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Consider N parties  sharing a multipartite state 

 observables

 outcomes 

        

Correlations are described by a collection of conditional probabilities

(n,m,2)

scenario

Preliminaries
Bell scenario

Or, equivalently, with correlators



Preliminaries
Nonlocality

   [J. S. Bell, Physics 1, 195 (2964)]

Local realistic/local/classical correlations

Otherwise they are called nonlocal (nonlocality)

tight Bell inequalitiesLocal polytope

vertices of the local polytope

nonlocal

Quantum key distribution 
[Ekert, PRL (1991); A. Acín et al., PRL (2007)] 

Randomness certification/amplification
[Pironio et al., Nature (2010); Colbeck, Renner, Nat. Phys. (2012)]

Device-independent entanglement certification
[J.-D. Bancal et al., PRL (2011)]  Self-testing

 [Mayers, Yao, QIC (2004)] 

Nonlocality is a resource for device-independent applications



  

 Bell inequalities: Hyperplanes constraining the LHV models

Example:  Mermin Bell inequality

Preliminaries 
Bell inequalities

Classes of multipartite Bell inequalities:

R. Werner, M. Wolf, PRA (2001);

M. Żukowski, Č. Brukner, PRL (2001);

C. Śliwa, PLA (2003);

 J. D. Bancal et al., JPA (2010);

L. Aolita et al. PRL (2012)

tight Bell inequalities
(convex hull problem)

[N. D. Mermin, PRL 65, 1838 (1990)]

Finite number of BI's (facets) enough to fully 
characterize the local polytope



Example: (n,2,2) scenario

Preliminaries
Nonlocality detection

Detection of nonlocality in the multipartite regime more difficultDetection of nonlocality in the multipartite regime more difficult

Mathematical complexity

 dimension of the local polytope

number of vertices
Difficult to find all Bell inequalities 
(4,2,2) scenario impossible

Difficult to determine           andcomplexity of multipartite quantum states

Experimental detection more demanding 

more efficient Bell inequalities

difficult to measure in large systems

Detection of nonlocality in the multipartite regime more difficultDetection of nonlocality in the multipartite regime more difficult

Nonlocality detection from two-body/few-body correlations?

less effective

experimentally friendly

lower complexity

(PI symmetry)



  

Preliminaries
Two-body Bell inequalities

J. Tura et al., Science (2014); 

       Ann. Phys. (2015); 

       J. Phys. A (2015) 

    

             Experimental realization of 

            Bell-correlation witness 

[Schmied et al., Science 352 441(2016)]

Bell operators resemble few-body spin Hamiltonians

Harnessing tools known in many-body physics to Bell inequalities

 

 

Nonlocality in low-energy states of physical systems?

Witnessing nonlocality from two-body correlationsWitnessing nonlocality from two-body correlations

Effective computation of           and quantum violation

Next step: Nonlocality in many-body spin systemsNext step: Nonlocality in many-body spin systems

Classes of two-body Bell inequalities 

Permutational invariance for any n

Translational invariance for low n

correlations via total spin components

480 atoms in a BEC



  

Hamiltonian Bell Operator Bell InequalityAppropriate inequality
coefficients

Suitable observables

Classical boundQuantum value
Ground state

energy

● Jordan-Wigner
● MPS, DMRG

Detection of Bell 
correlations?

● Dynamic
programming

Translational Invariance
Analytical

expressions

Exponential
speed-up

Overall idea



  

The setting
Spin-chain Hamiltonians

Consider n spin-1/2 particles/qubits on a line

Spin-1/2 Hamiltonians in 1D

A B C D E

string operators

Example: 

       XY-model in a transverse magnetic field
open or periodic 
boundary conditions

R – interaction range

R=1, two-body Hamiltonians, etc.



  

JW transform
Finding the ground state energy

Jordan-Wigner transformation

        Majorana fermions

Every Hamiltonian        becomes quadratic in 

real and antisymmetric
       (2n x 2n)

Williamson eigendecomposition
Ground state energy

Williamson eigenvalues
efficient computation of the ground state energy



  

Constructing a Bell inequality

Take a Hamiltonian

Consider the following class of Bell inequalities

 m observables in X-Y plane + 
extra observable along the Z axis   

      real parameters that 
          depend on         and          

Each party has m+1 
dichotomic measurements

Quantum violation efficiently 
with J-W transformation

How to efficiently compute

Each party has m+1 
dichotomic measurements

If                         the ground 
state is nonlocal 



  

    

Finding the classical bound
Dynamic programming

Reminder: to find           optimize 
over deterministic strategies

vertices of the local polytope

Local polytope

such strategies
Difficult problem

Dynamic programming

Overall complexity

Classical bound at

[Schuch, Cirac, PRA (2010)]

recursive optimization

each step –                                operations



  

    

Translational invariance
Finding the classical bound

Translationally invariant Bell inequalities

The idea: to minimize

eliminate half of the variables at each step

Exp. speedup

Lin
ear s

calin
g

Application to TI Bell inequalities 

overal complexity

To dermine              – d3 operations

A B C D E

vectors of variables group parties for

[G. Tóth, PRA (2005)]



  

Translational invariance
Quantum violation

TI Bell inequalities with the same 
set of observables at each site

independent of i

Jordan-Wigner transformation

and

 H is real, antisymmetric, block-circulant

TI Hamiltonians

Parity p=-1 Parity p=1

    is real, antisymmetric, block-circulant

diagonalization with real discrete 
Fourier transform

Analytical expression for ground state energy – violation of the Bell inequality

depend on H



Examples
A few-partite TI tight Bell inequalities

The polytope approach – facets of the local polytope

In general computationally expensive 

Simplification for few-body correlators and translational invariance 

dynamic programming

JW transformation

Example (m=3, d=R=2, n=8)

finding Bell inequalities 
in (4,2,2) impossible

Nonlocality detected for

All facets for R=2, m=3, d=2, n=3,…,8



Examples
Quasi TI class of Bell inequalities

The bipartite chained Bell inequality
– dichotomic

[Braunstein, Caves, Ann. Phys. 202, 22 (1990)]

For                the CHSH Bell inequality

[Clauser et al., Phys. Rev. Lett. 23, 880 (1969)]

A multipartite Bell inequality for even number of parties

A B C D E
      

violated for

no violation for                 due to monogamy of correlations 

 The case of arbitrary                is more demaning dynamic programming



Examples
Quasi TI class of Bell inequalities

Take the following observables 

The Bell operator is a two-body XY-like Hamiltonian

The optimal case is m=2

JW transformation

Ground state is nonlocal
in the blue parameter region



Conclusion

Application of methods known in many-body 
systems to multipartite Bell inequalities

Our Bell inequalities are experimentally accessible
                (two-body, few-body correlations)

Thank You!
J. Tura, G. de las Cuevas, R.A.

