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An experimentto throw morelight on light
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We proposeanexperimentin which“single photonstates”areincidenton acombinationof twoprismsplacedoppositeeach
other.Whenthegapbetweentheprismsis largerthanthewavelength,theincident“photonstates”suffertotal internalreflection
insidethefirstprism(registeredby counter1). Whenthegapis shorterthanthewavelength,thereis apossibilityoftheirtunnel-
ing acrossthegap(registeredby counter2). Thetwo counters1 and2 clickingin perfectanticoincidencewouldshowsimultane-
ously sharpparticleandwavecharacteristics,highlightinginadequacyofthecomplementarityprinciplein itsusualform. Other
possibilitiesof theoutcomearenotfavouredby theformalismofquantumoptics.

It is becomingincreasinglyclear from recentex- interferencebetweentwo channelsof a beamsplitter
perimentsthat thelastwordhasnotbeensaidabout (“a photoninterfereswith itself’).
thewave—particlenatureof light. Forinstance,a very In thisnote weproposeanexperimentthatwould
striking featureis the observeddifference [1] be- providefurtherinsight into thewave—particlenature
tweena weakpulsedsourceproducingthermallight of “single photonstates”.Theclassicalanalogueof
anda sourceproducing“single photonstates”from thisexperimentwasperformedby Bose [2] in 1897
atomicradiativecascades.Theformer hasno non- asreportedin Sommerfeld’s“Optics” [3]. Bose took
classicaleffect (evenwhen the averageenergyper two asphaltprismsandplaced themoppositeeach
light pulse is much less than that of onephoton) otherwith a large air gap betweenthem (fig. 1).
whereasthe latter producesperfectanticorrelation Whenmicrowaveswith 1 = 20 cm wereincident on
for detectionson both sides of the beamsplitter, the first prism, they were found to be totally inter-
which is interpretedas an evidenceof “single par- nally reflectedby it. As he decreasedtheair gapand
tide behaviourof light pulses” (implying that such madeit of the order of severalcentimeters,Bose
light pulses“shouldnotbe describedaswave pack- foundthat the wavescould tunnel throughthe gap.

ets divided on a beamsplitterbut ratheras single Thiswasa strikingconfirmationof thewavenature
photonsthat cannotbe detectedsimultaneouslyon ofmicrowaves.Similar experimentscanbedonewith
bothsidesof thebeamsplitter” [1]). Theusualno- visible light. Feynman[4] hasgiven a detailedex-
tion ofwave—particleduality fora singlephotonhas planationof this effect basedon the theoryof clas-
neverthelessbeenvindicatedinacomplementaryex- sicalelectrodynamics.
periment [1] with “single photonstates”showing Thequestionthatarisesis: Whatwould happenif

0375-9601/9l/$03.50© 1991 — ElsevierSciencePublishersB.V. (North-Holland) 403



Volume153, number8,9 PHYSICSLETTERSA 18 March1991

transmissionamplitudes.For certain anglesof in-
cidence,the total internal reflection occursandthe
wavesin theregion 1 areevanescent.If thethickness

$ource (h/I) is largeenough,thenby the time the fieldsS reachthesurfaceof the secondprism,theamplitude
______________ hasdecayedto almostzero andno transmissionor

DETECTOR 2
tunnelingtakesplace.In quantumtheory,the quan-
titiesd, c, andaaretobe treatedasannihilationop-

I erators. Moreover, in order to maintain the com-mutationrelations,we haveto addthevacuumfield
b at theopenport. Thus eq.(1) is to bemodifiedto

c=aa+flb, d=ya+ôb, (2)

DETECTOR andonehasthe commutationrelations

Fig. I. [a, a~]=[b, bt]=l, [a, bt]=O,

[c,ct]=[d,dt]=l. (3)

Note that 1a12+ 1y12=l, sincethe prismsare sup-~/ ~ posedto be lossless.Moreover, fi is relatedto y
through,at most, a phasefactor. The probability

Pd(’) (~~(1)) of detectinga photonat the detector
h D

1 (D2) is givenby
~9~< >9~-~_

pa(1)=Tr{pIl>ad<lI}, (4)~,/\~ where I 1>d is thesinglephotonstateassociatedwith
I the moded. Assumingthe input statesas I~>a 0>b~

theseprobabilitiescanbecalculatedas

Fig. 2.

pa(l)=1y1
2, p~(l)=IaI2. (5)

this experimentis performedwith “single photon Notethat the results(5) are the sameasonewould
states”?Thereare the following possibilitiesof the get on the basisof classicalelectrodynamics.Thus
outcome: tunnelingwould occuraslongasit occursin classical

(a) The “tunneling” phenomenonoccursandthe theoryandthereforethe possibility (c) is ruled out.
two counters(1 and2) click in perfectanticoinci- In orderto seethequantumfeatureslet us find out
dence. if the detectorsclick in coincidenceor anticoinci-

(b) The “tunneling” occursandthe two counters dence.We thusneedto know the joint probability
(1 and2) click in coincidence. P~d(l,1) ofdetectingonephotonat D

