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The collapse of a quantum state as a signal analytic sleight of hand
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Abstract

The collapse of a quantum state is a mathematical sleight of hand that allows the construction of a joint probabil-

ity density even for operators that are noncommutative. We can formalize that construction as a non-commutative,

non-associative collapse product that is nonlinear in its left operand as a model for joint measurements at time-like

separation, in part inspired by the sequential product for positive semi-definite operators. A collapse picture, in which

a quantum state collapses after each measurement, can therefore be equivalent to a no-collapse picture that uses a

different state and different, mutually commutative, Quantum Non-Demolition operators to construct the same joint

probability density for consecutive measurements. The collapse of a state is a mathematical construction that can also

be a useful tool when using the Koopman formalism for classical mechanics and signal analysis.

Keywords: Quantum Mechanics, the measurement problem, Signal Analysis, Quantum Non-Demolition

measurement, Classical Mechanics

◮ Quantum state collapse uses noncommutative operators to construct a joint probability

◮ Such joint probabilities can also be constructed using mutually commutative operators

◮ The construction suggests an alternative approach to the quantum-classical transition

◮ Collapse+noncommutativity←→ no-collapse+commutativity

◮ We can think of collapse as applied to subsequent measurements, not to the state

1. Introduction

Linear operators are used in quantum mechanics as models for measurement, with the set of eigenvalues of a self-

adjoint operator Â corresponding to the sample space of measurement results, together with a state ρ that models the

average results of past measurements or that fixes what we expect the average results of future measurements will be,

which we can write as the expression ρ(Â). For the algebraic conditions satisfied by a state in a quantum mechanical

setting, see Appendix A and [1, §III.2.2][2, §3.2.1.3]; for accounts of the algebraic approach to quantum mechanics,

see [2, Ch. 3] and [3, 4]. As pointed out in “An algebraic approach to Koopman classical mechanics”[5], an algebraic

approach to modeling measurements and their results, including noncommutativity, can be used in classical mechanics

and in signal analysis as effectively as it is in quantum mechanics: the Wigner function, for example, is widely used in

a nontrivial way in classical signal analysis[6]. It has generally been understood that “collapse of the wave function”,

which we will here call collapse of the state, is particularly a feature of quantum mechanics, however as a mathematical

tool that allows the construction of joint probability densities even when using noncommutative operators it can be

more-or-less useful in any formalism that uses operators as models for measurement, as an effective way to give

information about the joint statistics of the results of an experiment.

The rest of this section establishes notation and describes collapse of the state in a form that commonly appears in

the literature, then §2 proposes an algebraic approach using what will be called here a collapse product and §3 exhibits

various equivalences of several different collapse+noncommutativity and no-collapse+commutativity approaches to
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modeling the same joint measurements. Adopting no-collapse+commutativity is close to the idea of a Quantum

Mechanics Free Subsystem introduced by Tsang&Caves[7], is somewhat prefigured by Belavkin[8], and the signal

analysis aspect is approached by Anastopoulos[9], however the relationship with Koopman’s Hilbert space formalism

for classical mechanics deserves to be revisited. Adopting no-collapse+commutativity also suggests an alternative

approach to the quantum-classical transition[10, 11], however §4 closes by pointing out that in classical mechanics

and signal analysis as well as in quantum mechanics some measurement results are not commeasurable, so that

a joint probability density that has the required marginal probability densities cannot be constructed and we use

noncommutative operators without using the collapse mechanism to model such cases. See Landsman[12, Ch. 11]

for a broader discussion of the measurement problem.

In general, sample spaces associated with actually recorded measurement results for real experiments can always

be taken to be discrete sets, because each actual record is always encoded in a finite number of bits. If we introduce

an idealized operator Â that has a continuous sample space, we can discretize it using the Heaviside function, so that,

for example, the operator Âd = Θ(Â − 1) + Θ(Â − 2) + Θ(Â − 3) has the sample space {0, 1, 2, 3}, corresponding,

perhaps, to an actual two bit record. It is fortunate that an effective instrumental discretization will always be available

in practice, so that extension of the constructions in this article to operators that have a continuous spectrum is not

necessary, because the spectral theorem in the continuous spectrum case does not naturally admit the square root

construction that is used here. Indeed much of the literature on the measurement problem restricts itself to the finite

sample space case. §2.1, however, briefly suggests a few approaches to working with idealized measurements that

have a continuous sample space.