M. Lewenstein, A. Acín, J. I. Cirac,

Phys. Rev. X 7, 021005 (2017)

Efficient computation of quantum 
violation with J-W transformation

Efficient computation of classical 
bounds with dynamic programming

Translationally invariant case

Analytical formula for quantum violation Exponential speed-up in computation
                   of classical bounds

Toolbox to study nonlocality in many-body quantum systems

For other Bell operators 
numerical methods (MPS, DMRG)
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We present a method to show that low-energy states of quantum many-body interacting systems in one
spatial dimension are nonlocal. We assign a Bell inequality to the Hamiltonian of the system in a natural
way and we efficiently find its classical bound using dynamic programing. The Bell inequality is such that
its quantum value for a given state, and for appropriate observables, corresponds to the energy of the state.
Thus, the presence of nonlocal correlations can be certified for states of low enough energy. The method
can also be used to optimize certain Bell inequalities: in the translationally invariant (TI) case, we provide
an exponentially faster computation of the classical bound and analytically closed expressions of the
quantum value for appropriate observables and Hamiltonians. The power and generality of our method
is illustrated through four representative examples: a tight TI inequality for eight parties, a quasi-TI
uniparametric inequality for any even number of parties, ground states of spin-glass systems, and a
nonintegrable interacting XXZ-like Hamiltonian. Our work opens the possibility for the use of low-energy
states of commonly studied Hamiltonians as multipartite resources for quantum information protocols
that require nonlocality.

DOI: 10.1103/PhysRevX.7.021005 Subject Areas: Condensed Matter Physics,
Quantum Physics,
Quantum Information

I. INTRODUCTION

Nonlocality is a fundamental property of nature in which
the statistics obtained by performing some local measure-
ments on some composite quantum systems cannot be
reproduced by any local hidden variable model [1]. These
so-called nonlocal correlations cannot be mimicked by any
local deterministic strategy, even if assisted by shared
randomness [2]. Nonlocality is detected by the violation
of a Bell inequality [3] and it has recently been demonstrated
in three loophole-free Bell experiments [4–6]. Detection of
nonlocality is a sufficient condition to demonstrate, in a
device-independent (DI) way, that the state producing such
correlations is entangled. From an operational point of view,
nonlocality is a resource that enables the implementation of
DI quantum information protocols, such as DI quantum key
distribution [7,8], DI randomness expansion [9] or amplifi-
cation [10,11], or DI self-testing [12,13].
The study of quantum many-body systems has benefited

during the past decades from insights of the field of

quantum information, in particular concerning the under-
standing of their correlations [14,15]. This has, however,
mostly focused on the study and experimental detection of
entanglement [16–18], while the role of nonlocal correla-
tions, which are stronger, remains rather unexplored. There
are at least three reasons for that. First, the known Bell
inequalities for multipartite systems involve correlations
among many particles [19–23], thus rendering their
measurement a formidably challenging task. Second, the
mathematical characterization of nonlocal correlations is an
NP-hard problem [24]. Third, the size of the description of
multipartite quantum states grows, in general, exponen-
tially with the system size, posing a strong barrier to the
analysis of the quantum correlations in large systems.
However, recent advances [25,26] have shown that, by
measuring only one- and two-body correlation functions,
nonlocality can be revealed in some multipartite quantum
systems, opening the way to its detection in many-body
systems [27] (see also Ref. [28]).
In this work, we show that the ground states of

some quantum spin Hamiltonians in one spatial dimension
are nonlocal. We assign a Bell inequality to the given
Hamiltonian in a natural way and we calculate its clas-
sical bound using dynamic programing. The Bell inequa-
lity is constructed in such a way that, for appropriate
quantum observables, the Bell operator coincides with the
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Hamiltonian. The idea is that if the ground state energy is
beyond the classical bound, this signals the presence of
nonlocal correlations in the ground state. The ground state
energy is computed by exact diagonalization using the
Jordan-Wigner (JW) transformation, which maps the system
of spins to a quadratic system of fermions. The method just
presented can also be seen from the opposite point of
view, namely, as a way to optimize certain classes of Bell
inequalities for many-body systems under some quantum
observables. We also study the translationally invariant (TI)
setting, inwhichweprovide an exponentially faster algorithm
to find the classical bound and we obtain analytical results for
the quantum value. [In this work, we refer to the quantum
value as the expectation value of the ground state of the Bell
operator under appropriate quantum observables (such that it
matches the Hamiltonian). This should not be confused with
the quantum bound of a Bell inequality, which is the infimum
over all quantum states and observables.] Then we illustrate
our framework by applying it to four representative examples:
first, a tight TI Bell inequality for eight parties; second, a
quasi-TI Bell inequality for any even number of parties; third,
we show that the ground state of anXY spin glass has nonlocal
correlations in some parameter region; and finally, a non-
integrable interacting XXZ-like Hamiltonian to which we
assign a variation of Gisin’s elegant Bell inequality [29] and
we find its quantum value numerically using matrix product
states and the density matrix renormalization group [30].
This shows that ourmethod is not limited toHamiltonians that
can be mapped to a system of free fermions via the JW
transformation, but it can be applied to any spin Hamiltonian
with short-range interactions in one spatial dimension.
The paper is organized as follows. In Sec. II, we present

our method. In Sec. III, we show how to optimize certain
classes of many-body Bell inequalities. In Sec. IV, we
particularize our results to the TI case. In Sec. V, we illustrate
our methods with four examples. Finally, in Sec. VI, we
conclude and explore future lines of research.

II. METHOD

In this section, we present a method to analyze when the
ground state of some spin Hamiltonians is nonlocal, namely,
when the quantum value is beyond the classical bound. We
first present the setting (Sec. II A). We then construct a Bell
inequality from the given Hamiltonian (Sec. II B) and we
compute its classical bound using dynamic programing
(Sec. II B 1). Then we find the quantum value of the
inequality (Sec. II C). To this end, we first review the
exact diagonalization of quadratic fermionic Hamiltonians
(Sec. II C 1) and then we relate the spin Hamiltonian and the
fermionicHamiltonianvia the Jordan-Wigner transformation
(Sec. II C 2).

