Aig , 1A1U , 3Aig , 13AiV , 9Eg , 11EU .

In the normal electron and vibrational state, the following levels are obtained:

-r-

24£ 2AE
30AU 3A2 30Alt 3A %

30At 3A2

3A% 30At

+ —
\k\ not a multiple of 3 9Eg UEU
\k\ a multiple of 3 * A\ g , 3Aig 1A1U , 13A,

4

j J even

i /odd
7Aig \A\u
3A2g 13A%u

k =

Problem 5. The same as Problem 2, but for the methane molecule C^Wi (the C atom
is at the centre of a tetrahedron with the H atoms at the vertices).

Solution. The molecule is of the spherical-top type, and has the symmetry T&- Follow-
ing the same method, we find that the possible states are of the types 5Az, IE, 3Fi (cor-
responding to a total spin of the molecule of 2, 0, 1 respectively).
The rotational states of a spherical top are classified according to the values of the total

angular momentum /. The 2/4-1 rotational functions belonging to a particular value of /
give a (2/+ l)-dimensional representation of the group O, which is isomorphous with the
group Tdl it is obtained from the latter by replacing all planes of symmetry by axes of the
second order perpendicular to them. The characters in this representation are given by
formula (98.1). Thus for example, forJ = 3 we obtain a representation with characters

E 8C3 6C2 6C4 3C4
2

1 -1 _i _i

This contains the following irreducible representations of the group O: Aif Fu F2 . Again
considering the rotational structure of the normal electron and vibrational term, we therefore
conclude that, for J = 3, the states with a symmetry Az of the total wave function can only
be positive, while those of type Fx can be either positive or negative. For the first few values
of/we thus obtain the following states (which we write together with their statistical weights)

:

+ -
/ = — 5A2

/=1
/ = 2

/ = 3

/ = 4

IE IE, 3FX

5A2 , 3Ft 3FX

IE, 3FX SA2 , IE, 3FX



CHAPTER XIV

ADDITION OF ANGULAR MOMENTA

§106. 3/-symbols

The rule of addition of angular momenta deduced in §31 gives the possible

values of the total angular momenta of a system consisting of two particles

(or more complex components) with angular momenta j\ and j%.-\ This rule

is in fact closely related to the properties of wave functions with respect to

spatial rotations, and follows immediately from the properties of spinors

considered in Chapter VIII.

The wave functions of particles with angular momenta j± and j% are sym-

metrical spinors of ranks 2/i and 2/2, and the wave function of the system is

their product,

0(i) ht^mH^-. (106.1)
2/1 2/2

Symmetrising this product with respect to all the indices, we obtain a sym-

metrical spinor of rank 2(/i +72), corresponding to a state with total angular

momentum 71 +7*2. If we contract the product (106.1) with respect to one

pair of indices, of which one must belong to if/W and the other to tpW (since

otherwise the result is zero), the symmetry of each of the spinors j/t*1) and

«/r(
2> shows that it does not matter which indices are taken from A, /*, ... and

p, cr, ... . After symmetrisation we obtain a symmetrical spinor of rank

2(/i+/2—l), corresponding to a state with angular momentum j\ +J2— 1 •%

Continuing this process, we find, in agreement with the rule already known,

that/ takes values from j\ +j% to |/i—/2I, each occurring once.

For a complete solution of the problem of the addition of angular momenta,

we must also consider the problem of constructing the wave function of a

system with a given total angular momentum from those of its two component

particles.

t Strictly speaking, we shall always be considering (without explicitly mentioning the fact each

time) a system whose parts interact so weakly that their angular momenta may be regarded as con-

served in a first approximation.

All the results given below apply, of course, not only to the addition of the total angular momenta
of two particles (or systems) but also to the addition of the orbital angular momentum and spin of

the same system, assuming that the spin-orbit coupling is sufficiently weak.

% To avoid misunderstanding, the following comment is useful. The wave function of a system

of two particles is always a spinor of rank 2{ji-\-J2), and this is in general not equal to 2j, where / is

the total angular momentum of the system. Such a spinor may, however, be equivalent to a spinor of

lower rank. For example, the wave function of a system of two particles with angular momenta
/ 1 =ji = £ is a spinor of rank two ; but if the total angular momentum j = 0, this spinor is anti-

symmetrical, and therefore reduces to a scalar. In general, the total angular momentum / determines

the symmetry of the spinor wave function of the system : this is symmetrical with respect to 2j indices

and antisymmetrical with respect to the remainder.

401
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Let us begin with the simple case of the addition of two angular momenta
to give a zero total angular momentum. Here we must evidently have

/i = j2 and angular momentum components m\ = — m^. Let tftjm be the

normalised wave functions of the states ofone particle with angular momentum
j and component thereof m (in the non-spinor representation). The required

wave function To of the system is the sum of the products of the wave
functions of the two particles with opposite values of m

:

T = 2 (-iy-m (1W(2)
y,-m, (106.2)

where/ is the common value of/i and 72- The factor preceding the sum is

due to the normalisation. The coefficients in the sum must all have the

same absolute value, since all values of the components m of the angular

momenta of the particles must be equally probable. The sequence of signs in

(106.2) is easily found by means of the spinor representation of the wave
functions. In spinor notation the sum in (106.2) is a scalar (the total angular

momentum of the system being zero)

^•"^V..* (106.3)

formed from two spinors of rank 2/. Using this, we find the signs in (106.2)

directly from (57.3).

It should be borne in mind, however, that in general only the relative

signs of the terms in the sum (106.2) are determinate, while the sign of the

whole sum may depend on the "order of addition" of the angular momenta.
For, if we lower all spinor indices (j+m ones and/—m twos) in j/^

1) and
raise them in j/»(

2
>, the scalar (106.3) is multiplied by (— l)2^, and therefore

changes sign when/ is half-integral.

Next we consider a system with zero total angular momentum consisting of

three particles with angular momenta /1, j'2, 7*3 and components thereof mi,

m2, m%. The condition for the total angular momentum to be zero is that

m>\ + W2 + m% = and j\, j'2, js have values such that each of them can be

obtained by vector addition of the other two, i.e. geometrically /1, j'2, jz must
be the sides of a closed triangle. In other words, each of them lies between

the difference and the sum of the other two

:

|/i -/2I </3 <ji+J2, etc.

It is evident that the algebraic sum /1 4-/2 +/s is an integer.

The wave function of the system under consideration is the sum

Wo= 2 (

Jl J2 ^VW^m^W (106.4)
•*—

' \7Wi 7W2 mzt
WJl,Wl2,Wl3

taken over the values of each rm from —j\ toji. The coefficients in this formula
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are termed Wigner 3j-symbols. By definition they are non-zero only if

W1+ W2+ W3 = 0.

When the suffixes 1, 2, 3 are permuted, the wave function (106.4) can

change only by an unimportant phase factor. The 3j-symbols can in fact be

defined as purely real quantities (see below), and then the indeterminacy of

To can consist only in its sign as a whole being indefinite (as is true of the

function (106.2) also). This means that interchanging the columns of a

3/-symbol can either leave it unchanged or change its sign.

The most symmetrical way of defining the coefficients in the sum (106.4),

which is the definition generally used for the 3/-symbols, is as follows. In

spinor notation, T is a scalar formed by contracting the product of the three

spinors j/fW^-, 0<2)*/«-
f
0(3) V... with respect to all pairs of indices belonging

to two different spinors. In each pair belonging to particles 1 and 2 the spinor

index will be written superior with ifjM and inferior with 0<2) ; in a pair belong-

ing to particles 2 and 3, superior with j/»<
2
> and inferior with </f<

3
> ; and in a pair

belonging to particles 3 and 1, superior with ifj® and inferior with 0W. It

is easily seen that the total number of pairs of each kind is/i +72 —7*3,72 +73 —ji,

71+73—72 respectively. This rule determines uniquely the sign of To.

It is evident that, with this definition, cyclic interchange of the indices

1, 2 and 3 leavesT unchanged. This means that the 37-symbol is unchanged

when its columns are cyclically permuted. Interchange of any two indices

is easily seen to require the raising of the lower indices and lowering of the

upper indices in all 71 +72 +73 pairs. This means that T is multiplied by

(_l)A+/2+i3
; in other words, the 37-symbols have the property

lh h h\ _
(
_ l)h+h+l

,(h h h\
etc _ (1065)

W2 mi mz/ wi mz m3)

i.e. they change sign when two columns are interchanged if7i+72+73 is odd.

Finally, we easily see that

/ h h h\
{
_ 1)h+M /h h h\

{106 .6)
\ — mi —mi —mz) Wi m% mz)

a change in the sign of the z-component of each angular momentum can

be regarded as the result of a rotation through an angle -n- about the jy-axis,

and this is equivalent to raising all the lower spinor indices and lowering all

the upper ones (see (58.11)).

From (106.4) we can derive an important formula which gives the wave

function Yjm of a system consisting of two particles and having given values

of7 and m. To do so, we consider the particles 1 and 2 together as one system.

Since the angular momentum j of this system together with the angular

momentum J3 of particle 3 gives a total angular momentum of zero, we must

have/ = 73, m = —mz. According to (106.2) we can then write

To = J- ix2 (- 1 )'-w,*W(8)
/. -m- (106.7)

14
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This formula is to be compared with (106.4) (in which we replace jz, mz by

/, — m). Here, however, we must first take into account the fact that the

rule for constructing the sum in (106.7) according to (106.3) does not corres-

pond to the rule for constructing the sum (106.4): to bring (106.7) to the

form (106.4) we must, as is easily seen, interchange pairs of upper and lower

indices corresponding to particles 1 and 3. This leads to an additional factor

(-\)h-h+h. The result is

Wjm = (-1)W.+«V(2/ + 1) y (
Jl 32 JVW"W (106.8)

*—
' wi t»2 — tn/

where the summation over m\ and m^ is subject to the condition m± + mi = m.

Formula (106.8) gives the required expression for obtaining the wave
function of a system from those of its two particles, which have definite

angular momenta j\ and }<i> It can be written in the form

Vjm= 2 0m tt)W(2)

'a»»2
(m2 = m-m1). (106.9)

mum* numa

The coefficients!

cL
m
w =(-iy^^v(2y+i)(-

/1 n J

)
(106.10)

form the matrix of the transformation from the complete orthonormal set of

(2/i+l)(2/2+l) wave functions of states with definite mi, mi to the similar

set with definite/, m (for given values oijijjz). As we know (see §12), such a

matrix is unitary. Hence we can immediately write down the inverse trans-

formation:

h+it

^W^y.-, = 2 cs'T
mzX¥^^^> (

106 -n )

i=\h-h\
mimz

where we have also used the fact that the coefficients C are real. According

to the general rules of quantum mechanics, the squares of the coefficients in

the expansion (106.11) give the probability for the system to have any par-

ticular value of/ (for given /i, mi and 72, mi).

The unitarity of the transformation (106.9) means that its coefficients

satisfy certain orthogonality conditions. According to formulae (12.5) and

(12.6)

2 0m 0'm'
miwi2 minis

mi,t»2

t Called vector addition coefficients or Clebsch-Gordan coefficients. The notation Cj m,)
2
m

2
or

(jlJ2JTn\jljzmim2) is also used in the literature.



§106 3j-symbols 405

- (2;+i) 2 (
h h j

)(
hh f

)*—> \mi m2 — ml \m\ m2 —m I

2CJm Qim
miffls mi'rm

j,m

2mv(hh i

)(
h

.

h
.*—< \m± m2 —ml \m± m% — ml

= 8 8 . (106.13)
JBlWll' 77127712'

The explicit general form of the 3j-symbols is quite lengthy. It can be

written asf

(h h h\ _ rO'i+h-h) l

-(ji~h +js)i( -ji+h +73)1-1 1/2

Vmi m2 m3/ L (

J

i -h/2 -+-J3+ 1 ) - J

x [(ji+ wi)!(ji- mi)!(j2+m2)!(j2-m2)\(js

+

ms)Kh~ »*3)!]
1/2 x

(— \\z+h-h-m*

*!(ji +72 -;s- *)!(ji-wi- *)Ki2+m2- ar)!(j3 -72+ «i+ *)!(js -/1-^2 +*)

!

(106.14)

The summation is over all integers z but, since the factorial of a negative

number is infinite, the sum contains only a finite number of terms. The
coefficient of the sum is obviously symmetrical in the suffixes 1, 2, 3; the

symmetry of the sum itself appears if the values of the summation variable

z are interchanged.

Besides the symmetry properties (106.5) and (106.6), which follow imme-

diately from the definition of the 3/-symbols, the latter also have other

symmetry properties, though the derivation of these is more complex and

will not be given here.J The properties in question can be conveniently

formulated in terms of a three-by-three array of numbers derived from the

parameters of the 3/-symbol as follows

:

. . p/2 +73-.71 73+71-72 71+72-73-1

( )
=

I h—mi j'2-m h—mz I; (106.15
\mi m2 mz I I I

I— j'i 4- m-t Jo 4- mo 11 4- m* -*
7l+ »*l 72+ ^2 73+ W3

t The coefficients in (106.9) were first calculated by E. Wigner (1931). Their symmetry properties

and the symmetrical expression (106.14) were first derived by G. Racah (1942). The most direct

method of calculation is probably to go immediately from the spinor representation of *Fo (approp-

riately normalised) to the representation in the form of the sum (106.4) by means of the correspon-

dence formula (58.1); it may be noted that, since the coefficient in this formula is real, so also must be
the 3/-symbols. Another derivation is given by A. R. Edmonds, Angular Momentum in Quantum
Mechanics, Princeton 1957. The table of 3/-symbols given below is also taken from Edmonds' book.

{ See T. Regge, 72 nuovo cimento [10] 10, 544, 1958.



406 Addition of Angular Momenta §106

the sum of the numbers in each row and each column of this array is/i +72 +73«

Then (1) interchange of any two columns of the array multiplies the 3/-

symbol by (—\)h+U+h (the same property as that given by (106.5)); (2) the

same is true for interchange of any two rows (for the two lower rows, the same
property as that given by (106.6)); (3) the 3/-symbol is unchanged when the

rows and columns of the array are interchanged.

Some of the simpler formulae for particular cases will be given here. The
value

(3 3 °\ 1r i = (-iy-» (106.16)

corresponds to formula (106.2). The formulae

fh h h+jh/2 \
j
= (-i)h-h

[(2ji)\(2J2)l(ii+J2+ mi+m2)Kh+3'2-mi-m2)\ ~| 1/2 ^ .„.

, (106.17)
(2/i+ 2j2+ l)!(ji+ wn)!(ji- mi)!(;2+

m

2)!0'2-^2)U

V/i —71— ms mzl

[(2/i) ! (-h +32 +J3)Kh+h+m3)Kh- *»s)! "]
]

( 71 +72+ 73+ 1)!(Jl -72+ /s)Kii+ 72-h)K ~/l +7*2- "*3)!(j3+m3)!J

Vi -7i-

(
27i) ! (

-7*1 +7*2 +73)!(ii +72+ ^3)!(j3- «s)! "1 1/2

. (jl +72 +73+ l)!(j'i -72 +73)Kii +7*2 -ja)K -jl+h~ ™3)KJ3+ «b)L

are obtained directly from (106.14). The derivation of the formula

' (ji +72 -J3)Kh-h+J3)K -j\ +72 +73)! ~| 1/2

(2?+ 1)1

/7i 72 73\ = r Qi+72-73)!0i-72+73)!(-7i+72+73)H ]

\0 0/ L (2/>+l)! J
p\
-

, (106.18)

(p-h)KP-h)KP-33)\

where 2p = j\ +72 +73 is even, requires a number of additional calculations ;f

when 2p is odd, this 3/-symbol is zero owing to the symmetry property

(106.6).

Table 9 gives for reference the values of the 3/-symbols for 73 = ^, 1, § , 2.

For each js the minimum number of 3/-symbols are shown from which

the remainder may be obtained by means of the relations (106.5), (106.6).

Table 9

Formulaefor 3j-symbols

('
+i '' *\ = (-nn-1/.r J

'-m+i T
\ m -m-i i/ L(2/+1)(2;+2)J

(-D-f '' ')
\m —m—ms W3/

t See Edmonds' book already quoted.
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\«8
n

V«3

y+i

^3
n

j+

j+4

2m

[2/(2/+l)(2/+2)]i/2

2(y+m+l)(y-m+l)-ji/2r2Q+m+ix;-m+in
;+

L(2/-+l)(2/-+2)(2y+3) J

F(/-m)(y+m+l)-|
1/2

2y(2y+i)(2y+2) J

_ r U-™)U-m+ 1 ) 1
1/2

L(2y+i)(2y+2)(2y+3)J

(-ly-m+l^p
1 J ? \

\m —m—ms m%)

r /—m+h ~| 1/2

y+i -(y+3m+f)3 2 U 2
l2/(2/+l(2y+2)(2y+3)J2y(2y+i)(2y+2)(2y+3).

r3(y-m+ixy-m+f)(y+m+§)-ji /2

'
' L (2y+i)(2y+2)(2y+3)(2y+4) J

ma I

_ r3(y-m-|)(y-m+|)(y+m+|)-|i /2

L 2y(2y+i)(2y+2)(2y+3) J

. a
r(y-m-i)0-m+|)(y-m+f)-ji/2

;+
" L (2y+i)(2y+2)(2y+3)(2y+4) J

(-D-f
j 2

)

\W3
11

.
2[3m2-y(y+l)]

[(2y- 1)27(2;+ l)(2y+2)(2y+ 3)F2

;+ m
L2y(2y+ l)(2/+2)(2/+ 3)(2/+4)J

r6(y+m+2)(y+w+l)(y-m+2)(y-w+l)-] 1 /2

3+2
L (2y+ 1)(2;+ 2)(2j+ 3)(2y+ 4)(2/+ 5) J
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^^3 1

1" 6(j+m+l)(j-m) -ji/2

m)
l{2j- l)2j(2j+ l)(2/+2)(2/+3)J

n

-2
(y+2,+ 2)r

(i-^DO--^) _1 1/2

12/(2/+ l)(2/+2)(2/+3)(2/+4)J

3
L (2y+l)(2/+2)(2y+3)(2y+4)(2y+5) J

\w3 2
;i

i+i

6(y-w-i)(y-w)(y+m+i)(y+m+2)-i 1 /2

(2;-l)2/(2y+l)(2;+ 2)(2;+ 3) J

(y-m-l)(y-m)(y-m+l)(y+m+2)"] 1 /2

2y(2y+i)(2y+2)(2y+3)(2y+4)

[

L 2y(2y+i)(2y+2)(2y+3)(2y+4) J

• 2 r(y-m-l)(y-m)(y-m+l)(y-m+2)ni/2
;+

L (2/+l)(2;+ 2)(2;+3)(2/+4)(2/+5) J

PROBLEM
Determine the angle dependence of the wave functions of a particle with spin J in states

with given values of the orbital angular momentum /, the total angular momentum j and
component thereof m.

Solution. The problem is solved by the general formula (106.8), in which ^'must
be taken as the eigenfunctions of the orbital angular momentum (i.e. the spherical harmonic
functions Yim t), and t/r<

2
> as the spin wave function x(a) (where a = ±£):

y,w = (-1)m^i/V(2;+1)T(
l

* 3
)Yi,m-(Tx(<y).*-~

' \m—a a —ml
<r

Substituting the values of the 3/-symbols, we obtain

7j+m ij—tn

-TT-xCi) Yi,m-U2+J—rx(-i) Yl,m+l/2,

lj—m+1 fj+m+1
*i-1/a>„ = _^_—^)y,>w_1/2+^__x(-i)yZiWl+1/2 .

§107. Matrix elements of tensors

In §29 formulae have been obtained which give the matrix elements of a

vector physical quantity in terms of the value of the angular momentum
component. These formulae are really a particular case of the corresponding

general formulae for an irreducible (see §58) tensor of any rank.f

t The analysis of the problems discussed in §§107-109, and most of the results given, are due to

G. Racah (1942-1943).
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The set of 2k+ 1 components of an irreducible tensor of rank k (an integer)

are equivalent, as regards their transformation properties, to a set of 2k+\
spherical harmonic functions Y*a, q = —k,...,k (see the last footnote to

§58). This means that, by means of appropriate linear combinations of the

components of the tensor, we can obtain a set of quantities which are trans-

formed under rotations as the functions Ykq. A set of such quantities, which
will be denoted here byfjcq, is called a spherical tensor of rank k.

For example, k = 1 for a vector, and the quantities f\q are related to the

components of the vector by the formulae

_ i

/io = iaz , /i,±i = +—{ax ±iay)\ (107.1)

V 2

cf. (58.2a). The corresponding formulae for a tensor of rank two are

/20 = — vINzz. h,±i= ±(axz ±iavz),

H,±2 = — \{C-xx— ayy±2iaXy),

with axx+ayy+aZz — 0.

The construction of tensor products from two (or more) spherical tensors

fktfo fktqt
is effected in accordance with the rules for addition of angular

momenta, with k\, k% formally representing the "angular momenta" corres-

ponding to these tensors. Thus from two spherical tensors of ranks ki and

&2> one can form spherical tensors of ranks K = &i+ &2, —, \ki— k%\ by means
of the formulae

(higk^KQ = £ CQi9Jk1q1gkittq2

QuQi

1 2

J/^.*; (107.3)

*.*.
qi q2 ~ Q}

cf. (106.9). The scalar product of two spherical tensors of the same rank k is,

however, usually denned as

(fkgk)00 = 2 (- \)^fkqgk,-q, (107.4)

which differs from the definition according to (107.3) with K = Q = by
the factor \/(2k+ 1); cf. (106.2).f This definition can also be written in the

form

(fkgk)00 = ^fkqgkq*

if we note that gkq* = (- \)
k^gk -q (cf. (28.8))4

t IfA and B are two vectors corresponding to the spherical tensorsfiq and giq according to formulae
(107.1), then (/i#i)oo = A . B.

t It is assumed that the original irreducible tensors represent real physical quantities, so that only
the spherical harmonics in the fyq are complex.
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The representation of physical quantities in the form of spherical tensors is

particularly convenient for the calculation of their matrix elements, since it

allows the direct application of the results of the theory of addition of angular

momenta.

By the definition of the matrix elements we have

hdnm= I UtXjLm '**'i'm>, (107.5)

n'j'm'

where the ijsnjm are the wave functions of the stationary states of the system,

described by its angular momentum /, component thereof m and the set of

the remaining quantum numbers n. As regards transformation properties,

the functions on the right-hand and left-hand sides of equation (107.5)

correspond to the respective sides of equation (106.11). Hence we imme-

diately obtain the selection rules: for given/, m the matrix elements are zero

except for values/', rri which satisfy the "angular momentum addition rule"

j' = j + k, with m' = m+ q.-f

Next, it follows from the same transformation correspondence that the

coefficients in the sum (107.5) must be proportional to the coefficients in

(106.11). Accordingly we write the matrix elements in the form

{ha)lt
m

' = »•*(-!)'»«-»'(
f k 3

\h)n
nT> (

107 -6)
J \ —m q ml

where

/

max is the greater of/ and/', and the (fk)*'f 'are quantities independent

of m, m' and q, called "reduced" matrix elements. % This formula gives the

solution to the problem considered. In particular, for k = 1 we obtain

formulae (29.7) and (29.9) for the matrix elements of a vector quantity.

The operators fkq are related by

/* ff
= (-l)fl-tf*,-

fl
+. (107.7)

The equation

V*X%M ' = (" l)^(A.-(r)??«' (1°7 -8)

therefore holds for their matrix elements. Substituting (107.6) and using the

properties (106.5) and (106.6) of the 3/-symbols, we obtain for the reduced

matrix elements the "Hermitian" relation

<Ml? = ifr)$- (i°7 -9)

The matrix elements of the scalar (107.4) are diagonal in/ and m. According

to the rule of matrix multiplication,

q n"j"m"

t Hence, in particular, there follow at once the rules given in §29 for the matrix elements of a

vector.

t The notation for these differs from that for the original matrix elements in that the angular

momentum components do not appear in the indices.
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1

Substituting here the expressions (107.6) and effecting the summation over q
and m" by means of the orthogonality relation (106.12) for the 3/-symbols, we
obtain

ka&jook;? =^2 (A)W-(»C- (
107 - 10)

n j

Similarly, we easily obtain the following formulae for the sums of the

squared matrix elements:

2 ic/w;;j,'
w

'i

2 = ^ric/tt:/'!
2

.
(io7.ii)

m,m' Z«+i

In the first of these the summation is over q and m' for a given value of m,

and in the second it is over m and m' for a given value of q (in every case,

m' = m+ q).

For reference purposes we may consider the case where the quantities feq

are the spherical harmonic functions Y^q themselves, and calculate their

matrix elements for transitions between the states of one particle with integral

orbital angular momenta l\ and h. In other words, we have to calculate

the integrals

(Yim)U™i = [Y *Y
7
Ylm do. (107.13)

Besides the selection rules corresponding to the rule of addition of angular

momenta (1 + 12 = li), there is also a rule for these matrix elements whereby

the sum /+/1+ /2 must be even. This is due to the conservation of parity,

according to which the product (— l)*i+*a of the parities of the two states must

be the same as the parity (— 1)* of the physical quantity considered (see §30).

From (107.6) we have

(YlM)l£i = (-1Y-.-** (
h l /2

Wi){;. (107.14)
2 2 \ — mi m mil 2

To determine the quantities (Yi)
1

^ it is sufficient to calculate the matrix

element for m± = m^ = m = 0. The integral (107.13) reduces in this case

to the integral of the product of three Legendre polynomials \\

}Pi^)Pi^)Pi^) df* = 2^ Q J
. (107.15)

t See E.W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, University Press, Cambridge
1931, p. 87.
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The result is

(^,- = (±.)"+"(00 JL ^ J
, (107.16)

the upper and lower signs of i referring to the cases h ^ h and l\ ^ h
respectively.

§108. 6/-symbols

In §106 we have defined 3/-symbols as the coefficients in the sum (106.4)

which represents the wave function of a system of three particles with zero

total angular momentum. As regards the transformation properties under

rotations, this sum is a scalar. Hence it follows that the set of 3/-symbols

with given values ofj\, j'2, jz (and all possible mi, m%, mz) may be regarded as

a set of quantities which are transformed under rotations according to a law

contragredient to that for the products ip jjmfl* Umjl* y 3m3 > so that the sum
as a whole is invariant.

From this viewpoint we may put the problem of constructing a scalar

consisting of 3/-symbols only. This scalar must depend only on the numbers

y, and not on the numbers m, which are altered by rotations. In other words,

it must be expressible in terms of sums over all the numbers m. Each such

sum consists of a "contraction" of the product of two 3/-symbols according

to the formula

y {
_ iy-JJ "\f J • -V (mi)

^—' \m . ./ \—m . ./
TO

cf. the method of constructing the scalar (106.2).

Since in each "contraction" a pair of numbers m is involved, we must

consider products of an even number of 3/'-symbols in constructing the

complete scalar. The contraction of the product of two 3y-symbols gives,

owing to their orthogonality, the trivial result

2 th h h\( h h h\, „,,,,,

\mi ni2 mz/K — mi —m% —mz)

. j (
Ji h *y_u

m\,mi,m%

here we have used the equation mi + mz+ mz = and formulae (106.6) and

(106.12). The smallest number of factors needed to form a non-trivial scalar

is therefore four.

In each 3/-symbol the three numbers j form a closed triangle. Since

each numbery must appear in the "contraction" in two 3/-symbols, it is clear
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Fig. 45

that in the construction, of a scalar from the products of four 3/-symbols

there are six numbers/ forming the edges of an irregular tetrahedron (Fig. 45),

one face of which corresponds to each 3/-symbol. In defining the required

scalar it is customary to use a certain condition as regards the contraction

process, given by the formula

[*"|.7
(.i)«wf h h j3

) x
\hJ5Je) r-1 \—«i — iii2 — ma/

all ?re

X
Ik h h\(H h M( h h h\
Wi — W5 W6/ W4 mi —me/ \ — W4 m^ mz/

The summation here is over all possible values of all the numbersm ; however,

since the sum of the three m in every 3/-symbol must be zero, only two of the

six m are in fact independent. The quantities defined by the formula (108.2)

are called dj-synibols or Racah coefficients.

From the definition (108.2), using the symmetry properties of the 3/-

symbols, we easily see that a 6/-symbol is unchanged by any permutation of

its three columns, and in any pair of columns the two numbers can be

simultaneously interchanged. Owing to these symmetry properties, the

sequence of numbers /i, . . ,j$ in the 6/-symbol can be put in 24 equivalent

forms.f In addition, the 6/-symbols have another, less evident, symmetry
property which states an equality between symbols with different sets of

numbers/:J

\ji hk) I

j

f/i hih+h+h-h) Mj*+h+h -js)\

1/4 h y«i U Kj'2+h+h -ja) iO'3+h+h-hV

We may mention a useful relation between the 67- and 3/-symbols which can

t If we regard the tetrahedron in Fig. 45 as being regular, the 24 equivalent permutations of the
numbers j can be obtained by means of the 24 symmetry transformations (rotations and reflections)

of the tetrahedron.

t See T. Regge, II nuovo cimento [10] 11, 116, 1959.
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be derived from the definition (108.2):

2 1h h h\
\mi -ms m§/

m4,ms,mt

X
th h k\i k h h\ _ ih h »\ihhh\

(1084)
W4 m2 —me/K — m^ m§ m^J \nti m^ ms/[JAJ5J6)

The expression which is summed on the left-hand side of the equation differs

from that in (108.2) by the absence of one 3/-symbol. We can therefore say

that the sum in (108.4) is represented by the tetrahedron (Fig. 45) without

one of its faces; this determines the difference of the sum from a scalar.

In other words, as regards transformation properties it corresponds to one

3/-symbol, the one on the right-hand side of equation (108.4), to which it

must be proportional. The proportionality coefficient (the 6/-symbol on the

right-hand side of the equation) is easily found by multiplying both sides by

fh h h\
\m1m2m3J

and summing over the remaining numbers tn\, m^ m%.

The 67-symbols arise naturally in connection with the following problem

concerning the addition of three angular momenta.

Let three angular momenta j\, 72, 73 be added to give a resultant angular

momentum J. If the value of J (and of its component M) is given, the state

of the system is not yet uniquely determined, but depends also on the manner

of addition of the angular momenta (or, as we say, on their coupling scheme).

For example, let us consider two such coupling schemes: (1) first the

angular momenta j\ and 72 are added to give a total angular momentum j'12,

and then/12 and 73 are added to give the final angular momentum J; (2) the

angular momenta 72 and jz are added to give 723, and then 723 and 71 to give J.

The former scheme corresponds to states in which the quantity 712 (as well

asj\,J2,J3, J, M) has a definite value; their wave functions will be denoted

by T;
12jm (omitting for brevity the repeated suffixes j\, j'2, 73)- Similarly, the

wave functions of the second coupling scheme are denoted by T/
28jm-

In both cases the values of the "intermediate" angular momentum (/12 or

723) are in general not unique, so that (for given J and M) we have two different

sets of wave functions differing in the values of 7*12 or 723- According to

the general rules, functions of these two sets are related by a certain unitary

transformation:

Wh3jM = S Sjl2hyJlzjM . (108.5)

It is evident from physical considerations that the coefficients in this

transformation are independent of the numberM : they must be independent

of the orientation of the whole system in space. Thus they depend only on
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the values of the six angular momenta /i, 72, J3,ji2,j23, J, not on their com-

ponents, i.e. are scalar quantities (in the sense defined above). The actual

calculation of these coefficients is easily effected as follows.

By a repeated application of formula (106.9) we find

mum*

mi,m,2,m3

mi,m2,m3
mi*

According to the general rules, the coefficients in the transformation (108.5)

are given by the integrals

sh.U* =
J
^hzJM^hJM dq

= 7 ciMmciMmc^zi2Ch3m * 3
>

mxA.tn,
m*m* "^ M2 ™*™>

mi2,m23

here we have used the fact that the functions ifijm are orthonormal. The sum
on the right-hand side is taken for a fixed M, but the result is actually

independent ofM (for the reason already mentioned). The summation can

therefore be extended over the values ofM if the sum is multiplied by a factor

1/(27+ 1). Expressing the coefficients C in terms of 3/-symbols by (106.10),

we obtain the following expression

:

SJlMt„ = (-l)M>+h+JV[{2j12+ 1)(2;23+ 1)]P
3
)

;i2

}. (108.6)

\)Z J J23)

The relation between the 67-symbols and the transformation coefficients in

(108.5) makes it easy to derive some useful formulae for the sums of products

of 6/-symbols.

First of all, since the transformation (108.5) is unitary and its coefficients

are real, the relation

2»-+W+l)M{**'4-W (108.7)

i

holds.

Next, let us consider the three coupling schemes ofthree angular momenta,

with intermediate sums 712, 723 and 731 respectively. The coefficients (108.6)

of the corresponding transformations are related, according to the matrix

multiplication rule, by
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Substituting here (108.6) and renumbering the suffixes we have

y (_ 1)W>+,(2/+ 1)P *%k h
{\~ l

h h j

% (108.8)

V VI 75 J I V 2 75 W U4 75 JQ)
3

Finally, by considering the various coupling schemes of four angular

momenta, we can derivef the following addition formula for the products of

three 6/-symbols:

2
(74 72 M(J2 7i 7sH74 73 75

(j© 78 7 A77 7 79^77 7*8 7

(-l)^(2i+ l)(
J4;

.

27

f1/9 78 7 J Ij . . ...

( U 19. H\ I 1R u iz\

(108.9)

i

_ (7*i 72 h\[k 7i 75

I74 75 h)\jl 7*8 79

(L. C. Biedenharn, and J. P. Elliott, 1953).

For reference we shall give some explicit formulae for the 6/-symbols.

In the general case, a 6/-symbol can be written as the following sum

:

71 72 73l

\JA 75 JV

(-1)^+1)!
x N X^ (* -7*1 -72 -7*3)K^ -7*1 -75—7*6)!(^ -7*4 -72 ->6)!(* -74 -75 -73)!

z

x _
, (108.10)

(ji +72 +74 +75-z)Kh +73 +75 +76- *)Kh +71 +76 +74- *)*

where

r(a+ b-c)\(a-b+ c)\(-a + b+c)\ "I 1 /2

A«=L («+»+«+!). J '

and the sum is taken overall positive integers z for which none of the factorials

in the denominator has a negative argument.

Table 10 gives the values of the 67-symbols for cases where one of the

parameters is 0, £ or 1.

Finally, we shall make a few remarks concerning the higher-order scalars

constructed from the 3y-symbols.

The next in complexity after the 67-symbols is a scalar formed by contract-

ing products of six 3/-symbols. These 3/-symbols contain 18 numbers j

equal in pairs, and so the resulting scalar depends on 9 parameters j. It

is called a 9j-symbol and is defined as followsJ (E. Wigner 1951):

t See Edmonds' book quoted in §106.

J According to the general rule of contraction (108.1) it would be necessary to write the arguments

m in the last three 3./"-symbols with the minus sign and to include in the summand a factor (— l)S^_m) .

However, by using the property (106.6) of the 3/-symbols and the fact that in this case, as is easily seen,

the sum 2w of all the nine numbers m is zero, we have the definition (108.11).
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Table 10

Formulae for 6j-symbols

(a b c\ (-l)s(a b c\

(o c b)~ V[(26+l)(2c+l)]
s = a+b+c

a b c
\

r (s-2b)(s-2c+l) -ji /2

i c_i h+%) L(2b+l)(2b+2)2c(2c+l)J

\i c_i j_|j
v

|_26(26+l)2c(2c+l)J

a 6 c \ J s(*+l)(*-2fl-l)(s-2a) -[i /2

1 c_i b-V (~
^L (26- 1)26(26+ l)(2c-l)2<;(2c+l) J

a 6 c \ r 2{s+l)(s-2a)(s-2b)(s-2c+l) "l 1 /2

1 c-1 b ]
~ ^ L26(26+l)(26+ 2)(2c-l)2c(2c+l)J

a 6 c
|

r(s-26-l)(s-26)(s-2<:+l)(s-2c+2)-|i /2

1 c-1 b+l)
=

(
~ 1)S

L(26 + 1)(26+ 2)(26+ 3)(2c-l)2c(2c+ 1)J

a b c \ 2[b(b+l) + c(c+l)-a(a+l)]
1 = (-l)s+1 —

[1 c b )

K
' [26(26+ l)(26+ 2)2c(2c+l)(2c+2)]i/2

fjll jl2 jl3

. . . I _ ^T (hi /l2 ;'l3 \ /m 722 .723 \ /J31 732 ]33 \

I Z—i Vmii mi2 m\z) \m%\ ni22 m^l W31 mz2 77*33/

KJ31J32J3V
allOT

/Jll 721 M\/jl2 ;*22 J32\/jl3 723 7*33 \

Vmii W21 W31/ \mi2 W22 ^32/ W13 ^23 W33/

This quantity can also be written as the sum of products of three 6/-symbols:

!/ll 7l2 713 \

• • • V, n, v1 . , x (ill J2l J3l\ (jl2 J22 J32\ (jl3 723 733^

J21J22J23 = )(-TO+ l).
. . . ..... .(108.12)

. . .
Z-' U32 733 j ) I.721 ; ;23/ \j ju J12)

J3I J32 J33
J }

The equivalence of (I08.ll) and (108.12) can be seen by substituting in

(108.12) and the definition (108.2) and using the orthogonality properties of

the 3/-symbols.

The 9/-symbol has a high degree of symmetry, which follows directly from

the definition (I08.ll) and the symmetry properties of the 3/-symbols. It is
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easily seen that when any two rows or columns are interchanged the 9/-symbol

is multiplied by ( — l)2^'. Moreover, the 9/-symbol is unaltered by transposi-

tion, i.e. interchange of rows and columns.

Scalars of still higher orders depend on a still larger number of parameters

j. It is evident that this number will always be a multiple of three (3nj-

symbols). We shall not pause to discuss their properties, but merely mention

that for every n > 3 there is more than one type of 3nj-symbol, and these

do not reduce to one another. For example, there are two different types of

12/-symbol.t

§109. Matrix elements for addition of angular momenta

Let us again consider a system consisting of two parts (referred to as sub-

systems 1 and 2), and let/^1
* be a spherical tensor pertaining to sub-system

1. Its matrix elements with respect to the wave functions of this sub-system

are given, according to (107.6), by the formula

(ni'ji'nn'lfk^lmjmn) = i*(-l)ii.-~-»iY
n Jl

)(n1'j1'\fk^\n1j1). (109.1)
\— 7»i q mj

The question arises of calculating the matrix elements of these quantities

with respect to the wave functions of the system as a whole. We shall show

how they may be expressed in terms of the same reduced matrix elements

as appear in the expression (109.1).

The states of the system as a whole are denned by the quantum numbers

hi J2i Ji M, «i, «2 (where J and M are the angular momentum and its com-

ponent for the whole system). Sincefkq^ refers to sub-system 1, its operator

commutes with the angular momentum operator of sub-system 2. Its matrix

is therefore diagonal with respect to/2; it is also diagonal with respect to the

remaining quantum numbers n% of this sub-system. These indices ht n% WU<1

be omitted, for brevity, and the required matrix elements will be written as

(tii'n'J'M'lh^ln^JM).

According to (107.6), their dependence on the numberM is given by

{m'h'J'M'lftMn&JM) = i*(-l)'—-"'
(_M ,

^jfa'h'J'lfiPln&J).
q

(109.2)

To establish the relation between the reduced matrix elements on the right-

hand sides of (109.1) and (109.2) we write, using the definition of the matrix

t A more detailed account of the theory of 9/-symbols and of the properties of 3w/'-symbols is given

in Edmonds' book quoted in §106 and by A. P. Yutsis, I. B. Levinson and V. V. Vanagas, Mathe-

matical Apparatus of the Theory of Angular Momentum, Oldbourne Press, London 1963 (Mate-

maticheshii apparat teorii momenta kolichestva dvizheniya, Vilnius 1960).
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elements,

= 2 (-l).W1+M'-MV[(2^ +1)(2y+1)](^
* _g x

M!l,ffll'

(/l 7*2 J \
J
(«i';i'«i'|/*a

(1)
l

nihmi)-

m\ m2 —Ml

Substituting here (109.1) and (109.2) and comparing the resulting relation

with formula (108.4), we see that the ratio of the reduced matrix elements in

(109.1) and (109.2) must be proportional to a certain 6/-symbol. A careful

comparison of the two relations mentioned leads to the final formula

(ni'ji'J'\fk
a)\nijiJ) = (-iy 1 .m«+^+^-+V[(2-/+l)(2i'+l)]x

xP'
7 ;

1("i7i1/fc(1)
l"iji)> (109.3)

\J Ji k)

where 7'max is the greater of j\, ji, and /mln the smaller of J, J'. A similar

formula for the reduced matrix elements of the spherical tensor pertaining

to the second sub-system is

(n2'h'J'\fic
{2)\n2i2J) = (-l)^-.-^—+»V[(2^+lX2^'4-l)]x

xP
J Jl

)(n2ti\fk™\n2J2). (109.4)
\J J2 k)

The lack of complete symmetry between the expressions (109.3) and (109.4)

(in the exponent of - 1) is due to the dependence of the phase of the wave

functions on the order of addition of the angular momenta. The difference

must be borne in mind when calculating matrix elements for both sub-systems

simultaneously.

We shall also derive a useful formula for the matrix elements, with respect

to the wave functions of the whole system, of a scalar product (see the defini-

tion (107.4)) of two spherical tensors of the same rank k pertaining to different

sub-systems (and therefore commuting). According to (107.10), these matrix

elements are given in terms of the reduced matrix elements of each tensor

(with respect to the wave functions of the whole system) by

(nMjiWJMlWUfrtofalnwijzJM)

=—^ (»iyi^lAml»iJi^WB^I/^lnj^T),

<J

where we have used the fact that the matrix of a quantity pertaining to one
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sub-system is diagonal with respect to the quantum numbers of the other
sub-system. Substituting (109.3) and (109.4) and using the summation
formula (108.8), we obtain the desired formula expressing the matrix elements
of the scalar product in terms of the reduced matrix elements of each tensor
with respect to the wave functions of the corresponding sub-systems:

(niWjitiJM\(fkaykM)0Q
\
nin2JiJ2JM)

= (-l)h,ml»+j 2 ,m„+jf J2 3
] y^'hy^ln^Xn^y^ln^). (109.5)

l* Jl J2 i



CHAPTER XV

MOTION IN A MAGNETIC FIELD

§110. Schrbdinger's equation in a magnetic field

In non-relativistic theory, a magnetic field can be regarded only as an

external field. The magnetic interactions between particles are a relativistic

effect, and a consistently relativistic theory is needed if they are to be taken

into account.

The Hamiltonian of a system of particles in a magnetic field can be obtained

from the classical expression for the corresponding Hamilton's function.

As is known from electrodynamics, this function is of the form

2 (pa—*aAa/c)2

2ma
g-y "". " +Pfoy,»),

where pa is the generalised momentum of the ath particle, A the vector

potential of the magnetic field at the point occupied by this particle, and

U(x, y, z) the potential energy of the interaction of the particles (or their

energy in the external electric field).f For brevity, we shall write the formulae

below for a single particle.

If the particle has no spin, the transition to quantum mechanics can be

made in the usual manner ; the momentum p must be replaced by the operator

p = —ih\J, and we obtain the Hamiltonian

fi =
™

'-L+Ufay.z). (110.1)
2m

If, on the other hand, the particle has a spin, this procedure does not

suffice. This is because the spin interacts directly with the magnetic field.

In the classical Hamilton's function this interaction does not appear, since

the spin, which is a purely quantum effect, vanishes when we pass to the

limit of classical mechanics. To a particle with a spin we must also ascribe an

intrinsic magnetic moment ; from considerations of symmetry it is evident that

this moment is parallel or antiparallel to the spin. We write it in the form

pi = /*§/*, (110.2)

where I is the spin operator and p is a constant characterising the particle.

This form corresponds to the usual terminology, according to which the

t See, for instance, The Classical Theory ofFields, §16. We here denote the generalised momentum

by p and not by P.

421
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value fi, of the magnetic moment ofa particle is taken to be the maximum value
of its projection, i.e. the value of fxz = po/s when a = s. The correct
expression for the Hamiltonian of the particle is obtained by adding to (1 10.1)
an additional term - p. . 34?, which corresponds to the energy of the magnetic
moment ji in the field 2tf. Thus the Hamiltonian of a particle having a spin
and in a magnetic field is

A = ®-eAlcy*l2m-(tils)i.jP+U(x,y,z). (110.3)

In expanding the square (p-eA/c)\ we must bear in mind that p does not
in general commute with the vector A, which is a function of the
co-ordinates. Hence we must write

tt = p2/2m-(e/2mc)(A.^+p.A)+e2A2/2mc2-(J[i/^§.^+C/. (110.4)

According to the rule (16.4) for thecommutationof the momentum operator
with any function of the co-ordinates, we have

p.A-A.p = —ih divA. (110.5)

Thus p and A commute if div A = 0. This holds, in particular, for a homo-
geneous field, if its vector potential is expressed in the form

A=£jfxr. (110.6)

The equation fiifj = Eip for the eigenvalues of the operator (110.3) is

a generalisation of Schrodinger's equation to the case where a magnetic
field is present. The properties of the operator § have been considered in
detail in Chapter VIII. The wave functions on which the operator (110.3)
acts are symmetrical spinors of rank 2s.

The wave functions of the stationary states of a particle in a magnetic
field are not uniquely defined, because the choice of the vector potential is

not unique; the latter is defined only to within the gradient of an arbitrary
function/. If we make the substitution

A-*A+V/(*o'.*), (110.7)

the magnetic field is unaffected. It is therefore clear that the transformation
(110.7) cannot essentially change the eigenfunctions of the operator (110.3);
in particular, the squared modulus

|^|
2 must remain unchanged. In fact,

it is easy to see that, on making together with (110.7) the substitution

ifj -> ift exp[i(elhc)f(x
t y, *)], (1 10.8)

we return to the original equation.f Thus the phases of the wave functions

t If we are concerned with a system of several particles, the transformation of the wave function is

ifj
-> i/j expi(t/hc) S eaf(xa,ya , za)},

the summation being over the particles forming the system.
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of the stationary states are determined only to within an arbitrary function

of the co-ordinates. This non-uniqueness, however, does not affect any

quantity having a physical significance; the vector potential does not appear

explicitly in the definition of such a quantity.

In classical mechanics, the generalised momentum of a particle is related to

its velocity by

m\ = p— eA/c.

In order to find the operator v in quantum mechanics, we have to commute

the vector r with the Hamiltonian. A simple calculation gives the result

wv = p-eAjc, (110.9)

which is exactly analogous to the classical expression. For the operators of

the velocity components we have the commutation rules

{vx , %} = i(ehlm2c)J^z , \

{%^}=#/«2^,
J

(no.io)

{»«,»*} = i(ehlm2c)Jify, J

which are easily verified directly. We see that, in a magnetic field, the

operators of the three velocity components of a (charged) particle do not

commute. This means that the particle cannot simultaneously have definite

values of the velocity components in all three directions.

The constant fijsh gives the ratio of the intrinsic magnetic moment of the

particle to its spin angular momentum hs. As is well known,f for the ordinary

(orbital) angular momentum this ratio is ejlrnc. The coefficient of propor-

tionality between the intrinsic magnetic moment and the spin of the particle

is not the same. For an electron it is -\e\jmc, i.e. twice the usual value.! The

intrinsic magnetic moment of the electron (spin |) is consequently

Ho = \e\fylmc = 0-927X 10"20 erg/gauss. (110.11)

This quantity is called the Bohr magneton.

The magnetic moment of heavy particles is customarily measured in

nuclear magnetons, defined as eh/lmc with m the mass of the proton. The

intrinsic magnetic moment of the proton is found by experiment to be

2-793 nuclear magnetons, the moment being parallel to the spin. The magnetic

moment of the neutron is opposite to the spin, and is 1 -913 nuclear magnetons.

In motion in a magnetic field, the symmetry with respect to time reversal

occurs only if the sign of the field 2tf (and of the vector potential A) is changed.

This means (see §§18 and 60) that Schrodinger's equation ify = ^ must

keep the same form when we take complex conjugates and change the sign of

t See The Classical Theory of Fields, §44.

J This value of jko can be obtained theoretically from DlRAC's relatmstic wave equation.
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3tf. This is immediately evident for all terms in the Hamiltonian (110.4)
except - s .Jtif. The term - s .2? i/j in Schrodinger's equation becomes
s* .J0?0* under the transformation in question, and at first sight this destroys
the required invariance, since the operator s* is not the same as -§. It must
be remembered, however, that the wave function is in reality a spinor j^-,
and on time reversal a contravariant spinor must be replaced by a covariant
one (see §60), so that in Schrodinger's equation the term - § . 3^^- is

replaced by §* . «3^A/t .... It is easily seen by means of the definitions (57.4),
(57.5) that the result of the action of the operator §* on the components of
the covariant spinor has the opposite sign to that of the operator s on the
components of the contravariant spinor. The operation of time reversal
therefore leads to a Schrodinger's equation for the components A which
is of the same form as the original equation for the components j/t

a<"-.

§111. Motion in a uniform magnetic field

Let us determine the energy levels of a particle in a constant uniform
magnetic field (L. D. Landau 1930). The vector potential of the uniform
field is conveniently taken here not in the form (110.6), but as

Ax = -Jt?y, Ay =Az =0 (lll.l)

(the sr-axis being taken in the direction of the field).

The Hamiltonian (110.3) becomes

1

.ll+M
2m

KJr* '

' 2m 2m
H=~ (px+e*yW+Z!-+£. G*/,)W. (111.2)

First of all, we notice that the operator se commutes with 8, and the
coefficient of s z in (111.2) is a constant, independent of the co-ordinates.
From the first of these facts it follows that s z is conserved; from the second,
that the spin and co-ordinate variables in Schrodinger's equation are
separable. In other words, the eigenfunctions can be represented as products
of co-ordinate functions with spin functions which correspond to definite
values a of the component of the spin. For the co-ordinate function ifj we
have the equation

The operator (111.2) does not contain the co-ordinates x and z explicitly.

The operators p x and
f> z therefore commute with i?, i.e. the x and z com-

ponents of the generalised momentum are conserved. We accordingly seek
if) in the form

tf,
— fti impxx+pzz)x(yj # (111.4)

The eigenvalues p x and/^ take all values from —00 to + 00. The momentum
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p z is related to the velocity by p z
= mv z

(see (110.9)). Thus the velocity of

the particle in the direction of the field can take any value; we can say that

the motion along the #-axis is "not quantised". The physical significance

of px will be explained below.

Substituting (111.4) in (111.3), we obtain the following equation for the

function x(j) :

2ml Pz
2 SeJF\ 2

)

where we have introduced the notation

y — —cpxletf'.

This equation is formally identical with SchrSdinger's equation (23.6) for a

linear oscillator, oscillating with frequency co = \e\3^jmc about the point

y = y . Hence we conclude immediately that the constant E+(fijs)otf

-

-\pf\m, which takes the part of the oscillator energy, can have the values

(n+ %)hu), where n is any integer.

Thus we obtain the following expression for the energy levels of a particle

in a uniform magnetic field:

E = {n+^)\e\HJiflmc-\-pz
2l2m-(H.js)a^'. (111.5)

The corresponding wave functions are (apart from a normalising constant)

$ = #/w^#e-^^S'™H»W(W*lch)(y-yo)], (
m -6)

where the Hn are Hermite polynomials.

The energy given by the first term in (111.5) corresponds to the motion in

the ay-plane. In classical mechanics this is a motion in a circle about a fixed

centre. The quantity y , which is conserved, corresponds to the classical y

co-ordinate of the centre of the circle. The quantity x = cpJeJ^+x is

also conserved; it is easy to see that its operator commutes with the

Hamiltonian (111.2). This quantity x corresponds to the classical x co-

ordinate of the centre of the circle.f The operators £ and y ,
however, do

not commute. In other words, the co-ordinates x and jo cannot take definite

values simultaneously.

Since (111.5) does not contain the quantitypx , which assumes a continuous

sequence of values, the energy levels are continuously degenerate. However,

the degree of degeneracy becomes finite if the motion in the xy-plane is

restricted to a large, but finite, area S = LJ.y. The number of (now

t For, in classical motion in a circle of radius cmDt\e$f (where v% is the projection of the velocity

on the ary-plane; see The Classical Theory of Fields, §21), we have

yQ = —cpxle3^ = —cmvxle^+y.

It is evident from this that y is the y co-ordinate of the centre of the circle. The other co-ordinate is

x = cmvyleJf+x = cpyjetf+x.
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discrete) possible values of px in an interval Apx is (Lx{2Trh)Apx. All values
ofpx are admissible for which the orbit centre is inside S (we neglect the
radius of the circle in comparison with the large quantity Ly). From the con-
dition < y < Ly we have Apx = eJfLJc. Hence the number of states
(forgiven n,ps) is

If the region of motion is bounded in the ^-direction also (dimension Lz),
the number of possible values of p2 in an interval Ap

e is (LJ27rh)Apz and
the number of states in this interval is

ejfS Lz eJtf'VAp,

2ttHc 2-rrh 4v2h2c

For an electron there is an additional degeneracy: putting in (111.5)
f*o — — \e\h~l2mCy we obtain

E = (»+|+tr) \e\H^lmc+p^2m, (H1.7)

where a = ± \ ; it is evident that the levels with w, a = \ and n+ 1, a = —
£

are the same.

PROBLEM
Find the wave functions of a particle in a uniform magnetic field in states in which it has

definite values of the momentum and angular momentum in the direction of the field.

Solution. In cylindrical polar co-ordinates p, </>, z with the ar-axis in the direction of the
field, the vector potential has components A* = Jjfp, A z = Ap

= 0, and Schrodinger's
equation isf

_ _?!_["—(
8
^\

82
* 1 82

^1 ieh^ ^ e2j^2

2MLP Jp\
P
Jp)

+
~8^

+
~^~d^\ ~ 2McT$

+ 8M?^
= E^'

We seek a solution in the form

1

ip = R(p)eim<f>eiPzz /n
,

V(2tt)

obtaining for the radial function the equation

p L«2 \2chJ ch /o
2J

Defining a new independent variable £ = {e3^l2c%)p^, we can write this equation in the form

(2ME-pz2)c

2He#e
+im.

t The mass of the particle is here denoted by M to distinguish it from the angular momentum m,
and the charge is, for defmiteness, assumed negative and denoted by — e. The spin term is unimportant
in this problem, and is omitted.
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As£ -> oo the required function behaves as «-«, and for £ -* as &m V*. Accordingly we

seek a solution in the form

the equation for «>(£) is satisfied by the confluent hypergeometric function

«, = jF{-(j5-iH-i), |ffl| + l, I}.

If the wave function is everywhere finite, the quantity j3-i|m|-i must be a non-negative

integer np . The energy levels are then given by the formula

which is equivalent to (111.5).

§112. The Zeeman effect

Let us consider an atom in a uniform magnetic field. Its Hamiltoman

is of the form

1 ^-v eh
# = -Y (Pa+eAalcf+ U(x,y,*)+—* . S §«,

2m^ «* «
a

where the summations are taken over all the electrons; U{x,y,z) is the

energy of interaction of the electrons with the nucleus and with one another.f

The sum S sa is the operator S of the total spin of the atom. Denoting

by # the Hamiltonian of the atom in the absence of the field, we can re-

write i? in the form

e x-^ e* sr^ eh

n =#o+- TAa.ftH-—5^+-JT.S;

a a

we recall that p and A commute in a uniform field with the vector

potential (110.6).

Substituting A from (110.6), we obtain

p ^-* e2 ^-v eh

The vector ra x pa , however, is the operator of the orbital angular momentum

of the electron, and the summation over all the electrons gives the operator

tiL of the total orbital angular momentum of the atom. Thus

n = i?o+ML+2S) .jr+(e*ISnu*) S (3exraf, (112.1)

where juo is the Bohr magneton. The operator

(Ut = -mo(L+2S) (H2.2)

f In this section we shall denote the charge on the electron by — e.
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may be regarded as the operator of the "intrinsic" magnetic moment of the
atom, which it possesses in the absence of the field.