We take a self-adjoint Moment Generating Operator Â† = Â to have a discrete sample space {αi}, so it can be

written as a weighted sum of a complete set of mutually orthogonal projection operators Â =
∑

i αiP̂
(A)
i

, where

P̂
(A)
i

P̂
(A)
j
= δi, jP̂

(A)
i

and
∑

i P̂
(A)
i
= 1̂ [13, Ch. II]. From this, we can construct

a Probability Density Generating Operator,
•

Au = δ(Â − u) =
∑

i

δ(u − αi)P̂
(A)
i

, u ∈ R,

and its fourier transform,

a Characteristic Function Generating Operator, Åλ = e jλÂ =
∑

i

e jλαi P̂i, λ ∈ R,

which is a 1-parameter group of unitary operators. With these, a state generates moments, a probability density, and a

characteristic function

ρ(Ân) =
∑

i

αn
i ρ(P̂

(A)
i

), p(u) = ρ(
•

Au) =
∑

i

δ(u − αi)ρ(P̂
(A)
i

), and p̃(λ) = ρ(Åλ) =
∑

i

ejλαiρ(P̂
(A)
i

),

for which the probability density is nonzero only for values in the sample space of the measurement. As pointed out

by Cohen[14], characteristic functions are a natural way to work with probability densities in a Hilbert space setting.

In such a setting, the complex structure j can be taken to be introduced, pragmatically, as an effective way to manage

the “sine” and “cosine” components of the fourier transform of a probability density. A more abstract mathematical

interest is that it is also helpful that Åλ is a group of bounded operators.

When two operators commute, which they always do when they are models for measurements that are space-

like separated from each other, we can construct a joint probability density straightforwardly, using the ordinary

multiplication, as

p(u, v) = ρ(
•

Au ·
•

Bv) =
∑

i, j

δ(u − αi)δ(v − β j)ρ(P̂
(A)
i

P̂
(B)
j

), where B̂ =
∑

j

β jP̂
(B)
j
,

which extends to any number of commuting operators. For quantum mechanics, however, operators in general will

not commute when they are models for measurements that are time-like separated from each other, in which case

P̂
(A)
i

P̂
(B)
j

may not be a positive operator and we have to use a different construction as a model for the results of

sequential measurements, even though they are joint measurements that we can model using joint probability densities.

Following a measurement result αi, we say that the state ρ “collapses” to the state ρi(X̂) =
ρ(P̂

(A)
i

X̂P̂
(A)
i

)

ρ(P̂
(A)
i

)
, giving the

expected value for any operator X̂, using the Lüders operation corresponding to the i’th eigenvalue[13, §II.3.1]. ρi

satisfies the four conditions required for it to be a state (see Appendix A). A measurement modeled by an operator
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B̂ then gives a probability density ρi(
•

Bv). The joint measurement probability density after the whole process of a first

measurement, collapse of the state, and a second measurement is therefore

pA,collapse,B(u, v) =
∑

i

δ(u − αi)ρ(P̂
(A)
i

)
ρ(P̂

(A)
i

•
BvP̂

(A)
i

)

ρ(P̂
(A)
i

)
=
∑

i, j

δ(u − αi)δ(v − β j)ρ(P̂
(A)
i

P̂
(B)
j

P̂
(A)
i

).

The sample space {(αi, β j)} of this joint measurement is notably the same as the sample space associated with two

commuting operators with sample spaces {αi}, {β j}. pA,collapse,B(u, v) is positive semi-definite by construction and is

normalized, as it must be,
∫

pA,collapse,B(u, v)dvdu = 1.

2. A collapse product of probability density and characteristic function generating operators

Given the construction above, it is quite natural to use the sequential product for positive semi-definite operators

that is described by Gudder and Greechie[15], X̂ ◦ Ŷ =
√

X̂ · Ŷ ·
√

X̂, to define for the discrete sample space case a

collapse product of two probability density generating operators or characteristic function generating operators as