A. Setting

We consider quantum spin-1=2 Hamiltonians of n par-
ticles in one spatial dimension (henceforth, one-dimensional)

with periodic boundary conditions, with short-range inter-
actions, up to R neighbors:

H ¼
Xn−1

i¼0

!
tðiÞσðiÞz þ

XR

r¼1

X1

α;β¼0

tði;rÞα;β Strði;rÞα;β

"
; ð1Þ

where tðiÞ and tði;rÞα;β are real parameters,

Strði;rÞα;β ≔ σðiÞxþασ
ðiþ1Þ
z …σðiþr−1Þ

z σðiþrÞ
xþβ ð2Þ

are the so-called string operators, σðiÞx , σðiÞy , and σðiÞz are the
Pauli matrices acting on the ith site, and the indices of the
sites are taken modulo n. We denote xþ 1 ≔ y for short.
On one hand, as we explain it in detail in Sec. II C,

this choice of Hamiltonians is convenient from a purely
mathematical perspective, as they can be exactly diagon-
alized via the JW transformation. On the other hand,
Hamiltonians of the form Eq. (1) are general enough to
include many cases of interest. For instance, the case R ¼ 1
corresponds to a one-dimensional spin-1=2 Hamiltonian
with nearest-neighbors interactions, under a transverse
magnetic field:

H ¼
Xn−1

i¼0

!
tðiÞσðiÞz þ

X1

α;β¼0

tði;1Þα;β σðiÞxþασ
ðiþ1Þ
xþβ

"
: ð3Þ

Nevertheless, our method can also be applied to
Hamiltonians with local interactions that do not rely on
the string operator structure, at the price of having to
compute their ground state energy numerically, as we
illustrate in the example in Sec. V D.

B. Construction of a Bell inequality

In this section, we study the classes of Bell inequalities
that are relevant for our work. We construct Bell inequal-
ities such that, for some quantum observables, the corre-
sponding Bell operator B satisfies

B ¼ βC1þH; ð4Þ

where βC ∈ R is the so-called classical bound and H is
defined as in Eq. (1). We use the following convention in
writing down Bell inequalities. We want to obtain Bell
inequalities of the form I þ βC ≥ 0. The part of the Bell
operator that corresponds to I will be the Hamiltonian H,
and thus, states with low enough energy, lower than −βC,
will give a violation of the Bell inequality. The classical
bound βC is defined as

βC ¼ − min
LHVM

I; ð5Þ

where the minimum is taken over all local hidden variable
models (LHVM) (cf. Eq. [3]). Observe that the quantum
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state that minimizes the expectation value of B is the
ground state of H.
This motivates the study of Bell inequalities in the

following scenario: We have n parties with m dichotomic
observables with outcomes !1 at their disposal. We denote
the choices of measurements by k ¼ ðk0;…; kn−1Þ, with
0 ≤ ki < m, and the outcomes they produce by a ¼
ða0;…; an−1Þ, with ai ¼ !1. We denote by PðajkÞ the
vector of conditional probabilities collected when they
perform the Bell experiment. Because of the no-signaling
principle, the marginals observed by any subset of parties
do not depend on the choices of measurements performed
by the rest; thus, Pðfaigi∈Sjfkigi∈SÞ is well defined on any
subset S. In the case of dichotomic measurements, one
normally works with the correlators Mði;rÞ

k ,

Mði;rÞ
k ≔

X

a

!Yr

j¼0

aiþj

"
PðajkÞ; ð6Þ

where, abusing notation, we are now denoting k ¼
ðki;…; kiþrÞ and a ¼ ðai;…; aiþrÞ.
If R > 1, we will consider mþ 1 measurements, due to

the σz in between [cf. Eq. (2)]. The Bell inequalities that are
naturally tailored to a Bell operator of the form of Eq. (4)
can be written as I þ βC ≥ 0, where

I ≔
Xn−1

i¼0

!
γðiÞMði;0Þ

m þ
XR

r¼1

Xm−1

k;l¼0

γði;rÞk;l Mði;rÞ
ðk;m;…;m;lÞ

"
; ð7Þ

and γðiÞ, γði;rÞk;l are real parameters that depend on the tðiÞ and

tði;rÞα;β of Eq. (1). Despite the fact that I contains up to

(Rþ 1)-body terms, its coefficients γðiÞ and γði;rÞk;l show that
it is essentially a two-body Bell inequality, since the
measurement choice of the parties in the middle of the
string is fixed to be m, in the sense that the number of
coefficients γðiÞ and γði;rÞk;l is the same as in a two-body Bell
inequality. Note that the number of measurements m
performed on the x-y plane will not affect the form of
Eq. (1). The only measurement that is not performed in this
plane is in the z direction; therefore, we treat it as a special
case and we say we have mþ 1 measurements.

1. Classical optimization

We now describe how to efficiently compute the classical
bound βC of the Bell inequalities introduced in Eq. (7). It is
well known that for a generic Bell inequality for n parties,
m measurements, and d outcomes the classical bound
cannot be found efficiently, as it requires solving a linear
programwith dmn constraints [3]. The particular form of the
Bell inequalities we are considering, however, allows us to
find an algorithm that, in the many-body regime (i.e., for
fixed d, m and R) has OðnÞ complexity. For simplicity, we

consider a Bell inequality I of a slightly more general form
than those of Eq. (7) and with d ¼ 2 outcomes:

I ≔
Xn−1

i¼0

XR

r¼0

Xmrþ1−1

k¼0

γði;rÞk Mði;rÞ
k ; ð8Þ

where k ¼ ðki;…; kiþrÞ and 0 ≤ kj < m. After we present
our method, it will become clear that there is no loss of
generality in considering dichotomic measurements, as the
result can be straightforwardly generalized to an arbitrary d.
To find βC, we need to optimize I over all local hidden

variable models. By Fine’s theorem [2], it suffices to
optimize I over all deterministic local strategies, in which
the correlators Mði;rÞ

k factorize as

Mði;rÞ
k ¼

Yrþ1

j¼0

MðiþjÞ
kj

; ð9Þ

where MðiÞ
ki

can be !1. Thus,

βC ¼ − min
MðiÞ

ki
¼!1

I; ð10Þ

where the minimum is taken over all possible assignments
of MðiÞ

ki
to !1 for all i and k.

