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Classical information encoded in composite quantum states can be completely hidden from the reduced
subsystems and may be found only in the correlations. Can the same be true for quantum information? If
quantum information is hidden from subsystems and spread over quantum correlation, we call it masking
of quantum information. We show that while this may still be true for some restricted sets of nonorthogonal
quantum states, it is not possible for arbitrary quantum states. This result suggests that quantum qubit
commitment—a stronger version of the quantum bit commitment—is not possible in general. Our findings
may have potential applications in secret sharing and future quantum communication protocols.
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In a quantumworld, information encoded in arbitrary pure
quantum states cannot be copied perfectly, a result known as
the no-cloning theorem [1–4]. It plays an important role in
several quantum information processing tasks like quantum
key distribution [5] and quantum teleportation [6]. It was
also shown that impossibility of copying pure states can be
extended to arbitrary density matrices resulting in the no-
broadcasting theorem [7,8]. On the other hand, deleting
quantum information in a closed system is also known to be
impossible [9]. All these no-go theorems are consequences
of the linearity and the unitarity of quantummechanics. If we
are given a set of nonorthogonal states, unitarity prohibits
cloning or deleting of quantum states. A stronger version of
the no-cloning theorem states that a quantum copying
machine exists only when the blank state already possesses
the full information of the input state [10]. Together with the
no-deleting theorem, it gives a permanence to quantum
information—a notion that is only true for quantum infor-
mation which does not hold in a classical world (for other
no-go theorems; see Refs. [11–14] and in particular the no-
go theorems on quantum bit commitment [15,16]).
Not surprisingly, the no-cloning and the no-deleting

theorems are closely connected to the conservation of
information and the second law of thermodynamics
[17,18]. This gives us an impression that quantum infor-
mation is truly robust in some sense. However, we also
know that when a quantum system interacts with the
external world, it may lose its coherence and information
from a quantum state may disappear completely from the
original system in some extreme cases. Can such phenom-
ena indicate loss of information like the Maxwell demon
[19]? However, using the linearity and the unitarity of
quantum mechanics, one can prove that whenever there is
loss of information from one system there must be
appearance of the same in some subspace of the

environment [20]. This is known as the no-hiding theorem.
It shows that there is no information loss in reality and
conservation of quantum information in its full generality
holds. A recent experiment using nuclear magnetic reso-
nance shows that indeed information is conserved when a
qubit undergoes state randomization and can be fully
recovered from the ancillary states by applying a local
unitary operator in the ancillary Hilbert space [21].
Let us now consider an example of hiding classical

information by using quantum correlation of a two-
party state. Suppose we encode a single bit of classical
information in two orthogonal entangled states where the
encoding map is given by j0i → ð1= ffiffiffi

2
p Þðj00i þ j11iÞ and

j1i → ð1= ffiffiffi
2

p Þðj00i − j11iÞ. If we look at states of both the
subsystems, it has no information about the classical bit.
Here, we can say that although classical information is
actually hidden from both the subsystems, it is spread over
quantum correlation of the encoded states.
In this Letter, we deal with the encoding of quantum

information in an arbitrary composite quantum state. We
ask the question, can quantum information be hidden from
both the subsystems and remain only in the correlation? If
so, then somehow quantum information gets spread over
the “spooky” correlation [22] and remains invisible to both
the subsystems that are possessed by the local observers.
We call this spreading of quantum information over
quantum correlations as “masking” quantum information.
We prove that such masking is not possible for arbitrary
quantum states, although we have already seen that it is
possible for classical information to be masked. For some
restricted classes of quantum states, however, masking is
possible. Indeed, we show that there are sets of quantum
states whose information we can mask, which are con-
tinuous and contain nonorthogonal states.
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Our result has immediate applications in quantum bit
commitment [15] and quantum secret sharing protocols
[23–27]. In quantum bit commitment, the receiver (Bob) is
blind to the sender’s (Alice’s) committed bit, and this is
translated to the condition that the subsystem of the
encoded entangled state has no information about the
committed bit. We propose a quantum qubit commitment
where Alice is committed to a qubit chosen from an
alphabet of qubit states, and later she wants to convince
Bob that she had indeed chosen one of the states from that
set. From our result, it follows that such a scheme is not
possible, in general. Since the classical bit is a special case
of a qubit (obtained by passing the qubit through a
dephasing channel), no bit commitment also follows from
our theorem. Moreover, our results imply that the set of
states which can be masked is useful for quantum secret
sharing and may have applications in future quantum
communication protocols.
Masking quantum information.—We begin by formally

defining masking of quantum information.
Definition 1.—An operation S is said to mask quantum

information contained in states fjakiA ∈ HAg by mapping
them to states fjΨkiAB ∈ HA ⊗ HBg such that all the
marginal states of jΨkiAB are identical; i.e.,

