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Experimentally generated randomness certified by 
the impossibility of superluminal signals
Peter Bierhorst1,2*, Emanuel Knill1,3, Scott Glancy1, Yanbao Zhang1,8, Alan Mink4,5, Stephen Jordan4, Andrea Rommal6,  
Yi-Kai Liu4, Bradley Christensen7, Sae Woo Nam1, Martin J. Stevens1 & Lynden K. Shalm1,2

From dice to modern electronic circuits, there have been many 
attempts to build better devices to generate random numbers. 
Randomness is fundamental to security and cryptographic 
systems and to safeguarding privacy. A key challenge with 
random-number generators is that it is hard to ensure that their 
outputs are unpredictable1–3. For a random-number generator 
based on a physical process, such as a noisy classical system or an 
elementary quantum measurement, a detailed model that describes 
the underlying physics is necessary to assert unpredictability. 
Imperfections in the model compromise the integrity of the device. 
However, it is possible to exploit the phenomenon of quantum non-
locality with a loophole-free Bell test to build a random-number 
generator that can produce output that is unpredictable to any 
adversary that is limited only by general physical principles, such 
as special relativity1–11. With recent technological developments, 
it is now possible to carry out such a loophole-free Bell test12–14,22. 
Here we present certified randomness obtained from a photonic 
Bell experiment and extract 1,024 random bits that are uniformly 
distributed to within 10−12. These random bits could not have been 
predicted according to any physical theory that prohibits faster-
than-light (superluminal) signalling and that allows independent 
measurement choices. To certify and quantify the randomness, 
we describe a protocol that is optimized for devices that are 
characterized by a low per-trial violation of Bell inequalities. Future 
random-number generators based on loophole-free Bell tests may 
have a role in increasing the security and trust of our cryptographic 
systems and infrastructure.

The search for certifiably unpredictable random-number generators 
is motivated by applications, such as secure communication, for which 
the predictability of pseudorandom strings makes them unsuitable. 
Private randomness is required to initiate and authenticate virtually 
every secure communication15, and public randomness from random-
ness beacons can be used for public certification and resource distri-
bution in many settings16. To certify randomness, we can perform 
an experiment known as a Bell test17; in its simplest form, the Bell 
test involves performing measurements on an entangled system with 
components located in two physically separated measurement stations, 
where at each station a choice is made between one of two types of 
measurement. After multiple experimental trials with varying meas-
urement choices, if the measurement data violate conditions known 
as ‘Bell inequalities’, then the data are certified to contain randomness 
under weak assumptions.

Our randomness generation uses a ‘loophole-free’ Bell test, which is 
characterized by high detection efficiency and space-like separation of 
the measurement stations during each experimental trial. The bits are 
unpredictable assuming (1) that the choices of measurement setting are 
independent of the experimental devices and of pre-existing classical 
information about them and (2) that, in each experimental trial, the 
measurement outcomes at each station are independent of the settings 

at the other station. The first assumption is ultimately untestable, but 
the premise that it is possible to choose measurement settings inde-
pendently of a system being measured is often tacitly invoked in the 
interpretation of many scientific experiments and laws of physics18. 
The second assumption can be violated only if signals can be sent faster 
than the speed of light, given our trust that the space-like separation 
of the relevant events in the experiment is accurately verified by the 
timing electronics and that the results are final when recorded. We also 
trust that the classical computing equipment used to process the data 
operates according to specification.

Under the above assumptions, the output randomness is certified to 
be unpredictable with respect to a real or hypothetical actor ‘Eve’, who is 
in possession of the pre-existing classical information, is physically iso-
lated from the devices while they are under our control and is without 
access to data produced during the protocol. The bits remain unpredict-
able to Eve if she learns the settings at any time after her last interaction 
with the devices. If the devices are trusted, which is reasonable if we built 
them, then this final interaction may be well before the start of the pro-
tocol, in which case the settings can come from public randomness2,10.  
In particular, an existing public randomness source can be used,  
such as the National Institute of Standards and Technology (NIST) 
random beacon16, to generate much-needed private randomness as 
output. Because the assumptions do not constrain the specific physical 
realization of the devices and do not require specific states or meas-
urements, they implement a ‘device-independent’ framework4,19,20,  
which allows an individual user to assure security with minimal 
assumptions about the devices.

