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Quantum interference, manifest in the two slit experiment, lies at the heart of several quantum
computational speed-ups and provides a striking example of a quantum phenomenon with no
classical counterpart. An intriguing feature of quantum interference arises in a variant of the
standard two slit experiment, in which there are three, rather than two, slits. The interference
pattern in this set-up can be written in terms of the two and one slit patterns obtained by
blocking one, or more, of the slits. This is in stark contrast with the standard two slit experiment,
where the interference pattern cannot be written as a sum of the one slit patterns. This was
first noted by Rafael Sorkin, who raised the question of why quantum theory only exhibits
irreducible interference in the two slit experiment. One approach to this problem is to compare
the predictions of quantum theory to those of operationally-defined ‘foil’ theories, in the hope of
determining whether theories that do exhibit higher-order interference suffer from pathological –
or at least undesirable – features. In this paper two proposed extensions of quantum theory are
considered: the theory of Density Cubes proposed by Dakić, Paterek and Brukner, which has
been shown to exhibit irreducible interference in the three slit set-up, and the Quartic Quantum
Theory of Życzkowski. The theory of Density Cubes will be shown to provide an advantage over
quantum theory in a certain computational task and to posses a well-defined mechanism which
leads to the emergence of quantum theory – analogous to the emergence of classical physics from
quantum theory via decoherence. Despite this, the axioms used to define Density Cubes will be
shown to be insufficient to uniquely characterise the theory. In comparison, Quartic Quantum
Theory is a well-defined theory and we demonstrate that it exhibits irreducible interference to
all orders. This feature of Życzkowski’s theory is argued not to be a genuine phenomenon, but
to arise from an ambiguity in the current definition of higher-order interference in operationally-
defined theories. Thus, to begin to understand why quantum theory is limited to a certain kind
of interference, a new definition of higher-order interference is needed that is applicable to, and
makes good operational sense in, arbitrary operationally-defined theories.

1 Introduction

1.1 Overview of results

The present paper investigates two proposed extensions of quantum theory from the point of view of
their interference behaviour. This investigation clarifies the impact of these two generalised theories
to ongoing experimental tests for “higher-order interference” and explores potential information-
theoretic consequences of post-quantum interference in concrete theories. In particular it highlights
an ambiguity in the current definition of higher-order interference. The two theories which shall be
investigated are: the theory of Density Cubes proposed by Dakić, Paterek and Brukner, which has
been shown to exhibit third-order interference in the three slit set-up [1], and the Quartic Quantum
Theory [3] of Życzkowski.

The five main conclusions of our investigation are as follows:

1. The theory of Density Cubes posses a well-defined mechanism which leads to the emergence
of quantum theory – analogous to the emergence of classical physics from quantum theory via
decoherence.

2. The theory of Density Cubes provides an advantage over quantum theory in a computational
task based on the collision problem.

3. The axioms used to define the theory Density Cubes are insufficient to uniquely characterise it.
It should hence be thought more as a framework for possible theories than a unique theory.

1 Electronic address: ciaran.lee@cs.ox.ac.uk
2Electronic address: john.selby08@imperial.ac.uk

1

http://arxiv.org/abs/1510.03860v2


4. Quartic Quantum Theory (QQT) exhibits irreducible interference to all orders relative to the
definition of higher-order interference provided by Barnum et al. in [8].

5. Point 4, above, explicitly highlights an ambiguity in the current definition of higher-order inter-
ference which must be taken into account in future experimental investigations of higher-order
interference.

The rest of this paper is organised as follows. In the next section we motivate the study of
higher-order interference, present some of the previous literature on this topic, and discuss our main
results in more detail. In section 2 we provide a definition of higher-order interference and discuss an
operational framework of hypothetical physical theories in which such a definition can be rigorously
explored. In section 3, the results concerning the theory of Density Cubes shall be presented. In
section 4, the result concerning Quartic Quantum Theory shall be shown.

1.2 Background and motivation

The predictions of quantum theory are the most accurately tested of any physical theory in the
history of science. Nevertheless, it may turn out to be the case that quantum theory is only an
effective description of a more fundamental theory whose predictions deviate from those of quantum
theory in certain energy regimes or sufficiently sensitive experimental set-ups. It is thus of the utmost
importance that fundamental tests of the validity of quantum theory be performed. Such tests take
a characteristically quantum prediction and probe the limits of its accuracy in different experimental
situations. One such prediction, currently under experimental investigation [19, 20], is the limitation
of quantum theory to second, as opposed to higher, order interference in n-slit experiments.

Higher-order interference was first described by Sorkin [9] who noted that quantum theory is
limited to having only second-order interference. Informally, this means that the interference pattern
obtained in a three – or more – slit experiment can be written in terms of the two and one slit
interference patterns that are obtained by blocking some of the slits. Thus there are no genuinely
new features resulting from considering three slits instead of two. This is in stark contrast with the
existence of second-order, i.e. quantum-like, interference, for which there exists a two-slit experiment
whose interference pattern cannot be written as a sum of the one slit patterns obtained by blocking
each one of the slits. This was first made precise in the context of quantum measure theory [10],
where moving from classical to quantum theory can be seen as a weakening of the Kolmogorov sum
rule to allow for second (but not third, or higher) order effects.

Restriction to only second-order interference appears to be a characteristically quantum phenom-
ena and many other ‘quantum-like’ features can be derived from it. For example: limiting correlations
[13, 14] to the ‘almost quantum correlations’ discussed in [21], and bounding contextuality [12]. Ad-
ditionally a lack of third-order interference was also used by Barnum, Müller and Ududec [8] as a
postulate in their reconstruction of quantum theory.

The natural question that arises from this discussion is why does quantum theory only exhibit
second-order interference? It may strike some as odd that there is a limit to the non-classicality
of quantum theory. Why is nature strange, but not excessively so? Does the existence of genuine
third-order interference violate some physical principle, such as non-signalling [15], that we take to
be fundamental? We do not fully answer this question here but, by investigating two operationally-
defined hypothetical extensions of quantum theory, we gain some insight into possible consequences
of the existence of post-quantum interference.

One way to approach this problem is to consider quantum theory in the context of a widely studied
framework used to discuss possible extensions to the quantum formalism. This framework, known
as the generalised probabilistic theory (GPT) framework [15, 4], is general enough to accommodate
essentially arbitrary operational theories, where an operational theory specifies a set of laboratory
devices that can be connected together in different ways and assigns probabilities to different ex-
perimental outcomes. Theories in this framework have the minimal amount of structure required
to provide a consistent account of arbitrary operational scenarios [15]. It should be noted however
that it is not the purpose of theories in this framework to tell us how post-quantum physics could
potentially arise, but to provide a consistent operational model who’s predictions deviate from those
of quantum theory. The only considerations of interest are those which are operational3 in nature.

