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Solving linear systems of equations is a common problem that arises both on its own and as a subroutine

in more complex problems: given a matrix A and a vector ~b, find a vector ~x such that A~x ¼ ~b. We consider

the case where one does not need to know the solution ~x itself, but rather an approximation of the

expectation value of some operator associated with ~x, e.g., ~xyM~x for some matrixM. In this case, when A

is sparse, N � N and has condition number �, the fastest known classical algorithms can find ~x and

estimate ~xyM~x in time scaling roughly as N
ffiffiffiffi
�

p
. Here, we exhibit a quantum algorithm for estimating

~xyM~x whose runtime is a polynomial of logðNÞ and �. Indeed, for small values of � [i.e., poly logðNÞ], we
prove (using some common complexity-theoretic assumptions) that any classical algorithm for this

problem generically requires exponentially more time than our quantum algorithm.
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Introduction.—Quantum computers are devices that har-
ness quantum mechanics to perform computations in ways
that classical computers cannot. For certain problems,
quantum algorithms supply exponential speedups over
their classical counterparts, the most famous example
being Shor’s factoring algorithm [1]. Few such exponential
speedups are known, and those that are (such as the use of
quantum computers to simulate other quantum systems
[2]) have so far found limited use outside the domain of
quantum mechanics. This Letter presents a quantum algo-
rithm to estimate features of the solution of a set of linear
equations. Compared to classical algorithms for the same
task, our algorithm can be as much as exponentially faster.

Linear equations play an important role in virtually all
fields of science and engineering. The sizes of the data sets
that define the equations are growing rapidly over time, so
that terabytes and even petabytes of data may need to be
processed to obtain a solution. In other cases, such as when
discretizing partial differential equations, the linear equa-
tions may be implicitly defined and thus far larger than the
original description of the problem. For a classical com-
puter, even to approximate the solution of Nlinear equa-
tions in N unknowns in general requires time that scales at
least as N. Indeed, merely to write out the solution takes
time of order N. Frequently, however, one is interested not
in the full solution to the equations, but rather in computing
some function of that solution, such as determining the
total weight of some subset of the indices.

We show that in some cases, a quantum computer can
approximate the value of such a function in time which
scales logarithmically in N, and polynomially in the con-
dition number (defined below) and desired precision. The
dependence on N is exponentially better than what is
achievable classically, while the dependence on condition
number is comparable, and the dependence on error is
worse. Typically, the accuracy required is not very large.

However, the condition number often scales with the size
of the problem, which presents a more serious limitation of
our algorithm. Coping with large condition numbers has
been studied extensively in the context of classical algo-
rithms. In the discussion section, we will describe the
applicability of some of the classical tools (pseudoinverses,
preconditioners) to our quantum algorithm.
We sketch here the basic idea of our algorithm and then

discuss it in more detail in the next section. Given a

Hermitian N � N matrix A, and a unit vector ~b, suppose

we would like to find ~x satisfying A~x ¼ ~b. (We discuss
later questions of efficiency as well as how the assumptions

we have made about A and ~b can be relaxed.) First, the

algorithm represents ~b as a quantum state jbi ¼ P
N
i¼1 bijii.

Next, we use techniques of Hamiltonian simulation [3,4] to
apply eiAt to jbi for a superposition of different times t.
This ability to exponentiate A translates, via the well-
known technique of phase estimation [5,6], into the ability
to decompose jbi in the eigenbasis of A and to find the
corresponding eigenvalues �j. Informally, the state of the

system after this stage is close to
P

N
j¼1 �jjujij�ji, where uj

is the eigenvector basis of A, and jbi ¼ P
N
j¼1 �jjuji. We

would then like to perform the linear map taking j�ji to
C��1

j j�ji, where C is a normalizing constant. As this

operation is not unitary, it has some probability of failing,
which will enter into our discussion of the runtime below.
After it succeeds, we uncompute the j�ji register and are

left with a state proportional to
P

N
j¼1 �j�

�1
j juji ¼

A�1jbi ¼ jxi.
An important factor in the performance of the matrix

inversion algorithm is �, the condition number of A, or the
ratio between A’s largest and smallest eigenvalues. As the
condition number grows, A becomes closer to a matrix
which cannot be inverted, and the solutions become less
stable. Our algorithms will generally assume that the sin-
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gular values of A lie between 1=� and 1; equivalently,
��2I � AyA � I. In this case, our algorithm uses roughly
Oð�2 logðNÞ=�Þ steps to output a state within distance � of
jxi. Therefore, the greatest advantage our algorithm has
over classical algorithms occurs when both � and 1=� are
poly logðNÞ, in which case it achieves an exponential
speedup.

