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Some experimental implications of the recent progress on wave function col-
lapse are calculated. Exact results are derived for the center-of-mass wave
function collapse caused by random scatterings and applied to a range of
specific examples. The results show that recently proposed experiments
to measure the GRW effect are likely to fail, since the effect of naturally
occurring scatterings is of the same form as the GRW effect but gener-
ally much stronger. The same goes for attempts to measure the collapse
caused by quantum gravity as suggested by Hawking and others. The re-
sults also indicate that macroscopic systems tend to be found in states with
AzAp = h/+/2, but microscopic systems in highly tiltedly squeezed states
with AzAp > h.

Key words: decoherence, collapse, measurement, scattering.

1. INTRODUCTION

The problem of how to interpret measurement in quantum mechanics
has caused intense debate ever since 1926 and shows little sign of abating.
A whole slew of interpretations have been proposed and can be divided into
two main categories: collapse theories and non-collapse theories.

In the former category, one of the most successful to date is that pro-
posed by Ghirardi, Rimini and Weber (GRW) in 1986 [1], which shows that
both micro- and macroscopic systems can be described by the same dy-
namical equation providing that an extra term is added to the Heisenberg
equation of motion for the density matrix:

p=—+[H,p] — Ap—T[p]) (1)
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They show that if this ad hoc third term is added and if T[p] is chosen
in a particular way that singles out the position representation as special,
then the usual problems regarding superpositions of macroscopic systems
disappear if A and a second parameter are chosen appropriately. This theory
has subsequently been generalized.

In the second category of theories, perhaps the most radical is the one
proposed by Everett, Wheeler, Cooper, DeWitt, and others [2-7] between
1957 and 1970, which shows that even if one assumes that the wave func-
tion containing the observer evolves causally according to the Schrédinger
equation, the observer will subjectively experience wave function collapse.
Zeh, Kiibler, Joos, Machida, Namiki, Zurek, Unruh, Cini, Peres, Partovi,
Gallis, Fleming, Hartle and others [8-20] have strengthened this position
by showing that for macroscopic objects, their inevitable interaction with
the environment leads to a dynamic reduction of the density matrix (what
is widely known as wave function collapse) and superselection rules. These
superselection rules tend to favor “classical” states, and explain why we
never experience say spatial superpositions of cars or superpositions of liv-
ing and dead cats. Hence this interaction with the environment shows why
the position operator and its eigenstates play such an important role in
our perception of the world, even though the position operator is a priori
merely one out of a family of infinitely many self-adjoint operators. This
will be referred to as the decoherence effect.

Unfortunately, rather scant attention has yet been given to the ex-
perimental implications of the decoherence effect and to actual physical
parameters. This paper addresses such practical issues, focusing on scat-
tering. Recently, experiments have been proposed [21, 22] to try to detect
the GRW effect, but this paper shows that such experiments are likely to
fail, since a GRW effect with the parameters originally proposed would be
entirely drowned out by environmental noise.

In Sec. 2, the effect of a single scattering is calculated and shown to
damp the off-diagonal elements in the reduced spatial density matrix by a
factor that is simply the Fourier transform of the probability distribution
for different momentum transfers. In Sec. 3, the Heisenberg and Wigner
equations of motion are modified to incorporate these usually neglected ef-
fects. In Sec. 4 the results are applied to a variety of cases of physical
interest and compared to the predictions of the GRW theory and quantum
gravity. It is seen that scattering and the GRW effect have almost identi-
cal effects on the reduced density matrix, although the interpretations are
completely different. Finally, Sec. 5 contains a brief discussion of what
interpretational problems of quantum mechanics the decoherence approach
does and does not solve.

2. THE EFFECT OF A SINGLE SCATTERING

As an introduction to the calculations in this section, consider the fol-
lowing simple example of decoherence: A spin—% silver atom is prepared with



its spin in the x-direction, and then somebody measures its spin component
in the z direction without telling us the result. This changes our density
matrix for the atomic spin from p; to py, where in the z-representation

(12 1/2 _(1/2 0

pi= <1/2 1/2> and  py = < 0 1/2> ‘
Thus the density matrix is reduced from describing a pure state to a mixed
state. This prediction is common to all interpretations of quantum mechan-
ics, but arrived at in two conceptually very different ways: Collapse-theories
postulate that the time-evolution of the wave function of the universe is not
governed by the Schrodinger equation during measurement, but changes dis-
continuously and non-causally so that afterwards the spin really is up or
down in the z-direction - we just do not know which. Non-collapse theories
compute the same density matrix p; by letting the total system of observer
and observed evolve according to the Schrodinger equation with a Hamil-
tonian such that they become perfectly correlated, and take a partial trace
over the observer degrees of freedom to obtain p;. These two incompatible
viewpoints are often referred to as Heisenberg reduction and Von Neumann
reduction, respectively. (A detailed discussion of these matters is given by
Everett [3] and Kraus [23].) Here we will adopt the latter approach, and
refer to it as the decoherence approach.