Let us suppose that the magnetic field is so weak that /x ^ is small com-
pared with the distances between the energy levels of the atom, including the
fine-structure intervals. Then the second and third terms in (112.1) can be
regarded as a perturbation, the unperturbed levels being the separate com-
ponents of the multiplets. In the first approximation we can neglect the third
term, which is quadratic with respect to the field, in comparison with the
second term, which is linear.

The magnetic field, by distinguishing a certain direction in space, removes
the degeneracy of the levels with respect to the directions of the total angular
momentum J of the atom. By virtue of the axial symmetry of the field, the
projection of the total angular momentum on the direction of the field is

conserved, and the different components of the split term are characterised
by the values Mj of this projection. The energy AE of the splitting is

determined by the mean values of the perturbation in states with the given
quantum numbersf J, L, S and different values of Mj\

AE = /i (L+2S) . 3tf = m, (J+ S) . JfJT.

If we take the direction of the magnetic field to be along the #-axis, we have

AE = ^(Jz+St). (112.3)

For the vector J, which is conserved (in the unperturbed state), we have
simply Jz = M. The mean value of Sz can easily be found as foil ws.
It is evident from considerations of symmetry that the mean value S is a
vector directed parallel to the vector J, the latter being the only one which
is conserved. Hence we can write S = constant x J. Multiplying both sides
of this equation by J, we have J . S = J . S = constant x J2, from which the
constant is determined. Thus

Sz =Mj(J.S)IP; (H2.4)

we have omitted the bar over J . S, since this product has a definite value in
the Russell-Saunders approximation. Here J

2 is equal to its eigenvalue
/(/+1), while the eigenvalue ofJ . S is (see (31.3))

J-S =UJ(J+1)-L(L+1)+S(S+1)}.

Collecting the above expressions and substituting in (112.3), we find the
following final expression for the energy of the splitting:

AE = wgMjjr, Mj = -y, -J+ 1, ... J, (1 12.5)

where

8 = l+[/a+l)-^+l)+S(S+l)]/2/C/+l) (H2.6)

t We assume that the case of Russell-Saunders coupling holds for the atomic terms.
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is what is called the Lande factor or gyromagnetic factor. The splitting of the

levels in a magnetic field is called the Zeeman effect. We see that the magnetic

field completely removes the degeneracy (if g ^ 0), and the magnitude of

the splitting is proportional to the field.

The Lande factor for the various components of the multiplet takes values

lying between those corresponding to J = L±S (if L ^ S):

(L+2S)I(L+S) >g>(L-2S+l)l(L-S+l),

or between those corresponding to J = S±L (if S ^ L):

(L+2S)I(L+S) >g>(2S+2-L)l(S-L+l).

If there is no spin (S = 0, / = L), g is simply unity ;f if L = 0, g = 2.

For / = (which can occur only for S = L), the expression (112.6) becomes

indeterminate ; the effect, however, is of course absent, since Mj = if

/ = 0. The splitting linear with respect to the field vanishes for some terms

with 7^0 also for which g = 0, e.g. for L = IS- 1, J = S— 1 (S > 1).

The derivative —dAE/d^ is the mean value of the magnetic moment of

the atom.J We see that an atom in a state with a definite value Mj of the

component in some direction of the total angular momentum has a mean

magnetic moment —fx gMj in that direction.

If the atom has neither spin nor orbital angular momentum (S = L = 0),

the second term in (112.1) gives no displacement of the level, either in the

first approximation or in any higher one (since the matrix elements of L

and S vanish). Hence, in this case, the whole effect arises from the third

term in (112.1), and in the first approximation of perturbation theory the

displacement of the level is equal to the mean value

AE = _f!_ V(jrxra)2. (1 12.7)

8mc2 AS
a

Putting (J^xra)
2 = .?fVa

2 sin2 0, where 9 is the angle between ra and^,

and averaging with respect to the directions of ta , we have sin2 = 1—cos2

= 2/3 (bearing in mind that the wave function of a state with L = S = is

spherically symmetrical). Thus

A£ = _f_^2V~2. (112.8)

12mc2 £->
a

The derivative —dAE/dd? is the magnetic moment acquired by the atom

f The splitting described by the general formulae (112.5), (112.6) is often called the anomalous

Zeeman effect. This unfortunate name arose because, before the spin of the electron was discovered,

the effect described by formula (112.5) with g = 1 was regarded as normal.

t See §11, Problem.
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in the magnetic field. Writing it in the form x^> we can regard

a

as the magnetic susceptibility of the atom (P. Langevin 1905). It is negative,
i.e. an atom with L = S = is diamagnetic.f

If J = 0, but S = L # 0, the displacement linear with respect to the field

again vanishes, but the quadratic effect from the perturbation -
(j,at . Ztf

in the second approximation exceeds the effect
(112.7).J This is because,

according to the general formula (38.9), the correction to the eigenvalue
of the energy in the second approximation is given by a sum of expressions
whose denominators contain the differences between the unperturbed
energy levels, in this case the fine-structure intervals of the level, which
are small quantities. We have remarked in §38 that the correction to the
normal level in the second approximation is always negative. Hence the
magnetic moment in the normal state is positive, i.e. an atom in the normal
state with /= 0, L = S ^ is paramagnetic.

In strong magnetic fields, where fx #? is comparable with or greater than
the intervals in the fine structure, the splitting of the levels differs from
that predicted by formulae (112.5), (112.6); this phenomenon is called the
Paschen-Back effect.

The calculation of the energy of the splitting is very simple in the case
where the Zeeman splitting is large in comparison with the intervals in the
fine structure but still, of course, small compared with the distances between
the different multiplets (when it may be shown that we can, as before, neglect
the third term of the Hamiltonian (112.1) in comparison with the second).

||

In other words, the energy in the magnetic field considerably exceeds the
spin-orbit interaction. Hence we can neglect this interaction in the first

approximation. The projections ML andMs of the orbital angular momen-
tum and spin on the .sr-axis are then conserved, as well as the projection of
the total angular momentum, so that the splitting is given by the formula

&E =
/xo^r(ML+2M<s). (112.10)

The multiplet splitting is superposed on the splitting in the magnetic
field. It is determined by the mean value of the operator AL . S (72.4) with
respect to the state with the given ML , M8 (we are considering the multi-
plet splitting due to the spin-orbit interaction). For a given value of one of

f We may mention that the Thomas-Fermi model cannot be used to calculate the mean square
distance of the electrons from the nuclei. Though the integral JW2dr with the Thomas-Fermi density
n(r) converges, it does so too slowly, and the values obtained are very different from the experimental
ones.

J For S = L ^ 0, the non-diagonal matrix elements of Lz , Sz for the transitions S, L, J -> S,
L, /± 1 are not in general zero.

I
For intermediate cases, where the effect of the magnetic field is comparable with the spin-orbit

interaction, the splitting cannot be calculated in a general form; the calculation for S = J is given in
Problem 1.
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the angular momentum components, the mean values of the other two are

zero. Hence L.S = MLMs , so that the energy of the levels is given in

the next approximation by the formula

A£ =
l
iVSf(ML-¥2Ms)-[-AMiMs. (112.11)

The calculation of the Zeeman effect in the general case of any type of

coupling (not Russell-Saunders) is not possible. We can say only that the

splitting (in a weak field) is linear with respect to the field and proportional

to the projection Mj of the total angular momentum, i.e. it has the form

*E = iiagnjJrMj, (112.12)

where the gnJ are some coefficients characterising the term in question; n

denotes the assembly of all the quantum numbers, except/, which characterise

the term. Though these coefficients cannot be calculated separately, it is

possible to obtain a formula, useful in applications, which gives the sum

XgnJ taken over all possible states of the atom with the given electron

configuration and total angular momentum.

The quantities gnJMj are the diagonal matrix elements of the operator

L Z+2SZ, calculated with respect to the wave functions $nJMj- The quan-

tities gSLJMj, on the other hand (where gSLJ is the Russell-Saunders

Lande factor (112.6)), are the diagonal matrix elements of the same operator

with respect to the functions
*I>SLJMj- Tne functions ^nJMj witn given J>

MJ

can be represented as mutually orthogonal linear combinations of the func-

tions i/jsljmj wit*1 the same J>
MJ- The linear transformation of one

orthogonal set of functions into another is unitary, and leaves unchanged

the sum of the diagonal elements of the matrix (see §12). Hence we conclude

that
XgnjMj = XgSLjMj,
n S,L

or, cancelling Mj (since gnJ and gSLJ do not depend on Mj),

VgnJ = ZgSLJ- (H2.13)
n S,L

The summation is taken over all states with the given value of / which are

possible for the given electron configuration. This is the required relation.

PROBLEMS
Problem 1. Determine the splitting of a term with S = £ by the Paschen-Back effect.

Solution. The magnetic field and the spin-orbit interaction have to be taken into

account simultaneously by perturbation theory, i.e. the perturbation operator ist

V = A L.S +/*o(L*+2&>#'.

t We do not include in V the term proportional to (L . §)2 (the spin-spin interaction). It must be

borne in mind, however, that, for a spin S — \, the expression (L . S)2 reduces by virtue of the pro-

perties of the Pauli matrices (see §55) toL . S\ and is therefore included in the formula for V as written

here.
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As the initial wave functions for the zero-order approximation, we take functions correspond-
ing to states with definite values ofL, S = £, Ml, Ms (L given; Ml = —L, ... , L; Ms = ± I).

In the perturbed states, only the sum Mj = ML+MS is conserved (^ commutes with Jt),
so that we can ascribe definite values of Mj to the components of the split term.
The values Mj = L+ $ and Mj = -(L+ £) can occur in only one way each: withML = L, Ms = £ and ML = —L, Ms = — £ respectively. Hence the corrections to the

energy of the states with these Mj are simply equal to the diagonal matrix elements
(MlMs\V\MlMs) with the indicated values ofMl and Ms. The remaining values of Mj can
occur in two ways each: with ML = Mj-\, Ms = \ and with Ml = Mj+ i, Ms = -£.
Here two different values of the energy correspond to each Mj; they are determined from
the secular equation formed from the matrix elements for transitions between these two states.
The matrix elements of L . S are calculated by directly multiplying the matrices (MlIUM'l)
and (Ms\S\M's), and are

(MLMS\L . S\MLMS) = MLMS ,

(Mj+l -i|L . S\Mj-l i) = (Mj-i, i|L . S\MJ+l -%)

= W[(L+Mj+%)(L-Mj+l)].

In the absence of a magnetic field, the term is a doublet, the distance between the com-
ponents being e = A(L+ $); see (72.6). We take the lower of these levels as the origin of
energy. Then the final formulae for the levels Emj in the magnetic field are

EL+i =e+ixoJf(L+l),

E-iL+i) = e-^^L+l),

Em/ = h+^^Mj± V[i(e2
+/*o

2^2)+jM ^Mje/(2L+ 1)],

Mj=L-i,...,-L+±.
For small ii, 34?/€ we have

EMj+ = e+fio^Mj .2(L-f-l)/(2Z+l), EMj - =/i0^MJ .2L/(2L+l),

in accordance with formulae (112.5), (112.6) (in which we must put S = £, / = L±$).
For large HoJtf'le we have

Emj* = ^^(Mj±i)+|e±
J€

2L+ 1

in accordance with (112.11).

Problem 2. Determine the Zeeman splitting for the terms of a diatomic molecule in
case a.

Solution. The magnetic moment arising from the motion of the nuclei is very small in
comparison with the magnetic moment of the electrons. Hence the perturbation due to the
magnetic field can be written for the molecule as for a system of electrons, i.e. in the form
used previously: V =/x "^ • (L+2§), where L, S are the electron orbital and spin angular
momenta.

Averaging the perturbation with respect to the electron state, we have in case a

twfnz(A+2X) = /zo^z(2Q-A).

The mean value of nz with respect to the rotation of the molecule is the diagonal matrix
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element (JMj\nz\JMj), which is equal to £IMj[J(J+1) by (87.1) (with J and CI in place of

K and A). Thus the required splitting is

Q(2Q-A)
AE = /xo— -MjStf.

7(7+1)

Problem 3. The same as Problem 2, but for case b.

Solution. The diagonal matrix elements J^k/ wmcn determine the required splitting

could be calculated from the general rules given in §87. However, it is simpler and more
comprehensible to perform the calculation as follows. Averaging the perturbation operator

with respect to the orbital and electron states, we obtain

(the spin operator is unaffected by this averaging). Next, we average with respect to rotation

of the molecule; the mean value of nz is given by formula (87.1), and so we have

^[{A»/*(*+i)}&+2&].

Lastly, we average with respect to the spin wave function ; after the whole averaging, the mean
values of the vectors must be directed parallel to the total angular momentum J, which is the

only conserved vector. Hence we have (cf. (112.4))

\k& r A2

7

or finally

7(7+1) Lk(k+i)
K.J+2S •jJMj,

AE = ^
( UU+l)+K(K+l)-S(S+l)]+

J(J+l)\2K(K+ir

+[7(7+ l)~K(K+ 1)+S(S+ l)]JjTiM>.

Problem 4. A diamagnetic atom is in an external magnetic field 3tf. Determine the

strength of the induced magnetic field at the centre of the atom.

Solution. For S = L = the Hamiltonian contains no perturbation linear in the field,

and so the wave function of the atom involves no correction of the first order with respect

to the magnetic field. The change j' in the electron current in the atom induced by the

external magnetic field is due (again in the first approximation with respect to «?f) only to the

addition of the term (e/mc)A to the electron velocity operator. We therefore havef

j' = -
P(e^lmc)A = -p(e2/2wc)JSf xr, (1)

where p is the electron density in the atom. The magnetic field produced at the centre of the

atom by this additional current is|

1 pi'xr

c J r3

t This expression corresponds to the Larmor precession of the electron envelope of the atom round
the direction of the external magnetic field; see The Classical Theory of Fields, §45.

} See the last footnote to §120.
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Substituting (1) and averaging in the integrand over the directions of r, we obtain

e2 r p
^ind= tf ~dV

3mc2 J r

M°)^> (
2

)
3mc2

where
<f>e(0) is the potential of the field at the centre of the atom due to its electron envelope.

In the Thomas-Fermi model <£e(0) = -1 •80Zi'smes/H2 (see (70.8)), so that

^ind = -0-60(e2lhcfZWjf?

= -3-2x10-5Z4/3jT.

§113. Spin in a variable magnetic field

Let us consider an electrically neutral particle having a magnetic moment,
and situated in a magnetic field which is uniform but varies with time.

We may have in mind either an elementary particle (a neutron) or a complex
one (an atom). The magnetic field is supposed so weak that the magnetic
energy of the particle in the field is small compared with the intervals between
its energy levels. Then we can consider the motion of the particle as a whole,

its internal state being given.

Let s be the operator of the "intrinsic" angular momentum of the particle

—

the spin of an elementary particle, or the total angular momentum J for an
atom. The magnetic moment operator can be represented in the form
(110.2). The Hamiltonian for the motion of a neutral particle as a whole can

be writtenf

S = -(H.ls)%.Mf. (113.1)

In a uniform field, this operator does not contain the co-ordinates

explicitly! . Hence the wave function of the particle falls into a product of a

co-ordinate and a spin function. Of these, the former is simply the wave
function of free motion ; in what follows, we shall be interested only in the

spin part. We shall show that the problem of a particle with any angular

momentum s can be reduced to the simpler problem of the motion of a

particle of spin | (E. Majorana). To do this, it is sufficient to use the method
which we have already employed in §57. That is, instead of one particle of

spin s, we can formally introduce a system of 2s "particles" of spin ^. The
operator § is then represented as a sum £ sa of the spin operators of these

"particles", and the wave function as a product of 2s spinors of rank one. The
Hamiltonian (113.1) then falls into the sum of 2s independent Hamiltonians

:

# = 2#a ,
fia = -{p\s)&.%*, (113.2)

f We write out only that part of the Hamiltonian which depends on the spin.

% These arguments can also be applied to the case where any particle (charged or not) moves in a

non-uniform magnetic field, if its motion can be regarded as quasi-classical. The magnetic field, which
varies as the particle moves along its path, can then be regarded simply as a function of time, and we
can apply the same equations to the variation of the spin wave function.
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so that the motion of each of the 2s "particles" is determined independently of

the others. When this has been done, we need only reintroduce the com-
ponents of an arbitrary symmetrical spinor of rank 2$ in place of the products

of components of 2s spinors of rank one.

PROBLEMS
Problem 1 . Determine the spin wave function for a neutral particle of spin i, in a uni-

form magnetic field which is constant in direction but varies in absolute magnitude
according to an arbitrary law Jf? = 3^(t).

Solution. The wave function is a spinor if>
v satisfying the wave equation

ih difi'/dt = -2[i3P. s0". (1)

Taking the direction of the field as the z-axis, we can write this equation in spinor com-
ponents :

ih dftidt = -n^t1
, ih d*pidt = vJ? s

.

Hence

01 = Cl^i/i/h)SJfdtt
^2 _ CQe-Ujt/itiSJfdt,

The constants clt c2 must be determined from the initial conditions and from the normalisa-

tion condition |<Ai|
2+ |^2 |

a = 1.

Problem 2. The same as Problem 1, but for a magnetic field constant in absolute mag-
nitude, whose direction rotates uniformly, with angular velocity w, around the sr-axis and at

an angle 9 to it.

Solution. The magnetic field has the components

Jfz =& sin 6 cos cot, 3t?y = J^sind sin cot, 3tfz = 2/P cos 6,

and from (1) we obtain the equations

1 = iconic1 cos 6+if)2e-ib)t sin 6),

2 = za>iy(i/'Vwt sin 9—ifj2 cos 8),

where o>h= y^lh. The substitution ifi
1 = e~iiu>t

<f>
1

, i/i
2 = eiibit<f>

2 converts these equa-
tions into linear equations with constant coefficients, whose solution gives

01 _ e-io>t/2^Cieiat/2+ C2e-im/2^

r ci C2 ~\

«/t2 = 2a)Heib)t/2 sin 6 e««/2
-| e-int/2 I

L.Q.+ CO+ 2COH cos 9 Q— <o— 2o>h cos 6 J

where

D = V[(^+2wff cos0)2+ 4a>H2 sin20].

§114. The current density in a magnetic field

We shall now derive the quantum-mechanical expression for the current

density when charged particles move in a magnetic field.

15
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We start from the formula

SH = -(l/c)Jj.8AdF, (H4.1)

where j is the current density; this determines the change in the Hamilton's

function of charges distributed in space when the vector potential is varied.f

In quantum mechanics this formula must be applied to the mean value of

the Hamiltonian of the charged particle

:

H= jT*[(^-eA/c)2/2m-(/x/5)^ . s]T dV. (114.2)

Effecting the variation and bearing in mind that S^ = curl SA, we find

&B= f Y*r——(p.SA+SA.£)+—AJ8HlW dV-di/s) f curlSA.Y*§TdF.
J L 2mc mc2 J J

(H4.3)

The term in p . SA is transformed by integration by parts

:

JV*p.SATdF = -&J'Y*V(8A/F)dr

= ihJ8A. x¥\7x¥*dV

(the integral over an infinitely distant surface vanishing in the usual way).

The integration by parts is also used in the last term in (114.3), together

with the well-known formula of vector analysis

a. curlb = —div(axb)+b. curia.

The integral of the div term vanishes, so that we have

f T*sT . curlSA dV =
J"

8A . curl(T*sT) dV.

The final result is

ieh r c2 r
8#= SA.(TV>F*-T*VxF)dF+ A.SATT*dF-

2mcj tnc2J

-QjlJs) j SA . curl(T*§T) dV.

t Lagrange's function for a charge in a magnetic field contains a term ev . A/c, or, if the charge is

distributed in space, (1/c) / j . A dV.
The change in the Lagrange's function when A is varied is therefore

8L =(l/c) Jj.SAdF.

An infinitely small change in Hamilton's function is, however, equal to the change in Lagrange's

function, taken with the opposite sign (see Mechanics, §40).
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Comparing this expression with (114.1), we find the following expression

for the current density:

ieh e2

j = —QFy*r*-Y*\/Y) K¥x¥*+(nls)c curl(T*§T). (114.4)
2m mc

We emphasise that, though this expression contains the vector potential

explicitly, it is nevertheless one-valued, as it should be. This is easily seen

by direct calculation, recalling that the transformation (110.7) of the vector

potential must be accompanied by the transformation (110.8) of the wave

function.

The expression (114.4) is the mean value of the current. It may be

regarded as a diagonal matrix element of the current density operator. The
non-diagonal matrix elements of this operator can then be determined also.

These are evidently

ieh e2

Jnm = ——(i|»Vi» — i » V * to) ***m*n 4"

2m mc

+(ixls)c curlCFB*§Tm). (114.5)



CHAPTER XVI

NUCLEAR STRUCTURE

§115. Isotopic invariance

There is as yet no complete theory of nuclearforces—that is, the forces which

act between nuclear particles or nucleons and hold them together in the nucleus

of an atom. In consequence, to describe nuclear forces it is still necessary to

rely on experiment to a much greater extent than would be needed if a con-

sistent theory were available.

The two types of particle which are nucleons differ mainly in their electrical

properties, the proton (p) having a positive charge, while the neutron (n) is

neutral. They have the same spin |, and their masses are almost equal (1836.1

and 1838.6 electron masses respectively). This similarity is no accident. Despite

the difference in electrical properties, the proton and the neutron are very

similar particles, and this similarity is of fundamental importance.

It is found that, apart from the relatively weak electric forces, the forces

of interaction between two protons are very similar to those between two

neutrons. This is called the charge symmetry of nuclear forces.f

In so far as this symmetry is maintained we can, in particular, say that

systems of two protons (pp) and two neutrons (nn) have states whose properties

are the same. Here, of course, it is important that protons and neutrons obey

the same statistics (namely Fermi statistics) and so only states with the same

symmetry of the wave functions ifj(ri, ai ; r2 , 0-2) are permissible for the pp
and nn systems, namely those antisymmetrical with respect to a simultaneous

interchange of the co-ordinates and spins of the particles.

Charge symmetry is, however, only one of the manifestations of a still more

far-reaching physical similarity between protons and neutrons, known as

isotopic invariance. This leads to the existence of an analogy not only between

pp and nn systems (obtained from one other by interchanging all protons

and neutrons), but also between these and the pn system, which consists of

different particles. There cannot be a complete analogy here, of course,

since the possible states of the pn system, in which the particles are non-

identical, are certainly not restricted to those with antisymmetrical wave

functions. It is found, however, that among the possible states of the pn

system there are some whose properties are almost exactly the same as

those of systems of two identical nucleonsJ; these states are, of course,

described by antisymmetrical wave functions (the remaining states of the

t It appears, in particular, in the similarity of the properties (binding energy, energy spectrum, etc.)

of what are called mirror nuclei, i.e. those which differ in that the numbers of protons and neutrons are

interchanged.

% This was first shown from an analysis of experimental data on the scattering of neutrons and

protons by protons (G. Breit, E. U. Condon and R. D. Present 1936).

438
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pn system are described by symmetrical wave functions and do not occur in

the pp and nn systems).

Isotopic invariance, like charge symmetry, is valid only if electromagnetic

interactions are neglected. Another reason why isotopic invariance is only

approximately true is the slight mass difference between the neutron and the

proton ; if there were exact symmetry between neutrons and protons, their

masses would of course be identical also.f Isotopic invariance is in practice

valid to a high degree of accuracy for fairly light nuclei, while for heavier

nuclei the accuracy diminishes owing to the greater relative importance of

the Coulomb interaction of the protons in the nucleus (which increases

as the square of the atomic number).

A convenient formalism may be used to describe the isotopic invariance.

It follows naturally from the fact that isotopic invariance is equivalent to

the possibility of classifying the states of a system of nucleons with respect

to the symmetry of its co-ordinate-spin wave functions iff, independent of the

types of nucleons concerned. The required formalism must therefore enable

us to define for the description of the states of the system a new quantum

number which uniquely determines the symmetry of the functions «/r. A
similar situation has already been encountered in connection with the pro-

perties of a system of particles with spin |. We have seen in §63 that, if the

total spin S of such a system is specified, then the symmetry of its co-ordinate

wave function
<f>

is uniquely determined, regardless ofwhich of the two possible

values ( ± ^) is taken by the component a of the spin of each particle.

It is therefore reasonable that, for a formal description of isotopic in-

variance, the neutron and the proton should be regarded as two different

"charge states" of one particle, the nucleon, differing in the value of the

component of a new vector t, whose formal properties are analogous to those

of the vector of spin |. This new quantity, which is usually called the

isotopic spin,% is a vector in "isotopic space" £, 77, £ (which, of course, is not

related in any way to real space). Its physical meaning is not yet clear,

however, and will become evident only when a consistent theory has been

created.

The component of the isotopic spin of a nucleon along the £-axis can take

only the two values t^ = + f . The value + 1 is arbitrarily assigned to the

proton and — \ to the neutron. The isotopic spins of several nucleons add

to give the total isotopic spin of the system in accordance with the same

rules as for the addition of ordinary spins. The ^-component of the total

isotopic spin of the system is equal to the sum of the values of t^ for the

component particles. For a nucleus in which the number of protons (i.e. the

atomic number) is Z, the number of neutrons N and the atomic weight

A = Z+N we have

Ts=Xtc
= ^Z-N) = Z-±A, (115.1)

t In reality this mass difference between the neutron and the proton is probably also electro-

magnetic in origin.

X First used by W. Heisenbekg (1932), and applied to the description of isotopic invariance by B.

Cassen and E. U. Condon (1936).
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i.e. T$ gives the total charge of the system if the number of nucleons is fixed.

It is therefore clear that there is a strict conservation of the quantity T^,

which simply expresses the conservation of charge.

The absolute magnitude T of the isotopic spin of the system determines

the symmetry of the "charge part" o> of the wave function of the system, just

as the total spin S determines the symmetry of the spin wave function. It

therefore determines also the symmetry of the co-ordinate-spin (i.e. the

ordinary) wave function if/, since the total wave function of a system of

nucleons (i.e. the product iJjoj) must have a definite symmetry; as for all

fermions, it must be antisymmetrical with respect to simultaneous inter-

change of the co-ordinates, spins and "charge variables" r^ of the particles.

The existence of a definite symmetry of the wave functions iff of any system of

nucleons is therefore expressed, in this treatment, by the conservation of the

quantity T.

We can say, in other words, that isotopic invariance signifies the invariance

of the properties of the system with respect to rotations in isotopic space.

States differing only in the value of T$ (with T and the remaining quantum
numbers having given values) have identical properties. In particular, charge

symmetry—the invariance of the properties of the system with respect to the

replacement of neutrons by protons and vice versa— , being a particular case

of isotopic invariance, is described as invariance with respect to a simultan-

eous change of sign of all the r^, i.e. with respect to rotation in isotopic

space through an angle of 180° about an axis lying in the £>7-plane.

It may be noted that the obvious violation of isotopic invariance by the

Coulomb interaction is also formally evident from this treatment. The
Coulomb interaction depends on the charge, i.e. on the ^-components of

the isotopic spin, which are not invariant with respect to rotations in £ij£-

space.

Let us consider, for example, a system of two nucleons. Its total isotopic

spin can take the values T = 1 and T = 0. For T = 1, the possible values

of the component T$ are 1, 0, — 1. According to (115.1), the corresponding

charge values are 2, 1, 0, i.e. a system with T = 1 may bepp, pit or nn. The
charge part a> of the wave function with T — 1 is symmetrical (just as a

symmetrical spin function corresponds to a spin S = 1 ; cf. §62). Hence
states with antisymmetrical ordinary wave functions ifs correspond to the

value T = 1. For T = we can only have Tg = 0, and the corresponding

function a> is antisymmetrical; this therefore relates to states of the pn
system with symmetrical wave functions ip.

The isotopic spin corresponds to an operator t which acts on the charge

variable T£ in the wave function, just as the spin operator § acts on the spin

variable a. By virtue of the complete formal analogy between the two,

the operators T|,t7,t^ are given by the same Pauli matrices (55.6) as the oper-

ators %, 4, sz .

Here we may note some combinations of these operators which have a
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simple and evident meaning. The sum

+ -t,+»,-(
)

is an operator which, acting on a neutron wave function, converts it into a

proton wave function, and acting on a proton wave function gives zero.

Similarly, the operator

converts a proton into a neutron and "annihilates" a neutron. Finally, the

operator

/l 0\

*+*-(o o)

leaves a proton wave function unchanged and annihilates a neutron; on

multiplication by e, it may be called the nucleon charge operator.

We shall also show that the operator P of the interchange of two particles

may be expressed in terms of the operators ti, T2 of their isotopic spins.

By definition, the result of the action of the interchange operator on the wave

function 0(ri, 01; tz, a^) of the system of two particles consists in interchang-

ing their co-ordinates and spins, i.e. interchanging the variables ri, a\ and

r2, <T2. The eigenvalues of this operator are ±1, and occur when it acts on a

symmetrical or antisymmetrical function ift:

P^aym = 0sym J -^ant = — <Aant. (115.2)

We have seen above that the functions fsym and tf/&nt correspond to charge

functions coy with values of the total isotopic spin T = and T = 1 . Hence,

in order to put the operator P in a form in which it acts on charge variables,

it must have the properties

P(OQ = OiQ
t
P(X)\ = — (1)\. (115.3)

These conditions are satisfied by the operator 1—T2
, as is easily seen by

noting that cor is the eigenfunction of the operator T2 corresponding to the

eigenvalue T(T+ 1). Finally, writing T = ti+ t2 and using the fact that t
x

and Tg have the same definite values t(t+ 1) = f , we find the required ex-

pressionf

£=l-f2=-£-2Ti.T2 . (115.4)

For the matrix elements of different physical quantities in a system of

nucleons there are certain selection rules for the isotopic spin (L.A. Radicati

1952). Let F be some quantity (of any tensor rank) having the property of

t An operator of this form derived from the ordinary spins of the particles has already been met
in §62, Problems.
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additivity, in the sense that its value for the system is equal to the sum of its

values for the individual nucleons. We write the operator of such a quantity

as

F = S/p+S/n,
p n

where the summations are over all protons and all neutrons in the system.

This expression can be written in the identical form

= &(Jp+Jn)+ X(fv-fn)fC , (115.5)

where the summation in each term is over all nucleons (both protons and

neutrons). The first term in (115.5) is a scalar; the second is the ^-component

of a vector in isotopic space. The same selection rules therefore apply to them,

with respect to the isotopic spin, as to scalars and vectors in ordinary space

with respect to the orbital angular momentum (see §29): the isotopic scalar

allows only transitions without change of T; the £-component of the isotopic

vector has matrix elements only for transitions in which AT = or ±1,
and in addition transitions with AT = are forbidden between states with

Tg = 0, i.e. systems with the same number of neutrons and protons; the

latter rule follows from the fact that the matrix element of a transition with

AT = is proportional to Tg (see (29.7)).

For example, for the dipole moment of the nucleus the quantities fv are

the products er, andfn = 0. The first term in (115.5) is then

\eYx = (e/2m) Hmr,

is therefore proportional to the radius vector of the centre of mass, and can

be made to vanish by a suitable choice of the origin. Thus the dipole moment
of the nucleus reduces to the ^-component of the isotopic vector.

§116. Nuclear forces

The principal characteristic of the specifically nuclear forces which act

between nucleons is their short range of action: they decrease exponentially

at distances of the order of 1 -5 x 10~13 cm.

In the non-relativistic limit we can say that nuclear forces are independent

of the velocities of the nucleons and have a potential. It must be borne in

mind, however, that for actual nuclei the accuracy of the non-relativistic

approximation is relatively low, since the velocities of the nucleons in the

nucleus are about one-quarter of the velocity of light (see below).

The potential energy U of the interaction of two nucleons depends not

only on the distance r between them but also quite strongly on their spins.f

The precise dependence on r could, of course, be established only by a

t In this respect the interaction of nucleons differs considerably from the interaction of electrons,

for which the spin-spin interaction is purely relativistic and is small (in atoms).
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consistent theory of nuclear forces. The nature of the spin dependence,

however, can be found from simple considerations based on the properties of

spin operators.

We have at our disposal only three vectors on which the interaction energy

U can depend: the unit vector n in the direction of the radius vector between

the two nucleons, and their spins si and S2. According to the general proper-

ties of an operator of spin |, any function of it reduces to a linear function

(§55). It must also be taken into account that the product n.s is not a true

scalar but a pseudo-scalar (since n is a polar vector and s an axial vector).

Thus it is evident that only two independent scalar quantities linear in each

of the spins can be constructed from the three vectors n, si, S2, namely

S1.S2 and (n.si) (11.S2).

Consequently, the operator of the interaction of two nucleons, as regards

its dependence on the spins, can be written as the sum of three independent

terms

:

frord = m(r)+ C/2(r)(M2)+ f/3W[3(§i-n)(§2.n)-s1.s2], (116.1)

of which two depend on the spins and one does not. The third term is here

written in a form which gives zero on averaging over the directions of n.

The forces described by this term are usually called tensor forces.

In (1 16.1) we have used the suffix ord (for "ordinary") in order to emphasise

the fact that this operator does not affect the charge state of the nucleons.

There is another possible interaction which converts a proton into a neutron

and vice versa. The operator of this "exchange" interaction differs in form

from (116.1) by the presence of the particle interchange operator (115.4):

#excn= {Ui(r)+ Uf>(r)(s1.s2)+ U^m^n)^*)-^^]}?. (116.2)

The total interaction operator is the sum

£/=tford+tfexcH. (116.3)

Thus the interaction of two nucleons is described by six different functions

of the distance between them. All these terms are in general of the same

order of magnitude.

The spin operators appearing in (116.1) and (116.2) can be expressed in

terms of the total-spin operator S. By squaring the equations S = §1 + §2

and S.n = §i.n+ §2.n and using the results §
1
= s

2
= f, (§i.n)2 = (§2.n)2

= I (see (55.10) and (55.11)), we find

M2 = KS2 -f), (§i.n)(s2.n) = M(S.n)2-i]. (116.4)

The operator S2 commutes with the operator §, and so the interactions,

described by the first two terms in (116.1) and (116.2) conserve the total

spin vector of the system. The tensor interaction contains the operator

(S.n)2, which commutes with the square S2 but not with the vector S itself.

In consequence, only the magnitude of the total spin is conserved, not its,

direction.
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The total spin S of a system of two nucleons can take the values and 1,

as can the total isotopic spin T. Hence all possible states of this system fall

into four groups with various pairs of values of S and T. For states in each

of these groups there is an interaction operator of the form A(r) (for S = 0)

or A(r) + B(r) [(S.n)2 -f] (for S = 1), to which the general operator (116.3)

reduces in these cases (see Problem l).f

For given values of 5 and T the states of the system are classified with

respect to the values of the total angular momentum J and the parity. As

we know, the values T = and T = 1 correspond to the states with sym-

metrical and antisymmetrical wave functions i/t respectively. Since, on the

other hand, the value of S determines the symmetry of the wave function

with respect to the spin variables (symmetrical for S = 1 and antisymmetrical

for S = 0), it is clear that, if the two numbers S and T are specified, the

symmetry of the wave function with respect to the space variables (i.e. the

parity of the state) is also determined. Evidently the states of the system with

isotopic spin T = can only be even triplets (S = 1) or odd singlets (S = 0),

while those with isotopic spin T = 1 are odd triplets or even singlets.

Since the spin, as a vector, is not conserved, the orbital angular momentum
also need not in general be conserved; only the sum J = L+S is conserved.

Nevertheless, the magnitude L may be conserved simply because specified

values of 7, S and the parity (or J, S and T) may be compatible with only

one particular value of L (the parity of a system of two particles, it will be

remembered, is ( — 1)
L
). For example, an odd state with S = 1, J = 1 can

only have L = 1, i.e. it is 3Pi. In other cases two different values of L may

correspond to given values of 7, S and the parity, so that L is not conserved.

For example, in an odd state with S = 1, J = 2 we can have L = 1 or

L = 3, i.e. it is a superposition 3P2+ 3F2-

Thus we arrive at the following possible states of a system of two nucleons

(the signs ± indicating the parity):

for T= 1: 3P -,*Pr,(?P2+ 3F2)-,SF3-,... ;

i5 + 1D2
+

,

1C?4+,...;

for T = 0: (
35i+3D1)+,3D2+ (3D3+3G3)+ ...

;

iPi-iiV,....

Nuclear forces are not in general additive. This means that the interaction

in a system of more than two nucleons does not reduce to a sum of inter-

actions between each pair of particles. It seems, however, that ternary and

higher interactions are relatively unimportant in comparison with binary

t The experimental data concerning the properties of the deuteron show that for T = 0, S = 1

the nucleon interaction involves a strong attraction with a deep "potential well" (the presence of

tensor forces makes it difficult to formulate this fact in terms of properties of the functions A(r) and

B(r)); in addition, it follows from the sign of the observed quadrupole moment of the deuteron

that in this state the coefficient B(r) in the tensor forces is negative. From nucleon scattering data it

follows that for T = 1, S = there is also an attraction, but one which is weaker and, in particu-

lar, does not lead to the formation of a stable system of two particles.
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interactions, and so, in discussing the properties of complex nuclei, we can

to a considerable extent take as basis the properties of binary interactions.

Experimental data on nuclei show that, as the number A of particles in-

creases, the system of nucleons begins to behave like a macroscopic "nuclear

matter", whose volume and energy increase in proportion to A (apart from

effects due to the Coulomb interaction of protons and the existence of a free

surface of the nucleus). The property of nuclear forces which gives rise to

this phenomenon is called saturation.

The existence of this property imposes certain restrictions on the functions

U\
y

... jUg which determine the binary interactions of nucleons. Let us

suppose that all the particles are concentrated in a volume whose dimensions

are of the order of the radius of action of nuclear forces. Then every pair of

particles interact. If there is a configuration of certain nucleons (and an

orientation of their spins) for which attractive forces act between every

pair, then the potential energy of such a system is negative and proportional

to A2
; the kinetic energy is positive and proportional to A5/3

, a smaller

power of Aj\ It is clear that under such conditions a sufficiently large

number of nucleons will in fact be concentrated in a small volume independ-

ent of A, i.e. will not form nuclear matter. The condition for saturation of

nuclear forces must therefore be expressed as the conditions for the absence

of configurations leading to a negative interaction energy proportional to

A2 (see Problem 2).

The proportionality between the volume of nuclear matter and the number

of particles is expressed by a relation of the form

R = rQAW > (116.5)

which connects the radius R of the nucleus and the number A of particles

in it. Experimental dataj lead to the value ro = 1 -1 x 10-13 cm.

We may determine the limiting momentum of nucleons in nuclear matter

(cf. §70). The volume of phase space corresponding to particles in unit

volume of physical space and with momenta p^Po is 4ttPq/3. Dividing by

(2it^)3 , we obtain the number of "cells" in each of which two protons and

two neutrons can be simultaneously. Putting the number of protons equal

to the number of neutrons, we obtain 4(47r/3)(/>o/27r/*)3 = A/V, where V is

the volume of the nucleus. Substitution of (116.5) gives

po=(ZTT*Al2Vyi*h

— 1-3 x 10~14 g.cm/sec.

The corresponding energy p\\2mVi where mv is the nucleon mass, is ~ 40

MeV, and the velocity po/mP ^ J c.

t The density n at which the particles are concentrated in a given volume is proportional to their

number A, and the kinetic energy of each particle is proportional to na/s (cf. (70.1)). The total kinetic

energy is therefore ~A.A%I*.

% On the scattering of electrons by nuclei.
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PROBLEMS
Problem 1 . Find the operators of the interaction of two nucleons in states with definite

values of 5 and T.

Solution. The required operators Ust are obtained from the general expression (116.1)

-(116.3), using (115.3) and (116.4):

Uoo = u1-%u2+uA-iU5 ,

£/oi = t/i-f£/2-t/4+!£/5 ,

UlO = U1+iU2+U4+iU5+

+i(C/3 +^6)[3(S.n)2-2],

Uu=U1+lU2-U4-iU5+

+UUs-U6)[3(S.ny-2].

Problem 2. Find the conditions for the saturation of nuclear forces, assuming tensor

forces absent. The radii of action of forces of all other types are supposed equal.

Solution. Let us consider some extreme cases (between which lie all other possible

cases) for the state of a system of A nucleons, and write down the conditions for the inter-

action energy of an "average" pair of nucleons in this system to be positive.

Let the total spin and the isotopic spin of the nucleus have the greatest possible values

:

•Snuc = Tnuc = %A (when all the particles in the system are protons with their spins parallel).

Then for each pair of nucleons we have S = T = 1 , and the condition is

Un > 0. (1)

Next, let Tnuc = h.A, »Snuc = 0. Then for each pair of nucleons T = 1, and the mean value

of sz for an individual nucleon is zero. The latter result means that the nucleon can have
Sz = i and sz = —\ with equal probability; under these conditions the probabilities that a

pair of nucleons are in states with S = or 1 are respectively £ and f (being proportional to

the number 2S+ 1 of possible values of Sz). The condition for the mean energy of the pair

to be positive is therefore

itfoi + ft/n>0. (2)

Similarly, a discussion of the state with Tnuc = 0> >5nuc = %A gives the condition

iC/io+ |t/n>0. (3)

In a state with Tnuc = ^nuc = 0, the probability for a pair of nucleons to have S = T = 1

is f . |, that for T=l,»S = 0isf.i, and so on. Hence we find the condition

-U11+-(U1o+ Uoi)+-U00 > 0. (4)
16 16 16

Finally, let the system consist of \A protons and \A neutrons, with the spins of all the

protons in one direction and the spins of all the neutrons in the other direction. An individual

nucleon can with equal probability be p or n, i.e. have tj = \ or t£ = —\\ the probability

for a pair of nucleons to have T = is £. Here one of the pair of nucleons is p and the other

n, and hence Sz = 0. This value of Sz can occur with equal probability from states with

S = and S = 1. Consequently the probabilities for the pair to be in the states with T = 0,

S = and T = 0, S = 1 are each i . % = £. The probability of the state with T = 1,

S = is the same, and the remaining f relates to the state with T = S = 1. Thus we have

the condition

i(C/oo+ E/01+ U10)+%Un > 0. (5)

The inequalities (1)— (5) form the required set of conditions for the saturation of nuclear

forces.
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§117. The shell model

Many properties of nuclei can be well described by means of the shell

model, which is basically similar to the structure of the electron shells of an

atom. In this model each nucleon in the nucleus is regarded as moving in

a self-consistent field due to all the other nucleons; owing to the small radius

of action of nuclear forces, this field decreases rapidly outside the volume

bounded by the "surface" of the nucleus. Accordingly the state of the nucleus

as a whole is described by specifying the states of the individual nucleons.

The self-consistent field is spherically symmetrical, and the centre of

symmetry is, of course, the centre of mass of the nucleus. The following

difficulty arises here, however. In the self-consistent field method, the wave

function of the system is constructed as the product (or the appropriately

symmetrised sum of the products) of the wave functions of the individual

particles. Such a function, however, does not keep the centre of mass fixed:

although the mean velocity of the centre of mass calculated from this function

is zero, it gives a finite probability of non-zero values of the velocity.f

The difficulty can be avoided by first eliminating the motion of the centre

of mass in calculating any physical quantity by means of the wave functions

«A(ri, -, *a) of the self-consistent field method. Let/(r*,pO be some physical

quantity, a function of the co-ordinates and momenta of the nucleons. Then,

in calculating its matrix elements by means of the functions ifi, we must,

without changing ^(r*), alter the arguments of the function/ as follows:

tt^ti-R, pi-^pf-P/^, (H7.1)

where R is the radius vector of the centre of mass of the nucleus, A the

number of particles in it, P the momentum of its motion as a whole (the

second change in (117.1) corresponds to subtracting the velocity V of the

centre of mass from the velocities v« of the nucleons, the momentum P

being related to V by P = AmvV).%
For example, the dipole moment operator of the nucleus is d = eXrPt

where the summation is over all protons in the nucleus. To calculate its

matrix elements in the self-consistent field method, this operator must be

replaced by eL{tp
- R). The co-ordinates of the centre of mass of the nucleus

are

R = — (Srj,+ Srw),
A p n

where the summation is over all protons and neutrons. Since the number of

protons in the nucleus is Z, the dipole moment operator must finally be

changed thus:

eSx9 -> e(l )?xv- e—2r». (1 17-2)

p A p A n

t For electrons in an atom this difficulty did not arise, because the centre of mass coincided in

position with the fixed heavy nucleus, and was therefore necessarily at rest.

% A rigorous justification of this procedure is given by S. Gartenhaus and C. Schwartz, Physical

Review 108, 482, 1957.
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The protons appear here with an "effective charge" e(l — Z/A) and the

neutrons with a "charge" —eZ/A. It may be noted that the relative order of

magnitude of the resulting correction terms in the calculation of the dipole

moment is seen from (117.2) to be unity. The corrections in the calculation

of the magnetic and higher electric multipole moments are easily found to be

of relative order \jA.

In the non-relativistic approximation the interaction of a nucleon with the

self-consistent field is independent of the spin of the nucleon: such a depend-

ence can be given only by a term proportional to s.n, where n is a unit

vector in the direction of the radius vector r of the nucleon, and this product

is a pseudo-scalar, not a true scalar.

A dependence of the nucleon energy on the spin appears, however, when
relativistic terms depending on the velocity of the particle are taken into

account. The largest of these is the term linear in the velocity. From the

three vectors s, n and v a true scalar n x v.s can be formed. The "spin-orbit

coupling" operator of the nucleon in the nucleus is therefore

V,i= -<£(r)nxv.§, (117.3)

where $ (r) is some function of r. Since mpr x v is the orbital angular momen-
tum hi of the particle, the expression (117.3) can also be written as

Psi=-f(r)ls, (117.4)

where / = h^>Jrnip . It should be emphasised that this interaction is of the

first order in vfc, whereas the spin-orbit coupling of an electron in an atom
is a second-order effect (§72). This difference is due to the fact that nuclear

forces depend on the spin even in the non-relativistic approximation, whereas

the non-relativistic interaction of electrons (Coulomb forces) is not spin-

dependent.

The energy of the spin-orbit interaction is mainly concentrated near the

surface of the nucleus, i.e. the function f(r) decreases inside the nucleus.

This is because, in infinite nuclear matter, there would be no such interaction

at all, as is clear from the fact that, the system being homogeneous, there is

no preferred direction in it which could be that of the vector n.

The interaction (117.4) brings about a splitting of the nucleon level with

orbital angular momentum / into two levels with angular momenta j = l± J.

Since

l.s = M for / = l+h
(117.5)

= -K/+l)for; = /-i

(according to formula (31.2)), the amount of this splitting is

=/W+D- (117.6)
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Experiment shows that the level with./ = l+\ (the vectors 1 and s parallel)

is below the level with; = /- J; this means that/(r) > 0.

The averaging of the function /(r) in (117.6) is with respect to the radial

part of the wave function of the nucleon. Since /(r) decreases rapidly inside

the nucleus, the main contribution to/comes from the region near the surface.

The quantity f(R) is inversely proportional to the radius R of the nucleus

(the factor 1/R appearing in the derivation of (117.4) from (117.3)), and a

further factor 1/R in /is given by the fraction of the volume of the nucleus

which is in a layer near the surface. The amount of the splitting (117.6)

increases with /, not only on account of the factor l+\ but also because of

the increased probability of finding the nucleon near the surface of the

nucleus. .

The spin-orbit coupling of a nucleon in the nucleus is relatively weak in

comparison with its interaction in the self-consistent field. It is, nevertheless,

in general large compared with the energy of the direct interaction of two

nucleons in the nucleus, on account of the more rapid decrease of the latter

with increasing atomic weight.

This relation between the energies of the various interactions has the

result that the classification of the nuclear levels must be of the;}' couplmg

type:f the spins and orbital angular momenta of the various nucleons are

added to give the total angular momenta j = 1+ s, which are definite

quantities, since the relation between 1 and s is not affected by the direct

interaction between the particles. The vectors j of the individual nucleons

are then added to give the total angular momentum J of the nucleus (usually

called simply the nuclear spin, as if the nucleus were an elementary particle).

In this respect the classification of nuclear levels differs essentially from

that of atomic levels: in the electron shells of the atom, the relativistic

spin-orbit coupling is in general small in comparison with the direct electric

and exchange interactions, and so the level classification is usually based

on LS coupling.
.

The state of each nucleon in a nucleus, however, is described by its angular

momentum; and its parity. Although the vectors 1 and s are not separately

conserved, the absolute magnitude of the orbital angular momentum of the

nucleon is nevertheless definite. For the angular momentum ; can arise

either from a state with / = j-\ or from one with / = j+\. For a given

(half-integral) /, these two states have different parities (-1)*, and so, if

j and the parity are specified, the quantum number I is determined also.

The states of nucleons with given / and ; are customarily numbered (in

order of increasing energy) by the "principal quantum number" w, which

takes integral values starting from l.J The various states are denoted by the

symbols lsh lp*, lpt , etc., where the figure before the letter is the principal

t This has been established from an analysis of experimental data by M. Goppert-Mayer (1949)

and O. Haxel, J. H. D. Jensen and H. E. Suess (1949).

t Unlike the usual procedure for electron levels in an atom, where the number n takes values

starting from l+l.
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quantum number, the letters s,p,d,... indicate as usual the value of /, and the

suffix is the value ofj. Not more than 2j+ 1 neutrons and the same number
of protons can simultaneously be in a state with given values of n, I and /.

The states of the nucleus as a whole (in a given configuration) are

customarily described by a figure giving the value of J and the sign + or —
indicating the parity of the state (the latter being determined in the shell

model by the parity of the algebraic sum of the values of / for all the nucleons).

From an analysis of experimental data concerning the properties of nuclei
it is possible to derive a number of regularities in the positions of the nuclear
levels. First of all, it is found that the energy of the nucleon increases with
the orbital angular momentum /. This rule arises because, when / increases,

so does the centrifugal energy of the particle, and its binding energy is there-

fore reduced.

Next, for a given value of / the level with/ = l+\ (i.e. that which corres-

ponds to parallel vectors 1 and s) lies below the level with / = /- 1 This
rule has already been mentioned in connection with the properties of the
spin-orbit coupling of the nucleon in the nucleus.

The following rule relates to the isotopic spin of nuclei. The component
T$ of the isotopic spin is known to be determined by the atomic weight and
atomic number of the nucleus (see (115.1)). For a given value of T$, the
absolute magnitude of the isotopic spin can take any value such that
T ^

|

T$ |. It is found that the ground state of the nucleus has the smallest
of these possible values of the isotopic spin, i.e.

TgT = \T
c \=^(N-Z). (117.7)

This rule applies, of course, only to nuclei which are not too heavy, where
the Coulomb interaction is not so important as to infringe the conservation of
isotopic spin. It is due to a property of the neutron-proton interaction,

namely that in the np system the state with isotopic spin T = (the deuteron
state) has a greater binding energy than the state with T = 1 ; see the second
footnote to §116.

We can also formulate certain rules relating to the spins of the ground
states of nuclei. These rules determine the way in which the angular momenta
j of the individual nucleons add to give the total spin of the nucleus. They
represent the tendency of protons or neutrons in like states in the nucleus
to "pair off" with opposite angular momenta; the binding energy of such

pp and nn pairs is of the order of 1 or 2 MeV.
This phenomenon has, in particular, the result that, if the nucleus contains

even numbers of both protons and neutrons (an "even-even" nucleus), then
the angular momenta of all the nucleons balance in pairs, so that the total

angular momentum of the nucleus is zero.

If the nucleus contains an odd number of protons or neutrons, however,
with all nucleons outside closed shells being in like states, the total angular
momentum of the nucleus is usually equal to that of one nucleon, as if a

single nucleon were left over after the "pairing" of all possible pairs of



§117 The shell model 451

protons and of neutrons (the total angular momenta of complete shells being

automatically zero).

Finally, if both Z and N are odd, and all nucleons outside closed shells

are again in like states, J is usually equal to twice the angular momentum of

one nucleon, as if one proton and one neutron were left over after pairing,

with their angular momenta parallel, so that, from the properties of nuclear

forces (see the second footnote to §116), the binding energy is increased in

comparison with the case of antiparallel angular momenta.

A discussion of the actual manner in which the shells are filled in nuclei

would require a detailed analysis of the available experimental data and is

outside the scope of this book. Here we shall add only some general remarks.

In studying the properties of atoms we have seen that their electron states

can be divided into groups such that the binding energy of the electron

decreases as each group is completed and the next is begun. A similar

situation occurs for nuclei, the nucleon states being distributed among the

following groups :f

Nucleons

1*1/2 2

1.P3/2, l.Pl/2 6

ld5,2, ld3/2, 2sy2 , 1/7/2 20

2/>3/2, 1/5/2, 2/>i/2 , 1^9/2 22

2^5/2, 1^7/2, 1^11/2, 2^3/2, 3*1/2 32

2/7/2, 1^9/2, 2/i3/2, 2/5/2, 3^)3/2, 3^1/2 44

For each group the total number of proton or neutron vacancies is shown.

According to these numbers the occupation of a group is completed when the

total number Z of protons or N of neutrons in the nucleus is equal to one of

the numbers

2, 8, 28, 50, 82, 126.

These are commonly called magic numbers. %

The various states in each of the groups (117.8) are listed in approximate

order of successive occupation in the series of nuclei. In reality, however,

considerable irregularities are observed in the occupation process. Moreover,

it must be borne in mind that, in heavy nuclei, the distances between the

various levels may be comparable with the "pairing energy", and the concept

of individual states of components of a pair is then itself largely meaningless.

We may make some comments regarding the calculation of the magnetic

moment of the nucleus in the shell model. By this we mean, of course, the

(117.8)

t The states I/7/2 (8 vacancies) are usually placed in a separate group.

t The "doubly magic" nuclei, in which both Z and N are magic numbers, are particularly stable

(2Hej, sOg , 8aPb126) In comparison with adjacent nuclei they have an unusually small affinity for a

further nucleon (the nucleus He4 is incapable of adding another nucleon), and their first excited states

are unusually high.
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magnetic moment averaged with respect to the motion of the particles in the

nucleus. This mean magnetic moment pi is evidently in the direction of the

nuclear spin J, which is the only preferred direction in the nucleus; its

operator is therefore

£ = W*J, (H7.9)

where no is the nuclear magneton and g the gyromagnetic factor. The
eigenvalue of the projection of this moment is Jx^ = pogMj. Usually

(cf. (110.2)) the magnetic moment fi of the nucleus is taken to be simply

the maximum value of its projection, i.e. /x = pogJ. In this notation

(UpJ/7. (117.10)

The magnetic moment of the nucleus is composed of the magnetic moments

of the nucleons outside closed shells, since the moments of nucleons in

completed shells cancel out. Each nucleon produces in the nucleus a magnetic

moment which consists of two parts: a spin part and (in the case of the

proton) an orbital part, i.e. is represented by the sum gs^+gi^- (Here and

henceforward we omit the factor no, assuming, as is usual, that magnetic

moments are measured in units of the nuclear magneton.) The spin and

orbital gyromagnetic factors are gi = \,gs = 5 -586 for the proton and gi = 0,

gs = —3-826 for the neutron.

After averaging with respect to the motion of the nucleon in the nucleus,

its magnetic moment becomes proportional to j ; writing it in the form gfl,

we have

g£=g£+gi

Multiplying both sides of this equation by J = 1+ § and taking eigenvalues,

we obtain

gjj(j+ 1) =Kgi+gs)j(j+ l)+fe-*.)P(/+ !)-<*+ 1)L

and, putting» %,j =7±£,

^=^±-|=f-fori = /±i (117.11)

With the above values of the gyromagnetic factors, this gives for the magnetic

moment of the proton nv = gjj

/ 229 \ r

V J+l/
(117.12)

[ip =j+ 2-29 for; = /+i
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and for that of the neutron

1-91

/*» = -T—:J for/ = l~h
7+ 1J

(117.13)
/*»= —1-91 fori = /+f

If there is only one nucleon outside the closed shells, formulae (117.12)

and (117.13) give directly the magnetic moment of the nucleus. For two

nucleons, the addition of their magnetic moments is also elementary (see

Problem 1). When the number of nucleons exceeds two, the averaging of the

magnetic moment must be effected by means of the wave function of the

system, constructed in the appropriate manner from the wave functions of

the individual nucleons. If the nucleon configuration and the state of the

nucleus as a whole are given, the wave function can be constructed uniquely

in cases where only one state of the system with the given values of J and T
can correspond to the given configuration (see, for example, Problem 3);

otherwise, the state of the nucleus is a "mixture" of several independent

states (with the same J and T), and in general the coefficients in the linear

combination which gives the wave function of the nucleus remain unknown.