1 andonepho-
(c) The “tunneling” does not occur and only ton at D2,

counter1 clicks.
p~d(l,l)=Tr{pIl>CIl>ad<1IC<lI}. (6)We now arguethat possibility (a) is the one fa-

voured by quantumoptics. The experimentalar- Using (2), (6) reducesto
rangementcanbemodelledby theschemeshownin

P~d(l,l)=O, (7)fig. 2. In classicalelectrodynamicsthe field ampli-
tudesa, c,d obeythe relations which implies that the two detectorsclick in anti-

coincidence.Wethusshow that thepossibility (a) is
d=ya, c=aa, (1) theoneobtainedby quantumopticalconsiderations.
where y and a are respectivelythe reflectionand Thequantumoptical considerationscanleadto the
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possibility (b) if (i) the incidentfield containsmore physiciststo useanambiguouslanguage,to usethe
thanone photon, i.e. the probability that the mci- classicalconceptsin a somewhatvaguemannerin
dentfield hasmorethanonephotonis nonzero,and conformitywith theprincipleofuncertainty... When
(ii) themediumaddsa noisephoton,say,from ther- this vagueandunsystematicuseof thelanguageleads
mal fluctuations. into difficulties, the physicisthasto withdraw.into

Possibility (a) impliesthat “a singlephotonstate” the mathematicalschemeandits unambiguouscor-
displaysbothparticleandwavecharacteristicsin this relationwith the experimentalfacts”.
experimentbecausetransmissionthrough “tunnel- If thisexperimentis repeatedwith sourcesof light
ing” is essentiallya wavephenomenon(asis evident thatdo notproducesinglephotonstates,thereis no
from thefact that it shoulddisappearwhenthegap reasonto expectperfectanticoincidence.Thisshows
betweenthe prisms is madelarger than the wave- thatthesimultaneouslysharpparticle-andwave-like
length),whereasperfectanticoincidencedefinitely propagationis characteristiconly of “single photon
implies particle-like propagation(aspointedout in states”generatedby “quantum” sources.Thisfun-
ref. [1], anydescriptionusingthe wavepicturedur- damentaldifferencebetweenlight emittedby “quan-
ing propagationwould predictanon-zerominimum turn” andothersourcescannotbe observedin other
rateof coincidences).In some “WelcherWeg” ex- “Weicher Weg” experimentsin which the type of

perimentscarriedout to probethe natureof wave— source(andhencethetypeoflight emitted)playsno
particle dualism, variable degreesof sharpnessof role.
wave- and particle-like behaviourhave been ob- Possibility (b) would definitely be incompatible
served.Thisgoesbeyondtheusualdiscussionsofthe withquantumoptics,butcouldbeexplainedin terms
complementarityprinciplein showingthat it is pos- of stochasticoptics (classicalwave plus real zero
sibleto obtainpartial“particle knowledge”andpar- point field) [8].
tial “wave knowledge”from the sameexperimental Possibility (c) is neitherfavouredby quantumop-
arrangementin termsof “which path” information tics nor by stochasticoptics.
andthe correspondingcontrastof the interference It is evident,therefore,thatpossibility (a) is the
pattern[5]. Whatdistinguishestheexperimentpro- crucialoneinconfrontingthecomplementarityprin-
posedherefrom such“WeicherWeg” experimentsis ciple.Similarexperimentswithelectronsor neutrons
that tunneling(wave-likepropagation),ratherthan oneat a timewould alsobe interesting.Experiments
interference,in conjuction with perfectanticoinci- of this typewould haveconsiderableheuristicvalue
dence(particle-likepropagation),ratherthan“which andit wouldbeworthwhileto explorethepossibility
path” information, implies simultaneouslysharp of doingthemwith the helpof the technologyavail-
particle-andwave-like properties.In fact, in thepro- abletoday.
posedexperimentonecan label eachphotonregis-
teredin oneof the two detectorsas comingeither Two of theauthors(D.H., G.S.A.) thanktheDe-
aftertunnelingthroughthe gapor after internal re- partmentof ScienceandTechnology (Govt. of In-
flection from the first prism (analogousto “which dia) for supportingtheir research.Wewish tothank
path” information) andat the sametime the ratio A. Tonomura(Hitachi Ltd., Japan)andY. Mizo-
of the numbersof transmittedand internally re- buchi (HamamatsuPhotonics,Japan)for showing
flected photonsdisplaysa wave-likeproperty.This interest in doing our proposedexperimentusing
is irreconcilablewith the usual formulation of the electronandoptical sourcesrespectively.
complementarityprinciple (implying mutualexclu-
sivenessbetweencomplete“particleknowledge”and
complete“wave knowledge”)but it consistentwith
both the Einstein—dcBroglie version of wave—par-
ticle duality [6] ~‘ andthe viewpoint advocatedby ~ According to the Einstein—dcBrogueformulation,amicro-

physicalentity suchasaphotonor anelectronis actually aHeisenberg[7] who wrotein 1959 ... the concept localizedparticleassociatedwithanobjectivelyrealwaveØ(x,

of complementarityintroducedby Bohr into the y, z,t), propagatingin spaceandtime,andproportionalto the
interpretationof quantumtheoryhasencouragedthe quantummechanicalwavefunction~i(x,y, z,t).
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