Let us first solve the case with open boundary conditions
(OBC), i.e., the case where γði;rÞk ¼ 0 when iþ r ≥ n.
We follow a dynamic programing procedure [31] that splits
the minimization Eq. (10) into nested parts.
To this end, we represent a local deterministic strategy as

a matrixMwhose rows index the measurement choices and
whose columns index the party, and the entry ðk; iÞ is the
value assigned in the deterministic strategy to the kth
observable of the ith party. Thus, M is a (m × n) matrix
whose entries take integer values þ1 or −1. Let Mði;RÞ

denote the submatrix of M consisting of columns i to
iþ R − 1. The goal of the dynamic programing is to find an
optimal M, which will give βC. This will be obtained
recursively.
Let hi be the function defined for i > 0 as

hiðMði−1;Rþ1ÞÞ ≔
XR

r¼0

Xmrþ1−1

k¼0

γði−1;rÞk Mði−1;rÞ
k : ð11Þ

Note that because of Eq. (9), hiðMði−1;Rþ1ÞÞ is a real
number. Now we define a recursive function Ei, which
contains the optimization up to the (i − 1)th site. Explicitly,
E0ðMð0;RÞÞ ≔ 0 and

EiðMði;RÞÞ ≔ min
Mði−1Þ

k

fEi−1ðMði−1;RÞÞ þ hiðMði−1;Rþ1ÞÞg;

ð12Þ
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for i > 0. Note that Ei optimizes the local deterministic
strategy on the (i − 1)th party, which amounts to choosing
the optimal values of the (i − 1)th column of M. This
naturally depends on the next R columns, which we need to
consider as variables and calculate Ei for all their possible
values. Therefore, to efficiently evaluate EiðMði;RÞÞ, we
only need to access the stored values of Ei−1 on Mði−1;RÞ

and not Ei−2 and so on. The computation of EiðMði;RÞÞ thus
requires evaluation of the 2m different deterministic local
strategies corresponding to the values Mði−1Þ

k (see Fig. 1).
The classical bound Eq. (10) is obtained as the end

product of this minimization procedure; namely,

βC ¼ −EnðMðn;RÞÞ: ð13Þ

Note that En is actually independent of Mðn;RÞ because
we are in the OBC case, so all the γk’s that would extend
beyond the nth party are zero.
This procedure can be easily generalized if the Bell

inequality has d > 2 outcomes. In this case, one has to take
into account that the notion of correlators introduced in
Eq. (6) is no longer well defined (as the one-to-one
correspondence between probabilities PðajkÞ and correla-
tors Mði;rÞ

k no longer holds). Thus, one needs to express the
Bell inequality in terms of probabilities:

I ¼
Xn−1

i¼0

XR

r¼0

Xmrþ1−1

k¼0

Xdrþ1−1

a¼0

γði;rÞk;a PðajkÞ; ð14Þ

where a ¼ ðai;…; aiþrÞ and k has the same structure.
Note that PðajkÞ implicitly depends on i and r
[cf. Eq. (6)], thus being a marginal (rþ 1)-body proba-
bility distribution. Again, like in the d ¼ 2 case, by virtue

of Fine’s theorem [2], it suffices to consider those
probability distributions in which PðajkÞ factorizes; i.e.,

PðajkÞ ¼
Yr

j¼0

PðaiþjjkiþjÞ: ð15Þ

Since each PðaijkiÞ can now take d different deterministic
values, the minimization in Eq. (12) is carried over
variables that can take up to d different values. For
instance, in Fig. 1, instead of only red and black, one
would have d different possible colors.
In summary, the overall minimization is performed in

OðndmðRþ1ÞÞ time. Since d, m, and R are fixed, the overall
scaling is OðnÞ, although in practice it is advisable to bear
in mind the prefactor. This algorithm gives not only the
classical bound βC [for which it requires OðdmRÞ ¼ Oð1Þ
memory], but it also constructs a deterministic local
strategy achieving it [requiring OðmnÞ ¼ OðnÞ memory].
Let us now consider the periodic boundary conditions

(PBC) case. This can be reduced to the OBC case by
splitting the Bell inequality with PBC at an arbitrary
position i while fixing a value of Mði;RÞ. The correlators
that contain parties in the set fi;…iþ Rg can be effectively
moved to the left or right of the cut by updating the
coefficients of I: If all the parties on the correlator belong to
the set fi;…; iþ Rg, then this correlator has a definite
value that becomes a constant in the optimization; if just
one party lies outside, then the one-body weights at sites
i − 1 or iþ Rþ 1 can be updated accordingly, and so on.
In Appendix B, we explain this procedure in detail.
Since the amount of Mði;RÞ ’s for which the actual

minimum of I is achieved is finite, the PBC case is solved
by considering dmR OBC cases. This does not change the
overall complexity, but it increases the prefactor. The
classical bound of I is in the PBC case found in
Oðndmð2Rþ1ÞÞ ¼ OðnÞ time and Oð1Þ memory for βC and
OðnÞ memory for the deterministic local strategy.
Note that it is crucial for ourmethod thatR is constant. IfR

were comparable to n, the dynamic programing procedure
would no longer be efficient. In fact, optimizing one-
dimensional Bell inequalities with full-range correlators is
equivalent to optimizing general Bell inequalities, where
results in computer science indicate that this is an extremely
hard problem [3,24]. Note that, even in the bipartite case,
deciding whether a probability distribution form dichotomic
measurements is local is NP-complete [32].

C. Quantum value

In this section, we show how to find the ground state
energy of the Hamiltonian H introduced in Eq. (1). To do
that, we first review the exact diagonalization of quadratic
Hamiltonians in fermionic operators (Sec. II C 1). Then, we
transform the spin operator H to a quadratic fermionic

FIG. 1. The representation of the matrixM at the step where we
compute Ei for an inequality with dichotomic measurements with
R ¼ 2. The color (red or black) corresponds to the outcome
assigned to that observable. At the ith step, an optimal local
deterministic strategy for parties 0 to i − 2 is already set, and we
are minimizing the local deterministic strategy at the (i − 1)th site
(green squares). In order to perform the minimization, we need
the values of the ith and (iþ 1)th parties to be fixed (blue
triangles); i.e., we need to give a value toMði;2Þ. We check the 2m

possible values for the observables at site i − 1 and we find an
optimal assignment for them.
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operator Ĥ via the JW transformation [33]; see also
Refs. [34,35] (Sec. II C 2).
Throughout this paper, we denote fermionic operators

with a hat and spin operators without. Note that the JW
transformation is a global operation that breaks the sense of
locality in a Bell experiment, but we use it merely as a
mathematical tool to find the ground state energy of H.
Recall that a quadratic Hamiltonian in fermionic oper-

ators has the form

Ĥ ¼
X

0≤i≠j<n
Aijâ

†
i âj þ Bijâiâj þ H:c:; ð16Þ

where Aij and Bij are complex numbers and H.c. stands for
Hermitian conjugate. The âi (â

†
i ) are annihilation (creation)

operators of a fermionic system of n Dirac modes, indexed
by i, with 0 ≤ i < n. The ith mode is assigned an
annihilation operator âi and a creation operator â†i . The
creation operator â†i , acting on the vacuum state jΩi,
populates it with a single excitation, j1ii ≔ â†i jΩi, whereas
the annihilation operator satisfies âijΩi ¼ 0 ∀i. Such
operators satisfy the following canonical anticommutation
relations (CARs):

fâi; â†jg ¼ δi;j1̂; fâi; âjg ¼ 0 ∀i; j: ð17Þ

The CARs [Eq. (17)] imply that, without loss of generality,
the matrices A and B in Eq. (16) can be taken to be
Hermitian and antisymmetric, respectively.