•
Au◮◦

•
Bv = δ(Â − u)◮◦δ(B̂ − v) �

∑

i

δ(u − αi)P̂
(A)
i
δ(B̂ − v)P̂

(A)
i
=
∑

i, j

δ(u − αi)δ(v − βi)P̂
(A)
i
◦ P̂

(B)
j
,

Åλ◮◦B̊µ = ejλÂ
◮◦e jµB̂

�

∑

i

e jλαi P̂
(A)
i

e jµB̂P̂
(A)
i
=
∑

i, j

e j(λαi+µβ j)P̂
(A)
i
◦ P̂

(B)
j

(where for projection operators we have
√

P̂ = P̂), so we can write pA,collapse,B(u, v) = ρ(
•

Au◮◦
•

Bv), and we can define the

reverse case,
•

Au ◮◦•Bv �
•

Bv◮◦
•

Au. We can think of this construction as applying a collapse operation to other measurements

instead of to the state, following Bohr’s preference for measurements affecting other measurements instead of collapse

of the state[16]. We can confirm that
•

Au◮◦
•

Bv is a positive semi-definite operator and that it is normalized appropriately

to generate a joint probability density in any state,
∫ •

Au◮◦
•

Bvdudv = 1̂. If [Â, B̂] = 0, then [P̂
(A)
i
, B̂] = 0, so in that case

•
Au◮◦

•
Bv =

•
Au ·

•
Bv.

We can generalize the collapse product to three or more characteristic function generating operators as, for exam-

ple,

(Å
1,λ1

◮◦Å
2,λ2

)◮◦Å
3,λ3
= (ejλ1Â1

◮◦e jλ2Â2 )◮◦e jλ3Â3 �

∑

i, j,k

e j(λ1α
(1)
i
+λ2α

(2)
j
+λ3α

(3)
k

)(P̂
(A1)
i
◦ P̂

(A2)
j

) ◦ P̂
(A3)

k
,

where we have to include brackets because the collapse product and the sequential product are nonassociative as

well as noncommutative. Furthermore, the collapse product is nonlinear in its first argument and the construction

(X̂ ◦ Ŷ) ◦ Ẑ =

√√
X̂·Ŷ·
√

X̂ · Ẑ ·
√√

X̂·Ŷ·
√

X̂ is significantly more complicated than X̂ ◦ (Ŷ ◦ Ẑ)=
√

X̂·Ŷ ·Ẑ·
√

Ŷ ·X̂. We

can call the collapse product power associative insofar as Åλ◮◦Åµ = ÅλÅµ = Åλ+µ and

Åλ1
◮◦(Åλ2

◮◦B̊µ) = Åλ2
◮◦(Åλ1

◮◦B̊µ) = Åλ1+λ2
◮◦B̊µ = (Åλ1

◮◦Åλ2
)◮◦B̊µ.

For probability density generating functions, both (
•

A
1,u1

◮◦ •A
2,u2

)◮◦ •A
3,u3

and
•

A
1,u1

◮◦( •A
2,u2

◮◦ •A
3,u3

) are positive semi-definite

operators and are normalized appropriately to generate a probability density in any state. Note that
√

P̂
(A)
i

P̂
(B)
j

P̂
(A)
i

is well-defined because P̂
(A)
i

P̂
(B)
j

P̂
(A)
i

is a positive semi-definite operator, but neither operator is a projection unless it

happens that [P̂
(A)
i
, P̂

(B)
j

] = 0 for the particular eigenspaces.

Most commonly, the time ordering of measurements is taken to determine the ordering of collapse products,

however, as a mathematical construction, the ordering of collapse products is independent of the time ordering of

measurement operators, so that we could perfectly well use the collapse product out of time order if we were to find

it useful to do so. Furthermore, time ordering is only a partial ordering for measurements that are associated with

overlapping time intervals, in which case time ordering cannot by itself determine the ordering of collapse products,

so that the collapse product may introduce some difficult decisions. Whereas time reversal is straightforward for no-

collapse+commutativity models, time reversal for collapse+noncommutativity models in which time-order determines

collapse order introduces significant complications.
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We can loosely consider the collapse product to be a regularized form of the positive semi-definite but unnormalized

construction

δ(Â − u)δ(B̂− v)δ(Â − u) =
∑

i, j,k

δ(u − αi)δ(v − β j)δ(u − αk)ρ(P̂
(A)
i

P̂
(B)
j

P̂
(A)

k
)

N
=
∑

i, j,k

δ(u − αi)δ(v − β j)δi,kρ(P̂
(A)
i

P̂
(B)
j

P̂
(A)

k
)

=
∑

i, j

δ(u − αi)δ(v − β j)ρ(P̂
(A)
i

P̂
(B)
j

P̂
(A)
i

) =
•

Au◮◦
•

Bv,

where the regularization replaces the improper expression δ(u− αi)δ(u− αk) by δ(u− αi)δi,k. We can understand both
•

Au◮◦ and Åλ◮◦ acting on operators on their right to be a parameterized set of operations in Kraus form[13, §II.3.1].