Although it is often convenient to treat particles as isolated systems,
we all know that this is merely an approximation. Occasionally a photon
from the sun scatters off of our “isolated system”. More difficult to shield
experiments from are muons created by cosmic rays, cosmic neutrinos, the
300K blackbody radiation from our surrounding and radiation from traces
of radioactive isotopes in the materials that our measurement apparatus is
made of. All these events change the density matrix of our particle. Joos
and Zeh have studied such scattering effects in the macroscopic limit by
ignoring recoil [11], whereas the following treatment applies also to micro-
scopic systems.

Let us chose as our system a nonrelativistic particle of mass m whose
location is described by a density matrix p and whose time-evolution would
be governed by a Hamiltonian H if it were truly isolated from its environ-
ment. Let the inevitable interaction with the environment be given by an
interaction Hamiltonian H;n7. In this paper we will limit our attention to
the special class of interactions with the environment that can be treated as
isolated scattering processes. By this we mean that H;y7 # 0 only during
time intervals much shorter than the dynamical timescale of the system we
are studying, so that we can approximate the change in p as instantaneous
and given by a transition matrix 7',

pi — pp i=Tp! T,
where p’ is the density matrix for the total system of our particle and

an external particle that scatters off of it. This is normally a good ap-
proximation when our system interacts with a rapidly moving particle in



its vicinity. For instance, it takes a photon only about 107'® seconds to
traverse an atom.

We will make the following assumptions about the T-matrix and the
initial data:

Assumption (I) T conserves energy and momentum. (This is equiv-
alent to T' being invariant under temporal and spatial translations.) Let
|pk) denote the state where our system has momentum p and the incident
particle has momentum k. Then (I) implies that

(P'K'| T |pk) = 0(p" + k' — p — K)apk(p' — p), (2)

where apk(q) is the probability amplitude for the momentum transfer to our
system to be q. This function is independent of time by energy conservation
but may depend on both p and k.

Assumption (IT) The function apk is independent of p, i.e of the
motion of our system. Hence we will write it as ax. (This is a good ap-
proximation if the velocity of the incident particle is much greater than the
velocity spread in p).

Assumption (IIT) The incident particle is in a momentum eigenstate
or an incoherent mixture of momentum eigenstates. (The linewidth must
be much smaller than the wavelength. For the photons we observe, the
linewidth is typically less than 1% of the wavelength.)

To avoid normalization problems, let us first restrict ourselves to L?
functions with periodic boundary conditions on a cube of volume V. Unless
otherwise specified, all integrals below are to be taken over this cube and
all sums are to be taken over the discrete set of vectors

Q= {(27/VY3)(ny,ny,n,) |0y, ny,n, integers}.

To conserve probability, ax must be normalized so that Pe(q) := |ax(q)|*
is a probability distribution over q, t.e.

Zpk(Q) = 1.

(In the literature, T' is often normalized so that this sum equals the total
cross section o instead. We will take account of the cross section in Sec. 3.)

Equation (2) shows that in the position representation, 7' transforms
the state |pk) from e’P*1e?k*2 into

> " ax(q)e' P Xk xz — gipagikXag () — x),
q



where ay is the discrete Fourier transform of ay, so for a normalized ini-
tial two-particle wave function ;(x1,%2) = ¢(x1)V ~1/2e’%*2_ we have by
linearity that

Tepy(x1,%2) = T(p(x1)V " 2e™*2) = ¢(x1)V 2™ *2G (x2 — x1)
= wi(Xl,Xz)&k(Xz - Xl)

for any one-particle wave function ¢(x;). Let us use the notation p(x,y) :=
(y| p|x) for density matrices and units where i = 1.

Theorem p¢(x,y) = p;i(X, y) Py (y —x), where Py is the Fourier trans-
form of Py := |ax|’.

Proof The reduced density matrix p for our particle is obtained by
taking a partial trace of the density matrix p? of the two-particle system,
SO

plxy) = [ Uiy D = [ 0" (0)5d = o (900,

and by the above,
pr(xy) = /1/ch(x,z)¢f(y’z)d3z
- / s 2 — )" (L3 22— 3)) %2
/‘f’ i (5~ Xz~ y)dz

(x,y V/ak X)ay(z — y)d®z.