This procedure yields a quantum-mechanical represen-
tation jxi of the desired vector ~x. Clearly, to read out all the
components of ~x would require one to perform the proce-
dure at least N times. However, often one is interested not
in ~x itself, but in some expectation value ~xTM~x, whereM is
some linear operator (our procedure also accommodates
nonlinear operators as described below). By mappingM to
a quantum-mechanical operator, and performing the quan-
tum measurement corresponding to M, we obtain an esti-
mate of the expectation value hxjMjxi ¼ ~xTM~x, as desired.
A wide variety of features of the vector ~x can be extracted
in this way, including normalization, weights in different
parts of the state space, moments, etc.

A simple example where the algorithm can be used is to
see if two different stochastic processes have similar stable
state [7]. Consider a stochastic process where the state of
system at time t is described by the N-dimensional vector

xt and evolves according to the recurrence relation ~xt ¼
A~xt�1 þ ~b. The stable state of this distribution is given by

jxi ¼ ðI � AÞ�1jbi. Let ~x0t ¼ A0 ~x0t�1 þ ~b0 and jx0i ¼ ðI �
A0Þ�1jb0i. To know if jxi and jx0i are similar, we perform
the SWAP test between them [8]. We note that classically
finding out if two probability distributions are similar

requires at least �ð ffiffiffiffi
N

p Þ samples [9].
The strength of the algorithm is that it works only with

OðlogNÞ-qubit registers, and never has to write down all of
A, ~b, or ~x. In situations (detailed below) where the
Hamiltonian simulation and our nonunitary step incur
only poly logðNÞ overhead, this means our algorithm takes
exponentially less time than a classical computer would
need even to write down the output. In that sense, our
algorithm is related to classical Monte Carlo algorithms,
which achieve dramatic speedups by working with samples
from a probability distribution on N objects rather than by
writing down all N components of the distribution.
However, while these classical sampling algorithms are
powerful, we will prove that in fact any classical al-
gorithm requires in general exponentially more time than
our quantum algorithms to perform the same matrix inver-
sion task.

Outline.—The rest of the Letter proceeds by first de-
scribing our algorithm in detail, analyzing its runtime and
comparing it with the best known classical algorithms.
Next, we prove (modulo some complexity-theoretic as-
sumptions) hardness results for matrix inversion that imply
both that our algorithm’s runtime is nearly optimal, and
that it runs exponentially faster than any classical algo-
rithm. We conclude with a discussion of applications,
generalizations, and extensions.

Related work.—Previous papers gave quantum algo-
rithms to perform linear algebraic operations in a limited
setting [10]. Our work was extended by Ref. [11] to solving
nonlinear differential equations.
Algorithm.—We now give a more detailed explanation

of the algorithm. First, we want to transform a given
Hermitian matrix A into a unitary operator eiAt which we
can apply at will. This is possible (for example) if A is s
sparse and efficiently row computable, meaning it has at
most s nonzero entries per row, and given a row index,
these entries can be computed in time OðsÞ. Under these
assumptions, Ref. [3] shows how to simulate eiAt in time

~O½logðNÞs2t�;
where the ~O suppresses more slowly growing terms (de-
scribed in Ref. [12]). If A is not Hermitian, define

~A ¼ 0 A
Ay 0

� �
: (1)

As ~A is Hermitian, we can solve the equation

~A ~y ¼ ~b
0

 !

to obtain

y ¼ 0
~x

� �
:

Applying this reduction if necessary, the rest of the Letter
assumes that A is Hermitian.
We also need an efficient procedure to prepare jbi. For

example, if bi and
Pi2

i¼i1
jbij2 are efficiently computable,

then we can use the procedure of Ref. [13] to prepare jbi.
Alternatively, our algorithm could be a subroutine in a
larger quantum algorithm of which some other component
is responsible for producing jbi.
The next step is to decompose jbi in the eigenvector

basis, using phase estimation [5,6]. Denote by juji, the
eigenvectors of A (or equivalently, of eiAt), and by �j the

corresponding eigenvalues. Let

j�0i :¼
ffiffiffiffi
2

T

s XT�1

�¼0

sin
�ð�þ 1

2Þ
T

j�i (2)

for some large T. The coefficients of j�0i are chosen
(following Ref. [6]) to minimize a certain quadratic loss
function which appears in our error analysis (see Ref. [12]
for details).
Next, we apply the conditional Hamiltonian evolutionP
T�1
�¼0 j�ih�j � eiA�t0=T on j�0i � jbi, where t0 ¼ Oð�=�Þ.