2.1. Continuous sample spaces

If we decide to work in an idealized formalism instead of using the available instrumental discretization, we can

introduce other additional structure, for example by choosing a finite set of probability densities p
(A)
i

(u), replacing the

densities δ(u− αi), for each of which
∫

p
(A)
i

(u)du = 1, each of which is followed by the application of a different state

transformer to the initial state, as

•
Au =

∑

i

p
(A)
i

(u)Â†
i
Âi,

∑

i

Â
†
i
Âi = 1, p(A)(u) = ρ(

•
Au) =

∑

i

p
(A)
i

(u)ρ(Â†
i
Âi),

so that the probability density p(A)(u) is a convex sum of the probability densities p
(A)
i

(u), and, for the collapse product,

•
Au◮◦

•
Bv =

∑

i

p
(A)
i

(u)Â†
i

•
BvÂi =

∑

i, j

p
(A)
i

(u)p
(B)
j

(v)Â†
i
B̂
†
j
B̂ jÂi.

We can introduce ever more elaborate ways to use noncommuting operators to construct joint probability generating

operators, with perhaps the simplest being a regularization of δ(Â − u)δ(B̂ − v)δ(Â − u) that can be used for operators

that have either a continuous or discrete spectrum, for any ǫ > 0,

•
Au

ǫ
◮◦ •

Bv =
1
√
πǫ

e−(Â−u)2/2ǫδ(B̂ − v)e−(Â−u)2/2ǫ ,

which is manifestly positive semi-definite and is normalized if we perform the v integration first,
∫ •

Au

ǫ
◮◦ •Bvdvdu=1̂,

but performing the u integral first may not be possible and the limit ǫ → 0 may well not exist. A given construction

of a collapse product may well require some kind of regularization, and a sequence of collapse products may require

increasingly elaborate care. The quantum measurement theory literature includes many such constructions of joint

probabilities[17].

3. Equivalent noncommutative and commutative models

Because pA,collapse,B(u, v) is a joint probability density, with sample space {(αi, β j)}, we can certainly introduce an

operator B̂′ that has the same sample space {β j} as B̂ but that commutes with Â, [Â, B̂′] = 0, and a different state

ρ′, for which ρ′(
•

Au·
•

B′v) � pA,collapse,B(u, v) (which does not fix either B̂′ or ρ′ uniquely.) Although we have arrived

at this mathematics by a somewhat different motivation, as a way to remodel collapse of the state to be classically

natural, the operators Â and B̂′ are then Quantum Non-Demolition (QND) observables relative to each other[7, 8], for

which there is a long history and experience in their use. Particularly when we model a stream of millions or billions

of jointly recorded measurement events over time, as we do when we record signal levels on a signal line, it can be

equally or more effective simply to use a commutative algebra of measurement operators to model a joint probability

density instead of working with a mathematical formalism in which collapse of the state occurs millions or billions of

times. Equally, however, where we have been accustomed to modeling joint probability densities in classical physics
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only using commutative algebras of measurement operators, it can be justifiable for a classical physicist or in signal

analysis to use the collapse product to achieve a useful compression or to achieve other goals.

We can also use a single long sequence of noncommutative operators and collapse products in different ways.

(···(( •A
1,u1

◮◦ •A
2,u2

)◮◦ •A
3,u3

)◮◦ · · ·)◮◦ •A
n,un
,

which collapses the state after every measurement, gives a very different type of modeling than is given by

•
A

1,u1
◮◦( •A

2,u2
◮◦(· · · ◮◦( •A

n−1,un−1
◮◦ •A

n,un
)···)),

which can be thought of as applying a single, combined collapse only after the last-but-one measurement. We can

consider the latter to be the mathematics behind a form of Many Worlds Interpretation, in the sense that there is no

collapse except when the experiment is finally completed (which we could say happens when we begin analysis of

the experimental raw data, or, more extravagantly, we could say that the final collapse will not happen until after the

last human being dies or at some other cosmologically defined endtime.) Both constructions allow us to generate joint

probability densities, because they are both positive semi-definite operators as functions of u1, ..., un and they are both

normalized appropriately, but for the same statistics of experimental results we would have to use different states to

achieve empirically equivalent models.