The not very elegant V' made its last appearance in this paper on the previ-
ous line. Letting it approach infinity and working with Fourier transforms
instead of Fourier series from here on, the last equation turns into

1 ok .
pr(x.y) = p¥) Gy [ dile =iz = y)i'
By substituting u = z — y and using a;(u) = Ei(—u), we obtain

pr(%y) = / Gy - x — Wi (w)du

= pz(x Y) (2

E (ak ak)(y X).



Using the convolution theorem f * G = (27T)3f§ now yields

pu(%.3) = pioe.¥) g (20 iy = ) = (e y) ily = ).

which completes the proof for the case where our system is initially in a pure
state, i.e., where p;(x,y) can be written in the form ¢*(x)¢(y). Since an
arbitrary density matrix can be written as a sum of density matrices for pure
states, the proof for the general case follows directly from superposition.

Corollary If the incident photon is described by a density matrix
diagonal in the momentum representation, say an incoherent superposition
of plane waves with the momentum probability distribution given by u(k),
then

pr(x.¥) = pi(xy)Ply = %), where Pla)i= [ Adalu(d’h.  (3)

This again follows directly from superposition.

Thus we see that the net result of this interaction of our “isolated sys-
tem” with the outside world is simply to multiply its spatial density matrix
by a function. Note that this function does not depend on the complex
amplitude ay itself, but only on its squared modulus, the probability distri-
bution for different momentum transfers. The latter is uniquely determined
by the differential scattering cross section o (6, ), so o is the only physical
input we will need to calculate how p evolves over time.

Before we turn to calculating P for specific physical examples, let us
make a few observations about Eq. (3) that are valid for an arbitrary
probability distribution P. It is straightforward to prove the following:

Observation (I) |P(x)| < 1, with equality if x = 0 or
P(q) =é(q—qo).

Observation (II) tr p; = tr p;

Observation (IIT) tr p?c < trp?, with equality iff p; is diagonal or
P(q) = d(q - qo). )

Observation (IV) P(x) — 0 as |[x| — oo if P is an integrable function.

Observation (V) If we define Q to be the mean and S to be the
covariance matrix of the probability distribution P, then

P(x) =1 —iQuzm — 3(QmQn + Smn)Tmzn + O(x[*).

(Repeated indices are to be summed over, from 1 to 3.)

Observation (I) tells us that all off-diagonal elements of the density
matrix will be damped if there is any uncertainty in the outcome of the
scattering. Observation (II) simply shows that probability is conserved,
whereas (IIT) says that the density matrix generally becomes less pure - we
recall that trp? = 1 for pure states, whereas trp? takes its (nonnegative)



minimum value for states of which we have zero knowledge. (IV), which
is known as Riemann-Lebesgue’s Lemma, tells us that for most physically
realistic cases, the density matrix elements very far from the diagonal get
almost entirely damped out. (V) gives us a good grip on how the density
matrix changes near the diagonal, which will prove useful in the following
section.

3. THE MODIFIED HEISENBERG AND WIGNER EQUA-
TIONS OF MOTION

Above we derived the effects of a single scattering event. Now we
will show that exposure to a constant particle flux amounts to a simple
modification of the Heisenberg equation of motion for our density matrix p.

Let o denote the total scattering cross section and ® the average par-
ticle flux per unit area per unit time. We know from experiment that
the temporal distribution of scattering events is well modeled by a Poisson
process with intensity A := o®. Since the probability of one scattering
occurring during the infinitesimal time interval dt is Adt and that for no
scattering is 1 — Adt, by Eq. (3) we would get

p(x,y,t +dt) = p(x,y,t)P(y — x)Adt + p(x,y,t)(1 — Adt),

i.e. p(x,y,t) = —A(1 — P(y — x))p(x,y,t) if our scattering were the only
process that changed p. Since p is also changed by its normal Sshrédinger
time evolution, we obtain the following master equation:

p=—+[H,p] — Ap—Tp)), (4)

where

(y|Tlp] %) := P(y —x)p(x,y).

We notice that this is of the same form as the GRW equation (1), and soon
we will indeed see that the T[p] that we have derived is quite similar that
postulated by GRW. They postulate that (y|T[p]|x) is a Gaussian with

standard deviation Ag. We will refer to (1 — P) as the decoherence func-
tion (what Gallis and Fleming call the decorrelation factor). This function
summarizes all there is to know about the scattering environment, since
(4) shows that it together with the Hamiltonian specifies the dynamical
behavior of our system entirely.