3Note that operationalism as a philosophical viewpoint, in which one asserts that there is no reality beyond labo-
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Barnum, Müller and Ududec have provided an operational definition [8] (see also [2]) of higher-
order interference that is applicable to any GPT, which we review in scetion 2. Given this definition,
one can attempt to construct a GPT that exhibits higher-order interference in the hope of using it as a
‘foil’ to quantum theory. Such a foil theory would hopefully shed some light on possible pathological –
or at least undesirable – features of higher-order interference theories and thus provide reasons ‘why’,
in some sense, quantum theory should be limited to second-order interference. Currently, to the
best of the authors knowledge, there are no ‘complete’ GPTs that exhibit third-order interference.
There are particular state spaces [16] that have higher order interference but these are of a fixed
dimensionality and composition is not discussed, additionally they have a highly restricted set of
dynamics when compared to quantum theory.

It would be of particular interest if there was a theory that exhibited higher-order interference
and which contained quantum theory as a limiting case. Yet, if such a theory exists, there should
be some mechanism by which the magnitude of effects unique to this theory are suppressed, thus
explaining why quantum theory is such a good effective description of the world. This mechanism
would be analogous to the process of decoherence, which induces the quantum-classical transition
and which makes observation of genuine quantum effects hard to experimentally detect. Therefore
the mechanism by which an extension of quantum theory reduces to standard quantum theory is
called hyper-decoherence4. Any well-defined theory that extends quantum theory should provide
a mechanism for hyper-decoherence. Experimental bounds have been found limiting the possible
amount of third (or higher) order interference [19, 20], thus placing stringent bounds on the hyper-
decoherence time of potential extensions of quantum theory.

Ududec, Barnum and Emerson have shown [2] that the absence of third-order interference is
equivalent to the ability to perform full tomography of any state using only measurements consisting
of two-slit experiments, i.e by only performing measurements on two dimensional subsystems5. It
follows that any theory which exhibits genuine third-order interference, and aims to be an extension
of quantum theory, requires more parameters to specify an n-level system than are required to specify
an n-level quantum system. Intuitively then, one can think of the dimension of the subspace upon
which one needs to perform measurements to do complete tomography as corresponding to the order
of interference.

Guided by this, Dakić, Paterek and Brukner [1] have proposed a method to construct a theory
that exhibits third-order interference and which extends standard quantum theory. In section 3.3, we
demonstrate that this construction gives rise to a sensible notion of hyper-decoherence which leads to
the emergence of quantum theory in particular cases – analogous to the emergence of classical physics
from quantum theory. In section 3.4 we also show that this construction provides an advantage over
quantum theory in a certain computational task. Despite this, in section 3.5 of this paper it will be
shown that this approach – as it is currently presented – does not lead to a well-defined physical theory.
We show that the axioms defining the state space are insufficient to uniquely characterise the theory.
It is therefore suggested that one can view the theory of Density Cubes more as a framework for
developing operational theories than a unique theory. Moreover, although non-trivial (non-quantum)
transformations have been identified, these axioms allow for unphysical transformations that map
physical states to states that give complex-valued probabilities on measurement.

Another feature of tomography in the GPT framework is discussed by Hardy in [4], where a
hierarchy of theories are presented and shown to satisfy the relation K = N r, where K is the number
of effects whose statistics are required to completely determine a state, N is the dimension of the
system and r is a positive integer specifying the level in the hierarchy. The case r = 1 corresponds to
classical theory and r = 2 to quantum theory.6 For r > 2 one may expect – based on the results of
[2] discussed above – that tomography on these higher dimensional subspaces leads to higher-order
interference. The results of [2] suggest that the rth level of this hierarchy, i.e. K = N r, should exhibit
rth-order interference, but no higher.

Życzkowski has developed a theory [3] satisfying K = N4, which extends quantum theory, and
so provides a candidate for a theory of higher-order interference. In section 4 of this paper, it
is shown that Życzkowski’s K = N4 theory does not suffer from many of the problems of Dakić et

ratory device settings and outcomes, is not being espoused here. One should merely view the approach taken here as
an operational methodology aimed at gaining insight into certain structural properties of physical theories.

4See [3] for a more in-depth discussion of hyper-decoherence.
5i.e. by only performing measurements of the form a〈i|+ b〈j|.
6Note that we are allowing sub-normalised states, hence quantum theory satisfies K = N2 rather than K = N2 −1.
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al.’s construction; there is a unique state space associated with the theory and all transformations are
physical. Furthermore, this theory does indeed exhibit third – and higher – order interference. In fact,
this theory exhibits nth-order interference for all n, which is somewhat surprising and unexpected,
as one would expect, based on the discussion in the previous paragraph, that this theory exhibits at
most 4th-order interference. Another surprising, and somewhat worrying, feature of interference in
this theory, that will be shown in section 4.2, is the fact that the existence of higher-order interference
stems from a somewhat artificial and operationally unmotivated choice. Blocking some subset of the
slits, which correspond to apertures in the physical barrier describing an n-slit experiment, should
uniquely define a measurement, but Życzkowski’s theory does not posses this feature; there exist (at
least) two well-defined measurements that correspond to blocking the same subset of slits in an n-slit
experiment. One of these measurements results in higher-order interference, the other does not.

Arguably, both of these features arise from a limitation of Barnum, Müller and Ududec’s definition
of higher order interference rather than a genuine phenomenon; there should be a unique measurement
that corresponds to opening any subset of slits, and this does not appear to happen without further
constraints on the theory.7 Thus one should not consider Życzkowski’s theory as an example of
higher-order interference in the sense originally meant by Sorkin, but rather a demonstration of the
challenges of applying his original definition to arbitrary GPTs. Thus to begin to understand the
reason why, in some sense, quantum theory is limited to second-order interference, we first need a
definition of higher-order interference that is applicable to, and makes good operational sense in,
arbitrary GPTs. Ways in which such a definition might arise are discussed in section 5.

Finally, in section 4.3.1, we briefly comment on the type and strength of correlations allowed
in Życzkowski’s theory and provide evidence of a speed-up over quantum theory in communication
complexity problems.

2 A definition of higher-order interference in generalised prob-

abilistic theories

Any physical theory must provide a consistent explanation of experimental results. This provides
the basic idea underlying the framework of generalised probabilistic theories, where the fundamental
notions are operational in nature. Theories in this framework have the minimal amount of structure
required to provide a consistent account of arbitrary operational and experimental scenarios. As
discussed in the introduction, it should be noted that it is not the purpose of theories in this framework
to tell us how post-quantum physics could potentially arise (via some high-energy probing of a certain
field theory perhaps), but to provide a consistent operational model who’s predictions deviate from
those of quantum theory. The only considerations of interest are those which are operational in
character.

A generalised probabilistic theory (GPT) specifies a set of laboratory devices that can be connected
together in different ways and prescribes probabilities to different experimental outcomes. States,
which correspond to experimentally preparing a system, and effects, which correspond to the outcome
of some measurement on a system, are taken as primitive notions in the GPT framework. The set of
states is know as the state space and the set of effects is known as the effect space. Transformations
between different states are allowed, but it is demanded that all physically allowed transformations
map the state space to itself. For a review of the GPT framework, see [15, 4].