If we only allow unitary evolution, with no use whatsoever of collapse of the quantum state, as in the Many

Worlds and some other interpretations of quantum mechanics, we can only model joint probabilities using commuting

operators, giving an essentially classical perspective of QND measurements. With a no-collapse approach, we are

free to adopt any interpretation of classical probability —Dutch Book, Propensity, Frequency, Many Worlds, or any

other— but there must be a connection to experimental raw data, its statistics, and to the choice of subensembles of

the data.

Yet another fairly natural construction can be thought of as applying a single, combined collapse in time-reverse

order, immediately after the first measurement (taking Â
i
to be before Â

i+1
),

(···(( •A
1,u1

◮◦•A
2,u2

) ◮◦•A
3,u3

) ◮◦· · ·) ◮◦•A
n,un
,

again requiring a different state to generate the same statistics, but, as already noted, there are many other possibilities.

Indeed, for a given ordering of n distinct operators, there are (2n−2)!
(n−1)!n!

distinct ways to introduce the required brackets,

giving the sequence 1, 1, 2, 5, 14, 42, 132, ..., with some choices of brackets being more mathematically natural than

others but with none absolutely preferred.

For a given experiment, we can use whichever construction seems most helpful, but for each the state will be

different and so will our understanding of its relationship to experimental raw data. The profusion of different states,

depending on what approach we take to constructing joint probabilities, is straightforward on an epistemological

or structural realist understanding of quantum states, however it is arguably incompatible with a naı̈ve ontological

understanding of physical states.

4. Discussion

For joint measurements at space-like separation, we do not need to introduce collapse of the state to model them,

because operators at space-like separation commute and collapse of the state has no effect if measurement operators

commute. For joint measurements at time-like separation, however, the collapse of the state after a measurement

makes it possible to model those joint measurements using noncommutative operators: without collapse of the state

or a similar construction it would not be possible to use noncommutative operators to model joint measurements for

all prepared states, because of the elementary observation that in general ρ(ÂB̂)∗ , ρ(ÂB̂) unless [Â, B̂] = 0. Any

model that uses collapse to make it possible to use noncommutative operators to model joint measurements can be

replaced by a model that uses only mutually commuting operators, but, conversely, it also may be useful when using

Koopman classical mechanics to replace a commuting operator model by a more compact model that freely uses a

noncommutative algebra of operators.

In the Schrödinger picture of phase space quantum mechanics, measurements are associated with regions of space

and with a state that only models the statistics of measurement results at one time, evolving unitarily from time to time.
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In this picture, it is in a sense straightforward to introduce a nonunitary collapse of the quantum state immediately after

a measurement result, even though it introduces well-known interpretational concerns. In contrast, when modeling

physical systems in a quantum field theoretic way or in the Heisenberg picture, measurements are associated with

regions of space-time and with a state that models the statistics of measurement results at all times, so we cannot as

straightforwardly introduce collapse of the quantum state at a particular time, but we can nonetheless use the collapse

product acting on other measurements as a way to construct joint probabilities.

Although it has been stressed here that we can think about collapse of the quantum state in terms of the construc-

tion of joint probability densities straightforwardly and effectively, the much more elaborate mathematics of detailed

models of the thermodynamic behavior and statistical mechanics of real experimental apparatus, of measurement as

interaction, of decoherence, and even of the observer’s brain or mind, is not thereby made unnecessary. The many

discussions of such mathematics in the literature are of course just as valid and necessary as they ever were, but at the

level of abstraction at which we consider probabilities and statistics of actually recorded experimental results, we can

reasonably shut up and calculate joint probabilities using collapse of the state, knowing that we could also shut up and

calculate using QND measurements with no collapse if we wished to do so.

Joint measurements, however, do not exhaust the use of noncommuting operators in quantum mechanics, because

not all measurements are joint measurements. Algebraic formalisms for classical mechanics and signal analysis also

can reasonably include the use of noncommuting operators[5]. For measurements that are not joint measurements,

we can use noncommuting operators to represent the relationship between different analyses of recorded experimental

raw data. For experiments in which Bell-CHSH-type inequalities are violated, for example, we must include noncom-

mutative operators for an algebraic model to give us an effective model for the results[18][5, §7.2], because the use of

arbitrary post-selection algorithms to create new datasets effectively creates distinct experimental contexts. To require

classical or other operator formalisms not to use noncommutative operators is effectively to make them a straw man.