Finally, we may mention that the existence of spin-orbit coupling of

nucleons in the nucleus leads to the appearance of a certain magnetic moment
of the protons in the nucleus, additional to (117.9) (M. Goppert-Mayer and

J. H. D. Jensen 1952). The reason is that, when the interaction operator

depends explicitly on the velocity of the particle, the case where an external

field is present is obtained by replacing the momentum operator p by p — eA/c.

Carrying out this replacement in (117.3) and using the expression (110.6)

for the vector potential, we find that the Hamiltonian of the proton contains

an additional term

<f>(r)-^—n x A.s =/(r)—rx(^x r).§

cmp 2ch

=/(r)-i-rx(§xr).«5?\
2cn

This term is equivalent to the appearance of an additional magnetic moment
whose operator is

e

P-add = ~ ZT-f(r)r x (s X r)
2cn

*
r2/(r){§-(§.n)n}. (117.14)

2ch

PROBLEMS
ermine the magneti

J = ji +fa), expres!

of the two nucleons

Problem 1. Determine the magnetic moment of a system of two nucleons (with total

angular momentum J = ji +fa), expressing it in terms of the magnetic moments m and j^2
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Solution. Similarly to the derivation of formula (117.11) we obtain

J V/i hi \7i 72/

M(jl-/2)(jl+.72+l)

7i 72/ \h 72/ J(J+l)

Problem 2. Find the possible states of a system of three nucleons with angular momenta
j = 3/2 (and the same principal quantum numbers).

Solution. We proceed as in §67 when finding the possible states of a system of equivalent

electrons. Each nucleon can be in one of eight states with the following pairs of values

of (ntj, t£):

(3/2, 1/2), (1/2, 1/2), (-1/2, 1/2), (-3/2, 1/2),

(3/2, -1/2), (1/2, -1/2), (-1/2, -1/2), (-3/2, -1/2).
Combining these states in groups of three different ones, we find the following pairs of

values of (Mj, Tt) for the system of three nucleons

:

(7/2, 1/2), 2(5/2, 1/2), (3/2, 3/2), 4(3/2, 1/2), (1/2, 3/2), 5(1/2, 1/2).

(The number before the parenthesis indicates the number of such states; states with negative

values of Mj and Tz, need not be written out.) These correspond to states of the system with
the following values of (J, T) :

(7/2, 1/2), (5/2, 1/2), (3/2, 3/2), (3/2, 1/2), (1/2, 1/2).

Problem 3. Determine the magnetic moment of the ground state of a configuration of
two neutrons and one proton in pz/2 states (with the same n), taking account of isotopic

invariance.f

Solution. The ground state of such a configuration has / = 3/2, and from the rule

given in the text its isotopic spin has the minimum possible value T = Tz, = \.

Let us determine the wave function of the system corresponding to the greatest possible

value Mj = 3/2. This value can occur (when Pauli's principle for two like nucleons is applied)

for the following sets of values of ntj for the nucleons p,n,n respectively:

(3/2, 3/2, -3/2), (3/2, 1/2, -1/2), (1/2, 3/2, -1/2), (-1/2, 3/2, 1/2).

Hence the required wave function 4>tt
j

is a linear combination of the form

+W?nft^ffl+Wt$,'P_£i'F
1$, (i)

where [...] denotes the normalised antisymmetrised product (i.e. a determinant of the form

(61 .2)) of the wave functions 41
™3 of the individual nucleons.

The function (1) must vanish under the action of the operators

*-2
3

r<*> and 7+ =2/+W ;

i=l i=l

see §67, Problem. The operators ?W convert the proton function of the zth nucleon to the

neutron function, and the latter to zero. It is therefore easily seen that the operator T- reduces

the first term in (1) to a determinant with two identical rows, i.e. to zero, while the deter-

minants in the three remaining terms become equal; thus we have the condition

b + c+ d = 0.

Next, for a single nucleon with j = 3/2 and various values of ntj we have, according to

(27.12),

j+^3/2 = 0, J+01/2 = V3<£
3/2

, 7+0
_1/2 = 2^1/2, j+j/r-3/2 = y/3$-W.

t The nucleus Li7 has this configuration (outside the closed shell (lsi/2)4)-
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Hence we see that the action of the operator J+ on the function (1) gives

/+^sa=v3(«+ft-c)[^/i«f/a^]+
+2(C-J)[

/̂2
^i/2

/2];

the change in sign of some terms is due to interchanging the rows of the determinant. The
conditions for this expression to vanish are

a+ b— c = 0, c— d = 0.

Together with the normalisation condition for the function (1), these relations give

« = 3/V15, 6=-2/V15, c = rf=l/V15.

Since the mean value of the magnetic moment component of the proton (or neutron) in

a state with given mi is pptnj/j (or pntnj/j), we find that the mean value of the angular momen-
tum of the system calculated by means of the wave function (1) is

9 4 1

1 4 1

+ T7(-i/*l»+ Tl*n) = 77(13/*2»+ 2/*n)-

From formulae (117.12), (117.13) it follows that, for a nucleon in the £3/2 state, /xn = —1-91

and fip = 3-79. Thus \l = 3-03.

Problem 4. Determine the magnetic moment of a nucleus in which all nucleons outside

closed shells are in like states and the number of protons is equal to the number of neutrons.

Solution. Since, for N = Z, the component Tz, of the isotopic spin is zero, diagonal

matrix elements occur only for the isotopic-scalar part of the operator

£ =2 ^»+2ft^p;

see the end of §115. Separating this part in accordance with formula (115.5), we find that

it is

Mgn+gpj^] = i(gn+gp)] •

n,v

The total mean magnetic moment of the nucleus is therefore %(gn +gp)J.

Problem 5. Calculate the additional magnetic moment of a nucleon with angular momen-
tum j, expressing it in terms of the spin-orbit splitting (117.6) (M. Goppert-Mayer and

J. H. D. Jensen 1952).

Solution. The averaging of the angular part of the operator (117.14) (the expression in

braces in that formula, which we denote by a) is effected by means of the formula derived

in §29, Problem 2. The result is

d = S-(s.n)n

_ 2s
(§.l)i-i(§.l)-MZ+i)§

3S
(2/-l)(2/+3) '

C
'
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After complete averaging with respect to the motion of the nucleon, the mean value of o
can only be in the direction of j, i.e. a = cq, whence a = o.j/j2 . Taking the component of

the vector (2) in the direction of j (noting that the operator j commutes with l.s), and taking
eigenvalues of the quantities l.s, l2 etc., we easily find the following expression for the addi-
tional magnetic moment of the nucleon (in units of the nuclear magneton)

:

_ nipW 2j+ 1

»-— */M m 2(y+1)
f°r/=/±i, (3)

where mp is the nucleon mass and R the radius of the nucleus. In the averaging of r2/, the
factorj-

2 is replaced by R2 owing to the rapid decrease of/(r) inside the nucleus. The mean
value/in (3) can be expressed in terms of the spin-orbit splitting by means of (117.6).

§118. Non-spherical nuclei

A system of particles in a spherically symmetric field cannot have a
rotational energy spectrum; in quantum mechanics, the concept of rotation
has no meaning for such a system. This applies to the shell model of the
nucleus with a spherically symmetric self-consistent field considered in

§117.

The division of the energy of the system into "internal" and "rotational"
parts has no precise meaning in quantum mechanics. It can only be approxi-
mate and is possible where, for physical reasons, the consideration of the
system as an assembly of particles, moving in a given field which is not spheri-
cally symmetric, is a good approximation. The rotational structure of the
levels is then a consequence of taking into account the possibility of rotating
this field with respect to a fixed system of co-ordinates. Such a case occurred,
for example, in molecules, whose electron terms can be determined as the
energy levels of a system of electrons moving in a given field of fixed nuclei.

Experiment shows that the majority of nuclei in fact have no rotational
structure. This means that the spherically symmetric self-consistent field

is a good approximation for such nuclei, i.e. they are spherical in shape
apart from quantum fluctuations.

There exists also, however, a class of nuclei which have an energy spectrum
of the rotational type; they lie approximately in the ranges of atomic weight
150 < A < 190 and A > 220. This property means that the approximation
of the spherically symmetric self-consistent field is entirely inapplicable to
such nuclei, and for them the self-consistent field must in principle be sought
without any initial assumptions regarding its symmetry, in order that the
shape of the nucleus should also be "self-consistently" determined. Experi-
ment shows that a correct model for nuclei of this type is given by a self-

consistent field having an axis of symmetry and a plane of symmetry per-
pendicular to it (i.e. having the symmetry of a spheroid).f The concept of
non-spherical nuclei has been most extensively developed in the work of
A. Bohr and B. R. Mottelson (1952-53).

t At the present time there appear to be no entirely reliable conclusions regarding the existence of
non-axial nuclei, which have the symmetry of an ellipsoid. The theory of such nuclei is due to A. S.
Davydov.
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It should be emphasised that we are concerned here with two qualitatively

different classes of nuclei. This is seen, in particular, from the fact that

nuclei are either spherical or else non-spherical with a "degree of deforma-

tion" that is not small. There is no continuous transition between these two

classes.

The occurrence of non-sphericity is favoured by the presence of incomplete

shells in the nucleus, and the phenomenon of nucleon pairing also appears to

be of considerable importance here. Closed shells, on the other hand, tend

to give spherical nuclei. A characteristic example is the doubly magic nucleus

82Pb208 : owing to the marked completeness of its nucleon configuration, this

nucleus (and also those adjoining it) is spherical, and this brings about

a gap in the sequence of non-spherical heavy nuclei.

The energy levels of a non-spherical nucleus consist of two parts : the levels

of the "fixed" nucleus and the energy of its rotation as a whole. The intervals

of the rotational structure of the levels are small in comparison with the

distances between the levels of the "fixed" nucleus.

The classification of the levels of a non-spherical nucleus is in many ways

similar to that for a diatomic molecule consisting of like atoms, since the

symmetry of the field in which the particles (nucleons or electrons) move is

the same in each case. We can therefore apply directly a number of the results

obtained in Chapter XI.

Let us first consider the classification of states of the "fixed" nucleus.

In a field with axial symmetry, only the component of the angular momentum
along the axis of symmetry is conserved. Each state of the nucleus is there-

fore described first of all by the value Q, of the component of its total angular

momentum,f which can be either integral or half-integral. The levels are

described as even (g) or odd (u) according to the behaviour of the wave

function when the co-ordinates of all the nucleons (with respect to the

centre of the nucleus) change sign.

In addition, for Q = positive and negative states are distinguished,

according to the behaviour of the wave function on reflection in a plane

passing through the axis of the nucleus (see §78).

The ground states of even-even non-spherical nuclei are Og (the zero

indicating the value of Q), corresponding to zero angular momentum and the

highest symmetry of the wave function. This is a result of the pairing of all

the neutrons and protons. If the nucleus contains an odd number of protons

or neutrons, however, we can consider the state of the "odd" nucleon in the

self-consistent field of the even-even remainder of the nucleus. Here the

value of Q. is determined by the component a> of theangular momentum of this

nucleon. Similarly, in an odd-odd nucleus the value of Q is obtained from the

angular momentum components of the odd neutron and proton:

n =
|
uip— o)n \

.

t By definition, Q > (just as the quantum number A is positive for diatomic molecules). It may-

be recalled that negative values of CI for diatomic molecules could arise only because CI was defined

as the sum A+ Z, and 2 can be either positive or negative, depending on the relative directions of the

orbital angular momentum and the spin.
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It should be emphasised at the same time that we cannot speak of definite

values of the components of the orbital angular momentum and spin of the

nucleon. The reason is that, although the spin-orbit coupling of the nucleon
is small in comparison with the energy of its interaction with the self-

consistent field of the remainder of the nucleus, it is not in general small

compared with the distances between adjoining energy levels of the nucleon
in that field, as it would have to be for perturbation theory to be applicable,

so that the orbital angular momentum and the spin of the nucleon could,
to a good approximation, be considered separately.f

Let us now consider the rotational structure of a non-spherical nucleus.
The intervals in this structure are small compared with the spin-orbit
interaction of the nucleons in the nucleus. This corresponds to case a in

the theory of diatomic molecules (§83).

The total angular momentum J of a rotating nucleus is, of course, con-
served. For given Q its magnitude J takes values from O upwards:

7=Q, Q+l.Q+2,...

;

(118.1)

see (83.2). An additional restriction on the possible values of J occurs for
nuclei with O = 0: in states 0£ and 0w the number J takes only even values,
and in states 0g and 0« only odd values (see §86). In particular, in the rota-
tional levels of the ground term for even-even nuclei (0g) the number J
takes the values 0, 2, 4, ... .

The rotational energy of the nucleus is given by the formula

E*ot = —J(J+l), (118.2)

where I is the moment of inertia of the nucleus (about an axis perpendicular
to its axis of symmetry) ; this formula corresponds to the similar expression
in the theory of diatomic molecules (the term depending on J in (83.6)).
The lowest level corresponds to the least possible value of J, i.e. J =Q.
On account of (118.2) the rotational structure of the levels is described by

certain interval rules which do not depend on the other characteristics of
the level (for given O). For instance, the components of the rotational
structure of the ground term of an even-even nucleus (with 7 =2, 4, 6, 8, ...)

are at distances in the ratio 1:3-3:7:12... from the lowest level (J = 0).

Formula (118.2), however, is insufficient for states with Q, = f, which
can occur in nuclei with an odd number of nucleons. In this case there is a
contribution to the energy, comparable with (118.2), due to the interaction

of the odd nucleon with the centrifugal field of the rotating nucleus. Its

dependence on / can be found as follows.

It is known from mechanicsj that the energy of a particle in a rotating

t In spherical nuclei this was still possible, owing to the simultaneous conservation of parity and
angular momentum.

t See Mechanics, §39.



§118 Non-spherical nuclei 459

co-ordinate system contains an additional term equal to the product of the

angular velocity of rotation and the angular momentum of the particle. The
corresponding term in the Hamiltonian of the nucleus can be written in the

form 2&R.6, where b is some constant, K the angular momentum of the

remainder of the nucleus (excluding the last nucleon), and o the angular

momentum of that nucleon. Here the latter must be understood in a purely

formal sense ; in reality, the angular momentum vector of the nucleon does

not exist in the axial field of the nucleus. This sense is that of an operator

analogous to the operator of spin \> which gives transitions between states

with values of the angular momentum component ± J, in accordance with the

value Q. = J.f Since we are concerned only with the dependence of the

energy of the nucleus on 7, we can consider instead of 2&R.O the operator

2b].6, the difference between these being merely an additive constant

independent of 7 (since J = K+o). The eigenvalues of this operator are

26J.c = b[J(J+ 1)-K(K+ l)+f].

Subtracting for convenience the constant \b, we find that this quantity equals

±6(7+|) when 7 = K±\.
This expression can be written (- 1)

J_* b(J+ f) if we use the fact that the

angular momentum K of the even-even remainder of the nucleus is even.

Thus we have finally the following expression for the rotational energy of

El0t = -j(j+\)+(-iy-v2Kj+i) (118 .3)

(A. Bohr and B. R. Mottelson 1953). We may note that, if the constant b

is positive and sufficiently large, the level with 7 = 3/2 may lie below that

with 7=|, i.e. the normal order of rotational levels (where the lowest level

corresponds to the smallest possible value of 7) will be altered.

The moment of inertia of a non-spherical nucleus cannot be calculated as

that of a solid of given shape. Such a calculation would be possible only if

the nucleons moving in the self-consistent field of the nucleus could be

regarded as not directly interacting. In reality, the pairing effect leads to a

reduction by a considerable factor in the moment of inertia, in comparison

with the value for a rigid body.

The magnetic moment (i of a non-spherical nucleus consists of the magnetic

moment of the "fixed" nucleus and that due to the rotation of the nucleus.

The former (after averaging over the motion of the nucleons in the nucleus)

is along the axis of the nucleus ; denoting its value by /*', and the unit vector

t The specific property of the case CI = £ consists precisely in the existence of matrix elements

of the energy perturbation for transitions between states differing only in the sign of the angular

momentum component and therefore belonging to the same energy. This brings about a shift in

energy even in the first approximation of perturbation theory.

The phenomenon concerned is analogous to the A-doubling of the levels of a diatomic molecule

with a = i (§88).
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along the axis of the nucleus by n, we can write it in the form fi'n. The mag-
netic moment due to the rotation is (after the same averaging) along the
vector J—Qn, the total angular momentum of the nucleus minus that of the
nucleons in the "fixed nucleus''.^ Thus

fx = fi'n+griJ-Chx). (118.4)

Here gr is the gyromagnetic factor for the rotation of the nucleus. Since the
contribution to the magnetic moment in rotation comes only from the protons,
we have

gr = Ipl(Ip+ In), (118.5)

where In and Ip are the neutron and proton parts of the moment of inertia

of the nucleus; for a system of protons only, gr = 1 simply. The ratio

(118.5) is in general not the same as the ratio ZjA of the number of protons
to the total number of nucleons.

After averaging over the rotation of the nucleus, the magnetic moment
is in the direction of the conserved vector J

:

(x = /J/7 = (^ - Qgr)h+grJ.

As usual, we multiply both sides of this equation by J and take eigenvalues.
In the ground state of the nucleus Q = 7, and so

i"=(^'+£r)7/(7+l). (118.6)

PROBLEMS
Problem 1. Express the quadrupole moment Q of a rotating nucleus in terms of the

quadrupole moment Qo relative to axes fixed to the nucleus (A. Bohr 1951).

Solution. The operator of the quadrupole moment tensor of a rotating nucleus is given
in terms of Qo by

Que = %Qo(nink- ±Sik) ;

this is a symmetrical tensor with zero trace, formed from the components of the unit vector
n along the axis of the nucleus, and Qzz = Q . The averaging with respect to the rotational
state of the nucleus is effected similarly to the solution in §29, Problem 2 (with the difference
that mJi = Cl, not zero), and leads to an expression of the form (75.2) with

3Q2- 7(7+1)
Q = Q i 1.

* (27+3)(7+l)

For the ground state of a nucleus with fi = J we obtain

(27-1)7

* (27+3)(7+l)

As J increases, the ratio Q/Qo tends to 1 , but only slowly.

Problem 2. Determine the magnetic moment in the ground state of a nucleus with
n = *.

t This formulation can be used only if Q ^ J (see Problem 2).
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Solution. In this case the magnetic moment operator can be written by means of the

operator a introduced in the text, in the form

The subsequent calculation is similar to that in the text. If the value J = \ corresponds to

the ground level of the nucleus (and K = J—\ = 0), we have ft = /*' ; if in the ground state

J = 3/2 (and K = 7+i = 2), then n = (9gr -3/*')/5.

Problem 3. Determine the energies of the first few levels of the rotational structure of

the ground state of an even-even nucleus having ellipsoidal symmetry.

Solution. The ground state of an even-even nucleus corresponds to the most symmetrical

wave function of the "fixed" nucleus, i.e. the function whose symmetry corresponds to the

representation A of the group D%. There are therefore altogether $J+ 1 (for even J) or

£(/_l) (for odd 7) different levels for a given value of J. For / = 2 they are given by formula

(7) in §103, Problem 3, and for / = 3 by formula (8) in §103, Problem 4.

§119. Isotopic shift

The specific properties of the nucleus (finite mass, dimensions, spin)

which distinguish it from a fixed point centre of a Coulomb field have a

certain influence on the electron energy levels of the atom.

One such effect is called the isotopic shift of levels, that is, a change in the

energy of a level from one isotope of an element to another. In practice,

of course, what is of interest is not the change in energy of one level but the

change in the distance between two levels observed as a spectral line. For

this reason we must in practice consider not the energy of the entire electron

envelope of the atom but only the part due to the electron involved in the

transition in question.

In light atoms the isotopic shift is due mainly to the finite mass of the

nucleus. When the motion of the nucleus is taken into account a term

w(2*y

appears in the Hamiltonian, where M is the mass of the nucleus and the pt

are the momenta of the electrons.! The isotopic shift due to this effect is

therefore given by the mean value

calculated from the wave function of the relevant state of the atom (Mi and

M% being the masses of the nuclei of the isotopes).

t In the centre-of-mass system of the atom, the sum of the momenta of the nucleus and the electrons

is zero: p„uc+ SPi = 0. Their total kinetic energy is therefore

Pnuc'

2M
-+—ypt2 =

—

jiy& )
+-^~y^

2m ^ 2M \*- J 2m ^
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In heavy atoms the main contribution to the isotopic shift comes from the
finite size of the nucleus. This effect is in practice appreciable only for the
levels of an outer electron in the s state, since the wave function of the s state

(unlike those of states with / ^ 0) does not vanish as r -> 0, and so the
probability of finding the electron "within the nucleus" is comparatively
large. We shall calculate the isotopic shift for this case.f

Let <f>(r) be the true electrostatic potential of the field of the nucleus, as

opposed to the potential Ze/r of the Coulomb field of a point charge Ze.
Then the change in the electron energy in comparison with its value in a
purely Coulomb field Ze/r is given by the integral

= -ejtf-Ze/rWtfdV, (119.2)

where if;(r) is the electron wave function; in the s state this function is

spherically symmetric and real. Although the integration here is formally
extended to all space, in practice the difference

(f>
— Ze/r in the integrand is

zero except within the nucleus. The wave function of the s state tends to a
constant limit as r -> (see §32), and this constant value is practically reached
even outside the nucleus. We can therefore take if*

2 outside the integral and
replace ^(r) by its value at r = 0, calculated for the Coulomb field of a point
charge.

For a further transformation of the integral we use the identity A*"
2 = 6

and write (119.2) as

AE

AE = -i42
(0) ((<!>- Ze/r)Ar2AV

= -i42
(0) (r2A(<f>-Zejr)dV;

in transforming the volume integral we have used the fact that the resulting
integral over an infinitely remote surface is zero. But A(l/r) = -47rS(r),
and r28(r) = for all r. According to the electrostatic Poisson's equation,

A<f> = —477/), and in this case p is the density of the electric charge distribu-
tion in the nucleus. The final result is

AE=frnlfi{0)Z&*, (119.3)

where

r2 = (IfZe) Lr2dV

is the proton mean square radius of the nucleus ; for a uniform distribution

of protons in the nucleus, r2 = 3R2
/5, where R is the geometrical radius of

the nucleus. The isotopic shift of the level is given by the difference of the
expressions (119.3) for the two isotopes.

t The calculation given below does not take account of relativistic effects in the motion of the
electron near the nucleus, and can be shown to be valid only if the condition Ze^jhc <^ 1 holds.
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In §71 an estimate has been given of «/r(0), and it was shown to depend on

the atomic number (assumed large) as \/Z. Hence the splitting (119.3) is

proportional to Z2
.

§120. Hyperfine structure of atomic levels

Another effect in atoms due to the properties of the nucleus is the splitting

of atomic energy levels as a result of the interaction of electrons with the

spin of the nucleus. This is called the hyperfine structure of the levels. On

account of the weakness of this interaction the intervals in the hyperfine

structure are very small, even in comparison with those in the fine structure.

Hence the hyperfine structure must be considered separately for each com-

ponent of the fine structure.

The spin of the nucleus will be denoted in this section (in accordance with

the notation usual in atomic spectroscopy) by i, the notation J being retained

for the total angular momentum of the electron envelope of the atom. The

total angular momentum of the atom (including the nucleus) is denoted

by F = J + i. Each component of the hyperfine structure is described by a

definite value of this angular momentum. According to the general rules for

addition of angular momenta, the quantum number F takes the values

F=J+i,J+i-l,...,\J-i\> (120.1)

so that each level with given J is split into a total of 2/+1 components if

i < /, or 27+ 1 if * > J.

Since the mean distances r between the electrons in the atom are large

compared with the radius R of the nucleus, an important part in the hyperfine

splitting is played by the interaction of the electrons with the lowest-order

multipole moments of the nucleus. These are the magnetic dipole and electric

quadrupole moments; the mean dipole moment is zero (see §75).

The magnetic moment of the nucleus is of the order of finnc ~ eRvnVLCjcy

where vnuc are the velocities of the nucleons in the nucleus. The energy of

its interaction with the magnetic moment of the electron (/xei ~ eh/mc) is of

the order of

j"-nuc^el ^2H -R^nuc
(120 2)

r mc2 r3

The quadrupole moment Q ~ eR2
; the energy of interaction of the field

which it produces with the charge on the electron is of the order of

eQjr*~e2R2
lr*. (120.3)

Comparison of (120.2) and (120.3) shows that the magnetic interaction (and

therefore the resulting splitting of the levels) is (vnue/c) (h/mcR) ~ 15 times

greater than the quadrupole interaction; although the ratio vnVLCjc is

relatively small, the ratio h/mcR is large.
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The operator of the magnetic interaction of the electrons with the nucleus
is of the form

ftj=ai.J (120.4)

(similarly to the spin-orbit interaction of the electrons (72.4)). The depend-
ence of the resulting splitting of the levels on F is therefore given by

\aF{F+\)\ (120.5)

cf. (72.5).

The operator of the quadrupole interaction of the electrons with the nucleus
is constructed from the operator Que of the quadrupole moment tensor of
the nucleus and the components of the angular momentum vector J of the

electrons. It is proportional to the scalar QacJiJjc formed from these operators,

i.e. has the form

b[Uik+iw- f»(f+ 1)8«1A/*

;

(120.6)

here we have used the fact that Qik is given in terms of the nuclear spin
operator by a formula of the type (75.2). On calculating the eigenvalues of
the operator (120.6) (in a manner entirely similar to the calculations in §84,
Problem 1), we find that the dependence of the quadrupole hyperfine splitting

of the levels on the quantum number F is given by the expression

&F*(F+ \f+\bF(F+ 1)[1 -2J(J+ l)-2i(i+ 1)]. (120.7)

The magnetic hyperfine splitting effect is especially noticeable for levels

due to an outer electron in the s state, owing to the comparatively high
probability that such an electron will be near the nucleus.

Let us calculate the hyperfine splitting for an atom containing one outer s

electron (E. Fermi 1930). This electron is described by the spherically

symmetric wave function «/r(r) of its motion in the self-consistent field of the
other electrons and the nucleus.f

We shall seek the operator of the interaction with the nucleus as the operator

- (x,.^ of the energy of the magnetic moment ji = fd/i of the nucleus in the
magnetic field 2^ created (at the origin) by the electron.J According to a
well-known formula of electrodynamics,

||
this field is

* 1 frxj 1 Ta 1

3T = - —Uv— jxV-dF,
c J r3 c J r

(120.8)

t The following calculation assumes that the condition Ze2/h~c <^ 1 is satisfied (cf. the second foot-
note to §119).

t A more direct method would be to calculate the splitting energy immediately as the mean value
of the energy of the interaction of the magnetic moments of the electron and the nucleus. For an s
electron, however, this method is not convenient, since it leads to a sum of integrals each of which
diverges when taken alone (cf. Problem 1).

||
See The Classical Theory of Fields, formula (43.7). It should be noted that in that formula the

vector R is from dFto the point considered, whereas in (120.8) the vector r is in the opposite direction,
from the centre to the point.
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where j = - 2/* c curl (^
2 s) is the spin operator of the current density due to

the moving electron spin (cf. (1 14.4) ; po is the Bohr magneton). First removing

from the region of integration in (120.8) a small sphere of radius r round the

origin, and transforming the integral by means of well-known formulae of

vector analysis, we have (with the notation f = -2^2{r)%)

$ =
|
curl fx \/—dV

= f(f.V)V—dV+ (*V— x(nxf)dS.

The integral over an infinitely remote surface vanishes, so that the second

integral on the right is taken only over the surface of the small sphere (n

being a unit vector along the outward normal to this sphere). The first

integral is easily seen to give zero on integration with respect to the directions

of r. The result is (putting dS = r 2 do and taking the limit as r -> 0)

&= -fnx(nxf(0))do

= 8wf(0)/3,

and so the interaction operator is

= (l&r/SOfiftoWl.S. (120.9)

If the total angular momentum of the atom J = S = |, the hyperfine

splitting leads to the appearance of a doublet (F = i±l)', according to

(120.5) and (120.9) we find for the distance between the two levels

Ei+l - E^ = (8ir/3*>f*o(2f+WW (120 -10>

Since the value of ^(0) is proportional to ^Z (see §71), the magnitude of

this splitting is proportional to the atomic number.

PROBLEMS
Problem 1. Calculate the hyperfine splitting (due to magnetic interaction) for an atom

containing (outside closed shells) one electron with orbital angular momentum i (E. Fermi

1930).

Solution. The vector potential and the magnetic field strength due to the magnetic

moment n of the nucleus are

itxn 3n(u..n)-fi.A=JV>^ =—i

—

r2 r3

(div A = 0). Using these expressions, we can write the interaction operator in the form

e eh •* Ian » .

A.p+ #e.% =—£.[l+ 3(s.n)n-§].
mc mc r3



466 Nuclear Structure §121

After averaging over a state with a given value of/, the expression in the brackets is in the
direction of j. We can therefore write

Va = 2/.0A-J [i.J+ 3(§.^Xn.j)-s.J]F3".

The mean value of mnk has been calculated in §29, Problem 2. Using this and taking eigen-
values, we find

2W .
.r 2/(/+l)s.j-6(s.l)(j.l)-]_

T—l.j l.j+ 1—1^-1 r-3,
• L (2/-l)(2/+3) J

whence, after a simple calculation, we have finally

flQfX 1(1+1)

1 70+ 1)

where F = j +i, and/ = / + J. The averaging of r~3 is with respect to the radial part of the
electron wave function.

Problem 2. Determine the Zeeman splitting of the components of the hyperfine structure
of an atomic level (S. A. Goudsmit and R. F. Bacher 1930).

Solution. In formula (112.3) (the field being assumed so weak that the splitting which
it causes is small in comparison with the hyperfine structure intervals), the averaging must
be effected not only with respect to the electron state but also with respect to the directions
of the nuclear spin. From the first averaging we get AE = nogjJzJ$r, with the same gj
{112.6). The second averaging gives, analogously to (112.4),

3T=(JJ)MWFa.

Thus we have finally AE = pogF Jt?MF , where

F(F+ 1)4- J(J+ !)-*(»+ 1)
gF = gJ~

2F(F+1)

§121. Hyperfine structure of molecular levels

The hyperfine structure of the energy levels of molecules is similar to that

of the atomic levels.

In the great majority of molecules the total electron spin is zero. The main
source of the hyperfine splitting of the levels is then the quadrupole inter-

action of the nuclei and the electrons; here, of course, only those nuclei

participate in the interaction whose spin i is neither nor |, since otherwise
their quadrupole moment is zero.

On account of the comparative slowness of the motion of the nuclei in the
molecule, the averaging of the quadrupole interaction operator with respect

to the state of the molecule is effected in two stages : first we must average
with respect to the electron state for fixed nuclei, and then with respect to

the rotation of the molecule.

Let us first consider the diatomic molecule. The first averaging gives an
interaction of each nucleus with the electrons that is expressed by an operator

proportional to the scalar QikHitik formed from the operator of the quad-
rupole moment tensor of the nucleus and the unit vector n along the axis of
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the molecule—the only quantity which determines the orientation of the

molecule with respect to the direction of the nuclear spin. Since Qu = 0,

this operator can be written in the form

Miijc(nink -%8ue); (121.1)

for a given value of the component i% of the nuclear spin along the axis of the

molecule, this quantity is b[i^2— ^(*'+l)].

When the operator (121.1) is averaged with respect to the rotation of the

molecule, it is expressed in terms of the operator & of the conserved rotational

angular momentum. The averaging of the product niWc is effected by means
of the formula derived in §29, Problem 2 (with the vector K in place of 1),

and the result is

(M&t&*+&tfo-&tK{K+ 1)]. (121.2)
(2*:-i)(2jk:+3)

The eigenvalues of this operator are found in the same way as for (120.6).

For a polyatomic molecule we obtain in general, instead of (121.1), an

operator of the form

hmk, (121.3)

where bik is a tensor with zero trace which is a certain characteristic of the

electron state of the molecule. After averaging with respect to the rotation of

the molecule, this tensor is given in terms of the total rotational angular

momentum J by a formula of the type

hk = b[JiJk+JkJi-P(J+l)8ik]. (121.4)

The coefficient b can in principle be expressed in terms of the components

of the tensor btk relative to the principal axes of inertia of the molecule

£,r)£; since these axes are fixed in the molecule, the components b^ etc.

are a property of the molecule and unaffected by the averaging. Let us con-

sider the scalar bikJiJk . A calculation using (121.4) gives

bikJiJk = bJ(J+l)[iJ(J+l)+ l]; (121.5)

the method is similar to that used in §29, Problem 2. Expanding the tensor

product in components along the axes £,?7,£, we obtain

bikJiJk = bHJ^+bnn
J^+ bKJ^ t (121.6)

where we have used the fact that the mean values of the products JgJ^ etc.

are zero.f The mean values of the squares J\ etc. are found, in principle,

t For in a representation where the matrix of one component of J (7^, say) is diagonal, the matrices
of the products J^Jz,, J^Jz, have non-zero elements only when the quantum number k changes by 1,

whereas the wave functions of stationary states of an asymmetrical top include functions ifijjc with
values of k differing by an even number (see §103).

16
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from the wave functions of the corresponding rotational states of the top.

In particular, for a symmetrical top we have simply

J? = #;Jf,jf=W+i)-*a
].

If the spins of the nuclei are |, the quadrupole interaction is absent. In

this case one of the main sources of hyperfine splitting is the direct magnetic

interaction between the nuclear magnetic moments. The operator of the

interaction of two magnetic moments (Xi = /J-ih/ii, (&2 = ^h/h is given by

7—[11.12 -3(n.n)(t2.n)].

To calculate the splitting energy, this must be averaged with respect to the

state of the molecule, as described above.

When the molecule contains heavy atoms, comparable contributions to the

hyperfine splitting are given by the direct interaction and by the indirect

interaction of the nuclear moments through the electron envelope. Formally,

this interaction is an effect in the second approximation of perturbation

theory with respect to the interaction of the nuclear spin with the electrons.

By means of the results of §120 we easily find that the ratio of this effect to

the direct interaction of the nuclear moments is of the order (Ze2/hc)2 , and is

comparable with unity for large Z.

Finally, some contribution to the hyperfine splitting of molecular levels

comes from the interaction of the nuclear magnetic moment with the rotation

of the molecule. The rotating molecule, being a moving system of charges,

creates a certain magnetic field, which may be calculated, using the formulae

of electrodynamics, from the given current density j = pSl x r, where p is

the charge density (of electrons and nuclei) in the molecule at rest, and SI its

angular velocity of rotation. The magnitude of the level splitting is found as

the energy of the magnetic moment of the nucleus in this field ; the com-

ponents of the angular velocity of the molecule must be expressed in terms

of those of its angular momentum (cf. §103).



CHAPTER XVII

THE THEORY OF ELASTIC COLLISIONS

§122. The general theory of scattering

In classical mechanics, collisions of two particles are entirely determined

by their velocities and impact parameter (i.e. the distance at which they would

pass if they did not interact). In quantum mechanics the very wording of the

problem must be changed, since in motion with definite velocities the concept

of the path is meaningless, and therefore so is the impact parameter. The

purpose of the theory is here only to calculate the probability that, as a result

of the collision, the particles will deviate (or, as we say, be scattered) through

any given angle. We are speaking here of what are called elastic collisions,

in which the particles, or the internal state of the colliding particles if these

are complex, are left unchanged.

The problem of an elastic collision, like any problem of two bodies, amounts

to a problem of the scattering of a single particle, with the reduced mass, in

the field U(r) of a fixed centre of force,f This simplification is effected by

changing to a system of co-ordinates in which the centre of mass of the two

particles is at rest. The scattering angle in this system we denote by 6.

It is simply related to the angles^ and -9-
2 giving the deviations of the two

particles in a system of co-ordinates in which the second particle (say) was

at rest before the collision:%

tan 0-i= m2 sin0/(mi+W2Cos0), $2 = l(n—Q)> (122.1)

where m^ m^ are the masses of the particles. In particular, if the masses

of the two particles are the same (mx = n%), we have simply

«i = tf, $2=^-0); (122.2)

the sum^+^2— i77-
* i-e - tne particles diverge at right angles.

In what follows, we shall always use (unless the contrary is specifically

stated) a system of co-ordinates in which the centre of mass is at rest.

A free particle moving in the positive direction of the #-axis is described

by a plane wave, which we take in the form ifj = eikz , i.e. we normalise so that

the current density in the wave is equal to the particle velocity v. The

scattered particles must be described, at a great distance from the scattering

centre, by an outgoing spherical wave of the form f(9)e
ikr/r, where f(9) is

some function of the scattering angle 6 (the angle between the #-axis and the

t Here we neglect the spin-orbit interaction of the particles (if they have spin). By assuming the

field to be centrally symmetric, we exclude from consideration also processes such as the scattering

of electrons by molecules.

t See Mechanics, §17.
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direction of the scattered particle). This function is called the scattering

amplitude. Thus the exact wave function, which is a solution of Schrodinger's

equation with potential energy U(r), must have at large distances the asymp-
totic form

~ &t+f{6y*lr. (122.3)

The probability per unit time that the scattered particle will pass through

a surface element dS = r2do (where do is an element of solid angle) is

(v/r2) |/|
2 dS = v\f\

2 do.f Its ratio to the current density in the incident

wave is

da = |/(0)|2 do. (122.4)

This quantity has the dimensions of area, and is called the effective cross-

section, or simply the cross-section, for scattering into the solid angle do.

If we put do = 277 sin 6 dd, we obtain for the cross-section

da = 2tt sin |/(0)|
2 d0 (122.5)

for scattering through angles in the range from 6 to 6+d6.

Every solution of Schrodinger's equation in a central field can be written

as a sum of products of spherical harmonics with radial functions Ri(r) that

satisfy the equations

1 d / dRi\ r 1(1+1) 2m -|

The asymptotic form of the function Ri is the stationary wave

ai sin(kr—lliT4- 8{)
R t

« ——-; (122.7)
r

see (33.18). We shall show how the scattering amplitude can be expressed

in terms of the phases S; of these functions. The general axially symmetric

(about the .sr-axis) solution of Schrodinger's equation is a sum of products

Ri(r)Pi(cos 6), and the solution describing the scattering must therefore

be of this form. Accordingly, the general asymptotic form of the solution is

2sm(kr—lliT+ Si)

(21+ l)^Pz(cos d)~ = -
kr

1=0

00

= y (21+ l)AiPi(cosd)—{exp[-i(kr-±lir+ 8i)]-exp[i(kr-y?r+ 8i)]}.
*-> 2kr
1=0

t It is supposed that the incident beam of particles is defined by a wide (to avoid diffraction effects)

but finite diaphragm, as happens in actual experiments on scattering. There is therefore no inter-

ference between the two terms of the expression (122 3); the squared modulus \t//\
2 is taken at points

where there is no incident wave.
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We have to choose the coefficients A
t
such that this function has the form

(122.3). To do this, we use the expansion of a plane wave in terms of spherical

waves, obtained in §34. The asymptotic form of this expansion is (34.2)

:

eikz ~ Vz*(2Z+lWcos0)—{exV[-i(kr-±l7r)]-exp[i{kr-%lTT)]}.
*—> Ikr
1=0

The difference ip— eikz must represent an outgoing wave, i.e. must contain

no term in e~ikr ; thus

Ai = feiSK

The wave function is therefore

00

ib «—y (21+ 1)Pj(cos0)[(- \)k-ur- Sie
**r], (122.8)

Ikr
1=0

with the notation

St
= e™K (122.9)

For the coefficient of eikrjr in the difference ib-eiJcz
, i.e. the scattering ampli-

tude, we obtain

1
°°

f(d) = y (2Z+l)[S,-l]fi(cos0). (122.10)
2ik *—*

1 =

The formula solves the problem of expressing the scattering amplitude in

terms of the Si (H. Faxen and J. Holtsmark 1927).f

If we integrate do- over all angles, we obtain the total effective scattering

cross-section ct, which is the ratio of the total probability (per unit time)

that the particle will be scattered to the probability current density in the

incident wave. Substituting (122.10) in the integral

a = 2tt j |/(0)|« sin 6 ddt

t The problem of recovering the form of the scattering potential from the phases Si (assumed

known) is of fundamental interest. This has been solved by I. M. Gel'fand, B. M. Levitan and

V. A. Marchenko. It is found that, to determine U(r), it is in principle sufficient to know 8o(&) as

a function of the wave number throughout the range from k = to k = go, together with the co-

efficients an in the asymptotic expressions (for r->co)Rno^ (anjr)e-K"r (/cra = -\/{2m\En\)lh) of the

wave functions of states corresponding to the discrete (negative) energy levels En (if any). The
determination of U(r) from these data requires the solution of a certain linear integral equation; see

V. A. Marchenko, Doklady Akademii Nauk SSSR 104, 695, 1955.
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and recalling that the Legendre polynomials with different / are orthogonal,

while

IT

j Pftcos 6) sin^ dd = 2/(2/+ 1),

o

we have for the total effective cross-section

4tt
°°

a = — y (2/+1) sin2Sz . (122.11)

i-o

Each of the terms in this sum is a "partial" effective cross-section ai for

the scattering of particles with given orbital angular momentum /. It may
be noted that the maximum possible value of this cross-section is

d.m« = (4ir/*a)(2Z+l). (122.12)

Comparing this with formula (34.4), we see that the number of particles

scattered with angular momentum / may be four times the number of such

particles in the incident flux. This is a purely quantum effect due to inter-

ference between the scattered and unscattered particles.

It will be useful later to employ also the "partial scattering amplitudes"

/z, which we define as the coefficients in the expansion

f{6) = S (21+ l)fiPi(cos 6). (122.13)

According to (122.10) these ars related to the phases 8i by

fl
=
i^Sl~ 1} =We2"'~ 1} ' (122-14)

and the partial cross-sections are

01 = 4^27+1)1^. (122.15)

§123. An investigation of the general formula

The formulae which we have obtained are in principle applicable to

scattering in any field U(r) which vanishes at infinity. The use of these

formulae involves only an examination of the properties of the phases Si

which appear in them.

To estimate the order of magnitude of the phases S
z
for large values of /,

we use the fact that the motion is quasi-classical for large / (see §49). Hence

the phase of the wave function is determined by the integral

(Z+|)2 2mU{r)-

r.
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where r is a zero of the expression under the radical (r > r being the classi-

cally accessible region of motion). Subtracting from this the phase

JVHT]-*
of the wave function of free motion, and letting r -» oo, we obtain, by

definition, the quantity S
z
. For large values of /, the value of r also becomes

large; U(r) is therefore small throughout the range of integration, and we
have approximately

8i = - fmtf(r)dr/*2 /r*2_L±lL~|. (123.1)

In order of magnitude this integral (if convergent) is

8i ~ mU{r )rojkm. (123.2)

The order of magnitude of r is r ~ l/k.

If U(r) vanishes at infinity as l/rn with n > 1, the integral (123.1) converges,

and the phases S
z
are finite. On the other hand, for n ^ 1 the integral

diverges, so that the phases S
t
are infinite. This holds for any /, since the

convergence or divergence of the integral (123.1) depends on the behaviour

of U(r) for large r, while at large distances (where the field U(r) is weak)

the radial motion is quasi-classical for all /. We shall show below how the

formulae (122.10), (122.11) are to be interpreted when B
t
is infinite.

Let us first consider the convergence of the series (122.11) which gives the

total effective cross-section. For large /, the phases 8
t
<^ 1, as is seen from

(123.1) if we take into account the fact that U(r) decreases more rapidly

than I jr. Hence we can put sin2S
z
£ &?, and so the sum of the high terms

in the series (122.11) will be of the order of 2 18,
2

. From the well-known

integral test for the convergence of series, we conclude that the series in
00

question converges if the integral J lh?6l does so. Substituting here (123.2)

and replacing / by kr , we obtain the integral

Jc/
2(r )ro3 dr .

If U(r) decreases at infinity as \\rn with n > 2, this integral converges,

and the total effective cross-section is finite. If, on the other hand, the

field U(r) decreases not more rapidly than 1/r2, the total effective cross-

section appears to be infinite. The physical reason for this is that, when the

field falls off only slowly with distance, the probability of scattering through

small angles becomes extremely large. In this connection we may recall that,
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in classical mechanics, in any field which vanishes only as r -> oo, a particle

passing at any finite impact parameter p, however large, always undergoes

a deviation through some angle which, though small, is not zero ; hence the

total effective scattering cross-section is infinite for any law of decrease of

C/(r).f In quantum mechanics, this argument is invalid, since we can speak of

scattering through a certain angle only if this angle is large compared with the

indeterminacy in the direction of motion of the particle. If the impact

parameter is known to within Ap, an indeterminacy h/A.p is caused in the

transverse component of momentum, i.e. an indeterminacy ~frjmvA.p in

the angle.

In view of the important part played by small-angle scattering when U(r)

decreases only slowly, the question naturally arises whether the scattering

amplitude f(6) diverges for — 0, even when U(r) decreases more rapidly

than 1/r2 . Putting = in (122.10), we obtain for the high terms in the sum
an expression proportional to 2 18

1
. Arguing as in the previous case, our

search for the criterion of the convergence of the sum leads us to the integral

oo

J
U(r )ro2 dro,

which diverges for U(r) ~ l/rn with n ^ 3. Thus the scattering amplitude

becomes infinite at = for fields which decrease not more rapidly than
1/rS.

Finally, let us consider the case where the phase S , itself is infinite, as hap-

pens when U(r) ~ \\rn with n ^ 1. It is evident from the results obtained

above that, when the field decreases so slowly, both the total effective

cross-section and the scattering amplitude for = will be infinite. There
remains, however, the problem of calculating /(0) for ^ 0. First of all,

we notice that the formulaJ

00

T(2/+l)P/(cos0) = 48(l-cos0) (123.3)

1=0

holds. In other words, the sum vanishes for all ^ 0. Hence, in the

expression (122.10) for the scattering amplitude, we can omit unity in the

t This is seen from the divergence of the integral J 2irp dp which gives the total cross-section in

classical mechanics.

J This formula is the expansion of the delta function in Legendre polynomials, and can be immedi-

ately verified by multiplying both sides by sin 9 Pi (cos 9) and integrating over 9. Here the integral

8(x) dx

of the even function S(x) is taken to be ^.



§124 The unitarity condition for scattering 475

square brackets in each term of the sum when 9 # 0, leaving

1
°°

/(0) =—V (2/+l)Pj(cos0)e2**«. (123.4)

If we multiply the right-hand side of the equation by the constant factor

e-2i8% the effective cross-section will be unchanged, since it is determined

by the squared modulus |/(#)|
2

, while the phase of the complex function f(d)

is changed only by an unimportant constant. On the other hand, the diver-

gent integral of U(r) cancels in the difference S
t
— S of expressions such as

(123.1), and a finite quantity remains. Thus, to calculate the scattering

amplitude in the case considered, we can use the formula

1
°°

f(6) =~y (21+ l)P,(cos 6y«»r-V. (123.5)

1=0

§124. The unitarity condition for scattering

The scattering amplitude in an arbitrary (not necessarily central) field

satisfies certain relations which follow from very general physical require-

ments.

The asymptotic form of the wave function at large distances for elastic

scattering in an arbitrary field is

1

« e**m-n'+-/(n,n')eCfcr
. (124.1)

r

This expression differs from (122.3) in that the scattering amplitude depends

on the directions of two unit vectors, one (n) in the direction of incidence of

the particles and the other (n') along the direction of scattering, and not only

on the angle between them.

Any linear combination of functions of the form (124.1) with different

directions of incidence n also represents a possible scattering process.

Multiplying the functions (124.1) by an arbitrary coefficient F(n) and inte-

grating over all directions n (solid angle element do), we can write such a linear

combination as the integral

/• eikr /»

F(ny*m.n> do+ P(n)/(n,n') do. (124.2)

Since the distance r is arbitrarily large, the factor eikrn-n ' in the first integral

is a rapidly oscillating function of the direction of the variable vector n.

The value of the integral is therefore determined mainly by the regions near

those values of n for which the exponent has an extremum (n = ± n'). In

each of these regions the factor .F(n) ~ F( ± n') can be taken outside the
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integral, and the integration then givesf

e—ikr eikr eikr /•

27rtF(-n') -2iriF(ri) + f(n,ri)F(n) do.
kr kr r J

This expression can be written in a concise operator form, omitting the

common factor 27ri/k

:

e-ikr eikr

F(-n') £F(n'), (124.3)
r r

where
S=l+2ikf (124.4)

and/ is the integral operator defined by

fF(n') = 1 J/(n,n')^(n) do. (124.5)

The operator £ is called the scattering operator, the scattering matrix, or simply

the S-matrix; it was first used by W. Heisenberg (1943).

The first term in (124.3) represents a wave going in to the centre, and the

second a wave going out from the centre. The conservation of the number of

particles in elastic scattering is expressed by the equality of the total fluxes

of particles in the ingoing and outgoing waves. In other words, these two

waves must have the same normalisation. To achieve this, the scattering

operator 3 must be unitary (§12), i.e. we must have

SS+ = 1, (124.6)

or, substituting (124.4) and carrying out the multiplication,

/-/+ = 2zV/+ - (124.7)

Finally, using the definition (124.5), we can write the unitarity condition for

scattering in the form

/(n,n') - /*(n',n) = £ f/(n,n")/*(n>") do". (124.8)
Lit J

For n = n' the integral on the right-hand side of the equation is just the

total effective scattering cross-section a =
J |/(n,n")|2 do". The difference

on the left-hand side of the equation reduces in this case to the imaginary

part of the amplitude /(n,n). Thus we obtain the following general relation

between the total elastic scattering cross-section and the imaginary part of

the amplitude of scattering through an angle zero

:

im/(n,n) = kajATt. (124.9)

This is called the optical theorem for scattering.

t To calculate the integral, we displace the path of integration with respect to the variable ft = cos B

(6 being the angle between n and n') in the complex /n-plane in such a way that it bends into the upper

half-plane, the end points
fj,

=> + 1 being kept fixed. Then the function e
ilcrv

- decreases rapidly as we
move away from these end points.
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Another general property of the scattering amplitude can be derived from

the requirement of symmetry with respect to time reversal. In quantum

mechanics this symmetry is expressed by the fact that, if a function ifi describes

any possible state, then the complex conjugate function ifj* also corresponds

to a possible state (§18). Hence the wave function

eikr eikr

F*(-n') £*F*(n%
r r

which is the complex conjugate of (124.3), also describes some possible

scattering process. We define a new arbitrary function by putting

-S*F*(n') = O(-n'). Using the unitarity of the operator §, we then have

F*(n') = -(S*)-l®(-n') = -^O(-n');

using the operator / of inversion of the co-ordinates, which changes the sign

of the vectors n and n', we can write

jF*(_n') = lF*(n') = -l!§t(S>(ri).

Thus we obtain the time-reversed wave function in the form

p-ikr eikr _
(D(-n') m<$(n').

This must be essentially the same as the original wave function (124.3).

Comparison shows that this implies the condition

1S1 = S; (124.10)

then the two functions differ only in the notation for the arbitrary function.

The corresponding relation for the scattering amplitude is found by

changing from the operator equation (124.10) to a matrix equation. Trans-

position interchanges the initial and final vectors n and n', while inversion

changes their sign. Hence we have

S(n,n') = S(-n\ -n), (124.11)

or, what is the same thing,

/(n,n')=/(-n', -n). (124.12)

This relation (called the reciprocity theorem) expresses the obvious result that

the amplitudes are the same for two scattering processes such that each is the

time reversal of the other. Time reversal interchanges the initial and final

states and reverses the direction of motion of the particles in those states.

For scattering in a central field, the general relations obtained above can be

simplified. In this case the amplitude /(n,n') depends only on the angle

between n and n'. The equation (124.12) therefore becomes an identity.
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The unitarity condition (124.8) becomes

k
imf(6) = -J/(y)/*(/)do, (124.13)

where y, y are the angles between n, n' and some direction fixed in space.

If we use the expansion (122.13) for f(6), the addition theorem (c.8) for

spherical harmonics gives from (124.13) the following relation for the partial

amplitudes

:

imfi = k\fi\*. (124.14)

This formula can also be derived directly from the expression (122.14),

according to which \2ikfi+ 1|
2 = 1. The optical theorem (124.9) is also easily

deduced directly from formulae (122.10) and (122.11) for the case of scatter-

ing in a central field.

Rewriting (124. 14) as im(l//z) = — k, we see that the amplitude/^ must have

the form
ft = V(gi-ik), (124.15)

where gi = gi(k) is a real quantity.f We shall several times make use of this

formula for the amplitude.

Let us examine (for scattering in a central field) the relation between the

scattering operator defined above and the quantities which appear in the

theory given in §122.

Since the orbital angular momentum is conserved in a central field, the

scattering operator § commutes with the operator 1. In other words, the S
matrix is diagonal in the / representation, and since the operator S is unitary its

eigenvalues must have unit modulus, i.e. must be of the form e2iS* with real

8i. It is easy to see that these quantities are the same as the phase shifts of the

wave functions, so that the eigenvalues of the S matrix are the quantities Si

defined in (122.9). The eigenvalues of the operator/ = (S—\)/2ik are the

partial amplitudes (122.14). For, if we take P;(cos 6) as the function F(n)

(so that F(-n) = Pi(- cos d) = (-l)^(cos 0)), the wave function (124.3)

must be the solution of Schrodinger's equation represented by a term in

the sum (122.8). Thus &Pj(cos 0) = 5^(cos 0).

For a plane wave incident along the #-axis, the function F(n) in (124.2) is

the delta function F = 48(1 — cos 0), where is the angle between n and the

#-axis, the delta function is defined as indicated in the second footnote to §123,

and the coefficient of it is so chosen as to give simply /(0) on substitution on

the right-hand side of the definition (124.5); 6 is now the angle between n'

and the #-axis. Writing the delta function in the form (123.3):

00

F = 48(1 - cos 9) = 2 (2/+ l)Pj(cos 9), (124.16)

1=0

t It is related to the phase Si by

gi = k cotSi. (124.15a)
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and applying the operator/to it, we find that the scattering amplitude has the

form (122.13), as it should.

Finally, we may add the following remark. Mathematically, the unitarity

condition (124.8) signifies that not every specified function/(n,n') can be the

scattering amplitude in some field. In particular, not every function f(d) can

be the scattering amplitude in some central field. From (124.13), a certain

relation must hold between its real and imaginary parts. If we write

f(6)
= \f\e

ix
, then, when the modulus |/| is given for all angles, (124.13)

gives an integral equation from which the unknown phase <x(0) can in principle

be determined. In other words, from a scattering cross-section (i.e. |/|
2
)

known for all angles we can in principle recover the amplitude. This process

is, however, not completely unique and determines the amplitude only to

within the alternative

m -> -f*(d), (124.17)

which leaves the equation (124.13) unchanged (and of course does not alter

the cross-section
| / |

2
).f This non-uniqueness is, however, removed if the

scattering amplitude is regarded as a function of energy as well as angle. We
shall see below (§§128, 129) that the analytical properties of the amplitude

as a function of energy are not invariant under the transformation (124.17).

§125. Born's formula

The effective scattering cross-section can be calculated in a general form

in a very important case, namely that where the scattering field may be

regarded as a perturbation. $ It has been shown in §45 that this is possible

when either of the two conditions

or

|
U\ < #7m«2 (125.1)

|
U\ < hvfa = {mjmaP)ka (125.2)

holds, a being the range of action of the field U(r) and U the order of magni-

tude of the field in the range where it is significant. When the first condition

is satisfied, the approximation is valid for all velocities ; the second condition

shows that it is always applicable for sufficiently fast particles.