Barnum, Müller and Ududec [8] have provided a definition of higher-order interference that is
applicable to any GPT and is equivalent to Sorkin’s original definition in the quantum and classical
cases. This definition takes its motivation from the set-up of certain experimental interference exper-
iments, in which a particle (a photon or electron, say) passes through apertures, which correspond
to the slits, in a physical barrier. By blocking some of the slits and repeating the experiment many
times, one can build up an interference pattern on a screen placed behind the physical barrier. For
a more in depth discussion, see Section V. of [8].

The Barnum et al. definition of higher-order interference proceeds as follows. They firstly define
exposed faces, Fi, of the state space as a set of states for which there exists an effect8 (fi| satisfying
(fi|s) = 1 ⇐⇒ |s) ∈ Fi. We should think of the effect (fi| as the effect corresponding to placing

7It should be noted that all theories of interest to Barnum, Müller and Ududec do satisfy these extra constraints,
and so their definition suffices for all considerations of interest in [8].

8We are using curved rather than angular ‘Dirac’ notation to denote states and effects in a GPT.
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a detector just behind the slit i, the face Fi is therefore the set of states that are detected at slit i
with certainty. The union of exposed faces is defined, Fij := Fi ∪ Fj as the smallest exposed face
that includes both Fi and Fj , this is the face generated by an effect that is a coarse graining of the
effects behind i and j. Faces are disjoint Fi ⊥ Fj if (ei|s) = 0, ∀|s) ∈ Fj and (ej |s) = 0, ∀|s) ∈ Fi. We
expect faces corresponding to an n-slit experiment to be disjoint; if we know with certainty that the
particle has passed through a particular slit, there should be no probability of finding it at another
slit.

An n-slit experiment requires a system that has n disjoint exposed faces Fi, i ∈ {1, ..., n}. Consider
an effect (E| which represents the effect corresponding to the probability of finding a particle at a
particular point on the screen. Then an n-slit experiment is a collection of effects (eI |, I ⊆ {1, ..., n}
such that

(eI |s) = (E|s), ∀|s) ∈ FI :=
⋃

i∈I

Fi, (2.0.1)

and,
(eI |s) = 0, ∀|s) where s ⊥ FI . (2.0.2)

We can see these effects as being the composition of the transformation induced by closing the
slits {1, ..., n} \ I and the effect (E|. If the particle was prepared in a state such that it would be
unaffected by the slit closure (i.e. |s) ∈ FI) then this composition should act the same as (E| so that
(eI |s) = (E|s). If instead the particle is prepared in a state which is guaranteed to be blocked (i.e.
|s′) ⊥ FI) then we should obtain the zero effect so that (eI |s′) = 0.

The relevant quantities for the existence of various orders of interference are therefore,

I1 := (E|s), (2.0.3)

I2 := (E|s)− (e1|s)− (e2|s), (2.0.4)

I3 := (E|s)− (e12|s)− (e23|s)− (e31|s) + (e1|s) + (e2|s) + (e3|s), (2.0.5)

In :=
∑

∅6=I⊆{1,...,n}
(−1)n−|I|(eI |s), (2.0.6)

for some state |s) and defining (e{1,...,n}| := (E|. Where a theory has nth order interference if there
exists a state |s) such that In 6= 0. Lack of third-order interference therefore means that the three slit
interference pattern is the sum of the two-slit patterns minus the sum of the one-slit patterns. This
is what we find for quantum theory. It was shown in [9] that In = 0 =⇒ In+1 = 0, so if we have
no nth order interference then there will be no (n + 1)th order interference. It can be shown that
classical probability theory satisfies I2 = 0 and quantum theory satisfies I3 = 0. The failure of I2 = 0
for quantum theory means that the two-slit pattern is not just the sum of the one-slit patterns, this
is just the usual notion of interference in the two-slit experiment.

2.1 Requirements on a physical theory

We have the following desiderata for a physically well-defined extension of quantum theory:

1. There should exist a well-defined state space9 for an N -level system, ΩN (for all finite N).

2. There should exist a well-defined effect space giving valid probabilities10, EN .

3. Transformations should leave that state space invariant11.

4. Composite systems should be defined in a consistent way so that12, ΩN ⊗ ΩM = ΩNM .

5. For a genuine extension of quantum theory there should exist a valid hyper-decoherence map.

9forming a convex cone in the GPT setting.
10in the GPT setting this will be a convex cone living inside the dual cone to the state space.
11In the GPT setting these will be linear maps that are completely preserving
12Note that ⊗ here may not be the usual vector space tensor product [15, 4].
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3 Density cubes

Dakić et al. [1] have proposed a method to construct a theory that exhibits third-order interference
and extends standard quantum theory. They argue, based on the results in [2], that the absence
of third-order interference in quantum theory can be traced back to the fact that a quantum state
coherently links at most two levels of the quantum system. This can be summarised as the fact that
a quantum state is represented by a density matrix, where the matrix entries ρij , i 6= j, are the
coherences linking the levels i and j. So in order for a theory to exhibit third-order interference the
representation of states in said theory must contain terms that coherently link three levels, i.e. terms
of the form ρijk, with i, j, k all distinct. Thus a potential way to construct a theory that exhibits
third-order interference is to consider a theory where the states are described not by matrices ρij as
in quantum theory, but by (rank 3) tensors with elements of the form ρijk. Dakić et al. refer to such
tensors as density cubes, as opposed to the density matrices of quantum theory.

3.1 States and effects

The basic features of the theory of density cubes are defined in analogy with quantum theory, as
follows13. Every measurement outcome is associated with a density cube14 which, in general, has
complex entries ρijk. The element ρiii is chosen to be real and corresponds to the probability of the
outcome i = 1, ..., n of a particular measurement. Thus

∑

i ρiii = 1 and ρiii ≥ 0. In analogy to
quantum theory, we refer to this property as the trace of the density cube. In standard quantum
theory the probability of finding the quantum state ρ in the state σ on measurement is given by
p = Tr(ρ†σ) = ρ∗ijσij , where Einstein’s summation convention has been adopted. In a similar
manner, define p = (ρ, σ) = ρ∗ijkσijk, where p denotes the probability of finding the a density cube
in state ρ when the measurement corresponding to the state σ is applied. To ensure that p is a real
number, the constraint ρ∗ijkσijk = σ∗

ijkρijk is enforced. In the quantum case p ∈ R is ensured as ρij
is a Hermitian matrix, hence ρij = ρ∗ji. Similarly, call a density cube Hermitian if exchanging two
indices gives a complex conjugated element. As in the case of Hermitian matrices, Hermitian cubes
form a real vector space with the inner product given by (ρ, σ) = ρ∗ijkσijk. We define pure states as
those that satisfy the above conditions and also satisfy (ρ, ρ) = 1. Positivity of the inner product,
Hermiticity and the requirement that the terms ρiii are probabilities are the only constraints imposed
by [1] on the structure of density cubes, and their state space.

For a three-level system, the normalization and Hermiticity conditions imply:

1. ρiij = ρ∗iij = ρiji = ρjii, i, j = 1, 2, 3, i 6= j,

2. ρ123 = ρ312 = ρ231 = ρ∗213 = ρ∗321 = ρ∗132,

3. ρ111 + ρ222 + ρ333 = 1,

4. ρiii ≥ 0, i = 1, 2, 3.