1. Exact diagonalization

In this section, we compute the ground state energy of a
Hamiltonian of the form Eq. (16). The operator Ĥ of
Eq. (16) can be written in terms of Majorana fermions as

Ĥ ¼ i
2

Xn−1

i;j¼0

X1

α;β¼0

Hi;α;j;βĉi;αĉj;β; ð18Þ

where the 2n Majorana fermions ĉi;α are defined as

ĉi;α ≔ iαðâi þ ð−1Þαâ†i Þ; α ∈ f0; 1g; 0 ≤ i < n;

ð19Þ

where i2 þ 1 ¼ 0. Note that ĉi;α are Hermitian operators,
and they satisfy the CARs

fĉi;α; ĉj;βg ¼ 2δi;jδα;β1̂: ð20Þ

It follows that the matrix H in Eq. (18) can be taken real
antisymmetric due to Eq. (20) without loss of generality.
Since every real antisymmetric matrix H admits a
Williamson decomposition H ¼ OJOT [36], where O is
an orthogonal transformation and

J ¼ ⨁
n−1

k¼0

!
0 εk

−εk 0

"
; ð21Þ

the operator Ĥ is diagonalized by introducing a new set of
Majorana operators d̂k;a:

Ĥ ¼ i
Xn−1

k¼0

εkd̂k;0d̂k;1; ð22Þ

where fid̂k;0d̂k;1gmutually commute and the newMajorana
operators are defined as

d̂k;a ≔
X

i;α

Oi;α;k;aĉi;α; ð23Þ

satisfying the same CARs as in Eq. (20). Note that every
orthogonal transformation O ∈ Oð2nÞ [the set of orthogo-
nal matrices of size n is denoted OðnÞ] takes a set of
Majorana fermions fĉi;αg into a new set fd̂k;ag obeying the
same CARs as Majorana fermions. In Appendix E, we
discuss details on how to obtain an O for which Eq. (21)
holds.
The minimal eigenvalue E0 of Ĥ is then given by

E0 ¼
Xn−1

k¼0

skεk; ð24Þ

achieved on a simultaneous eigenstate of the operators
fid̂k;0d̂k;1g, with respective eigenvalue sk ≔ −sgnðεkÞ.

2. From spins to fermions

In this section, we review the JW transformation and we
show that the spin Hamiltonians that can be diagonalized
with the method we describe in Sec. II C 1 are precisely
those of the form of Eq. (1).
The JW transformation establishes an isomorphism

between the Fock space of n Majorana modes and the
n-qubit Hilbert space ðC2Þ⊗n. For Majorana fermions, the
JW transformation can be expressed as

ĉi;α ↔ ð−1Þα
!Yi−1

j¼0

σðjÞz

"
σðiÞxþα; α ∈ f0; 1g: ð25Þ

It follows that for every fermionic operator we obtain an
operator acting on ðC2Þ⊗n and vice versa. The operator Ĥ
as in Eq. (18) consists of the terms iĉi;0ĉi;1, which

correspond to σðiÞz , and

ið−1Þβĉi;1−αĉiþr;β; α; β ∈ f0; 1g; r ≥ 1; ð26Þ

which correspond to the string operators Stri;rα;β [cf. Eq. (2)]
if iþ r < n. If iþ r ≥ n, we need to define a global parity
operator
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P̂ ≔
Yn−1

i¼0

iĉi;0ĉi;1 ↔
Yn−1

i¼0

σðiÞz ≕ P: ð27Þ

In this case, the string operator takes the form

ð−1Þ1þαþβStriþr−n;n−r
1−β;1−α ¼ Stri;rα;βP: ð28Þ

Note that, sinceH commutes with P, its ground state has
a well-defined eigenvalue p ¼ %1 of the parity. This fact
becomes relevant in Sec. III.

III. NEW METHOD TO OPTIMIZE BELL
INEQUALITIES

The method described so far can also be seen from the
opposite perspective: One considers Bell inequalities of the
form of Eq. (7) with given coefficients γði;rÞk ’s, and one
calculates its βC with dynamic programing. On the other
hand, we optimize the quantum value over a restricted set of
measurements, namely, single qubit σz measurements, and
for the r-body correlators, qubit measurements in the x-y
plane for parties i and iþ r and σz measurements in the
intermediate ones [cf. Eq. (7)]. The resulting Bell operator
can be mapped to a system of fermions as in Eq. (18),
whose diagonalization allows us to find the minimal
quantum value.
The latter process is carried out as follows. Let us denote

the kth observable of the ith party by MðiÞ
k , with k ranging

from 0 tom − 1 (or m if R > 1). We pick qubit observables
parametrized as MðiÞ

m ¼ σðiÞz and MðiÞ
k ¼ cosφðiÞ

k σðiÞx þ
sinφðiÞ

k σðiÞy (k < m) and construct the Bell operator B,
which is of the form Eq. (4). Note that to build the Bell
operator, one simply needs to substitute the correlators in
Eq. (7) by the corresponding quantum observables:

Mði;rÞ
k → ⊗

rþ1

j¼0
MðiþjÞ

kj
: ð29Þ

If there exists a quantum state ρ for which TrðBρÞ < 0, then
ρ is nonlocal. If this is the case, we shall denote the
quantum violation observed by QV ≔ TrðBρÞ. Note that ρ
can be taken, without loss of generality, as a projector onto
a ground state of H. We look for the optimal measurement
settings φðiÞ&

k , such that B has the minimal eigenvalue.
The spin Hamiltonian H is again diagonalized by

applying the JW transformation [cf. Eq. (25)], and
Eq. (1) is almost transformed into Eq. (18) up to the string
operators that cross the origin, which carry a parity operator
P̂. Since the eigenstate with the lowest eigenvalue of Ĥ has
a well-defined parity p ¼ %1 (because ½Ĥ; P̂( ¼ 0), we can
change P by p in Eq. (28) so that Ĥ is now quadratic. One
has to make sure, though, that the superselection rule
imposed by initially choosing p is obeyed. That is, the
ground state of Ĥ needs to satisfy

p ¼ ðdetOÞ
Yn−1

k¼0

sk: ð30Þ

Equation (30) stems from the fact that, under the trans-
formations of Eq. (23), P̂ is transformed as (see
Appendix A for a proof)

P̂ ¼ ðdetOÞ
Yn−1

i¼0

id̂i;0d̂i;1: ð31Þ

If Eq. (30) does not hold, one has to modify Eq. (24)
accordingly by picking

E0 → E0 þ 2min
k
jεkj: ð32Þ

The minimal E0 for p ¼ 1 or p ¼ −1 is the minimal
eigenvalue of B.
Finally, note that if R ¼ 1 and m ¼ 2, the minimal

eigenvalue of BðφðiÞ&
k Þ yields the minimal value of I

achievable within quantum theory, denoted −βQ, because
the optimal quantum violation of Bell inequalities with n
parties and two dichotomic observables is obtained with
qubits and traceless observables on a plane [37]. However,
if R > 1 or m > 2, this result does not hold in general, as
higher-dimensional systems and more general observables
can produce more nonlocal correlations.