Let us take a closer look at the last term. In the position representation,
observation (IV) shows that it approaches —Ap(x,y) far from the diagonal.
Near the diagonal, we can use (V) to expand it as

(y|=A(p=TIp)) |x) = _iAQ'(y_X)_%A(Qan+Smn)(ym_xm)(yn_$n)a



where we have dropped cubic and higher order terms in |y —x|, the distance
to the diagonal. Now since (y|[Q - x,p||x) = Q- (y — X)p, we can absorb
the first term into the Hamiltonian as a linear potential and write (4) as

1

p:

where < y|D[p]\X >R %(Qan + Smn)(ym - xm)(yn - xn)p(X7Y)'

This linear potential should come as no surprise — it is simply the radiation
pressure term, and causes no dissipation. (By dissipation we will mean a
process that increases entropy, i.e., that converts pure states into mixed
states. More quantitatively, we will say that we have dissipation if the
linear entropy 1 — tr p? increases.) From observation (III) we know that in
general we do have dissipation, so the cause of this must be the term D[p].

To get a better feeling for what is happening, let us look at what effect
a single scattering would have in phase space. By transforming Eq. (3) to
the Wigner representation [24, 25]

W(x,p) := /,o(x +u/2,x —u/2) ePUdBu

1
(2m)?

and doing some algebra, we see that a single scattering has the effect

Wi (x,p) = /Wi(x,p —q) P(q)d’q, (5)

i.e. a smearing out in momentum space. Thinking of W as a probability
distribution in phase space, this convolution with the probability distribu-
tion P(q) corresponds to giving our particle a random momentum kick.
Thus we can use the central limit theorem and approximate the effect of
n consecutive hits by an equation identical to (5) but with P(q) replaced
by a Gaussian with mean nQ and covariance matrix nS. Since the exact
number of scatterings is not known but Poisson distributed with mean and
variance equal to n = At, the Gaussian will in fact have the covariance ma-
trix At(QmQ@n + Smn). Thus we see that for the non-isotropic case Q # 0
the purely epistemological uncertainty as to how many scatterings have oc-
curred increases the rate of wave function collapse, the rate of damping of
off-diagonal elements.

Returning to our density matrices, this means that if A is so large that
there are many scatterings on time scales shorter than that of ordinary
Schrodinger evolution, then we can replace the function P in the master
equation (4) by a Gaussian with the same mean and covariance matrix.

Equivalently, we can replace p by a Gaussian with the same values of ze-
roth, first and second derivatives at the origin. This shows that in the limit
of large A, our Eq. (4) reproduces the GRW equation (1) ezactly. Further-
more, since the Gaussian is the Green function of the diffusion equation,



this means that we can incorporate our dissipative term into the Wigner
equation [24,25] as a simple diffusion term of the type Vf,:

p im0\

W= |: m@xz + <8331 AQ1> 8]91‘

I 27 (0 9N 00
Ox; Op; Y Op Op; ’

+ - @
h = (2n + 1)!
where V(x) is the potential and the diffusion coefficient D;; := A(S;; +
QiQ;). Here the spatial derivatives in the infinite sum are to be understood
to act only on V, not on W. There are two well-known limits in which the
Wigner equation goes over into the Liouville equation of classical statistical
mechanics: when V is at most quadratic, and when A — 0. Because of
our extra diffusion term, we get yet a third classical limit: in the limit
of large D;;, the diffusive smoothing becomes so effective that it damps
out all the momentum-derivatives in the infinite sum, and (6) approaches
the Liouville equation with diffusion, an equation of Fokker-Planck type.
This is yet another example of how macroscopic objects start behaving
classically, since as we will soon see, D;; is roughly proportional to the size
of our object. Thus an object will evolve according to classical dynamics
if it has a strong interaction with its environment. (The diffusion term
in the resulting Liouville equation is in no way a departure from classical
dynamics, since the Brownian motion due to random scatterings must be
taken into account also in a purely classically analysis.)

(6)

4. SPECIFIC EXAMPLES

In this section we will apply our results to specific scattering processes.
We will first calculate the shape and width of the decoherence function, then
study what the density matrix of a free particle converges to as ¢t — oo.

4.1. The Decoherence Function

Now let us evaluate Q,S;;, D;; and the decoherence function 1 — P
for some physically interesting cases. If the scattering cross section is given
by do/dQ2 = o f(0,¢), where o is the total cross section and the angular
part f is normalized so as to integrate to unity, then Py(q) = 0(|q — k| —
k) f/k?, where k := |k|. Using the properties of the Fourier transform under
translation and reflection and choosing our coordinates so that r = (0,0, r),
we get

Py(r) = e kT / el eosis5(q — k) f(6, @) sinBdfdedg

1
= e_“”/ e'Fr f (arccos u, @ )dudep.
0



With a generic anisotropic radiation spectrum p(k), the rate of decoher-
ence will be different along different spatial directions and we will get ra-
diation pressure. Since neither of these two complications is particularly
illuminating, we will restrict ourselves to isotropic radiation, ¢.e. take
u(k) = (47k?) "I hgv (Ao |Kk|), where the spectrum v is a probability distribu-
tion on the positive real line and A\ is some typical wavelength. Performing
the angular integration, this yields