Thus the density cube of a three-level system is specified by ten real parameters: point 1. con-
tributes six real parameters (one for each choice of i and j), point 2. contributes one complex, or two
real, parameters, point 3. contributes three real parameters and point 4. reduces by one. This is two
real parameters (one complex parameter) more than what is required to specify the state of a general
three-level system (qutrit) in quantum theory. Thus, the elements ρijk with i, j, k distinct can be
seen as the crucial difference between the density matrix and the density cube. Therefore, based on
the results in [2] discussed above, one might naively expect that the existence of the term ρijk, with
i, j, k distinct, implies the existence of genuine third-order interference.

The complete characterisation of the density cube state space remains an important and interesting
open problem. Nevertheless, some genuinely non-quantum density cubes were presented in [1]. An
example of such non-quantum density cubes (i.e. those with ρ123 6= 0) are the following three pure
states, first presented in [1]:

13See [1] for a more comprehensive discussion.
14i.e. the authors of [1] require that their theory has a one-to-one correspondence between states and effects, in terms

of GPTs this means that the state and effect cones are the same.

6



ρ(j) =

















1−δ1j
2 0 0

0 0 ωj−1

2
√
3

0 (ωj−1)∗

2
√
3

0






,







0 0 (ωj−1)∗

2
√
3

0
1−δ2j

2 0
ωj−1

2
√
3

0 0






,







0 ωj−1

2
√
3

0
(ωj−1)∗

2
√
3

0 0

0 0
1−δ3j

2

















,

for j = 1, 2, 3, where ω = ei
2π
3 and δij is the Kronecker delta. In each of the above density cubes,

the element ρijk occurs in the jkth entry of the ith matrix in the list. It is easy to check that these
density cubes are orthonormal, i.e. (ρi, ρj) = δij , and can be taken as part of a orthonormal basis in
the real vector space of density cubes. We define a physical basis as a set of density cubes that are
orthogonal and sum to

∑

n δinδjnδkn, these physical bases correspond to allowed (pure) measurements
for density cubes.

3.2 Transformations

An example of a genuine ‘non-quantum’ transformation between density cubes was also presented
in [1]. In order to present the constraints on transformations between density cubes imposed in [1],
consider the following. Take the complex vector space of general rank-3 tensors, the Hermitian cubes,
defined above, form a real subspace within this. A complex subspace can be defined by Span[C(i)]
where C(i) are defined as,

C
(n)
ijk = δinδjnδkn, n = 1, 2, 3,

C(k) =
1√
3











0 0 0
0 0 δ4k
0 δ5k 0



 ,





0 0 δ5k
0 0 0
δ4k 0 0



 ,





0 δ4k 0
δ5k 0 0
0 0 0











, k = 4, 5,

note that C(4) and C(5) are not Hermitian cubes15 but the others are. A vector in Span[C(i)] is
specified by five complex numbers. If we take the intersection of Span[C(i)] with the Hermitian
cubes we obtain another real vector subspace where in the C(i) basis16 vectors are of the form
(p1, p2, p3, z, z

∗)T , pi ∈ [0, 1] ⊂ R+, z ∈ C and with
∑3

i=1 pi = 1. This is a subspace of the Hermitian
cubes. We must also impose our constraints as before, which gives the state space as a convex set
living in this subspace.

The authors of [1] consider only transformations that leave this subspace invariant. Aside from
this the only requirements imposed by the authors of [1] are that the transformations are unitary
matrices that map at least one physical basis of density cubes to another physical basis.

For example, consider a unitary transformation T : D0 → D, where D0 = {q1, q2, q3} and D =
{ρ1, ρ2, ρ3} are defined (in the C(i) basis) as follows,

q1 = (1, 0, 0, 0, 0)T , ρ1 =
1

2
(0, 1, 1, 1, 1)T ,

q2 = (0, 1, 0, 0, 0)T , ρ2 =
1

2
(1, 0, 1, ω, ω∗)T ,

q3 = (0, 0, 1, 0, 0)T , ρ3 =
1

2
(1, 1, 0, ω∗, ω)T ,

where as before ω = e
2πi
3 .

The qi’s span a subspace of the ‘quantum states’ of these density cubes. One matrix, provided by
Dakić et al., that satisfies the conditions Tqi = ρi, leaves this subspace invariant and is unitary is,

T =
1

2













0 1 1 1 1
1 0 1 ω∗ ω
1 1 0 ω ω∗

1 ω ω∗ 1 0
1 ω∗ ω 0 1













. (3.2.1)

15A similar situation occurs in quantum theory: the Pauli matrices form a basis of the real vector space of Hermitian
matrices, yet individual Pauli matrices are not physical states, only certain linear combinations of them are.

16We could instead use the basis which uses C(4) +C(5) and C(4) − iC(5) in which case our vectors would be written
as five real numbers.
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Note that there are many matrices that satisfy the above condition, see [1] for a more in-depth
discussion.

3.3 Hyper-decoherence

A hyper-decoherence mechanism will now be shown to exist in the theory of Density Cubes – provided
that there is an inner product preserving embedding (i.e. an injective, linear map) of the quantum
states into the density cube state space.

Such an embedding was given in [1] and can be defined as follows. Denote an arbitrary quantum
state by ρQT∈ ΩQT and an arbitrary density cube by ρDC∈ ΩDC , where ΩQT is the quantum state
space, and so on. Define the embedding map E : ΩQT → ΩDC by:

(

E [ρQT ]
)

iii
= (ρQT )ii,

(

E [ρQT ]
)

iij
=

√

2

3
Re(ρQT )ij ,

(

E [ρQT ]
)

ijj
=

√

2

3
Im(ρQT )ij for i < j,

(

E [ρQT ]
)

ijj
= −

√

2

3
Im(ρQT )ij for i > j, and

(

E [ρQT ]
)

ijk
= 0, for i 6= j 6= k 6= i.

The other elements of the density cube are defined by the Hermiticity condition described in section 3.1
One can check that this embedding preserves the inner product. That is, we have that

(ρQT , σQT )QT = (E [ρQT ], E [σQT ])DC ,

where (., .)QT is the inner product between quantum states, and so on.
To discuss hyper-decoherence it is useful to separate the density cubes into third order and lower

order terms, we therefore write a generic density cube as,

ρDC = ρ
(3)
DC + ρ

(2,1)
DC

where we define,

(ρ
(3)
DC)ijk :=

{

(ρDC)ijk if i 6= j 6= k 6= i
0 otherwise

,

(ρ
(2,1)
DC )ijk :=

{

0 if i 6= j 6= k 6= i
(ρDC)ijk otherwise

.

Note that ρ
(2,1)
DC and ρ

(3)
DC are not necessarily themselves valid density cubes.