Compared to other implementations of random-number generations 
that invoke device-independence5,21, our implementation is notable 
because it enforces space-like separation between measurement sta-
tions. Bell tests that achieve space-like separation without other exper-
imental loopholes have been performed only recently12–14,22. It can be 
argued that interaction between spatially (if not space-like) separated 
measuring stations can be assumed to be negligible. However, any 
shielding between the stations is necessarily incomplete; for example, 
there must be an open quantum channel to establish entanglement. 
Mundane physical effects, such as accidentally scattered photons, can 
allow predictable systems to appear to violate Bell inequalities when 
shielding is incomplete. Relying instead on the impossibility of faster-
than-light communication provides stronger assurance of the unpre-
dictability of the randomness.

We generated randomness using an improved version of a recently 
reported13 loophole-free Bell test (which was subsequently used 
elsewhere23). We collected five datasets, with the best-performing  
one yielding 1,024 random bits that are uniformly distributed 
to within 10−12, as measured by the total variation distance (see 
below). We also obtained 256 random bits from the main data-
set analysed previously13, albeit uniform only to within 0.02; see 
Supplementary Information section 6. The experiment, illustrated in 
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Fig. 1, consisted of a source of entangled photons and two measure-
ment stations, named ‘Alice’ and ‘Bob’. During an experimental trial, 
at each station a random choice was made between two measure-
ment settings, labelled 0 and 1, after which a measurement outcome 
of detection (+) or non-detection (0) was recorded. Each station’s  
implementation of the measurement setting was space-like sep-
arated from the other station’s measurement event, and no post- 
selection was used in collecting the data; see Methods for details. For 
trial i, we model Alice’s settings choices with the random variable  
Xi and Bob’s with Yi, both of which take values in the set {0, 1}.  
Alice’s and Bob’s measurement-outcome random variables are Ai 
and Bi, respectively, both of which take values in the set {+, 0}.  
When referring to a generic single trial, we omit the i indices. With 
this notation, a general Bell inequality for our scenario can be 
expressed in the form24

P∑ β= = | = = ≤s A a B b X x Y y( , , ) (1)
abxy

xy
ab

where sxy
ab are fixed real coefficients indexed by a, b, x and y, which range 

over all possible values of A, B, X and Y, and P denotes probability. The 
upper bound β is required to be satisfied whenever the settings-conditional  
outcome probabilities are induced by a model that satisfies ‘local real-
ism’. Local-realist distributions, which cannot be certified to contain 
randomness, are those for which P (A = a, B = b  |  X = x, Y = y) is of the 
form P P PΛ λ Λ λ Λ λ∑ = | = = = | = = =λ A a X x B b Y y( , ) ( , ) ( ) for 
a random variable Λ that represents local hidden variables. The Bell 
inequality is non-trivial if there exists a quantum-realizable distribution 
that can violate the bound β.

It has long been known that experimental violations of Bell inequalities 
such as equation (1) indicate the presence of randomness in data. To 
quantify randomness with respect to Eve, we represent Eve’s initial clas-
sical information by a random variable E. We formalize the assumption 

that measurement settings can be generated independently of the system 
being measured and of Eve’s information with the following condition:

P P= = | = = = =

= ∀
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where pasti represents events prior to the ith trial, specifically including 
the trial settings and outcomes for trials 1 to i − 1. Our other assump-
tion, that measurement outcomes are independent of remote measure-
ment choices, is formalized as follows:
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These equations are commonly referred to as the ‘non-signalling’ 
assumptions, although they are often stated without the conditionals 
E and pasti. Our space-like separation of settings and remote measure-
ments provide assurance that the experiment obeys equation (3). If we 
were to assume that the measured systems obey quantum physics, then 
stronger constraints are possible25,26.

Given equations (2) and (3), our protocol produces random bits 
in two sequential parts. For the first part, ‘entropy production’, we 
implement n trials of the Bell test, from which we compute a statistic 
V that is related to a Bell inequality (equation (1)). V quantifies the Bell 
violation and determines whether or not the protocol passes or aborts. 
If the protocol passes, then we certify an amount of randomness in 
the outcome string whether or not Eve has access to the setting string. 
In the second part, ‘extraction’, we process the outcome string into a 
shorter string of bits, the distribution of which is close to uniform. 
We used our customized implementation of the Trevisan extractor27 
derived from the framework of Mauerer, Portmann and Scholz28 and 
the associated open-source code. We call this the TMPS algorithm; see 
Supplementary Information section 4 for details.