P(r) = /000 g(ur/Xo)v(u)du, (7)

where
sinx

1
g(x) = / e f(arccos u, p)dudp.
T Jo

For the case of photon scattering against both a free charge and a dielectric
sphere much smaller than the photon wavelength, we get [26] the angular
dependence

F(8.90) = —o—(1 4+ cos?6),
167

which yields

sin x] sin’ x

(8)

g(z) = g1(x) := 3 cosz + (22 — 1)

2 x4

We will refer to this mixture of S-waves and D-waves as SD-wave scattering.
Another physically important case is pure S-wave scattering, i.e.

: 2
f(0,p) = ﬁ, which yields g(z) = go(x) := (&233) . 9)

This case applies among other things to an opaque spherical object of ra-
dius @ much larger than A\.; ¢, which we can use to model say a dust particle
scattering optical photons. Here the total cross section is frequency inde-
pendent, roughly equal to the geometrical cross section wa?, and perhaps
surprisingly, the scattering amplitude turns out to be the same in all direc-
tions.

Since we are restricting ourselves to isotropic radiation, we simply have
the mean Q = 0 and the covariance matrix is proportional to the identity
matrix, i.e. S;; = 325ij, so all we need to calculate is the standard deviation
s. From Eq. (7) we get

o =57 [ " (@)rg (0)dz = g"(0) (o).

5= '[9 (0)]V2 (22)'? (10)



since the variance of a probability distribution of zero mean is the negative of
the second derivative of its Fourier transform at the origin. For the functions
in (8) and (9), the values we need are —g{(0) = 11/15 and —g45(0) = 2/3.
Thus apart from these numerical parameters depending only on the angular
part of scattering cross section, we see that the standard deviation of the
momentum kick is simply a certain spectrally averaged momentum.

Let us define the effective wavelength as

Aeps =175 = Xo[—g"(0)] /2 (22) /2.

Then the diffusion matrix D;; = Ad;;, where the scalar diffusion coefficient
A= A/)\iff. Sunlight on earth, the 300K radiation from our surrounding,
the cosmic microwave background radiation and the cosmic neutrino back-
ground all have Planck spectra, corresponding to temperatures of roughly
5800K, 300K, 2.7K and 2.0K, respectively. For a Planck spectrum, we

have

2
2 x

v(z) = B r _ 1’

where ((s) := >, n~* is the Riemann Zeta function. For this particular
case, (x%) = 41((5)/2!((3), so we get Aey A 0.381) for the S-wave case and
Aeff = 0.363)\g for the SD-wave case. For a point spectrum v(z) = d(z —1)
with a single wavelength \g we simply get <a:2> = 1, so the corresponding
values are Aoy ~ 1.225)\g and Acpp ~ 1.168).

Now let us calculate the decoherence function 1 — P for the Planck
case. By expanding v as a geometric series, we get

P(r) = /OOO g(ur/Xo)v(u)du = % Z /OOO g(zu)ue ""du.

For the S-wave case g = g9, this integral can be done elementarily, yielding

2 /a0 \2]
1y (29) ] |
n

Numerical integration is required in the case g = g1, and gives a decoher-
ence function 1 — P(r/Acss) that differs by less than 1% from the S-wave
case when appropriately rescaled. This decoherence function is plotted for
Figure 1, together with the S-wave and SD-wave decoherence functions for
point spectra. Also plotted is the GRW decoherence function, for which P
is Gaussian.

For dielectric spheres with a < M.y and frequencies well below any
resonances, the cross section depends on frequency according to Rayleigh’s

k*law, so we must replace the Planck spectrum by v(z) = % effil.

. 1 <
P(r)—@;n 3




Figure 1. Decoherence functions (1 —]5) for different spectra v and angular
distributions f(f, ¢). The functions have been scaled so as to all have second
derivative unity at the origin.

Let us define the coherence time 7 := A~'. GRW have given an exact
solution of Eq. (4) in [1] for the case of a free particle, so to get a feeling
for what happens we will only mention the simple case when 7 is is much
shorter than the dynamical timescale, so that we can neglect the ordinary
Schrodinger evolution for short times. Thus setting H ~ 0 and using the
Gaussian approximation that is valid for ¢ > 7, Eq. (4) has the short-time
solution

2 2
At (1—@7T /“eff>
IO(Xa Yy, tO + t) ~ IO(Xa Yy, tO)e

Thus we see that far from the diagonal, for [y — x| > Ay, the elements of
the density matrix are damped out as e~ ** independently of \. 7f- Near the
diagonal, on the other hand, for [y —x| < Acfy, the crucial parameter is the
diffusion parameter A = A/)\gff, since the damping goes as e~ Aly—xI*t/2,

Table 1 gives Acff, ¢ and 7 for a variety of radiation sources and Table
2 gives the diffusion parameter A for the center-of-mass of three different
objects, in order of decreasing strength.