As Pitowsky puts it (saying “commeasurable” for “jointly measurable”), quoted by Abramsky[19, p. 7],

For certain families of events the theory stipulates that they are commeasurable. This means that,

in every state, the relative frequencies of all these events can be measured on one single sample. For

such families of events, the rules of classical probability —Boole’s conditions in particular— are valid.

Other families of events are not commeasurable, so their frequencies must be measured in more than

one sample. The events in such families nevertheless exhibit logical relations (given, usually, in terms

of algebraic relations among observables). But for some states, the probabilities assigned to the events

violate one or more of Boole’s conditions associated with those logical relations.

There are signal analysis algorithms that we can apply to jointly measured results that result in collections of post-

selected data that cannot be commeasured and do not admit a joint probability density. There are other ways

of discussing commeasurability: recent Generalized Probability Theory literature uses the word “incompatibility”

when two probability densities do not admit a joint probability density, and there is a substantial literature on

“contextuality”[20, 21].

A signal analysis approach to quantum mechanics takes as its starting point the recorded values of the jointly

measured signal levels on the many signal lines out of an experimental apparatus. The subsequent signal analysis of

those actually recorded signal levels, whether in real-time in hardware or software, or in post-analysis in software,

may result in probability densities for the results of those computations that do not admit joint probability densities,

but we take the actually recorded signal levels that are the source for that analysis to be essentially classical: we

can share experimental raw data with other physicists with no concern that anything will change when they are read.

Although we can continue to take notable features such as sudden transitions of the signal level on a signal line to

have been caused by a “particle” or a “wave” or a “quantum particle” or a “quantum state” or a “quantum field state”,

because we have become skilled in the use of our existing quantum mechanics toolbox, we can also —because of

the equivalence of collapse+noncommutativity models and no-collapse+commutativity models constructed above—

take the finite collection of actual records of the signal levels over time to be a consequence of the way the whole

experimental apparatus has been engineered.

For future experiments, we can ask a continuum of questions about how the actual records of signal levels would

differ if small or large changes were made to the apparatus, with arbitrarily many additional devices and signal lines

interpolated among those already there or with the signal levels recorded arbitrarily more accurately or more often.

For established theories, such interpolation and extrapolation gives accurate enough results for a continuum of future
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experiments, in a wide range of conditions, that we can even use them as a good basis for engineering and we can jus-

tify thinking about them in a realist way. For more modestly established theories, however, realism is proportionately

less justified. The overall perspective here, which may in time become “The signal analysis interpretation of classical

and quantum mechanics”, is the subject of further development.
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Appendix A. Conditions satisfied by a state

We take a complex-valued state ρ acting on a ∗-algebra A, ρ : A → C; Â 7→ ρ(Â), to satisfy four conditions[1,

§III.2.2][2, §3.2.1.3]:

• von Neumann complex-linearity: ρ(λÂ + µB̂) = λρ(Â) + µρ(B̂), satisfied even if [Â, B̂] , 0;

• positive semi-definiteness: ρ(Â†Â) ≥ 0;

• compatibility with the adjoint: ρ(Â†) = ρ(Â)∗;

• normalization: ρ(1̂) = 1.

These conditions allow us to use a state to construct a Hilbert space H and a representation of A that acts upon

it[5, §3]. Suitable different conditions, which we do not consider here, would allow the construction of Generalized

Probability Theories (GPTs) that are not generated by a Hilbert space[22, Ch. 1][23, 24]. In an algebraic approach,

a state should be distinguished from a “vector state”, a normalized vector |ψ〉 ∈ H , 〈ψ|ψ〉 = 1, which can be used

to construct a pure state, ρ|ψ〉(Â) = 〈ψ|Â|ψ〉. The Born rule expression for a probability density such as |〈x|ψ〉|2 =
〈ψ|x〉〈x|ψ〉 = ρ|ψ〉(X̂) can be understood as the expected measurement result for a projection operator X̂ = |x〉〈x| in the

pure state ρ|ψ〉.
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