We applied a new method of certifying the amount of randomness 
in Bell tests. Previous methods for related models with various sets of 
assumptions2–8,29,30 are ineffective in our experimental regime (see 
Supplementary Information section 7), which is characterized by a 
small per-trial violation of Bell inequalities. Other recent works that 
explore ways of effectively certifying randomness from a wider range 
of experimental regimes assume that measured states are independent 
and identically distributed (i.i.d.) or that the regime is asymptotic9–11,31. 
Our method, which does not require these assumptions, builds on  
the prediction-based ratio method for rejecting local realism32. 
Applying this method to training data (see below), we obtain a 
real-valued Bell function T with arguments A, B, X and Y that satisfies 
T(A, B, X, Y) > 0 with expectation E(T) ≤ 1 for any local-realist dis-
tribution that satisfies equation (2). From T we determine the maxi-
mum value 1 + m of E(T) over all distributions that satisfy equations 
(2) and (3), where we require that m > 0. Such a function T induces a 
Bell inequality (equation (1)) with β = 4 and =s T a b x y( , , , )xy

ab . Define 
Ti = T(Ai, Bi, Xi, Yi) and = ∏ =V Ti

n
i1 ; if the experimenter observes a 

value of V larger than 1, this indicates a violation of the Bell inequality 
and the presence of randomness in the data. The randomness is quan-
tified by the ‘entropy production theorem’ (see below), which we prove 
in Supplementary Information section 2. We denote all of the settings 
of both stations with XY = X1Y1X2Y2…XnYn; other sequences such as 
AB and ABXY are similarly interleaved over n trials.

The entropy production theorem is as follows. Suppose T is a Bell 
function that satisfies the above conditions. Then, in an experiment of 
n trials that obey equations (2) and (3), the following inequality holds 
for all εp ∈ (0, 1) and vthresh satisfying ≤ ≤ + / −εv m1 [1 (3 2) ]n

thresh p
1:

A
S

Fib
re to B

ob

Fibre to Alice

B

187.0 m

133.4 m

129.2 m

PC

H
W

P

H
W

P

Q
W

P

Polarizing beam
displacer

From
source

10-MHz
oscillator

Detector

Ampli�er
Time tagger

PC driver

Synchronization pulse

RNG

a

b

Fig. 1 | Diagram of the experiment. a, b, The relative locations of the 
source (S), Alice (A) and Bob (B) are depicted in a. In each trial, the source 
laboratory produces a pair of photons in a non-maximally polarization-
entangled state. One photon is sent to Alice’s laboratory while the other 
is sent to Bob’s laboratory to be measured, as shown in b. Alice and Bob 
both use a fast Pockels cell (PC), two half-wave plates (HWPs), a quarter-
wave plate (QWP) and a polarizing beam displacer to switch between 
their respective polarization measurements. A pseudorandom-number 
generator (RNG) governs the choice of each measurement setting for each 
trial. After passing through the polarization optics, the photons are sent 
to a superconducting nanowire detector. The signals from the detector are 
amplified and sent to a time tagger, where their arrival times are recorded 
and the measurement outcome is fixed. Alice’s measurement outcome is 
space-like separated from the triggering of Bob’s Pockels cell and  
vice versa.
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P P δ| > ≥ ≤ εV vAB XY( ( ) AND ) (4)e e thresh p

where   δ = + − /ε v m[1 (1 ) (2 )]n
p threshn  and Pe denotes the probability  

distribution conditioned on the event E = e, where e is arbitrary. The 
expression Pe(AB  |  XY) denotes the random variable that takes the 
value Pe(AB = ab  |  XY = xy) when ABXY takes the value abxy.

In words, this theorem says that, with high probability, if V is at least 
as large as vthresh, then the output AB is unpredictable, in the sense 
that no individual outcome AB = ab occurs with probability higher 
than δ, even given the information XYE = xye. The theorem supports 
a protocol that aborts if V takes a value less than vthresh, and passes 
otherwise. If the probability of passing were 1, then −log2(δ) would 
be a so-called ‘smooth min-entropy’6—a quantity that characterizes 
the number of uniformly distributed bits of randomness that are in 
principle available in AB. We show in Supplementary Information sec-
tion 3 that, for constant εp, −log2(δ) is proportional to the number of 
trials. The number of bits that we can actually extract depends on εfin, 
the maximum allowed distance of the final output from uniform. We 
also show in Supplementary Information section 2 that the entropy 
production theorem can be proved even if the settings probabilities 
are not known exactly.

To extract the available randomness in AB, we use the TMPS algo-
rithm to obtain an extractor, specifically a function Ext that takes as 
inputs the string AB and a ‘seed’ bit string S of length d, where S is 
uniform and independent of ABXY. Its output is a bit string of length 
t. S can be obtained from d additional instances of the random var-
iables Xi, so equation (2) ensures the independence and uniformity 
conditions on S that are needed. For the output to be within a distance 
εfin of uniform independently of XY and E, the entropy production 
and extractor parameters must satisfy the constraints given in the 
‘protocol soundness theorem’, which we prove in Supplementary 
Information section 5. In the statement of the theorem, the measure 
of distance used is the total variation distance, which is expressed 
by the left-hand side of equation (6), and ‘pass’ is the event that V 
exceeds vthresh.