In accordance with §45, we seek the wave function in the form iff
=

^f
(o)^_^(i)

)
where ^ (0) = eik-r corresponds to an incident particle having

wave vector k = p//z. From formula (45.3) we then have

^(x,y,z) = -^-
f
U{x',y',z'yO"'+>cR)^ (125.3)

t The transformation (124.17) is equivalent to a simultaneous change of sign of all the phases Si

in (122.10).

J In the general theory derived in §122 this approximation corresponds to the case where all the

phases Si are small; it is also necessary that these phases can be calculated from Schrodinger's

equation with the potential energy regarded as a perturbation (see Problem 4).
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Taking the origin at the scattering centre, we introduce the radius vector

R from the origin to the point where the value of (1) is required, and
denote by n' a unit vector along R . Let the radius vector of a volume
element dV be r'; then R = R — r'. At large distances from the centre,

R > r', so that

R = lRo-r'1 ^Ro-r'.n'.

Substituting this in (125.3), we have the following asymptotic expression for

m eikR» C
0(i) ~ t/(r')g*(k-k')ydF

27rh2 Ro J

(where k' = kri is the wave vector of the particle after scattering). Compar-
ing this with the scattering amplitude given by formula (122.3), we find for

the latter the expression

/= -^J^-rdF> (125 -4)

where we have renamed the variable of integration and introduced the vector

q = k'-k, (125.5)

whose absolute magnitude is

q=2ksinl9, (125.6)

6 being the angle between k and k', i.e. the scattering angle.

Finally, squaring the modulus of the scattering amplitude, we have the

following expression for the effective cross-section for scattering into the

solid angle element do

:

da =
47T2/*4

[Ue-^d
|2

V\ do. (125.7)

We see that the scattering with a momentum change hq is determined by the

squared modulus of the corresponding Fourier component of the field U.

Formula (125.7) was first obtained by M. Born (1926). In the theory of

collisions, the approximation considered here is often called the Born approxi-

mation.

It may be noted that, in this approximation, the relation

/(k,k')=/*(k',k) (125.8)

holds between the amplitudes of the direct and inverse scattering processes,

i.e. processes differing by the interchange of the initial and final momenta,

without the change of sign such as occurs in time reversal. Thus another

symmetry property, in addition to the reciprocity theorem (124.12), appears
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in scattering. This property is closely related to the smallness of the scatter-

ing amplitudes in perturbation theory, and follows immediately from the

unitarity condition (124.8) if we neglect the integral term quadratic m/.f

Formula (125.7) can also be obtained by another method (which, however,

does not determine the phase of the scattering amplitude). We can start

from the general formula (43.1), according to which the transition probability

between states of the continuous spectrum is given by the expression

d«>v = {27rlh)\Uvpf B(E V-E v )dv.

In the case under consideration, we have to apply this formula to a transition

from the state of the incident particle with a given initial momentum p to

the state of the particle, with momentum p\ scattered into the element of

solid angle do'. As the "interval" of states dv we can take the volume element

dp' x dp' y dp\ in momentum space. Substituting for Ev-EVo
the difference

(p'2

X

-p*)l2m of the energies of the free particles with momenta p' and p,

we obtain

d«>pp
, = (47rm//*)| [/PP'|

2S(p/2-j>2) dp'x dp'y dp'z . (125.9)

The wave functions of the incident and scattered particles are the functions

for free motion, i.e. plane waves:

«£p
= constant x eiP-r 'n

, 4># = constant x eW-r ln .

Since we have taken as the "interval" dv' an element of momentum space, the

wave function «£p
, must be normalised by the delta function in momentum

space:

,/,p
, = e«/A)P'-»-/(27r^)3/

2
. (125.10)

We normalise the function «/r

p
to unit current density:

<Ap = v(mipyt/h)p-r
-

(i25.il)

Then the probability (125.9) will have the dimensions of area, and is the

differential effective scattering cross-section.

The presence of the delta function in formula (125.9) means thatj/ = p,

i.e. the absolute magnitude of the momentum is unchanged, as it should

be in elastic scattering. We can remove the delta function by changing to

"spherical co-ordinates" in momentum space (i.e. by replacing dp' x dp'y dp'e

by p'2dp' do' = lp'd(p'
2)do') and integrating over p'2

. The integration

amounts to replacing p' by p in the integrand, and we obtain

da = (27rm/>//»)| J^*£typd*fdo'.

t Hence it is clear that this property no longer holds in even the second approximation of perturba-

tion theory. At first sight it may seem that the formula in the second approximation (see Problem 6)

is also symmetrical with respect to interchange of the initial and final states. In reality this symmetry

does not exist, because when the complex conjugate formula is taken the contour of mtegration is

altered, the direction of passage round the singular point being reversed.
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Substituting the functions (125.10), (125.11), we reach once more the final
expression (125.7).

In the form (125.7), this formula is applicable to scattering in a field
U(x, y, z) which is any function of the co-ordinates, and not only a function of
r. In the case U = U(r), however, this formula can be further transformed.
In the integral

J
U(r)e-t** dV

we use spherical space co-ordinates r,#, <j>, with the polar axis in the direction
of the vector q, denoting the polar angle by & to distinguish it from the
scattering angle 0. The integration over & smd<f> can be effected, and we obtain

°o 2n it oo

J J J

U(r)ei<v co-M sin& d&d<f>dr = 4tt f U^f*
9
' r dr.

Substituting this expression in (125.4), we obtain the following formula
for the scattering amplitude in a centrally symmetric field:

2mAm r sin qr
/=

--^-J
U{r) r dr- (125.12)

o
^

For 6 = (i.e. q = 0), the integral diverges when U(r) decreases at infinity
not more rapidly than 1/r3 (in accordance with the general results of §123).
We may call attention to the following interesting fact. The momentum p

of the particle and the scattering angle 6 enter (125.12) only through q. Thus,
in the Born approximation, the effective cross-section depends on p and 6
only in the combination p sin \6.

Returning to the case of arbitrary fields U(x, y, z), let us consider the
limiting cases of small velocities (ka <4 1) and large velocities (ka > 1). For
small velocities, we can put <r ?:«-r ~ 1 in (125.4), so that

while if U = U(r%

m r

2m f/=-— \U(r)r^dr. (125.14)

o

Here the scattering is isotropic and independent of the velocity, in accord-
ance with the general results of §130.

In the opposite limiting case of high velocities, the scattering is markedly
anisotropic and mainly forward in a narrow cone of angle A0 ~ 1/ka; since
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outside this cone the quantity q is large, the factor e~*»-r is a rapidly oscillating

function, and the integral of its product with the slowly varying function

U is almost zero.

The law of decrease for large q is not universal and depends on the specific

form of the field. If the field U = U(r) has a singularity at r = or at any

other real value of r
y
the integral (125.12) is mainly determined by the range

near the singular point, and the cross-section decreases according to a power

law. The same applies to the case where the function U(r) has no singularity

but is not an even function ; here the region near r = is the most important

in the integral. If U(r) is an even function of r, however, the integration may
be formally extended to negative values of r, i.e. taken along the whole of the

real axis of the variable r, after which (if U(r) has no singularity on the real

axis) the path of integration may be moved into the complex plane until it

meets the nearest complex singularity. Then, for large q, the integral will

decrease exponentially. It should be borne in mind, however, that the Born

approximation is in general inadequate to calculate this exponentially small

quantity (see also §127).

Although the value of the differential scattering cross-section within the

cone Ad ~ 1/ka does not depend greatly on the velocity, the total scattering

cross-section (assuming that the integral J da does converge) decreases at high

energies owing to the decreasing angle of the cone, in proportion to the solid

angle of the cone, i.e. as (A0)2 ~ 1/A2a2
, or inversely as the energy.

In many physical applications of collision theory the quantity which

describes the scattering is the integral

fftr = f (1- Cos0)dc7, (125.15)

often calledthe transport cross-section. Arguments similar to those given above

show that at high velocities this quantity is inversely proportional to the square

of the energy.

PROBLEMS

Problem 1. Determine, in the Born approximation, the effective scattering cross-section

for a spherical potential well : U = —Uo for r < a, U = for r > a.

Solution. The calculation of the integral in (125.12) gives

(mUoa2 \ 2 (sin qa— qa cos qa)2

) do.
m ) {qaf

The integration over all angles (which is conveniently effected by using the variable

q =\2k sin \Q and replacing do by 2-rrq dq/k2) gives the total scattering cross-section

2Tr/mUoa2 \ z r 1 sin4ka sin2 2&ri
a ~M W ) L

~
(2ka)

2+
(2kaf

~
(2ka)* J
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In the limiting cases this formula gives

l&rra2 /mUod2 \ 2

I _ )
for ka ^ 1,

9 \ m
2tt / mUoa2 \ 2

k?\ h2

V
= —(—IT—

)

for ka^\.

Problem 2. The same as Problem 1 , but in a field U = C7oe-r2/°
2

.

Solution. The calculation is conveniently effected from formula (125.7), taking the
direction of q along one of the co-ordinate axes. The result is

'mUoa2
\
2

la = \Trd* I

and the total cross-section is

—
J
e-3

2« 2
/2do,

2k2 \ m )
y }

The condition for these formulae to be applicable is given by the inequalities (125.1), (125.2)

with C/o in place of U. The formula for da is also inapplicable if the exponent is large.f

Problem 3. The same as Problem 1, but in a field U = (<x./r)e~r^a .

Solution. The calculation of the integral in (125.12) gives

/at.ma\ 2 do
da = 4a2

( )

The total cross-section is

\ h2 J {q
2a2 +\)2

KmaH
/a.ma\ 2 1

\ h2 J 4k2a2+\

The condition for these formulae to be applicable is found from (125.1) and (125.2) with

a/a instead of U: ocma/H2 <^1 or x/hv <^ 1.

Problem 4. Determine the phases Sj for scattering in a centrally symmetric field for the

case corresponding to the Born approximation. •

Solution. For the radial wave function x = rR for motion in the field U(r), and for the

function x (0) f°r ffee motion, we have the equations (see (32.10))

/(/+1) 2m[1(1+1) 2m -[

r z
(
/+ 1)n

X
(0)''+ ^2__L_^JX(0) =

.

Multiplying the first equation by x (0)
> the second by x, and subtracting, followed by integra-

tion with respect to r (using the boundary condition x = at r = 0), we obtain

r

2m2m r

xW°Kr)-xW0) '(r) =—
J
UXX«» dr,

t The inapplicability of perturbation theory in this case is easily seen by calculating the scattering

amplitude in the second approximation (see Problem 5); although the coefficient of the exponential

is small in comparison with the coefficient in the first-approximation term, the negative exponent is

only half as great.
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Regarding U as a perturbation, we can put x = X {0) on tne right-hand side. For r -> °o

the asymptotic expressions (33.10), (33.18) can be used on the left-hand side, while in the

integral we substitute the exact expression (33.9a). The result is

00

sinSj ~ hi = -— f U(r)[Jl+1/2(kr)fr dr.

n2 J

o

This formula could also be derived by a direct expansion of the Born scattering amplitude

(125.4) in Legendre polynomials in accordance with (122.10) (for small Si).

Problem 5. Determine the scattering amplitude in the second approximation of pertur-

bation theory.

Solution. From a comparison of formulae (43.1) and (43.5) we conclude that the change

from the first-approximation to the second-approximation formulae is effected by replacing

the integral

t/k'-k = f ta-W-khr dV

by
2m r Ukr-^U^'-u.

[/k,_k+ * dW (1)

(with S -> +0 after the integration). It may be noted that, owing to the method of integration,

the second term already lacks the property (125.8).

Problem 6. Determine, in the second approximation of perturbation theory, the scatter-

ing amplitude in the limit of low energies (I. Ya. Pomeranchuk 1948).

Solution. For k -*• the integral in the second term of formula (1) becomes

J

t/-k"£/k"dW
k"2

dW
= ~

j j j
[/(r)f/(r')^.(r-r'.__ dFdF

|r-r'|

U(r)U(r')

here we have used the formula f

I

d3&
c*k.(r-r')_

2ttW |r— r'|

Thus the scattering amplitude is

m r ( m \
2 r r U(r)U(r')

f= UdV+l )
, \ 'idVdV. (2)

2nh*J \2ttW) J J |r-r'|
v J

For a central field, this formula gives

2m r 8m2 r C
f=--—\ Ur2 dr+— U(r)U(r')r2 dr.r'dr'.

r'>r

t See The Classical Theory~of Fields, §51.
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The second term in formula (2) is always positive (as is evident from the original form
of the integral in k-space). Hence it follows that, in a repulsive field (U > 0) the first Born
approximation always gives too high a value, and in an attractive field (U < 0) too low a
value, for the scattering cross-section at low energies.

§126. The quasi-classical case

It is of interest to investigate the manner in which the passage occurs from
the quantum-mechanical theory of scattering to the limit of the classical

theory.

Omitting from consideration a scattering angle 6 of zero, we can write

the scattering amplitude given by the exact quantum-mechanical theory in

the form (123.4):

f{9) = (1/2/A)Jo
(21+ l^cosfl)^. (126.1)

We know that the quasi-classical wave functions are characterised by having
large phases. It is therefore natural to suppose that large phases St

correspond to the passage to the limit of the classical theory of scattering.

The value of the sum (126.1) is mainly determined by the terms with large /.

Hence we can replace P
l
(cos 6) by the asymptotic expression (49.7), which

we write in the form

i

Pl(C0sd) X
[e
M+l/2)0+i7T/4_ e -i(l+l/2)O-i7r/i],

\/(27tI sin 9)

Substituting this expression in (126.1), we obtain

f(Q)
— - "V /

{
eil2Si-a+l/2)d-7T/4:}_ ei[2Si+a+l/2)d+iT/4:]\

k *-* V 27r sin 9
1

(126.2)

The exponential factors, regarded as functions of /, are rapidly oscillating

functions, since their phases are large. The majority of the terms in the

sum in (126.2) therefore cancel. The sum is mainly determined by the range

of values of / near that for which one of the exponents has an extremum,
i.e. near the root of the equation

2 d8j/dZ±0 = 0. (126.3)

In this region there are a large number of terms in the series for which the

exponential factors have almost the same value (since the exponents vary

slowly near the extremum), and which therefore will not cancel.

The phases S, in the quasi-classical case can be written (see §123) as the

limit to which the difference between the phase

r

-1/i^+T y/{2m[E-U(r)]-h*{l+\)*lr*} dr
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of the quasi-classical wave function in the field U(r) and the phase

kr— \Itt

(see §33) of the wave function of free motion tends as r -+ oo. Thus

00

8, = f {-V[2m(£- U)-h\l+\fjr2]-^l dr+M/+£)-fcr . (126.4)

This expression is to be substituted in equation (126.3). In finding the

derivative of the integral, it must be remembered that the limit of integration

r also depends on l\ the term k drjdl arising from this, however, cancels

with the derivative of the term —kr in 8,.

h(l+\) is the angular momentum of the particle. In classical mechanics,

it can be written in the form mpv, where p is the impact parameter, and v

is the velocity of the particle at infinity. We make this substitution ; equation

(126.3) then takes the final form

J

mvp drH
=K"=F0). (126.5)

rW[2m(E- U)-(mvpjrf]

In a repulsive field this equation has a root (for p) only for a minus sign in

front of 8 on the right-hand side, and in an attractive field only for a plus

sign.

Equation (126.5) is exactly the same as the classical equation which deter-

mines the scattering angle from the impact parameter.-]- It is easy to see

that the classical expression for the effective cross-section is in fact obtained.];

The derivation given above shows that the conditions for classical scattering

through a given angle 9 are that the value of / for which (126.3) holds should

be large, and that Sj should also be large for this value of /. This latter

condition has a simple physical interpretation. If we can speak of classical

scattering through an angle 9 when the particle is incident at an impact

parameter p, it is necessary that the quantum-mechanical indeterminacies

of these two quantities should be relatively small: Ap <^ p, A9 <^ 9. The
indeterminacy in the scattering angle is of the order of magnitude A0 ~ Ap/p,

where p is the momentum of the particle and Ap is the indeterminacy in its

transverse component. Since Ap ~ h/Ap > hjp, we have A8 > hjpp, and

thus
9 > hlpmv. (126.6)

Replacing the angular momentum mpv by hi, we obtain 91 > 1, which is

the same as S
z > 1 (since Sj ~ 19, as we see from (126.3)).

t See Mechanics, §18.

% The calculation is effected by replacing the summation over / in (126.2) by an integration over a

region round the extremum point of the exponent.
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The classical angle of deviation of the particle can be estimated as the

ratio of the transverse momentum increment Ap during the "collision time"
t ~ p/v and the original momentum mv. The force acting on the particle at a

distance p is U'(p); hence Ap ~ \U'(p)\p/v, so that 6 ~ \U'(p)\p/mv2 . This
estimate is strictly valid only if 6 <^ 1, but it can be applied to give an order

of magnitude even if 6 ~ 1. Substitution in (126.6) gives the condition for

quasi-classical scattering in the form

|tf'(p)|p2>fo. (126.7)

This inequality must hold for all values of p such that \U(p)\ < E.

From this we can draw a number of conclusions. If the field U(r) decreases

more rapidly than 1/r, the condition (126.7) always ceases to be satisfied for

sufficiently large p. Small 0, however, correspond to large p; thus scattering

through sufficiently small angles is never classical. If, on the other hand,

the field decreases less rapidly than 1/r, the scattering through small angles

is classical; whether the scattering through large angles is classical in this

case depends on the behaviour of the field at small distances.

For a Coulomb field, U — ccjr, the condition (126.7) is satisfied if a > hv.

This is the opposite condition to that for which the Coulomb field can be

regarded as a perturbation. We shall see, however, that the quantum theory of

scattering in a Coulomb field leads to a result which, as it happens, is always

in agreement with the classical result.

PROBLEM
Find the total effective cross-section for quasi-classical scattering in a field which has the

form U = a/rB («> 2) at sufficiently large distances.

Solution. Bearing in mind that the phases 8/ with large / are the most important, we
calculate them from (123.1):

dr

rWv/(#C/2/r2)

ma. r _.

Ilk

Making the substitution l
2jk2r2 = £, we reduce the integral to Euler's well-known form,

obtaining

maA«-2 r(i)r(4fi-i)
oi = . (Z)

2fi2/»-i rftn)

Replacing the summation in (122.11) by an integration, we write

oo

4tt

A2 J
2/sin2S>d/.

o

To integrate, we substitute S/ = u and integrate once by parts with respect to u, reducing

the integral to a gamma function. The result is

r «-3-| /B-3\rr(k-l)f/(»-i)/a\ 2 /(«-i'

a=2^-^.--]v(^)[-^Jl] (-) . (3)
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The chief condition for the applicability of this formula is that / ^> 1 for S; ~ 1 ; this gives

the inequality

rm.kn
~2
lh

2 > 1.

The field U(r) must have the form in question from distances

r ~ llk~ (oc//fo)i/<»-i>

outwards (/ being obtained from 8/ ~ 1), these distances playing the principal part in the

integral (1).

§127. Scattering at high energies

If \U\ is not small compared with h2/ma2
, a situation can occur where

the energy of the particles undergoing scattering is so large that

\U\<^E~ {h2jma2)(ka)\ (127.1)

yet the condition

|
U{ > (h2jma2)ka = ho\a

holds. In this case we have scattering of fast particles to which the Born

approximation is not applicable; neither of the conditions (125.1), (125.2)

is satisfied.

To examine this case, we can use the expression for the wave function

obtained in §45, in the form

. z

$ = eikz exp(-— i udz) (127.2)

—00

(see (45.9)). As has been mentioned in §45, this expression is valid only

for z <^ ka2 , and so it can not be immediately extended to distances beyond the

centre of scattering where the asymptotic expression (122.3) holds. This is not

necessary, however; to calculate the scattering cross-section, it is sufficient

to know the wave function at distances z such that a <^ z <^ ka2
, and the

integral in the exponent in (127.2) can be extended to infinity.

Let us consider scattering through small angles, with a small change in

the momentum hq; in view of the smallness of the absolute magnitude of the

vector q (q <^ k), it can be regarded as being perpendicular to the wave vector

k of the incident particle, i.e. as lying in the xy-plane. The wave scattered

with wave vector k' = k+ q is obtained by separating from the wave function

the appropriate Fourier component, and the scattering amplitude is pro-

portional to the amplitude of that component :f

/~J*c-ik-.r d J7.

t This method of determining the scattering amplitude is analogous to that used in the treatmen

of Fraunhofer diffraction (see The Classical Theory of Fields, §61).
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In this case the integration with respect to V reduces to an integration in the
.ry-plane

:

. °°

f=C\ expf - -L I Udz-tq . pj dx d>, (127.3)

—00

where p is the radius vector in the xy-plane. The proportionality coefficient

may be found by taking the limit of high energies, where

hv J

Ua
U&z ~<1,

hv

so that the Born approximation is valid. By carrying out the appropriate
expansion of the integrand in (127.3), we find

/= -C— f e-^-PUdV.
hv J

A comparison with the Born approximation (125.4) shows thatf

C = -ikj2ir. (127A)

It has already been mentioned in §125 that the Born approximation is not
applicable to the scattering of fast particles through large angles if the cross-

section is exponentially small. The method given here is also inapplicable

under these conditions. Such cases are actually quasi-classical, and pertur-

bation theory cannot be used.

In accordance with the general rules of the quasi-classical approximation
(cf. §§52, 53), the exponent in the exponential law of decrease of the scattering

cross-sections can be determined by considering "complex paths" in the

classically inaccessible region of motion. $

t Formulae (127.3), (127.4) can also be obtained directly from the general formula (122.10) if

we use the fact that in the case considered

2&= Udz
hvj

(as follows, for example, from (123.1) with ra ^ l/k, r ^ \/[^2+(W])i and also use formula (49.6)
for the Legendre polynomials when I is large and is small. The latter formula must be put in the
form

Pj(cos0) = —
J

e*(M-l/2>0cos«>
d<f>

by means of the well-known expression for the Bessel function, and the summation over / in (122.10)
must be replaced by an integration.

t A discussion of the coefficient of the exponential is given by A. Z. PatashinskiI, V. L. PokrovskiI
and I. M|Khalatnikov, Soviet Physics JETP 18, 683, 1964.
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In the classical scattering problem the relation between the angle of devia-

tion of the particle in a field U(r) and the impact parameter p is given by

where yq is the minimum distance from the centre, a root of the equation

\-p2jr2_ujE = Q', (127.6)

see (126.5). The case of interest to us corresponds to the range of angles

which cannot occur in the scattering of a classical particle.j- These angles

therefore correspond to complex solutions p{6) of equation (127.5) (with

corresponding complex values of r ). From the function p(d) thus found and

the classical orbital angular momentum mvp of the particle we calculate the

action

S(6) = mv
J P(6) dd, (127.7)

where v is the velocity of the particle at infinity. The scattering amplitude is

/- exp/--imS(0)V (127.8)

Equation (127.6) has in general more than one complex root. The value of ro

in (127.5) must be taken as that root which gives the smallest positive

imaginary part im S. In addition, if the function U(r) has complex singu-

larities, they must also be considered as possible values of ro.%

The region r ~ r is the most important in the integral (127.5). For large

energies E, the term U/E under the radical can be omitted. Carrying out the

integration, we then have

p = r costf. (127.9)

If r is a singular point of the function U(r), it depends only on the pro-

perties of the field, but not on p or E. Calculating S from (127.7), we find

in this case that the scattering amplitude is

sinjflimroj. (127.10)

If, however, r has to be taken as a root of equation (127.6), the form of the

exponent depends on the particular properties of the field. For example,

t The method described here is valid not only for large E but generally for all cases of exponentially

small scattering.

J It may be recalled (see §125) that, if U(r) has a singularity for real r, the decrease of the cross-

section is not exponential.
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with the function

U = U e-(rW*

(which has no singularity at a finite distance) we obtain from the equation

U/E= l-p2/r2~ sin2£0
the result

r = iay/ \og([E/U ] sm*tf). (127.11)

Owing to the very slight dependence on 0, r may be regarded as constant in
the integration in (127.7), and we find for the scattering amplitude the formula
(127.10) with r given by (127.11).

§128. Analytical properties of the scattering amplitude

A number of important properties of the scattering amplitude can be
established by considering it as a function of the energy E of the particle
undergoing scattering, this energy being formally regarded as a complex
variable.

Let us consider the motion of a particle in a field U(r) which vanishes
sufficiently rapidly at infinity (the necessary degree of rapidity will be specified
later). To simplify the discussion we shall first suppose that the orbital
angular momentum / of the particle is zero. We can write down the asymp-
totic form of the wave function (the solution of Schrodinger's equation with
/ = for any given value of E) as

X- +-m «p(-^=^r)+mexp^2
"^), (128.1)

and regard E as a complex variable, defining y/-E as being positive when E is

real and negative. The wave function is assumed normalised by some definite

condition, say j^(O) = 1.

On the left half of the real axis (E < 0) the exponential factors in the two
terms in (128.1) are real; one decreases and the other increases as r -> oo.

From the condition that x is real it follows that the functions A{E) and B(E)
are real for E < 0, and from this in turn it follows that these functions have
complex conjugate values at any two points lying symmetrically about the
real axis:

A{E*) = A*{E), B(E*) = B*(E). (128.2)

On going from the left half to the right half of the real axis through the
upper half-plane we obtain an asymptotic expression for the wave function
for E > in the form

X = A(E)e^r+ B(E)e-^ k = y/(2mE)lh. (128.3)

If a path through the lower half-plane is used, however, the result is

X = A*(E)e-Mr+B*(EyK
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Since x must be a single-valued function of E, this means that

A(E) = B*(E) for E > 0; (128.4)

this relation also follows directly from the fact that x *s real for E > 0.

Nevertheless, because the root y/-E in (128.1) is not single-valued, the co-

efficients A(E) and B(E) themselves are not single-valued. To avoid this, we

cut the complex plane along the right half of the real axis. The cut makes

y/-E single-valued, and so the functions A(E) and B(E) are uniquely

determined. They have complex conjugate values on the upper and lower

edges of the cut (in (128.3), A(E) and B{E) are taken on the upper edge).

The complex plane cut in the manner described above will be called a

physical sheet of the Riemann surface. According to our definition we have

everywhere on this sheet

reV-£>0. (
128 -5 )

In particular, on the upper edge of the cut \/-E thus denned becomes

-WE.f
In (128.3) the factors eikr and e~ikr , and so also the two terms m x ,

are

quantities of the same order of magnitude; an asymptotic expression of the

form (128.3) is therefore always legitimate. Everywhere else on the physical

sheet the first term in (128.1) decreases exponentially, and the second term

increases exponentially, as r -> oo (because of (128.5)). Hence the two terms

in (128.1) are of different orders of magnitude, and this expression may not

be legitimate as the asymptotic form of the wave function: the small term

compared with the large one may represent an unjustified exaggeration of

accuracy. For the expression (128.1) to be legitimate the ratio of the small

and large terms must not be less than the relative order of magnitude of the

potential energy U/E
t
which is neglected in Schrodinger's equation on going

to the asymptotic region. In other words, the field U(r) must be such that

U(r) decreases more rapidly than expf r re y/-E
J

as r -> oo. (128.6)

When this condition is satisfied, the asymptotic expression of the form

(128.1) is valid everywhere on the physical sheet. Being a solution of an

equation with finite coefficients, it has no singularity with respect to E.

This means that the functions A{E) and B{E) are regular everywhere on the

physical sheet except the point E = 0, which, being the point where the cut

begins, is a branch point of these functions.

t In the rest of this section we shall be considering the properties of the scattering amplitude on

the physical sheet. Later, however, it will sometimes be necessary to consider another "non-physical"

sheet of the Riemann surface (see §132). On this sheet

re yf-E < 0. (128.5a)

The passage from the right half of the axis to the non-physical sheet is made directly down "through

the cut".
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The bound states of a particle in the field U(r) correspond to wave functions
which vanish as r -> oo. This means that the second term in (128.1) cannot
appear, i.e. the discrete energy levels correspond to zeros of the function
B{E). Since Schrodinger's equation has only real eigenvalues, all the
zeros of B(E) on the physical sheet are real (and lie on the left half of the real
axis).

The functions A(E) and B{E) for E > are directly related to the scattering
amplitude in the field U(r) : comparing (128.3) with the asymptotic expression
for x written in the form (122.7),

X = constant y.[eWr+8 a)_ e-i(kr+8 )^ (128.7)

we see that

~A(E)/B(E) = c2**o(fi). (128.8)

The scattering amplitude with angular momentum / = is, according to
(122.14),

1 h (A \h = (e^o- 1) = ( __ + 1 )

.

(128.91
2ik

K }

2V(-2mE)\B /' K }

here A and B are taken on the upper edge of the cut.

Considering now the scattering amplitude as a function of E over the whole
physical sheet, we see that the discrete energy levels are simple poles of this
function. If the field U(r) satisfies the condition (128.6), the above discussion
shows that the scattering amplitude has no other singular points.f

Let us calculate the residue of the scattering amplitude at its pole for some
discrete level E ~ E < 0. To do so, we write down the equations satisfied

by the function x and its derivative with respect to energy:

„
2m / dX\" 2m

Multiplying the first by 8X/8E, the second by x, subtracting, and integrating
with respect to r, we obtain

f

dx (dx \' 2m f

We apply this relation for E = E and r -> oo. The integral on the right-

hand side becomes unity for r -» oo if the wave function of the bound state is

normalised by the usual condition j x
2 dr = 1. On the left-hand side we

substitute x from (128.1), using the fact that, near the point E = E
,

A(E) ~ A(E ) = Ao, B{E) ~ (E+\E \)[dBldE]E=E = P{E+\E \).

t Except the point E = 0, which is singular, because of the singularity of A(E) and B(E) previously
mentioned. The scattering amplitude, however, remains finite as£->0 (see §130).

In future we shall, for brevity, omit this qualification.
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The result is

1

AofoJ 2\Eo\

By means of these expressions we find that, near the point E = Eq, the prin-

cipal term in the scattering amplitude (i.e. the amplitude for / - 0) has the

form

/= _^!_L_. (128.10)
J

2m E+\EQ
\

Thus the residue of the scattering amplitude at the discrete level is deter-

mined by the coefficient Aq in the asymptotic expression

/ V(M£o|)\
X = Aexpl rj (128.11)

of the normalised wave function of the corresponding stationary state.

Returning to the examination of the analytical properties of the scattering

amplitude, let us consider cases where the condition (128.6) is not satisfied.

In such fields only the increasing term in (128.1) is the correct part of the

asymptotic form of the solution of Schrodinger's equation over the whole

of the physical sheet. Accordingly, we can, as before, assert that the function

B(E) has no singularity.

The function A(E) under these conditions can be determined in the complex

plane only as an analytical continuation of the function which is the coefficient

in the asymptotic expression for x on the right half of the real axis, where the

two terms in x are both legitimate. In general, however, such a continuation

now gives different results according as it is carried out from the upper or the

lower side of the cut. To obtain a single-valued function, we shall agree to

define A(E) in the upper and lower half-planes as the analytical continuation

from the upper and lower sides of the right half of the real axis respectively

;

the cut must then in general be extended to the whole of the real axis. The

function thus defined has as before the property A(E*) — A*{E), but in

general is not real either on the right or on the left half of the real axis. It

may also, in principle, possess singularities.

We shall show, however, that there is nevertheless a class of fields for

which the function A{E) has no singularity on the physical sheet, although

the condition (128.6) is not satisfied.

To do so, we regard x as a function of a complex variable r for a given

(complex) value of E. Here we need only consider values of E in the upper

half-plane, since the values of the function A(E) in the two half-planes are

complex conjugates. For values of r such that Er2 is real and positive, the

two terms in the wave function (128.1) are of the same order, i.e. we return

to the situation which occurs when E > and r is real, when both terms in the

asymptotic expression for % are legitimate for any field U(r) which tends to

zero at infinity. We can therefore say that A{E) cannot have singular points
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for values ofE such that U(r) -> when r -> oo along a line on which Er2 > 0.

When E takes all values in the upper half-plane, the condition Er2 >
selects the lower right quadrant in the complex r-plane. Thus we conclude
that A(E) also has no singularity on the physical sheet when U(r) satisfies the
condition]-

U(r) -> when r -> co in the right half-plane. (128.12)

The conditions (128.6) and (128.12) cover a very wide class of fields. We
can therefore say that the scattering amplitude usually has no singularity in

the two half-planes. On the left half of the axis (which is part of the physical
sheet if not cut) the scattering amplitude has poles corresponding to the
energies of the bound states ; when the cut exists, there may be other singu-
larities also.

This happens, in particular, in fields of the form

U = constant x r»«-»7« (128.13)

with any n. On the segment < -E < h2/8ma2 of the left half of the axis,

the condition (128.6) holds, and so there need not be a cut; the scattering

amplitude has only poles corresponding to the bound states. On the remainder
of the left half of the axis there may be "redundant" poles and other singu-

larities. J The appearance of these is due to the fact that the function (128.13)
no longer tends to zero when r -> oo along a line on which Er2 > 0, as soon
as E moves below the left half of the axis (i.e. this line falls to the left of the
imaginary axis in the complex /--plane).

Next, let us consider the analytical properties of the scattering amplitude
as \E\ -> oo. When E -> + oo along the real axis, the Born approximation is

valid and the scattering amplitude tends to zero. According to the above
discussion, this situation also occurs when E tends to infinity in the complex
plane along any line arg E = constant, if we consider complex values of r

for which Er2 > 0. If U -> when r -> oo along a line arg r = - ^ arg E,
and U(r) has no singular point on this line, then the condition for the Born
approximation to be valid is satisfied and the scattering amplitude again tends
to zero. When arg E takes all values from to it, arg r takes values from
Oto -\tt.

We therefore conclude that the scattering amplitude tends to zero at

infinity in all directions in the E-plane if the function U(r) has no singular

point in the right half-plane of r and tends to zero at infinity.

Although we have have spoken throughout of scattering with angular

momentum / = 0, all the above results are in fact valid for the partial scatter-

ing amplitudes with any non-zero angular momentum. The only difference

t Since U(r) is real on the real axis U(r*) = U*(r); thus the condition (128.10) is satisfied through-
out the right half-plane if it is satisfied in the lower right quadrant.

t The possibility of the existence of such "redundant" poles for E< was first indicated by
S. T. Ma (1946).
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in the derivations is that, instead of the factors e±ikr in the asymptotic expres-

sions for x> we should have to use the exact radial wave functions for free

motion (33.14).f

Some changes are needed in formulae (128.9) and (128.10) when / # 0.

Instead of (128.7) we now have

Xl = rRi = constantx{exp[^r-^7r+Sz
)]-exp[-7(^-|/7r+ S0]}, (128.14)

and for the partial amplitude fi (denned according to (122.14)) we obtain

h / A \

ft
= [(_i)L_ + i). (128.15)Jl
2V(~2mE)V

} B )

The principal term in the scattering amplitude near the level E = Eq with

angular momentum / is given by the formula

/^(2/+l)/}Pj(cos0)

H2An2 1

= (_l)i+i
°

(2l+l)Pi(cosd) (128.16)
2m E+\Eq\

instead of (128.10).

§129. The dispersion relation

In the previous section we have studied the analytical properties of the

partial scattering amplitudes with given values of /, and have seen that these

properties are complicated by the possible appearance of "redundant"

singularities and non-regularity at infinity. The total amplitude, regarded as

a function of energy for given values of the scattering angle, evidently has

similar properties. The scattering amplitude for scattering angle zero forms

an exception, however: as we shall now show, its analytical properties are

considerably simpler.

Writing Schrodinger's equation for the wave function of the particle

undergoing scattering as

A<A+#¥ « (2mUlh2
)tfs, (129.1)

we may formally regard it as a wave equation with a non-zero right-hand side,

i.e. as the equation of "retarded potentials" well known in electrodynamics.

The solution of this equation which describes the "emission" in some

direction k' at large distances Ro from the centre has the form%

1 eikR c2mU1 e^Ko rZmU
*

Att Ro J r
t The limiting form (33.15) of these functions can be used only for E >0; in the rest of the

i?-plane, where the two terms in x are °f different orders of magnitude, the use of these limiting

expressions would involve an error in x which is in general greater than that which arises from

neglecting U in Schrodinger's equation.

% See The Classical Theory of Fields, §66.
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In the present case this represents the wave function of the scattered particle,

and the coefficient of eikB<>/R gives the scattering amplitude f(6,E). In
particular, putting k' = k (where k is the wave vector of the incident particle),

we obtain the scattering amplitude for scattering angle zero:

m /*

f(Q,E) = - —~ Ufa-™* dV (129.2)
27TA22 J

(the z-axis being taken in the direction of k). This expression has, of course,
only formal significance, since the integrand again involves the unknown wave
function. However, it allows certain conclusions to be drawn concerning the
analytical properties of the quantity f(0,E) as a function of the energy E.\
The function if* in the integrand consists of two parts when r is large, the

incident wave and the outgoing wave. The latter is proportional to eikr, so
that the corresponding part of the integral contains «**<r-«) [n tne integrand.
On the other hand, in the complex plane (going from the upper edge of the cut
along the right half of the real axis) ik is replaced by ~\/{- 2mE)/k, and
re-y/— E > everywhere on the physical sheet. Since r ^ z, re[ik(r— z)] < 0,

and the integral converges for any complex E. For the incident wave in if;,

proportional to eikz , the exponential factors cancel in the corresponding part
of the integral, so that this part also converges.

The function tfi in the integral (129.2) is uniquely defined for all complex
E as the solution of Schrodinger's equation which contains, in addition to the
plane wave, only a part which is damped as r -> oo. The whole of the con-
vergent integral (129.2) is therefore uniquely determined also, and so its

singularities can arise only through i/r's becoming infinite. This occurs at

discrete energy levels.J
It is also easy to see that f(0,E) remains finite as \E\ ->- oo. For large

\E\ the term in U can be neglected in Schrodinger's equation (129.1), so that
only the plane wave remains in $: ifj ~ eikz . Thus the integral (129.2)
becomes

t It is assumed, of course, that the field U(r) decreases, as r -> oo, sufficiently rapidly for f(0,E)
to exist (when E > 0); see §123.

| To avoid misunderstanding, we should emphasise that here we are discussing the complete
wave function i/i of the system, normalised by the condition that the coefficient of the plane wave in
its asymptotic expression should be equal to unity (cf. (122.3)). In the previous section we were
considering the parts ifii of the wave function which correspond to definite values of /, and ipi was
assumed to be normalised in some arbitrary manner. If we expand the complete function tfi in terms
of the functions tfii, the latter will appear in tfs with coefficients proportional to 1/Bi. For example,
the function (128.3) with / = must appear in tfi in the form

constant 1

[(A+ B)eikr -2iBsinkr].
r B

Hence i/r becomes infinite at the zeros of the functions Bi(E), i.e. at the discrete energy levels.
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which agrees, as it should, with the Born amplitude (125.4) for scattering

through zero angle (q = 0); we denote it by/B(0).
Thus we conclude that the scattering amplitude for scattering angle zero is

regular over the whole physical sheet (including infinity), except for the

necessary poles on the left half of the real axis at the discrete energy levels.f

Let us consider the integral

1 rf{0,E')-fB

^i)-i^r- dE
> <

129 -3>

c

taken along the contour shown in Fig. 46, which consists of an infinitely

distant circle and an indentation round the cut along the right half of the

Fig. 46

real axis. The integral along the circle is zero, since /(0, oo) -fB = 0. The
integration along the two sides of the cut gives

1 } im/(0,£')
- —— -dE';
ttJ E'-E

here we have used the fact that, according to the definition adopted in §128,
the physical scattering amplitude for real positive values of E is given on
the upper side of the cut, and has the complex conjugate value on the lower
side.

According to Cauchy's theorem, the integral (129.3) is equal to the sum of

f(0,E)-fB and the residues Rn of the integrand at all the poles E' = En of
the function f(0,E')/(E'- E), where En are the discrete energy levels. These
residues are determined by formula (128.16), and are

dn WAon2

Rn = ——, dn = - (- \)i»{2ln+ 1)— , (129.4)
Cm— -& 2m

where ln is the angular momentum of the state with energy En . Thus we find

1 f im/(0,£') ^ dn

n

t The idea of the foregoing proof is due to L. D. Faddeev (1958).

17
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This dispersion relation determines f(0,E) at any point on the physical sheet

from the values of its imaginary part for E > (D. Y. Wong 1957, N. Khuri

1957).

When the point E tends to the upper side of the cut, the integral along the

real axis in (129.5) must be taken by passing below the pole E' = E; if this is

done along an infinitesimal semicircle (Fig. 47), the corresponding part of the

©
£

• » \ *y »

Fig. 47

integral gives i imf(0,E) on the right-hand side of (129.5), while the remain-

ing integral from to oo must be taken as a principal value. The result is

1 °T im/(0,E') ^ dn

n

which, for E > 0, determines the real part of the scattering amplitude for

scattering through angle zero from its imaginary part. It may be recalled

that the latter, according to (124.9), is directly related to the total scattering

cross-section.

§130. The scattering of slow particles

Let us consider the properties of the effective scattering cross-section in

the limiting case where the velocities of the particles undergoing scattering

are so small that their wavelength is large compared with the radius of action a

of the field U(r) (i.e. ha <4 1), and their energy is small compared with the

field within that radius. The solution of this problem requires an eludication

of the limiting form of the dependence of the phases Si on the wave number

k when the latter is small.

For r <, a we can neglect only the term in k2 in the exact Schrodinger's

equation (122.6):

i?,"+2^7r-/(/+l)^/r2 = 2mU{r)Ri\m. (130.1)

In the range a 4. r < 1/&, on the other hand, we can also omit the term in

U(r), leaving

Ri"+2Ri'lr-l(l+l)Rilr2 = 0. (130.2)

The general solution of this equation is

Ri = ciri+c2lri+h (130.3)

The values of the constants cx and c2 can in principle be determined only by

solving equation (130.1) for a particular function U(r); they are, of course
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different for different /. At still greater distances, r ~ ljk, the term in
U(r) can be omitted from Schrodinger's equation, but the term in k2 cannot
be neglected, so that we have

2 r 1(1+1) -\
Ri"+-Ri+ [*

2—
-—J* = 0, (130.4)

i.e. the equation of free motion. The solution of this equation is (see §33)

Ri=c!(-1Y
,(2/+l)

&2I+1

(d ysinAr

rdr/ r

rl / d \ l coskr

The constant coefficients have been chosen so that, for kr <^ 1, this solution
becomes (130.3); this ensures the "joining" of the solution (130.3) in the
region kr ^ 1 to the solution (130.5) in the region kr ~ 1.

Finally, for kr > 1 the solution (130.5) takes the asymptotic form (§33)

sin(kr—Mir) c*kl

Rl » ft(27+l)H \ T '

+ - cos(kr-ih).
rW+i (2/-l)!!r

V
*

J

This expression can be put in the form

sin(kr—|/tt+Sj)
Ri « constant x

, (130.6)
r

where the phase 8
t
is given by the equation

tan8j ^ 8i =^2I+1/^i(2/-l)!!(2/+l)!! (130.7)

(since k is small, all the phases Si are small).

According to (122.14) the partial scattering amplitudes are

fi = ^e™>-l)~8ilk,

and so we conclude that in the limit of low energies

// ~ k*\ (130.8)

Thus all the partial amplitudes with / # are small compared with the
scattering amplitude with / = (called s-wave scattering). Neglecting them,
we obtain for the total amplitude

ffl £ /o = Bolk = a/a s -a, (130.9)

so that da = a2 do, and the total cross-section is

a = 4rra2. (130.10)
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At low velocities the scattering is isotropic, and the cross-section is inde-

pendent of the particle energy.f The scattering amplitude may be either

positive or negative.^

In the above discussion it has been tacitly assumed that the field U(r)

decreases at large distances (r > a) sufficiently rapidly for the approximations

made to be legitimate. It is easy to see how rapidly U(r) must in fact decrease.

For large r, the second term in the function Ri (130.3) is small in comparison

with the first. In order for the retention of this term to be nevertheless

legitimate, the small terms ~c2/rl+1r2 retained in equation (130.2) must

be large compared with the term URi ~ Uc\r l omitted in going from (130.1)

to (130.2). Hence it follows that U(r) must decrease more rapidly than \Jr
2l+z

if the result (130.8) is to be valid for the partial amplitudeft . In particular,

the calculation of

/

, and therefore the result (130.9) of isotropic scattering

independent of energy, are valid only when U(r) decreases at large dist-

ances more rapidly than 1/r3 .

If the field U(r) decreases exponentially at large distances, we can draw

certain conclusions regarding the nature of the subsequent terms in the

expansion of the amplitudes fi in powers of k. We have seen in §128 that in

this case the amplitude fi, regarded as a function of the complex variable

E, is real when E is real and negative.
||
The same is therefore true of the

function gi(E) in the expression (124.15):

fi = V(gi-ik)

(ik is real for E < 0). The function gi(E) is also real (by definition) when
E > 0. Thus this function is real for all real E, and can therefore be expanded

in integral powers of E
f
i.e. in even powers of k. The amplitude fi{k) itself,

therefore, can be expanded in integral powers of ik; all terms with even

powers of k are real, while those with odd powers of k are imaginary. Accord-

ing to (130.8) the expression of fi(k) begins with the term ~&i/k ~ k21
;

accordingly, the expansion of gi(k) begins with a term proportional to hr21
.

When the field decreases at large distances according to a power law

U « fir'
11 with n ^ 3, the result (130.9) that the amplitude is constant is,

as already stated, invalid.

Let us now consider the situations which occur for various values of n.

For n ^ 1 and sufficiently small velocities, the condition

P\U(p)\ > hv (130.11)

is satisfied for practically all values of the impact parameter p, and so the

t In the scattering of electrons by atoms, the length a with which l/k must be compared (the

condition ka <^ 1) is represented by the radius of the atom, which is several times the Bohr radius

(several times «2/we2
) for complex atoms. Owing to the large value of this radius, the constancy of

the effective cross-section actually applies here only up to energies of the order of fractions of an

electron-volt; at greater electron energies there is a marked energy dependence of the cross-section

(called the Ramsauer effect).

t The quantity a is often called in the literature the scattering length. In scattering from an im-

penetrable sphere (see Problem 1) a is equal to the radius of the sphere.

11 For small E, the condition (128.6) is satisfied even when U decreases as e
r/a

.



§130 The scattering of slow particles 503

scattering is described by the classical formulae (cf. the condition (126.7)).

For 1 < n < 2 the inequality (130.11) is satisfied over a considerable

range of fairly small values of p ; accordingly, the scattering is classical for

angles which are not too small. There is also, however, a range of values of

p for which

P\U(p)\ ^ hv, (130.12)

i.e. the condition for perturbation theory to be valid is satisfied (cf. (125.2)).

For n > 2 the inequality

\U\ <4 h2lmr* (130.13)

holds at large distances, and therefore the contribution to the scattering

which arises from interaction at these distances can be calculated by means of

perturbation theory (whereas at smaller distances the condition for perturba-

tion theory to be applicable may not be satisfied).f Let ro be a value of r

such that for r > ro the inequality (130.13) holds, while ro <^ 1/k. The
contribution to the scattering amplitude from the region r > ro is, according

to (125.12), given by the integral

C 1 sinqr 2mB f sin£
—r* dr= ^V-8 —~ d£- (130.14)

J r» qr h* J £*-i
r qu

For 2 < n < 3 this integral converges at the lower limit, and for low

velocities (kro <^ 1) we can replace this limit by zero, so that the integral

is proportional to q-@~n\ i.e. a negative power of the velocity. This contri-

bution to the amplitude is therefore in this case the main one, so that

/~gH3-n>, 2 < n < 3. (130.15)

This determines the dependence of the scattering cross-section on the velocity

of the particles and on the angle of scattering.

For n = 3 the integral (130.14) diverges logarithmically at the lower limit.

It is still the main part of the scattering amplitude, so that

/~ log(constant/^), n = 3. (130.16)

For n > 3 the contribution from the region r > ro decreases as k -> 0,

and the scattering is determined by the constant amplitude (130.9). However,

the contribution (130.14), despite its relative smallness, is still of some
interest through being "anomalous". The "normal" situation when U(r)

decreases sufficiently rapidly is that f(k) can be expanded in integral powers

of k, and all the real terms in the expansion are proportional to even powers

of k. When the integral (130.14) is integrated several times by parts (lowering

the power of £ in the denominator), we can separate from it a part containing

t The scattering at low velocities is in this case nowhere quasi-classical, since the inequality

(130.11) is incompatible with the simultaneous requirement that \U(p)\ < E.
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even powers of k and leave an integral convergent as qtq -> and proportional

to kn
~3

, which is not in general an even power.j-

PROBLEMS

Problem 1. Determine the effective scattering cross-section for slow particles in a

spherical potential well of depth Uo and radius a :

U(r) = — Uo for r < a, U(r) = for r > a.

Solution. The wave number of the particle is assumed to satisfy the conditions ka <^ 1

and k <^.k, where k = -\/(2mUo)lfi. We are interested only in the phase So. Hence we put
/ = in equation (130.1), and obtain for the function x(r) — rRo(r) the equation

x"+K*x =0forr = a.

The solution which vanishes at r = (x/r must be finite at r = 0) is

X = A sin kt (r < a).

For r > a, the function x satisfies the equation x"+^2
X — (i-e - equation (130.4) with

1 = 0), whence

X = B sin(Ar+8o) (r > a).

From the continuity of x'lx &t r = a, we obtain the equation

k cot Ka —k cot(ka+8o) ^ kftka+8o),

from which we determine So. As a result, we have for the scattering amplitudej

tan Ka— Ka
/ = •

For Ka <^ 1 (i.e. Uo <^ H2/ma2) this formula gives a = (47ra2/9)(/ca)4 , in accordance with
the result of the Born approximation (see §125, Problem 1).

If we change the sign of Uo (which means replacing k by Ik), we obtain for the scattering

amplitude for a "potential hump" the formula

tanh Ka— Ka
/ = •

K

In the limit «a^>l we have

/ = — a, a = 47ra2 .

This corresponds to scattering from an impenetrable sphere of radius a; we note that classical

mechanics would give a result four times smaller (a = nai
).

Problem 2. Determine the effective scattering cross-section for particles of low energy

in a field U = a/rn , cc> 0, n > 3.

f If n is an odd integer 2p+ 1, then n— 3 = 2p— 2 is an even number. In this case also, however,
the integral (130.14) has an "anomalous" part, which gives a contribution to the scatterine amplitude
proportional to q

2p~2 log q.

J This formula becomes inapplicable if the width and depth of the well are such that Ka is close

to an odd multiple of in. For such values of ko the discrete spectrum of negative energy levels in-

cludes one which is close to zero (see §33, Problem 1), and the scattering is described by formulae

which we shall derive in the next section.
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Solution. Equation (130.1) with / = is

X"-Y2
xlrn = 0, y = V(2moC)lh.

By the substitutions

X = <f>\/r> r = [2y/(»-2)tf]2/<»-2>

it can be brought to the form

dU ldd> / 1 \-I+--1_(1+ U =0,
d*2 ad* \ («-2)¥/(«-2) 2

i.e. Bessel's equation of order l/(«—2), with imaginary argument ix. The solution which
vanishes at r = (i.e. x = oo) is, apart from a constant factor,

X = V^l/(n-2) (1)(2^-<w-2)/2/(«-2)).

Using the well-known formulae

H^\z) = «[e-*V,(*)-7-^*)]/anM

Jp(*)sa»/2«»r(p+l) (*«1),

we obtain for the function x at large distances (y <^ r <^ 1/&) the expression

X = constant x(cir+ca), and from the ratio c%/ci we find the scattering amplitude

/ y \2/("-2>r[(K-3)/(tt-2)]

\n-2/ r[(n-l)/(n-2)]'

Problem 3. Determine the scattering amplitude for slow particles in a field which
decreases at large distances as U X /Jr_n with 2 < n < 3.

Solution. The principal term in the scattering amplitude is given by the expression
(130.14), in which the lower limit in the integral can be replaced by zero. The calculation
of the integral leads to the result

irmB qn
~z

f = —Z. 1
1 2 < n < 3, (1)

h2 T(«— l)cosj7m
and for n = 3

2m8 constant

nl
q

Expanding (1) in Legendre polynomials, we obtain the partial scattering amplitudes
(defined in accordance with (122.13)):

v™p r(i»-i)r(/-i«+t)
tj = kn~6 . (3)

For n > 3 the same formula (1 ) determines the "anomalous' ' part of the scattering amplitude.
In the partial amplitudes the quantity (3) is always the principal part for values of / such
that 2/ > n— 3, and instead of (130.8) we then have fi ~ kn

~s
.

§131. Resonance scattering at low energies

Particular consideration must be given to the scattering of slow particles

(ka <4. 1) in an attractive field when the discrete spectrum of negative energy
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levels includes an s state whose energy is small compared with the value ofthe

field U within its radius of action a. We denote this level by e (e < 0). The
energy E of the particle undergoing scattering, being small, is close to e,

i.e. it is, as we say, almost in resonance with the level. This leads, as we shall

see, to a considerable increase in the effective scattering cross-section.

The existence of the shallow level can be taken into account in scattering

theory by means of a formal method based on the following arguments.

In Schrodinger's equation

x
»+ (2mlh*)[E-U(r)]x =

(x = rRo), in the region r ~ a we can neglect E (since ka <^ 1):

x
" -(2mjW)U(r)x = 0, r ~ a. (131.1)

In the "outer" region (r ^> a), on the other hand, we can neglect U:

X
n+ (2mlh*)Ex = 0, r^a. (131.2)

The solution of equation (131.2) must be "joined" at some r± (such that

1/k ^> r\ ;> d) to the solution of equation (131.1) which satisfies the boundary

condition x(0) = 0; the joining condition is that the ratio xlx should be

continuous. This ratio does not depend on the normalisation factor in the

wave function.

However, instead of considering the motion in the region r ~ «, we apply

to the solution in the outer region a suitably chosen boundary condition on

xlx f°r small r\ since the solution in the outer region varies only slowly

as r -> 0, we can formally apply this condition at the point r = 0. The
equation (131.1) for the region r ~ a does not contain E; the boundary

condition which replaces it must therefore also be independent of the energy

of the particle. In other words, it must be of the form

\x'lx\r^a=-K, (131.3)

where k is some constant. But, k being independent of E, the same condition

(131.3) must also apply to the solution of Schrodinger's equation for small

negative energy E — — |e|, i.e. to the wave function of the corresponding

stationary state of the particle. For E = — |e| we have from (131.2)

X = constantx^^ 161'/^

and substitution of this function in (131.3) shows that k is a positive quantity,

k = V(2m\e\)lh. (131.4)

Let us now apply the boundary condition (131.3) to the wave equation for

free motion,

X = constant xsin(^r+ §o)>

which is the exact general solution of equation (131.2) for E > 0. Thus we
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have for the required phase So

cot So = —ic/k

= -V(M/£). (131.5)

Since the energy E is here restricted only by the condition ka < 1, and need

not be small compared with e, the phase So may not be small.

The phases &i with / # are again small. Hence we can again neglect

in the scattering amplitude all terms with / # 0, so that the scattering remains

isotropic. Substituting (131.5) in the formula

1
y~_L_(e2ao_i)

2ik

= l/A(cotSo— i),

we obtain for the scattering amplitude

/= -ll(K+ ik) (131.6)

and for the total effective cross-section

4tt 2tt/*2 l

#c
2+A2 m E+\

(131.7)

Thus the elastic scattering cross-section depends on the energy, and in the

resonance region (E ~ |e|) is large compared with the squared radius of action

of the field a2 (since ka <4 1). Formula (131.7) was first derived by E. Wigner
(1933); the idea of the derivation given here is due to H. A. Bethe and

R. E. Peierls (1935).

The above formula is somewhat more general than the assumption made
in its derivation. Let the function U(r) be slightly modified ; this alters also

the value of the constant k in the boundary condition (131.3). By an appro-

priate change in U(r), k can be made to vanish, and then to become small and

negative. This gives the same formulae (131.6) for the scattering amplitude

and (131.7) for the cross-section. In the latter, however, the quantity

|e| = h2K2/2m is now simply a constant characteristic of the field U(r), and

not an energy level in that field. In such cases the field is said to have a

virtual level, since, although there is no actual level close to zero, a slight

change in the field would be sufficient to cause one to appear.