Table 1. Properties of various scattering processes

Cause of collapse Xeff dlem™2s7Y Terectron
300K air at 1 atm pressure 0.1A 10%4 10~ 13s
300K air in lab vacuum 0.1A 10t 1s
Sunlight on earth 900 nm 107 6 months
300K photons 0.02 mm 1019 1day
Background radioactivity 10~ "m 10~4 10'yrs
Quantum gravity 1km —101%m 1019 30s
GRW effect 100 nm n/a 10%rs
Cosmic microwave background 2mm 1013 10%yrs
Solar neutrinos 0.1A 10t 1025 yrs
Cosmic background neutrinos 3 mm 1013 10*yrs

Table 2. Decoherence rate A in cm~2s~! for various objects
and scattering processes

Cause of apparent Free 10um Bowling
wave function collapse electron dust  ball
300K air at 1 atm pressure 103! 1037 1045
300K air in lab vacuum 10'8 0% 103!
Sunlight on earth 10* 1020 1028
300K photons 10° 101 1077
Background radioactivity 10~4 10 1023
Quantum gravity 10725 1010 1022
GRW effect 1077 102 10*
Cosmic microwave background 10710 106 1017
Solar neutrinos 10-15 10! 1013

The decoherence rates for photons and air agree well with those given
by Joos and Zeh [11]. The effect of air molecules is seen to dominate at
room temperature not only at atmospheric pressure but also in a laboratory
vacuum of 10® particles/cm3. The radioactivity figures are quite crude,
since the fluxes of «, § and v rays vary widely with location and surrounding
[27]. The energy of the free electron matters only in the case of air [26],
where it has been taken to be 1 keV. The reason that the cosmic background
neutrinos [28] are completely negligible compared to those from the sun [29]
despite similar fluxes is that the weak scattering cross section falls off as
energy squared in our regime of interest, which is well below the W mass
of 81 GeV. The neutrino effect is completely impossible to shield against -
a typical neutrino coasts undisturbed straight through our planet.

Two sets of numbers from other sources have been put in for compar-
ison. The GRW values were chosen ad hoc in [1] to match observation as
well as possible. The quantum gravity values from [30,31] are based on
dimensional analysis and several perhaps questionable assumptions. For
instance, Ac¢s is assumed to depend on the mass of the particle, ranging

from about 1 km for a proton up to astronomical 10'° m for an electron.



The main observation to make about the two latter effects is that al-
though they have been highly publicized, they rank only fifth and sixth
in strength, trailing by more than twenty orders of magnitude. Hence an
experiment devised to measure them would have to be nearly perfectly
shielded from all the stronger sources of decoherence. Blocking out optical
photons should pose no problem. Background radioactivity could conceiv-
ably be controlled by using ultra-pure equipment and performing exper-
iments in a deep mine, thereby avoiding virtually all cosmic rays except
muons. The effect of air (or any other surrounding substance) and black-
body radiation from the surrounding is strongly temperature dependent
(typically A o< T®), and can hence be reduced by nine orders of magnitude
by working at liquid Helium temperatures. Even under such conditions,
they would still be stronger than the GRW and quantum gravity effects.
Although it may become feasible to cool a macroscopically large apparatus
to microkelvin temperatures, environmentally induced decoherence is in a
sence endemic: In order to observe the object of an experiment, we must
by definition let it interact with something else.

Of no small importance is that we know that all effects in the table
except those of quantum gravity and GRW do in fact occur. Because of
this, a number of experiments that have been proposed are likely to yield
inconclusive results. For example, Hawking [31] and others have conjectured
that quantum gravity effects might be able to explain the apparent collapse
of the wave function. Ellis-Mohanty-Nanopoulos have made the estimates of
such wormhole effects quoted above [30], but apart from the fact that there
is no experimentally tested theory of quantum gravity, these effects would
probably be impossible to detect if an attempt where made to measure
them, since they would so to speak drown in environmental noise. In fact,
calculations in [11] show that even ordinary Newtonian gravity often has a
stronger decoherence effect than quantum gravity.

The same goes for suggestions to measure an independent GRW effect.
Squires [21] suggests that a GRW effect might indeed exist and be caused
by some yet unknown physics that he speculates might be “the physics of
the 21st century”. Our results have shown that the physics of this century
produces an almost identical effect, and that an additional “new physics”
contribution of the magnitude postulated by GRW would probably be too
many orders of magnitude weaker than the decoherence effect to be de-
tectable.

