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Measurements and feedback are essential in the control of any device operating at the quantum
scale and exploiting the features of quantum physics. As the number of quantum components grows,
it becomes imperative to consider the energetic expense of such elementary operations. Here we
determine fundamental energy requirements for any general quantum measurement. In particular,
we compute the exact costs for projective measurements which causes much stronger constraints
on error correction and control protocols than previously known. On the other hand, certain noisy
measurement processes allow to extract energy from the device. Our results constitute fundamental
physical limitations against which to benchmark implementations of future quantum devices as they
grow in complexity.

The ability to manipulate and measure individual
quantum systems1 enables ever more powerful devices
that fully exploit the laws of the quantum world. This
has facilitated the development of high-precision clocks2

and quantum simulators3 as well as the observation of
fundamental decoherence processes4. Quantum measure-
ments are crucial to the operation of scalable quantum
computers5—for their final readout but importantly also
for continual protection against external noise via error
correction6,7—and quantum computation wholly based
on measurements has been proposed8,9. The combina-
tion of quantum measurement with feedback is an essen-
tial primitive for all these applications, as it allows future
actions to depend on past measurement outcomes. Thus,
with quantum devices becoming increasingly complex,
more measurements have to be performed and physical
requirements such as the energy supply for implement-
ing these elementary operations must be accounted for
(Fig. 1). This is in parallel to the primitive of infor-
mation erasure10, whose energetic expense will become
a limiting technological factor within a few decades11,12

as the miniaturization of computers progresses13. The
expense is needed for initializing a computer register and
therefore accumulates when using a device repeatedly14,
as is typical of measurement apparatuses. The physical
ramifications of information erasure are summarized by
Landauer’s Principle10, which demands kBT ln 2 of en-
ergy to be dissipated into a heat bath of temperature T
for the erasure of each bit of information.

So how much energy must be expended for measure-
ments during quantum computing and error correction,
or in central control protocols such as quantum Zeno
stabilization15,16? We derive the fundamental physical
energy cost for projective measurements, which places
significant energetic constraints on real-world implemen-
tations of quantum devices. In particular, much more

∗Email: kais.abdelkhalek@itp.uni-hannover.de

feedback

}
energy supply

Ecost

FIG. 1: Role of quantum measurement. Most quan-
tum engineering protocols involve frequent measurements to
maintain their stability or to control future actions. Whereas
measurements are often considered as abstract primitives, we
investigate their actual physical implementation and quantify
the arising fundamental energy requirements Ecost.

energy than previously known must be expended to oper-
ate quantum devices robustly via active error correction
schemes6,17. This will ultimately become a fundamental
physical limitation to quantum computers, in a way simi-
lar to the Landauer limit for classical computers11. More
drastically, the energy cost of quantum Zeno control di-
verges in the limit of perfect stabilization.

We obtain these strong constraints because our
purely quantum-mechanical framework goes, like
refs.18,19, beyond the usual state-transformation ideas
in thermodynamics10,14,20. On the other hand, when
the post-measurement state is irrelevant, our framework
produces a simple explicit protocol that can even extract
useful energy from the measurement device, all without
assuming thermality or the Second Law21–23.

Setup. Our framework allows to treat the most
general quantum measurement24, described by a collec-
tion of measurement operators {Mki}, on a quantum
system S. A device performing the measurement on
any state ρS should thus obtain outcome k with prob-

ability pk =
∑
i tr[MkiρSM

†
ki], leaving S in the post-
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FIG. 2: Physical implementation of a measurement.
To perform a general quantum measurement {Mki} on state
ρS , system S is input to a measurement device (dark box)
that subjects it to a measurement stepM and leaves it in the
final state ρ′S,k, conditional on the outcome k. Subsequent
feedback {Vk} on S is possible as different outcomes belong
to orthogonal projections Qk on the memory M (Methods
section). Before the device can be used again, step R must
reset M to its proper initial state ρM , using a thermal re-
source ρB . Hamiltonians HS , HM , HB determine the total
energy cost Ecost = ∆EM + ∆ER required to operate the
device physically. The fundamental bounds in (1) and (2) ex-
press this cost in terms of system quantities ρS , HS and the
measurement specification {Mki}, and thus do not depend on
microscopic details of the device (blue and green parts).

measurement state ρ′S,k =
∑
iMkiρSM

†
ki/pk. This setup

includes inefficient measurements25, where an outcome
can contain several jump operators Mk1,Mk2, . . .; coun-
terintuitively and unlike efficient measurements21, this
will allow to harvest energy from the measurement.

One may naively think that the energy cost for this
measurement on state ρS equals the energy difference
∆ES = tr[HS(ρ′S − ρS)] on S, where ρ′S =

∑
k pkρ

′
S,k is

the average post-measurement state and HS the Hamil-
tonian. This however neglects the measurement device
needed in a concrete physical implementation of the mea-
surement {Mki}, which consists of two steps (see Fig. 2):
First, the measurement step M necessary to store the
outcome k in a memory M for readout and feedback26.
Secondly, in typical applications the same measurement
device will be used repeatedly, so its state ρ′M after step
M has to be restored to the initial state ρM in a reset-
ting step R. Because the post-measurement state ρ′S,k
has usually been altered by feedback following M, step
R cannot make use of it but must solely rely on a ther-
mal bath B at temperature T as for usual Landauer
erasure10,27. Importantly, such a physical implementa-
tion must yield the correct post-measurement states for
any input state ρS (see Methods section for more details
on the setup).

A quantum measurement {Mki} has many implemen-
tations, so we will look for the least expensive in terms of
energy. This is done by expressing the energy cost only
in terms of system quantities ρS , HS and the measure-
ment {Mki}. We thus obtain fundamental results that

are independent of the concrete physical measurement
implementation14,28.

Energy cost results. The total energy costs Ecost =
∆EM+∆ER to operate the measurement device consist
of those in the measurement step, ∆EM, and resetting
step, ∆ER. StepM incurs an expense of ∆EM = ∆ES+
tr[HM (ρ′M − ρM )], where ∆ES is already given in terms
of system quantities. Step R requires energy ∆ER =
tr[(HM + HB)(ρ′′MB − ρ′MB)], where ρ′MB , ρ′′MB denote
the states of MB before and after this step, respectively.

We first state a fundamental constraint on the energy
cost Ecost of any physical implementation of the mea-
surement {Mki} on a state ρS (see Methods section):

Ecost ≥ ∆ES + kBT
[
S(ρS)−

∑
k
pkS(ρ′S,k)

]
, (1)

where S(ρ) = −tr[ρ ln ρ] denotes the von Neumann en-
tropy. Thus, beyond the system energy change, the phys-
ical implementation incurs an additional expense of at
least the average entropy decrease29. This result can
also be obtained from ref.22 through an argument based
on the Second Law, and agrees with ref.21 for efficient
measurements; in this case Eext = ∆ES − Ecost ≤ 0,
meaning that no useful energy can be extracted from the
device21. Our framework, however, derives Eq. (1) by
purely microscopic reasoning. It further shows that inef-
ficient measurements can actually yield energy: In Fig. 3
we exhibit an implementation that extracts useful energy
Eext > 0 from the device. This is surprising in light of
refs.20,21.

Our main result addresses the specific case of projec-
tive measurements24, which constitute the textbook ex-
amples of quantum measurements and are of principal
importance for applications, as exemplified below. These
are efficient measurements {Mk} with projection oper-

ators Mk = M†k = M2
k . Due to their rigid structure

(Methods section), the energy costs for any implementa-
tion are determined by the exact equality

Eproj = ∆ES + kBT
∑

k
pk ln

1

pk
, (2)

where pk = tr[ρSMk] are the outcome probabilities and
the last sum is simply their Shannon entropy H({pk}).
This result is a significant improvement over Eq. (1) un-
less ρS was already classical, in which case both results
agree. Quantum coherences thus require much more en-
ergy for measurement than previously known. Eq. (2) is
stronger since, similar to single-shot treatments of gen-
eral processes18, it goes beyond the traditional state-
transformation ideas in thermodynamics19. Interestingly,
however, our result disagrees with the single-shot results
in the asymptotic limit18, because the latter does not re-
quire a faithful implementation on the full state space
and therefore demands less energy (Methods section).

We now employ our main result Eq. (2) to determine
the energetic cost of important quantum protocols, illus-
trating its strength in applications.
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ρM = |0〉〈0|MA ⊗
1MB

2

|ψ〉S = c0|0〉+ c1|1〉

(a) ρ′S,k = |k〉〈k|S

|ck|2|k〉〈k|MA ⊗
1MB

2

(b) ρ′S,k = 1S
2

|ck|2|k〉〈k|MA ⊗ |k〉〈k|MB

standard projective measurement

always consumes energy:

Eext = −kBTH({pk}) ≤ 0

extract energy from

modified projective measurement:

Eext = kBT
(

ln 2−H({pk})
)
≥ 0

swap S and MB

FIG. 3: Extracting energy from measurement. A pure qubit ρS = |ψ〉〈ψ|S is measured in the spin-z basis by a device with
bipartite memory M = MAMB and initial state ρM = |0〉〈0|MA ⊗ 1MB/2, in one of two different ways. Either measurement
implementation yields the same outcome distribution {pk} and enables feedback viaQk = |k〉〈k|MA⊗1MB but counterintuitively,
the inefficient one allows to extract useful energy Eext from the device, in contrast to previous results20,21. (a) The measurement
is projective with Mk = |k〉〈k|. Operating such a device can never yield energy, Eext ≤ 0 in accordance with Eq. (2). (b) The
measurement is given by Mki = |i〉〈k|/

√
2 and thus is inefficient. Intuitively, the device implements the same unitary interaction

USMAMB as in (a), but with an additional swap of the systems S and MB before the projections {Qk}. This modified projective
measurement always outputs a fully mixed state ρ′S,k = 1S/2 and yields energy Eext ≥ 0 (supplementary information).