ρA¼TrBðjΨkiABhΨkjÞ and ρB¼TrAðjΨkiABhΨkjÞ ð1Þ

have no information about the value of k.
We call such a machine S the masker. Since the action of

the masker is a physical process, it can be modeled by a
unitary operator US on the system A plus an ancillary
system B, given by

S∶ USjakiA ⊗ jbiB ¼ jΨkiAB: ð2Þ

This is a linear transformation and it preserves orthogon-
ality. Moreover, if S can mask information in a set of states
fjakig, then it can mask the information contained in a state
whose density matrix can be expressed as a linear combi-
nation of density matrices fjakihakjg. Furthermore, it is
important to require that neither A nor B contain the
information of the initial state. Otherwise a simple appli-
cation of SWAP gate will mask the information for A by
simply transferring it to B. Therefore, we demand that
masked information solely lies in the correlations between
A and B. This means that the final state must be an
entangled pure state and the marginal states A and B
contain exactly the same information.
We now prove that it is impossible to mask the

information in any arbitrary quantum state. This theorem
is in the same spirit as the no-cloning and no-deleting
theorems [1,2,9]. However, we will show below that the set
of maskable states is much richer than the set of states
which can be cloned and deleted.

Theorem 2.—No masker can mask all states of a qubit
in H2.
Proof.—Let us assume that S can mask all states of a

qubit in HA. Let fjkig1k¼0 be an orthonormal basis on HA

and the action of the masker gives us S∶jki → jΨki, where
jΨki are also orthonormal. Now, let us express an arbitrary
quantum state in terms of the basis elements of an
orthonormal basis as jai ¼ P

1
k¼0 αkjki. We now assume

that jai can be masked; i.e.,

jai¼α1j0iþα2j1i→ jΨi¼α1jΨ0iþα2jΨ1i; ð3Þ

where jα1j2 þ jα2j2 ¼ 1. Next, we take partial trace with
respect to either A or B to get

TrX½jΨihΨj� ¼ ρY þ TrXðα1α�2jΨ0ihΨ1jÞ
þ α�1α2TrXðjΨ1ihΨ0jÞ; ð4Þ

where fX; Yg ∈ fA; Bg and X ≠ Y. The last equation
satisfy the masking conditions if the off-diagonal terms
vanish, namely,

α1α
�
2TrXðjΨ0ihΨjÞ þ α�1α2TrXðjΨ1ihΨ0jÞ ¼ 0; ð5Þ

for arbitrary α1 and α2. It implies that we have

TrXðjΨ0ihΨ1jÞ ¼ TrXðjΨ1ihΨ0jÞ ¼ 0: ð6Þ

We will now show that the above conditions cannot be
satisfied for an arbitrary qubit. To prove this, we will use a
result, given in Ref. [28], for writing two orthogonal states,
which are given by

jΨ0i ¼ jμi ⊗ j0i þ jνi ⊗ j1i and

jΨ1i ¼ jμ⊥i ⊗ j0i þ jν⊥i ⊗ j1i; ð7Þ

where jμi and jνi are not necessarily normalized and not
mutually orthogonal while jμi (jνi) and jμ⊥i (jν⊥i) are
mutually orthogonal. Since the masked states are orthogo-
nal, we will use this decomposition. Let us now compute
the partial traces with respect to B explicitly. We have

TrB½jΨ0ihΨ0j� ¼ jμihμj þ jνihνj; ð8Þ

TrB½jΨ1ihΨ1j� ¼ jμ⊥ihμ⊥j þ jν⊥ihν⊥j; ð9Þ

TrB½jΨ0ihΨ1j� ¼ jμihμ⊥j þ jνihν⊥j: ð10Þ

Using Eq. (1), we get

jμihμj þ jνihνj ¼ jμ⊥ihμ⊥j þ jν⊥ihν⊥j:

The expectation value of the above equation with respect
to jμi gives
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jhμjμij2 þ jhνjμij2 ¼ jhν⊥jμij2: ð11Þ

Now using Eq. (6) and taking the expectation value of the
operator in Eq. (10) with respect to jμi, we get

hμjνihν⊥jμi ¼ 0; ð12Þ

which implies either hμjνi ¼ 0 or hν⊥jμi ¼ 0. But in either
case that makes Eq. (11) into

jhν⊥jμij2 ¼ jhμjμij2 or jhνjμij2 ¼ −jhμjμij2: ð13Þ

The latter is a contradiction, while in the former case, we
have jν⊥i ¼ eiϕjμi. Using this fact and taking the inner
product in Eq. (10) with hμj and jμ⊥i, we obtain

hμjTrBðjΨ0ihΨ1jÞjμ⊥i ¼ hμjμihμ⊥jμ⊥i ¼ 0: ð14Þ

The last equation means that either jμi ¼ 0 or jμ⊥i ¼ 0. If
so, in either case, the states in Eq. (7) are not entangled,
implying that the states of A and B can be simply swapped.
This is a contradiction. Therefore, arbitrary qubits cannot
be masked. ▪
Above we have shown that arbitrary two-dimensional

quantum states cannot be masked. We will now show that
this theorem holds in arbitrary dimensions. Interestingly,
note that the proof that is given below in arbitrary
dimension is different than that in Theorem 2. In particular,
Theorem 3 below uses the Schmidt decomposition, instead
of the decomposition of two orthogonal states [28].
Theorem 3.—An arbitrary quantum state cannot be

masked.
Proof.—See Supplemental Material [29]. ▪
The no-local broadcasting theorem [30] cleanly differ-

entiates between classical information, which can be copied,
and quantum information, which cannot be copied. Such is
not the case with masking of quantum information because
there is a continuous family of quantum states that can be
masked. This finding blurs the boundary that separates the
quantum and classical worlds. We now define such a masker
S♯ and identify the set of states that S♯ can mask. Let
fjkigdk¼1 be an orthonormal basis in HA. The joint unitary
operation corresponding to the masker S♯ is given by

S♯∶ jkbiAB → jkkiAB: ð15Þ

Theorem 4.—Masker S♯ can mask the quantum infor-
mation if it acts on a state belonging to a family of states
on the great hyperdisk whose extremal states are fjai ¼
ð1= ffiffiffi

d
p ÞPke

iϕk jkig, with the quantum information encoded
in the continuous parameters fϕk ∈ ½−π; π�g.

Proof.—Using S♯ in Eq. (15) we have

S♯jabi ¼ 1ffiffiffi
d

p
X

k

eiϕk jkki ¼ jΨi: ð16Þ

A partial trace with either system yields a maximally mixed
state. By convexity, we can mask all states on the great
hyperdisk. ▪
The masker S♯ can also mask any family of states fjãi ¼P
ke

iϕkrkjkig that have the amplitudes rk in common. In
fact, above we have only considered the special case where
rk ¼ 1=

ffiffiffi
d

p ∀k. Theorem 4 can be proven in this more
general case with minor modifications. The key difference
is that the marginal states for this case are diagonal in the
basis jkiwith eigenvalues jrkj2. Therefore, the marginals do
not contain any information about the phase. It may be
noted here that the set of states on the great hyperdisk is of
zero measure in the set of all states.
In the scenario that we have considered until now,

the encoding states are pure states. We can consider the
question of whether a similar analysis is possible in the
situation where the masker takes pure states to mixed states.
This is an open dynamic, and to ensure that the masking is
complete, we must require that the local parts of the
environment states do not carry any information about
the input states. We now further require that the environ-
ment states and the system states have vanishing quantum
correlations [31]. This is indeed possible. In particular, we
can replace the encoding states in the proof of Theorem 4
by (ð1= ffiffiffi

d
p ÞPke

iϕk jkkki, where the first two parties re-
present one party, say Alice, and her environment (call
them A and (EA), while the last two parties represent the
other party, say Bob, and his environment (call them B and
(EB). In this case, reduced density matrices of the system as
well as the environment are classically correlated, having
zero quantum correlations, and the masking works as
before. Note, however, that the state in the AEA: BEB
partition is still entangled.
Conjecture 5.—Based on the structure of the masker S♯

in Eq. (15), we conjecture that the maskable states
corresponding to any masker belong to some disk.
no qubit commitment.—In a bit commitment protocol,