IV. TRANSLATIONALLY INVARIANT CASE

In this section, we consider the case in which H in
Eq. (1) is translationally invariant. In the spirit of Sec. III,
the following procedure can be seen as an optimization of a
TI Bell inequality with the same set of observables at each
site. We first present an algorithm to compute the classical
bound of a TI Bell inequality with short-range correlators,
which is exponentially faster in the number of parties than
the one of Sec. II B 1 (Sec. IVA). We then find the ground
state energy of a TI Hamiltonian of the form of Eq. (1)
analytically (Sec. IV B).

A. Exponentially faster solution
of the classical bound

In this section, we present a method that is exponentially
faster in the number of particles than the one in Sec. II B 1 to
compute the classical bound of TI Bell inequalities of the
form of Eq. (8), i.e., where γði;rÞk are independent of i. For the
sake of simplicity, we first present this problem in a more
abstract setting. Then we adapt it to TI Bell inequalities.
Consider a function fð0Þ: S × S → R, where S is a finite

set. We describe how to compute

F ≔ min
x0;…;xw

Xw−1

j¼0

fð0Þðxj; xjþ1Þ ð33Þ
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in Oðlog2 wÞ steps. To this end, let us define

fðtþ1Þðx; yÞ ≔ min
z
½fðtÞðx; zÞ þ fðtÞðz; yÞ% ð34Þ

for t > 0. Note that the superscript t indicates the iteration
step. The idea is to successively rewrite F in terms of fðtþ1Þ

instead of fðtÞ, thus eliminating at each step approximately
half of the variables in the minimization. For instance, by
writing F in terms of fð1Þ, one has already carried out the
minimization over all the variables with odd index (except
the last one if w is odd). Note that any function fðtÞ is
defined by specifying jSj2 numbers, where jSj is the
number of elements of S. Computing Eq. (34) requires
OðjSj3Þ operations. Note that when w is a power of 2, then
F is given by

F ¼ min
x0;xw

fðlog2 wÞðx0; xwÞ: ð35Þ

In the general case, however, we cannot assume w to be a
power of 2. Nevertheless, every positive integer w can be
uniquely expressed as a sum of different powers of 2. The
idea is to apply the procedure described above to each of
these powers of 2 and then optimize over the remaining
Oðlog2 wÞ variables. To this end, recall that the binary
expression for w is

w ¼
X⌊log2w⌋

i¼0

ai2i ¼
Xjwj−1

j¼0

2bj ; ð36Þ

where ⌊ · ⌋ is the floor function, ai ∈ f0; 1g correspond to
the digits of w in binary, jwj ≔

P
iai is the Hamming

weight of w, and the bj’s enumerate the indices i for which
ai ¼ 1, sorted in decreasing order. For instance, if w ¼ 11,
ða3; a2; a1; a0Þ ¼ ð1; 0; 1; 1Þ and ðb0; b1; b2Þ ¼ ð3; 1; 0Þ,
and if w ¼ 15, then ða3; a2; a1; a0Þ ¼ ð1; 1; 1; 1Þ
and ðb0; b1; b2; b3Þ ¼ ð3; 2; 1; 0Þ.
Note that F can now be rewritten as

F ¼ min
y0…yjwj

Xjwj−1

j¼0

fðbjÞðyj; yjþ1Þ; ð37Þ

which is a minimization over 1þ jwj ≤ 1þ ⌈ log2ðwÞ⌉
variables yj, where ⌈ · ⌉ is the ceiling function. Note that
the fðbjÞ need no longer be the same function for different j,
so the expression for F given in Eq. (37) is not TI in
general. Note that at the ⌊ log2 w⌋th step of the optimization
we have the x0 variable on the left (see Fig. 2) and several
remaining variables xj for j ≥ ⌊log2 w⌋. Since these
remaining variables highly depend on the binary expression
of w, we denote them by yj [cf. Eq. (37)]. To minimize over
yj, we proceed in a similar fashion, now defining gð0Þ ≔
fðb0Þ and

gðtþ1Þðx; yÞ ≔ min
z
½gðtÞðx; zÞ þ fðbtþ1Þðz; yÞ% ð38Þ

for t > 0. Observe that now the optimization is linear, similar
to the dynamic programing we present in Sec. II B 1. It
follows that F can now be computed as

F ¼ min
x0;xw

gðjwj−1Þðx0; xwÞ: ð39Þ

In Fig. 2, we describe this procedure with an example.
To adapt this algorithm to the minimization of I, we start

by noting that I can be written as

I ¼
Xn−1

i¼0

hðMði;Rþ1ÞÞ; ð40Þ

where h is defined as

hðMði;Rþ1ÞÞ ≔
XR

r¼0

Xmrþ1−1

k¼0

γðrÞk Mði;rÞ
k ; ð41Þ

and the indices of the parties are taken modulo n in the
Mði;rÞ

k defined in Eq. (9). Observe that every ith and
ðiþ Rþ 1Þth parties share R parties via h. In particular,
by picking i ¼ jðRþ 1Þ − 1, we denote their local deter-
ministic strategy as

xj ≔ M½jðRþ1Þ;R%: ð42Þ

We now rewrite the optimization of I overM in terms of xj.
To this end, let us define