Applications. As a first application, we study quan-
tum Zeno stabilization15, a paradigmatic quantum con-
trol protocol16. The task is to stabilize a qubit in a pure
state |0〉 against its free Hamiltonian time evolution when
|0〉 is not an eigenstate, such as for HS = EσX with the
Pauli operator σX and energies ±E. The protocol applies
the projective measurement {M0 = |0〉〈0|,M1 = |1〉〈1|},
with M0 the projector onto the desired state, at N reg-
ular time intervals δt = t/N over the time span t whilst
the disturbing Hamiltonian HS is acting. The measure-
ment will restore the system at each time step to either
the state |0〉 or the undesired |1〉, hence ∆ES = 0. The
n-th step returns the wrong state |1〉 with probability
εn ' n(Eδt/~)2 = (Et/~)2n/N2, so that the final state
fidelity F = 1−εN becomes arbitrarily good when choos-
ing the total number N of steps big enough. The en-
ergy expense of the whole protocol consists of the costs

E
(n)
proj ' kBTεn ln 1/εn necessary for all Zeno measure-

ments n = 1, . . . , N , where we have evaluated our sharp
main result Eq. (2) to leading order. The total energy
required to achieve high target fidelity F is then (supple-
mentary information)

EZeno ' kBT
(Et/~)2

2
ln

1

1− F
. (3)

This expense diverges as F approaches 1, so any restric-
tion on the energy available for the stabilization scheme

directly limits the achievable accuracy. Such drastic en-
ergy demands apply to Zeno schemes for dragging or
holonomic computation16,30 as well.

Measurement and feedback are essential also for sta-
bilizer quantum error correction (QEC) schemes, which
allow quantum computations to reach capabilities beyond
classical computers even in the presence of noise5,6. Af-
ter encoding the logical qubits L redundantly into a QEC
code C, which is simply a physical system subject to
noise, the heart of QEC consists in performing repeated
measurements of the error syndrome s on C followed by
suitable feedback operations Vs. When these control op-
erations are performed frequently enough, reliable com-
putation is possible on noisy hardware by the thresh-
old theorem6. Energetic considerations are paramount in
this context since syndrome measurements with feedback
must be performed many times and on many qubits for
a scalable setup. As a paradigmatic example we examine
the 5-qubit code24,31 C5, which encodes a single logical
qubit |ψ〉 ∈ C2

L ⊂ C5 and whose syndrome measurement
{Ps}15s=0 consists of two-dimensional projectors. We take
each of the five physical qubits to be subject to excita-
tion loss by amplitude damping noise24 Nγ at strength
γ ∈ [0, 1].

The costs for each QEC step come from measuring
{Ps} on the noisy state ρS,γ = N⊗5γ (|ψ〉〈ψ|). Accord-
ing to our main result Eq. (2), these costs can depend
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FIG. 4: Energy cost of quantum error correction. For
the 5-qubit code under amplitude damping noise, the costs
Eproj
C5 from our exact result Eq. (2) for the syndrome mea-

surement increase with the noise level γ (red curve). These
costs significantly surpass the best previous predictions, which
are the lower bounds from Eq. (1) due to refs.21,22 (green)
and the naive Landauer bound10,17 ELan

C5 (black). For an ex-
perimentally easier syndrome measurement by four separate
stabilizers, Eq. (2) demands even larger costs Esep

C5 (blue).

strongly on the system Hamiltonian HS through the term
∆ES , which is common to all bounds discussed in the
following. For the sake of comparison we therefore ne-
glect this contribution henceforth (see Fig. 4), effectively
contrasting the additional energy costs caused by the
physical implementation. The exact additional energy
expense Eproj

C5 = kBTH({ps}15s=0) from our Eq. (2) is
shown in Fig. 4 (red curve), increasing from 0 in the
noiseless case to 4kBT ln 2 as γ → 1. Much more en-
ergy must therefore be expended than the best previ-
ously known bound Eq. (1) predicts21,22 (green curve),
which for example vanishes at γ = 1. A naive applica-
tion of Landauer’s bound10,17 to the code system S = C5
itself would yield an even weaker lower bound ELan

C5 =

kBT [S(ρS,γ)−S(ρ′S,γ)] ≤ Eproj
C5 , negative at large noise γ

(black curve). The comparison illustrates the strength of
our main result Eq. (2) obtained by an exact treatment
of the measurement device. Even in the sub-threshold
regime γ . 0.05 where effectively noiseless quantum com-
puting is possible6 the improvement amounts to 15%.
Practical QEC will exploit the stabilizer structure24 to
obtain syndrome s ≡ (s1, s2, s3, s4) by four commuting
measurements, each with two outcomes sj = ±1 only.
When these four devices operate independently the costs

total Esep
C5 = kBT

∑
j H({p(j)sj }sj ) ≥ Eproj

C5 by Eq. (2)

(blue curve), showing that additional expenses can arise
in simpler measurement realizations that disregard cor-
relations (supplementary information).

Discussion. Our general result Eq. (2) determines
the exact energetic costs for projective quantum mea-
surements, imposing significant limitations on the per-
formance of quantum error correction and control. Be-
cause it surpasses existing lower bounds in the truly
quantum regime, our result also establishes a remark-

able link between the viability of quantum technologies
and the existence of uncertainty relations: Whenever in-
compatible measurements have to be performed, as in
quantum state tomography32 or quantum Monte Carlo
sampling33, entropic uncertainty relations34 yield strictly
positive bounds on the entropic term from Eq. (2), inde-
pendent of the input state. Physical energy constraints
together with uncertainty relations therefore place fun-
damental limitations on tomographic accuracy or sample
quality.

Our energy results are in fact statements about
thermodynamic work35 as we accounted for all energetic
contributions while employing unitary actions. It is
then surprising that, in contrast to previous findings21

the implementation in Fig. 3 can extract useful work
from the measurement device, while still respecting
the Second Law of Thermodynamics (supplementary
information). Our study paves the way for investigations
into the energy costs of further elementary operations19

in the quantum sciences or engineering. It would be
particularly interesting to extend the strength of our im-
plementation requirement to the single-shot approach18

and quantify the arising energy fluctuations23.

Methods

Setup. To function as a memory, the Hilbert space
HM =

⊕
kHk of M must be composed of subspaces Hk

with orthogonal projections Qk corresponding to the classical
measurement outcomes36. The measurement step M is then
fully microscopically described via its physical implementa-
tion (ρM , USM , {Qk}), where USM is a unitary interaction
between S and M (Fig. 2) satisfying the following implemen-
tation requirement :

trM [(1⊗Qk)USM (ρS ⊗ ρM )U†SM ] =
∑

i
MkiρSM

†
ki ∀ρS∀k.

Such an implementation gives, for any initial ρS , the correct
outcome probabilites pk and post-measurement states ρ′S,k
as required by the measurement specification {Mki}. Uni-
tary feedback operations {Vk} on S can then be performed
without disturbing M by acting via the overall unitary in-
teraction

∑
k Vk ⊗ Qk on the full state after measurement

ρ′SM =
∑
k(1⊗Qk)USM (ρS ⊗ ρM )U†SM (1⊗Qk).

The projections {Qk} effect a dephasing operation which,
unlike the measurement itself, does not return an outcome k.
As shown in supplemental material, this dephasing operation
can be implemented by a physical unitary operation at zero
energy cost but not less, hence does not contribute to ∆EM.

The resetting step R leaves S untouched, but should re-
store the memory to its initial state ρM . This is impossible
by unitary evolutions on M alone because it is in general nec-
essary to change the eigenvalues. Hence, we supply the ther-
mal state ρB = e−HB/kBT /tr[e−HB/kBT ] of a bath B at some
temperature T . Step R proceeds then by a unitary UMB

10,27,

trB [UMB(ρ′M ⊗ ρB)U†MB ] = ρM ,

where ρ′M = trS [ρ′SM ] is the marginal memory state after
M (Fig. 2). Thermal states like ρB are free resources at
ambient temperature T , but we must keep track of the en-
ergy expended during step R, just as for step M. By Lan-
dauer’s Principle10,27 the cost of the resetting step R satisfies
∆ER ≥ −∆FM , where ∆FM = FM (ρ′M ) − FM (ρM ) is the
change in free energy FM (ρ) = tr[ρHM ]−kBTS(ρ). Moreover,
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one can actually engineer the bath Hamiltonian HB and in-
teraction UMB such that equality holds27, i.e. ∆ER = −∆FM
(supplementary information); we therefore assume this in the
main text, noting that even otherwise all our results remain
valid lower bounds.

Proof of Eq. (1). We first derive the bound ∆EM ≥
∆ES +kBT

[
S(ρS)−

∑
k pkS(ρ′S,k)

]
+ ∆FM on the energy for

the measurement step (supplementary information). Unlike
prior work21,22, our statement holds also for inefficient mea-
surements and without assuming thermality of ρS . Taking the
sum Ecost = ∆EM + ∆ER yields the bound (1). Our deriva-
tion shows Ecost to be independent of the memory Hamilto-
nian HM , as the terms ±∆FM cancel in the sum; a similar
observation for the special case of efficient measurements has
been made in refs.21,36.

Proof of Eq. (2). Using dilation theory24, the require-
ment to perform a projective measurement {Mk} correctly
on any input ρS , fixes its implementations so rigidly that
the memory’s entropy increase is exactly given by S(ρ′M ) −

S(ρM ) = H({pk}). We show this in Supplementary Informa-
tion along with the general statement14,28 ∆EM + ∆ER =
∆ES + kBT [S(ρ′M )− S(ρM )], which gives Eq. (2). This sur-
passes the bound in (1) by kBT [S(

∑
kMkρSMk)−S(ρS)] ≥ 0.

To see that this implementation requirement is essential,
consider as an example a measurement of the maximally co-
herent state |ψS〉 = (|0〉+ |1〉)/

√
2 in the computational basis,

requiring energy Eproj = ∆ES + kBT ln 2 by Eq. (2). In con-
trast, less energy is needed if one demands the device to work
only on the support subspace of ρS = |ψS〉〈ψS |, in which case
the minimal cost is ∆ES +kBT [S(E′|S′M ′)+S(M ′)] = ∆ES
for both the single-shot and asymptotic regimes, as shown in
ref.18 (supplementary information). Note here that we always
require the resetting step R not to make use of the system
state ρ′S , which is not available in feedback protocols such as
quantum error correction (see main text); otherwise, the era-
sure term in the last result18 would be kBTS(M ′|S′) instead
of kBTS(M ′) and the measurement cost accordingly lower.
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Appendix A: The measurement model

A quantum measurement on a system S with Hilbert space HS is mathematically described by a quantum instru-
ment, i.e. a set of completely positive maps {Tk}k=1,...,K on B(HS) satisfying

∑
k T
∗
k (1S) = 1S , where k corresponds

to the measurement outcome and T ∗k denotes the adjoint of Tk. The action of the map Tk on a state ρS ∈ B(HS)

can always be written in terms of Kraus operators Mki via Tk(ρS) =
∑I(k)
i=1 MkiρSM

†
ki, where I(k) is the Kraus rank

of Tk. A measurement is called efficient or pure if I(k) = 1 for all k. A measurement that is not efficient is called
inefficient22,S1.