Alice commits to a bit 0 or 1 and later she provides Bob
classical or quantum information that reveals the committed
bit. An ideal bit commitment protocol should ensure
Bob that Alice is indeed committed to her initial bit and
Bob can learn no information about the committed bit
before the opening phase. However, the entanglement
based cheating strategy makes any quantum bit commit-
ment protocol impossible in the nonrelativistic domain (see
Ref. [32] and references therein). Let us briefly recall the
cheating strategy. Suppose that Alice prepares two two-
particle quantum states jΨ0i and jΨ1i corresponding to bit
0 or 1, keeps one particle, and sends the other to Bob. As
Bob has no information about 0 or 1, this makes the
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reduced density matrix ρB ¼ TrAjΨ0ihΨ0j ¼ TrAjΨ1ihΨ1j.
This condition then implies that jΨ0i ¼

P
i

ffiffiffiffi
λi

p ja0i ijbii
and jΨ1i ¼

P
i

ffiffiffiffi
λi

p ja1i ijbii. However, jΨ0i ¼ UA ⊗
IBjΨ1i as they differ only by a local change of basis.
This is the key to cheating, because during the unveiling
stage, Alice can decide to do nothing or apply a local
unitary on her particle. Thus, she can always cheat on her
committed bit.
Our results can have application in a no qubit commit-

ment protocol where Alice commits to a qubit from a
certain set (that can potentially also contain nonorthogonal
states), instead of a bit, and later unveils to Bob that she has
indeed committed to that qubit. Suppose Alice wants to
commit to an arbitrary state of a qubit from a set fjψig.
Then she needs to prepare an entangled state jΨðψÞi for
each jψi with the condition that ρB ¼ TrAjΨihΨj is
independent of jψi. But, by the no-masking theorem, it
is impossible to achieve this if the set fjψig is the set of all
states. Hence, committing to an arbitrary qubit or qudit is
impossible. However, there is a trivial way to commit; i.e.,
Alice encodes jψi in a product state jψij0i and ρB has no
information about jψi. But in this encoding it is trivial to
cheat. In the second scenario, we ask if it is possible to
commit to two quantum states and have a qubit commit-
ment protocol. By our result, it is possible to mask two
quantum states and, hence, Alice can ensure that the
committed qubit or qudit is blind to Bob. But again, by
entanglement cheating strategy, Alice can always cheat.
The usual no bit commitment proof may be considered as a
dephased version of a no qubit commitment protocol.
To illustrate the cheating strategy in the qubit commit-

ment protocol, imagine that Alice commits a qubit state
chosen from two nonorthogonal states jψ1i and jψ2i, where

jψ1i ¼
1

2
ðj0i þ j1iÞ; jψ2i ¼

1

2
ðj0i þ eiϕj1iÞ: ð17Þ

Note that these two states can be masked by a map given by

jψ1i→
1

2
ðj00iþj11iÞ; jψ2i→

1

2
ðj00iþeiϕj11iÞ: ð18Þ

She keeps one of the qubits and sends the other qubit to
Bob. Because of the fact that these two states have the same
local reduced state, Bob does not know which qubit Alice
has actually committed to. Alice’s task is to convince Bob
that she has indeed committed to one of these two non-
orthogonal states. However, this is not possible. Even if she
has committed to a qubit chosen from fjψ1i; jψ2ig at the
unveiling phase, Alice can apply a local unitary trans-
formation that can change jψ1i ↔ jψ2i. This can be
achieved by a unitary operator that maps j0i ↔ j0i and
j1i ↔ eiϕj1i. Therefore, even if Alice can choose a qubit
state from a set that can be masked, it is possible to cheat at
the opening stage of the protocol.