Also Rae [22] suggests that the GRW effect might be caused by new
physics, and speculates that A and « might be new constants of nature.
Our results have shown that when decoherence dominates, the A and A
that would be measured in a GRW experiment would be calculable from
scattering cross sections and spectra of scattering particles.

The fact that decoherence and the GRW effect have an almost indistin-
guishable impact on the density matrix opens up an interesting possibility:
if a GRW effect due to new physics indeed exists, then it might be much
stronger than originally postulated without contradicting our experience.
Thus experiments devised to search for a GRW effect are by no means



without interest.
4.2. Coherence Lengths

What is the width Ax of the wavepacket for a free particle? Any
textbook will give the answer that Ax — oo as t — 0o, but we are now in
a position to give a more subtle and indeed finite answer.

In the presence of our scattering, Ap — oo like v/ Dt just as for
Brownian motion in momentum space. For a truly free particle, Ap remains
constant whereas Az — oo like tAv = tAp/m. An often overlooked fact
is that there is nothing “quantum” about this whatsoever, other than that
the uncertainty principle prohibits Ap = 0 initially. Since the free particle
Hamiltonian is quadratic, the Wigner equation (6) reduces to the Liouville
equation and the increase in Az only reflects a classical type of uncertainty,
our ignorance.

Let us keep the conventional definition

Az = [<x2> — <:E>2] 2

for pure states, but redefine Az for mixed states to be the coherence length,
roughly speaking the largest distance from the diagonal where the spatial
density matrix has non-negligible components. Let us redefine Ap analo-
gously.

More formally, let us consider a density matrix p that is an incoherent
mixture of tiltedly squeezed states (Gaussians in Wigner phase space), all
of which have the same values of the Az and Ap but with different (z), (p)
and (zp). GRW analyze the solution to Eq. (1) in detail in [1], and show
that such a p can be expanded as such a mixture for all times, but with Az,
Ap and the mixing function changing with time. During the undisturbed
Schrédinger time evolution between scatterings, Ax increases as usual while
Ap remains constant (a shearing in phase space). A scattering causes Ax to
decrease abruptly while Ap can either increase or decrease. The net result
of the interplay between these two counteracting effects is that although
the conventional uncertainties become infinite, both Az and Ap converge
to finite limiting values as t — oo. We might interpret this as that after a
long time our particle definitely is in a state with spreads Az and Ap, but
we have absolutely no knowledge as to where in phase space this state is
centered.

In our notation, GRW show that the limiting values of the spreads are

Ae
Ax =uleys and ApZUL 7,
T

1/2
oo 41 +u . ht
= e v e, )

where




and u is the positive solution to

du® = 20*uv/T + 2u + n* (1 + w) (1 + 2u).

The dimensionless constant 7 ranges from 10~2° to 102% for the examples in
the tables above. GRW only consider the macroscopic limit n < 1, where

h

Ax ~ 2-1/4 <_ 1/4

1/4
- 3
mA) and Ap~271/4 (h mA) )

but we will also be interested in the microscopic limit n > 1, where we get

h h
Ar~27Y2_ T and Apr 2712
MAeff Aetf

Table 3 contains the limiting value of Ax for the previously discussed objects
and decoherence sources. (These figures are to be interpreted as upper
limits to the true coherence length, since in reality the different effects all
contribute separately.) “n/a” has been entered for the cases where 7 is
greater than the age of the universe, so that the system has not yet had
time to approach the limiting value of Azx.

It is interesting to compare the uncertainty products AxzAp from above
with the minimum value //2 allowed by the uncertainty principle. For the
macroscopic case n < 1, we get

AxAp
— =~ V2
h/2 V2

whereas the microscopic case n > 1 yields

AzAp
nji2

This indicates that we should expect to find macroscopic systems such as
dust particles in states that are nearly minimum uncertainty states, but
microscopic systems in highly tiltedly squeezed states where the uncertainty
product is much larger than its minimum. For a free electron decohered
only by 300K photons, for instance, AxzAp ~ 10''A. This conclusion is
likely to be valid quite generally, also when the initial state is not of the
form assumed above, since recent work by Zurek, Habib and Paz [32] has
indicated that quite general states tend to approach generalized coherent
states (states with a Gaussian Wigner function) when they interact with
their environment.