A quantum instrument characterises both the probability pk = tr[Tk(ρS)] to obtain outcome k and the correspond-
ing post-measurement state ρ′S,k = Tk(ρS)/pk. In contrast, if the post-measurement state can be disregarded and

only the outcome probabilities are of interest, it is sufficient to consider a POVM (positive operator valued measure)
defined by positive operators {Ek}k=1,...,K satisfying

∑
k Ek = 1S . The probability to obtain outcome k is then

given by pk = tr[EkρS ]. Any quantum instrument {Tk}k determines a POVM by Ek = T †k (1S) =
∑
iM
†
kiMki. In the

following we will always consider quantum instruments in order to be able to describe applications such as quantum
error correction, where the post-measurement state cannot be disregarded. Only in the energy extraction example
(Appendix F) we employ the idea of POVMs to investigate the implications of disregarding the post-measurement
state.

While a quantum instrument accurately describes the measurement as an abstract process on the measured system,
we are considering physical implementations of an instrument that incorporate all relevant systems that are involved
in the measurement process. In particular, the measurement outcome k has to be stored in degrees of freedom

of a physical system M . We model this register by a quantum system with Hilbert space HM =
⊕K

k=1Hk and

Hamiltonian HM =
⊕K

k=1Hk, which naturally captures all the important properties one generally demands from a
classical memory36. We consider a state ρ′M,k ∈ HM to store the measurement outcome k if it has support only on the

subspace Hk corresponding to k. In this case, projection operators {Qk}k=1,...,K which project onto the respective
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subspaces Hk, i.e. satisfying
∑
kQk = 1M with Q2

k = Qk = Q†k for all k and Qkψk = ψk for all ψk ∈ Hk, can be
applied to read out the measurement outcome from the register.

More formally, an implementation of a quantum measurement is a tuple (ρM , USM , {Qk}) determining the initial
state ρM of the memory register, the unitary dynamics USM that describes the interaction between measured system
and register, and the projections {Qk} on M with which the outcome k can be read out from the register after
measurement. To any such tuple (ρM , USM , {Qk}) we associate a measurement step M, i.e. the channel that takes
as input an arbitrary initial state ρS of S and outputs the post-measurement state

ρ′SM,k = (1⊗Qk)USM (ρS ⊗ ρM )U†SM (1⊗Qk)/pk

on S and M with probability

pk = tr[(1⊗Qk)USM (ρS ⊗ ρM )U†SM ] ,

for each k = 1, ...,K. We say that a tuple (ρM , USM , {Qk}) is an implementation of a given measurement {Tk}k if
the associated measurement step outputs the correct post-measurement states on the measured system, trM [ρ′SM,k] =

ρ′S,k = Tk(ρS)/pk, with correct probability pk = tr[Tk(ρS)] for all possible input states ρS . In the main text we refer
to this property as the implementation requirement. The measurement step M therefore outputs the state

ρ′SM =
∑
k

pkρ
′
SM,k =

∑
k

(1⊗Qk)USM (ρS ⊗ ρM )U†SM (1⊗Qk) (A1)

on S and M , which correctly stores the outcome k on M , since ρ′M,k ≡ trS [ρ′SM,k] has by construction only support

on Hk. Note that the projections Qk in (A1) effect a dephasing operation on the memory M ; this is different from a
full projective measurement on M since the values k are not stored in another register, but rather summed over. We
investigate this dephasing operation in more detail in Appendix K.

Note that for any instrument {Tk}k there exists an implementation (ρM , USM , {Qk}). Conversely, any
(ρM , USM , {Qk}) is an implementation of some instrument {Tk}k. In this sense the above operational measurement
model does not place any restrictions on the set of measurements described.

After the measurement, the final state ρ′M =
∑
k pkρ

′
M,k of the register stores the information of the measurement

outcome k. This information has to be erased by resetting the register to its initial state ρM before the same
implementation of the measurement can be used another time. This process is called the resetting step R and
employs an additional quantum system, called thermal bath B, with Hamiltonian HB initially in a thermal state

ρ′B = exp(−βHB)/ZB

at inverse temperature β = 1
kBT

, where ZB = tr[exp(−βHB)] is the partition function. To achieve erasure, the register

unitarily interacts with the thermal bath such that its state ρ′M after M evolves back to the initial state

trB [UMB(ρ′M ⊗ ρ′B)U†MB ] = ρM . (A2)

This process is typically known as Landauer erasure27. Note that this process demands additional resources: Thermal
states are needed since unitary dynamics on M alone cannot alter the rank or spectrum of the state. In this framework
we consider thermal states a free resource as they can easily be obtained by weakly coupling quantum systems to
thermal baths at the desired ambient temperature T . Still, the energy cost of the resetting step, specifically to
implement the unitary UMB , needs to be accounted for. The overall energy expense needed to run the measurement
device is therefore the sum of the cost of the measurement step M and the cost of the resetting step R.

Appendix B: Relating the cost ∆EM to operational quantities

Here we prove that the energy cost of implementing the measurement step M (see Eq. (A1)),

∆EM = ∆ES + tr[HM (ρ′M − ρM )]

with ∆ES = tr[HS(ρ′S−ρS)], splits into a sum of operational quantities. More concretely, we denote by ∆S = S(ρS)−∑
k pkS(ρ′S,k) the average change in state information about the system where S(ρ) = − tr[ρ ln ρ] is the von Neumann

entropy. Moreover, ∆FM = F (ρ′M )− F (ρM ) denotes the difference between free energies F (ρ) = tr[ρH]− S(ρ)/β of
the memory before and after the measurement and I =

∑
k pkI(S : M |k) is the average amount of correlations built
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up between S and M as measured by the mutual information I(S : M |k) := S(ρ′S,k) + S(ρ′M,k)− S(ρ′SM,k). Finally,

we denote by ∆Q = S(ρ′SM ) − S(ρSM ), where ρSM = ρS ⊗ ρM , the total entropy increase during the measurement
step induced by the projections {Qk}.

Using this notation we show the following theorem:

Theorem 1. Let HS and HM be finite-dimensional Hilbert spaces. Let ρSM = ρS ⊗ ρM be a quantum state on
HS ⊗HM and let HS and HM be a Hamiltonians on HS and HM , respectively. For ρ′M = trS [ρ′SM ], where ρ′SM is
the state after a measurement step M as in Eq. (A1), the energy cost ∆EM = ∆ES + tr[HM (ρ′M − ρM )] satisfies

β∆EM = β∆ES + ∆S + β∆FM + I + ∆Q . (B1)

Proof. Note that the post-measurement states ρ′M,k (and hence, also the states ρ′SM,k) are mutually orthogonal due

to the projection operators {Qk}. Denoting the Shannon entropy of the probability distribution pk by H({pk}) =
−
∑
k pk ln pk , we then find that the total entropy increase is

∆Q = S(ρ′SM )− S(ρSM )

= H({pk}) +
∑
k

pkS(ρ′SM,k)−
(
S(ρS) + S(ρM )

)
= H({pk}) +

∑
k

pk
(
S(ρ′S,k) + S(ρ′M,k)− I(S : M |k)

)
−
(
S(ρS) + S(ρM )

)
= S(ρ′M )− S(ρM ) +

∑
k

pkS(ρ′S,k)− S(ρS)−
∑
k

pkI(S : M |k)

= S(ρ′M )− S(ρM )−∆S − I , (B2)

where we used the additivity of the von Neumann entropy under tensor products, i.e. S(ρ⊗ σ) = S(ρ) + S(σ) for all
states ρ and σ.

The energy cost of the measurement step is therefore given by, using Eq. (B2) in the last step (note, the dephasing
operation in Eq. (A1) can be performed at zero energy cost, but not less; see Appendix K):

β∆EM = β∆ES + βtr[HM (ρ′M − ρM )]

= β∆ES + βF (ρ′M ) + S(ρ′M )− (βF (ρM ) + S(ρM ))

= β∆ES + β∆FM + ∆S + I + ∆Q .

Note that Eq. (B1) is an exact equality, but contains quantities such as I and ∆Q that are often hard to control as
they require precise knowledge over the internal state ρM of the measurement device. However, both I and ∆Q are
non-negative: I inherits this property from the non-negativity of the mutual information I(S : M |k), whereas ∆Q is
non-negative because the measurement stepM corresponds to a unital measurement channel24 (see Eq. (A1)). Hence
Eq. (B1) immediately implies the following inequality from the main text,

∆EM ≥ ∆ES + kBT
(
S(ρS)−

∑
k

pkS(ρ′S,k)
)

+ ∆FM .

Appendix C: Computing the cost ∆ER of the resetting step

Similar to the previous section, the cost ∆ER of the resetting step R, Eq. (A2), can be expressed as a sum of
operational quantities.

We employ the same notation as above. Additionally, we denote by ∆FB = F (ρ′′B)−F (ρ′B) the free energy increase

in the thermal bath B with ρ′′B = trM [ρ′′MB ] where ρ′′MB = UMB(ρ′M ⊗ ρ′B)U†MB is the joint state of MB after the
resetting step. We also introduce the mutual information term IMB = I(M : B)ρ′′MB which measures the amount of
correlations built up between M and B during step R.