Given the above embedding, E , one can define a hyper-decoherence map D as follows:

D ◦ E = 1QT , D[ρ
(3)
DC ] = 0,

where D is a linear map17 from the real vector space of Hermitian cubes to the real vector space of
Hermitian matrices, and 1QT is the identity transformation on Hermitian matrices. This choice of D
seems natural as we would expect such a map to leave any quantum state embedded in the Density
Cube state space invariant and to eliminate the higher order coherences.

In order to show that D is a valid hyper-decoherence map we need to show that it maps all density
Cube states to valid quantum states. That is D[ρDC ] must be a positive, Hermitian operator with
unit trace. That D[ρDC ] has unit trace is guaranteed by the definition of D and the construction of
the Density Cubes. To check the Hermiticity condition, consider the following. We have

(D[ρDC ])ij =

√

3

2

(

(

E ◦ D[ρDC ]
)

iij
+ i
(

E ◦ D[ρDC ]
)

ijj

)

, for i < j

and, (D[ρDC ])ij =

√

3

2

(

(

E ◦ D[ρDC ]
)

iij
− i
(

E ◦ D[ρDC ]
)

ijj

)

, for i > j.

(3.3.1)

To show D[ρDC ]
† = D[ρDC ], we must check that

(

D[ρDC ]
)

ij
=
(

D[ρDC ]
)∗
ji
for all i, j, but this follows

from applying the Density Cube Hermiticity condition to equations (3.3.1).

17Note that linearity ensures that we can extend the map from the states on which it is defined to all Hermitian
cubes.
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To check the positivity property, we need to show that
(

D[ρDC ], σQT

)

QT
≥ 0, for all ρDC and σQT .

Note that for suitable real coefficients ci we have that ρ
(2,1)
DC =

∑

i ciE [ρiQT ], where ρ
i
QT ∈ ΩQT are

some arbitrary set of density matrices. We can therefore write ρDC =
∑

i ciE [ρiQT ]+ρ
(3)
DC . Combining

this with the definition of D, we have that
(

D[ρDC ], σQT

)

QT
=
(

E ◦ D[ρDC ], E [σQT ]
)

DC

=
(

E ◦ D
[

∑

i

ciE [ρiQT ] + ρ
(3)
DC

]

, E [σQT ]
)

DC

=
(

∑

i

ciE [ρiQT ], E [σQT ]
)

DC

=
(

ρDC , E [σQT ]
)

DC
−
(

ρ
(3)
DC , E [σQT ]

)

DC

=
(

ρDC , E [σQT ]
)

DC

≥0.

The equation
(

D[ρDC ], σQT

)

QT
=
(

ρDC , E [σQT ]
)

DC
, derived above, implies that the embedding map

E is the adjoint of the hyper-decoherence map D. This may prove useful in further constructions of
higher-order interference theories.

Given the embedding E , the hyper-decoherence map defined above maps density cubes to valid
quantum states. One should note however, that the existence of this embedding is not guaranteed
by the axioms of the Density Cube framework, but is a very reasonable constraint if one wants an
extension of quantum theory.

In quantum theory, to have coherence between two levels of the quantum state described by the
density matrix ρij there must be some probability of finding the state in either of the levels that the
coherence is between. These probabilities set a bound on the degree of coherence possible, e.g. for
a qubit we have |ρ01|2 ≤ ρ00ρ11. Based on this, one might expect that any third order coherence in
a Density Cube would be supported by second and first order coherences. Interestingly this is not
the case in the Density Cube framework; states in the physical basis D considered by Daḱıc et al.

have third order terms but all second order terms are zero. While it is the case that the positivity
condition imposes some bounds on the higher-order coherences, there may be further constraints that
need to be imposed to have a well-defined theory. It would be interesting if future constructions of
higher-order interference theories had this property.

3.4 A computational advantage?

When comparing quantum theory with other foil theories, an approach that has proved fruitful in
recent years is to compare their performance in information-theoretic tasks. We will now show that
the theory of Density Cubes has a slight advantage over quantum theory in a computational task
we call the ‘three collision problem’, which is a variation of the standard collision problem discussed
in [24]. The three collision problem is defined as follows: given a function from a trit to a bit,
f : {0, 1, 2} → {0, 1}, determine if f(0) = f(1) = f(2). As is standard in quantum computation, we
represent this problem with a black-box oracle. Performance will be measured via the probability of
error after a single query to this oracle, given the caveat that if f(0) = f(1) = f(2) there must be
zero error.

Let {|i〉}, for i = 0, 1, 2, be the quantum computational basis and consider the following quantum
oracle for this problem:

OQT
f |i〉 = (−1)f(i)|i〉.

This oracle is the same as the one considered by Grover in his search algorithm [25], and it is easy
to check it is unitary. Preparing a superposition over the three basis states and querying the oracle
leaves us in the state

1√
3

(

(−1)f(0)|0〉+ (−1)f(1)|1〉+ (−1)f(2)|2〉
)

.

If f(0) = f(1) = f(2), then the state, up to a global phase, is: 1√
3

(

|0〉+ |1〉+ |2〉
)

, while if they are

not equal the state, up to a global phase, is one of: 1√
3

(

− |0〉 + |1〉 + |2〉
)

, 1√
3

(

|0〉 − |1〉 + |2〉
)

, or
1√
3

(

|0〉+ |1〉 − |2〉
)

. As the state with f(0) = f(1) = f(2) is not orthogonal to the other three, there
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does not exist a measurement that can perfectly distinguish them and the error after one query is
1/9.

Daḱıc et al. have provided a way to associate one of three density cubes to a pure three-level
quantum state |ψ〉 = c0|0〉+ c1|1〉+ c2|2〉. The association is as follows:

ρ
(n)
iij = − 1√

6
Re(c∗i cj), ρ

(n)
ijj = − 1√

6
Im(c∗i cj) for i < j, ρ

(n)
iii =

1

2
(1− |ci|2),

and, ρ
(n)
012 =

ωn

2
√
3
with n = 0, 1, 2.

The other elements of the density cube are determined by the Hermiticity condition (see section
3.1). Note that only the third-order terms depend on the value of n. One can show [1] that

(ρ(n)(|φ〉), ρ(m)(|ψ〉))DC = 1
4 (1 + |〈φ|ψ〉|2) + 1

2 cos
2π(n−m)

3 ≥ 0. Given this association, we can
describe a Density Cube oracle for the three collision problem as follows. The oracle acts as the
quantum oracle on the ‘quantum part’ of the density cube, but also acts on the ‘higher order term’
i.e. the value of n. We define the oracle as,

ODC
f :: ρ(n)(|ψ〉) 7→ ρ(nf )(OQT

f |ψ〉)

where nf = n+f(0)+f(1)+f(2) = n+
∑

i f(i). One can check that the action of this oracle leaves the
fragment given by the above association invariant. While it may appear odd at first to allow density
cubes with non-zero higher-order terms access to the value f(0)+f(1)+f(2), it should be noted that
quantum theory has a similar advantage over classical theory when accessing a computational oracle.
In classical computing one can only access the value of f on a single value i per query of an oracle,
but, in quantum theory, one can access information about f(i)+ f(j) by querying the same oracle in

superposition. It thus seems reasonable to allow third-order terms ρ
(n)
012 access to information about

the value of f(0) + f(1) + f(2).
Let |φ〉 = 1√

3

(

|0〉+ |1〉+ |2〉
)

, and prepare the density cube ρ(0)(|φ〉). Applying the Density Cube

oracle leaves this state invariant if f(0) = f(1) = f(2) and maps this state to either ρ(1)(OQT
f |φ〉) or

ρ(2)(OQT
f |φ〉) otherwise, thus giving an error probability of

(ρ(0)(|φ〉), ρ(1)(OQT
f |φ〉)) = (ρ(0)(|φ〉), ρ(2)(OQT

f |φ〉)) = 1/32

after a single query. The theory of Density Cubes thus provides a slight advantage over quantum
theory in the three collision problem.