FIG. 2. Here, we find F for w ¼ 11. We represent the variables
xi with circles and the functions f or g with lines. Each line with
the same color corresponds to the same function. The variables
that are not in gray are eliminated at the next step. At the zeroth
iteration, there are 10 functions fð0Þ depending on 11 variables.
We compute fð1Þ and we substitute it as many times as possible,
so that at the first iteration we eliminate the variables in purple.
Then we eliminate the variables in blue by computing fð2Þ and the
variables in turquoise by computing fð3Þ. We then compute the
functions g by joining them with the remaining f’s, thus
eliminating the orange and the red variables. Finally, we
minimize on the ends, where we can impose conditions on the
boundary if needed.
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fð0Þðxj; xjþ1Þ ≔ min
MðjRþjþRÞ

k

XR

i¼0

h½MðjðRþ1Þþi;Rþ1Þ&: ð43Þ

Since we cannot assume that n is a multiple of Rþ 1, we
take w ≔ ⌊n=ðRþ 1Þ⌋. Then,

min
M

I ¼ gmin
x0;xw

gðjwj−1Þðx0; xwÞ þ Tðxw; x0Þ; ð44Þ

where the tail Tðxw; x0Þ is defined as

Tðxw; x0Þ ≔
Xn−1

i¼ðRþ1Þw
hðMði;RÞÞ; ð45Þ

with the indices of the parties taken modulo n and gmin is
the minimum taken on those x0, xw that are compatible with
PBC [for instance, if w ¼ nðRþ 1Þ, then T ¼ 0 andgmin is
taken over x0 ¼ xw]. In Fig. 3, we illustrate the procedure
we describe with an example.

B. Analytical solution of the quantum value

Here we consider Eq. (1) in the TI case, which
corresponds to tðiÞ and tði;rÞα;β being independent of i. In
terms of Bell inequalities, this corresponds to the optimi-
zation of TI Bell inequalities with the same set of
observables being performed at each site. We give ana-
lytically closed expressions in this case. As we prove in

Appendix C, the Williamson eigenvalues for a TI Bell
operator of the form of Eq. (4) are given by

εk;' ≔ ak þ ck '
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðak − ckÞ2 þ 4ðb2k þ x2kÞ

q
; ð46Þ

with k ranging from 1 to ⌊ðn − ðp − 1Þ=2Þ=2⌋, where

xk ≔ H00;01 þ
XR

r¼1

cosðυk;rÞðH00;r1 −H01;r0Þ; ð47Þ

ak ≔ −2
XR

r¼1

sinðυk;rÞH00;r0; ð48Þ

bk ≔ −
XR

r¼1

sinðυk;rÞðH00;r1 þH01;r0Þ; ð49Þ

ck ≔ −2
XR

r¼1

sinðυk;rÞH01;r1; ð50Þ

with υk;r ≔ rπ½2k − ðpþ 1Þ=2&=n. Depending on the par-
ity of n, the following eigenvalues also appear:

ε0;' ≔
Xn−1

q¼0

ð'1ÞqH00;q1: ð51Þ

If p ¼ −1, then ε0;þ always appears and ε0;− appears only
if n is even. If p ¼ 1, then ε0;− appears only if n is odd and
ε0;þ does not appear (see Appendix C).
The superselection rule Eq. (30) to be fulfilled in this

case reads

p ¼ ð−1Þ⌊½nþðp−1Þ=2&=2⌋
Yn−1

k¼0

sk: ð52Þ

Note that if we just want to find the ground state energy of a
TI fermionic Hamiltonian Eq. (16), then the matrices A and
B are circulant, which means that the previous analysis can
be done assuming that p ¼ −1 and no superselection rule
needs to be obeyed in this case, as Eq. (52) appears from the
transformation of spins to fermions. This result is applied to
the example of Sec. VA.

V. EXAMPLES

In this section, we present three different examples in
which we illustrate the tools we present throughout the
paper. In Sec. VA, we optimize a tight TI inequality for
n ¼ 8 parties with R ¼ 2 and PBC, showing that it has
quantum violation when the same set of qubit measure-
ments are performed at each site. Interestingly, such
optimal measurements are M0 ¼ σx, M1 ¼ σy, and
M2 ¼ σz. In Sec. V B, we construct a quasi-TI Bell

FIG. 3. An example with n ¼ 14 and R ¼ 3 (this corresponds
to w ¼ 3). Each circle or square corresponds to a party, starting at
i ¼ 0 on the left. The dash-dotted line represents crossing the
origin and each line below the parties represents a function h
(note that h has a range of Rþ 1 parties). The lines corresponding
to the h’s are arranged in groups of Rþ 1 (except for the T
corresponding to the tail), which we represent with the same
color. Each full group contains a single gray square. By
minimizing the local deterministic strategy at the square, we
can define fð0Þ, which depends on the local deterministic strategy
chosen at the R neighbors of each side. These groups of R parties
correspond to the xj in Fig. 2. They encode the possible dmR local
deterministic strategies for each xj. Now, in Oðlog nÞ steps we
find gjwj−1ðx0; xwÞ. Finally, we find the classical bound by
minimizing the sum of gjwj−1 and T restricted to the x0 and xw
that have a compatible overlap.
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inequality for any even number of parties and any number
of measurements, which depends on one parameter.
We find its classical bound analytically with dynamic
programing. The Bell operator corresponds to a spin XY
model, which we also solve analytically. Finally, in
Sec. V C, we show that the ground state of a spin glass
is nonlocal in some parameter region.

A. Translationally invariant Bell inequality
for eight parties

The general form of a translationally invariant Bell
inequality I þ βC ≥ 0, withm ¼ d ¼ R ¼ 2, is [cf. Eq. (7)]

I ≔ γT 2 þ
X

k;l∈f0;1g
ðγk;lT k;l þ γk;2;lT k;2;lÞ; ð53Þ

where the translationally invariant correlators T are
defined as

T k1;…;kr ≔
Xn−1

i¼0

Mði;rÞ
ðk1;…;krÞ

: ð54Þ

In Table I (in Appendix D), we show the optimal (tight)
Bell inequalities of these kind for n ≤ 8 and the quantum
violation we can observe. Let us remark that finding all Bell
inequalities for a given scenario is a computationally very
expensive task and one typically manages to do it only for
very small values of n, m, d, and R, even if symmetries are
imposed [38]. When looking for Bell inequalities of the
form Eq. (53), n ¼ 8 is the maximum number of parties for
which this task could be carried out in a reasonable time.
Here, we present a particular case as an example.
If one takes the following coefficients, γ ¼ 0,

γ00 ¼ γ10 ¼ −γ01 ¼ −γ11 ¼ 2, −γ020 ¼ −γ021 ¼ γ120 ¼
γ121 ¼ 1, then the dynamic programing gives βC ¼ 32
and the measurement settings M0 ¼ σx, M1 ¼ σy, M2 ¼
σz produce a quantum violation of QV ¼ hIiþ βC≃
−0.2187.
The latter is proven by applying Eq. (46) to the example.