Theorem 2. Let HM and HB be finite-dimensional Hilbert spaces. Let ρ′MB = ρ′M ⊗ ρ′B be a quantum state on
HM ⊗ HB with ρ′B = e−βHB/ tr[e−βHB ] thermal and HM and HB be Hamiltonians on HM and HB, respectively.
Consider the resetting step R as in Eq. (A2) and denote by ρ′′MB the final state of the process. Then the energy cost
∆ER = tr[HMB(ρ′′MB − ρ′MB)] of the resetting step satisfies

β∆ER = −β∆FM + β∆FB + IMB . (C1)
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Moreover, ∆FB and IMB are both non-negative, such that

∆ER ≥ −∆FM . (C2)

Proof. Note that the differing signs of the free energy terms appearing in Eq. (C1) are just due to our notation,
where ∆FM is defined as for the measurement step by ∆FM = F (ρ′M ) − F (ρM ) = −(F (ρ′′M ) − F (ρ′M )), where
ρ′′M = trB [ρ′′MB ] = ρM , whereas ∆FB = F (ρ′′B)− F (ρ′B). To show Eq. (C1) we compute

∆ER = tr[HMB(ρ′′MB − ρ′MB)]

= tr[HMB(ρ′′MB − ρ′MB)]− 1

β
S(ρ′′MB) +

1

β
S(ρ′MB) (C3)

= tr[HMB(ρ′′MB − ρ′MB)]− 1

β
[S(ρM ) + S(ρ′′B)− I(M : B)ρ′′MB − S(ρ′M )− S(ρ′B)]

= F (ρM ) + F (ρ′′B)− F (ρ′M )− F (ρ′B) +
1

β
IMB

= −∆FM + ∆FB +
1

β
IMB ,

where we used in Eq. (C3) that the unitary resetting step, Eq. (A2), does not change the entropies, S(ρ′′MB) = S(ρ′MB).
To show the non-negativity of ∆FB we first express the free energy F (ρ) of any quantum state ρ w.r.t. a Hamiltonian

H in terms of the relative entropy D(ρ||ρcan), where ρcan = e−βH/Z with Z = tr[e−βH ] is a thermal state w.r.t. the
same Hamiltonian H. We have

F (ρ) = tr[Hρ]− 1

β
S(ρ)

= tr[Hρ] +
1

β
D(ρ||ρcan) +

1

β
tr[ρ ln ρcan]

= tr[Hρ] +
1

β
D(ρ||ρcan) +

1

β
tr[ρ(−βH − lnZ)]

= − 1

β
lnZ +

1

β
D(ρ||ρcan) .

Hence, we find that the difference of free energies in the thermal bath,

∆FB = F (ρ′′B)− F (ρ′B)

= − 1

β
lnZ +

1

β
D(ρ′′B ||ρ′B) +

1

β
lnZ − 1

β
D(ρ′B ||ρ′B)

=
1

β
D(ρ′′B ||ρ′B) ,

is, by Klein’s inequality24, indeed non-negative.

It has been shown that an optimal process, in the sense that exact equality in the inequality (C2) holds, does in
general not exist27. However, if the dimension of the thermal bath B is not restricted, one can approach the lower
bound −∆FM arbitrarily closely, e.g. by conducting a process that consists of multiple intermediate steps in which
the memory gets temporarily thermalised27,S2. Since we place no restriction on the Hilbert space dimension of B in
our framework, we assume that the resetting step R is conducted in such a way that inequality (C2) is saturated as
closely as desired, i.e.

∆ER = −∆FM .

We emphasise that this assumption merely simplifies our results, but does not restrict their validity in a more general
setting. Dropping this assumption will only increase the lower bounds by additional non-negative quantities.

Appendix D: Overall energy cost of a general quantum measurement

As described in the main text, the overall energy cost needed to implement a quantum measurement is the sum of
the cost of step M and step R,

Ecost = ∆EM + ∆ER .
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Combining Theorem 1 and the optimal implementation of the resetting step R, ∆ER = −∆FM (see Appendix C),
the overall energy cost is given by

βEcost = β∆ES + ∆S + I + ∆Q . (D1)

Note that the two terms ±∆FM from (B1) and (C) have cancelled. Thus, although energy costs can be shifted
between ∆EM and ∆ER by changing the memory Hamiltonian HM arbitrarily, this does not affect the total energy
costs Ecost

14,21,36. To continue, as shown by the computation in Eq. (B2), we have ∆S + I + ∆Q = S(ρ′M )− S(ρM ),
so we find that the overall energy cost of a quantum measurement crucially depends on the entropy change in the
memory

βEcost = β∆ES + S(ρ′M )− S(ρM ). (D2)

This is consistent with applying Landauer’s principle10,27 to the measurement process (see main text), as has been
first done by Bennett14 and was generalized to feedback protocols by ref.28. The equality (D2) will turn out to be
useful to derive the equality results in the following sections, but requires knowledge about the internal state of the
measurement device. In contrast, inequality (1) in the main text

Ecost ≥ ∆ES + kBT
[
S(ρS)−

∑
k

pkS(ρ′S,k)
]

(D3)

is independent of the specific measurement implementation (USM , ρM , {Qk}) and immediately follows from (D1) by
the non-negativity of I and ∆Q. Our derivation of Eq. (D3) extends previous work by refs.21,22, which was restricted
to efficient measurements or assumed thermality of ρS and the Second Law (see Appendix H).

Appendix E: Lower bound in terms of inefficiency

Here we prove a lower bound on the energy cost in terms of the inefficiency of the measurement. A measurement
is said to be efficient if each measurement outcome k has just one corresponding measurement operator Mk, i.e.

the (unnormalized) post-measurement states on the measured system S all take the form Tk(ρS) = MkρSM
†
k or,

in other words, the Kraus rank of all maps Tk is one. Efficient measurements however do not describe all possible
quantum measurements. Instead, as described in Appendix A, the most general form of measurement is given through

inefficient measurements described as ρS 7→ ρ′S =
∑
k,iMkiρSM

†
ki. The index i ranges from 1 to the Kraus rank I(k)

of the channel Tk. We henceforth call the maximal Kraus rank of all elements Tk of a given quantum instrument the
inefficiency I of the quantum instrument {Tk}. Clearly, if I = 1 we recover the case of efficient measurements.

For general measurements we prove the following theorem:

Theorem 3. Let (USM , ρM , {Qk}) be an implementation of a quantum measurement with inefficiency I. The energy
cost of operating this device is then lower bounded as

βEcost ≥ β∆ES − ln I . (E1)

We highlight two consequences of this theorem: First, if we can construct a measurement device for an inefficient
measurement with I > 1 that saturates the inequality (E1), then useful energy Eext = ∆ES −Ecost can be extracted
from the device during this operation. Remarkably, as shown in Figure 3 in the main text, such devices exist. Further
details on this example and how to construct such measurement devices will be presented in Appendix F. Second,
such extraction of energy in a measurement is only possible for inefficient measurements. Efficient measurements can
never yield energy21,22, Eext ≤ 0.

Proof. In order to prove inequality (E1) let us denote by pk = tr
[∑

iMkiρSM
†
ki

]
the probability of receiving outcome

k and by ρ′S,k =
∑
iMkiρSM

†
ki/pk the corresponding post-measurement state on S. Furthermore, define rki :=
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tr
[
MkiρSM

†
ki

]
. Then we have

∑
k

pkS(ρS,k) =
∑
k

pkS
(∑

i

MkiρSM
†
ki

pk

)
=
∑
k

pkS
(∑

i

rki
pk

MkiρSM
†
ki

rki

)
≤
∑
k

pk

[
H
({rki

pk

}
i

)
+
∑
i

rki
pk
S
(MkiρSM

†
ki

rki

)]
(E2)

≤
∑
k

pk

[
ln I +

∑
i

rki
pk
S
(√ρSM†kiMki

√
ρS

rki

)]
(E3)

= ln I +
∑
k,i

rkiS
(√ρSM†kiMki

√
ρS

rki

)
≤ ln I + S

(∑
k,i

√
ρSM

†
kiMki

√
ρS

)
(E4)

= ln I + S(ρS) ,

which by inequality (D3) proves the desired statement (E1). Inequalities (E2) and (E4) are obtained using the property
of the von Neumann entropy that for any convex combination of quantum states,

∑
j pjσj , we have that24∑

j

pjS(σj) ≤ S
(∑

j

pjσj

)
≤ H({pj}j) +

∑
j

pjS(σj) . (E5)

Inequality (E3) is obtained using the following two statements: First, the Shannon entropy of any probability distri-
bution with I elements is upper bounded by ln I and, second, S(LL†) = S(L†L) for any linear operator L since LL†

and L†L have the same non-vanishing eigenvalues.

Appendix F: How to extract energy through measurement

In this section we present and discuss in detail two examples of a measurement on a qubit S and compute how
much energy is extracted during each process (see Figure 3 in the main text for a brief summary). The first example
will be an efficient measurement, for which we already know that no energy can be extracted (see Theorem 3). The
second example will be a slight variation of the first: Although quite similar to the first measurement, the second is
inefficient and allows to extract kBT ln 2 of energy from the device for specific initial states of the measured system
S (as depicted in Figure 3).

Our first example is a rank-1 projective measurement on a qubit system S with projection operators {|k〉〈k|}k=0,1

and we denote by ρS and ρM the initial state of the measured system S and memory M , respectively. The final state
of S and M is of the form

ρ′SM =
∑
k=0,1

〈k|ρS |k〉 · |k〉S〈k| ⊗ ρ′M,k , (F1)

where the states ρ′M,k have support on orthogonal subspaces such that the outcome value k is reliably stored on M .

The outcome probabilities are then given by pk = 〈k|ρS |k〉. A specific measurement device (ρM , USM , {Qk}) that
implements this projective measurement is characterised as follows: We take a memory M consisting of two qubits
MA and MB with Hilbert spaces HMA

and HMB
, respectively, that starts in the state

ρM = |0〉MA
〈0| ⊗ 1MB

2
.

Additionally, we take projections Qk = |k〉MA
〈k|⊗1MB

and consider the following unitary interaction between system
and memory

USM =
(
|0〉S〈0| ⊗ |0〉MA

〈0|+ |1〉S〈1| ⊗ |1〉MA
〈0|+ ...

)
⊗ 1MB

,
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where the dots indicate that we are free to choose any unitary extension. Indeed, evaluating Eq. (A1) for this
implementation (USM , ρM , {Qk}) we find that this measurement device outputs the desired final state in Eq. (F1)

with ρ′M,k = |k〉MA
〈k| ⊗ 1MB

2 .
In this paper, we provide various ways to calculate the energy cost of conducting this particular measurement:

In the main text we claimed that the energy cost of any projective measurements is exactly given by Eproj =
∆ES + kBTH({pk}), where H({pk}) denotes the Shannon entropy of the outcome probability distribution (see Eq.
(2) in the main text). While this claim is proven in Appendix G, we can also verify this result for the example at
hand using Eq. (D2). Indeed, since we specified the microscopic details of our showcase measurement device, we are
able to compute the energy cost of this projective measurement

βEproj = β∆EM + β∆ER

= β∆ES + S(ρ′M )− S(ρM )

= β∆ES +
(
H({pk}) + ln 2

)
− ln 2

= β∆ES +H({pk}) .

Hence, indeed we find that for all initial states of S no energy can be extracted, Eext = ∆ES − Eproj ≤ 0.