In the analytical continuation of the function (131.6) in the complex plane

of E, ik becomes — \/(— 2mE)jh on the left half of the real axis (see §128), and

we see that the scattering amplitude has a pole at E = — |e|, in accordance

with the general results of §128. On the other hand, the virtual level corres-

ponds, as we should expect, to no singularity of the scattering amplitude on
the physical sheet. (The scattering amplitude has a pole at E = — |e| on the

non-physical sheet; see the first footnote to §128.)
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Formally, the expression (131.6) corresponds to the case where in the

expression (124.15),

1

/o = —77:

—

t»
go(k)-tk

the first term in the expansion of the functiongo(k) is negative and anomalously

small. To refine the formula, we can take account of the second term in the

expansion:

— Ko+tr k2— ik

(L. D. Landau and Ya. A. Smorodinskii 1944); it may be recalled that,

when the field decreases sufficiently rapidly, the functions gi(k) can be ex-

panded in even powers of k (see §130). In (131.8) we have denoted by — kq

the value of #0(0), in order to retain the notation k for the quantity (131.4),

which is related to the energy level e. According to the above discussion, k

is given by the value of — ik which makes the denominator in (131.8) equal to

zero, i.e. by the root of the equation

k = K +ko«2
. (131.9)

The correction term |rn&2 in the denominator in (131.8) is small compared
with kq, since k is assumed small, but it is itself of "normal" order of magni-
tude: the coefficient r$ ~ a and is always positive (see Problem 1). It should

be emphasised that the inclusion of this term is a legitimate refinement in

the formula for the scattering amplitude when contributions from angular

momenta / ^ are neglected ; it gives a correction to/ of relative order ka,

whereas the contribution from scattering with 1=1 is of relative order

(&*)8.t

For the cross-section we have, from (131.8),

4tt

a =
(K -4n>&2)

2+A2

t When k -* 0, the amplitude /o ->• l//co, i.e. 1/ko is equal to the scattering length a defined in
§130. The coefficient ro in the formula

gQ(k) = k COtSo

= -l/a+to# (131.8a)

is called the effective range of the interaction.

The values of the constants a and ro may be mentioned for the important case of the interaction

of two nucleons. For a neutron and a proton with parallel spins (isotopic state with T = 0),

a = 5-39X10 -13 cm, ro = 1*70X10 -1S cm; these correspond to a true level with energy
|c| = 2- 23 MeV, the ground state of the deuteron. For a neutron and a proton with antiparallel spins
(isotopic state with T = 1), a = — 23-7X 10"13 cm, ro = 2-67X lO"13 cm; these values correspond
to a virtual level with |e| = 0*067 MeV. Owing to isotopic invariance, the latter values must apply
also to a system of two neutrons with antiparallel spins; parallel spins of the nn system in the s state

are prohibited by Pauli's principle.
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If we neglect the term in k4 in the denominator (though it may legitimately

be included), this formula can be written (using (131.9)) in the form

47r(l+r K) 4irh2 l+roK
a = — = . (131.10)

We shall briefly discuss resonance in scattering with non-zero orbital

angular momenta. The expansion of the function gi(k) begins with a term
~hr2l

\ retaining the first two terms in the expansion, we write the partial

scattering amplitude as

1

/,=
, (131.11)

bE~\-e+E)+ik
K J

where b and e are two constants, with b > (see below). The case of resonance

corresponds to an anomalously low value of the coefficient of E~l
, i.e. an

anomalously small e. However, since E is small, the term beE~l may still

be large in comparison with k.

If e < 0, the denominator in the expression (131.11) has a real root

E ^ — |e|, so that e is a discrete energy level (with angular momentum /),f

but in contrast to resonance in s-wave scattering the amplitude (131.11) is

never large compared with a; the amplitude of resonance scattering with

angular momentum /+ 1 is only of the same order of magnitude as that of

non-resonance scattering with angular momentum /.

If e > 0, however, the amplitude (131.11) becomes of the order of 1/k

in the region E ~ e, i.e. large compared with a. The relative width of this

region is small: AE/e ~ (ka)21
-1

. Thus in this case there is a sharp resonance.

This type of resonance scattering occurs because a positive level with / =£ 0,

though not a true discrete level, is "quasi-discrete" : owing to the presence

of the centrifugal potential barrier, the probability that a particle of low

energy will escape from this state to infinity is small, so that the "lifetime"

of the state is long (see §132).J This is the reason why resonance scattering

with / 7^ is different in nature from that in the s state, where there is no
centrifugal barrier.

Finally, we may mention an interesting property of the phases Sj which is

easily derived from the above results. We shall regard the phases &i(E) as

t For e < 0, and E close to e,

/z^(-l)l+1|€|V^+|e|).

A comparison with (128.16) shows that b > 0.

t The denominator in (131.11) with e > vanishes when E =[Eo—i . Jr, where

2V(2w)
#o S e, T = V+i/2. (131.11a)

bh

This pole of the scattering amplitude is, however, on the non-physical sheet. The small quantity T
is the width of the quasi-discrete level (see §132).
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continuous functions of the energy, and not restrict them to the range from
to tt (cf. the footnote following (33.18)). We shall show that the equation

8j(0)-8i(oo) = titt (131.12)

then holds, where n is the number of discrete levels with angular momentum /

in the attractive field U(r).

To prove this, we note that, in a field which satisfies the condition

|
U\ <4 h2/ma2

, the Born approximation is valid at all energies, so that &i(E) <^ 1

for all E, and §z(oo) = 0, since for E -» oo the scattering amplitude tends

to zero, while 8i(0) = in accordance with the general results of §130. In

such a field there are no discrete levels (see §45), and so n = 0. We now
consider the variation of the difference Sj(A) — Sj( oo), where A is some given

small quantity, as the potential well U(r) gradually becomes deeper. As this

occurs, the first, second etc. levels successively appear at the top of the well,

and the phases Sj(A) are increased by tt each time.f On reaching the given

U(r) and then making A -> 0, we obtain formula (131.12).

PROBLEMS
Problem 1. Express the coefficient ro in formula (131.8) in terms of the wave function

of the stationary state E = e in the region r ~ a (Ya. A. Smorodinskii 1948).

Solution. Determining the residue of the function (131.8) at its pole E = e and com-
paring with formula (128.10), we find

1 1

w =
TK
-iro >

where Ao is the coefficient in the function x = Aoe~Kr in the region r ^> a. Let xo be the

wave function in the region r ^ a, normalised by the condition that xo -* 1 as r -> co

,

Then the square of the wave function can be written in all space in the form x2 = -4o2(e-2lcr +
+ xo2--1); this expression becomes Ao2e~2Kr for kt^> 1 and -4o2xo2 for kt <^1. It must
be normalised by the condition

oo oo

j x2 dr = ^o2(- -
J

(1 -xo2
) dr) = 1,

o o

and a comparison with the previous expression for Ao2 gives

00

= 2Kr = 2 (l-xo2)dr.

From equation (131.1) with U(r) < 0, the solution of which is Xo, it follows that Xo(r) <
Xo (

co ) = 1. Hence we always have ro > 0.

t In formula (131.5) this corresponds to a change of So from to tt when, for a given small value

of k, the quantity k changes from a negative value (— k ^> k) to a positive value k ^> k. When 1^0,
the same follows from the formula k cot Si = — bE~ l(E— e) when, for a given E = A, e varies from
e^> A to — e^> A
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Problem 2. Determine the change in the phases Si when the field U(r) is varied.

Solution. Varying U(r) in Schrodinger's equation

2m r 1(1+1)

we obtain

+ir[*-V- p>-*

2m r /(/+1) "1 2w* TT

«w+ 1r[*-V
i - ,7]* 1, -*^K

Multiplying the first equation by S*i, the second by xu subtracting, and integrating with

respect to r, we find

2m2m r

bcihi'-Xi'hi]™ =—
J

Xi
2^dr.

Substituting on the left-hand side the asymptotic expressions

Xi = sin(kr— \lir — 8j),

hxi — 8(Si)cos(kr—%lir+8i)

(the choice of the coefficient 1 in this expression determining the normalisation used), we

obtain
en

2m
«w>-™Jx<w*.

From this formula we can draw certain conclusions regarding the sign of the phases

Si, considered as continuous functions of energy. To avoid the ambiguity in the definition

of these functions (an additive multiple of it) we shall normalise them by the condition

Sj(oo) = 0.

Starting from U = 0, when all the 8i are zero, and gradually increasing \U\, we find that

in a repulsive field (U > 0) all the Sj < 0, and in an attractive field (U < 0) Si > 0. In a

repulsive field Si(0) = and therefore, for small energies, the Si are small; the scattering

amplitude is therefore negative: / «« Solk <0. In an attractive field the corresponding

deduction that/ is positive can be made only if there are no discrete levels. Otherwise, when

E is small, the phases Si are close to mr, not to zero (see (131.12)), and no conclusion can be

drawn concerning the sign of/.

§132. Resonance at a quasi-discrete level

A system which can disintegrate does not, strictly speaking, have a discrete

energy spectrum. The particle leaving it when it disintegrates recedes to

infinity; in this sense, the motion of the system is infinite, and hence the

energy spectrum is continuous.

It may happen, however, that the disintegration probability of the system

is very small. The simplest example of this kind is given by a particle sur-

rounded by a fairly high and wide potential barrier. Another possible

reason for metastability of a state is that the spin of the system must change

in the disintegration, owing to a weak spin-orbit interaction.
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For such systems with a small disintegration probability, we can introduce
the concept of quasi-stationary states, in which the particles move "inside
the system" for a considerable period of time, leaving it only when a fairly
long time interval t has elapsed; t may be called the lifetime of the almost
stationary state concerned (t ~ l/o>, where to is the disintegration prob-
ability per unit time). The energy spectrum of these states will be quasi-
discrete; it consists of a series of broadened levels, whose "width" is related
to the lifetime by T ~ h/r (see (44.7) ). The widths of the quasi-discrete
levels are small compared with the distances between them.

In discussing the quasi-stationary states, we can use the following formal
method. Until now we have always considered solutions of Schrodinger's
equation with a boundary condition requiring the finiteness of the wave
function at infinity. Instead of this, we shall now look for solutions which
represent an outgoing spherical wave at infinity; this corresponds to the
particle finally leaving the system when it disintegrates. Since such a
boundary condition is complex, we cannot assert that the eigenvalues of
the energy must be real. On the contrary, by solving Schrodinger's equa-
tion, we obtain a set of complex values, which we write in the form

E = E -&r, (132.1)

where E and T are two constants, which are positive (see below).
It is easy to see the physical significance of the complex energy values.

The time factor in the wave function of a quasi-stationary state is of the form

eAilh)Et — e -(l/h)E9te-{r /fl)t/2
#

Hence all the probabilities given by the squared modulus of the wave function
decrease with time as g-(r/»)'.-j- In particular, the probability of finding
the particle "inside the system" decreases according to this law. Thus F
determines the lifetime of the state; the disintegration probability per unit
time is

w = T/h. (132.2)

At large distances the wave function of the quasi-stationary state (the
outgoing wave) contains the factor

exp[zVV'{2m(£'o-^T)}/^],

which increases exponentially as r -> oo (the imaginary part of the root
im y/(Eo-%iT) < 0). Hence the normalisation integral J \ifjp dV for these
functions diverges. It may be noted, incidentally, that this resolves the
apparent contradiction between the decrease with time of |0p and the fact
that the normalisation integral can be shown from the wave equation to be a
constant.

t We may note that this shows the physical necessity for T to be positive. It is in fact automatically
positive (as may be shown from the wave equation) when the condition stated is imposed at infinity.
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We may ascertain the form of the wave function which describes the motion

of a particle with energy close to one of the quasi-discrete levels of the system.

As in §128, we write down the asymptotic form (at large distances) of the

radial part of the wave function in the form (128.1):

fll= I[^exp(-^p,) +B!(£)exp(^^,)], (132.3)

and regard E as a complex variable. For real positive E,

fli = -[AtWenr+BWe-Mr], k = ^(2mE)[h, (132.4)

r

and Ai{E) = Bi*(E) (see (128.3), (128.4)); the function Bi(E) is here taken

on the upper edge of a cut along the right half of the real axis.

The condition which determines the complex eigenvalues of the energy

consists in the absence of an ingoing wave from the asymptotic expression

(132.3). This means that for E = EQ -\iY the coefficient Bi{E) must vanish:

B^Eo-hiT) = 0. (132.5)

Thus the quasi-discrete energy levels, like the true discrete levels, are zeros

of the function Bi(E). However, unlike the zeros which correspond to true

levels, they do not lie on the physical sheet: in writing the condition (132.5)

we have assumed that the required wave function of the quasi-stationary

state arises from the same term in (132.3) which is an outgoing wave (~*«r)

when E > also (in (132.4)). But the point E = EQ -\iT lies below the

positive real axis. This point can be reached from the upper edge of the cut

(where the coefficients in (132.4) are denned), without leaving the physical

sheet, only by passing round the point E = 0. Then ^-E changes sign,

so that the outgoing wave becomes an ingoing one. Consequently, to pre-

serve the outgoing wave the point must be reached by going directly across

the cut, on to another, "non-physical", sheet.

Let us now consider real positive energy values close to the quasi-discrete

level (assuming, of course, that V is small, since otherwise no such close

values could exist). Expanding the function Bi{E) in powers of the difference

E-(E -UT) and taking only the first-order term, we have

BiE) = (E-EQ+\iT)bh (132.6)

where h is a constant. Substituting in (132.4), we obtain the following

expression for the wave function of a state close to the quasi-stationary state :f

Rl = -[(E-Eo-bT^feMr+tE-Eo+^ke-Mr]. (132.7)

r

t For E =Eo-&T, the function (132.7) becomes Ri = - (llr)iTb l*e
tlcr

. If the wave function

is normalised by the condition that the integral of |</r|
2 over the region "within the system" is unity,

the total current in this outgoing wave, equal to v\iTbi*\\ must be equal to the disintegration proba-

bflity (132.2). Hence we find

,^2=1//^.
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The phase hi of this function is given by

e2iSi —, e2iSi
{o)
E-E -frT

E-E +iir

-^i 1-!^)- (132.8)

where

«*».<•> = (-1)1+1^/^; (132>9)

cf. (132.7) and (122.8), (122.9). For \E-E
\
> T, the phase 8 t is equal to

S* (0)
,
so that V°> is the value of the phase "far from the resonance".

In the resonance region S t varies considerably with energy. If we rewrite*
formula (132.8) in the form

r
8l = Sj«»+ tan-i , (132.10)

A{h— £, )

we see immediately that the phase changes by -n in a passage through the whole
resonance region (from E <^ E to E > E ).

These results enable us to determine the amplitude of elastic scattering
of a particle with energy E close to some quasi- discrete level E of the
"compound system" consisting of the scattering system together with the
particle undergoing scattering. In the general formula (122.10) we must
substitute the expression (132.8) in the term with the value of / which corres-
ponds to the level E . This gives

f(6) = /(O>(0)_
2J±L

. f e^Pticose), (132.11)
k E-Eq+%iY v '

where fm{8) is the scattering amplitude far from the resonance, which is

independent of the properties of the quasi-stationary state (it is given by
formula (122.10) with S z = S*«» in each term of the sum).J The amplitude
/(O)

(0) is often called the potential scattering amplitude, and the second term
in (132.11) the resonance scattering amplitude. The latter has a pole at
E = Eo-^iF, which, as shown above, is not on the physical sheet.

|j

Formula (132.11) determines the elastic scattering near resonance at one
of the quasi-discrete levels of the "compound system". Its range of validity

t Using the result

e2itan
-1A =

X If scattering of a charged particle by a charged system is considered, the expression (133.11)
must be used for the phases 8i

l0K

||
It may be noted that formula (131.11) for resonance scattering of slow particles by a positive

/ffo^i
leVd € Wkh l ^ °' With E CI°Se t0 e

'
is in exaCt corresP°ndence with the resonance term in

(132.11). The values of £0 and T are given by formulae (131.11a), and since E is small the phase
Si' ' is small, so that e

2t8i^ m 1.
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is defined by the condition that the difference \E— Eq\ should be small

compared with the distance D to the adjoining quasi-discrete levels:

\E-Eo\ < D. (132.12)

This formula is somewhat simplified if the scattering of slow particles is

being considered, i.e. if the wavelength of the particles in the resonance

region is large compared with the dimensions of the scattering system. Here

only s-wave scattering is important; we shall suppose that the level Eq

does in fact belong to motion with / = 0. The potential scattering amplitude

then reduces to a real constant — a (see §130).f In the resonance scattering

amplitude we put / = and replace e2i**
M by unity, since So (0) = — <x.k <^ 1.

Thus we find

f(6) = -a —
. (132.13)JK } k(E-E +$ir)

In a narrow range \E— Eo\ ~ T the second term is large compared with the

amplitude a, and the latter may be omitted. Farther from the resonance,

however, the two terms may be comparable.

In the above derivations it has been tacitly assumed that the value Eq of

the level itself is not too small, and that the resonance region is not in the

neighbourhood of the point E = 0. If resonance at the first quasi-discrete

level of the compound system is considered, which lies at a distance from

E = small compared with the distance to the next level (Eo <^ D), the ex-

pansion (132.6) may be no longer permissible. This is seen from the fact

that the amplitude (132.13) does not tend to a constant limit as E ->0, as

would be necessary for s-wave scattering according to the general theory.

Let us consider the case of a quasi-discrete level close to zero, again

assuming that in the resonance region the particles undergoing scattering are

so slow that only s-wave scattering is of importance.

The expansion of the coefficients Bt(E) in the wave function must now be

made in powers of the energy E itself. The point E = is a branch point of

the functions Bi(E), and a passage round this point from the upper to the lower

edge of the cut changes Bi(E) into B*(E). This means that the expansion is

in powers of -\/ — E, which changes sign on the above-mentioned passage.

We write the first terms in the expansion of the function Bo(E) for real positive

E in the form

B (E) = (E-e +tYVE)bo(E), (132.14)

where e and y are real constants, and bo(E) a function of energy, which can

also be expanded in powers of \/E but has no zero near the point E = O.J

The quasi-discrete level E = Eo — ^iV corresponds to the vanishing of the

t It is assumed that the scattering field decreases sufficiently rapidly with increasing distance.

In §142 the results given here will be applied to the scattering of slow neutrons by nuclei.

| The function bo(E) determines, according to (132.9), the phase of the potential scattering. In

the scattering of slow particles, the first terms in its expansion are bo(E) = constant Xi(l-\-ia.k).
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factor E— eo+ iy-y/E, continued into the lower half-plane of the non-physical

sheet ; we therefore have for the determination of Eq and Y the equation

E -frT-eo+iyV(E -iir) = (132.15)

(the constants eo and y must be positive in order that Eq and Y should be
positive). For example, a level with width Y <£. Eo corresponds to the rela-

tion eo > y
2 between these constants, and from (132.15) we have Eo = eo,

T = 2yv/eo.

The expression (132.14) replaces in this case formula (132.6); the subse-

quent formulae must be correspondingly modified (everywhere replacing Eo
by eo and Y by 2y\/E). Hence we obtain for the scattering amplitude, instead

of (132.13), the expression

hy
f= -a (132.16)

(where we have put k = ^(2mE)/h, m being the reduced mass of the particle

and the scattering system). For E -> this amplitude tends to a constant

limit, as it should, thus confirming the form of the expansion (132.14).

It may be noted that the expression (132.16) also covers the case of a true

discrete level of the compound system close to zero, which is given by an
appropriate relation between the constants eo and y. If |eo| <^ y

2
, the first

term E may be neglected in the denominator of the resonance term for

energies E <4 y
2

.

Neglecting also the potential scattering amplitude a, we obtain the formula

1

/ =
ik— \Z(2m)€QJhy

which is the same as formula (131.6) (with k = — ^/(2m)eo/hy). This corres-

ponds to resonance at the level E = e 2
/y

2
, which is a true or virtual discrete

level according as the constant k is positive or negative.

§133. Rutherford's formula

Scattering in a Coulomb field is of particular interest from the point of

view of physical applications. It is also of interest in that, for this case, the

quantum-mechanical collision problem can be solved exactly.

When there is a direction (in this case, the direction of incidence of the

particle) which can be distinguished from the remainder, Schrodinger's
equation in the Coulomb field is conveniently solved in parabolic co-ordi-

nates £, 7), <f> (§37). The problem of the scattering of a particle in a central

field is axially symmetric. Hence the wave function ip is independent of the

angle
<f>.

We write the particular solution of Schrodinger's equation (37.6)

in the form

=M€)Mv); (133.1)
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this is (37.7) with m = 0. Accordingly, after separating the variables, we

obtainf equations (37.8) with m = 0:

d / d/i \6-)d^
(133.2)

d7?\ d^/

The energy of the scattered particle is, of course, positive; we have put

E = \kz. The signs in equations (133.2) are for the case of a repulsive field;

exactly the same final result is obtained for the scattering cross-section in an

attractive field.

We have to find that solution of Schrodinger's equation which, for nega-

tive z and large r, has the form of a plane wave

:

$ ~ e**« for — oo < z < 0, r -> oo,

corresponding to a particle incident in the positive direction of the #-axis.

We shall see from what follows that the condition imposed can be satisfied

by a single particular integral (133.1) ; a sum of integrals with various values of

j8i, £2 is not needed.

In parabolic co-ordinates, this condition takes the form

if,
~ eik(Z-r,)i2 for 77 - oo and all f

.

This can be satisfied only if

yi(£) = e**S/2 (133.3)

and/2(r^) is subject to the condition

Mv) ~ e-**v/2 for 77-* oo. (133.4)

Substituting (133.3) in the first of equations (133.2), we see that this

function does in fact satisfy the equation, provided that the constant& = \ik.

The second equation (133.2), with j82
= 1 —&, then takes the form

d/2\
-T-)+(i^-i+^)/2=o.

dr)\ dr) J

Let us seek its solution in the form

Mtj) = e-MvlZwi-q), (133.5)

where the function w(t)) tends to a constant as 77 -> 00. For zv(tj) we have

the equation

Vw
,/+(l-ikr

]
)w'-w = 0, (133.6)

t In this section we use Coulomb units (see §36).
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which, by introducing the new variable -qx
= iky, can be reduced to the

equation for a confluent hypergeometric function with parameters a = —i/k,

y = 1. We have to choose that solution of equation (133.6) which, on being
multiplied by )i(£), contains only an outgoing (i.e. scattered) and not an
ingoing spherical wave. This solution is the function

w = constant x F{— i/k, 1, ikrj).

Thus, on assembling the expressions obtained, we find the following exact
solution of Schrodinger's equation, describing the scattering:

xfj = e-*/**r(l+ilk)J*<£-rt2F(-ilk, 1, ikrj). (133.7)

We have chosen the normalising constant in ifi such that the incident plane
wave has unit amplitude (see below).

In order to separate the incident and scattered waves in this function, we
must consider its form at large distances from the scattering centre. Using
the first two terms of the asymptotic expansion (formula (d.14) in the
Mathematical Appendices) for the confluent hypergeometric function, we
have for large 77

Fi-vk, 1, *,)
«<=?» +-LVmm*

IXl+i/*)\ i&r, J T(-i/k) ikr,

en/2k , 1 v
(ilk)e"/2k etk v=

[ 1 -\ ) e
(i/k) log(ft,)_

v
_Lj: e-mk) logU;,)

r(l+ */*)\ i&r)J T(l-ilk) ikrj

Substituting this in (133.7) and changing to spherical polar co-ordinates

(£—n = 2z,7) = r—z = r(l-cos 0)), we have the following final asymptotic
expression for the wave function:

= 1-]
\ eikz+U/k) logger -kr cos 0)4. i_L_L./>M;r -«/*) log(2*r) d'i'l Q\

I ikh(l-cos9)J ^
r '

{ '

wheref
1 T(l+ilk)

f(0) = eA2i Ik) log sin<?/2
V r ; ;

/n -1 q\nj WanHe r(l-i/A)'
{ }

The first term in (133.8) represents the incident wave. We see that, in
consequence of the slow decrease of the Coulomb field, the plane wave is

distorted even at large distances from the centre, as is shown by the presence
of the logarithmic term in the phase and of the 1/r term in the amplitude.J

t The signs in the scattering amplitude (133.9) correspond to a repulsive field. In an attractive
Coulomb field, formula (133.9) is replaced by the complex conjugate expression, /(e) then becomes
infinite at the poles of the function T(l— i/k), i.e. at points where the argument of the gamma function
is a negative integer or zero (when im k > and the function rifi decreases at infinity). The corres-
ponding energy values are %k* = - 1/2«2 (« = 1, 2, 3, ...), and coincide with the discrete energy levels
in the Coulomb field (cf. §128).

X The origin of this distortion may be elucidated classically. If we consider a family of classical
Coulomb hyperbolic paths with the same direction of incidence (parallel to the ar-axis), the equation
of the surface normal to them at large distances from the scattering centre (z -> — 00) is easily shown
to tend to z+k~* log k(r—z) = constant, not z = constant. This is the surface of constant phase of
the incident wave in (133.8).
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The distorting logarithmic term in the phase is found also in the scattered

spherical wave given by the second term in (133.8). These differences from

the usual asymptotic form of the wave function (122.3) are unimportant,

however, since they give a correction to the current density which tends

to zero as r -»• oo.

Thus we obtain for the effective scattering cross-section do- = |/(0)|
2 do

the formula

da = do/4&4 sin4|0,

or, in ordinary units,

da = (a/2ww;2)2 do/sin4£0, (133.10)

where we have introduced the velocity v = khjm of the particle. This is the

familiar Rutherford'sformula given by classical mechanics. Thus, for scatter-

ing in a Coulomb field, quantum and classical mechanics give the same

result (N. Mott, and W. Gordon, 1928). Born's formula (125.12) naturally

leads to the same expression (133.10) also.

Finally, we shall give for reference the expression for the scattering

amplitude (133.9), written as a sum of spherical harmonics. This is obtained

by substituting in (123.5) the phases S, from (36.28), i.e.f

eMi = T(l+l+ilk)IT(l+l-ilk). (133.11)

Thus we find

m =—V (2l+l)
T{l+1+ilk)

Ptcosd). (133.12)JK) 2ik^ T(/+l-i/*)

§134. The system of wave functions of the continuous spectrum

We have seen in §122 that functions of the form

00

0=^2 il
(
2l+ l)«w'fl(«» 0)Ra{r) t

(134.1)

1=0

where ck is a constant, describe a stationary state of a particle in a centrally

symmetric field, there being at infinity a plane wave propagated in the positive

direction of the #-axis and an outgoing spherical wave. In this formula,

6 is the angle between the radius vector r and the #-axis, which coincides with

the direction of the wave vector of the incident wave. If we substitute

cos 6 = k . rjkr, the expression (134.1) will not involve any particular choice

of the axes of co-ordinates. By giving the vector k all possible values, we

t The value of Si in this formula differs from the true (divergent) Coulomb phase by a quantity

which is the same for all /.
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obtain, as we shall now show, a complete set of orthogonal wave functions of
the continuous spectrum. We shall denote these functions by ift\:

1
°°

+
k =—2 il(2l+l)ei8>Rki(r)Pi(b.rlkr). (134.2)

1=0

We have chosen the constant ck in (134.1) such that the functions are nor-
malised in the usual manner for the continuous spectrum, i.e. by the delta
function in k-space:f

j 0V«A+k dV = S(k'-k); (134.3)

this will be confirmed by the subsequent calculation. Thus, together with
the usual system of wave functions ip = Rkl(r)Ylm (d,<f>) (corresponding to
stationary states with definite values of the energy h2k2

l2p, angular momentum
/ and projection thereof m), we have for the continuous spectrum another
system of functions which describe states with a definite energy (but not a
definite angular momentum or projection thereof). In these states there is at

infinity, besides the outgoing wave, a plane wave incident in a definite

direction k. This system of functions is very useful in solving a number of
problems relating to collisions.

We now go on to prove (134.3), and denote by d and 6' the angles between
the radius vector and k, k' respectively; the angle between k and k' is denoted
by a. The product *fi\,*ip+k is expressed as a double sum (over / and /')

of terms containing the products P,'(cos 0')P
f
(cos 6). Noticing that

cos 6' = cos 6 cos a4-sin 6 sin a cos$,

where
<f>

is the angle between the planes (r, k) and (k, k'), and using the
addition theorem for spherical harmonics (formula (c.8) in the Mathematical
Appendices), we obtain

P*(cos 9')Pi(cos 6) = P,(cos e)Pl ,{cos 0)P,,(cos a)+

^ (Z'-m')l
+2Pj(cos0) 2^

~ ^P?'(cos0)P^'(cosa)cosmV. (134.4)

m'=:r

We first multiply ^"V*^ DY do = sin # d# d and integrate over all angles.

The integration over<£ reduces to zero all the terms in (134.4) except the first.

The latter gives zero on integration over Q if / ^ /' (by the orthogonality of
the Legendre polynomials), while for / = /'

n

j Pi2(cos 9) sin Ode = 2/(2/+ 1).

t For this normalisation, the incident plane wave has, at infinity, the form

(277)-3/2**k.r.
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Thus we obtain

00 w

f 0V0+
k dV = -i-y (U+iyUW-Wnpfcos a) f RM{r)Rki{ry* dr.

J ^^ to o

The radial functions Rkl are orthogonal, however, and are normalised by

00

JRk.iRiar2dr=8(k'-k).

o

Hence we can put k = h! in the coefficients in front of the integrals ; using

also the relation (123.3), we have

oo

f <£
+
k'*«/'+k dV = S(A'-A)Y (2/+l)P*(cos a)

= S(&'--&)8(1 -cos a).

7T&2

The expression on the right, on being multiplied by 2irk2 sin a dk da

and integrated over all k-space, gives 1 ; in other words, it is the delta function

in k-space, which proves formula (134.3).

Together with the system of functions ifj+k, we can also introduce a system

corresponding to states in which there are at infinity a plane wave and an

ingoing spherical wave. These functions, which we denote by tp~k ,
are

obtained directly from the iff\. We first take the complex conjugate, ob-

taining from the outgoing wave an ingoing one (~ e-ikrlr), while the plane

wave takes the form: ~ e-*kr . In order to keep the previous definition of k

(with the plane wave ~ eik-r
), we must then reverse the direction of k,

i.e. replace it by -k. Noticing that P,(-cos 0) = (-l)*P,(cos 0), we obtain

from (134.2)

oo

^ B iTji(2/+l)«-«^r)fl(k.r/*r); (134.5)

1=0

the functions Rkl are supposed real.

The case of a Coulomb field is of great importance. Here the functions

if,\ (and ^r~k) can be written in a closed form, which is obtained directly

from formula (133.7) (the latter must be multiplied by (2tt)-3/2 ; see the first

footnote to the present section). We express the parabolic co-ordinates by

\k{£—n) = kz = k . r, kv = k{r-z) = kr-k.r.
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Thus we obtain for a repulsive Coulomb fieldf

1

0+k =
(2^72

«~W2*r(W/*)*"-^-*/*, 1, ikr-ik .r), (134.6)

1
^"k =

(2^/2
^W2*r(l-^)^-«-F(^, 1, -^r-zk .r). (134.7)

The wave functions for an attractive Coulomb field are found by simul-
taneously changing the signs of h and r:

1

^k = -^f^'^^-^y^'^l^ 1. ikr-ik.t), (134.8)

1
^"k = (^i72

eW2*r(1+^e'k ' ri'(~^ J
>
-*r-»"k -r). (134.9)

The action of the Coulomb field on the motion of the particle near the
origin may be characterised by the ratio of the squared modulus of 0+k or
«A k at the point r = to the squared modulus of the wave function ^ =
(27r)-3/2^k.r for free motion# Using the formula

k

r(i + i/k)F(i - iik) = (ijk)r(i/k)r(i - iik)

— irfk sinh(7r/&),

we easily find, for a repulsive field,

l^
+
k(0)l

2

=
10-k(O)l

2 _ 2,7

w i^ki
2 ~ nw-xy (134 - 10)

and for an attractive field,

l«A
+
k(0)|2 |^-k(0) p

W2 W2 k(\-e-*"l*)
(134.11)

The functions 0~
k play an important part in a number of problems

relating to the application of perturbation theory in the continuous spectrum.
Let us suppose that, as a result of some perturbation, the particle enters a
state of the continuous spectrum (the initial state may belong to either the
discrete or the continuous spectrum)^ The problem then arises of calculat-
ing the probability that the freely moving particle resulting from this tran-
sition will have a definite direction in space. It can be shown that, for this
to be so, we must take the function 0~k as the wave function of the final state
of the particle, k being the wave vector of the particle at infinity
(A. Sommerfeld).

t Using Coulomb units.

J For example, an electron colliding with an atom and emitting an X-ray quantum, thereby chang-
ing its energy and its direction of motion.
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For let us consider the function

V(2«8)rf Pkk.
-tf/-ky/E dE do.

¥ J J Eo-E

This is the function (43.3), in which the functions i/r„
(0) have been taken to

be ifj~k , and instead of dv we have written &2 dk do = [\/(2m3)jh3] \/E dE do.

It describes the state of the particle occurring as a result of a constant

perturbation, the unperturbed wave functions being «/r~k . The integration

over E is taken along a path which passes round the point E = E (in the

plane of the complex variable E) below. Let us consider large values of r;

we shall show that the terms in ifs~k which contain the ingoing wave vanish

on integration over E. To show this, it is sufficient to displace the contour

of integration slightly into the lower half-plane. Then we have im E < on

the contour, and so im k < (the root k = <\/(2mE)lh is defined so that it

is positive on the positive real Z?-axis). The ingoing wave contains the

factor e~ikr ; for im k < and large r it can be made arbitrarily small, and

this proves the above statement. Thus, as a result of the integration over

E, only the plane wave remains (at infinity) from the function ^r
-
k , and this

corresponds to a particle moving in a definite direction.

§135. Collisions of like particles

The case where two identical particles collide requires special considera-

tion. The identity of the particles leads in quantum mechanics, as we know,

to the appearance of a peculiar exchange interaction between them. This

has an important effect on scattering also (N. F. Mott 1930)f.

The orbital wave function of a system of two particles must be symmetric

or antisymmetric with respect to the particles, according as their total spin

is even or odd (see §62). The wave function which describes the scattering,

and which is obtained by solving the usual Schrodinger's equation, must

therefore be symmetrised or antisymmetrised with respect to the particles.

An interchange of the particles is equivalent to reversing the direction of the

radius vector joining them. In the co-ordinate system in which the centre

of mass is at rest, this means that r remains unchanged, while the angle 6

is replaced by it—6 (and so z = r cos 6 becomes — z). Hence, instead of the

asymptotic expression (122.3) for the wave function, we must write

= eikz±e-il<*+e"<r[f(0)±f(7T-e)]lr. (135.1)

By virtue of the identity of the particles it is, of course, impossible to say

which of them scatters and which is scattered. In the co-ordinate system

in which the centre of mass is at rest, we have two equal incident plane waves,

t Here the direct spin-orbit interaction is again ignored.
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propagated in opposite directions (eikz and e~iks in (135.1)). The outgoing
spherical wave in (135.1) takes into account the scattering of both particles,

and the probability current calculated from it gives the probability that
either of the particles will be scattered into the element do of solid angle
considered. The effective cross-section is the ratio of this current to the
current density in either of the incident plane waves, i.e. it is given, as before,

by the squared modulus of the coefficient of eikr\r in the wave function

(135.1).

Thus, if the total spin of the colliding particles is even, the effective

scattering cross-section is of the form

d°s=\f(0)+f(Tr-6)\ 2 do, (135.2)

while if the total spin is odd, it is

*°a = |/(0)-/(^-0)|2 do. (135.3)

(It may be noted that the cross-section daa is zero for slow particles, when the
amplitude / is constant.) The appearance of the "interference" term
/(0)/*(tt-0)+/*(0)/(77— 0) characterises the exchange interaction. If the
particles were different, as they are in classical mechanics, the probability
that either of them would be scattered into a given element of solid angle do
would simply be equal to the sum of the probabilities that one particle is

deviated through an angle 6 and the other through tt-6; in other words,
the effective cross-section would be

{|/OT+l/(— 0)|
2}do.

In formulae (135.2), (135.3) it is supposed that the total spin of the col-

liding particles has a definite value. Usually, however, we have to deal

with the collision of particles which are not in definite spin states. To
determine the effective cross-section in this case, it is necessary to average
over all possible spin states, assuming them to be all equally probable. We
have shown in §62 that, of the total number of (2s+1)2 different spin states

of a system of two particles with spin s, s(2s+l) states correspond to an
even total spin and (s+l)(2s+l) to an odd total spin (if s is half-integral),

or vice versa if s is integral. Let us first suppose that the spin s of the particles

is half-integral. Then the probability that the system of two colliding

particles will have even S is *(2$+l)/(2$+l)2 = sj(2s+l), while the probab-
ility of odd S is (s+l)l(2s+l). Hence the effective cross-section is

"^^M^+S^- (135 -4)

Substituting here (135.2), (135.3), we obtain

d* ={|/WI2+|/(^-0)|2--i-mo)f*("-e)+f*(8)f("-e)]}do.
ls-\-l (135.5)
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Similarly, we find for integral s

da = {|/(0)|
2+|/(^-0)|2+-V-l7(0)/^-0)+/W(*-0)3} do.

25+1
(135.6)

As an example, we shall write out the formulae for the collision of two

electrons interacting by Coulomb's law (U — e2jr). Substitution of the

expression (133.9) in the formula (135.5) with s = \ gives (in ordinary units),

after a simple calculation,

/ e2 \ 2r 11 1 A2 M
da = I 1 1 cos( — log tan2§0 ) do,

\mW l_sin4|0 cos4£0 sin2£0cos2|0 \hv JA

(135.7)

where we have introduced the mass m of the electron in place of the reduced

mass m = £m . This formula is considerably simplified if the velocity is

so large that e2 <^ vh; we notice that this is just the condition for perturba-

tion theory to be applicable to a Coulomb field. Then the cosine in the third

term can be replaced by unity, and we have

/ 2e2 \ 2 4-3sin2

da = ( ) do. (135.8)
\mov2/ sin4

The opposite limiting case, e2 pvh, corresponds to the passage to the limit

of classical mechanics (see the end of §126). In formula (135.7) this transition

occurs in a very curious way. For e% > vh, the cosine in the third term in the

square brackets is a rapidly oscillating function. For any given 0, formula

(135.7) gives for the effective cross-section a value which in general differs

considerably from the Rutherford value. However, on averaging over even

a small range of values of 0, the oscillating term in (135.7) vanishes, and we

obtain the classical formula.

All the above formulae for the effective cross-section refer to a system of

co-ordinates in which the centre of mass is at rest. The transition to a system

in which one of the particles is at rest before the collision is effected (according

to (122.2)) simply by replacing by 2&. Thus, for a collision of electrons

we have from (135.7)

/ 2e2 \ 2r 11 1 /e2 \"1

da = ( 1 1 cosf — logtan2& ) cos & do,

\mQv2j Lsin4& cos4& sin2$cos2& \hv JA

(135.9)

where do is the element of solid angle in the new system of co-ordinates.

In replacing by 2#, the element of solid angle do must be replaced by

4 cos & do, since sin d0d<£ = 4 cos & sin &d&d<£.
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PROBLEM

Determine the effective scattering cross-section for two identical particles of spin $, with
definite values a = +£ of the projection of the spin on axes at an angle a with each other.

Solution. Let the spinors x" and & be the spin wave functions of the particles. The
wave function of the system of the two colliding particles is the product xM l"- We write it

in the form

x*£
v = Ux^+x^+Hx^-x"^)-

The first term is a symmetrical spinor of rank two, and corresponds to a state of the system
with total spin S = 1; the second is an antisymmetrical spinor, which reduces to a scalar and
corresponds to a state with S = 0. Hence the probabilities for the system to have spin 1

and are respectively

«* = hW+x'&l 2 =f(i+ |x
v
*£f),

(1)

«>o =i\xH v-x v^\ 2 =i(i-|r*£f);

summation over repeated spinor indices is understood, and it must be recalled that |x**|
2

= |£m| 8 == 1. The required effective cross-section is

dor = zoo dc75+«>i daa . (2)

We take a system of co-ordinates with the a-axis that along which the projected spin of the
first particle has a definite value (a = +£); then x1 = 1, X

2 = 0. The components of the
spinor f are f

1 = cos |a, £
2 = i sin £a (see the transformation formulae (58.10); in the

system of co-ordinates along whose ,s-axis the projected spin of the second particle has a
definite value, we should have I

1 = 1, P = 0). Substituting these values in (1), we find
the cross-section (2) in the form

da = i(l— cosa)do-s+£(3+cosa)dara . (3)

§136. Resonance scattering of charged particles

In the scattering of charged nuclear particles (e.g. of protons by protons),

as well as the short-range nuclear forces there is the Coulomb interaction,

which decreases only slowly. The theory of resonance scattering in this case

is developed by the same method as that described in §131. The only differ-

ence is that the wave function in the region outside the radius of action of the

nuclear forces (r > a) must be, instead of the solution of the equation of free

motion (131.2), the exact general solution of Schrodinger's equation in a

Coulomb field. Here the velocity of the particles is again assumed only so

small that ka <^ 1 ; the relation between 1/k and the Coulomb unit of length

ac = h2/mZiZ2,e2 (where m is the reduced mass of the colliding particles) is

left arbitrary,\

For motion with / = in a repulsive Coulomb field, Schrodinger's
equation for the radial function x = ^o is

x"+(*2-;)x = 0; (136.1)

t The theory given below is due to L. Landau and Ya. Smorodinskii (1944).
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here we use Coulomb units. In §36 the solution of this equation has been

found, subject to the requirement that x/r is finite at r = 0. This solution

which we here denote by K, has the form (see (36.27) and (36.28))

K = AeMrkrF(ilk+l, 2, -2ikr),

litlk (136.2)

Az = .

c2jt/*_ 1

The asymptotic expression for this function at large distances is

K « sinlkr log2Ar+So,coui)»

(136.3)

So.coui = argl\l + *'/&),

and the leading terms of the expansion for small r (kr <^ 1, r <4 1) are

K=Akr{l+r+ ...). (136.4)

Now, however, with the changed boundary condition, the behaviour of the

function at the origin becomes unimportant, and we need the general solution

of equation (136.1), which is a linear combination of two independent integrals.

The parameters of the confluent hypergeometric function in (136.2) are

such (the value of y = 2 being integral) that the case described at the end

of §d of the Mathematical Appendices occurs. In accordance with the

discussion given there, we obtain the second integral of equation (136.1)

by replacing the function F in (136.2) by some other linear combination of

two terms whose sum is, according to (d.14), the confluent hypergeometric

function. Taking the difference of these terms as the combination in question,

we find the second independent solution of equation (136.1) (denoted by L)

in the form

Ae-ikrkr
L = 2 im (-2ikr)-i+VkG(l-ilk, -i/k, -2ikr); (136.5)

r(i+*y*)
v

the function K is the real part of the same expression. The asymptotic form

at large distances is

L k cosf kr log2Ar+8o,coui), (136.6)

and the leading terms of the expansion for small r are

L = —{l+2rpog2r+2y-l + A(*)]+ ...}, (136.7)
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where y = 0-577... is Euler's constant, and h(k) denotes the function

h(k) = re^-ilk)+logk, (136.8)

*K*) ~ r'(*)/r(#) being the logarithmic derivative of the T function.f
The general integral of equation (136.1) may be written as the sum

X = constant x(J£cotSo+Z,), (136.9)

where cot So is a constant. The notation is chosen so that the asymptotic
form of this solution is

X ~ sinf kr- - Iog2fo-+S ,coui+So). (136.10)

Thus So is the additional phase shift of the wave function due to the short-
range forces. We have to relate it to the constant appearing in the boundary

Fig. 48

t The expansion (136.7) is obtained from (136.5) by means of the expansion (d.17) of the function
G, using the well-known relation

0(1+*) = <£(*)+ 1/*

(which is easily derived from T(z+1) = zT(z)) and the values ^(1) = — y, ^(2) = —y+1.
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condition [x'/x]r-»o = constant, which replaces the treatment of the wave

function in the region where nuclear forces act. Owing to the logarithmic

divergence of the logarithmic derivative xlx as r -> 0, this condition must

be applied at some arbitrarily small but finite value r = p, not at r = 0.

Calculating by means of formulae (136.4) and (136.7) the derivative x'(p)/x(p)

and equating it to a constant, we obtain the boundary condition in the form

kA* cot 8 + 2[log 2P + 2y + h(k)] = constant.

The expression on the left-hand side of the equation contains the constants

2 log 2p and 4y, which are independent of k ; we include these in the constant

on the right, and then denote it by - k. The final expression for cot S is,

in ordinary units,

cotSo = (eWka<-l)[h(kac)+lKac]; (136.11
IT

in the limit l/ac -> 0, i.e. for uncharged particles, formula (136.11) becomes

the relation cot So = - x/k
y

i-e - (131.15).

Figure 48 shows a graph of the function h(k).\

Thus, when there is a Coulomb interaction, the "constant" is

2n cotSo 2 ^ x

+ —h(kac)= -k. (136.12)
ac(e

27tka°-l) ac

We have put the word "constant" in quotation marks, since k is actually the

first term in an expansion in powers of the small quantity ha of some function

which depends on the properties of the short-range forces. As stated in §131,

resonance at low energies corresponds to the case where the value of the con-

stant k is anomalously small. Consequently, in order to improve the accuracy,

we must take account also of the next term (~&2
) in the expansion, which

t To calculate the function h(k), we can use the formula

1

h(k) = kr^y——---y+ log*,
*—< n(n2+k-2

)t(tl2+ k-2)«=1

which is easily obtained by means of the formula

i 4. 1

see Whittaker and Watson, Course of Modern Analysis, Cambridge 1944, §12' 16. The limiting

expressions for k(k) are

h(k) ~ £2/12 for k <^ 1,

h(k) = -y+ \ogk+h2jk2 for k > 1;

the latter formula gives values of h(k) which are correct to within 4% even for k > 2-5.
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contains a coefficient of "normal" magnitude, i.e. in (136.12) - k must be
replaced by -K + ±r k2

.-f

The existence of resonance may, as stated in §131, be due to either a true
or a virtual discrete bound state of the system. It can be shownj that the sign
of the constant k is again the criterion which determines whether the level is

true or virtual.

The total phase shifts of the wave functions, according to (136.10), are
equal to the sums Si tCoui+ 8i of the purely Coulomb phases Sz.coui and the
phases Si due to the short-range forces. The former make a contribution
to the scattering amplitude which is of the same order of magnitude for all

values of /. The latter are (at low energies) small for / # and so we can
neglect all the 8i except Soil- Then the scattering amplitude is

1
°°

f{6) =— V(2/+l)[e2«(««,c^*«)_im(co8m
2ik *—i

1=0

1
°°

^ y (21+ l)(*2tt,,coui - 1)P;(C0S 0) +
2ik *—<

1=0

1

+ __e2«o,coui(e2^ _l). (136.13)
2ik

The first term is the scattering amplitude in a purely Coulomb field, and is

given by formula (133.9):

1/2* \

/coui(0) = -
.

expf -— logsin|fl+2?g
0t couij.

The second term in (136.13) may be called the scattering amplitude due to

short-range forces. It should be emphasised, however, that this division is

arbitrary ; the presence of the Coulomb interaction has a considerable effect

on the second term also, which is entirely different from that for the same
short-range forces but uncharged particles.

t The values of the constants a = 1/ko and ro for proton-proton scattering are a = — 7-77X
10-13 cm, ro = 2-77xl0-13 cm (the Coulomb unit of length 2h2jmpe* = 57-6X10"13 cm). These
values relate to a pair of protons with antiparallel spins; when the spins are parallel a system of two
protons cannot be in the * state, by Pauli's principle.

t See L. Landau and Ya. Smorodinskii, Zhurnal eksperimental'noi i teoreticheskoi fiziki 14, 269,
1944.

||
The expression for cot Si when 1^0 may be given for reference:

I I

cotSi = - - (*2*/*«e_ 1)Lkac) +V '

+ aJ~T [1 +p2(kac) 2]-1
),

it [
*—i s2+ (kac)-2 *• x

)s2+ (kac)-2
s=l v p=l

where the on are constants.
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In the scattering cross-section the two parts of the amplitude interfere:

da
2

/ZiZ2e2 \ 2r 1

d~o
~~

'

'

~ \ 2mv* ) Lsin4J0
+

-—- sin

S

cos( log sin£0+So ) +4(&«c)
2 sin2S • (136.14)

sin2^ \kac / J
+

Here it is assumed that the colliding particles are different ; in the scattering

of like particles, the scattering amplitude must be symmetrised before being

squared (see §135).

§137. Elastic collisions between fast electrons and atoms

Elastic collisions between fast electrons and atoms can be treated by means
of the Born approximation if the velocity of the incident electron is large

compared with those of the atomic electrons.

Owing to the large difference in mass between the electron and the atom,

the latter may be regarded as at rest during the collision, and the system of

co-ordinates in which the centre of mass is fixed is the same as that in which

the atom is fixed. Then p and p' in formula (125.7) denote the momenta of

the electron before and after the collision, m the mass of the electron, and

the angle 6 is the same as the angle of deviation fr of the electron. The poten-

tial energy U(r) in formula (125.7) must be defined appropriately.

In §125 we have calculated the matrix element U >p
of the interaction

energy with respect to the wave functions of a free particle before and after

the collision. In a collision with an atom it is necessary to take into account

also the wave functions describing the internal state of the atom. In an elastic

collision, the state of the atom is left unchanged. Hence U
p

,p
must be deter-

mined as the matrix element with respect to the wave functions ip
p
and ifjp

< of

the electron; it is diagonal with respect to the wave function of the atom.

In other words, U(r) in formula (125.7) must be taken to be the potential

energy of the interaction of the electron with the atom, averaged with respect

to the wave function of the latter. It is e(f>(r), where <j>{r) is the potential of

the field at the point r due to the mean distribution of charges in the atom.

Denoting the density of the charge distribution in the atom by p(r), we
have, for the potential 0, Poisson's equation

:

A<f> = -477jo(r).

The required matrix element U
p

,

p
is essentially the Fourier component of U

(i.e. of
<f>)

corresponding to the wave vector q=k' — k. Applying Poisson's

equation to each Fourier component separately, we have

A(^qe
<q - r

) = -?2
qe^-

r = -47rPqe*<i-',
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so that

i.e.

j
^Ha-r dV = (4tt/?2) J pe

-iq.r dF. (137.1)

The charge density p(r) consists of the electron charges and the charge

on the nucleus:

p = —en{r)+Zeh{t)
y

where en(r) is the electron charge density in the atom. Multiplying by
c-iq.r anci integrating, we have

f pe-ii-rdV = —ejne-^-'dV+Ze.

Thus we obtain for the integral in question the expression

f Ue-^-r dV =—[Z-F(q)]
f (137.2)

where F(q) is defined by the formula

F(q) = jne-tv-rdV (137.3)

and is called the atomicformfactor. It is a function of the scattering angle and

of the velocity of the incident electron.

Finally, substituting (137.2) in (125.7), we obtain the following expression

for the effective cross-section for the elastic scattering of fast electrons by

an atomf

:

4mV1

/ «2 \ 2 T /2mv \-| 2 do
= ( ) Z-F[ sinp- ) . (137.4)

\2tnvy L \ h JA sin^S-

Let us consider the limiting case of small q; we have in mind values of q
which are small compared with the "reciprocal atomic radius", i.e. with

l/a , where a is of the order of magnitude of the dimensions of the atom

(qa <^ 1). Small scattering angles correspond to small q: & <^ v /v, where

f We are neglecting exchange effects between the fast electron which undergoes scattering and the

atomic electrons, i.e. we do not symmetrise the wave function of the system. The legitimacy of this

procedure is evident: the interference between the rapidly oscillating wave function of the free

particle and the wave function of the atomic electrons in the "exchange integral" has the result that

the corresponding contribution to the scattering amplitude is small.
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v ~ hjmaQ is of the order of magnitude of the velocities of the atomic

electrons.

Let us expand F(q) as a series of powers of q. The zero-order term is

j" ndV, which is the total number Z of electrons in the atom. The first-

order term is proportional to J tn(f) dV, i.e. to the mean value of the dipole

moment of the atom ; this vanishes identically (see §75).

We must therefore continue the expansion up to the second-order term,

obtaining

1 c
Z-F(q) = -q2 nr2 dV;

6 J6

substituting in (137.4), we obtain

(me*

3ft2
dcr = | nr2 dV

2

do. (137.5)

Thus, in the range of small angles, the effective cross-section is independent

of the scattering angle, and is given by the mean square distance of the

atomic electrons from the nucleus.

In the opposite limiting case of large q(qa > 1, i.e. & ^> vjv), the factor
0-iq.r

-m the integrand in (137.3) is a rapidly oscillating function, and there-

fore the whole integral is nearly zero. Consequently, we can neglect F(q)

in comparison with Z, so that

/ Ze2
\

2 do
da = ( ) . (137.6)

\2mv2J sin4£&
V '

In other words, we have Rutherford scattering at the nucleus of the atom.
We may also calculate the transport cross-section

<*tr
= (1~~ cos &) dcr.

In the range of angles & < v /v we have, according to (137.5), da = constant x
x sin & d& = constant x & d&, where the constant is independent of &.

Hence, in this region, the integrand in the above integral is proportional

to -9s
, so that the integral converges rapidly at the lower limit. In the region

1 > & > vo/v we have dcr ^ constant x d&/&3 ; the integrand is proportional

to 1/&, and the integral diverges logarithmically. Hence we see that this

range of angles plays the chief part in the integral, and we need integrate

only over this range. The lower limit of integration must be taken as of the
order of vo/v; we shall write it in the form e2/yhv, where y is a dimensionless

constant. As a result we have the formula

atr = 4Tr(Ze2lmv2)2 log(yhv/e2). (137.7)

An exact calculation of the constant y requires a consideration of scattering

through angles & > vq/v, and cannot be carried out in a general form; atr
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depends only slightly on the choice of this constant, since it enters only in

a logarithm, and multiplied by the large quantity hv/e2 .

For a numerical calculation of the atomic form factor for heavy atoms, we
can use the Thomas-Fermi distribution of the density n(r). We have seen

that, in the Thomas-Fermi model, n(r) has the form

n(r) = Z*f(rZV*lb);

all quantities in this and the following formulae are measured in atomic units.

It is easy to see that the integral (137.3), when calculated with such a function

n(r), will contain q only in the combination qZ~V3
:

F(q) = ZftbqZ-1 '*). (137.8)

Table 1 1 gives, for reference, the values of the function (f>(x), which holds

for all atoms.f

Table 11

The atomic form factor on the Thomas-Fermi model

X <f>(x) * *(*) X *(*)

1-000 1-08 0-422 2-17 0-224

0-15 0-922 1-24 0-378 2-32 0-205

0-31 0-796 1-39 0-342 2-48 0-189

0-46 0-684 1-55 0-309 2-64 0-175

0-62 0-589 1-70 0-284 2-79 0-167

0-77 0-522 1-86 0-264 2-94 0-156

0-93 0-469 2-02 0-240

With the atomic form factor (137.8), the effective cross-section (137.4)

will have the form

da = (4Z2/g4)[l -<f>(bqZ-V*)f do = Z*l*®{Z-V*v sin£&) do, (137.9)

where ®(x) is a new function holding for all atoms. The total effective cross-

section may be obtained by integration. The chief part in the integral is

played by the range of small &. Hence we can write

da £ Z2/30(Z-i/3©^/2)27ra- da-,

t It must be borne in mind that this formula is not applicable for small q, since the integral of «r2

cannot in practice be calculated by the Thomas-Fermi method (see the fifth note to §112). It should

also be mentioned that the Thomas-Fermi model does not represent the individual properties of

atoms or their systematic variation with atomic number.
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and extend the integration over & to infinity

:

00 00

<j = 2t7Z2 /3 f<D(Z-i/3©9-/2)& dS- = (8t7/^2)Z4/3 f <D(*) d*.