3.5 Issues with the Density Cube framework

In this section two possible issues with the framework of Density Cubes will be presented and dis-
cussed. In particular it will be demonstrated that the axioms imposed in defining the theory are
insufficient to uniquely characterise the state space. We also show that the definition of transforma-
tions employed by [1] allows for transformations in the theory that map well-defined states to density
cubes that give complex-valued probabilities for certain measurement outcomes.

3.5.1 Axioms insufficient to specify a unique operational theory

Dakić et al. mention that they have not fully constructed the state space for density cubes [1], instead
they present a particular set of states which satisfy their axioms (i.e. they are Hermitian, have unit
trace and are each positive with respect to the others). The difficulty in fully constructing the state
space stems from the positivity axiom. In quantum theory we can define positivity as,

Tr(ρ†σ) ≥ 0 ∀ρ, σ,

where ρ and σ are density matrices. This is analogous to the positivity condition imposed by Dakić
et al. and we refer to this property as ‘relative positivity’. In practice this is a difficult property to
use to construct a state space, there is – potentially – an infinite number of conditions to check for
each state in the state space. In quantum theory we can avoid this problem by using an alternative
– and equivalent – definition of positivity, that

∀λ ∈ Eigenvalues(ρ) λ ≥ 0.
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This is a single state property rather than a relative property and so it is simple to construct a state
space by imposing this condition. There is no equivalent condition for density cubes as we do not
have any eigenvalues for rank 3 tensors, we are therefore limited to using relative positivity.

Given that we only have a relative notion of positivity, it is possible to construct different state
spaces depending on which set of states we choose to start with. However we know that – if we want a
genuine extension of quantum theory – we need some (Hermitian, trace and inner product preserving)
embedding of the quantum states into the Density Cube state space. Dakić et al. present one such
embedding, which we will discuss in more detail in section 3.3. It is conceivable that given such an
embedding the state space is uniquely specified, and that this choice of embedding is analogous to a
choice of re-parametrization of the quantum state space, and, as such, leads to operationally equivalent
theories. Unfortunately this is not the case; it is possible to construct operationally distinct theories
within the Density Cube framework. As such, the axioms imposed are not sufficient to uniquely
characterise the theory.

For example, consider the embedding of quantum states described in [1], discussed in section 3.3,
and use the basis {C(i)} described above. Then we can consider the states

c =
1

2
(1, 1, 0, 1, 1)T and v =

1

256

(

10, 10, 236,−
(

65 + i
√
595
)

,−
(

65− i
√
595
))T

,

these are both quantum states with added higher-order coherence terms and so will be positive with
respect to all of the quantum states. However they are not positive with respect to each other,
(c, v) < 0. There is no reason to prefer one of these to the other and we cannot add both to the
state space, we therefore have an arbitrary choice at this stage in how to construct the theory. Note
that both of these states are positive with respect to the physical basis D, but have different inner
products with elements of D. Thus choosing which state to include in the state space will lead to
theories that make operationally distinct predictions about certain measurements.

Given the above discussion it may therefore be better to consider the theory of density cubes more
as a framework for developing theories in. The (partial) state space of Dakić et al. would then be
one example of a state space within this framework. The difficulty in constructing the complete state
space causes further problems when defining transformations within the theory. In most GPTs – given
that there is a complete geometric view of the state space – it is simple to define transformations as
linear transformations that map the state space into itself. However, if we are not given a complete
state space it is not possible to define transformations in this way.

3.5.2 Characterising the set of physical transformations

We will now show that the lack of fully constructed state space is also problematic for defining allowed
transformations within the theory. Dakić et al. present a particular transformation T that they use
throughout their paper. It can be shown that for the particular fragment that they are constructing
that this is a valid transformation. By valid transformation we mean that it is linear and maps states
to states. They also provide a set of axioms which need to be satisfied such that a transformation is
valid. We show that these are necessary but not sufficient conditions as we will demonstrate.

The axioms that they impose in [1] – as we discussed in section 3.2 – are,

1. linearity

2. unitarity

3. subspace preserving

4. map between physical bases (e.g. D0 7→ D).

This allows for transformations such as T ′, eq. 3.5.1, which can easily be shown to violate the Her-
miticity of states.

T ′ =
1

2















0 1 1 1
2 (1 +

√
3) 1

2 (−1 +
√
3)

1 0 1 1
2 (ω

∗ +
√
3ω) 1

2 (−ω +
√
3ω∗)

1 1 0 1
2 (ω +

√
3ω∗) 1

2 (−ω∗ +
√
3ω)

1 ω ω∗ 1
2

√
3
2

1 ω∗ ω
√
3
2 − 1

2















. (3.5.1)
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For example, T ′(ρ1) has complex elements that should be real and so provide complex probabilities.

T ′(ρ1) =

(

1

2
+

√
3

4
,
1

4

(

1−
√
3

(

1 + i

2

))

,
1

4

(

1−
√
3

(

1− i

2

))

,

√
3− 1

8
,

√
3− 3

8

)T

≈(0.9, 0.03− 0.2i, 0.03+ 0.2i, 0.09,−0.2)T .

The usual solution to this would be to require that transformations map states to states or equivalently
that they preserve Hermiticity and positivity, which would rule out ‘unphysical’ transformations such
as T ′.

Using Hermiticity and positivity preservation as a characterisation of transformations however is
dependent on the state space, and, as we do not have a complete state space, these are impossible
to enforce in practice. Characterising transformations beyond the specific example of Dakić et al. is
not possible at this stage.

This again highlights the issue that different fragments give operationally distinct predictions, we
see here that not only the possible states depend on the choice of state space but that the set of
physical transformations depends on this choice as well.

4 Quartic quantum theory

Quartic quantum theory (QQT) was developed by Życzkowski [3] as an attempt to realise the K = N4

level of the tomographic hierarchy introduced by Hardy in [4]. This is to be contrasted to quantum
theory which satisfies18 K = N2 and classical probability theory which satisfies K = N . Density
cubes however satisfy K = N2 + 2

(

N
3

)

6= N r and so are not in Hardy’s hierarchy19.
We have discussed the connection between tomography and higher-order interference presented

in [2], specifically, the dimension of the subspace on which one must perform measurements to do
complete tomography corresponds to the order of interference. In the K = N r hierarchy, post-
quantum theories require tomography on greater than two dimensional subspaces. In light of this,
QQT provides a potential candidate for a GPT that exhibits higher order interference.