The situation changes if we consider the following slight variation of the above setup, which is our second example.
Assume a situation where we are only interested in the outcome probabilities pk of our measurement and not in the
final state of S, i.e. we fix the POVM but not the quantum instrument. We can then construct a measurement
device that in addition to the previous device performs, after USM but before the projections {Qk}, a swap operation
US↔MB

between S and MB (see Figure 3). The unitary interaction between measured system and memory in this
device is therefore simply given by US↔MB

◦ USM . The post-measurement state then reads

ρ′SM =
1S

2
⊗
∑
k=0,1

〈k|ρS |k〉 · |k〉MA
〈k| ⊗ |k〉MB

〈k| .

Note that the measurement device correctly outputs the outcome probabilities, i.e. the measurement outcomes can
be read off from the memory via the projections Qk with the correct probabilities pk = 〈k|ρS |k〉, and therefore still
allows for conditioning on the outcome. However, in contrast to the device in the first example, it always leaves the
measured system in the completely mixed state. Remarkably, operating this device allows for extracting energy since
by (D2), we have for this modified measurement that

βEext = β∆ES − βEcost = ln 2−H({pk}) ≥ 0 .

Hence, if the measured system starts in any of the states {|k〉S〈k|}, this measurement device outputs Eext = kBT ln 2
of useful energy. The reason why this slight modification of the setup allows for extracting energy is that the additional
swap process introduces inefficiency into the measurement: A measurement that always outputs states of the form
ρ′SM = 1S

2 ⊗ρ
′
M cannot have a one-to-one correspondence between measurement operator Mk and outcome k. Indeed,

our device implements the quantum instrument {Tk(ρS) =
∑2
i=1

1
2 |i〉〈k|ρS |k〉〈i|} with inefficiency I = 2 and hence

saturates our inefficiency bound (E1).

Appendix G: Energy cost of projective measurements

Projective measurements are the textbook examples of “standard” quantum measurements. They are described by

projective measurement operators Mk = Pk with P 2
k = P †k = Pk and map the initial state ρS of the measured system to

the post-measurement state ρ′S,k = PkρSPk/pk with probability pk = tr[PkρS ]. In particular, projective measurements
belong to the class of efficient measurements due to the one-to-one correspondence between measurement operator Pk
and outcome k. A measurement device that implements such a projective measurement {Pk} on S is described by a
tuple (USM , ρM , {Qk}) satisfying

trM

[
(1⊗Qk)USM (ρS ⊗ ρM )U†SM (1⊗Qk)

]
= PkρSPk ∀ρS∀k . (G1)

Again, in accordance with our implementation requirement, we require this equality to hold for all states ρS on S,
otherwise the device does not perform the projective measurement on all possible input states.

We now prove that the energy cost of implementing such a measurement is exactly given by Eq. (2) in the main
text.
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Theorem 4. Let (USM , ρM , {Qk}) be an implementation of a projective quantum measurement {Pk}, as prescribed
by (G1). Then the energy cost of operating this device on an initial state ρS is exactly given by

βEproj = β∆ES +H({pk}) ,

where H({pk}) = −
∑
k pk ln pk is the Shannon entropy of the outcome probability distribution pk = tr[PkρS ].

The proof of this theorem is based on the following lemma:

Lemma 5. Let {Pk} be a projective measurement on some quantum system S. Let a dilation of the “measurement
channel” TS(ρS) :=

∑
k PkρSPk be given by∑

k

PkρSPk = trE

[
USE(ρS ⊗ ρE)U†SE

]
∀ρS , (G2)

where ρE is an initial state of a quantum system E and USE is a unitary on S and E.
Then there exist quantum states σE,k with S(ρE) = S(σE,k) for all k such that, for all quantum states ρS, the

post-measurement state of E, ρ′E = trS

[
USE(ρS ⊗ ρE)U†SE

]
, can be written as

ρ′E =
∑
k

tr[PkρS ]σE,k ∀ρS .

If, additionally, USE and ρE together with projections {Qk} on E form an implementation (USE , ρE , {Qk}) of the
projective measurement {Pk} on S, i.e.

∑
kQk = 1 and

PkρSPk = trE

[
(1⊗Qk)USE(ρS ⊗ ρE)U†SE(1⊗Qk)

]
∀ρS ∀k, (G3)

then σE,k = QkσE,kQk for all k, i.e. the σE,k are mutually orthogonal.

Proof. (Lemma 5) The proof is based on the Stinespring dilation theorem, according to which we can always write
the channel TS(ρS) as a unitary USA acting on S and an ancilla A initially in a pure state |0〉A〈0|,

TS(ρS) = trA[USA(ρS ⊗ |0〉A〈0|)U†SA] .

The minimal Stinespring dilation can be chosen to be any unitary extension USA of the operator
∑
k Pk ⊗ |k〉A〈0|,

whose action is only defined on states of the form |ψ〉S ⊗ |0〉A, where the ancilla Hilbert space A is spanned by the
orthonormal basis |k〉24. The corresponding complementary channel takes the form

TA(ρS) = trS [USA(ρS ⊗ |0〉A〈0|)U†SA]

= trS

[∑
k,k′

PkρSPk′ ⊗ |k〉A〈k′|
]
,

=
∑
k

tr[PkρS ]|k〉A〈k| .

However, this channel is not the only possible complementary channel of TS . Using (G2), we find another comple-
mentary channel,

TEẼ(ρS) = trS [USEẼ(ρS ⊗ ψEẼ)U†
SEẼ

] ,

where Ẽ is a purifying system of E such that the pure state ψEẼ satisfies trẼ [ψEẼ ] = ρE and USEẼ := USE ⊗ 1Ẽ .
The Stinespring theorem states that these complementary channels are related by an isometry V : HA → HE ⊗HẼ ,
i.e.

TEẼ(ρS) = V TA(ρS)V † =
∑
k

tr[PkρS ]|γk〉EẼ〈γk|

with |γk〉EẼ := V |k〉A again forming an orthonormal basis. Note that the complementary channel TEẼ and the final
state ρ′E of E are, by construction, linked via the partial trace,

ρ′E = trS

[
USE(ρS ⊗ ρE)U†SE

]
= trẼ [TEẼ(ρS)] .
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Hence, for every ρS , the final state on E takes the form

ρ′E =
∑
k

tr[PkρS ]σE,k ∀ρS , (G4)

where we define the states σE,k = trẼ [V |k〉A〈k|V †], which are independent of ρS .
To show S(ρE) = S(σE,k), let now ρS = ψk be a pure state supported on the subspace characterised by one Pk, i.e.

Pkψk = ψk. Then by (G4)

ρ′E = trS [USE(ψk ⊗ ρE)U†SE ] = σE,k (G5)

and the final state on S is pure,

ρ′S = trE [USE(ψk ⊗ ρE)U†SE ] =
∑
k′

Pk′ψkPk′ = ψk .

Hence there are no correlations between the marginals of the final SE state, i.e. USE(ψk ⊗ ρE)U†SE = ψk ⊗ σE,k.
Since unitaries do not change the spectrum, we have S(ρE) = S(σE,k), which concludes the first part of the proof.

For the second part of the proof, we assume that we additionally have an implementation of the projective mea-
surement on S, i.e. (G3) is satisfied. Note that we can obtain (G2) by summing (G3) over k; hence, all statements
within the first part of the proof remain valid for this second part of the proof. We can thus take ψk to be a state in
the support of Pk as above to find by (G5) that

σE,k = trS
[
USE(ψk ⊗ ρE)U†SE

]
.

Our aim is to show that by requiring (G3) we have, for all k, that

σE,k = QkσE,kQk . (G6)

To this end observe that the quantity QkσE,kQk is a positive operator with unit trace for all k since by (G3)

trE
[
Qk trS [USE(ψk ⊗ ρE)U†SE ]Qk

]
= trSE

[
(1⊗Qk)USE(ψk ⊗ ρE)U†SE(1⊗Qk)

]
= trS

[
PkψkPk

]
= trψk = 1 .

But then we can compute

1 = tr[σE,k] = tr[(Qk + (1−Qk))σE,k(Qk + (1−Qk))]

= tr[QkσE,kQk] + tr[(1−Qk)σE,k(1−Qk)]

= 1 + tr[(1−Qk)σE,k(1−Qk)]

to find that (1−Qk)σE,k = σE,k(1−Qk) = 0 which implies (G6).

Let us finally prove Theorem 4:

Proof. (Theorem 4) To compute the energy cost Eproj = ∆EM + ∆ER of a projective measurement, we use (D2) to
simplify the problem to computing the entropy difference in the memory, βEproj = β∆ES + S(ρ′M )− S(ρM ). While
the entropy difference is hard to control for general measurements, Lemma 5 gives us enough information to compute
it exactly in the case of projective measurements.

Recall that the state of the memory after the measurement is given by

ρ′M = trS

[∑
k

(1⊗Qk)USM (ρS ⊗ ρM )U†SM (1⊗Qk)
]

=
∑
k

Qkρ̃MQk ,

where we introduced the quantum state ρ̃M := trS
[
USM (ρS ⊗ ρM )U†SM

]
. Also note that (USM , ρM , {Qk}) is, by

assumption, an implementation of the projective measurement {Pk}, i.e. (G1) (resp. (G3) of Lemma 5) is satisfied.
Hence, by Lemma 5, we know that the state ρ̃M takes the form

ρ̃M =
∑
k

tr[PkρS ]σM,k ,
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where the σM,k = QkσM,kQk are mutually orthogonal and have entropy S(σM,k) = S(ρM ) for all k. The post-
measurement state of the memory is therefore given by

ρ′M =
∑
k

Qkρ̃MQk =
∑
k

Qk

(∑
k′

tr[Pk′ρS ]σM,k′

)
Qk =

∑
k

tr[PkρS ]σM,k =
∑
k

pkσM,k

From this it follows that

βEproj = β∆ES + S(ρ′M )− S(ρM )

= β∆ES +
(
H({pk}) +

∑
k

pkS(σM,k)
)
− S(ρM )

= β∆ES +H({pk}) .

Appendix H: Comparison with previous literature

After we have now derived the theoretical bounds Eqs. (1) and (2) from the main text, we compare them in this
section with other results on the energy cost of quantum measurements that are given in, or can be extracted from,
the literature. In particular, we will compare here, in greater detail than in the main text, our results and framework
with those of Sagawa/Ueda21,26, Jacobs22, Bennett10,14, and Faist et al.18.