The protocol soundness theorem is as follows. Let 0 < εext, κ < 1. 
Suppose that P(pass) ≥ κ and that the protocol parameters satisfy

δ κ+ ≤ − + + −εt t4log ( ) log ( ) log ( ) 5log ( ) 11 (5)2 2 2 2 ext

Then, the output U = Ext(AB, S) of the function obtained by the TMPS 
algorithm satisfies
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where Punif denotes the uniform probability distribution.
The number of seed bits d that are required satisfies d =  

O[log(t)log(nt/εext)2]; we provide an explicit bound in Supplementary 
Information section 4. The protocol soundness theorem enables us to 
quantify the uniformity of the randomness that is produced with an 
overall final error parameter of εfin = max(εp/κ + εext, κ). (This choice 
of error parameter is conservative; see Supplementary Information  
section 5.) For any probability of passing greater than εfin, the total 
variation distance from uniform (conditionally on passing) is at  
most εfin.

We applied our protocol to five datasets using a set-up based on that 
described previously13, with improvements described in Methods. Each 
dataset was collected in 5–10 min. Before starting the protocol, we set 
aside the first 5 × 106 trials of each dataset as training data, which we 
used to choose the parameters that are needed by the protocol. With the 
training data removed, the number n of trials used by the protocol was 
between 2.5 × 107 and 5.5 × 107 for each dataset. We used the training 

data to determine a Bell function T with statistically strong violation 
of local realism on the training data according to the prediction-based 
ratio method32; see Supplementary Information section 3. The func-
tion T obtained for the fifth dataset, which was the longest in duration 
and produced the most randomness, assigned values between 0.927 
and 1.004 to the 16 different experimental outcomes. We computed 
thresholds vthresh so that a sample of n i.i.d. trials from the distribu-
tion inferred from the training data would have a high probability of 
exceeding vthresh.

For the fifth dataset, a sample of n i.i.d. trials from the distribution 
inferred from the training data would have a probability of approxi-
mately 0.99 of exceeding a threshold of vthresh = 1.5 × 1032. Exceeding 
this threshold would allow the extraction of 1,024 bits that are uni-
formly distributed to within εfin = 10−12, using εp = κ2 = 9.025 × 10−25 
and εext = 5 × 10−14. These values were chosen on the basis of a numer-
ical study of the constraints on the number t of bits extracted for fixed 
values of εfin = 10−12. Running the protocol on the remaining 
55,110,210 trials with these parameters, the product ∏ = Ti

n
i1  exceeded 

vthresh, and so the protocol passed. Applying the extractor to the result-
ing output string AB with a seed of length d = 315,844, we extracted 
1,024 bits, certified to be uniform to within 10−12, the first ten of which 
are 1110001001. In Fig. 2 we display the extractable bits for alternative 
choices of εfin for all five datasets.

For the dataset that produced 1,024 new near random bits, our pro-
tocol used 1.10 × 108 uniform bits to choose the settings and 3.16 × 105 
uniform bits to choose the seed. The strong extractor property28 of the 
TMPS algorithm ensures that the seed bits are still uniform, conditional 
on passing, so they can be recovered at the end of the protocol for use 
elsewhere. This is not the case for the settings-choice bits because the 
probability of passing is less than 1. To reduce the entropy used for the 
settings, our protocol can be modified to use highly biased settings 
choices5. Reducing settings entropy is not a priority if the settings and 
seed bits come from a public source of randomness, in which case the 
output bits can still be certified to be unknown to external observers 
such as Eve and the current protocol is an effective method for private 
randomness generation2,10.

For future work, we hope to take advantage of the adaptive capabil-
ities of the entropy production theorem (Supplementary Information 
section 2) to compensate for experimental drift dynamically during 
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Fig. 2 | Extractable bits as a function of error. The figure shows the 
trade-off between the final error εfin and the number of extractable bits t 
for values of vthresh pre-chosen to yield estimated passing probabilities that 
exceed 95%. These thresholds were met in each case. For all datasets (1–5) 
we set εp = κ2 = (0.95εfin)2 and εext = 0.05εfin, a split that was generally 
found to be near-optimal when numerically maximizing t in equation (5)  
for fixed values of εfin. The number of trials for datasets 1–5 were 
n1 = 24,865,320, n2 = 24,809,970, n3 = 24,818,959, n4 = 24,846,822 and 
n5 = 55,110,210.
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run time. In view of advances towards practical quantum comput-
ing, it is desirable to study the protocol when experimental devices 
may have long-term quantum memories and remain entangled with 
Eve after the protocol has begun. This may require more conservative  
randomness generation.