4.1 Description of the theory

We will provide a brief overview of the theory here but refer to the original paper [3] for the details.
The state space for an N level QQT system is constructed from a restriction of an N2 level quantum
system (i.e. the tensor product of two N level quantum systems). The restriction limits us to convex
combinations of states that are unitarily connected to20 |sinitial) := 1

N
I ⊗ |0〉 〈0|, so the state space

is given by the convex hull of |s) ∈ {U( 1
N
I ⊗ |0〉 〈0|)U † | U ∈ SU(N2)}, i.e. we allow for arbitrary

mixtures of any states which can be reached by applying arbitrary unitaries to the composite quantum
system beginning in state |sinitial).

The restriction on the quantum state space essentially imposes that there is a maximum purity
that the state can reach. This can be seen to be roughly analogous to the epistemic restriction used
by Kochen and Specker in their hidden variable model [6] and also by Spekkens in his Toy Model [5],
where the state space of a two level system is given by a pair of classical bits (i.e. a pair of two level
classical systems) with a restriction imposed on how much one can know about the system21.

Transformations are defined as being linear maps that leave the state space invariant and which
are completely preserving, i.e. T : ΩN → ΩN and T ⊗ IM : ΩNM → ΩNM ∀M , where ΩN is the
QQT state space for an N level system. The last condition is a generalisation of complete positivity
in quantum theory.

Effects satisfy the ‘no-restriction hypothesis [11]’ which says that any mathematically well-defined
effect is allowed. That is an effect (e| is allowed in the theory if it is linear and 0 ≤ (e|s) ≤ 1, ∀|s) ∈ ΩN .

18This is allowing for subnormalised states hence quantum theory having K = N2 rather than K = N2 − 1.
19Thus implying that the theory of Density Cubes violate Hardy’s principle of tomographic locality, which roughly

says that composite states can be characterised by local measurements.
20Where we are using curved brackets to denote QQT states and effects and Dirac brakets to represent the underlying

quantum density matrix description of the state
21It may be illuminating to consider what effect imposing an epistemic restriction has on the structure of arbitrary

GPTs and then to view Spekkens Toy Model and Quartic Quantum Theory as special cases of this.
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We have imposed a restriction on the Quantum theory state space22, and so the effect space is
enlarged. For example we can have effects such as (e| = N |0〉 〈0| ⊗ |0〉 〈0|. Which in quantum theory
could give probabilities greater than one, but due to the restriction on purity this cannot happen in
QQT. This is because (e|s) ≤ Nλmax

s . Where λmax
s is the maximum eigenvalue of the density matrix

representation of the state |s). For a QQT state λmax
s ≤ 1/N so (e|S) ≤ N/N = 1.

This fully constructs the theory for an N level quartic quantum system as we have a complete
consistent description of all of the states, transformations and effects that exist in the theory. There
is also a consistent notion of hyper-decoherence by which any quartic quantum system can decohere
to a quantum system. In QQT decoherence is represented by a partial trace over one of the quantum
sub-systems, this clearly can only map us to the quantum state space, additionally any quantum
state, ρ, can be reached in this way through ρ = TrA2(ρ⊗ 1

N
IA2). It is worth reiterating that these

are not physical subsystems. The choice of tensor product decomposition and which part to trace
out is therefore entirely arbitrary.

4.2 Interference in Quartic Quantum Theory

We will consider interference in the context of definitions 19 and 20 in [8], which were described in
section 2, and show that QQT has Nth order interference in an N level system. Firstly we define the
faces,

Fi :=

{

1

N
|i〉 〈i| ⊗ I

}

=







1

N

N
∑

j=1

|ij〉 〈ij|







,

we can then choose a set of effects which satisfy the constraints given by the definition. These are,

(E| :=

N
∑

i,j=1

|ij〉 〈ij| , (4.2.1)

(ei| := N |ii〉 〈ii| ,

(eI | :=
∑

i∈I

N
∑

j=1

|ij〉 〈ij| , for I ⊆ {1, ..., N}.

It is simple to show that these do satisfy Eq. (2.0.1) and Eq. (2.0.2), for instance if |s) ∈ Fi,
we have (ei|s) = Tr((N |ii〉 〈ii|)( 1

N
|i〉 〈i| ⊗ I)) = 1 = (E|s) and if |s′) ⊥ Fi, we have (ei|s′) =

Tr((N |ii〉 〈ii|)( 1
N
|j〉 〈j| ⊗ I)) = 0, as required.

If we consider a three level system, N = 3, then we have third-order interference if,

(E| 6=
∑

i>j

(e{i,j}| −
∑

i

(ei|,

which is the case here. We have,

(E| =
N
∑

i,j=1

|ij〉 〈ij| 6= 2
∑

i6=j

|ij〉 〈ij| −
∑

i

|ii〉 〈ii| =
∑

i>j

(e{i,j}| −
∑

i

(ei|

If instead of (ei| we used the effects (eI | where I = {i}, these also satisfy the conditions in the
definition but don’t give us third-order interference, that is

(E| =
N
∑

i,j=1

|ij〉 〈ij| =
∑

i>j

(e{i,j}| −
∑

i

(e{i}|.

So we see that we obtain higher order interference by using the super-quantum effects allowed in
QQT.

22Geometrically the unnormalised state space of any GPT is a convex cone (the normalised state space is the
intersection of a hyperplane with the convex cone), and if the no-restriction hypothesis is satisfied then the effect space
is the dual cone. If the state space is restricted this increases the size of the dual cone, this is what we find in QQT.
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It can be shown that this approach generalises to Nth order interference. That is that we can find
a set of effects such that,

(E| 6=
∑

∅6=I⊆{1,...,N}
(−1)N−|I|(eI |.

A valid set of effects for this are those defined above in Eq.(4.2.1), where we see Nth order interference
if we replace (e{i}| → (ei|. The simplest way to see this is to observe that the effects (eI | are all the
quantum effects for a N -slit experiment tensored with the identity, therefore using these we will not
see higher-order interference, but if we replace the ‘quantum’ (e{i}| with a super-quantum (ei| and
note that

∑

i(ei| 6=
∑

i(e{i}| then we will see higher order interference to all orders.
Note that we obtain this result as the constraints imposed in the definition of higher-order in-

terference are insufficient to uniquely determine the effects (eI |, this is perhaps a problem with the
definition. If one were to actually perform the experiment then there should be a unique description
of the effect corresponding to what happens, as, at the operational level, it should arise from blocking
slits in a physical barrier. Thus for the definition of Barnum et al. to correspond to this physical
picture in an operationally meaningful way, extra constraints must be imposed on the theory under
consideration.

Based on the above discussion, one should not consider QQT as an example of a theory that
exhibits higher-order interference in the sense originally meant by Sorkin, but rather a demonstration
of the challenges of applying his original definition to arbitrary GPTs. Thus to begin to understand
the reason why, in some sense, quantum theory is limited to second-order interference, we first need
a definition of higher-order interference that is applicable to, and makes good operational sense in,
arbitrary GPTs. Ways in which such a definition might arise will be discussed in section 5.