Thus g is of the form

a = constantxZ4 /3/a2 . (137.10)

Similarly, it is easy to see that the constant y in formula (137.7) will be

proportional to Z~1IZ
.

PROBLEM
Calculate the effective cross-section for the elastic scattering of fast electrons by a hydrogen

atom in the ground state.

Solution. The wave function of the normal state of the hydrogen atom is >fs = n~1 l ie~T
,

so that n = e~iT\tt (we are using atomic units). The integration over angles in (137.3) is

effected as in the derivation of formula (125.12); we have

00

477
f

1

F — — n(r) sin qr . r dr =
n J
q I

(i+k2
)
2

Substituting in (137.4), we obtain

4(8+^)2
da = do,

(4+<?2)4

where q = 2v sin %&. The total effective cross-section is conveniently calculated by putting

do = 2ir sin & d& = (In/v^q dq and integrating over q ; here, of course, only the term of
the lowest degree in 1/v need be retained. The result is

a = 77r/3©2 .

§138. Scattering with spin-orbit interaction

Hitherto we have considered only collisions of particles whose interaction

does not depend on their spins. Under these conditions the spins either do
not affect the scattering process at all, or have an indirect influence due to

exchange effects (§135).

Let us now examine the generalisation of the theory of scattering given in

§122 to the case where the interaction of the particles depends significantly

on their spins, as occurs in collisions of nuclear particles.

We shall discuss in detail the simplest case, where one of the colliding

particles (for definiteness taken to be the particle in the incident beam) has

spin \, and the other (the target particle) has spin zero.

For a given (half-integral) angular momentum/ of the system, the orbital

angular momentum can have only the two values I = j±l, corresponding

to states of different parities. In this case, therefore, the conservation of the
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absolute magnitude of the orbital angular momentum follows from that of j
and the parity.

The operator / (§124) now acts not only on the orbital variables but also

on the spin variables of the wave function of the system. It must commute
with the operator of the conserved quantity l2 . The most general form of such
an operator is

f=a+hi.%, (138.1)

where a and h are orbital operators depending only on l2 .

The S-matrix, and therefore the matrix of the operator /, are diagonal with

respect to the wave functions of states with definite values of the conserved

quantities / andy (and the component m of the total angular momentum), and
the diagonal elements are expressed in terms of the phases 8 of the wave
functions by formula (122.14). For given / and given total angular momentum
j = /+ 1 or /— ^ the eigenvalues of 1 . s are \l and — J(/+ 1) respectively (see

(117.5)). Hence, to determine the diagonal matrix elements of the operators

a and h (denoted by ai and bj)
y
we have the relations

«i+¥h =—(*
2'*<+-l),

2ik

(138.2)

ai-^l+l)h =—(«W»r-
1),

2ik

where the phases 8j+ and 8i~ correspond to states withy = /+| andy = /—

^

respectively.

We are interested, however, not in the diagonal elements themselves of

the operator /with respect to the states with given / andy, but in the scatter-

ing amplitude as a function of the directions of the incident and scattered

waves. This amplitude is still an operator, but only with respect to the spin

variables—an operator which is non-diagonal with respect to the spin com-

ponent a. In the rest of this section / will denote this operator.

To derive this operator we must apply the operator (138.1) to the function

(124.16) which corresponds to a plane wave incident along the -sr-axis. Thus

/ = f (21+ l)(ai+bj. . %)Pl(cosd). (138.3)

Here we must also calculate the result of the action of the operator 1 . § on

the function Pj(cos 6). This can be done by writing

l.§ = £ftJL+/_4)+44

(see (29.11)) and using formulae (27.12) for the matrix elements of the oper-

ators /± , or still more simply by using the operator expressions (26.14),

(26.15). The result is

i . §P/(cos0) = iv . §Pji(cos0),
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where Pi1 is the associated Legendre polynomial and v a unit vector in the

direction nxn' which is perpendicular to the plane of scattering (n being

the direction of incidence (the #-axis) and n' the direction of scattering,

defined by the spherical polar angles 6, <j>).

On determining ai and bi from (138.2) and substituting in (138.3), we
have finally

f=A+2Bv.%, (138.4)

1
°°

A =—y [(1+ l)(e^
+- 1) +/(«2<*f_ l)]Pj(cos 6),

2ik

(138.5)

1
°°

B = S (e2««
+- e2«r)Pz

i(Cos^.
2k

i=i

The matrix elements of this operator give the scattering amplitude for

definite values of the spin component in the initial (a) and final (a') states.

Usually, however, what is of physical interest is the effective cross-section

summed over all possible values of a' and averaged with respect to the

probabilities of various values or in the initial state (in the incident beam).

The cross-section is given by

da = (f
+fUdo; (138.6)

by taking the diagonal matrix elements of the product /+/ we effect the

summation over final states, and the bar denotes the averaging with respect

to initial states.f If all spin directions are equally probable in the initial

state, this averaging reduces to taking the trace of the matrix, divided by the

number of possible values of the spin component a:

dc = £tr(/+/)do.

On substitution of (138.4) in (138.6) the mean value of the square (v.s)2

is calculated as ^v2s2 = %s(s+ 1) = J. The result is

da/do = \A\*+ 15|2+2 xt{AB*)v . P, (138.7)

where P = 2s is the initial polarisation of the beam, defined as the ratio

t If the squared modulus |/on|
2 of the matrix element of some operator for the transition -* n

is summed over final states n, we have

2 |/on|
2 = S/ „(/o„)* = S/ „(/+)„o

= (//+)oo.

To avoid misunderstanding, it,should be emphasised that the sign + denoting the conjugate refers
in (138.6) and henceforward to/ as a spin operator; in particular, the transposition of n and n' is

not implied.
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of the mean spin in the initial state to its maximum possible value (§).

In the case of spin \ the vector s completely describes the spin state (§59).

It may be pointed out that the polarisation of the incident beam leads

to an azimuthal asymmetry of the scattering: owing to the factor v.P in

the last term, the cross-section (138.7) depends not only on the polar angle 6

but also on the azimuth
<f>

of the vector n' relative to n (if the polarisation

is not perpendicular to v, so that v.P # 0).

The polarisation of the scattered particles can be calculated from the

formula

P' = 2(/+s/U(7?W (138.8)

For example, if the initial state is unpolarised (P = 0), a simple calculation

gives

2 re(AB*)
P' = -v. (138.9)

\A\*+\B\2
'

Thus scattering leads, in general, to the appearance of a polarisation per-

pendicular to the plane of scattering. This effect is, however, absent in the

Born approximation: if all the phases 8 are small, the coefficient A is real

in the first approximation with respect to the phases, andB is purely imaginary,

so that rt(AB*) = 0.

The fact that the polarisation P' (138.9) is in the direction of v is obvious

a priori. P' is an axial vector, and v is the only axial vector which can be

constructed from the available polar vectors n and n'. It is therefore evident

that this property will also be possessed by the polarisation resulting from the

scattering of an unpolarised beam of particles with spin \ by an unpolarised

target composed of nuclei with any spin (not necessarily zero).j-

In formulating the reciprocity theorem for scattering in the presence

of spins it must be borne in mind that time reversal changes the signs not

only of the momenta but also of the angular momenta. Hence the symmetry

of scattering with respect to time reversal must in this case be expressed by

the equality of amplitudes for processes which differ not only in the inter-

change of the initial and final states and the reversal of the directions of

motion but also in that the signs of the spin components of the particles are

changed in both states. Here, however, the signs of these amplitudes may
differ because, according to (60.2), time reversal introduces a factor (— l)s_<r

in the spin wave function. This has the result that the reciprocity theorem

must be formulated as follows:

J

/(til, a2 , n; ai', a2 ', n') = (-l)s<^>/(- CTl ',
_ ff2 ', _ n'; -<xi, -a2,-n). (138.10)

t Here we have in mind a target with a completely random distribution of spin directions. For

s > i, it will be recalled, the mean value of the spin vector does not fully determine the spin state,

and if this mean value is zero there is not necessarily a complete absence of ordering of the spins.

% The derivation of this relation is similar to that of formula (124.12). The amplitudes of the

ingoing and outgoing waves must contain spin factors, and instead of (124.10) we have the condition

K~XSK = S, where K is an operator which not only effects inversion but also changes the spin state

in accordance with (60.2).
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Here /(oi, <72, n; cti', 02, n') is the amplitude of scattering with change

in the spin components of the colliding particles from cti, ct2 to cti', 02'.

The sum in the exponent is taken over both particles before and after scatter-

ing.

In the Born approximation, the scattering has a further symmetry; the

probabilities of processes differing by the interchange of the initial and

final states, without change in the signs of the momenta and spin components

of the particles as in time reversal, are the same (see §125). Combining this

property with the reciprocity theorem, we find that the scattering is sym-

metrical with respect to a change in sign of all the momenta and spin com-

ponents, without interchange. Hence we easily conclude that in the Born

approximation there can be no polarisation in the scattering of any unpolarised

beam by an unpolarised target. For, under the transformation mentioned,

the polarisation vector P changes sign, while the unit vector k x k', whose

direction must be the same as that of P, remains unaltered. Thus the pro-

perty noted above for the scattering of particles with spin J by particles with

spin zero is actually a general one.

In the case of arbitrary spins of the colliding particles, the general formulae

for the angular distributions are very complicated, and we shall not pause to

derive them here, but merely calculate the number of parameters by which

these distributions must be determined.

The case considered above of a collision between particles of spin \ and

has, in particular, the property that to given values ofj and the parity there

corresponds only one state of the system of two particles (apart from the

unimportant orientation of the total angular momentum in space). Each

such state leads to one real parameter (the phase o) in the scattering ampli-

tude. For other spins there are in general several different states with the

same total angular momentum / and parity; these states differ in the

values of the total spin S of the particles and the orbital angular momentum
/ of their relative motion. Let the number of such states be n. It is easy to

see that each such group of states contributes \n(n+\) real parameters in

the scattering amplitude. For the ^-matrix is, with respect to these states,

a matrix having unitary symmetry (owing to the reciprocity theorem), with

n . n complex elements. The number of independent quantities in this matrix

is conveniently calculated by noting that, if the operator 3 is written in the

form

£ =—-,, (138.11)
1—tR

the unitarity condition is automatically satisfied when JR is any Hermitian

operator. If the matrix S is symmetrical, so is the matrix JR, which, being

Hermitian, is therefore real, and a real symmetrical matrix has \n{n+\)

independent components.

As an example, for two particles with spins \ the number n — 2: for

given J there are in all four states, two with I = J and total spin S = or
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1, and two with I = J±l, S = 1. It is evident that two of these states are

even (/ is even) and two are odd (/ is odd).

The general form of the scattering amplitude for particles with spin \y

as an operator relating to the spin variables of the two particles, is easily

written down from the necessary invariance conditions: it must be a scalar

invariant under time reversal. To construct this expression we have the

two axial vectors si and S2 of the particle spins and two ordinary (polar)

vectors n and n'. Each of the operators §i and §2 must appear linearly in the

amplitude, since any function of an operator of spin \ can be reduced to a

linear function. The most general form of operator satisfying these condi-

tions can be written as

/ =A +B(h . X)(s2 . X)+C(s1 . ix)(§2 • {*)+

+ D(h .v)(§2 .v)+ £(s!+S2) .v+F(si-s2) .v. (138.12)

The coefficients A
y
B, ... are scalar quantities, which can depend only on the

scalar n . n', i.e. on the scattering angle 6 (and on the energy); X, (x, v are

three mutually perpendicular unit vectors along n+ n', n— n' and nxn'
respectively. The operations of time reversal correspond to the changes

si -> — si, S2 -> — S2, n -> — n', n' -> — n,

so that

X -> — X, (A -> (JL, v -> —

V

and the invariance of the operator (138.12) is obvious.

In the mutual scattering of nucleons (protons and neutrons) the last term

in (138.12) does not appear. This is evident from the fact that the nuclear

forces acting between nucleons conserve the absolute magnitude of the total

spin S of the system; the operator §1— §2, however, does not commute with

the operator S2 . (The remaining terms in (138.12) are expressed, according

to (116.4), in terms of the total spin operator S, and therefore commute with

S2
.) In the scattering of like nucleons (j>p or nri), the coefficients A, B, ...

as functions of the angle of scattering also satisfy certain symmetry relations

as a result of the identity of the two particles (see Problem 2).

PROBLEMS

Problem 1. Determine the polarisation after the scattering of particles with spin J
by particles with spin zero when the polarisation before scattering is non-zero.

Solution. A calculation using formulae (138.8) and (138.4) is conveniently effected

in components, with the sr-axis in the direction of v. The result is

(|^|2-|B|2)p+2|5|2v(v.P)+ 2 im(^B*)v x P+2v te(AB*)
=

|4|2+|B|2+ 2re(AB»)v.P
'

Problem 2. Find the symmetry conditions satisfied by the coefficients in the scattering

amplitude for two like nucleons, as functions of the angle 6 (R. Oehme 1955).
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Solution. We regroup the terms in (138.12) in such a way that each is non-zero only

for singlet (S = 0) or triplet (S = 1) states of the system of two nucleons:

/ = a{h . §2-i)+*(§i • §2+|)+c[J+(§i • v)(§2 .v)]+

+ d[(s1 . n)(§2 .n') + (§i . n')(§2 • n)]+<§i+§2) .v. (1)

Using formulae (116.4), we easily see that the first term is non-zero only for S = and the

remainder only for S = 1. Owing to the identity of the particles, the scattering amplitude

must be symmetric with respect to interchange of the particle co-ordinates for S = 0, and
antisymmetric for S = 1. This transformation is equivalent to -> it—6, or to a change in

sign of one of the vectors n and n' (cf. §135). From these conditions we obtain the relations

a(7r-d) = a(6), b{u-6) = -b(d\ c(ir-d) = -c(6),

d(n-d) = d(6), e{ir-d) = e{6).

Owing to isotopic invariance, the scattering amplitude is the same for nn and pp scattering

and for np scattering in the isotopic state with T = 1. For the np system, however, the state

with T — is also possible, and the np scattering amplitude is therefore described by other

coefficients a, b, ... in (1), which do not possess the symmetry properties (2).



CHAPTER XVIII

THE THEORY OF INELASTIC COLLISIONS

§139. Elastic scattering in the presence of inelastic processes

Collisions are said to be inelastic when they are accompanied by a change

in the internal state of the colliding particles. Here we understand "a change

in the internal state" in the widest sense; in particular, the very nature of

the particles may be altered. For example, the change may consist in the

excitation or ionisation of atoms, the excitation or disintegration of nuclei,

and so on. Where a collision (e.g. a nuclear reaction) may be accompanied

by various physical processes, these are referred to as various channels of the

reaction.

The existence of inelastic channels has a certain effect on the properties

of elastic scattering also.

In the general case where various reaction channels exist, the asymptotic

expression for the wave function of the system of colliding particles is a sum,

with one term corresponding to each possible channel. Among these there is,

in particular, a term describing the particles in the original unchanged state

(the input channel). This is the product of the wave functions of the internal

state of the particles and a function describing their relative motion (in a

co-ordinate system where their centre of mass is at rest). The latter function

is the one of interest here ; we shall denote it by ip, and seek its asymptotic

form.

The wave function ijj in the input channel consists of an incident plane

wave and an outgoing spherical wave corresponding to elastic scattering. It

can also be represented as the sum of an ingoing and an outgoing wave, as

in §122. The difference is that the asymptotic expression for the radial

functions Ri(r) cannot be taken in the form of the stationary wave (122.7).

The stationary wave is the sum of ingoing and outgoing waves of equal

amplitude. In purely elastic scattering this corresponds to the physical

significance of the problem, but when there are inelastic channels the ampli-

tude of the outgoing wave must be less than that of the ingoing wave. The
asymptotic expression for ip will therefore be given by formula (122.8):

00

if,
=— T(2/+ l)Pi(cos 0)[(- 1)'*-**'- S^], (139.1)

2kr *—*
1=0

except that the Si are no longer given by (122.9), but are certain quantities,

in general complex, with moduli less than unity. The elastic scattering

542
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amplitude is given in terms of these quantities by formula (122.10):

1
°°

f(d) = V(2/+ l)(Sz- l)Pi(cosd). (139.2)
2ik *-*

1=0

For the total elastic scattering cross-section ae we have, instead of (122.11),

the formula
oo

<* =—T(2/+l)|l-5,|». (139.3)

1=0

The total inelastic scattering cross-section or reaction cross-section ar for all

possible channels can also be expressed in terms of the Si. To do so, we

need only note that for each value of / the intensity of the outgoing wave is

reduced in the ratio \Si\
2 in comparison with that of the ingoing wave. This

reduction must be ascribed entirely to inelastic scattering. It is therefore

clear that

00

ar = ^.V(2Z+l)(l-|S,|*), (139.4)

1=0

and the total cross-section is

2tt

°°

Gt = Ge+ ar =—Y(2Z+ 1)(1 - re Si). (139.5)
k2 *->

1=0

The partial amplitude for elastic scattering with angular momentum /,

determined from (122.13), is

fi = (Si-l)l2ik, (139.6)

and each of the terms in the sum in (139.3) and (139.4) is the partial cross-

section for elastic or inelastic scattering of particles with angular momen-

tum /:

a^ = (W*2X2/+l)|l-Sz|2, n

<£> = (w/*«)(2J+ 1)(1 - |S,|*), (139.7)

a™ = (27r/&2)(2/+ 1)(1 - re St).
)

The value Si = 1 corresponds to the complete absence of scattering (with

a given /). The case Si — corresponds to total "absorption" of particles

with a given /, when

oi
,) = o (

r
,) = (W^)(2/+l), (139.8)

i.e. the cross-sections for elastic and inelastic scattering are equal.
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For a given value of ar(D, the elastic scattering cross-section can have
values in the range

\Ao- Vfao- a?) < W, } < W>+ V(^o- a(

r% (139.9)

where ct = (21+ 1)tt/A2 . It is interesting to note that, when orW is not zero,
CTe <*> also cannot be zero, i.e. the presence of inelastic reaction channels
necessarily involves that of elastic scattering at the same time.

Taking the value of/(0) from (139.2) for 6 = and comparing with (139.5),
we find

im/(0) = kotftir, (139.10)

which is a generalisation of the optical theorem (124.9). Here /(0) is again
the amplitude of elastic scattering through zero angle, but the total cross-
section at includes the inelastic component.
The imaginary parts of the partial amplitudes fi are related to the partial

cross-section a« (I) by

k „<<>

im/,=-—

,

(139.1!)

which follows directly from (139.6) and (139.7).

The fact that the coefficients Si in the asymptotic expression for the wave
function are not of unit modulus does not affect the conclusions of §128
concerning the singular points of the elastic scattering amplitude as a function
of complex E. These conclusions remain valid when inelastic processes
occur. The analytical properties of the amplitude are, however, changed in

that it is no longer real on the negative real axis (E< 0), and its values on the
upper and lower sides of the cut for E > are not complex conjugate quantities

(and accordingly its values at all points in the upper and lower half-planes

symmetrical about the real axis are not complex conjugate quantities).

When we go from the upper edge of the cut to the lower edge by passing
round the point E = 0, the quantity y/E changes sign, i.e. this process
changes the sign of the quantity k, which is real (for E > 0). The ingoing
and outgoing waves in (139.1) are interchanged, and so the coefficient Si is

replaced by its reciprocal 1/Si (which is not equal to S*). The amplitudes

fi on the upper and lower edges of the cut may be denoted byfi(k) and/z(— k)

(only fi(k) is a physical amplitude, of course). According to (139.6) we have

Si-1 1/Si-l

**>--25P*-*>---15--
Eliminating Si from these two equations gives

fi(k)-fi(-k) = 2ikfl(k)fl(-ky, (139.12)

in the absence of inelastic processes, /( — A) = f*(k), and the relations (139.11)

and (139.12) are the same.
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Writing (139.12) in the form

1 1

M) M-k)
= - 2ik,

we see that the sum ljfi(k)+ ik must be an even function of k, and if this is

denoted by gi(k2), then

^ =
-7I^-i-

(139,13)

The even function gi(k2), however, is not now real as it was in (124.15).f

When a beam of particles passes through a scattering medium consisting

of a large number of scatterers, it is gradually attenuated owing to the re-

moval of particles from it which undergo various elastic and inelastic collision

processes. This attenuation is entirely determined by the amplitude of

elastic scattering through zero angle and, under certain conditions (see below),

can be described by the following convenient formal method.$

Let f(0,E) be the amplitude of scattering through angle zero by each

individual particle of the medium. We shall suppose that /is small in com-

parison with the mean distance d ~ (V/N)* between the particles. Then the

scattering by each particle may be considered separately. We use as an

auxiliary quantity an "effective field" Uett of a fixed centre, so defined that

the Born scattering amplitude for scattering through angle zero in this field

is equal to the actual amplitude f(0,E) ; this does not mean, of course, that

the Born approximation can be used to calculate f(0,E) from the actual

interaction of the particles. Then, by definition, we have (see (125.4))

l

2tt/*2

UettdV= /(0,£), (139.14)

where m is the mass of the scattered particle. The field thus defined is, like

the amplitude /, complex. The relation between its radius of action a and

the quantity Ueu is obtained from an estimate of the two sides of equation

(139.14):

aWeit ~ Wflrn. (139.15)

The definition (139.14) is, of course, not unique. We shall impose the

further condition that the field Uett satisfies the condition for perturbation

theory to be applicable

:

It/eflK/*2/^2
,

(139.16)

t The foregoing arguments, and the conclusion that the function gi is even, assume that the inter-

action decreases sufficiently rapidly as r -> oo, so that there are no cuts in the left half-plane ofE and

a complete circuit round the point E = is possible.

% The following treatment can be used, in particular, for the description of scattering of fast

neutrons (with energies of the order of hundreds of MeV) by nuclei, the wavelengths of such neutrons

being so small that the nucleus may be regarded as a non-uniform macroscopic medium.
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with
| / 1 < a. It is easy to see that the attenuation of the scattered beam can

then be described as the propagation of a plane wave in a homogeneous
medium in which the particle has a constant potential energy given by

Nr
Ueti =—J UendV

= -- f(0,E), (139.17)
V m

which is obtained by averaging the effective fields of all N particles in the

medium over its volume V. This becomes evident if we first consider

scattering by a region of the medium which contains many scattering centres

but for which the scattering effect is still small; the possibility of selecting

such regions is ensured by the condition (139.16). The attenuation of the

beam on passing through such a region is determined by the amplitude of

scattering through angle zero, which in turn is determined, in the Born
approximation, by the integral of the scattering field over the volume of the

scattering region. This means that the scattering properties of interest here

are entirely determined by the field (139.17) averaged over the volume of the

medium.
Thus the beam of particles passing through the medium can be described

by a plane wave ~ eikz with wave number

1

k = -V[2m(E~UeS)].
h

In terms of the wave number ko = -\/(2mE)lh of the incident particles, we
can write k in the form nko, where the quantity

»=v(i--£5)

N 2irW
= V(l+-—f(0,E)) (139.18)

V mE

plays the part of a "refractive index" of the medium with respect to the

beam of particles passing through it. It is in general complex (the amplitude

/ being complex) and its imaginary part gives the attenuation of the beam

intensity. If £">
|
Ue tt \,

then (139.18) gives, as it should,

N ttW
im« = ———im/(0,£)

V mE

_Nat

~~V2k
y
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where at is the total scattering cross-section, and we have used the optical

theorem (139.10). This expression corresponds to the obvious result that the

intensity of the wave is damped according to the law

\ eikz\2 ^ e-NcrtZ/V,

As well as the absorption, the refractive index (139.18) also determines (by

its real part) the law of refraction of the beam on entering and leaving the

scattering medium.

PROBLEM

Neutrons are scattered by a heavy nucleus whose radius a is large compared with the wave-

length of the neutrons (ka> 1). It is assumed that all neutrons incident with orbital angular

momentum I <ka=l (i.e. with impact parameter p = hl\mv = l\k <a) are absorbed

by the nucleus, while those with I > Zo do not interact with it at all. Determine the cross-

section for elastic scattering through small angles.

Solution. Under the conditions stated, the motion of the neutrons is mainly quasi-

classical, and elastic scattering results from a slight deflection entirely analogous to Fraun-

hofer diffraction of light by a black sphere. The required cross-section can therefore be

written immediately from the known solution of the diffraction problem:!

A(ka9)
dcre = ff« do -

7702

The same result can also be derived from the general formula (139.3). According to the

conditions of the problem, we have Si = for I <l and Si = 1 for I > / . The elastic

scattering amplitude is therefore

1

l°

f(6)
= —V (21+ l)Pi(cos6).

2ik *-*
1=0

The chief part in the sum is played by the terms with large Z. We therefore write 21 in place

of 2Z+1, use the approximate expression (49.6) for Pi (cos 0) with small, and change from

summation to integration

:

*0

/(0)=— f/7o(0/)dZ

i

= — loJi(9lo)
kd

= (ial9)Ji(ka6),

as it should be.

J

t See The Classical Theory of Fields, §61, Problem 3 (the problem of diffraction from a black sphere

is equivalent to that of diffraction from a circular aperture cut in an opaque screen). The cross-section

is obtained by dividing the intensity of the diffracted waves by the incident flux density.

t A similar discussion can be given for the problem of diffraction scattering of fast charged particles

by a "black" nucleus (A. I. Akhiezer and I. Ya. Pomeranchuk 1945). The limiting value Zo must

here be determined from the condition that the shortest distance between the nucleus and a particle

moving along a classical path in a Coulomb field is just equal to the radius of the nucleus. For I < Zo

we must again put Si = O.andforZ > loSi = e
2i5

', where S, are the Coulomb phases given by (133.11).

See A. Akhiezer and I. Pomeranchuk, Some Problems of Nuclear Theory {Nekotorye voprosy teoru

yadra), Gostekhizdat, Moscow 1950, §22.
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The total elastic scattering cross-section is

=7m
J-

oe = 7ra2\— -l-nd&d
776*2

= ira.2.

the integration can be extended to infinity because of the rapid convergence. This is the
result to be expected under the conditions stated (cf. (139.8)), and is the same as the
absorption cross-section, simply the geometrical cross-section of the sphere. The total cross-
section at = 2itcP.

§140. Inelastic scattering of slow particles

The derivation of the limiting law of elastic scattering at low energies given
in §130 can easily be generalised to the case where inelastic processes are
involved.

As before, the scattering with / = is the most important at low energies.
According to the results of §130, the corresponding element of the S-matrix is

SQ = e™° ~ 1 + 2*So = 1 -2&X.

The properties of the wave function described in §130 are changed only in
that the condition imposed on it at infinity (the asymptotic form (139.1)) is

now complex, instead of the real stationary wave which occurs in the case
of purely elastic scattering. The constant a = -c2/ci is therefore complex
also. The modulus

|
So

|
is no longer equal to unity; the condition \SQ \

< 1

means that the imaginary part of a = a' + /a" must be negative (a" < 0).
Substituting S in (139.7), we find the cross-sections for elastic and in-

elastic scattering:

ae = 47r|a|2, (U0.1)

<Jr = 4Tr\ct"\/k. (140.2)

Thus the elastic scattering cross-section is again independent of velocity, but
the inelastic cross-section is inversely proportional to the particle velocity
the 1/v law (H. A. Bethe 1935). Consequently, as the velocity diminishes,
inelastic processes become more and more important in comparison with
elastic scattering.f

The limiting laws (140.1) and (140.2) are, of course, only the first terms
of expansions of the cross-sections in powers of k. It is interesting to note that
the next term in the expansion for each cross-section contains no constants
other than those which appear in (140.1) and (140.2) (F. L. Shapiro 1958).
This result is due to the fact that the function go(k2), in the expression (139.13)

f (k) =
go{k*)-ik

t The velocity dependence of the partial reaction cross-sections for various non-zero orbital
angular momenta I can be determined similarly. It is given by arW ~ k2'-1

. The elastic scattering
cross-sections <rew are, as before, proportional to kil, i.e. they decrease more rapidly than orW with the
same / as k —> 0.
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for the partial scattering amplitude (/ = 0), is even. For small k this function

can therefore be expanded in even powers of k, and the term following

go ¥ - 1/a is ~ k2
. If we neglect this term, we can still write two terms of

the expansion in fo(k):

fo(k) = — a(l — ikcc).

Correspondingly we can retain the next terms of the expansions in the cross-

sections, for which the following expressions are easily obtained:

<7e = 47r|a|2(l-2%"|), (140 -3 )

<rr = 4ir|a"|(l - 2%"|)/*. (140.4)

These results assume a sufficiently rapid decrease of the interaction at

large distances. We have seen in §130 that the elastic scattering amplitude

tends to a constant limit as k -> if the field U(r) decreases more rapidly

than r
-3

. This is a necessary condition also for the validity of the analogous

result (140.1) when inelastic channels are present.f

The 1/v law for the reaction cross-section is subject to a weaker condition:

the field must decrease more rapidly than r~2 , as is clear from the following

intuitive derivation of the 1/v law.

The probability that a reaction will occur in a collision is proportional to

the squared modulus of the wave function of the incident particle in the

"reaction zone" (in the region r ~ a). Physically, this statement expresses

the fact that, for example, a slow neutron colliding with a nucleus can bring

about a reaction only if it "penetrates" into the nucleus. If the interaction

decreases more rapidly than r~2 , it does not change the order of magnitude

of the wave function between large r and r ~ a; in other words, the ratio

|
i/j(a)/i/j(oo)

|

2 tends to a finite limit as k -> (this is seen from the fact that

the term Ui[j in Schrodinger's equation is small compared with A<A)- The

effective cross-section is obtained by dividing
|

iff
|

2 by the current density.

If ^ is taken as a plane wave normalised to unit current density, we have

| ift
|

2 ~ 1/v, the required result.

In collisions of charged nuclear particles, there is a slowly decreasing

Coulomb field in addition to the short-range nuclear forces. The Coulomb

field may considerably alter the magnitude of the incident wave in the

reaction zone. The reaction cross-section is found by multiplying 1/v by

the ratio of the squared moduli of the Coulomb and free wave functions as

r ->0. This ratio is given by formulae (134.10), (134.11). The result is

(in Coulomb units)

Gr =
™

;
(140.5)

#S| e±27T/fr-l|

the plus sign in the exponent corresponds to repulsion and the minus sign to

attraction.

t The formula (140.3), which takes into account the next term in the expansion in powers of k,

requires that U should decrease more rapidly than r-4 .
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If the velocity is large compared with the Coulomb unit (k > 1), the
Coulomb interaction plays no part and we return to the law ar = A/k.

If the velocity is small compared with the Coulomb unit (k < 1, or in
ordinary units ZxZ^/hv > 1, where Ztf, Z2e are the charges of the colliding
particles), the Coulomb interaction is predominant in determining the magni-
tude of the wave function in the reaction zone. Then

27rAhZ1Z2e^ / 2-nZ1Z2e\
ar = ~2 exP ( y~

)
(140<6)

for a collision between repulsive particles, and

liTAhZxZze*
°r = -

(140.7)

for a collision betweenjattractive particles.f The exponential factor by which
(140.6) and (140.7) differ is the small probability of passage through the
Coulomb potential barrier.

§141. The scattering matrix in the presence ofreactions

The cross-section <jr considered in §§139 and 140 was the total cross-
section for all possible inelastic scattering channels. We shall now describe
the derivation of the general theory of inelastic collisions, in which each
channel can be considered separately.

We shall suppose that, as a result of the collision of two particles, two
particles (which may be the same or different ones) are formed.J We number
all possible reaction channels (for a given energy), and denote quantities
pertaining to them by appropriate suffixes.

Let channel a be the input channel. The wave function of the relative

motion of the colliding particles (in the centre-of-mass system) in this

channel is given by the sum already mentioned of the incident plane wave
and the elastically scattered outgoing wave

:

eik!tr

fa = J**+faa(ff) . (141.1)
r

t It may be noted that the limiting laws (140.6), (140.7) for the velocity dependence relate not only
to the total cross-sections but also to the partial cross-sections with all angular momenta I. This is

seen from the fact that, in the expansion (134.2) of the functions tfik (which appear in the formulae
(134.10), (134.11) used above), in all the terms in the sum the functions Rki have the same limiting
dependence on k; for example, in the case of attraction, according to (36.25), the Coulomb functions
Rki ~ V{k/r)J2i+i[V(Sr)], and for r -^ Ru ~ Vkrh The contributions of the various angular
momenta to the square |^k(a)|

2 are of the order of magnitude of (a/ac) 21^1 (in ordinary units), i.e.
they depend in the same way on k, though attenuated by the small factor (a/ac)

21 (where ac= h2/mZiZze2 is the Coulomb unit of length).

t In this book we do not explicitly consider reactions in which more than two particles are formed
(except for collisions leading to ionisation of atoms (§145)). We shall not therefore pause to determine
the scattering matrix for the general case of reactions involving any number of particles.
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The square of the amplitudefaa gives the cross-section for elastic scattering

in channel a:

daaa=\faa\2do. (141-2)

In other channels (suffix b) the wave functions of the relative motion of the

particles formed represent outgoing waves. As explained above, these waves

are conveniently represented in the form

, (141.3)

ma r

where k& is the wave vector of the relative motion of the reaction products in

channel b, 6 the angle between it and the sr-axis, and ma ,
mb the reduced

masses of the two initial and two final particles. The scattered flux in the

solid angle do is obtained by multiplying the square
| fo \

2 by vbrMr, and the

cross-section for the corresponding reaction is found by dividing this flux by

the incident flux density, which is va . Thus

doab =\fab\*-dob ,
(141.4)

pa

where the momenta pa = maPa, pb = mbvb .

In §124 we have defined the scattering operator S, which converts an in-

going wave into an outgoing one. When several channels are present, this

operator has matrix elements for transitions between different channels.

The elements which are "diagonal" with respect to the channels correspond

to elastic scattering, and the non-diagonal elements correspond to various

inelastic processes. All these elements, of course, remain operators with

respect to the other variables. They are determined as follows.

Similarly to the method used in §124, we define operators faa , fab related

to the amplitudes faaJab- The diagonal elements of the S-matrix are given

by the formula

•Saa = 1 + 2?«o/oa>

which is analogous to (124.4). The non-diagonal elements are defined by

Sab = 2i^(kakb)fab, a ^ b.

These two expressions can be combined as

Sab = 8ab+2iV(kakb)fab. (141.5)

It is easily seen that with this definition we obtain an S-matrix which must

satisfy the unitarity condition. For we can write the wave function in the
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input channel as a set of ingoing and outgoing waves, as in §124:

g—ikar gikar

ta = F(-n')— (l+2ikafm)F(ri)-
WVa ry/Va

e-M»r ei]car

Here, for convenience, we have introduced a further factor \\y/va in com-
parison with (124.3). Then, with the amplitudes as defined above, the wave
function in channel b is

6 = 2ika I —fabF(ri)
V ma

gifor

gikbT

= SaiF(n')——

.

(141.7)ryvb
v '

The flux in the ingoing waves must be equal to the sum of the fluxes in
the outgoing waves in all channels. This requirement expresses the obvious
condition that the sum of the probabilities of all processes (elastic and in-
elastic) which can occur in the collision must be unity. On account of the
factor -\/v in the denominators of the spherical waves, the velocity does not
appear in the flux densities in these waves. The above condition therefore
means simply that the normalisations of the ingoing wave and the assembly of
outgoing waves must be the same. It is consequently again expressed by the
condition of unitarity of the scattering operator, regarded as a matrix, with
respect to (in particular) the channel numbers. For the operator fab this
condition becomes

fab -fat = 2z'2 kjacftc

,

(141 .8)

c

which is analogous to (124.7). The index + denotes taking the complex
conjugate and transposing with respect to all the matrix suffixes except the
channel number.
The ^-matrix is diagonal with respect to states having definite values of

the orbital angular momentum /; the corresponding matrix elements are
distinguished by the index (/). By applying the operators faa and/a6 to the
function (124.16), we obtain the amplitudes for elastic and inelastic scattering
processes in the form

1
°°

faa =-^T-T(2/+ l)(Sw<» - 1)P*(COS0),
llkaU

(141.9)

1

°°

fab =
o- //nx2<2/+ ^^(cosfl).



§141 The scattering matrix in the presence of reactions 553

The corresponding total cross-sections are

oo

° 1=0

(141.10)

° 1=0

The former is the same as (139.3). The total reaction cross-section ar (from

input channel a) is

/

Or = /?ab

b

taken over all b ^ a. Since the S-matrix is unitary, we have

b

which gives formula (139.4) for ay.

The symmetry of the scattering process with respect to time reversal (the

reciprocity theorem) is given by the equation

§ab=£b*a*, (141.11)

or, what is the same thing,

/«*=/>*«*. (141.12)

The symbols a* and b* denote states which differ from a and b by a change

in the signs of the velocities and angular momentum components of the

particles. These relations generalise the formulae (124.11) and (124.12) for

elastic scattering.-]-

For a process with definite initial and final directions of motion, the relation

(141.12) gives the same equality for the scattering amplitudes which appear

in (141.4). The cross-sections for the direct and time-reversed processes

are therefore related by$

daab _ d<w
^ (14113)

pb2dob Pa
2doa

It has been mentioned in §125 that, if perturbation theory is applicable,

then in the first approximation we have not only the reciprocity theorem but

t Here we omit the factor — 1 which may appear in collisions of particles having spin (cf. (138.10)).

This, of course, does not affect formula (141.13) for the cross-sections.

t This equation represents the principle of detailed balancing.



554 The Theory of Inelastic Collisions §142

also a further relation between the amplitudes of the direct and reverse
processes (in the literal sense), a ->b and b -> a. This property, expressed
by the equation fab = fba*, holds good for inelastic processes (in the same
approximation). The corresponding cross-sections are then related by

d.Gab &aba

Pb
2dob

=
p^doa

' (14U4)

The difference between the transitions a -> b and a* -> b* no longer
exists if we consider the integral cross-section (i.e. that integrated over all
directions of p6) summed over all directions of the angular momenta ji6 , j2&
of the resulting particles and averaged over the directions of the momentum
p« and angular momenta jla , j2a of the initial particles. Let this cross-section
be

ioa .^-M2,I(,+ l)(2;2„+ l) 2 2 J7
d^<

Writing (141.14) in the form

Pa2dGabdoa = pb
2dab*a*dob*

and effecting the integrations and summations, we obtain

(2/ia + l)(2/2a+ 1)#*
2^ = (2/i6+ l)(2j2b+ l)pb^. (141.15)

Finally, we may note the following property of the amplitudes fab . We
have seen in §140 that the cross-section uab varies as l/pa when pa -> (if
the interaction decreases sufficiently rapidly at large distances). According to
formula (141.4), this means that/a6 -> constant as pa -> 0. Hence it follows
from the symmetry property (141.12) that/a6 tends to a constant limit as

pb -> also. We shall return to this result in §144.

§142. Breit and Wigner's formula

In §132 we have introduced the concept of quasi-stationary states as being
those which have a finite but relatively long lifetime. A wide class of such
states arises in the field of nuclear reactions at not too high energies which pass
through the stage of formation of a compound nucleus,f
An intuitive physical picture of the processes occurring is that the particle

incident on the nucleus interacts with the nucleons in the nucleus and
"coalesces" with them, forming a compound system in which the energy
contributed by the particle is distributed between many nucleons. The
resonance energies correspond to the quasi-discrete levels of this compound
system. The long lifetime of the quasi-stationary states (compared with the

t The concept of the compound nucleus is due to N. Bohr (1936).
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"periods" of the motion of the nucleons in the nucleus) is due to the fact that

for the greater part of the time the energy is distributed between many

particles, so that none of them has sufficient energy to overcome the attraction

of the other particles and leave the nucleus. Sufficient energy for this purpose

is only comparatively rarely concentrated on one particle. The disintegration

of the compound nucleus can then take place in various ways corresponding

to the various possible reaction channels.f

This description of such collisions shows that the possibility of inelastic

processes does not affect the potential part of the elastic scattering amplitude,

which is not related to the properties of the compound nucleus (see §132);

inelastic processes change only the resonance part of the elastic scattering

amplitude. For the same reason the amplitudes of inelastic scattering pro-

cesses which pass through the stage of formation of the compound nucleus

are purely resonance in character. The resonance denominators of all ampli-

tudes which relate to the vanishing of the coefficient of the ingoing wave for

E = EQ -\iY retain their form {E-EQ + \iY)
y
Y being again the total proba-

bility of decay of any given quasi-stationary state of the compound nucleus.

These arguments, together with the unitarity condition which must be

satisfied by the scattering amplitudes, are sufficient to establish the form of

these amplitudes.

The calculations may conveniently be made in a symmetrical form by

numbering all possible channels of disintegration of the compound nucleus

and not specifying beforehand which of them is the input channel for the

reaction concerned. The suffixes denoting the channel numbers will be

represented by a, b, c, ... . We shall also consider the partial scattering

amplitudes corresponding to the value of / for the quasi-stationary state in

question.^ We accordingly seek these amplitudes in the form

1 1 TMab
/-»<» = --{e™«-l)8ab- ——-^(^>) (142.1)

2lka 2y/(kakb) E—Eo+ pL

(the index (/) to the constants 8a and Mab is omitted for simplicity). The

first term appears only if a = b, and represents the amplitude of potential

elastic scattering in channel a; the constants Sa are the same as the phases

§z<°> which appear in (132.11). The second term in (142.1) corresponds to

resonance processes. The form of the coefficient of the resonance factor in

this term is chosen so as to simplify the result of applying the unitarity

conditions (see below).

Since we are considering scattering for a given value of the absolute

magnitude of the orbital angular momentum, a quantity which does not

change sign under time reversal, the reciprocity theorem (symmetry with

t The competing reactions include also radiative capture of the incident particle, in which the

compound nucleus goes from an excited state to its ground state with the emission of a y-quantum.

This process is also "slow", owing to the relatively low probability of the transition with emission.

t We shall at first ignore the complications which arise from the spins of the particles involved in

the process.
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respect to time reversal) is expressed simply by the symmetry of the ampli-
tudes faffi) with respect to the suffixes a and b. Hence it follows that the
coefficients Mab must also be symmetrical (Mab = Mba).
The unitarity conditions for the amplitudes fabW are

im/a6«> = 2V«V

;

(142.2)

cf. (141.8). Substituting the expressions (142.1), we find after a straight-
forward calculation

Mab
* Mab _ tTJMacMic*

E-E -\iT E-Eo+$iT (E-Eo)*+iT*'

If this equation is satisfied identically for all energies E, we must have first
of all Mab = Mab*, i.e. the quantities Mab are real. We then obtain the
relation

Mab = 2MacMbc , (142.3)

i.e. the matrix of coefficients Mab must be equal to its own square.
The real symmetrical matrix Mab can be brought to diagonal form by a

suitable orthogonal linear transformation C Denoting the diagonal elements
(eigenvalues) of the matrix by M<a

>, we can write this transformation in the
form

ZU*aUfibMab = MW8afii

a,b

where the transformation coefficients satisfy the orthogonality relations

ZUaeUfic = 8a/l . (142.4)

Conversely

Mab = 31UaaUxbM(«\ (142.5)

The relations (142.3) give the conditions M<a
> = (M<a

>)
2 for the eigen-

values M<">, so that these must be zero or unity. If only one of the M<a > is

different from zero (say Af <*> = 1), then (142.5) gives

Mab = UlaUlb , (142.6)

i.e. all the matrix elementsMab are expressed in terms of the set of quantities

Uia, a = 1, 2, ... . If several of the M (a) are non-zero, then the elementsMab are sums expressed in terms of several sets of quantities Uia, Uia, — ,

these quantities being related only by the orthogonality relations and other-
wise independent. This case would correspond to accidental degeneracy,
where several different quasi-stationary states of the compound nucleus
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correspond to the same quasi-discrete energy level.f Ignoring these un-

important cases, i.e. considering non-degenerate levels, we therefore conclude

that the matrix elements Mab are products of quantities each depending on

the number of only one channel.

With the notation

|£/ia| = V(r«/r),

we can write formula (142.6) as

Ma& =±V(rar&)/r ;
(142.7)

the sign ofMab depends on those of Ula and Ulb , and remains indeterminate.

On account of the equation T,UicUic = 1, the quantities Ya thus defined

satisfy the relation

Sra = T. (142.8)
a

They are called the partial widths of the various channels. Formulae (142.1),

(142.7) and (142.8) give the required general form of the scattering amplitudes.

Let us now rewrite the final formulae, taking some definite channel as the

input channel.^ The partial width of this channel will be denoted by Ye

(the elastic width) and the widths of channels corresponding to various reac-

tions by IYi, rr2, ....

The total elastic scattering amplitude is

21+ 1 Ye

/e(0) =/<°>(0) -eMWPiicosd), (142.9)

2k E—Eo+^iT

where k is the wave number of the incident particle and/(°> the potential scat-

tering amplitude. This formula differs from the expression (132.11) in that

T in the numerator of the resonance term is replaced by the smaller quantity

Ye .

The amplitudes of inelastic processes are, as already mentioned, of purely

resonance type. The differential cross-sections are

dam =
(2/+1)2 ^ [Please)]*, (142.10)

and the integral cross-sections are

""
-"-e-l-ra . .. , ~ .. .. ^

era = (2/+1) • (142.11)
V J

k* (E-Eof+IY*

t This is particularly clear in the case where all the M(a) = 1. It follows from (142.4) and (142.5)

that then Mab = Soft, i.e. there are no transitions between different channels. In other words, this case

would correspond to a number of independent quasi-discrete states, each occurring in elastic scattering

in one channel.

% These formulae were first obtained by G. Breit and E.Wigner (1936).
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The total cross-section for all possible inelastic processes is

gf " (2'+1W-£„mrT' <142 -12>

where rr = T- Te is the total inelastic width of the level.

It is also of interest to know the value of the reaction cross-section inte-
grated over the range of energy near the resonance value E = E . Since oy
decreases rapidly away from the resonance, the integration with respect to
E—Eq can be extended from — oo to +00, giving

r 2772 rerr

Jard£=(2/+l)-_—_. (142.13)

In the scattering of slow neutrons (for which the wavelength is large
compared with the dimensions of the nucleus), only s-wave scattering is

important, and the potential scattering amplitude is a real constant -a.
Then (132.13) becomes

/-— 2KE-k+hry <142 -14>

The total elastic scattering cross-section is

a
7T Tez+4a.kTe{E-EQ)

<je = 47ra2+ 1_. (142.15)

The term 4n(x.2 may be called the potential scattering cross-section. We see
that in the resonance region there is interference between the potential

scattering and the resonance scattering. The amplitude a can be negligible

only in the immediate neighbourhood of the level (E-E ~ V) (we recall

that
I

vk
I

<^ 1), and the formula for the slow neutron elastic scattering cross-

section then becomes

TT iv— J? V-WW <142 - 16>

The total cross-section for elastic and inelastic scattering is

rer
at = ae+ar = . (142.17)

k* (£-£ )2+ir2
V ' }

When potential scattering is negligible, the cross-sections ae , ara can be
put in the form

ae = cr^iyr, am = a^rYa/r.

The quantity a t is the sum of the cross-sections for all possible resonance
processes, and may be regarded as the cross-section for the formation of the
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compound nucleus. The cross-sections for the various elastic and inelastic

processes are obtained by multiplying a t by the relative probabilities of

particular types of disintegration of the compound nucleus, which are given

by the ratios of the corresponding partial widths to the total width of the

level. The possibility of this representation of the cross-sections is the result

of the factorisation of the coefficientsMah in the numerators of the scattering

amplitudes. It corresponds to the physical picture of the collision process

as occurring in two stages: the formation of the compound nucleus in a

certain quasi-stationary state, and its disintegration through one or another

channel.*}"

As already mentioned in §132, the range of applicability of the formulae

considered here is limited only by the requirement that the difference

|
E-E

|
should be small compared with the distance D between neighbour-

ing quasi-discrete levels of the compound nucleus (with equal values of the

angular momentum). It was also mentioned, however, that the formulae

as written do not allow the passage to the limit E -> 0, which is relevant if

the value E = lies in the resonance region. In this case the formulae must

be modified by replacing the energy E by some related constant e
,
and the

elastic width Ye by yeVE '> the inelastic width Tr must again be regarded as

constant.-j: This change causes the inelastic cross-section (142.12) to increase

as l/VE wnen E -* °> in accordance with the general theory of the inelastic

scattering of slow particles (§140).

When the spins of the colliding particles are taken into account, the form-

ulae are in general very complicated. We shall consider only the simplest,

though important, case of the scattering of slow neutrons, when only orbital

angular momenta / = are involved in the scattering. The spin of the com-

pound nucleus is obtained by adding the spin i of the target nucleus to the

spin s = I of the neutron, i.e. it can take the values; = i± | (we assume that

i # 0, since otherwise the formulae are unchanged). Each quasi-discrete

level of the compound nucleus relates to a definite value of j. The reaction

cross-section is therefore obtained by multiplying the expression (142.12)

(with / = 0) by the probability g(j) that the system of nucleus + neutron

will have the necessary value of; for which there is a resonance level.

We shall suppose that the spins of the neutrons and of the target nuclei

are oriented at random. There are altogether (2/+ 1) (2s + 1) = 2(2/ + 1)

possible orientations of the pair of spins i and s. Of these, 2j+ 1 correspond

to a givenvalue/ of the total angular momentum. Assuming that all orientations

t All the above calculations have been based on a reaction of the form a+X = b+Y, in which

two initial particles (the nucleus and the incident particle) give rise to two particles. This assumption

is not, however, of fundamental importance, as is clear from the physical nature of the results obtained.

Formulae of the type (142.1 1) for the integral cross-sections are valid also for reactions where more than

one particle leaves the nucleus.

t It is important to note that, for inelastic processes which arepossible at small energies (for example,

radiative capture), the value E = is not a threshold value. A change in the partial widths IVa similar

to that specified for Te would be necessary for energies close to the threshold of the reaction in question,

below which it cannot occur at all.

The necessity of the above modification of the formulae at low energies was pointed out by H. A.

Bethe and G. Placzek (1937).
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are equally probable, we find that the probability of a given value; is

*°')=JJf <1+2- 18>

The formula for the elastic scattering cross-section must be modified
similarly. Here it must be borne in mind that, in potential scattering, both
values of; are involved. The factor g(j) (with; corresponding to the resonance
level) must therefore be included in the second term in (142.15), while the
term 47ra2 must be replaced by the sum

2ftj).M«U)
]
8

-

The fact that resonance reactions go through the stage of formation of a
compound nucleus in a definite quasi-stationary state leads to some general
conclusions concerning the angular distribution of the products of these re-
actions. Each quasi-stationary state has a certain parity (in addition to its

other characteristics). The system of particles b+Y formed in the dis-
integration of the compound nucleus will therefore have the same parity.
This means that the wave function of this system, and therefore the reaction
amplitudes, can only be multiplied by ± 1 when the co-ordinate system is

inverted; the squared amplitudes, i.e. the cross-sections, therefore remain
unchanged. Inversion of the co-ordinates signifies (in the centre-of-mass
system) the changes -> 77-0,

<f>
-> tt+ <j> for the polar angle and the azimuth

which determine the direction of scattering. The angular distribution of the
reaction products must therefore be invariant under this change. In par-
ticular, after averaging with respect to the directions of the spins of all the
particles participating in the reaction, the cross-section depends only on the
scattering angle 0, and the distribution with respect to this angle must be
symmetrical with respect to the change ->tt-Q, i.e. the angular distri-

bution (in the centre-of-mass system) is symmetrical about a plane per-
pendicular to the direction of collision of the particles.f

Owing to the very large number of closely-packed levels of the compound
nucleus, the detailed variation with energy of the cross-sections for various
scattering processes is extremely complex. This complexity makes difficult,

in particular, the discovery of any systematic changes in the properties of the
cross-sections from one nucleus to another. It is therefore reasonable to

consider the behaviour of the cross-sections apart from the details of the
resonance structure, i.e. averaged over energy ranges which are large

compared with the distances between levels. With this treatment we also

make no distinction between the various types of inelastic process, but
divide the scattering only into "elastic" and "inelastic" (in the sense defined
below).J

t For particles without spin, the differential reaction cross-section would be simply proportional
to [Pi (cos 0)]

2
, and the symmetry is obvious.

t The following method of averaging (for proceeding to what is called the optical model of nuclear
scattering) was proposed by V. F. Weisskopf, C. E. Porter and H. Feshbach (1954).
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To demonstrate the significance of the averaging processes, we again omit

the complexities associated with spin, and consider the partial cross-sections

for scattering with 7=0.
According to formulae (139.7),

ff "|S-1|2, ar =Al-|S|)2,

cT« = ^.2(l-re5), (142.19)

the elastic and inelastic scattering cross-sections, and therefore the total

cross-section, are expressed in terms of the same quantity S (the index (0)

is omitted for brevity). In averaging over the energy interval, the total cross-

section, which depends linearly on S, is given in terms of the mean value of

5 by
at
= (7r/£2) . 2(1 - re S) ; (142.20)

the factor 1/k2 , which varies only slowly, is unaffected by the averaging. The
averaged "elastic" cross-section is defined as

5eoPt = (7r/^2)]^_i|2) (142.21)

which is not in general equal to the mean value de . In other words, we define

the elastic scattering by first averaging the amplitude in the outgoing wave

Seikrjr. With this definition the elastic scattering of a wave packet leaves it

unchanged in form; we can say that the cross-section (142.21) relates to the

"coherent" part of the scattering. This means that the part of the elastic

scattering which occurs through the formation of a compound nucleus is

excluded: when a long-lived compound nucleus is formed and then dis-

integrates, the specific features of the incident wave packet are, of course,

lost. The "inelastic" scattering in the averaged model is now naturally

defined as the difference 5aopt = &t— 6e
opt

, i.e.

aaopt = (w/#)(l - 1£|2). (142.22)

This includes, therefore, not only the various inelastic processes but also that

part of the elastic scattering which occurs with the formation of an inter-

mediate compound nucleus.

It is easy to see that this interpretation gives a correct account of the limit-

ing cases, and therefore serves as a reasonable interpolation.

In the region of low energies, where the resonances are well resolved

(r <^ Z>), S is given near each level by the formula

S = e™m (l — V
\ E-Eo+tfTj

Averaging gives

£ = e2iSW(l -nTe/D), (142.23)
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where Ye and D are the elastic width and the mean distance between the levels,

averaged over the levels occurring in the energy range concerned ; the slowly

varying function 8 (0\E) may be regarded as constant in the averaging.

Hence we find

IT ILttYq

*a°Pt =
^~D~'

(142 '24)

where small terms ~ V/D have been omitted-t This expression in fact

coincides with the mean value of the cross-section (142.17), which, as pre-

viously mentioned, corresponds to the formation of a compound nucleus.

As the excitation energy of the compound nucleus increases, the distances

between its levels decrease, and the disintegration probabilities (and so also

the total widths of the levels) increase, so that the levels begin to "overlap"
(in which case the concept of quasi-discrete levels loses much of its signific-

ance). The irregularities of the function S(E) are then smoothed out, so that

the difference between the exact and the averaged functions becomes small,

and the cross-section (142.22) is the same as ar given by (142.19). This is in

accordance with the fact that at high energies the disintegration of the com-
pound nucleus through the input channel is unimportant in comparison with
the numerous other modes of disintegration possible at such energies. In
this range, therefore, all processes which involve the formation of a com-
pound nucleus may be regarded as inelastic.

Thus in the averaged model the scattering is again determined by a single

quantity S, which is now a smooth function of energy. In the optical model,

in order to calculate this function, the scattering properties of the nucleus
are approximated by a field of force with a complex potential. The imaginary
part of the potential has the result that absorption of particles occurs as well

as elastic scattering. This absorption, the cross-section for which is given by
the expression (142.22), is identified with "inelastic" scattering in the averaged
model.

§143. Interaction in the final state in reactions

The interaction between particles formed as a result of a reaction may have
a considerable effect on their distribution in energy and angle. This effect

will naturally be particularly marked when the relative velocity of the inter-

acting particles is small. Such a phenomenon occurs, for example, in nuclear

reactions accompanied by the emission of two or more nucleons, the effect

here being due to the nuclear forces which act between free nucleons.J

Let po be the momentum of the centre of mass of a pair of emergent
nucleons, and p the momentum of their relative motion. We shall suppose

t Terms arising in the region of a level owing to the presence of other levels would be of the same
order of magnitude.

t The results given below were obtained first by A. B. Migdal (1950) and later, independently,
by K. M. Watson (1952).
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that p < po, and so the relative energy E = p2/m (m being the nucleon

mass) is small compared with the energy Eq = p$\\m of the motion of the

centre of mass. We also suppose that the energy E$ is large compared with the

energy e of the level (real or virtual) belonging to the system of two nucleons.