With the advent of loophole-free Bell tests, we have demonstrated 
that it is possible to build quantum devices that exploit quantum 
non-locality to remove many of the device-dependent assumptions in 
current technological implementations of random-number generators. 
Generators such as ours provide the best method currently known for 
physically producing randomness, thereby improving the security of a 
wide range of applications.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
018-0019-0.
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Methods
We used polarization-entangled photons generated by a nonlinear crystal pumped 
by a pulsed, picosecond laser at approximately 775 nm in a configuration similar 
to that reported previously13, but with several improvements to increase the rate 
of randomness extraction. The repetition rate of the laser was 79.3 MHz and each 
pulse that entered the crystal had a probability of approximately 0.003 of creating 
an entangled photon pair in the state |ψ〉 ≈ 0.982|HH〉 + 0.191|VV〉 at a centre 
wavelength of 1,550 nm. By pumping the crystal with approximately five times as 
much power, and using a 20-mm-long crystal, we were able to increase the per-
pulse probability of generating a down-conversion event substantially compared 
with the previous configuration13 while maintaining similar overall system effi-
ciencies. The two entangled photons from each pair were sent separately to one of 
the two measurement stations, which were 187 ± 1 m apart. At Alice and Bob, a 
Pockels cell and a polarizer combined to allow the rapid switching of measurement 
bases and the measurement of the polarization state of the incoming photons. 
Alice’s computed optimal polarization measurement angles, relative to a vertical 
polarizer, were a = −3.7° and a′ = 23.6°, and Bob’s were b = 3.7° and b′ = −23.6°. 
Each Pockels cell operated at a rate of 100 kHz, allowing us to perform 100,000  
trials per second (the driver electronics on the Pockels cells sets this rate). A 10-MHz  
oscillator kept Alice’s and Bob’s time-tagger clocks locked. After passing through 
the polarization optics, the photons were each coupled into a single-mode fibre 
and detected using superconducting single-photon nanowire detectors, with Bob’s 
detector operating at approximately 90% efficiency and Alice’s detector operating 
with approximately 92% efficiency33. For this experiment, the total symmetric 
system heralding efficiency was 75.5% ± 0.5%, which is greater than the 71.5% 
threshold that is required to close the detection loophole for our experimental 
configuration after accounting for unwanted background counts at our detectors 
and slight imperfections in our state-preparation and measurement components.

With this configuration, Bob completed his measurement 294.4 ± 3.7 ns before a 
hypothetical switching signal travelling at light speed from Alice’s Pockels cell could 
arrive at his station. Similarly, Alice completed her measurement 424.2 ± 3.7 ns 

before such a signal from Bob’s Pockels cell could arrive at her location. The out-
come values for each trial were obtained by aggregating the photon detection or 
non-detection events from several short time intervals, each lasting 1,024 ps and 
timed to correspond to one pulse of the pump laser. If any photons were detected 
in the short intervals, then the outcome was ‘ + ’; if no photons were detected, then 
the outcome was ‘0’. The previous experiment13 used at most 7 short intervals, but 
here we were able to include 14 intervals while maintaining space-like separation, 
which further increased the probability of observing a photon during each trial. 
For demonstration purposes, Alice and Bob each used Python’s random.py module 
with the default generator (the Mersenne twister) to pick their settings at each trial.  
This pseudorandom source is predictable, and for secure applications of the  
protocol in an adversarial scenario, such as if the photon pair source or measure-
ment devices are obtained from an untrusted provider, settings choices must be 
based on random sources that are effectively not predictable. However, from our 
knowledge of device construction, we know that our devices have no physical 
resources for predicting pseudorandom numbers and expect that the measurement 
settings were effectively independent of the relevant devices so that equations (2) 
and (3) still hold. We remark that the settings choices for the previous datasets13 
were based on physical random sources.

With the improved detection efficiency, the higher per-trial probability for Alice 
and Bob to detect a photon, and a higher signal-to-background counts ratio, we 
are able to improve the magnitude of our Bell violation and to reduce the number 
of trials that are required to achieve a statistically significant violation by an order 
of magnitude.
Sample size. No statistical methods were used to predetermine sample size.
Data availability. The photon detection data that support the findings of this study 
are available in the NIST Published Data Repository (https://doi.org/10.18434/
T4/1423448).
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