4.3 Composite systems in Quartic Quantum Theory

The main limitation of quartic quantum theory – as discussed by Życzkowski [3] – is that it does
not deal with composite systems. The difficulty with defining composite systems is ensuring that
discarding part of a composite system does not result in a state outside the (single system) QQT
state space. For example if we define composition in the same way as quantum theory then a
bipartite QQT system would be made of four quantum systems, two of which are required to be in
the maximally mixed state. If we then allow for arbitrary quantum transformations on this system
then we can use a swap unitary to put all of the mixed systems into one half of the bipartition and
all of the pure systems into the other. If we then discard the mixed partition we are left with a pure
quantum state, which is not a valid state in QQT. In other words, marginalisation takes us outside
the QQT state space.

For example, if we prepare the state |sAB) =
1
N2 |0〉 〈0|A1 ⊗ IA2 ⊗ |0〉 〈0|B1 ⊗ IB2, apply a swap

to the middle two systems (A2 and B1), UA2,B1
swap |sAB) = 1

N2 |0〉 〈0|A1 ⊗ |0〉 〈0|A2 ⊗ IB1 ⊗ IB2, then
discarding system B gives, |0〉 〈0|A1 ⊗ |0〉 〈0|A2 , which is outside the state space as it is ‘too pure’.

A possible solution to this problem is to impose a restriction on the allowed transformations to try
to avoid a situation like this. For example, allowing only separable transformations would mean that
it was impossible to apply the swap between the two QQT systems and so discarding one of them
could not cause problems. This would mean that there were no entangling dynamics in the theory23

and that we are unable to reversibly prepare an entangled state from a product state, amongst other
things. An interesting direction to pursue would be whether this can be seen as a consequence of
third-order interference, or whether it is possible to have a theory with third-order interference and
similar entangling dynamics to those that we have in quantum theory.

4.3.1 Note on Boxworld-like correlations in Quartic Quantum Theory

In using the quantum tensor product in the previous section we are relying on a commonly used axiom
in quantum reconstructions, that any N level system should be equivalent, i.e. a single system with
N -levels should be equivalent to a composite system that has N -levels. If we relax this assumption
then we can instead use some other tensor product24.

23Note that another commonly studied GPT, known as ‘box world’, also shares this feature [7].
24This tensor product will have to give a state space bound by the minimal and maximal tensor products, see [11]

for details.
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We note that if we consider the ‘classical’ subspace of a two-level quartic quantum system, i.e.
the diagonal density matrices, the state space corresponding to these states forms an octahedron [3],
and the effect space dual to this forms a cube. This is the ‘unrestricted Spekkens Toy Model’ state
and effect space discussed in [11]. Janotta and Lal discuss how the (generalised) maximal tensor
product of such a state space gives rise to PR box correlations, i.e. those that maximally violate
a Bell inequality whilst maintaining no-signalling. We therefore should be able to obtain the same
correlations if we take the maximal tensor product of two two-level quartic quantum systems. Such
correlations imply a speed-up over quantum theory in communication complexity problems and this
opens the door to investigations of the information processing power of well-defined physical theories
with higher-order interference.

We have seen that QQT is a well-defined extension of quantum theory and so may prove a useful
foil in understanding the certain features of the quantum formalism.

5 Conclusion

This paper considered two proposed extensions of quantum theory: Dakić et al.’s Density Cubes
and Życzkowski’s Quartic Quantum Theory. Our investigation clarifies the impact of these two gen-
eralised theories to ongoing experimental tests for higher-order interference and explores potential
information-theoretic consequences of post-quantum interference in these concrete theories. We ex-
amined their order of interference relative to the hierarchy defined by Sorkin and investigate whether
these theories satisfy natural physical conditions one would expect from an extension of quantum
theory. Our results are summarised in the table below.

Desiderata Density cubes Quartic quantum theory

States s ∈ ΩN X1 X

Effects e ∈ EN ⊆ Ω∗
N X X

Transformations T : ΩN → ΩN ?2 X

Composite systems ΩN ⊗ ΩM = ΩNM × ?3

Higher order interference i.e. n > 2 in Eq. (2.0.6) X ?4

Hyperdecoherence X X
1 But not uniquely fixed by the constraints in the theory, see Sec. 3.
2 We show in Sec. 3.5.2 that transformations – as defined in [1] – take us out of the state space.
3 We suggest a definition of composite systems by limiting to only local transformations, see Sec. 4.3.
4
nth order interference, for all n. This is a result of a deficiency in the definition of higher-order int-

erference, see Sec. 4.

The specific partial state space and single transformation presented in [1] do indeed exhibit third-
order interference. However this state space is not uniquely specified by the imposed axioms, and
there exist other transformations allowed by these axioms which lead to unphysical results. We
therefore suggest that it would be interesting to investigate what further axioms would be necessary
to uniquely specify a state space, as such a construction would provide a natural way of characterising
the physical transformations. We showed that, if one has an embedding of quantum theory into a
specific Density Cube state space, the adjoint of this embedding gives a suitable hyper-decoherence
mechanism. Considering further consistency requirements with quantum theory may help with fully
developing the theory and may provide a complete axiomatisation. Given this, one could compare
the Density Cube theory to quantum theory in a rigorous manner and hope to learn in what ways
the theories differ, thus taking a step toward a better understanding of what it means to live in a
quantum world.

The operational definition of higher-order interference of Barnum et al. suffers from an ambiguity;
the specification of the effect (E| does not uniquely fix the effects (eI | in an arbitrary GPT25 as can
be seen in Sec. 4. We would intuitively expect that once (E| is specified the effects (eI | are fixed,
as they should arise from blocking a certain number of slits in a physical barrier. Thus to begin to

25If the GPT in question supports filters [8], then the effects can be uniquely specified by a choice of filters. As this
is the only situation of interest to Barnum et al., their definition suffices for all considerations of interest in [8].
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illuminate why, in some sense yet to be defined,26 quantum theory is limited to only second-order
interference, we first need a definition of higher-order interference that is applicable to, and makes
good operational sense in, arbitrary GPTs.

In quantum theory there is an intimate relation between interference and phase, which is illustrated
most clearly by the Mach-Zender interferometer. The connection between phase and interference is
not touched on by the Barnum et al. notion of higher-order interference. Garner et al. [18] have
proposed a definition of phase and interference applicable to an arbitrary GPT, but their definition of
interference bears no resemblance to Sorkin’s hierarchy and as such they do not discuss higher-order
interference. The subject of phase transformations and higher-order interference is being investigated
[17] and may result in a definition of higher-order interference that is applicable to arbitrary GPTs.

It was shown in [23] that quantum interference is necessary for a quantum computer to be hard to
classically simulate. It is thus interesting to note that there are indications in the theories discussed
here that higher-order interference gives an advantage over quantum theory in certain information-
theoretic tasks. However, it remains to be seen whether this can be shown to be a direct consequence
of the existence of higher-order interference or whether it is due to other features of the theories.
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