That is, only the relative motion of the nucleons is assumed "slow", while the

nucleons themselves are "fast".

The probability of reaction is proportional to the squared modulus of the

wave function of the particles formed when they are in the "reaction zone",

i.e. at a distance apart which is of the order of the radius a of action of nuclear

forces (cf. the similar discussion in §140 relating to primary particles). In

the present case our object is to determine the dependence of the reaction

probability only on the characteristics of the relative motion of one pair of

nucleons. It is therefore sufficient to consider only the wave function

ifsp
(r) of this motion, so that the probability of the formation of a pair of

nucleons with relative momentum in the range d3p is

dwp = constant x
1
P(a)

1

2ds
p. ( 143 . 1

)

It has been shown in §134 that, in order to find the probability that a

system will enter, through scattering, a state with a definite direction of

motion, we must take as the wave functions of the final state functions

j/f
p
_ which contain (at infinity) only an ingoing wave together with a plane

wave ; these functions must be normalised by the delta function of momen-
tum. The functions ip

p
~ are also obtained directly (by taking the complex

conjugate and changing the sign of p) from the functions «/r
p
+

, which contain

(at infinity) outgoing spherical waves, i.e. those which correspond to the

mutual scattering of two particles. On substitution in (143.1) this difference

is not significant, so that tfjp
in (143.1) may be taken to be the functions ^p

+
,

and the problem is therefore reduced to that of the resonance scattering of

slow particles, which has already been discussed.

Although the actual form of the function ip
p in the region r ~ a is unknown,

in order to find the dependence of the probability on the energy E it is

sufficient to consider this function at distances r > 1/k^a (where k = p/h;

it is assumed that ka < 1), and then continue it in order of magnitude to

distances r ~ a.f The main contribution to «/r
p
comes from the spherical

wave (containing the factor 1/r). This wave is an assembly of partial waves

with various values of /, whose amplitudes are the corresponding scattering

amplitudes. To determine the square
|

iftp
(a)

|

2 it is sufficient to consider the

s-wave alone, since at low energies the scattering amplitudes with / # are

relatively small. According to formula (131.6) we therefore have

1 eikr

(143.2)
K+ik

t This procedure is permissible because in the region r <^ l/k the energy E may be neglected in

Schrodinger's equation which determines the function ifip. The dependence of tfip on E in this region

is therefore entirely determined by the "joining" to the function in the region r ~ \jk.

19
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where k = y/(2m\c\)jh and e is the energy of the bound (or virtual) state

of the two-nucleon system.f Substituting this expression in (143.1), we obtain

d3p
dwp = constant x . (143.3)

Thus the distribution with respect to direction of the momentum (in the
centre-of-mass system of the two nucleons) is isotropic. The distribution with
respect to energy of the relative motion is given by

y/EdE
dzoE = constant x . ( 143 .4)

E+\e\

We see that the interaction of the nucleons leads to the appearance of a

maximum in the distribution in the range of small E, at E ~
|
e |.J

In the laboratory system of co-ordinates, small angles 6 between the

momenta of the two nucleons correspond to small values of the relative

momentum (p < p ). Thus in this system an angular correlation between the
directions of emission of the nucleons corresponds to the maximum in the

distribution with respect to E, and leads to an increased probability of small

values of 6.

Let pi and p2 be the momenta of the nucleons in the laboratory system.
Then

PO = Pl + p2, P = KP2 - Pi)

(the reduced mass of two equal particles is \m). The vector product of these

equations gives p x p = pi x p2 , and so ifp < p we have

PoP± =pip2sind ~ ipo
2
9,

or 6 = 4pJpo, where p± is the component of the vector p transverse with
respect to the direction of p , and 6 is the small angle between the directions

of pi and p2. Rewriting formula (143.3) in the form

2npA dpA Ap t

owp = constant x
(P^+PMM+M

and integrating with respect to p lit
we find the probability distribution as a

function of the angle 0. Owing to the rapid convergence of the integral, the

integration can be extended from - oo to + oo, and the final result is

Odd
dw = constant x . (143.5)

<v/(0
2 + 4|e|/£o)

t We are here considering an np pair with parallel or antiparallel spins, or an nn pair with anti-
parallel spins. For a pp pair the situation is complicated by the Coulomb repulsion, and this case
must be treated by means of the theory given in §136.

t Strictly speaking, the constant coefficients in formulae (143.3) and (143.4) may also depend on
E through the remaining parts of the wave function for the whole system of reaction products. This
dependence is only slight, however: the coefficient varies appreciably, as a function of E, only over
the whole energy range (~ Eo) available to the nucleon pair in the reaction considered. Thus this

dependence may be neglected, as regards the distribution in the range E <^ Eo, in comparison with
the strong dependence given by formula (143.4).
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The angular distribution relative to the solid angle element do ~ 2tt0 dd has

a maximum at 6 ~ V(l e l/^o)-

§144. Behaviour of cross-sections near the reaction threshold

If the sum of the internal energies of the reaction products exceeds the

corresponding sum for the original particles, the reaction has a threshold:

it can occur only when the kinetic energy E of the colliding particles (in

the centre-of-mass system) is greater than a certain "threshold" value Et .

Let us examine the nature of the energy dependence of the reaction cross-

section near the threshold. We shall assume that the reaction produces only

two particles (type A +B = A' + B').

Near the threshold, the relative velocity v' of the particles formed is small.

Such a reaction is the opposite of one in which the velocity of the colliding

particles is small. The dependence of its cross-section on v' is therefore

easily found by means of the principle of detailed balancing (141.13) and

the known energy dependence of the reaction where v' is the velocity in the

input channel (§140). In a wide class of reactions where there is no Coulomb

interaction between the particles A' and B' (such as nuclear reactions in

which a slow neutron is formed), we therefore find that the reaction cross-

section is proportional to v'2 (l/v'), i.e.f

Similarly we find the dependence of the cross-section on the energy of the

colliding particles: the velocity v\ and therefore the reaction cross-section,

are proportional to the square root of the difference E-E t :

<sr = AV(E-Et).
(144.2)

The scattering amplitudes in different channels are related by the unitarity

conditions. The opening of a new channel therefore leads to the appearance

of certain singularities in the energy dependence of the cross-sections for

other processes also, including the elastic scattering cross-section (E. P.

Wigner 1948; A. I. Baz' 1957). To elucidate the origin and nature of this

phenomenon, let us consider the simple case where only elastic scattering is

possible below the reaction threshold.

Near the threshold, the particles A' and B' are formed in a state with

orbital angular momentum / = (corresponding to (144.2)). If the reacting

particles have no spin, the orbital angular momentum is conserved, and the

system of particles A + B is also in the estate. According to (139.7), the

partial reaction cross-section for / = is related to the 5-matrix element

for elastic scattering by

ar(0> = -(l-|So
|

2
),

(144.3)

k2

t This result corresponds to the constant limit of the amplitude fab as pb -> derived at the end

of §141. The cross-section (141.4) is proportional to pb.
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where k is the wave number of the colliding particles. Equating (144.2) and
(144.3), we find that just above the reaction threshold the modulus \S

\
is

given, to within quantities of higher order than ^{E-E t), by

\S
\
= 1---AV(E-Et) (E>Et), (144.4)

where k t = <\/(2mEt)lh, and m is the reduced mass of the particles A and B.
Below the threshold we have only elastic scattering, so that

|Sb| = l (E<Et). (144.5)

The scattering amplitude, and therefore S , must be analytic functions
for all values of the energy. The function concerned, which takes the values
(144.4) and (144.5) above and below the threshold, is given to the same
accuracy by the formula

S = e^i _ ±Ay/(E-Et)j, (144.6)

where S is constant; for E < Et the root becomes imaginary, and the
modulus of the expression in the brackets differs from unity only by a quantity
of a higher order of smallness.

For all / # there is no inelastic scattering, so that

St = e™> (I # 0), (144.7)

and in the region near the threshold the phases 8 t must be taken equal to
their values for E = E t.^

Substituting the values obtained for St in (139.2), we find the following
expression for the scattering amplitude near the reaction threshold:

h
f(6,E) =ft(6)- -~AV(E-Et

)e^o
t (144 .8)

where ft{6) is the scattering amplitude for E = E t . Writing the latter in
the form ft = \ft\e

ix^K we have finally for the differential scattering cross-
section

do 2tt cos(25 -a) (E < Et)

Depending on whether the angle 28 - a is in the first, second, third or
fourth quadrant, the energy dependence of the cross-section described by
this formula has the forms shown in Fig. 49a, b, c, d. In every case there
are two branches lying on either side of a common vertical tangent.

t Since the functions SiCE) are real both for E > Et and for E < Et, they can be expanded as a
series of integral powers of the difference E — Et.
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Fig. 49

Thus the existence of a reaction threshold leads to a characteristic singu-

larity in the energy dependence of the elastic scattering cross-section. If

the particles have spin, of course, the formulae are quantitatively different,

but the general nature of the effect remains the same. If other reactions as

well as elastic scattering are possible below the threshold, then corresponding

singularities will appear in the cross-sections for such reactions. They all

have a singularity at E = E t near which they are linear functions of the root

<\/(\E-Et\) with different slopes above and below the threshold.

In nuclear reactions with emission of a positively charged particle, we

have a case where Coulomb repulsion forces act between the reaction products

(the particles A' and B'). In this case the reaction cross-section, together with

all its derivatives with respect to energy, tends exponentially to zero as v' -»

(i.e. as E -> E t), and there is no singularity in the cross-sections for other

processes.

Finally, let us consider reactions in which two oppositely charged slow

particles are formed, so that Coulomb attraction forces act between them.

The cross-section for such a reaction is related by the principle of detailed

balancing to the cross-section (140.7) for the opposite reaction between two

19*
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slow attracting particles. Thus we find that as v' -> the cross-section tends
to a constant limit:

ar = constant as v' -»0, (144.10)

i.e. the reaction begins suddenly with a finite cross-section as the threshold

is passed.

We may elucidate the nature of the singularity of the elastic scattering

cross-section near the threshold for such a reaction (A. I. Baz' 1959). This
cannot, however, be done directly from the known law (144.10) above the

threshold by the simple method used previously for uncharged particles. In
comparison with the latter case the situation is now complicated by the fact

that the system of particles A' + B' has bound states in the region near the
threshold (with E < Et), corresponding to discrete energy levels in the

Coulomb attraction field. These states can be formed, so far as energy is

concerned, in a collision of particles A and B, but owing to the possibility

of elastic scattering they are only quasi-stationary states. Their existence

must nevertheless cause resonance effects in the elastic scattering below the

threshold, analogous to the Breit-Wigner resonances.

To solve the foregoing problem, let us consider the structure of the wave
functions which describe the collision process. In accordance with the

presence of two channels, Schrodinger's equation for the system of inter-

acting particles has two independent solutions finite in all configuration space.

Let two such solutions, arbitrarily selected and arbitrarily normalised, be
denoted by 0i and j/^- From these functions we can construct linear com-
binations which describe the scattering in the case where one or other of the

channels is the input channel. Let the channels corresponding to the pairs

of particles A, B, A', B', be denoted by a and b, and let the sum ip = an/jj +
+ <X2«/»2 correspond to the case of input channel a ; it describes elastic scattering

of particles A and B and the reaction A +B ->A'+ B'. Near the reaction

threshold, the coefficients ai and oc2 depend considerably on the small momen-
tum ki>, while the arbitrarily chosen functions ip\ and 02 do not have singu-

larities at ki> = 0.

At large distances, the function ip must represent the sum of two terms
corresponding to the motion of pairs of particles in the channels a and b.

These terms are the products of the "internal" functions of the particles and
the wave function of their relative motion.f In channel a the latter function

has the form Ra-— SaaRa+, and in channel b it is — SabRb+, where R+ and
R~ are the outgoing and ingoing waves in the corresponding channels. At
distances r$ which are large compared with the radius of action of the short-

range forces and small in comparison with 1/A&, these functions (and their

derivatives) must join on to the values calculated from the wave function if/ in

t The law (144.10) holds not only for the total cross-section but also for the partial cross-sections
with various values of /; cf. the last footnote to §140. The singularity discussed below therefore occurs
also for all the partial scattering cross-sections. Its nature is entirely evident from the treatment for

the case / = given below. The index will be omitted, for simplicity, from the corresponding
partial amplitudes.
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the "reaction zone". These conditions are expressed by equations of the

form

aitfi+ a2a2 = [RaT— SaaRa+]r , <*lh+ <X-zfa = [— SabRb+]r ,

ai«i' + OL2a2 = [Ra~~- SaaRa+]'r9 , <X-lh' + *2h' = [- SabRb+]'r ,

where ai, «i', h, h', ... are quantities calculated from the functions fa and

fa; according to the above discussion, they may be regarded as constants

independent of kb near the threshold. Dividing these two pairs of equations,

we obtain two linear equations for two unknowns (<X]/<X2 and Saa), the coeffi-

cients in these equations involving only one quantity which depends "critic-

ally" on h, namely the logarithmic derivative of the outgoing wave in channel

b. We define this as

lA. rRb+ J^ro
'

There is no need to derive the actual solution of these equations ; it is suffi-

cient to note that the quantity Saa of interest here (which determines the

elastic scattering amplitude) is a fractional-linear function of A. Below the

threshold the quantity A is real, since the wave function Rb+ is real, being the

solution of a real Schrodinger's equation with a real condition at infinity

(decrease as e-K»r, where k6 = ^[2mb(Et -E)]fh). Below the threshold we

must have \Saa \

= 1, whence it follows that the fractional-linear function

5aa(A) must have the form

1+J3A
•S- =TT^2¥°)

'
(144-U)

where tj (0) is a real constant and j8 a complex constant.

Let us determine the value of A as a function of the momentum kb. Since

Coulomb attraction forces act between the particles A and B, rRb+ is the

Coulomb wave function which is asymptotically proportional to eik»r at

infinity. In a Coulomb repulsion field this function is given by the sum
L+ iK, with K and L as in (136.4) and (136.7). The change to an attractive

field is effected by simultaneously reversing the signs of k and r.f Making

this change and calculating the logarithmic derivative (see §136), we have

A =
1 _ e-2n/kb ~h>+iii) +i

J
i)J (m-i2)

Here kb is assumed real, so that the formula pertains to the region above the

threshold. For kb -> 0, the first term in (144.12) tends to *, and the second

tends to zero (see the third footnote to §136). Thus we have above the thresh-

old

A = * (E> Et). (144.13)

t In what follows we use Coulomb units. The change in sign of k and r corresponds formally to a

change in sign of the Coulomb unit of length.
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The passage to the region below the threshold is achieved by replacing k by iK
,

which gives from (144.12) with k -> Of

A = - cot(7r//c6) (E < Et). (144.14)

These formulae solve the problem under consideration. The elastic
scattering cross-section is

Ge = 7Tka
-2\Saa— 1|

2
.

Above the threshold we have

*,

"i+V"'
w (E>Et); (144- 15)

like the reaction cross-section, the scattering cross-section is constant in this
region. The condition \Saa \

< 1 signifies that j8* > 0, where
ft" is the

imaginary part of
f$
= p' + ifi".

Below the threshold

^-tan^/zcfc)

= «M*w|"i
2
JE 1 (144 16)

This expression has an infinite number of resonances whose density increases
towards the point E = Et . The resonance energies are the zeros of the
expression tan(7r//c&) -£'; they are somewhat displaced relative to the purely
Coulomb levels (the zeros of tan(7r//c6)) owing to the short-range forces. Near
each resonance the expansion of the denominator in (144.16) leads to an
expression which corresponds exactly to Breit and Wigner's formula
(132.11). The width of the region below the threshold in which the resonance
structure is found is determined by the energy of the first Coulomb level.

It may be mentioned, in conclusion, that another interesting case of re-
actions near the threshold is the ionisation of an atom by an electron whose
energy is only slightly greater than the first ionisation energy of the atom. In
these conditions the collision process may be regarded as quasi-classical, but
the problem is greatly complicated by the presence of three charged particles
in the final state.

Wannier% has given a general solution of this difficult problem. The
probability of ionisation of a neutral atom is found to be proportional to

(E-* --kvt- 1)- 1 - 125
'

t The first term in (144.12) gives — i cot (7r//c6)+H and the expression in the braces tends to
in cot(n/Kb)+itTT. Here we have used the formula ip(x)—ip(—x) = —TTcotTrx—l/x, which can be
obtained by logarithmic differentiation of the well-known relation V(x)r(— x) = — it/x sin irx and
the limiting expression ifi(x) X log x— 1/2* asx-> oo.

% G. H. Wannier, Physical Review 90, 817, 1953.
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where E-I is the amount by which the energy of the electron exceeds the

ionisation threshold.

§145. Inelastic collisions between fast electrons and atoms

Inelastic collisions between fast electrons and atoms can be considered

by means of the Born approximation in the same way as elastic collisions in

§137.f The condition for the Born approximation to be applicable is, as

before, that the velocity of the incident electron should be large compared

with those of the atomic electrons. The energy loss in the collision may have

any value. If the electron loses a considerable part of its energy, the atom

is ionised, the energy being transferred to one of its electrons. However,

we can always regard as the scattered electron that which has the greater

velocity after the collision; thus, if the velocity of the incident electron is

large, that of the scattered electron is large also.

In a collision between an electron and an atom, the co-ordinate system in

which their centre of mass is at rest may, as already remarked at the beginning

of §137, be identified with that in which the atom is at rest; this latter

system will in fact be used below.

An inelastic collision is accompanied by a change in the internal state of

the atom. The atom may go from the normal state into an excited state of the

discrete or continuous spectrum; the latter case signifies an ionisation of the

atom. In deriving the general formulae, we can consider these two cases

together.

We start (as in §125) from the general formula for the transition probability

between states of the continuous spectrum, and apply it to the system

consisting of the incident electron and the atom. Let p, p' be the momenta

of the incident electron before and after the collision, and E ,
En the cor-

responding energies of the atom. For the transition probability, we have

instead of (125.9) the expression

dw = _,C/£.p |2S( -

—

—+En-Eo )dp'x dp'y dp'z ,
(145.1)

where t/f•£ is the matrix element of the energy of interaction between the

incident electron and the atom,

U = Ze*lr- l«a/|r-r«|;
o=l

here r is the radius vector of the incident electron, r those of the atomic

electrons ; the origin is at the nucleus of the atom, and m is the mass of the

electron.

The wave functions «/»
p

, if/p
> of the electron are determined by the previous

formulae (125.10), (125.11); then dw is the effective cross-section dor for the

t Most of the results given in §§145-147 were obtained by H. A. Bethe (1930).
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collision. The wave functions of the atom in the initial and final states we
denote by ip

,
ipn . If the final state of the atom belongs to the discrete spectrum,

then tjjn (like *ji ) is normalised to unity in the usual manner. If, on the other
hand, the atom enters a state of the continuous spectrum, the wave function
is normalised by the delta function of the parameters v which determine these
states (these parameters may be, for instance, the energy of the atom, and the
momentum components of the electron which leaves the atom in the ionisa-
tion). The effective cross-sections thus obtained give the probability of a
collision in which the atom enters states of the continuous spectrum lying
in the range of parameters between v and v+dv.

Integration of (145.1) over the absolute magnitude p' gives

27rm/>'
dan = H£/°p|

2 do',
h »p'

where p' is determined from the law of conservation of energy:

(p2-p'2)l2m = En-E . (145.2)

Substituting in the matrix element C/g, the wave functions of the electron
from (125.10), (125.11), we obtain

nfi p'
d(j» =

4tt2^4 p
[[Ue-i^n^odTdV (145.3)

where dr = dVx dV2 ... dVz is the element of configuration space of the Z
electrons in the atom, and we omit the prime to do. In this form, this is

a general formula of perturbation theory, applicable not only to collisions

of electrons with an atom, but also to any inelastic collisions of two particles,

and gives the effective scattering cross-section in a system of co-ordinates
in which the centre of mass of the particles is at rest; m is then the reduced
mass of the two particles. For n — and p = p\ (145.3) becomes the
formula for the effective elastic scattering cross-section.

Since the functions iftn and tp are orthogonal, the term in U which contains
the interaction Ze2jr with the nucleus vanishes on integration over t, and
so we have for inelastic collisions

d<r„ =
nfi p'Sl/J^^w do. (145.4)

47r2/*4 p

The integration over V can be effected as in §137. The integral

M*a)=le-*.'dVI\t-ra
\

is formally the same as the Fourier component of the potential at the point r
due to charges distributed in space with density p = S(r— ra). Formula
(137.1) therefore gives

^(ra) = (47r/32)e
-*a.ra

.
(145>5)
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Substituting this expression in (145.4), we finally obtain the following

general expression for the effective inelastic scattering cross-section:

dan = (^Y^
|
f^ <r-*'<4n*h dr|

2

do; (145.6)

here we have introduced, in place of the momenta p\ p, the wave vectors

k' = p'/hy k = p/h. This formula gives the probability of a collision in

which the electron is scattered into an element of solid angle do and the atom

enters the nth excited state. The vector - /zq is the momentum given to the

atom by the electron in the collision.

In effecting the calculations, it is more convenient to refer the effective

cross-section, not to the element of solid angle, but to the element 6q of the

absolute magnitudes of the vector q. The vector q is denned by q = k'—k;

for its absolute magnitude we have

q
z = tf+k't-lkk' cos&. (145.7)

Hence, for given k, k\ i.e. for a given loss of energy by the electron,

qdq = kk' sin & d& = (^/2tt) do. (145.8)

Formula (145.6) may therefore be written

da» =87r©
2

|IJ2
e
-iq - ra^odi (145.9)

The vector q plays an important part in all the following calculations.

Let us examine more closely its relation to the scattering angle & and to

the energy En-E transferred in the collision. We shall see below that the

most important collisions are those which cause scattering through small

angles (& < 1), with a transfer of energy which is small in comparison with

the energy E = \mv% of the incident electron: En-E < E. The difference

k-h! is in this case also small (k-k' < k), and

En-E = h\&- k'*)l2m ~ ti*k{k- k')lm = hv(k-k').

Since & is small, we have from (145.7)

?
2 ^ (k-ky+(k&)\

and finally

q = V[{(En-E )lhv}*+(k&n (145 -10)

The minimum value of q is

qmin = (En-E )lkv. (145.11)

In the region of small angles we can further distinguish between different

regions depending on the relation between the small quantities & and

vo/v, where v is of the order of the velocity of the atomic electrons. If we
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consider energy transfers of the order of the energy eo of the atomic electrons
(En-Eo ~ € ~ mvl\ then for (*>oA0

2 <&<1 we have

q=k& = (mv/h)&; (145.12)

the first term under the radical in (145.10) can be neglected in comparison
with the second. In this range of angles, therefore, q is independent of the
energy transfer. For 3- < 1, q may be either large or small in comparison with
1/flo (where a is a quantity of the order of atomic dimensions). On the same
assumption regarding the energy transfer we have

qao ~ 1 for # ~ Vo/v , (145.13)

Let us now apply the general formula (145.9) to the case of small q (qa < 1

,

i.e. & < v /v). In this case we can expand the exponential factors as series of
powers of q:

e-*q.ra ^l-iq .ra =: l-iqxa ;

we choose a co-ordinate system with the x-axis along the vector q. On
substituting this expansion in (145.9), the terms containing 1 give zero, by
the orthogonality of the wave functions ifi and if,n , and we obtain

/e\ 2 dq /2e\ 2 do

where dx = e$xa is the ^-component of the dipole moment of the atom.
We see that the effective cross-section (for small q) is given by the squared
modulus of the matrix element of the dipole moment for the transition which
corresponds to the change in state of the atom.f

It may happen, however, that the matrix element of the dipole moment
vanishes identically for the transition considered, on account of the selection
rules (a forbidden transition). Then the expansion of er**a must be continued
to the next term, and we obtain

/e2 \2
dan = 2ttI — \ |(S *a2)0n |2? dq. (145.15)

Let us now consider the opposite limiting case of large q (qa > 1). If q
is large, this means that the atom receives a momentum which is large com-
pared with the original intrinsic momentum of the atomic electrons. It is

evident from physical considerations that, in this case, we can regard the
atomic electrons as free, and the collision with the atom as an elastic col-
lision between the incident electron and the atomic electrons, the latter
being originally at rest. This can also be seen from the general formula

• ^u
T
c
e
!ffective cross-section da„, summed over all directions of the angular momentum of the atom

in the final state and averaged over the directions of the angular momentum in the initial state, is what
is usually of physical interest. After this summation and averaging, the square K^),-!

2
is independent

of the direction of the x-axis.
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(145.9). For large q, the integrand contains rapidly oscillating factors

e-iq.r0) an(j ^ integral is almost zero if iftn does not contain a similar factor.

Such a function ifsn corresponds to an ionised atom, with the electron emitted

from it with momentum — hq = p—p', i.e. with the momentum given by the

law of conservation of momentum, as it should be in a collision of two free

electrons.

In a collision with a large transfer of momentum, the incident electron

and the atomic electron may have final velocities that are comparable in

magnitude. The exchange effect arising from the identity of the colliding

particles therefore becomes important, although it was not taken into account

in the general formula (145.9). The effective scattering cross-section for

fast electrons when exchange is allowed for is given by formula (135.9);

this formula relates to a co-ordinate system in which one of the electrons is

at rest before the collision. For a fast electron the cosine in the last term in

(135.9) may be put equal to unity.

Multiplying by the number of electrons in the atom, Z, we obtain the

effective cross-section for the collision of an electron with an atom, in the

form
/ e* \ 2r 11 in

da =4Z[ ) + — cos & do. (145.16)W2/ Lsin4& cos4# sin2a-cos2&J

In this formula it is convenient to express the scattering angle in terms of

the energy which the electrons have after the collision. As is well known,

when a particle of energy E = \mv% collides with one of the same mass at

rest, the energy of the particles after the collision is

e = E sin2&, E-e =E cos2&.

In order to find the effective cross-section referred to the interval de, we
express do in terms of de by the relation cos& do = 2tt sin& cos& d& =
(ttJE) de. Substituting in (145.16), we obtain the final formula

!-
(£-e)2 e(E-e)JE

rl 1 1 -l<

dae
= nZA —+ —

.

(145.17)
Le2 (£-e)2 e(£- €)J"

If one of the energies e and E— e is small compared with the other, only one

of the three terms in this formula (the first or the second) is important. This

is as it should be, since, for a great difference between the energies of the

two electrons, the exchange effect becomes insignificant, and we then return

to the familiar Rutherford's formula.f

The integration of the differential effective cross-section over all angles

(or, what is the same thing, over q) gives the total effective cross-section an
for a collision in which the atom is excited to the state in question. The

f For a collision of a positron with an atom there is no exchange effect, and Rutherford's formula

dae = (ttZ^E) de/e2

holds for all q ^> l/a .
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dependence of an on the velocity of the incident electron is closely related

to the existence or otherwise of the matrix element, for the corresponding
transition, of the dipole moment of the atom. Let us first suppose that this

matrix element is not zero. Then, for small q, darn is given by formula
(145.14), and we see that, as q diminishes, the integral over q diverges logarith-

mically. In the region of large q, on the other hand, the effective cross-section

(for a given energy transfer En—E ) decreases exponentially as q increases,

because of the presence (already pointed out) of a rapidly oscillating factor

in the integrand of (145.9). Thus the region of small q plays the principal
part in the integral over q, and we can restrict ourselves to an integration

from the minimum value (145.11) to some value of the order of l/a .

As a result we obtain

an = Melfo)2 \(dx)0n\2 lbgGM/e*), (145 . 18)

where pn is a dimensionless constant, which cannot be calculated in a general
form.-j-

If, on the other hand, the matrix element of the dipole moment vanishes for

the transition in question, the integral over q converges rapidly both for

small q (as we see from (145.15)) and for large q. The most important range
in the integral is in this case q ~ l/a . No general quantitative formula
such as (145.14) can be obtained, and we can deduce only that an is inversely

proportional to the square of the velocity:

an = constant/©2 . (145.19)

This follows at once from the general formula (145.9), according to which
dcrn is proportional to ljv2 for q ~ l/a .

Let us determine the effective cross-section do-
in

for inelastic scattering

into a given element of solid angle regardless of the state entered by the atom.
To do this, we have to sum the expression (145.9) for all n ^ 0, i.e. over all

the states of the atom (of both the discrete and the continuous spectrum)
except the normal state. We omit from consideration the ranges of large

and small angles, and suppose that 1 >& > W^)2
- Then, by (145.12),

q is independent of the amount of energy transferred. J
The latter circumstance makes it easy to calculate the total inelastic collision

cross-section, i.e. the sum
/£2\2 do

dffin = 2d(T„=8ir( — ) 2 |(Ze-*q.ra
)0n |2_?

/2e* \ 2^ do
= [—

) Zl(? Hq
' ro

) »t <145 -2°)
\mv2/ *—' a &4

t We suppose that En—E is of the order of the energy e of the atomic electrons. For larger
energy transfers (E„—E ~ E ^>e ), the formulae (145.14), (145.18) are still inapplicable, since the
matrix element of the dipole moment becomes very small, and it is not possible to take only the first

term of the expansion in powers of q.

% The summation in (145.9) is taken over states with En—Eo ^> eo also, for which (145.12) does
not hold. However, the effective cross-section for transitions with a large energy transfer is relatively

small, and these terms in the sum are unimportant. The condition & <^ 1 is imposed so that the ex-
change effects need not be taken into account.
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To do so, we note that, for any quantity/, we have by the multiplication rule

for matrices

S |/o„|
2 = S/o«/on* = S/ „(/

+
)»o = (//

+
)oo-

The summation here is over all n, including n = 0. Hence

Sj/on|2 = S|/ „P-|/oo|
2 =(//+)

Applying this relation for/= 2 e~i(l-ra, we have

SJ/on|2 = S |/o„|
2-|/oo|2 = (//

+)oo-|/oo|2 . (H5.21)

/2<?2\2

\mvz/ a
S £-*«• r«

2 do
}-, (145.22)

where the bar denotes averaging with respect to the normal state of the atom
(i.e. taking the diagonal matrix element 00). The mean value S e-*

qr
« is,

by definition, the atomic form factor F(q) for the atom in the normal state.

In the first term in the braces we can write

z I

2

o-l
I

a^b

Thus we find the general formula

/2c2 \ 2

d°* = ( -i )
v-F^)* *£**'*•"*>-& (145 -23)

This formula is much simplified for small q, when we can expand in powers

of q (v lv < qaQ < 1, corresponding to angles KM2 < & < volv)- Instead

of effecting the expansion from formula (145.23), it is more convenient to

sum again over «, using for dan the expression (145.14). Summing with

the aid of the relation (145.21) with/= dx, and recalling that dx = 0, we

have

dam = {lelhvfdJdol&K (145.24)

It is of interest to compare this expression with the effective cross-section

(137.5) for elastic scattering through small angles; whereas the latter is

independent of S-, the effective cross-section for inelastic scattering into the

solid angle element do increases as 1/&2 when& decreases.

For angles & such that 1 > 9- > vjv (so that qa > 1), the second and

third terms in the braces in (145.23) are small, and we have simply

daIn = Z(2e2/mt>2)
2 do/&4 . (145.25)

As we should expect, we have obtained Rutherford scattering from the Z
atomic electrons (without allowance for exchange). We recall that, for

elastic scattering, we had the result (137.6), which is proportional to Z2 and

not to Z.
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Finally, integrating over angles, we have the total effective cross-section
<rin for inelastic scattering at all angles and with any excitation of the atom.
In an exactly similar manner to the calculation of on (145.18), we obtain

am = 87r(ejhv)2dx* logO&>/*/*2). (145.26)

PROBLEMSf
Problem 1. Determine the angular distribution for 1 > # > tr2 from the inelastic

scattering of fast electrons by a hydrogen atom (in the normal state).

Solution. For the hydrogen atom, the third term in the braces in (145.23) vanishes,
while the atomic form factor F(q) has been calculated in §137, Problem. Substituting, we
find

4 (l+fl2£2/4)4_l
dcrin = —— — do.

V*&* (1+^2^2/4)4

Problem 2. Determine the differential effective cross-section for collisions of electrons
with a hydrogen atom in the normal state, the latter being excited to the wth level of the
discrete spectrum (where n is the principal quantum number).

Solution. The matrix elements are conveniently calculated in parabolic co-ordinates.
We take the s-axis in the direction of the vector q; then

g-*q.r = g-iqz _ g-Mffte-fl),

The wave function of the normal state is

0000 = fl—*«-*<£+?>.

The matrix elements are non-zero only for transitions to states with m = 0. The wave
functions of these states are the functions

«AWl» 2o = (VV™P)e-il£+ ''),nF(-n1,l,£ln)F(-n2,l,riln)

(n = «i+Mjj+ 1). The required matrix elements are the integrals

00 00

The integration is effected immediately by means of the formulae of § f in the Mathematical
Appendices. The result is

All states with the same Mx+Wa = n— 1 have the same energy. Summing over all possible
values of «!—«2 for the given n, and substituting the result in (145.9), we obtain the required
cross-section

:

1 [(n-lV+fqn)2]*1
-3 dq

dan = 21177—«'[K«
2-1)+M2

]
-•

v2
J

[(w+ l)2+ (?M
)2]n+3

q

t We use atomic units in all the Problems.
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Problem 3. Determine the total effective cross-section for the excitation of the first

excited state of the hydrogen atom.f

Solution. We have to integrate

1 dq
d(72 — 287T

v* ^+9/4)5

over all q from q^in = (E2—E1)Iv = 3/8z> to qmAX = 2v, only the terms of the highest degree

in v being retained. The integration is elementary, and the result is

21% 25
(72 = [log (4t>) ].

3i0s,2
L 8V ' 24

Problem 4. Determine the effective cross-section for the ionisation of a hydrogen atom

(in the normal state), with the emission of a secondary electron in a given direction; the

energy of the secondary electron is small in comparison with that of the primary, and so

exchange effects are unimportant (Massey and Mohr 1933).

Solution. The wave function of the atom in the initial state is tft = «~r
/v' 7T - In the

final state, the atom is ionised, and the secondary electron emitted from it has a wave vector

which we denote by x (and energy e = £x2
). This state is described by a function t/>-K

(134.9), in which the outgoing part consists (at infinity) only of a plane wave propagated in

the direction of x. The function tf/-K is normalised by the delta function in x-space; hence the

effective cross-section calculated from it will relate to d.Kx d#cv &kz , or to k2 d*c doK , where

doK is an element of solid angle about the direction of the secondary electron. Thus

4A'/c2

da = —

—

-\(e-^' r
)oK \

2 dodoKdK ,

where do is an element of solid angle about the direction of the scattered electron, and

r w2*r(i-*7/c)

(e-*-'K =
J
0-/^-^0 dV= — /,

[d r dF-|
g-fq . r-ix .r-\rF(HK , 1 , t(Kr+ X . r))

dX J r J A=i

We effect the integration in parabolic co-ordinates, with the z-axis in the direction of x and

the angle <j> measured from the (q, x) plane:

oooo2jt

/=r~i— exp{-^(^-7
?
)cosy+/$V(^)sinycos^-iA(^4-7

?
)-|//c(^-7J)}X

ooo

XF(*7#c,l,«£)ctyd£d7
?

"|
,

f It can also be calculated for arbitrary n. By numerical calculation, we can obtain also the total

effective cross-section for inelastic scattering by a hydrogen atom:

am = 4tt log(©8/0-160).

This includes the following contributions from collisions in which states of the discrete spectrum are

excited, and from those in which the atom is ionised:

CTex = 4ttX0-715 log(»2/045),

ai0 = 4ttX0-285 log(»2/0-012).
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where y is the angle between x and q. The integration over $ and 17 is easily performed by sub-
stituting \/t] cos

<f>
— u, \/rj sin <j> = v, which gives

L - T
8

f /

~ ?2 sin2y+A2+ (*+

?

cos y)
2

\
*(*/*» 1 » *'*£) d£

-J

2tt L#A J I 2[i(«:+^cosy)—A] j i(K+qcosy)—aJ a_i

The integral here is found from the formula

00

[e-**F(aL,l
t
kt)6t =A«-i(A-£)-«;

see §f of the Mathematical Appendices. The subsequent calculations, though lengthy, are
elementary, and give as a result the following expression for the effective cross-section:

28k
f
K[q2+2qK cosy+(/c2+l) cos2)/]

Trkq2[q*+ 2qK cosy+ 1+ K*]*[(q+ k)2+ l][(q- Kf+ l](l-c^/*)

Xe -(2//c)tan-i[2/f /(ff2-K 2+i)] dodo^ d/Ci

The integration over all angles of emission of the secondary electron is elementary, and gives
the distribution of scattering over directions, for a given energy £*c

2 of the emitted electron

:

210A'/C [q
2+J(l+ K2)]e -<2/Ac)tan-i[2*/(g«-*Hl)]

da = do d/c.
kqt [(q+ k)2+ 1]

3[($- /c)2+ 1]3(1-c-2"/<)

For </ ^> 1 , this expression has a sharp maximum at k ^ q ; near the maximum,

25 d/cdo
da =

3ttK4[1+ (?
_ k)2]3

Integrating over o, with do = 2irq dq/k2 ^ (2flTK/& a)d(g—K), we obtain the expression
8n dKi^K 3

; this is the same as the first term in formula (145.17), as it should be.

§146. The effective retardation

In applications of collision theory, the calculation of the mean energy
lost by a colliding particle is of great importance. This energy loss is con-

veniently characterised by the quantity

d/c = S {En-Eo) d<r„, (146.1)

which we shall call the (differential) effective retardation; the summation
is taken, of course, over states of both the discrete and the continuous spec-

trum, die relates to scattering into a given element of solid angle.f

The general formula for the effective retardation of fast electrons is

dK =S7r(
e
—\ S(£„-£o)|(S*-«a.r.)0n

|

2 -!, (146.2)
\nv/ n a d3

t If an electron is passing through a gas, the scattering at various atoms is independent, and Ndic
(where N is the number of gas atoms per unit volume) is the energy lost by the electron in unit path

by collisions in which it deviates into the given element of solid angle.
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where dan has been taken from (145.9). As in the derivation of (145.23), we

exclude from consideration the region of very small angles, and suppose that

1 > & > (vo/v)2 . Then q is independent of the amount of energy transferred,

and the sum over n can therefore be calculated in a general form.

This is done by means of a summation theorem derived as follows. The

matrix elements of some quantity /, a function of the co-ordinates, and of

its derivative / with respect to time are related by

(/)o» = -(ilh)(En-E )fon. (146.3)

Hence we have

S(£„-£ )|/o„l
2 = Z(En-Eo)fonfon*

n n

= S (En-E )Mf+)no = ih S (/)o»(/
+
)«o = ih(Jf+)oo.

n w

The wave functions of the stationary states of the atom can be taken real.

Then the matrix elements of the function / of the co-ordinates are related

by f0n = fno, and for the matrix elements (146.3) we accordingly have

(/)o« = — (/)no- Thus we can also write the sum in question as

-ih S (/+)o»(/)»o = -ih(f+JV»

Taking half the sum of these two equations, we have the required theorem:

S (En-E )\fon\
2 = ¥h(ff+-f+fU. (146.4)

n

We apply it to the quantity

* a

According to (19.2), its derivative with respect to time is represented by the

operator

/ = - (HI2m) S [<H«-'«(q . Va)+(q • Va)^*«- r
«].

The result of commuting/ and /+ is easily calculated directly:

it-H'= -iihlm)q*Z.

Substituting in (146.4), we obtain the formula

2 2m—(£«-£o)|(S *-*-«)o«| 2 = Z, (146.5)

n

which effects the summation required,f
Thus we find for the differential effective retardation the formula

Ze4 do 2Ze4 do
d/c = 4t7 =

. (146.6)
tnv2 q mv2

ft
2

f In deriving this relation we have nowhere used the fact that the state denoted by the suffix is

the normal state of the atom. The relation therefore holds for any initial state.
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The range of applicability of this formula is given by the inequality

(volv)2 <4& <^ 1, i.e. v /v <4 aoq <^ v\vQ .

Next, let us determine the total effective retardation *(&) for all collisions
in which the transfer of momentum does not exceed some value qx such
thata /t> ^ a qt ^ vlv :

<9i) =
J j (En-Eo) da„; (146.7)

tfmin

qmin is given by (145.11). The integration and summation signs cannot be
transposed, since qmin depends on n.

We divide the range of integration into two parts, from qmin to q and
from q to qx , where q is some value of q such that vjv ^ q a ^ 1. Then,
over the whole range of integration from qmin to q , we can use for dan
the expression (145.14):

<qo)=Sn(j^ ^\(dx)on\KEn-Eo)( -,

- *min
whence

(e \ 2 ^-v onhv

T-) >\<<dx)on\\En-Eo)\og- . (146.8).

In the range from q to qlt on the other hand, we can first sum over n, which
gives the expression (146.6) for d*, and then on integrating over q we have

<qi)-<qo) =M^4/"^2) log(?i/?o). (146.9)

To transform the above expressions, we use the summation theorem
obtained from formula (146.4) by putting there

/ = dx\e = S xa , f = (1/m) 2 £xa .

a a

Commuting /+ and / gives (in the present case, /+ is the same as /)

//+-/+/ = -ihZ/m,

so thatf

2 N0n = S {2mleW){En-EQ)\{dx)Qn \* = Z. (146.10)

We have introduced the special notation N0n for the summand. The quanti-
ties Non are called the oscillator strengths for the corresponding transitions.

t The remark made concerning (146.5) applies to this relation also.
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We introduce some mean energy J of the atom, denned by the formula

log/ = S AW log(£w-£ )/2 N0n
n n

= (II Z) S N0n \og(En-Eo). (146.11)
n

Then, using the summation theorem (146.10), we can rewrite formula (146.8)

in the form

K(qo)
= (^TrZe^lmv^logigohvlI).

Adding this to (146.9), we have finally

K
(qi)

= (^TrZ^lmv^) log(?i/b//). (146.12)

Only one constant characterising the atom concerned appears in this formula.-}-

Expressing qx in terms of the scattering angle^ by means of qx = mv&Jh,

we obtain the effective retardation in scattering through all angles $ ^ &t :

K(&j) = (4^Ze^lmv2) log(m*>2#i/Z). (146.13)

If qxa > 1 (i.e. &x > vJv), we can express «asa function of the greatest

amount of energy that can be transferred from the incident electron to

the atom. We have shown in the previous section that, for qa > 1, the atom

is ionised, almost all the momentum hq and energy being given to one atomic

electron. Hence hq and e are related by being the momentum and energy

of an electron, i.e. by e = h2
q
2
l2m. Substituting in (146.12) qt

2 = Ime^h2
,

we obtain the effective retardation in collisions where the energy transfer is

/c(ei) = (277Ze4/m*;2) log(2m€^2//2). (146.14)

For heavy atoms we should expect to get good accuracy on calculating the

constant / by the Thomas-Fermi method. It is easy to establish how the

values of / thus calculated will depend on Z. In the quasi-classical case, the

eigenfrequencies of the system of particles correspond to the differences of

the energy levels. The mean eigenfrequency of the atom is of the order of

vojao; hence we can deduce that / ~ hv/a . The velocities of the atomic

electrons in the Thomas-Fermi model depend on Z as Z2/3
, while the dimen-

sions of the atom vary as Z~1/3
. Thus we find that / should be proportional^

to Z:

/ = constant x Z.

In conclusion, we may make the following remark. The energy levels of the

discrete spectrum of an atom mainly involve excitations of a single

t For hydrogen, 7= OSSme^H2 = 14-9 eV.

J From experimental results it can be found that the constant is of the order of magnitude of 10 eV.
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(outer) electron; the excitation of even two electrons usually requires an

energy sufficient to ionise the atom. Hence, in the sum of oscillator strengths,

the transitions to states of the discrete spectrum form only a part, of the

order of unity, while those which involve ionisation form a part of the order

of Z. Hence it follows that the main part in retardation (by heavy atoms)

is played by those collisions which are accompanied by ionisation.

PROBLEM
Determine the total effective retardation of an electron by a hydrogen atom (I = 0-55

atomic units); for large energy transfers, the faster of the two colliding electrons is taken to

be the primary.

Solution. When the primary and secondary electrons have comparable energies after

the collision, the exchange effect must be taken into account. Hence, for retardation with
an energy transfer between some value et (1 <^ e i <^ v2

) and the maximum value emax
= £2? = Ju

2 (by our definition of the primary electron), we must use the effective cross-

section (145.17):

K(emax)— K (
€l)

iE

E J Le2 (£-e)2 e(£-e)J

= ^r[log(£/M+l].

Adding this to (146.14), we obtainf

4tt rv2 "I 4tt V2

in atomic units.

§147. Inelastic collisions between heavy particles and atoms

The condition for the Born approximation to be applicable to collisions

between heavy particles and atoms, expressed in terms of the velocity of a

particle, remains the same as for electrons:

Vp Vq.

This follows immediately from the general condition (125.2) for perturbation

theory to be applicable {Ua jhv <^ 1), if we notice that the mass of the particle

does not appear there, while Ua [fr is of the order of magnitude of the velocity

of the atomic electrons.

In a system of co-ordinates in which the centre of mass of the atom and the

f For collisions between a positron and a hydrogen atom there is no exchange effect, and the total

retardation is obtained by simply substituting emax = E = \v2 in place of et in (146.14):

K = (477/^2) log(^2/0-55).
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particle is at rest, the effective cross-section is given by the general formula

(145.3), in which m is now the reduced mass of the particle and the atom. It is

more convenient, however, to consider the collision in a system of co-

ordinates in which the scattering atom is at rest before the collision. To do

this, we start from formula (145.1); in a system of co-ordinates in which the

atom is at rest before the collision, the argument of the delta function which

expresses the law of conservation of energy is of the form

$p'ziM-$p*IM+h(P'-P)2
lMa+En-E ,

(147.1)

where M is the mass of the incident particle and Ma that of the atom. The

third term is the kinetic "recoil" energy of the atom (and could be entirely

neglected when considering a collision between an atom and an electron).

For a collision of a fast heavy particle with an atom, the change in the

momentum of the particle is almost always small in comparison with its

original momentum. If this condition holds, we can neglect the recoil energy

of the atom in the argument of the delta function, and we then arrive at

exactly the same formula (145.3), except that m in the latter must be replaced

by the mass M of the incident particle (and not by the reduced mass of the

particle and the atom). Bearing in mind that the transfer of momentum is

supposed small in comparison with the original momentum, we put p ^ p'
;

then the effective cross-section in a system of co-ordinates in which the

atom is at rest before the collision is

da„ = (M2/4*-2/*4)| jj
Ue-i*-'i/jn*to drdV\ 2 do. (147.2)

Taking into account the fact that the charge on the particle may differ from

that on the electron, we write ze2 in place of e2 , where ze is the charge on

the incident particle. The general formula for inelastic scattering, written

in the form (145.9):

(ze2 \ 2 do- KSria.^, (147.3)
nv J a

q
d

does not contain the mass of the particle. Hence it follows that all the formulae

derived from it remain applicable to collisions with heavy particles, provided

that these formulae are expressed in terms of v and q.

It is easy to see how the formulae must be modified when they are expressed

in terms of the scattering angle& (the angle of deviation of the heavy particle

on colliding with the atom). To see this, we notice first of all that the angle

9- is always small in an inelastic collision with a heavy particle. For, when
the momentum transfer is large (compared with the momenta of the atomic

electrons), we can regard the inelastic collision with the atom as an elastic

collision with free electrons ; when a heavy particle collides with a light one

(the electron), however, the heavy particle hardly deviates at all. In other

words, the transfer of momentum from the heavy particle to the atom is
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small in comparison with the original momentum of the particle ; an excep-
tion is formed by elastic scattering through large angles, but this is extremely
improbable.

Thus, over the whole range of angles, we can put

9 = V{[(En-E )lv]2+(Mv&)2}lh, (147.4)

which in practice reduces to

qh ^ Mv& (147.5)

everywhere except for very small angles. On the other hand, when consider-
ing the collisions of electrons with an atom, we had (for small angles)

9 = V{[{En-EQ)lvf+(mvb?}lh.

Hence we can deduce that the formulae which we obtained for collisions be-
tween electrons and atoms, if expressed in terms of the velocity and the angle
of deviation, become formulae for the collision of heavy particles if we
everywhere make the substitution

$ -» M&lm (147.6)

(including the element of solid angle do = 2ir sin #• d& £ Ind- dO-), the

velocity of the incident particle remaining unchanged. Qualitatively, this

means that the whole picture of small-angle scattering is (for a given velocity)

compressed in the ratio m/M.
The rules obtained above relate also to elastic scattering through small

angles. Making the transformation (147.6) in formula (137.4) withft <^ 1,

we have the effective cross-section

dde = 87r(ze*IMv2)2[Z-F(Mv&lk)]2 d$/$3 . (147.7)

The elastic scattering of heavy particles through angles <&• ~ 1 reduces to

Rutherford scattering at the nucleus of the atom.

Inelastic scattering in which the atom is ionised with a large transfer of

momentum requires special consideration. Unlike the situation for ionisation

by an electron, there are of course no exchange effects. For heavy particles

it is characteristic that a large momentum transfer (qa > 1) does not mean
a deviation through a large angle ; & always remains small. The effective

cross-section for ionisation with the emission of an electron of energy between

e and e+de is found immediately from formula (145.25), which we write in

the form

derm = 8Tr(se21hv)2Z dq/q3
,

putting h2
q
2j2m = e (the whole of the momentum hq is given to a single

atomic electron). This gives

dae
= (iTrZzWjmv2

) d€/e2. (147.8)

In collisions of heavy particles with atoms, the total effective cross-section
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and retardation are of particular interest. The total inelastic scattering cross-

section is given by the previous formula (145.26). The total effective retarda-

tion is obtained by substituting the maximum possible momentum transfer

?max in place of qi in (146.12).^x is easily expressed in terms of the velocity of

the particle as follows. Since even hqmSbX is small compared with the original

momentum Mv of the particle, the change in its energy is related to the

change in momentum by AE = v . hq. On the other hand, for a large

momentum transfer nearly all this energy is given to one atomic electron, so

that we can write

€ = h2
q
2l2m = hv . q < Hvq.

Hence we have hq < 2mv, i.e.

hqmax =2mv, emax =2mz;2. (147.9)

We may notice that the maximum angle of deviation of the particle in an

inelastic collision is

&max = hqmJMv = 2mjM.

Substituting (147.9) in (146.12), We obtain the total effective retardation

of a heavy particle:

k = (47rZ*V/mz;2) log(2w^//). (147.10)

§148. Scattering by molecules

The general theory of the scattering of fast charged particles by molecules

is given by essentially the same formulae as for scattering by atoms. The

problem of scattering by molecules can in some cases be reduced to problems

of scattering by the individual atoms forming the molecule. Let us consider

collisions of fast electrons with molecules, accompanied by the excitation of

rotational and vibrational levels, the electron state of the molecule remaining

unchanged. In view of the small excitation energy of these levels we can

suppose that the momentum is unchanged in absolute value.

Let U be the energy of the interaction between the incident electron and

the molecule, averaged with respect to the electron wave function of the

molecule ; U is a function of the co-ordinates of the incident particle and those

of the nuclei in the molecule. Next, let «/r and «/»n be the initial and final

wave functions of the nuclear (vibrational and rotational) motion. Then,

analogously to formula (145.3), we have

d(TW = (m2/47r2£4)|
J"J

Ue-JwfaWo drdF|2 do (148.1)

Here dr is an element of the configuration space of the nuclei, m the mass of

the electron. This formula relates to both inelastic and (n = 0) elastic

scattering.
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If all the atoms in the molecule are fairly heavy, the majority of the
scattering electrons belong to the inner shells of the atoms. On the other hand,
the motion of the inner electrons is not greatly affected when the atoms form a

molecule (this, of course, does not in general hold good for the outer elec-

trons). Hence the "scattering field" U can be written with sufficient accuracy
in the form U = 2 Uai where Ua is the energy of the interaction between the
incident particle and the ath atom (averaged with respect to its electron state)

;

Ua is a function of the co-ordinates of the particle relative to the ath nucleus.

Substituting in (148.1)

a a

where Ra is the radius vector of the ath nucleus, we can represent the effective

cross-section in the form

dan = |
S/a(q)(<H«l- R«)on|

2 do, (148.2)

where the matrix element of the expression in parentheses is taken with respect

to the nuclear wave functions «/r
, ijtn , and the quantities /a(q) are defined

by the formula

/a(q) = (- ™/2^2
) j Uae~i<i-<*-Ra) dV. (148.3)

These have a simple physical significance. They are the scattering amplitudes
for the individual atoms

:

<Ke = l/«(q)l
2 do (148.4)

is the effective elastic scattering cross-section for an individual (free) atom.

The formula which we have obtained solves the above problem in principle.

Next, let us consider the scattering of a neutron by a molecule (not having

a magnetic momentf). The electrons hardly scatter neutrons at all, so that

practically all the scattering takes place at the nuclei. We shall suppose that

the scattering is weak, in the sense that the amplitude of a wave scattered

by one of the nuclei in the molecule becomes small even at the positions of the

other nuclei; this condition essentially amounts to requiring that the

amplitudes for scattering by individual nuclei are small in comparison with

the distances between the atoms. When this condition holds, the scattering

amplitude for the molecule is given by the sumof those for the separate nuclei.

Perturbation theory is in general inapplicable to neutron-nucleus collisions

;

although the range of action of nuclear forces is small, within that range they

are very strong. In consequence, perturbation theory is also inapplicable to

general problems of neutron scattering by molecules. For slow neutrons,

however, a formal perturbation theory can be used for the problem of

scattering by a system of nuclei (a molecule), which is thereby reduced to that

t Otherwise there is a further special scattering effect due to the interaction between the magnetic

moment of the neutron and that of the molecule
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of determining the amplitude of neutron scattering by free nuclei (E. Fermi

1936).

The physical basis of this method is that the amplitude for scattering of

a slow neutron (with wavelength large compared with the dimensions of the

nucleus) by a free nucleus is a constant independent of velocity. Let fa be

the scattering amplitude for the ath nucleus, and \fa \

2 do the differential

cross-section for elastic scattering of a neutron by a free nucleus (in the

centre-of-mass system of the neutron and the nucleus).

The constant amplitude can be formally obtained from perturbation theory

if we describe the interaction of the neutron with the nucleus by a "point"

potential energy

2Trh2 .. ._ _ N

U{t)= /S(r), (148.5)

where /x = AI(A + \) is the reduced mass of the neutron and a nucleus of

atomic weight A; when this expression is substituted in Born's formula

(125.4), the delta function makes the integral a constant independent of q.f

It should be emphasised that the possibility of denning the "quasi-potential"

(148.5) is due to the fact that/ is constant. In the general case of an arbitrary

neutron energy, the scattering amplitude depends on the momenta p and p'

separately, and not only on their difference q, whereas the amplitude given

by the Born approximation can depend only on q.

If the scattering nucleus executes a given motion (for example, vibrations

in a molecule), and we average over this motion, then the interaction (148.5)

is "smeared" over a region of dimensions in general large compared with the

scattering amplitude /. For such a "smeared" interaction the condition

(125.1) for the Born approximation to be valid is satisfied.

Thus we can describe the neutron-molecule interaction by the potential

energy

U(r)= -27r/*2V—

/

aS(r-R«), .
(148.6)

'Pa
a

where the summation is over all the nuclei in the molecule, Ra are their

radius vectors, and r that of the neutron. Substituting this expression in

formula (148.3), with \x,m in place of m, /Ltm being the reduced mass of the

molecule and the neutron, we obtain the following formula for the cross-

section for scattering of a neutron by a molecule, in the centre-of-mass

system

:

dcn = ^2^.1VI/a(e
_lq .Ro)oJ2do . (148.7)

'Pa

t Although the potential (148.5) gives the correct value of the scattering amplitude when per-

turbation theory is formally applied, this does not mean that perturbation theory is actually applicable

to this field. For a potential well of depth Uo which tends to infinity in such a way that Uoaz =
constant (where a is the radius of the well, tending to zero), the conditions (125.1), (125.2) are certainly

not satisfied.
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the matrix elements are taken with respect to the wave functions of the motion

of the nuclei, and the momenta^ and/)' are related by the law of conservation

of energy

:

(p
2-p'2

)l2tMm = En-E .