The framework most closely related to ours is the one from Sagawa and Ueda’s work21,26. In this work the following
lower bound on the energy cost for an efficient quantum measurement {Mk} is found:

Ecost ≥ ESU ≡ ∆ES + kBTI , (H1)

where I = S(ρS) +H({pk}) +
∑
k tr[MkρSMk lnMkρSMk]. As clarified in an Erratum21, the given derivation relies

crucially on the fact that the measurement is efficient25, i.e. each measurement outcome k corresponds to a single
measurement operator Mk. Our Eq. (1) in the main text and its derivation (given in Appendices B–D) give the
correct generalization of this bound to inefficient measurements, where each outcome k can correspond to multiple
associated jump operators Mk1,Mk2, . . .. Indeed, the general bound Eq. (1) just reduces to the statement (H1) from
ref.21 in the special case of efficient measurements, since in this case S(ρS) −

∑
k pkS(ρ′S,k) = I as is easily verified.

The form of the bound given in ref.21 does not give a correct generalization to general inefficient measurements.

The correct generalisation of the lower bound (H1) to general inefficient measurements can already be inferred
from Jacob’s work22, which was directly following up on ref.26. Instead of directly calculating the energy expense of
conducting the quantum measurement, ref.22 answered the converse question: After some “black box” has performed
the required measurement {Mki} on the state ρS , how much energy can be extracted by means of a feedback protocol
that makes use of the measurement result k and the post-measurement state ρ′S,k on the measured system S? This

feedback process is required to map each post-measurement state ρ′S,k to the initial state ρS such that the overall

process (measurement and feedback) is cyclic. It is found that the amount of energy that can be extracted in an
optimal feedback process is given by the average free energy difference

Eext,Jacobs =
∑
k

pk(F (ρS)− F (ρ′S,k)) = ∆ES + kBT
[
S(ρS)−

∑
k

pkS(ρ′S,k)
]
.

The derivation in ref.22 assumes that the “measurement black-box” acts on a thermal state (also in22 (Eq. (7)) a
non-thermal state ρS is first reversibly transformed into a thermal state).

If one now assumes the Second Law of Thermodynamics, which states that no net amount of energy can be extracted
in a cyclic process that involves a single thermal bath, one can use the optimal work extraction result (H) to argue
that at least this much energy had to be invested by the measurement device (“black box”), i.e.

Ecost ≥ ∆ES + kBT
[
S(ρS)−

∑
k

pkS(ρ′S,k)
]
,

which is identical to our Eq. (1) in the main text. Due to the above thermality restriction, the argumentation via (H)
is valid only if ρS was thermal, whereas our general derivation from Appendices B–D holds without that thermality
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requirement. Our result is therefore even applicable to systems far from thermodynamic equilibrium, which is the
typical situation in quantum information processing tasks such as quantum computing. Also, our derivation does not
assume the validity of Second Law, but instead provides a detailed microscopic picture of the implementation of the
measurement device, whereas that device is treated like a black box in ref.22. Our explicit microscopic modeling is
useful e.g. in order to display the work-extracting implementation of an inefficient measurement in our Fig. 3, which is
surprising in light of ref.21 and answers a theoretical question left open by refs.21,26 whether such an implementation
exists. The black-box treatment in ref.22 can never display such an implementation capable of work extraction.

We also briefly compare our results with Bennetts’s14 and other implementation-dependent bounds, such as
those in ref.28 for feedback protocols. According to ref.14, the total energy cost for measurement and erasure is
Ecost = ∆ES +kBT (S(ρ′M )−S(ρM )), where ρM and ρ′M denote the states of the measurement device before and after
the measurement step M. We indeed rederived this statement within our framework in Eq. (D2), but argue that
this result by itself is not very useful in our context, since it is not stated in terms of the measurement specification
{Mki} (and ρS , HS). Rather, for any fixed measurement {Mki} one can find many implementations (ρM , USM , {Qk})
yielding different values of S(ρ′M ) − S(ρM ), see e.g. the red vs. blue curves in Fig. 4. It is the virtue of Eq. (1) and
our main result Eq. (2) to give a bound on the energy cost solely in terms of the measurement specification {Mki}
and the system quantities ρS, HS . Only this feature allows us to compute fundamental energy costs for theoretical
protocols (as in our applications, Appendices I–J).

General results to compute the thermodynamic energy costs for the implementation of any quantum operation
were given in Faist et al.18. This work differs from all the previous more traditional thermodynamic treatments in
that it goes beyond the usual “state-transformation ideas” and instead requires the implementation to act correctly
on a larger subspace of states. This is similar in spirit to our implementation requirement (Appendix A), and we
will comment on commonalities and differences further below. In ref.18, the energy costs on the system S are not
considered, effectively setting HS = 0. All results in ref.18 are derived within the so-called single-shot setting and
later translated to the asymptotic i.i.d. setting; we will make a comparison below.

According to ref.18 the single-shot energy cost to perform the measurement step is given by kBT ·Hε
max(E|MS),

where the smoothed conditional max entropy Hε
max(E|MS) is evaluated on the state

|φ〉EMSR =
∑
k,i

|k, i〉E ⊗ |k〉M ⊗ (Mki|ψ〉SR) ,

where M is the memory that stores the outcome k, R is a purifying system of the measured system S such that
trR |ψ〉SR〈ψ| = ρS is the initial state of S, and E is an ancilla system needed to calculate the Stinespring dilation of

the measurement process E(ρS) =
∑
k |k〉〈k|M ⊗

∑
iMkiρSM

†
ki. Incorporating the single-shot cost kBT ln 2 ·Hε

max(M)
for erasure, the total minimal cost for measurement in the single-shot setting amounts to (see ref.18 (Supplementary
Note 4))

EεFaist = kBT · (Hε
max(E|MS) +Hε

max(M)) (H2)

We emphasize that here we require the resetting step not to make use of the system state ρ′S , because in relevant
situations (see e.g. Appendix J) this state is actually not available for the resetting step.

Below we will compare (H2) with our results Eqs. (1) and (2) in two different ways. For the first way of comparison,
note that a non-vanishing error ε > 0 implies that the process corresponds to a measurement only on a subset of
the state space. In our framework however we demand that the process acts correctly for all possible input states
according to our implementation requirement (still we evaluate the energy cost for a specific initial state ρS). For the
comparison of the two frameworks below, we therefore first set ε = 0 in the single-shot result (H2) which then reads18

E0
Faist = kBT · (ln ||E(ΠS)||∞ + ln rank[ρ′M ]) , (H3)

where ΠS is the projector onto the support of the input state ρS . Intuitively, this result gives the worst-case estimate
for the energy costs in a single shot of the measurement process.

Secondly, we will compare our results with the i.i.d. limit of (H2), where one evaluates the single shot quantities
for fixed error ε ∈ (0, 1) on product states ρ⊗n in the limit of large n, see ref.18 (Methods section). Taking this limit
turns the term Hε

max(E|MS) from (H2) into

S(E|MS) = S(EMS)− S(MS) = S(ρS)−
[
H({pk}) +

∑
k

pkS(ρ′S,k)
]
,
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as one can easily compute, and the term Hε
max(M) from (H2) into

S(M) = H({pk}) .

The i.i.d. limit of (H2) therefore evaluates to

EiidFaist = S(ρS)−
∑
k

pkS(ρ′S,k) , (H4)

which surprisingly equals exactly the lower bound presented in Eq. (1) for general measurements (again, HS = 0 in
ref.18).

The fact that the i.i.d. limit in (H4) agrees exactly with the bound presented in Eq. (1), implies that the i.i.d.

costs Eiid,projFaist of projective measurements are in general strictly lower than the energy cost Eproj predicted by our

main result Eq. (2) for projective measurements, Eiid,projFaist ≤ Eproj (the two values agree if and only if ρS was already
diagonal with respect to the measurement basis). We find this a highly interesting disagreement which we explain as
follows: The device constructed according to ref.18 implementing the measurement step optimally, is required to work
correctly only on the support of the input state ρS , rather than on the whole state space (see ref.18 (Supplementary Note
4A) and ref.S3). As a consequence, in the macroscopic limit the constructed device is guaranteed to perform correctly
only on the typical subspace of ρ⊗nS , which is much smaller than the whole state space unless ρS was completely mixed.
For our result Eq. (2) we require something stronger : The measurement device should perform correctly on the full
state space (see the implementation requirement in the Methods Section). Hence, our energy cost result exceeds the
one of ref.18, as we will see explicitly in the examples below.

Whether to use the i.i.d. limit18 in (H4) or our main result Eq. (2) depends on the physical situation. Here, we argue
that Eq. (2) is more appropriate than Eq. (H4) to compute the energy cost of quantum error correction (which we
describe in the main text and Appendix J). In the QEC scenario, a large number n of measurement operationsM are
applied independently to the n (logical) qubits of a quantum computer. However, a usual quantum computer is not

a tensor product state ρ⊗n but rather an n-qubit correlated (or even entangled) state ρ
(n)
ent, making the macroscopic

limit in ref.18 inappropriate for that case.
To illustrate the disagreement between our main result Eq. (2), the single-shot result Eq. (H3) and its i.i.d. limit

Eq. (H4), let us consider a projective measurement in the computational basis {|0〉, |1〉} on a qubit, initially in the
pure “superposition state” ρS = (|0〉+ |1〉)(〈0|+ 〈1|)/2, which has also been considered in ref.18 (Supplementary Note
4F, Example (III)):

(i) Our result Eq. (2) yields an energy cost for measurement and resetting of Eproj = kBT log 2 (plus whatever
energy change ∆ES is incurred on the system).

(ii) Evaluating the entropic terms for Eqs. (H3) and (H4) yields

ln ||E(ΠS)||∞ = − ln 2,

ln rank[ρ′M ] = + ln 2,

S(ρS) = S(ρ′S,k) = 0,

so that the single-shot energy cost as well as the energy costs in the i.i.d. limit are predicted to be

E0
Faist = EiidFaist = 0 .

This is strictly less than our prediction, for reasons explained above.

As a second (essentially classical) example, consider the same measurement on the state ρS = p0|0〉S〈0|+ p1|1〉S〈1|
which is diagonal in the measurement basis. In this case one can easily compute that our result Eq. (2) agrees with
the i.i.d. limit in Eq. (H4), but is generally less than the single-shot result Eq. (H3),

Eproj = EiidFaist = kBTH({p0, p1}) ≤ kBT log rank[{p0, p1}] = E0
Faist .

Equality holds in the chain if and only if ρS was completely mixed or one of the computational basis states.