It should be stressed that it is not possible to derive the no
qubit commitment result from the no bit commitment one.
This is because even though there is more information to be
hidden by Alice, there is also more information to be
extracted by Bob, and there is more space in the Hilbert
space for hiding, as we are considering nonorthogonal
states for encoding, unlike orthogonal states for bit commit-
ment. Moreover, we are hiding quantum information
instead of classical information. The comparison is similar
to that in quantum error correction or in fault tolerant
quantum computation versus their classical sisters.
Focusing on error correction, we know that classical error
correction exists even though classical error tries to
frustrate or destroy classical information. Quantum noise
is far richer and destroys quantum information through far
richer channels. However, there are also far richer ways of
correcting errors in the quantum world, and it is indeed
possible to have quantum error correcting codes.
Conclusions.—It is possible to encode classical informa-

tion in shared quantum states in such a way that the
information is not in the reduced states of the subsystems,
but only in the correlations. The question that we ask in this
Letter is whether the same can be possible for quantum
information—can quantum information be “masked”, i.e.,
encoded only in the correlations? Interestingly, it turns out
that while this is in general not possible, i.e., it is not possible
to mask arbitrary quantum states, quantum information in
certain restricted sets of states, that contain nonorthogonal
states, can be masked. The results are in a certain sense
complementary to no cloning and no deleting, as cloning and
deleting are possible only for orthogonal quantum states.
However, if we allow for more than two parties, i.e., A,

B, C, and so on, then it is possible to mask an arbitrary
quantum state. A straightforward example of this is to use
an error correction code [33]. However, collusion between
any two parties would then reveal the encoded quantum
information, at least in part. This has important implica-
tions for quantum interacting provers scenarios [34]. In
other words, the goal of quantum error correction is to store
all quantum information in correlation. Therefore, the no-
go theorem here fundamentally limits the amount and the
flavor of quantum information that can be stored in bipartite
quantum correlations.
Moreover, our masking protocol forms the basis for

quantum secret sharing [23,25]. Quantum mechanics
allows for secret sharing of classical information from a
so-called “boss” to her “subordinates,” such that the
subordinates are unable to retrieve the information without
collaboration between themselves. It is clear that the states
chosen by the boss to encode the secret classical bit, and
send to her subordinates, can be from a set of orthogonal
quantum states that can be masked, as masked information
cannot be decoded by the subordinates by local quantum
operations without classical communication. Similarly,
if the boss wants to send quantum information to her
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subordinates, she has to choose from a set of quantum
states, which, in general, will not be orthogonal. The results
obtained here can therefore be used to choose the substrates
for secret sharing of classical or quantum information.
The analysis of the sets of states that can be masked

reveals that quantum information stored strictly in the
phases can always be masked. This is interesting from
the perspective that it is the phase of the quantum state that
is considered to be the quintessentially quantum aspect,
and, for example, leads to quantum interference, and it is
exactly this phase that can be masked just like classical
information. Quantum states having information only in the
phases falls on a hyperdisk. The fact that such quantum
states can be masked reminds us of other quantum
information strategies and results like remote state prepa-
ration [35,36], measurement-based quantum computation
[37], the no universal-NOT gate [38], and parallel and
antiparallel states [39,40].
In this respect, it is interesting to uncover whether there

can be a (probabilistic) mixture of two orthogonal mixed
multipartite states so that there is no information available
about the probability when the mixture is accessed locally.
However, there will still be a classical bit that will be hidden
(“locally masked”), if this question is answered in the
affirmative. It is also interesting to know if there can be a set
of superposed states of three orthogonal pure multiparty
states so that there is no information available about the
(complex) superposition coefficients when an arbitrary
element of the set is accessed locally. If true, this will
be local masking of a qutrit.
The no-masking theorem implies that quantum qubit

commitment—of which quantum bit commitment is a
dephased version—is not possible. We have also discussed
the potential of using the sets of maskable sets as substrates
for secret sharing of classical and quantum information. It
is also possible to see that one can consider variations of the
maskers considers here, in particular, as partial maskers,
local maskers, and stochastic approximate maskers. Our
results will have important applications in quantum com-
munication and quantum information protocols that require
hiding of information in composite quantum systems.
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