Fourier transforming the first register gives the state

XN
j¼1

XT�1

k¼0

�kjj�jjkijuji; (3)

where jki are the Fourier basis states, and j�kjjj is large if
and only if �j � 2�k

t0
. Defining ~�k :¼ 2�k=t0, we can

relabel our jki register to obtain
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XN
j¼1

XT�1

k¼0

�kjj�jj~�kijuji:

Adding a qubit and rotating conditioned on j~�ki yields
XN
j¼1

XT�1

k¼0

�kjj�jj~�kijuji
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C2

~�2
k

vuut j0i þ C
~�k

j1i
�
;

where C is chosen to be Oð1=�Þ. We now undo the phase

estimation to uncompute the j~�ki. If the phase estimation

were perfect, we would have �kjj ¼ 1 if ~�k ¼ �j, and 0

otherwise. Assuming this for now, we obtain

XN
j¼1

�jjuji
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C2

�2
j

vuut j0i þ C

�j

j1i
�
:

To finish the inversion, we measure the last qubit.
Conditioned on seeing 1, we have the stateffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1P
N
j¼1 C

2j�jj2=j�jj2
s XN

j¼1

�j

C

�j

juji

which corresponds to jxi ¼ P
n
j¼1 �j�

�1
j juji up to normal-

ization. We can determine the normalization factor from
the probability of obtaining 1. Finally, we make a mea-
surement M whose expectation value hxjMjxi corresponds
to the feature of ~x that we wish to evaluate.

Runtime and error analysis.—We present an informal
description of the sources of error; the exact error analysis
and runtime considerations are presented in Ref. [12].
Performing the phase estimation is done by simulating
eiAt. Assuming that A is s sparse, this can be done with

error � in time proportional to ts2ðt=�Þoð1Þ ¼: ~Oðts2Þ.
The dominant source of error is phase estimation. This

step errs byOð1=t0Þ in estimating �, which translates into a
relative error of Oð1=�t0Þ in ��1. If � � 1=�, taking t0 ¼
Oð�=�Þ induces a final error of �. Finally, we consider the
success probability of the post-selection process. Since
C ¼ Oð1=�Þ and � � 1, this probability is at least
�ð1=�2Þ. Using amplitude amplification [14], we find
thatOð�Þ repetitions are sufficient. Putting this all together,
we obtain the stated runtime of ~OðlogðNÞs2�2=�Þ.

Classical matrix inversion algorithms.—To put our al-
gorithm in context, one of the best general-purpose classi-
cal matrix inversion algorithms is the conjugate gradient
method [15], which, when A is positive definite, uses
O½ ffiffiffiffi

�
p

logð1=�Þ� matrix-vector multiplications each taking
time OðNsÞ for a total runtime of O½Ns

ffiffiffiffi
�

p
logð1=�Þ�. (If A

is not positive definite, O½� logð1=�Þ� multiplications are
required, for a total time of O½Ns� logð1=�Þ�.) An impor-
tant question is whether classical methods can be improved
when only a summary statistic of the solution, such as
~xyM~x, is required. Another question is whether our quan-
tum algorithm could be improved, say to achieve error � in
time proportional to poly logð1=�Þ. We show that the an-
swer to both questions is negative, using an argument from
complexity theory. Our strategy is to prove that the ability

to invert matrices (with the right choice of parameters) can
be used to simulate a general quantum computation.
The complexity of matrix inversion.—We will show that

a quantum circuit using n qubits and T gates can be
simulated by inverting an Oð1Þ sparse matrix A of dimen-
sion N ¼ Oð2n�Þ. The condition number � is OðT2Þ if we
need A to be positive definite or OðTÞ if not. As a result, if
classical computers could estimate quantities of the form
~xyM~x in polyðlogN; �; 1=�Þ time, then any polyðnÞ-gate
quantum circuit could be simulated by a polyðnÞ-time
classical algorithm. Such a simulation is strongly conjec-
tured to be false, and is known to be impossible in the
presence of oracles [16].
The reduction from a general quantum circuit to a matrix

inversion problem also implies that our algorithm cannot
be substantially improved (under standard assumptions). If
the runtime could be made polylogarithmic in �, then any
problem solvable on n qubits could be solved in polyðnÞ
time (i.e., BQP ¼ PSPACE), a highly unlikely possibility.
Even improving our � dependence to �1�� for � > 0
would allow any time-T quantum algorithm to be simu-
lated in time oðTÞ; iterating this would again imply that
BQP ¼ PSPACE. Similarly, improving the error depen-
dence to poly logð1=�Þ would imply that BQP includes
PP, and even minor improvements would contradict oracle
lower bounds [17].
The reduction.—We now present the key reduction from

simulating a quantum circuit to matrix inversion. Consider
a quantum circuit acting on n ¼ logN qubits which ap-
plies T two-qubit gates U1; . . . ; UT . The initial state is
j0i�n, and the answer is determined by measuring the first
qubit of the final state, corresponding to the observable
M ¼ j0ih0j � I�n�1.
Now adjoin an ancilla register of dimension 3T and

define a unitary

U ¼ XT
t¼1

jtþ 1ihtj �Ut þ jtþ T þ 1ihtþ Tj � I

þ jtþ 2T þ 1mod 3Tihtþ 2Tj �Uy
3Tþ1�t: (4)