Formula (148.7) determines the scattering of neutrons by a molecule, taking

account of the effect of the motion of the nuclei and the interference effects

from scattering by different nuclei, in terms of the amplitudes (assumed

known) of neutron scattering by free nuclei.f

If the nuclei have non-zero spin, the fact must also be taken into account

that the scattering amplitudes fa depend on the total spin of the scattering

nucleus and the neutron. This can be done as follows.

The total spin of the nucleus and the neutron can take two values,

ja = ia±i', we denote the corresponding scattering amplitudes by/+and/~.

We form a spin operator whose eigenvalues for the values ja — ia ±2 °f tne

total spin are f% and /J respectively. This operator is

fa = aa+ ba§.ia, (148.8)

where la and § are the spin operators of the nuclei and the neutron, and the

coefficients aa and ba are given by the formulae

% =
liT[(

'a+1)/
"
+ /a/a"]'

(148.9)

ba = ——Afa+
-fa-).

2ia+l

This is easily seen if we note that, for a given value of/, the eigenvalue of

the operator l.i is

The operators (148.8) must replacefa in formula (148.7), and their matrix

elements corresponding to the transition considered must be taken. If, as

usually happens, the incident neutron beam is unpolarised (or if the nuclei

in the irradiated target have different spin directions), then the scattering

cross-section must be appropriately averaged (see the Problems).

PROBLEMS
Problem 1 . Average formula (148.7), assuming the directions of the spins of the neutrons

and the nuclei to be distributed entirely at random, and all the nuclei in the molecule to be

different.

Solution. The averagings with respect to the directions of the spins of the neutrons and

of the nuclei are independent, and each spin gives zero on averaging; hence s.ia = 0. If

t It must be emphasised that it would, of course, be inadmissible to use the interaction (148.6)

in deriving higher approximations of perturbation theory.
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the molecule contains no two like atoms, there is no exchange interaction of the nuclear

spins, and, since their direct interaction is negligible, the directions of the spins of the various

nuclei in the molecule may be regarded as independent; the products of the form
(s . ii) (s . iz) therefore also give zero on averaging. For the square (s . i)2 we have

(S . i)2 = is2£2 = 1^+ !),-(,•+ 1) = li{i+ 1).

This gives the following expression for the averaged cross-section:

p'r i- |s-
pL a \ia

4(4+1),

p'r 1

dan = Hm2— |S—aa(er^^)0n\^+
PL a \ia

4(4+1) ~\

+ iS %*\(r+i*')on \* do.
a Ma2 J

Problem 2. Apply formula (148.7) to the scattering of slow neutrons by parahydrogen
and orthohydrogen (J. Schwinger and E. Teller 1937).

Solution. Before the matrix elements of the spin operators are taken, the expression

(148.7) for the scattering by a hydrogen molecule is

16 p'

dan = _q4(<Ha.r/2)0M + (e
*q.r/2)

0n]+
9 p

+ 6§ .Pi(<r-*** /2)0w + i2(^r /2)o»]|
2do, (1)

« = K3/+ +/i, *=/+ -/-,

± r/2 being the radius vectors of the two nuclei in the molecule relative to their centre of mass.
The rotational and vibrational states of the molecule are defined by the quantum numbers

K, Mk, v (which are together represented by n in (1)). In the electron ground state of the
H2 molecule, even values ofK are possible only for a total nuclear spin 1 = (parahydrogen),
and odd values of K only for / = 1 (orthohydrogen) (see §86). We must therefore distin-

guish two cases: (1) transitions between rotational states with values ofK of the same parity,

which are possible only for unchanged / (ortho-ortho *and para-para transitions), (2) tran-
sitions between states with values of K of different parity, which are possible only when J
changes (ortho-para and para-ortho transitions). In the first case we have

(*-*a.r/2)0n = (e
*q.r/2)

0n

= (cos|q.r) «;

it should be remembered that the rotational wave function is multiplied by (— 1)
K when the

sign of r is changed. The spin operator in (1) then becomes 2a+ 6i.I, where I = ii+ 12.

This operator is diagonal with respect to J, in accordance with the above discussion. The
square (2a+ 6s. I)

2 is averaged, as in Problem 1, giving

The result is

4a* + lb2I(I+l).

4 p'

dan =-- |(cos£p.r)on|2[(3/+ +/-)2 + /(/+ 1)(/
+ -/")2]do. (2)

y p
In the second case

(e
*a.r/2)0n= _ (e-*q.r/2)0re

= f(sin|q.r)on ,

and the spin operator in (1) becomes s.(ii— £2); it has only matrix elements which are non-
diagonal with respect to /. The squared moduli of these elements, summed over all possible
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values of the component of the total spin I' in the final state, are calculated as the mean values

(diagonal element) of the square [«.(ii— ia)3 2 (see the first footnote to §138):

[S.(il-i2)]2 =M(il-*2)2

= £(2ii2 + 2i22 -i2
)

= i[3-J(/+l)].
The result is

d*» = (l)(34-|(siniq.r)0w|2(/+-/-)do , (3)
v p

where the coefficient 1 appears for ortho-para transitions and the coefficient 3 for para-ortho

transitions.

If the neutrons are so slow that their wavelength is large even compared with the size of

the molecule, then we can put cos(Jq.r) = 1, sin(£q.r) = in the matrix elements in (2)

and (3), so that they are all zero except the diagonal element 00 in (2) ; in these conditions,

of course, only elastic scattering is possible. The elastic scattering cross-section in this case is

d<re = -^[(3/++/-)2+ /(/+ l)(/+-/-)2]do.

Problem 3. Determine the cross-section for the scattering of neutrons by a bound
proton, regarded as an isotropic three-dimensional oscillator of frequency co (E. Fermi 1936).

Solution. Considering the proton as oscillating about a point fixed in space, we must
put in formula (148.7), from its derivation, pm = M and /xtt = \M (M being the mass of the

proton). Then
p' <?o

don = S|K^Vooo(r)^lM2W3(r)dF|
2do,

p TT

where ao = 4w|/| 2 is the cross-section for scattering by a free proton, and ^mngn8 are the

eigenfunctions of the three-dimensional oscillator corresponding to the energy levels En =
Hco(n+ 3/2) ; the summation is over all values of n\, «2 and nz whose sum has a given value n.

The functions ^nin an3 are products df the wave functions of three linear oscillators (see §33,

Problem 4). The required integral therefore falls into the product of three integrals of the

form
00

»«!tt)JV(2"«!tt)_

(a = V(M(olh)), which are found by substituting Hni(x) in the form (a.4) and integrating

mi times by parts. The result is

1 v' co v^2«Vn2?/Ms
o2/2

. .

d<% = > e-8
2/2a'>

(J .

it v 2ntx.
2n jL-1 ni\n2\m\

by the binomial theorem, and the final re

cto IE' / q2 \ n

d ffw = /— (— ) e-W«*do.
7m\ V E\2a*/

The summation is effected by the binomial theorem, and the final result is

IE'/ <7
2

In particular, the elastic scattering cross-section (n = 0, E = E') is

an hco

dae = —e-<i*l2« 2
do, ae = °o-—<l ~ e-w/ha>)

;

rr E
as E/hco -> 0, ae -* 4<7o.



MATHEMATICAL APPENDICES

§a. Hermite polynomials

The equation

y"-2xy'+2ny = (a.l)

belongs to a class which can be solved by what is called Laplace's method,f
This method is applicable to any linear equation of the form

dmy2a'"y
(am+bmx)—- = 0,

dxm
m-0

whose coefficients are of degree in x not higher than the first, and consists

in the following procedure. We form the polynomials

P(t) = S amtm
,

Q(t) = 2 bmtm
,

m-0 m-0

and from them the function

which is determined to within a constant factor. Then the solution of the

equation under consideration can be expressed as a complex integral

:

y = [ Z(t)ext dt,

where the path of integration C is taken so that the integral is finite and non-

zero, and the function

V = e*tQZ

returns to its original value when t describes the contour C (which may be

either closed or open).

In the case of equation (a.l) we have

P = t*+2n, Q = -2t, Z= e-W\ V = —**<-<2
/4,

so that its solution is

y = f e**-tV4 dtjtn+\ (a.2)

t See, for instance, Goursat, Cours d'Analyse Mathematique, Vol. II; V. I. Smirnov, Course of

Higher Mathematics, Vol. Ill, Part 2, Pergamon, Oxford 1964.

593
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For physical applications we need only consider values n > — \. For
these values the contour of integration can be taken as Cx or C2 (Fig. 50)

;

these satisfy the required conditionsf, since the function V vanishes at their

ends (t = + oo or t = — oo).

e

e-

Fig. 50

Let us find the values of the parameter n for which equation (a.l) has

solutions finite for all finite x, which tend to infinity, as x -> ± oo, not more
rapidly than every finite power of x. First, we consider non-integral values

of n. The integrals (a,2) along Cx and C2 then give two independent solutions

of equation (a.l). We transform the integral along Cx by introducing the

variable u such that t = 2(x—u). Omitting a constant factor, we find

y = e* f e^'duftu—x)**-1 , (a.3)

<Y

where the integration is taken over the contour C/ in the complex plane of

w, as shown in Fig. 51.

e 2

c;

X̂

Fig. 51

As x -*- +oo, the whole path of integration Cx
' moves to infinity, and

the integral in (a.3) tends to zero as e~x\ As x -» — oo, however, the path

of integration extends along the whole of the real axis, and the integral in

(a.3) does not tend exponentially to zero, so that the function y(x) becomes
infinite essentially as e x\ Similarly, it is easy to see that the integral (a.2)

along the contour C2
' diverges exponentially as x -> +oo.

t These paths will not serve for negative integral n, since the integral (a.2) along them then vanishes

identically.
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For positive integral n (including zero), on the other hand, the integrals

along the straight parts of the path of integration cancel, and the two integrals

(a.3), along Q' and C2
', reduce to an integral along a closed path round the

point u = x. Thus we have the solution

y(x) = ex% <j) e~u% duj(u—x)n+1 ,

which satisfies the conditions stated. According to Cauchy's well-known
formula for the derivatives of an analytic function,

n\ (• fit)
fM(x) =

J)
—HjL— d/,

2m J (*-*)*«

y(x) is, apart from a constant factor, what is called an Hermite polynomial:

,d»
Hn(x) =(-l)»«* e~x\ (a.4)

dxn

The polynomial Hw expanded in decreasing powers of x, has the open
form

n(n—\) n(n—l)(n—2)(n—3)Hn(x) = (2x)»
K—L(2x)»-*+- -(Ix)*-*- ... . (a.5)

It contains only powers of x which are of the same parity as n. We may write

out here the first few Hermite polynomials

:

H = 1, Hx = 2x, H2 = 4*2-2, H3 = 8*3-12*, #4 = 16*4-48*2+12.

(a.6)

To calculate the normalisation integral, we replace e~x* Hn by its expres-

sion in (a.4) and integrate n times by parts

:

00 CO

f e-*'Hn\x) dx= [ (-\)nHn(x)—e-*
%

d*
J J d*n

f ,d»
= e~x Hn dx.

J d*»
-co

But dnHJdxn is a constant, 2"«! . Thus

CO

f e-x*Hn\x) d* = 2»«!Vtt. (a.7)
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The equation

Mathematical Appendices

§b. The Airy function

y"—xy =

§b

(b.l)

is of Laplace's type (see §a). Following the general method, we form the

functions

P = t\ Q = -1, Z = -e-^/3, v = e**-t
3
/3,

so that the solution can be represented in the form

y(x) = constant x ext
~ t3lz dt. (b.2)

The path of integration C must be chosen so that the function V vanishes

at both ends of it. These ends must therefore go to infinity in the regions

of the complex plane of t in which re t3 > (the shaded regions in Fig. 52).

Fig. 52

A solution finite for all x is obtained by taking the path C as shown in the

figure. It can be displaced in any manner provided that the ends of it go to

infinity in the same two shaded sectors (I and III in Fig. 52). We notice that,

by taking a path which lay in sectors III and II (say), we should obtain a

solution which becomes infinite as x -> oo.

Deforming the path C so that it goes along the imaginary axis, we obtain

the function (b.2) in the form (substituting t = iu)

0(

00

cos(ux+$u3) du. (b.3)
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The constant in (b.2) has been put equal to —i/Z-y/ir, and we have denoted

the function thus obtained by <E>(#); it is called the Airy function.^

The asymptotic expression for Q>(x) for large values of x is obtained by

calculating the integral (b.2) by the saddle-point method. For x > 0, the

exponent in the integrand has an extremum for t = ± -y/*, and the "direction

of steepest descent" of the integrand is parallel to the imaginary axis.

Accordingly, to obtain the asymptotic expression for large positive x, we

expand the exponent in powers of t+\/x and integrate along the line C\

(Fig. 52), which is parallel to the imaginary axis; the distance OA = \/x.

Making the substitution t = ~^x+iu
f
we have

oo

<&(x) « — |e-e/3>*«rt-uv*dM,W
2V*r J

-oo

whence
<&(*) « J*-l/4«-<2/3)*»» (b.4)

Thus, for large positive x, the function <£(*) diminishes exponentially.

To obtain the asymptotic expression for large negative values of x, we

notice that, for x < 0, the exponent has an extremum for t = iVM an<^

t = — i\/\x\, and the direction of steepest descent at these points is along

lines at angles —Jw and £tt respectively to the real axis. Taking as the path

of integration the broken line C3 (the distance OB = VM)» we have, after

some simple transformations,

0(a) = |*|
-1/4 sin(f|*|3/2+^). (b.5)

Thus, in the region of large negative x, the function 0(*) is oscillatory.

We may mention that the first (and highest) maximum of the function <E>(#)

is<D(-1.02) = 0-95.

The Airy function can be expressed in terms of Bessel functions of order J.

The equation (b.l), as can easily be seen, has the solution

where ZX [ Z{x) is any solution of Bessel's equation of order \. The solution

which is the same as (b.3) is

o(*) = M*i/3(^ /2)-M^ /2
)} for * > o,

0(*) = \ VM*IX/-i/8(t

M

3/2)+/i/3(f l*|
3/2

)} for * < o,

where IJx) = i~nJJix). The coefficient here is most simply obtained by

comparing the asymptotic expression (b.5) with the well-known asymptotic

expression for the Bessel functions,

Jn(x) « \/(2/7r*) sin(*—|n7r+j7r).

f We follow the definition proposed by V. A. Fok ; see the supplement to his book Difraktsiya

radiovoln vokrug zemnoi poverkhnosti {Diffraction of Radio Waves near the Earth's Surface), USSR
Academy of Sciences, Moscow 1946, which contains a collation of formulae and numerical tables.

The function <&(x) is one of two defined by Fok, who denotes it by v(x).
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§c. Legendre polynomials

The Legendre polynomials Pn(cos 6) are defined by the formula

1 d»
Pn(cos 6) = (cos20- 1)», (c. 1)

or, in open form,

(2n)l r n(n-l) »(«-l)(n-2)(ii-3) n
Pn(cos0) = — cos"0 cos"-26>+- - - icos"-^-... .

2»»! a L 2(2»-l) 2.4.(2»-l)(2»-3) J2.4.(2»-l)(2»-3)

They satisfy the differential equation

Id/ dP„

(c.2)

/ dP»\
I sm6—)+n(n+l)Pn = 0. (c.3)

sin0 d0\

The associated Legendre polynomials are defined by

d™Pn(cos0)
P„TO(cos0)=sin™0

(d cos 0)"»

1 (Jm+n
= sin™0 (cos20- 1)« (c.4)

lnn\ (dcos0)™+»

with w = 0, 1, ... , n. An equivalent definition is

(n+m)\ dn ~m
Pnm(cosd) = (-1)-- sin-*»0- ^^ooew-i). (c.5)

(«— w)! 2"«! (d cos 0)n-m

or, in open form,

„ , „, (2»)! I (n-m)(n-m-\)
Pnm(cos6) = sinm6 cos»-™0— cosn

-m ~29+
2»n\(n-m)\ { 2(2»-l)

(n—m)(n—m—l)(n—m—2)(n—m—3)
cos»-w-4^_ ...

J.
(c.6)

2.4.(2»-l)(2«-3)

The associated Legendre polynomials satisfy the equation

1 d / dP„™\ r nfi n
(sin0 )+„(„+!) \p m= o. (c.7)

sin0 d0\ dd ) L sin20j
V

'

The following "addition theorem" holds for Legendre polynomials.! Let

t There are in the mathematical literature many good accounts of the theory of spherical harmonics.
Here we shall give, for reference, only a few basic relations, and make no attempt at a systematic dis-

cussion of the theory of these functions.
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y be the angle between two directions denned by the spherical angles 6, <j> and

cosy = cos0 cos0'+sin0 sin0' cos(<f>—<f>').

Then

Pn(cosy) = Pn(cos0)P„(cos0')+

2- -Pnm(cos d)Pnm(cos 0')cos m(<f>-<f>'). (c.8)

(n+m)\
m=l

We shall show how the normalisation integral for Legendre polynomials

i

T [P„(cos0)]2 sin0 d0 =
J*

[P»M]2 dp

(ju = cos 0) may be calculated. Substituting for Pn(ju) the expression (c.l)

and integrating n times by parts, we have

l

1 r d» d»

J
[P"(")]2 d" " 2l^i J d^*"

1^^- 1)B
""

-1 -1

1

(u == £(1 —/j)) y
whence

(_1)M /• dzn
= - — (u2-l)» 0*«-l)» dfi

(2n)! r
= (l-/*2)»d^

22"(«!)2 J
-1

(2n)l f= 2-—- «»(1— «)»dtt
(«!)

2 J

J[^«0*)]
2 <V=2/(2«+l). (c.9)

-l

Similarly, it is easy to see that the functions Pn(ju) with different n are
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orthogonal

:

1

J"

Pn(ix)Pm(fM) d^ = {n ^ m). (c.10)

-l

The calculation of the normalisation integral for the associated Legendre
polynomials is easily effected by a similar method. We write [Pn

m
(iu)]

2 as

a product of the expressions (c.4) and (c.5), and integrate n—m times by
parts; the result is

i

C 2 (n+m)\
[Pnm(lx)]

2 dfX= }. L. (C.11)
J zrc+1 (n— my.

It is easily seen that the functions Pnm with different n (and the same m)
are orthogonal:

i

j Pnm(H)Pkm(p) d/* = (n # k). (c.12)

-l

The calculation of the integrals of products of three Legendre polynomials

is discussed in §107.

Finally, we give for reference the first few normalised spherical harmonics

Yim :

Yoo = 1/VW;
Y10 = zV(3/4jt)cos0, Ylt±1 = +tV(3/87r)sin^ . e**;

Y20 = V(5/16ir)(l-3cos20),

Y2,±i = ± V(l 5/8tt) cos sin . e***,

Y2 ,±2 = - V(15/32t7) sin20 . e±2<*
;

y30 = _*y(7/16ir) cos 0(5 cos20-3),

^s,±i = ± *V(21/64tt) sin 0(5 coS20- 1)«±W,

*3,±2 = -*V(105/32tt) cos0 sin20 . e&M,

^.is = ± »V(35/647r) sin30 . e±JK*.

§d. The confluent hypergeometric function

The confluent hypergeometric function is defined by the series

a z a(a+l) z2

which converges for all finite #; the parameter a is arbitrary, while the
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parameter y is supposed not zero or a negative integer. If a is a negative

integer (or zero), F(<x., y, z) reduces to a polynomial of degree |a|.

The function F(ol, y, z) satisfies the differential equation

zu"+(y-z)u'-<w = 0, (d.2)

as is easily seen by direct verification.! By the substitution u = z1-^,
this equation is transformed into another of the same form,

zu1"+(2-y-z)u1'-(K-y+l)ui=0. (d.3)

Hence we see that, for non-integral y, equation (d.2) has also the particular

integral zx~y F(<x.—y+ 1, 2— y, z), which is linearly independent of (d.l),

so that the general solution of equation (d.2) is of the form

u =c1F(a t
y,z)+c2z1-yF(«.-y+l i

2-y
i
z). (d.4)

The second term, unlike the first, has a singular point at z = 0.

Equation (d.2) is of Laplace's type, and its solutions can be represented

as contour integrals. Following the general method, we form the functions

P(t) = yt-K, Q(t) = t(t-l), Z{t) = t«-i(t-l)r-«-\

so that

u = ( etzta-ity—l)?-"-1 dt. (d.5)

The path of integration must be chosen so that the function V(t)

= e^Pit— l)r_a returns to its original value on traversing the path. Applying

the same method to equation (d.3), we can obtain for u a contour integral of

another form

:

u = si-r f etzt«-y(t— 1)-« dt.

The substitution tz -> t reduces this integral to the convenient form

u(z) = f e^t—z)-n«-ydt, (d.6)

and the function V to

V(t) =e**«-r+i(f-l)i-«.

The integrand in (d.6) has in general two singular points, at t = z and

t = 0. We take a contour of integration C which passes from infinity

(re t -> — oo) round the two singular points in the positive direction and back

to infinity (Fig. 53). This contour satisfies the required conditions, since

t The equation (d.2) with a negative integral y does not require special discussion, since it can be
reduced to a case of positive integral y by the transformation which gives equation (d.3).
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V(t) vanishes at its ends. The integral (d.6), taken along the contour C,
has no singular point for z = 0; hence it must be the same, apart from a

77TT)

j£l

Fig. 53

constant factor, as the function F(cc, y, #), which also has no singularity.

For z = the two singular points of the integrand coincide ; according to a

well-known formula in the theory of the gamma function,f

— jett-rdt = llT(r). (d.7)

c

Since F(a, y, 0) = 1, it is evident that

T(y) f
F(oi,y,z) = r e\t—z)-n*~y dt. (d.8)

2tti J
c

The integrand in (d.5) has singular points at t = and t = 1. If re(y— a)

> 0, and y is not a positive integer, the path of integration can be taken as a

contour C starting from the point t = 1, passing round the point t =
in the positive direction, and returning to t — 1 (Fig. 54); for re(y— a) > 0,

Fig. 54

the function V(t) returns to its original value of zero on passing round such a

contour.J The integral thus defined again has no singularity for z = 0,

and is related to F{a., y, z) by

1 r(l-a)r(r) r
F(*,y,z) = -—-±- ^ (b e*(-t)-i(l-t)r—i dt. (d.9)

2m I (y— a) J
C

The following remark should be made concerning the integrals (d.8), (d.9).

For non-integral a and y, the integrands are not one-valued functions.

f See, for instance, Whittaker and Watson, Course of Modern Analysis, Cambridge 1944, §12*22.

j If y is a positive integer, C can be any contour which passes round both the points t=0 and
= 1.



§d The confluent hypergeometric function 603

Their values at each point are supposed chosen in accordance with the con-

dition that the complex quantity which is raised to a power is taken with the

argument whose absolute value is least.

We may notice the useful relation

F(%,y,z) = e*F(y-a<.,y, -*), (d.10)

which is obtained at once by substituting t -> t+z in the integral (d.8).

We have already remarked that, if a = — n, where n is a positive integer,

the function F(a, y, z) reduces to a polynomial. A concise formula can be

obtained for these polynomials. Making in the integral (d.9) the substitution

t -+l—tjz and applying Cauchy's formula to the resulting integral, we find

1 d»
F(-n,y,z) = zi-7ez (e -zzy+n-i). (d.U)

y(y+l)...(y+n-l) d*»
V

If also y = a positive integer m, we have the formula

(—\)m-l ftm+n-l

F(-n,m,z) = -ez - -(<?-**»). (d.12)
V ' m(m+l)...(m+n-l) ds™+«-i

v

This formula is obtained byapplying Cauchy's formula to the integral derived

from (d.8) by the substitution t -» z—t.

The polynomials F(— n, m, z), < m < n, are (apart from a constant

factor) the generalised Laguerre polynomials, defined by

£»"(*) = (-1)*
,,

F(-[n-m],m+l,z)
m\{n—m)\

n\ dw
-€* (e-zzn -m)

(n—m)\ dzn

= (—\)m gzz-m (e-zzn). (d.13)

(n—m)\ dzn ~m

The polynomials Lnm for m = are denoted by Ln(z) and are called simply

Laguerre polynomials', from (d.13) we have

dn
LJz) = ez (e-zzn).

dzn

The integral representation (d.8) is convenient for obtaining the asymptotic

expansion of the confluent hypergeometric function for large z. We deform

the contour into two contours Cx
and C2 (Fig. 53), which pass round the points

/ = and t = z respectively ; the lower branch ofC2 and the upper branch of

Cx are supposed to join at infinity. To obtain an expansion in inverse powers

of z, we take (—z)-* outside the parenthesis in the integrand. In the integral

along the contour C2 , we make the substitution t -> t+z; the contour C%

is thereby transformed into Cx . We thus represent the formula (d.8) as
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T(y)
F(x,y

t
z) = — -<-ar)-"G(a,a-y+l,-ar)+

r(y-a)

T(y)
+ ^a -rGr

(y
_ aj l_ a>jar) f (d>14)

r(a)
where

i'(i—p) r / t\-»

Ci

In raising —z and 5: to powers in the formula (d.14) we must take the argu-
ments which have the smallest absolute value. Finally, expanding (1 +t/z)-a
in the integrand in powers of t\z and applying formula (d.7), we have for
G(a, £, z) the asymptotic series

G(«,M = l+-f-+ ^ VV +•- (d-16)
1!# 2!#2

Formulae (d.14) and (d.16) give the asymptotic expansion of the function
F(a, y, z).

For positive integral y, the second term in the general solution (d.4)
of equation (d.2) is either the same as the first term (if y = 1) or meaningless
(if y > 1). In this case we can take, as a set of two linearly independent
solutions, the two terms in formula (d.14), i.e. the integrals (d.8) taken along
the contours Cx and C2 (these contours, like C, satisfy the required conditions,
so that the integrals along them are solutions of equation (d.2)). The asymp-
totic form of these solutions is given by the formulae already obtained; it

remains for us to find their expansion in ascending powers of z. To do this,

we start from equation (d.14) and the analogous equation for the function
zx~y F(<x.—y+ 1, 2— y, z). From these two equations we express
G(a,a-y+ l, -z) in terms of F(cc, y z) and F(x-y+ l, 2-y, z)\ we then
put y =p+e (p being a positive integer), and pass to the limit e -+ 0,

resolving the indeterminacy by L'Hospital's rule. A fairly lengthy calcula-
tion gives the following expansion

:

smnai..r(p— a)
G(a,a—p+1,—z) = z«X

ttT(p)

x{log z.F(«,p,z)+
y^r^+^^a+^-^+^-^+l)]

I

i?
r(«)r(,+/>)r(,+i)

+ Z (
~ 1)s+1 ™ L. H > (d - 17)

s=l
r(«)r(p-x)

where «/r denotes the logarithmic derivative of the gamma function: «/r(oc)

= r'(«)/r(«).
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§e. The hypergeometric function

The hypergeometric function is defined in the circle |*| < 1 by the series

ajS z a(«+l)j803+l) *2

F(«,fty,*) - 1+--+
y(y+1) iT

+- (e - ! >

and for |*| > 1 it is obtained by analytical continuation of this series. The

hypergeometric function is a particular integral of the differential equation

*(l-*)ii"+[y-(a+j3+l)*]M'-a0« = 0. (e.2)

The parameters a and p are arbitrary, while y ^ 0, —1, — 2, ... . The

function F(a, /?, y, z) is evidently symmetrical with respect to the parameters

a and j8.| The second independent solution of equation (e.2) is

zi-rFtf-y+ 1, a-y+ 1, 2-y, s)

;

it has a singular point at z = 0.

We shall give here for reference a number of relations obeyed by the hyper-

geometric function.

The function F(oc, ft y, z) can be represented for all z, ifJ re(y— a) > 0,

as an integral

:

F(a,j8,y,*) = -—r^"a)r

[

y)

I {-t)-Hl~t)r—\\-tz)-fi6t
t

2m r(y-a) J
c (e.3)

taken along the contour C shown in Fig. 54. That this integral in fact

satisfies equation (e.2) is easily seen by direct substitution; the constant

factor is chosen so as to give unity for z = 0.

The substitution u = (1 —ar)*-"-^ in equation (e.2) leads to an equation

of the same form, with parameters y— a, y— jS, y in place of a, £, y respec-

tively. Hence we have

JT(a,j8,y,*) = (l-z)v-«-0F(y-x,y-p,y,z); M)
both sides of this equation satisfy the same equation, and they have the same

value for z = 0.

The substitution t -» t\{\—z+zt) in the integral (e.3) leads to the fol-

lowing relation between hypergeometric functions with variables z and

F(*,P,y,z) = (l-*)-F(a
f y-j8 f yf

*/(*-l)). (c.S)

The value of the many-valued expression (1 —*)-" in this formula (and of

f The confluent hypergeometric function is obtained from F(a, jS, y, «) by passing to the limit

F(«,y,z) =]imF(aL,P,y,zlP).

J This inequality holds for all cases occurring in physical applications.
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similar expressions in all the following formulae) is determined by the con-
dition that the complex quantity which is raised to a power is taken with the
argument whose absolute value is least.

Next we shall give, without proof, an important formula relating hyper-
geometric functions with variables z and 1/z:

r(y)r(j8—a)
F(a,fty,*) =

r(i8)r(
(-*)-a*Ta, a+ 1 -y, a+ 1 -ft 1/*)+

r(y)r(a-
i8)

This formula expresses F(cc, ft y, #) as a series which converges for J*| > 1,
i.e. it is the analytical continuation of the original series (e.l).

The formula

IYy)IYy-a— fl)

F(«>P>r>*) = ™ ^r-^(«.A«+j8+i-yf
i-»)+

l\y-a)r(y-£)

,
r(y)r(a+i8-y)

-<l-ar)r-«-/»F(y-a,y-fty+l-a-ftl-af)
r(a)ros)

(c.7)

relates hypergeometric functions of * and 1—*; it is derived similarly to
formula (e.6). Combining (e.7) and (e.5) with (e.6), we obtain the relations

r(y)r(]8-a)
F(*,P,y,z) =—— r(l-*)-F(a,y-ft a+l-ft 1/(1-*))+

1 (£)r(y-a)

r(y)r(a-jS)

(l-*)-^(fty_a,ftfl-a,l/(l-#)),
(e.8)

m R ,
r(y)r(y-a-£) / *_K

*"'***> = r(y-Wy-a)^(a
'
a+1-y'

a^+1-^—
)
+

r(y)r(a+
i
8-y) / *_K

+~Twi^r~(1"")r_a^a "rF
(

1"Ay~^ r+1^ (e -9)

Each of the terms in the sums on the right of equations (e.6)-(e.9) is itself

a solution of the hypergeometric equation.

If a (or p) is a negative integer or zero, a = — n, the hypergeometric
function reduces to a polynomial of the nth degree, and can be represented
in the form

#1-7(1 _2)y+M-/? d»
F(-n,P,Y,*) =

, , iN ,
-—[*r*»-i(l_*)*-r]. (e.10)

y(y+l)...(y+«-l)ds"
J V

'

^(a, A y, «;) also reduces to a polynomial for a = y+w and for a = «,
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y = m+l (» and m being positive integers, with n < m). The explicit

forms of these polynomials can be obtained in the former case by com-

bining (e.10) with (e.5), and in the latter case by combining it with (e.9).

§f. The calculation of integrals containing confluent hypergeometric

functions

Let us consider an integral of the form

oo

Jay
v = I e-tez»F(a,y,kz)dz. (f.l)

We assume that it converges. If this is so we must have re v > —1 and

re A > |re k\ ; if a is a negative integer, the latter condition can be replaced

by re A > 0.

The integral (f.l) is easily calculated by using for F(cc, y, kz) the integral

representation (d.9) and effecting the integration over z under the contour

integral

:

Jay

1 r(l-a)r(y)a) (y)
(£ f e-^-MzzH-ty-M\-t)y-«-i dtdz

-a) JJ2-ni Y{y
CO

1 r(l-a)r(y)v ;
-A-"-ir(v+i)x

2ni T(y-a)

x I (_i)«-i(l-f)r-a-i(l-^/A)-"-i d*.

c

Using (e.3), we have finally

/./ = I>+ l)A-"-i JP(a,v+ 1, y, k/X). (f.2)

In the cases where the function F(cc, v+1, y, kjX) reduces to a polynomial,

we have for the integral /ay
v an expression in terms of elementary functions

:

ya/+»-i = (-l)T(y)£^[\«-r(\-k)-«], (f.3)

r(v+l)(A-^)r+»-"-i d»

/-»•/ - (- 1
)%(y+1) .„ (y+B_ 1)

^-(A-^^L (f.4)

Jam- = ,.. .„ \ .
-— -(m-l)!_[A-i(A-A)—1]+

£m-i(i_a)(2—a)...(m— 1— a) \ dAn

+«!(m-«-l)...(m-l)A«-»-1(A-/5)-1+n*-»-a [A™-«-i(A-/e)«-i]
; (f.5)

d\m-n-2
J
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here m, n are integers, with ^ n < m—2.
Next, let us calculate the integral

00

Jv =
J

e-**z"-i[F(-n
t y, kz)f dz, (f.6)

o

where n is an integer and re v > 0. To calculate this, we begin with a more
general integral having e~ Xz instead of e~kz in the integrand. We write one
of the functions F{—n, y, kz) as a contour integral, and then integrate over
z, using formula (f.3):

C 1 T(l+n)T(y)
e-**z»-i[F(-n,y,kz)¥dz = -_ J_-L¥2.x

J 27rz lYy+n)
o

CO

X
J

(b {-t^-^X-^y+n-ie-iK-kttazv-iF^-n^kz) dtdz

c
i r(i+i*)r2(y)i»

= (_l)n
T yVJ K \

1-nl T2(y+n)

X(b (A-fo-A)r+«-"(-*)-«-i(l-*)7+«-i—[(A_^)-"(A-^-A)"-r] d*.

c

The nth derivative with respect to A can evidently be replaced by a derivative

of the same order with respect to t\ we then put A = k, and thereby return

to the integral /„:

/, =
r d»

x d) (-t)?-v-i(l-t)y+n-i—[(i-t)-»(-ty-y] dt.

J dtn

i r(n+i)r(v)r2(y) ^ / n _ d«

lid T2(y+n)kv

By integrating n times by parts, we transfer the operator d.
n/dtn to the expres-

sion (— t)7
~v~1

(1 — t)
7+n~1

i
and then expand the derivative by Leibniz'

formula. As a result, we obtain a sum of integrals, each of which reduces

to Euler's well-known integral. We finally have the following expression

for the integral required

:

rOQnl
f

n(y-v-l)(y-y)

A"y(y+l)...(y+«-l)l IV

.
n(n—l)(y—v—2)(y—v—l)(y—v)(y—v+l)

P2V(y+l)

n(n-l) ...l(y-v-n) ...(y-v+n-l)

\^...tfiy(y+V)...{y+n-\)
'' ^
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It is easy to see that the integrals /„ are related by

where p is any integer.

We similarly calculate the integral

oo

/ = \ e-Xzzv-iF(a,y,kz)F((x.',y,k'z)dz. (f.9)

We represent the function F{ol\ y, k'z) as a contour integral, and integrate

over z, using formula (f.3) with n = 0:

/ =
1 r(i-a')r(y)

2m r(y-a')
C

' W'
<£ f (_f)a'-i(i_ <)y-«'-i^y-ie-«(A-*'»F(a,y,fe8f) dsd*

i r(i oQr2
(y) r

^_^a._1
^
1_^y _a'_i(A_^«-y

(
A_^/_^-« d/t

7rt r(y— a') X
C"

By the substitution t -+ MI(k't+X-k'), this integral is brought to the form

(e.3), giving

If a (or a') is a negative integer, a = —n, this expression can be rewritten,

using (e.7), as

7
r(y+n)r(y-a')

/ A{A-k-k') \
xy(_^,_^+l_ yi___). (Ml)

Finally, let us consider integrals of the form

00

//*(<*, a') = f e-»+-*T«/2*y-i+» JF(a, y, ft*)F(a', y-p, #*) d*. (f.12)

o

The values of the parameters are supposed such that the integral converges

absolutely; s and p are positive integers. The simplest of these integrals,
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/y
00

(«> a'), is, by (f.10),

/y°°(a,a') = 2rr(y)(A+^)«+a'-^'-^)-^-^)-^('a
>
a',y, ^L")

;
(f.l3)

\ (k'—k)2 /

if a (or a') is a negative integer, a = — «, we can also write, by (f.ll),

y(r+i)-(r+«-i)

X(-ink+kyn+.'-y{k_kln-cc'Fr n}^ a
>+ j_„_y>

Z^+^.'N
2
!

(f J4)

The general formula for//'(a, a') can be derived, but it is so complex that
it cannot be used conveniently. It is more convenient to use recurrence
formulae, which enable us to reduce the integrals //'(a, a') to the integral
with s = p = 0. We shall give these here without proof,f The formula

y-1
//*(a, a') = -_{y

y
_lS,2>-i(a> a')_y

y
_lS,;p-i(a_ 1} a

>

)} (f 15)

enables us to reduce //p(a, a') to the integral with/> = 0. The formula

4
//«•%*, a') = ^-^{[Mk-k')-koi+k'a'- £'*].//>(«, «')+

+,(y_ l+,_ 2a')//-i.0(a, a')+2aV/-L0(a, a'+ 1)} (f.16)

then makes possible the final reduction to the integral with s = p = 0.

t The derivation is given by W. Gordon, Annalen der Physik [5] 2, 1031, 1929.
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input, 542
widths, 557-558
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95, 189, 383, 423
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5

Commuting operators, 14

Complete description, 4, 5

Complete set

of functions, 8

of quantities, 5

Complex compounds, 291

Compound nucleus, 554
Configuration space, 6

Conservation of

angular momentum, 81

energy, 28

momentum, 42
parity, 96

Conserved quantity, 27

in Coulomb field, 128

Continuous spectrum, 8, 15-19, 519-523

Coulomb field, motion in, 116ff.

scattering in, 516-519

Coulomb units, 116

Creation operator, 223

Cross-section

reaction, 543

scattering, 470, 558
transport, 483, 533

Current density, 57

in magnetic field, 435-437

De Broglie wavelength, 52

Degeneracy of energy levels, 29, 231

accidental, 118, 236
permutational, 21 9n.

removal of, 133

Delta function, 17, 43n., 474n.

Density matrix, 38—41

Derivative, in quantum mechanics, 26, 31

Detailed balancing, principle of, 553n.

Diatomic molecule, (XI) 277ff.

Dipole moment, 261

Dispersion relation, 499-500
Doublets (see also Multiplet)

irregular, 260
regular, 260
relativistic, 260
screening, 260
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Eigenfunctions, 8

Eigenvalues, 8

complex, 512
Elastic collisions, theory of, (XVII) 469ff.

with inelastic processes, 542-548
Electron

configuration, 233, 254-257
diffraction experiment, 1-2
states in the atom, 232ff.

terms in the diatomic molecule, 277ff.

intersection of, 279-282
Element of group, see Group, element of
Energy, 28

levels, 29
atomic, 231-232
complex, 512
degenerate, 29
hydrogen-like, 236-237
of linear oscillator, 69

anharmonic, 132
in magnetic field, 425
in potential well, 65
in quasi-classical case, 163-167
vibrational, 378-380
virtual, 507
width of, 153

Equivalent

axes, 339
planes, 339
states, 233

Even states of molecules, 278
Exchange

integral, 215
interaction, 213, 524

"Fall" to the centre, 54, 113-116
Fermi(-Dirac) statistics, 210

second quantisation, 227-230
Fermions, 210
Fine structure, 232, 301

of atomic levels, 247-252
Forbidden transition, 100
Form factor, atomic, 532
Franck and Condon's principle, 324
Free motion, 50-52

in centrally symmetric field, 104-113

Galileo's relativity principle, 50
Ground state, 28
Group

Abelian, 336
class of, 337
conjugate, 338
continuous, 364-367
cubic, 346n.

cyclic, 336
direct product of, 338
double, 367

Group (cont.)

element of, 336
conjugate, 337
generating, 357
inverse of, 336
order of, 336
period of, 336
product of, 336
unit, 336

finite, 336

icosahedron, 346
isomorphous, 338
normal divisor of, 338
octahedron, 345
order of, 337
point, 338-347, 354-358, 364-370
representation of, 347-361; see also

Representation of group
rotation, 364
sub-, 336

conjugate, 338
tetrahedron, 343
theory, 336ff.

unit element of, 336
Gyromagnetic factor, 429, 452

Hamiltonian (operator), 26
of freely moving particle, 50
of interacting particles, 51

of linear oscillator, 67
Hamilton's principle, 20
Heisenberg representation, 37-38
Helium atom, 237-240
Hermite polynomials, 69, 593-595
Hermitian

conjugate operator, 12

matrix, 32
operator, 12

Heteropolar binding, 289
High energies

elastic scattering at, 489-492, 531-535
inelastic scattering at, 571-580

Homogeneous field, motion in, 73-75

Homopolar binding, 290
Hund's rule, 233

Hydrogen atom, 236-237, 269-276, 535,

578-580
Hydrogen-like energy levels, 236-237
Hyperfine structure

of atomic levels, 463-466
of molecular levels, 466-468

Hypergeometric functions, 600-610

Identical particles, (IX) 209ff.

collisions of, 523-526

Indistinguishability of similar particles, 209
Inelastic collisions, theory of, (XVIII) 542ff.

Intermediate groups, 254, 256-257, 290-291
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Intermediate states, 150

Intersection of electron terms, 279-282

Inverse operator, 14

Inversion transformation, 95-97

Ionisation of atoms

in a decay, 145-146

in j3 decay, 144-145

by electric field, 274

by electrons, 571, 579-580

by heavy particles, 586

near threshold, 570-571

Irreducible tensor, 202

Isotopic

invariance, 438—442

shift, 461-463

spin, 439

jj coupling, 251, 449

Kernel of operator, 10

Kramers' theorem, 208

Laguerre polynomials, 603

generalised, 118, 603

Lambda (A)-doubling, 316-319

Lande
1

^-factor, 429

Lande's interval rule, 249

Large distances, atoms at, 319-322

Legendre polynomials, 90, 598-600

associated, 89-90, 598-600

Linear operator, lOn.

Linear oscillator, 67-73

anharmonic, 132

Low energies

elastic scattering at, 500-511

inelastic scattering at, 548-550

LS coupling, 251

Magic numbers, 451

Magnetic field, motion in, (XV) 421ff.

Magnetic quantum number, 103, 127

Magnetons, 423

Mass of particle, 50
reduced, 101

Matrix, 31ff.

density, 38-41

diagonal form of, 33

elements, 31

for addition of angular momenta, 418-

420
of angular momentum, 87-88

in classical limit, 165-166

of derivative, 31

diagonal, 32
for diatomic molecule, 312-316
quasi-classical, 177-181

Matrix (cont.)

elements (cont.)

reduced, 93n., 410

selection rules for, 361-363

of tensors, 408-412

of vectors, 91-95

Hermitian, 32

multiplication of, 32

Pauli, 193

trace of, 36

Mean value, 10

Measurements, 2-5, 21-24, 151-152

predictable, 5

Mirror nuclei, 438n.

Mixed states, 39n.

Molecular terms

and atomic terms, 282-286

classification of, 394-400

Molecule, see Diatomic molecule; Poly-

atomic molecules

scattering by, 587-592

Momentum, 42-45

commutation relations, 42, 46

Multiplet

inverted, 249

normal, 249

splitting, 232, 301

terms in diatomic molecule, 299-309

Multiplicity, 232, 277

of frequency, 372

Multipole moments, 261-264

Negative terms, 310, 394

9/-symbol, 416-417

Nodes, 59

Normal co-ordinates, 372

Normal state, 28

Normalisation, 6, 16—17

Notation, xiii, 103, 232, 259, 277

Nuclear forces, 438ff.

charge symmetry of, 438

saturation of, 445

spin dependence of, 442-444

Nuclear magneton, 423

Nuclear structure, (XVI) 438ff.

Nucleons, 438ff.

Nuclei (see also Nuclear forces; Nuclear

structure)

compound, 554

non-spherical, 456-461

Occupation numbers, 221

Odd states of molecules, 278

One-dimensional motion, 60-80

quasi-classical case, 158—166

Operators, lOff.

addition of, 13
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Operators (cont.)

annihilation, 223

anticommuting, 96
anti-Hermitian, 15

commutator of, 15
commuting, 14
creation, 223

differentiation of, 26-27
Hermitian, 12
Hermitian conjugate, 12
inverse, 14
linear, lOn.

momentum, 42-45
multiplication of, 14
self-conjugate, 12

symmetrised products of, 15
transposed, 11

unitary, 35
Optical model, 560n., 562
Optical theorem for scattering, 476, 544
Orbital angular momentum, 188

total, 190
Orthogonal functions, 10
Orthohelium, 238n.
Orthohydrogen, 312, 591-592
Orthonormal functions, 10
Oscillation theorem, 60-61
Oscillator

in external field, 143
linear, 67-73

anharmonic, 132
strengths, 582
three-dimensional, 111

Parabolic

co-ordinates, 125, 270
quantum numbers, 127

Parahelium, 238n.
Parahydrogen, 312, 591-592
Parity, 96

addition rule for, 99-100
Paschen-Back effect, 430, 431
Pauli matrices, 193
Pauli's principle, 211
Periodic system, 252-259
Permutations, 216-221
Perturbation theory, (VI) 129ff.

Perturbations

adiabatic, 142, 185-187
in diatomic molecule, 329-330

Phase
factor, 7

shift, 109

space, 164, 241, 445
Physical quantity, 5

Physical sheet, 493
Planck's constant, 20-21

Plane wave, resolution of, 111-113

Point groups, 338-347, 354-358, 364-370
continuous, 347, 364-367

Poisson bracket, 27n.
Polar vector, 97n.
Polarisation of particles, partial, 204-206
Polyatomic molecules, (XIII) 371ff.

Positive terms, 309, 394
Potential barrier, 78-80

in quasi-classical case, 171-177, 181-184
Potential scattering, 514, 558
Potential wall, 75-77, 162
Potential well, 63-67, 71-73, 109-110, 123

125, 154, 156-157, 504
Predictable measurements, 5

Pre-dissociation, 322-331
Principal groups, 254-255, 288-290
Principal quantum number, 118, 233, 449
Principle of least action, 20
Probability

amplitude, 6

current density, 57
Product

of elements of group, 336
of groups, 338
of matrices, 32
of operators, 14
of quantities, 13

of representations of groups, 352
of spinors, 197

Pseudoscalar, 96
Pure states, 39n.

Quadrupole moment, 261-264, 460
Quantum mechanics, 2

basic concepts of, (I) Iff.

and classical mechanics, 2-3, 20-21, 52, 54,

95, 154, (VII) 158ff., 190n., 209, 421,
474, 486-489

Quantum number
azimuthal, 103

magnetic, 103, 127
parabolic, 127
principal, 118, 233, 449
radial, 103, 118

vibrational, 296
Quasi-classical systems, 21, 49, 113, (VII)

158ff., 486-489
Quasi-discrete spectrum, 512
Quasi-stationary states, 153, 512, 554

Racah coefficients, 413
Radial

quantum number, 103, 118
wave function, 102-104

in Coulomb field, 116-122
in free motion, 105-109

Ramsauer effect, 502n.
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Reciprocity theorem for scattering, 477, 538,

553

Redundant poles, 496
Reflection coefficient, 76

in quasi-classical case, 181-184
Representation

of group, 347-361

antisymmetric product of, 352
basis of, 348
character of, 348
dimension of, 348
direct product of, 352

equivalent, 348

irreducible, 349-361

reducible, 349
regular, 351

symmetric product of, 352
total, 372
two-valued, 367-370
unit, 352

of matrices, 33

of operators, 37-38, 44
of wave functions, 18

Resonance, 146

scattering, 505-516, 526-531

Retardation, effective, 580-584

Rigid body, rotation of, 383-389

Rotary-reflection axis, 333

Rotation of molecules, 293-299, 301-309,

389-393

Rotator, 296n.

Russell-Saunders coupling, 251

Rutherford's formula, 519

Rydberg's correction, 237

Saddle-point method, 597
Scattering {see also Elastic collisions; Inelastic

collisions)

amplitude, 470, 492-500
general theory of, 469ff.

length, 502n.

matrix, 476ff., 550-554

operator, 476
potential, 514, 558
quasi-classical, 486-489
resonance, 505-516, 526-531

Schrodinger's equation, 51ff.

in central field, 101-102
for free particle, 51

in homogeneous field, 73

for linear oscillator, 69
in magnetic field, 421—424
in one dimension, 60, 63-64

in quasi-classical case, 158

Second quantisation, 221-230
Secular equation, 133

Selection rules, 92-93, 361-363, 410
Self-adjoint operator, see Self-conjugate

operator

Self-conjugate operator, 12

Self-consistent field, 232, 237-240, 447
Shell model of the nucleus, 447-456
Sign of terms, 309-310, 394
6j-symbols, 412-416

Slow particles

elastic scattering of, 500-511

inelastic scattering of, 548-550

•S-matrix, 476 ; see Scattering matrix

Spectral terms, 232, 277

Spectrum
continuous, 8, 15-19, 519-523

discrete, 8-15

of eigenvalues, 8

Spherical harmonics, 90, 598-600
Spin, (VIII) 188ff.

commutation relations, 189

in magnetic field, 434-435
nuclear, 449

suffixes, 189

total, 190
variable, 189

Spin-axis interaction, 300

Spin-orbit interaction, 247-250, 300, 448,

535-541

Spin-spin interaction, 247, 250, 305

Spinors, 194ff.

contraction of, 197

multiplication of, 197

symmetrical, 197

and tensors, 200-204

unit, 197

Spur of matrix, 36

Stability of molecules, 380-383

Stark effect, 265-276
in diatomic molecule, 316
linear, 269

Stationary states, 28
Statistical weight, 311n., 395n.

Sum of quantities, 13

Superposition principle, 7

Symmetric term, 311

Symmetrisation
of functions, 217
of spinors, 197-200

Symmetry
axis of, 332

bilateral, 339
equivalent, 339

centre of, 333

groups, 335ff.

plane of, 332

equivalent, 339

of terms

in diatomic molecule, 277-278,
309-312

in polyatomic molecules, 371ff.

theory of, (XII) 332ff.

transformations, 332-335
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Tensor
antisymmetric unit, 83

forces, 443
irreducible, 202
matrix elements of, 408-412
spherical, 409

Thomas-Fermi method, 241-246, 257-259
3y-symbols, 401-408
Threshold of reactions, 565
Time reversal, 24, 55, 206-208, 423-424,

477, 553

Top, 383-389

asymmetrical, 384
spherical, 384
symmetrical, 384

Trace of matrix, 36
Transition

frequency, 31

probability, in quasi-classical case, 181—
184

Transmission coefficient, 76
in quasi-classical case, 172-177

Transport cross-section, 483, 533

Transposed operator, 11

Turning points, 159

Uncertainty

principle, 2

relations, 47
for energy, 151

Unitary operator, 35

Valency, 286-292
Van der Waals forces, 320
Variational principle, 58-60
Vector addition coefficients, 404n.
Vector model, 99
Velocity, in quantum mechanics,4, 55-56,423
Vibrational

angular momentum, 390
co-ordinates, 372
energy levels, 378-380
quantum number, 296

Vibrational (cont.)

states and rotational states in diatomic

molecule, 293-299, 301-309
Vibrations, molecular

anharmonic, 378
classification of, 371-378
interaction with rotations, 389-393

Virtual level, 507

Wall, potential, 75-77, 162
Wave equation, 26

Wave function, 6, 21-24, 57-61

antisymmetrical, 210
of boson system, 211

co-ordinate, 212
of fermion system, 211

in magnetic field, 422, 425
near nucleus, 246-247
orbital, 212
quasi-classical, 158ff.

radial, 102-104, 105-109, 116-122
spin, 212
for arbitrary spin, 198-200
symmetrical, 210

Wave mechanics, 2
Wave number, 61, 104
Wave packet, 21

Well, potential, 63-67, 109-110, 154,

156-157
Width

of channel, 557-558

of level, 153

Wigner 3y-symbols, 403

X-ray terms, 259-261

Young diagrams, 217-220

Zeeman effect, 427-434
anomalous, 429n.
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Institute of Physical Problems of the USSR Academy of Sciences
The complete Course of Theoretical Physics* by Landau and Lifshitz, recognised as two of the world's

outstanding physicists, is being published in full by Pergamon Press. It comprises nine volumes, covering

all branches of the subject; translations from the Russian are by leading scientists.

Typical of many statements made by experts, reviewing the series, are the following
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—
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".
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and 'classical' physics."

—

Journal of Fluid Mechanics

"The remarkable nine-volume Course of Theoretical Physics ... the clearness and accuracy of the authors'

treatment of theoretical physics is well maintained."—Proceedings ofthe Physical Society

"The monumental Course of Theoretical Physics."—Science Progress

Of individual volumes, reviewers have written:

MECHANICS
"The entire book is a masterpiece of scientific writing. There is not a superfluous sentence and the authors

know exactly where they are going ... It is certain that this volume will be able to hold its own amongst more

conventional texts in classical mechanisms, as a scholarly and economic exposition of the subject."—

Science Progress

QUANTUM MECHANICS (Norwelativistic Theory)
".

. . throughout the five hundred large pages, the authors' discussion proceeds with the clarity and succinct-

ness typical of the very best works on theoretical Technology physics."—Technology
".

. . every page shows evidence of great mastery of the subject. No one can read this volume without being

aware that he is in the presence of a master."—Proceedings ofthe Faraday Society

"To the serious student of theoretical physics no better textbook could be recommended."—Nature

FLUID MECHANICS
"In the event, the book is one which will have to find its way on to the shelves of allthose seriously interested

in the subject,"—Bulletin ofthe Institute ofPhysics

"The ground covered includes ideal fluids, viscous fluids, turbulence, boundary layers, conduction and

diffusion, surface phenomena and sound. Compressible fluids are treated under the headings of shock

waves, one dimensional gas flow and flow past finite bodies. There is a chapter on the fluid dynamics of

combustion while unusual topics discussed are relativistic fluid dynamics, dynamics of superfluids and

fluctuations in fluid dynamics ... a valuable addition to any library covering the mechanics of fluids."—

Science Progress

THE CLASSICAL THEORY OF FIELDS (Second Edition)
"This is an excellent and readable volume. It is a valuable and unique addition to the literature of theoretical

physics,"—Science
"The clarity of style, the conciseness of treatment, and the originality and variety of illustrative problems make
this a book which can be highly recommended."—Proceedings of The Physical Society

STATISTICAL PHYSICS
". . . stimulating reading, partly because of the clarity and compactness of some of the treatments put

forward, and partly by reason of contrasts with texts on statistical mechanics and statistical thermodynamics

better known to English sciences , . , The chapters ... on fluctuations and , , . on second order phase transi-

tions are particularly well sustained. Other features, such as the space devoted to systems undergoing rota-

tion, to systems at high temperatures and pressures, and to relativistic modifications of statistical physics,

attract attention since they do not always receive comparable mention in other textbooks."—New Scientist

THEORY OF ELASTICITY
"I shall be surprised if this book does not come to be regarded as a masterpiece."—Journal of the Royal

Institute ofPhysics.
".

. . the book is well constructed, ably translated, and excellently produced."—Journ al of The Royal Aero-

nautical Society

ELECTRODYNAMICS OF CONTINUOUS MEDIA
"Within the volume one finds everything expected of a Textbook on classical electricity and magnetism, and

a great deal more. It is quite certain that this book will remain unique and indispensable for many years to

come."

—

Science Progress
"The volume of electrodynamics conveys a sense of mastery of the subject matter on the part of the authors

which is truly astonishing."—Nature
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