Appendix I: Energy costs of quantum Zeno measurements

Here we compute the energy cost of conducting a stabilisation scheme via Zeno measurements – a process typical
for the field of quantum control. As in the main text we consider a quantum system S, initially in the pure state ρS =
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|0〉〈0|, with Hamiltonian HS = EσX , where σX is the Pauli operator and ±E are the two energy eigenvalues of HS .
Our goal is to study the energy cost of conducting a quantum Zeno stabilisation protocol that stabilises S against the
free Hamiltonian time evolution over the time span t by applying projective measurements {M0 = |0〉〈0|,M1 = |1〉〈1|}
at N regular time intervals δt = t/N . Since these measurements are projective, we can, by Theorem 4, compute the
energy cost of each measurement exactly.

Note that the protocol employs multiple iterations of the same projective measurement. In our framework this may
be equivalently described either by considering a single measurement device that is used repeatedly or by considering
multiple devices, each possibly a different implementation of that measurement. The energy costs of both approaches
are the same as the cost is by Theorem 4 independent of the specific implementation.

We find the following theorem for the total energy cost of Zeno stabilisation:

Theorem 6. Consider a quantum Zeno stabilisation scheme as above. To achieve high target fidelity F , the energy
cost of operating the devices that implement the projective measurements {M0 = |0〉〈0|,M1 = |1〉〈1|} is given by

EZeno '
1

2
kBT

(
Et

~

)2

ln

[
4.5

1− F

]
.

Hence, we find that the total energy required for stabilisation grows logarithmically in 1/(1−F ) for increasing target
fidelity F . In the asymptotic limit as F → 1 the energy cost is given by Eq. (3) in the main text. Limited energy
supply thus constrains our ability to stabilise a quantum system via Zeno control.

Proof. Let us denote the state on S after the n-th measurement by ρ
(n)
S = (1−εn)|0〉〈0|+εn|1〉〈1|. The probability that

the process returns the wrong state |1〉 after n steps is then given by εn; the fidelityS4 F ≡ F (ρ
(N)
S , ρS) = 〈0|ρ(N)

S |0〉
of the final state at the end of all N steps is F = 1− εN . Between the measurements, the system undergoes free time
evolution according to the unitary U = exp(−iδtHS/~) such that the probabilities after the (n+ 1)-th measurement
change to εn+1 = εn cos(Eδt/~)2 + (1 − εn) sin(Eδt/~)2. Since ε0 = 0 by assumption, this recursion formula has the
solution

εn =
1

2
(1− cos(2Eδt/~)n) = n

(
Eδt

~

)2

+O(δt4) .

According to our result for projective measurements (Theorem 4), the n-th measurement consumes energy βE
(n)
proj =

H({εn, 1− εn}), where we used that ∆ES = 0 for each step. The total energy required is then given by

βEZeno =

N∑
n=1

H({εn, 1− εn}) .

We are interested in stabilisation schemes that yield high target fidelity F , which can be achieved by applying the
measurements in shorter and shorter time scales, δt = t/N → 0, or in other words by applying more measurements
N → ∞ in constant time span t. In this limit the higher order terms O(δt4) of εn will not contribute to the energy

cost of the measurements, so we set εn ' n
(
Eδt
~
)2

. We then have F ' 1− 1
N

(
Et
~
)2

and

βEZeno =−
N∑
n=1

εn ln εn −
N∑
n=1

(1− εn) ln(1− εn)

'−
N∑
n=1

n

(
Et

~N

)2

ln

[
n

(
Et

~N

)2
]
−

N∑
n=1

(
1− n

(
Et

~N

)2
)

ln

[
1− n

(
Et

~N

)2
]

=−
(
Et

~

)2
(

N∑
n=1

n

N2
ln
n

N
+

N∑
n=1

n

N2
ln

[
1

N

(
Et

~

)2
])

−
N∑
n=1

(
1− n

(
Et

~N

)2
)

ln

[
1− n

(
Et

~N

)2
]

'−
(
Et

~

)2
(

N∑
n=1

1

N

n

N
ln
n

N
+
N(N + 1)

2N2
ln
[
1− F

])

−
N∑
n=1

(
1− n

(
Et

~N

)2
)

ln

[
1− n

(
Et

~N

)2
]
.
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In the limit N → ∞ we have
∑N
n=1

1
N
n
N ln n

N '
∫ 1

0
x lnxdx = −1/4 and ln[1 − n

(
Et
~N
)2

] ' −n( Et~N )2 (again higher
orders of the expansion do not contribute). Hence, we have

βEZeno '
1

4

(
Et

~

)2

− 1

2

(
Et

~

)2

ln [1− F ] +
1

2

(
Et

~

)2

=
1

2

(
Et

~

)2(
3

2
− ln[1− F ]

)
' 1

2

(
Et

~

)2

ln

[
4.5

1− F

]
.

Appendix J: Energy cost of quantum error correction

In this section we investigate another application of our result on the energy cost of projective measurements
(Theorem 4), namely computing the energy cost of conducting quantum error correcting protocols. In particular, we
consider the 5-qubit code31 in which the state of a single logical qubit |ψ〉 = α0|0L〉 + α1|1L〉 in the code space C2

L,
with α0, α1 ∈ C and |α0|2 + |α1|2 = 1, is encoded into the space C5 ≡ (C2)⊗5 of five physical qubits by using the
codewords24

|0L〉 =
1

4
[|00000〉+ |10010〉+ |01001〉+ |10100〉

+ |01010〉+ |00101〉 − |11011〉 − |00110〉
− |11000〉 − |11101〉 − |00011〉 − |11110〉
−|01111〉 − |10001〉 − |01100〉 − |10111〉] ,

|1L〉 =
1

4
[|11111〉+ |01101〉+ |10110〉+ |01011〉

+ |10101〉+ |11010〉 − |00100〉 − |11001〉
− |00111〉 − |00010〉 − |11100〉 − |00001〉
−|10000〉 − |01110〉 − |10011〉 − |01000〉] .

As in the main text we assume that each physical qubit is affected by the amplitude damping channel

Nγ(ρ) = J1ρJ
†
1 + J2ρJ

†
2

with Kraus operators J1 =
√
γ|0〉〈1| and J2 =

√
1− J†1J1, where γ ∈ [0, 1] determines the noise strength (γ = 0

corresponding to the noiseless case). Note however that our formalism applies to arbitrary noise models.
The error-correcting protocol is then a feedback scheme that allows to approximately recover the logical state |ψ〉

from the noisy state ρS,γ = N⊗5γ (|ψ〉〈ψ|) by applying so-called syndrome measurements

S1 = X ⊗ Z ⊗ Z ⊗X ⊗ I , S2 = I ⊗X ⊗ Z ⊗ Z ⊗X ,

S3 = X ⊗ I ⊗X ⊗ Z ⊗ Z , S4 = Z ⊗X ⊗ I ⊗X ⊗ Z ,

where X,Y, Z denote the Pauli operators and I is the identity matrix. Each syndrome measurement Sj has outcomes

sj ∈ {−1, 1}, occuring with probability p
(j)
sj = tr[P

(j)
sj ρS,γ ], where P

(j)
sj denotes the projector on the subspace corre-

sponding to eigenvalue sj . Furthermore all syndrome measurements commute and are hence jointly measurable. The

measurement operators of the joint measurement S are given by projections {Ps}15s=0 with Ps = P
(1)
s1 P

(2)
s2 P

(3)
s3 P

(4)
s4 and

outcomes (“syndromes”) s ≡ (s1, s2, s3, s4) that occur with probability ps = tr[PsρS,γ ].
We call a specific realisation of the 5-qubit code a separate measurement scheme if it employs four devices, each

implementing one of the syndrome measurements Si. If only a single device is employed that implements a joint
measurement S we call it the joint measurement scheme. Note that, for both separate and joint measurement scheme,
any single-qubit Pauli error is uniquely identified by one of the 16 possible syndromes s ≡ (s1, s2, s3, s4). Hence, such
errors can be corrected with certainty by applying the conditional unitary

VSM =
∑
s

Vs ⊗ Ps ,
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which applies the unitary Vs on the measured system S if the syndrome (which is stored in the memory after the
measurement and read out by projections Ps) is s. More concretely, since all single qubit errors (X,Y or Z) square
to identity, we simply apply, say, Vs = X ⊗ I ⊗ I ⊗ I ⊗ I if the syndrome s identified an X-error on the first physical
qubit. In the following we denote the final state after applying the joint measurement S and corresponding feedback
by

ρ̃S,γ =
∑
s

VsPsρS,γPsV
†
s .

Both the separate and the joint measurement schemes can be used for quantum error correction, but they come at
different energy costs as may be verified by employing Theorem 4: Whereas the average energy change on S, ∆ES , is
the same for both measurement schemes, the joint measurement scheme demands an additional energy cost from the
physical implementation

Eproj
C5 = kBTH({ps}15s=0) , (J1)

which is always less or equal to the additional energy cost

Esep
C5 = kBT

4∑
j=1

H({p(j)sj }sj=±1)

required to implement the four separate syndrome measurements. The reason for this is that a joint measurement
scheme can exploit correlations in the measurement outcomes to reduce the cost of the resetting step R. More
concretely, for all joint probability distributions p(s ≡ (s1, s2, s3, s4)) of random variables S1, S2, S3, S4 the following
relation holds:

H(S1S2S3S4) = H(S1) +H(S2S3S4|S1)

= H(S1) +H(S2|S1) +H(S3|S1S2) +H(S4|S1S2S3)

=

 4∑
j=1

H(Sj)

− I(S1 : S2)− I(S1S2 : S3)− I(S1S2S3 : S4) , (J2)

where H(S1S2S3S4) := H({p(s ≡ (s1, s2, s3, s4))}s) is the Shannon entropy of the joint probability distribution,
H(S2|S1) := H(S1S2) − H(S1) is the conditional entropy and I(S1 : S2) := H(S1) − H(S1|S2) is the mutual
information, which quantifies the correlations between the respective random variables and is always non-negative.
Hence, only if the measurement outcomes are uncorrelated (i.e. all mutual information terms in (J2) vanish), we have

that H({ps}15s=0) =
∑4
j=1H({p(j)sj }sj=±1) and the energy cost of the joint measurement equals the cost of all four

separate measurements. In Fig. 4, the difference between the blue and red curve is due to the mutual information
terms of the syndrome bits on the specific noisy states,

Esep
C5 − E

proj
C5 = kBT

(
I(S1 : S2) + I(S1S2 : S3) + I(S1S2S3 : S4)

)
.