We have chosen U so that for T þ 1 � t � 2T, applying
Ut to j1ijc i yields jtþ 1i �UT � � �U1jc i. If we now

define A ¼ I�Ue�1=T , then �ðAÞ ¼ OðTÞ, and
A�1 ¼ X

k�0

Uke�k=T: (5)

This can be interpreted as applyingUt for t a geometrically
distributed random variable. Since U3T ¼ I, we can as-
sume 1 � t � 3T. If we measure the first register and
obtain T þ 1 � t � 2T [which occurs with probability
e�2=ð1þ e�2 þ e�4Þ � 1=10], then we are left with the
second register in the stateUT � � �U1jc i, corresponding to
a successful computation. Sampling from jxi allows us to
sample from the results of the computation. Using these
techniques, it is possible to show that matrix inversion is
BQP-complete. Full details of the proof are given in the
supplementary online material [12].
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Discussion.—There are a number of ways to extend our
algorithm and relax the assumptions we made while pre-
senting it. Wewill discuss first how to invert a broader class
of matrices and then consider measuring other features of ~x
and performing operations on A other than inversion.

Certain nonsparse A can be simulated and therefore
inverted; see Ref. [4] for techniques and examples. It is
also possible to invert nonsquare matrices, using the re-
duction presented from the non-Hermitian case to the
Hermitian one.

The most important challenge in applying our algorithm
is controlling the scaling of � with N. In the worst case, �
can scale exponentionally with N, although this is not
robust against small perturbations in A [18,19]. More often,
� is polynomial in N, in which case our algorithm may not
outperform classical algorithms, or may offer only poly-
nomial speedups. Finally, the ideal situation for our algo-
rithm is when � is polylogarithmic in N, as is the case with
finite element models that use a fixed lattice spacing and a
growing number of dimensions ([20], Section 9.6).

Given a matrix A with large condition number, our
algorithm can also choose to invert only the part of jbi
which is in the well-conditioned part of A (i.e., the sub-
space spanned by the eigenvectors with large eigenvalues).
Formally, instead of transforming jbi ¼ P

j�jjuji to jxi ¼P
j�

�1
j �jjuji, we transform it to a state which is close toX

j;�j<1=�

��1
j �jjujijwelli þ

X
j;�j�1=�

�jjujijilli

in time proportional to �2 for any chosen � (i.e., not
necessarily the true condition number of A). The last qubit
is a flag which enables the user to estimate the size of the
ill-conditioned part, or to handle it in any other way she
wants. If A is not invertible and 1=� is taken to be smaller
than the smallest nonzero eigenvalue of A, then this pro-
cedure can be used to compute the pseudoinverse of A.

Another method that is often used in classical algorithms
to handle ill-conditioned matrices is to apply a precondi-
tioner [21,22]. If we have a method of generating a pre-
conditioner matrix B such that �ðBAÞ is smaller than �ðAÞ,
then we can solve A~x ¼ ~b by instead solving the possibly

easier matrix inversion problem ðBAÞ ~x ¼ B ~b. Further, if A
and B are both sparse, then BA is as well. Thus, as long as a
state proportional to Bjbi can be efficiently prepared, our
algorithm could potentially run much faster if a suitable
preconditioner is used.

The outputs of the algorithm can also be generalized. We
can estimate degree-2k polynomials in the entries of ~x by
generating k copies of jxi and measuring the appropriate
nk-qubit observable on the state jxi�k. Alternatively, one
can use our algorithm to generate a quantum analogue of

Monte Carlo calculations, where given A and ~b we sample
from the vector ~x, meaning that the value i occurs with
probability j ~xij2.

Perhaps the most far-reaching generalization of the ma-
trix inversion algorithm is not to invert matrices at all.

Instead, it can compute fðAÞjbi for any computable f.
Depending on the degree of nonlinearity of f, nontrivial
tradeoffs between accuracy and efficiency arise. Some
variants of this idea are considered in Refs. [4,11,23].
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