Table 3. Coherence lengths Ax caused by various decoherence sources

Cause of apparent Free 10pm Bowling
wave function collapse electron dust ball

300K air at 1 atm pressure 10°°m  107"m 1072'm
300K air in lab vacuum 10" m 107¥m 107'¥®m
Sunlight on earth 10°m 1072m 107" m
300K photons 10*m 1072m 107 '%m
Background radioactivity n/a 107"m 107 m
Quantum gravity 104 m 107°m 107 m
GRW effect 10m  107°m  107%m
Cosmic microwave background 10'°m  1078m 10~ m
Solar neutrinos n/a n/a 1073 m

This paper has focused entirely on scattering. The case of coupled
harmonic oscillators has been studied by numerous authors, and [11] has
analyzed interactions of Coulomb type. However, many other interesting
sources of decoherence still remain to be analyzed in detail, and might well
turn out to be stronger than any of those discussed above.

5. DECOHERENCE AND THE INTERPRETATION OF
QUANTUM MECHANICS

In a discussion of density matrices [33], Feynman writes: “When we
solve a quantum-mechanical problem, what we really do is divide the uni-
verse into two parts - the system in which we are interested and the rest of
the universe. We then usually act as if the system in which we are interested
comprised the entire universe.” In this spirit we summarize our scattering
results: The effects of “the rest of the universe” can be incorporated into
two additional terms in the Heisenberg equation of motion; a radiation-
pressure term that can be absorbed into the Hamiltonian and a dissipative
term that transforms pure states into mixed states. For macroscopic sys-
tems, the former is usually negligible whereas the latter effectively damps
out spatial superpositions.

As mentioned in the introduction, the decoherence effect removes a
serious deficiency [34] from non-collapse theories. This makes possible a
self-consistent interpretation of quantum mechanics that might be called
the many decohering worlds interpretation:

: Why do we experience collapse?

: Because as shown in [3], collapse and QM probabilities will be ex-
perienced by almost all observers in the grand superposition.

: Why do we only experience macroscopically “nice” superpositions?

: Because all others get damped out by decoherence effects before we
have time to observe them.

: Does the Von Neumann reduction have anything to do with mental

o »o 2O



processes and our observing the system?

A: No, it has already occurred by the time we observe the object.

Q: What about Schrodinger’s cat?

A: Due to decoherence, it is for all practical purposes either dead or alive
- we just don’t know which. (Several of the quoted decoherence
authors would disagree with these answers.)

If there is agreement on any philosophical interpretation of our cen-
tury’s developments in physics, it is that the ultimate reality is more bizarre
than anything we ever dreamed of. Hence we no longer feel that we can
reject a theory merely on the grounds that it involves bizarre and counter-
intuitive notions. Nonetheless, most people would probably agree that in
order for any theory to be hailed as fundamental, it should satisfy the fol-
lowing minimum requirement: it should be able to explain why we do not
experience any of the bizarre notions that it introduces.

In the case of quantum mechanics, this would entail using first prin-
ciples to explain why the wave function seems to collapse and why the
macroscopical world seems to obey the laws of classical physics. Despite
Bohr’s many examples of classical correspondence for high-energy eigen-
states, despite Schrodinger’s invention of coherent states and despite the
well-known classical limit when A — 0, this minimum requirement was not
met until the work on decoherence in the last two decades. Until then, no-
body had explained why we never experience say spatial superpositions of
macroscopic objects (without invoking new physics or superselection rules
postulated ad hoc).

While recognizing this success, it is important to remember that al-
though quantum mechanics including the decoherence effect meets our min-
imum requirement, this is also all it does. Although the existence of en-
vironmentally induced decoherence does explain why we never experience
bizarre macrosuperpositions, and thus makes dynamic reduction mecha-
nisms (DRMs) such as those proposed by GRW and [18, 35, 36] unnecessary
for that purpose, it does no more than that. In other words, despite de-
coherence, macrosuperpositions still do exist - decoherence merely explains
why we cannot experience them. Instead of being destroyed, superpositions
spread to ever larger subsystems of the universe as everything gets more
and more quantum-mechanically entangled with everything else.

The unease with which many authors view this state of affairs was one
of the main motivations in introducing DRMs. In DRMs, this perpetual
entanglement is avoided by making the additional postulate that the wave
function itself really does get localized, usually in discrete, collapse-like
jumps. The price is that DRMs need to postulate new physics without
explaining any phenomena that decoherence alone does not, thus leaving
themselves vulnerable to Occam’s razor.

As Dieks [37] and others have pointed out, there is also a second source
of unease. This is that a density matrix describing a mixed state can be
expressed as a statistical mixture of pure states in infinitely many different
ways. Thus we are not justified to make the interpretation that an object



“really” is at a definite position, even if decoherence has made its spatial
density matrix diagonal.

But then again, tell one of your friends that the world is a weird place,

and the answer will be: “So what else is new?”
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