Note that (J1) exactly determines the minimum additional energy requirements for quantum error correction and
is hence a drastic improvement to all previous results, which only provide lower bounds: Evaluating the result (D3)
obtained in refs.21,22 yields the best lower bound previously known

ESU
C5 := kBT

[
S(ρS,γ)−

∑
s

psS(PsρS,γPs/ps)
]
≤ Eproj

C5 ,

which itself is a slight improvement (due to concavity of the von Neumann entropy) upon the simple application of
Landauer’s principle as in ref.10,17 directly to the system S,

ELan
C5 := kBT

[
S(ρS,γ)− S(ρ̃S,γ)

]
≤ ESU

C5 ≤ E
proj
C5 .

Both lower bounds, ESU
C5 and ELan

C5 , predict much weaker energy requirements than actually needed for quantum error
correction (see Figure 4 for a comparison).
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Appendix K: Energy cost of the projections {Qk} during measurement step M

In the main text we claimed that the projections {Qk} onto the different subspaces Hk of the memory M employed
during the measurement step M can be implemented unitarily without any energetic costs using an environmental
system E. Here we prove this statement. This result on the energy cost of dephasing operations may be of independent
interest19. The following Theorem 7 also improves the main result of ref.20: The lower bound from ref.20 on the energy
cost of a dephasing operation is negative whenever the dephasing changes the state, whereas our optimal lower bound
is always exactly zero, Eq. (7).

Recall from Appendix A that the Hamiltonian of the memory is given by HM =
⊕K

k=1Hk, where Hk is a Hamil-
tonian on the respective subspace Hk with corresponding projection Qk.

Theorem 7. Let TM (σM ) =
∑
kQkσMQk be the dephasing operation on the memory M . Then for any dilation of

TM ,

TM (σM ) = trE [UME(σM ⊗ σE)U†ME ] ∀σM , (K1)

where σE is a thermal state on an environment E with Hamiltonian HE, the corresponding energetic cost

Edeph := tr[HME(UME(σM ⊗ σE)U†ME − σM ⊗ σE)]

is non-negative,

Edeph ≥ 0 .

Conversely, there exist σE and UME such that the energetic cost Edeph of the corresponding dilation of TM (σM ) is
precisely zero.

Proof. Our goal is to quantify the energetic cost Edeph = tr[HME(σ′ME − σME)] of implementing TM unitarily as

in (K1), where σME := σM ⊗ σE and σ′ME := UME(σM ⊗ σE)U†ME denote the initial and final state of M and E,
respectively. Due to the direct sum structure of HM =

⊕
kHk (see Appendix A) we know that [Qk, Hk] = 0, which

implies that the dephasing operation TM does not change the average energy on M . Hence, all energy expenses of
this implementation are due to energy changes in the environment E,

Edeph = tr[HE(σ′E − σE)] . (K2)

The initial state of the environment is, by assumption, thermal, i.e. σE = exp(−βHE)/ZE with ZE the partition
function. The final state of E on the other hand can be characterised by applying Lemma 5 from which we know that
there exist states σE,k with S(σE,k) = S(σE) for all k such that

σ′E =
∑
k

tr[QkσM ]σE,k ∀σM . (K3)

But then

Edeph = tr[HE(σ′E − σE)] =
∑
k

tr[QkσM ] tr[HE(σE,k − σE)] ≥ 0 ,

where the last inequality is due to the non-negativity of the relative entropy D which implies that the thermal state
minimizes the average energy on an entropic orbit, 0 ≤ β tr[HE(σE,k − σE)] = D(σE,k, σE) for all k.

We now show the second part of Theorem 7, that is the existence of a thermal state σE and a unitary UME that
implement the dephasing channel TM , i.e.

trE [UME(σM ⊗ σE)U†ME ] =
∑
k

QkσMQk ∀σM , (K4)

at vanishing energy cost, Edeph = 0. Instead of just naming possible σE and UME to achieve the goal, we provide
a characterisation of all unitaries UME which, given any fixed full rank state σE , satisfy (K4). In the end, we will
describe a simple explicit construction.
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Consider a pure state σM = ψ = |ψ〉〈ψ| on M in the support of a fixed projector Qk, i.e. Qkψ = ψ. Then from
(K4) we know that the marginal on M ,

trE [UME(ψ ⊗ σE)U†ME ] = ψ ,

is pure, while by (K3) the marginal on E is

trS [UME(ψ ⊗ σE)U†ME ] = σE,k ,

where σE,k is a state which is independent of ψ. This implies

UME(ψ ⊗ σE)U†ME = ψ ⊗ σE,k . (K5)

Let us now denote the spectral decomposition of σE by σE =
∑
j λj |φj〉E〈φj |. We note that all eigenvalues λj are

strictly positive since σE is assumed to have full rank. Substituting the decomposition of σE into (K5) we obtain∑
j

λjUME(ψ ⊗ |φj〉E〈φj |)U†ME = ψ ⊗ σE,k . (K6)

We therefore know that

trE

[
UME(ψ ⊗ |φj〉E〈φj |)U†ME

]
= ψ ∀j ,

i.e. the marginal on M of each of the pure states UME(ψ⊗|φj〉E〈φj |)U†ME must be pure itself and identical regardless
j – otherwise the marginal of the sum could not be pure as required by (K6). A unitary UME that satisfies (K4) with
full rank states σE is therefore always of the form

UME (|ψ〉M ⊗ |φj〉E) = |ψ〉M ⊗ Vψ|φj〉E , (K7)

with a unitary Vψ depending on ψ ∈ Qk. Note however that the right-hand side of (K7) must be linear in ψ due to
the linearity of the left-hand side. Hence, Vψ can only depend on the label k of the subspace corresponding to Qk, so
we write Vk = Vψ.

Up to now we have evaluated (K4) for pure states σM = ψ in the support of some Qk only. To characterise the
unitaries Vk we evaluate (K4) on all mixed initial states σM on M to find on one hand that

trE [UME(σM ⊗ σE)U†ME ] =
∑
k

QkσMQk . (K8)

On the other hand we can employ (K7) to compute

UME(σM ⊗ σE)U†ME = UME

(∑
ij

QiσMQj ⊗ σE
)
U†ME =

∑
ij

QiσMQj ⊗ ViσEV †j .

which together with (K8) yields∑
ij

trE
[
ViσEV

†
j

]
QiσMQj =

∑
k

QkσMQk ∀σM .

This holds if and only if the unitaries Vk satisfy

tr[ViσEV
†
j ] = δij ∀i, j , (K9)

implying that the unitaries Vk must form an orthonormal unitary operator basis with respect to the modified scalar
product (K9). Such orthonormal unitary operator bases only exist if the Hilbert space dimension dE of the environ-

mental system E is sufficiently large compared to the number K of possible outcomes k, i.e. dE ≥
√
K. For further

properties of unitary operator bases we refer to ref.S5.
Hence, given a full rank state σE on E, any unitary UME satisfying (K4) is of the form (K7) with unitaries Vk

that meet the condition (K9).
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To show that there exists an implementation of the dephasing channel (K4) with vanishing energy cost Edeph,
we may therefore choose the Hamiltonian of the environment E to be trivial, HE = 0, implying that the initially
thermal state of E is maximally mixed for all β, σE = 1E/dE , and that the energy cost is Edeph = 0 by (K2). The
corresponding unitary UME that implements the dephasing channel is given by UME =

∑
kQk ⊗ Vk with unitary

operators Vk satisfying tr[ViV
†
j ] = dEδij for all i, j, which can be easily checked by evaluating (K4)

trE [UME(σM ⊗ σE)U†ME ] = trE

[(∑
j

Qj ⊗ Vj
)(
σM ⊗ 1E/dE

)(∑
k

Qk ⊗ V †k
)]

=
1

dE

∑
j,k

QjσMQk tr[VjV
†
k ]

=
∑
k

QkσMQk .

The unitaries Vk can for example be chosen as distinct elements from the set of unitaries

Vl,m =

dE−1∑
r=0

e
2πi
dE

rm|l + r〉〈r| , l,m = 0, 1, ..., dE − 1 ,

where the addition in |l + r〉 is taken modulo dE . These d2E operators can be understood as a discrete version of the
Heisenberg-Weyl operators and indeed satisfy, as one can easily compute,

tr[Vl,mV
†
s,t] = dE · δl,sδm,t ∀l,m, s, t ∈ {0, ..., dE − 1} .

Appendix L: Work cost of quantum measurements and the Second Law of Thermodynamics

In this section we argue why our results on energy costs developed in this paper are, in fact, also statements about
thermodynamic work.

More concretely, we argue that all energy costs of an implementation of a quantum measurement stem from unitary
dynamics U only, so that thermodynamic work cost is given as the average energy change35,S6,S2

W = tr[H(UρU† − ρ)]

of a system with Hamiltonian H initially in the state ρ. Indeed, the energy expenses of the measurement stepM are
due to the unitary USM and not the projections {Qk} as shown in Appendix K and the resetting step is unitary by
construction. Hence, the overall work cost Wcost of conducting a general quantum measurement is exactly equal to
the energy cost Ecost in our results.

As a consequence of this identification of energy and work, the energy extraction example in Appendix F illustrates
a means to extract useful thermodynamic work from the measurement device. This may seem intriguing in the context
of the Second Law of Thermodynamics: Discussions on the net work gain in a whole cycle of a Szilard engine typically
assume that no work can be extracted in the measurement itself and argue that all work gained in the extraction
phase of the cycle is completely cancelled by the cost imposed by Landauer’s principle10 for resetting the memory
that stores the measurement outcomeS7.

We show however that our findings do not contradict the Second Law of Thermodynamics because of the following
reasoning: When considering the overall work gain of a Szilard engine that employs a measurement device as described
in our work extraction example (Appendix F), one needs to incorporate the cost of completing the thermodynamic
cycle by restoring the initial pure state on S. This restoring step consumes all work gained during the measurement.
Indeed, one finds by Eq. (D3)

Wcost ≥ ∆ES + kBT∆S

= ∆FS + kBT (S(ρ′S)− S(ρS)) + kBT∆S

= ∆FS + kBT
(
S(ρ′S)−

∑
k

pkS(ρ′S,k)
)

≥ ∆FS , (L1)
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where ∆FS = FS(ρ′S) − FS(ρS) is the free energy change in the system during the measurement, which corresponds
to the work cost of the aforementioned restoring step of the measured system S. The inequality (L1) follows from the
concavity of the von Neumann entropy (see (E5)).

This shows that the overall work expense in a full thermodynamic cycle that includes measurements is always
non-negative and proves the validity of the Second Law in our general setting.
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