More specifically, we observe that the chosen coefficients
and measurements yield an H matrix [cf. Eq. (18) and
Appendix C] with upperdiagonal blocks h1 and h2,

h1 ¼
!
2 2

2 2

"
; h2 ¼

!
1 −1

−1 1

"
; ð55Þ

and the rest of the hr blocks are zero. This greatly simplifies
the expression for εk as xk ¼ 0 and ak ¼ ck imply εk ¼
2ðak % jbkjÞ (note that in the range of interest, bk ≤ 0, so
that εk ¼ 2ðak ∓ bkÞ]. If we take the plus sign, we have

εk;þ ¼ −8 cos
!
π
4kþ 3 − p

8

"
; ð56Þ

and if we take the minus sign, we obtain

εk;− ¼ 16 cos
!
π
4kþ 11 − p

16

"
: ð57Þ

Thus, we can now calculate the ground state energy
consistent with each p, which is given by

E0 ¼ −16 − 8
ffiffiffi
2

p
;

if p ¼ −1, and

E0 ¼ −8½
ffiffiffi
2

p
þ 2 cosðπ=8Þ þ 2 sinðπ=8Þ';

if p ¼ 1. One does not need to check the superselection rule
Eq. (52) for p ¼ −1 as some of the εk are zero. However, we
do need to check it for p ¼ 1. There, we take an even
(2) number of sign flips to the εk and the determinant ofO is 1
(cf. Appendix C). It follows that Eq. (30) holds. The case for
p ¼ −1 gives E0 ≃ −27.3137, whereas for p ¼ 1, it gives
E0 ¼ −32.2187. Hence, hIiþ βC ¼ −0.2187 < 0, signal-
ing the presence of nonlocality.

B. Quasi-translationally-invariant Bell inequality

Let us consider the chained Bell inequality [39] between
two parties labeled A and B:

IðA;BÞchain ≥ −2ðm − 1Þ; ð58Þ

where IðA;BÞchain is given by

IðA;BÞchain ≔
Xm−1

i¼0

ðAm−i−2Bi þ Am−i−1BiÞ; ð59Þ

where it is assumed that A−1 ≔ −Am−1. Note that the
Clauser-Horne-Shimony-Holt (CHSH) inequality [40],
IðA;BÞCHSH ≔ A0B0 þ A0B1 þ A1B0 − A1B1, is a particular case
of Eq. (59) for m ¼ 2. Inequality Eq. (58) is violated
maximally with the following settings,

Ai ¼ sinðϕiÞσx − cosðϕiÞσy ð60Þ

and Bi ¼ Ai, where the angles are given by ϕi ≔
ðiþ 1Þπ=m, and with the state

jψmi ≔
1ffiffiffi
2

p ðe−iπ=2mj00i − j11iÞ; ð61Þ

giving βQ ¼ hIðA;BÞchain i ¼ −2m cosðπ=2mÞ. Notice that the
maximal violation relative to the classical bound is
βrQ ≔ βQ=βC ¼ ½m=ðm − 1Þ' cosðπ=2mÞ.
The bipartite Bell operator corresponding to the chained

Bell inequality with the above measurements can be
written as

B ¼ αmðσx ⊗ σx − σy ⊗ σyÞ þ βmðσx ⊗ σy þ σy ⊗ σxÞ;
ð62Þ
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where αm ≔ m cos2ðπ=2mÞ and βm ≔ ðm=2Þ sinðπ=mÞ.
By defining σπ=2m ≔ cosðπ=2mÞσx þ sinðπ=2mÞσy, this
operator can be further reexpressed in a formally similar
manner to the XY Hamiltonian as

B ¼ mðσðAÞπ=2mσ
ðBÞ
π=2m − σðAÞy σðBÞy Þ: ð63Þ

Let us now consider the following Hamiltonian:

H ¼ m
X2n−1

i¼0

fiðϵÞðσ
ðiÞ
π=2mσ

ðiþ1Þ
π=2m − σðiÞy σðiþ1Þ

y Þ; ð64Þ

where the weights fiðϵÞ alternate from even to odd sites as
fiðϵÞ ≔ 1þ ð−1Þiϵ and ϵ is an arbitrary real parameter.
We note that the Hamiltonian Eq. (64) is a particular case of
the one-dimensional Bell inequality,

Ið2nÞchainðϵÞ ≔
X2n−1

i¼0

fiðϵÞI
ði;iþ1Þ
chain ; ð65Þ

when the same measurements Eq. (60) are taken at each site.
Let us now determine the classical bound of Ið2nÞchainðϵÞ. For

even n (for odd n and n < m, the classical bound is slightly
different; however, for the purposes of the present example,
it is enough to consider the classical bound for even n), the
dynamic programing gives βC ¼ 4nðm − 1Þmaxf1; jϵjg.
The explanation for this result is that, whenever ε > 1,
it is better to use a classical strategy that would give
−2ðm − 1Þ on every Ið2i;2iþ1Þ

chain inequality and 2ðm − 1Þ on
every Ið2iþ1;2ðiþ1ÞÞ

chain inequality. An exemplary local strategy
achieving this bound is given by

k 4i 4iþ 1 4iþ 2 4iþ 3

MðkÞ
0

þ − þ þ

MðkÞ
1

þ − − þ

..

. ..
. ..

. ..
. ..

.

MðkÞ
m−2

þ − − þ

MðkÞ
m−1

þ þ − −

periodically repeated every four sites. On the other hand,
if 0 ≤ ϵ ≤ 1, the optimal strategy consists in producing
−2ðm − 1Þ for every link, for instance, by picking
ðMð2iÞ

0 ;…;Mð2iÞ
m−1Þ¼ ðþ; % % % ;þÞ and ðMð2iþ1Þ

0 ;…;Mð2iþ1Þ
m−1 Þ¼

ð−; % % % ;−Þ. The analysis for ϵ < 0 is analogous.
It is worth highlighting two limiting cases.
(i) ϵ ¼ 1. This corresponds to a sum of disjoint chained

Bell inequalities between pairs ð2i; 2iþ 1Þ.

Ið2nÞchainð1Þ ¼ 2
Xn−1

i¼0

Ið2i;2iþ1Þ
chain ; ð66Þ

which is maximally violated by the state jψmiAB ⊗
jψmiCD ⊗ …. The quantum value is then βQ ¼
2nm cosðπ=2mÞ. Hence, there is a Oð1Þ violation

relative to the classical bound that holds for
every n:

βQ=βC ¼ m
m − 1

cos
!

π
2m

"
> 1: ð67Þ

(ii) ϵ ¼ 0. This case corresponds to a sum of the chained
Bell inequalities with the same weights between
neighbors:

Ið2nÞchainð0Þ ¼
X2n−1

i¼0

Iði;iþ1Þ
chain : ð68Þ

This inequality cannot be violated, as quantum
correlations are monogamous with respect to the
chained Bell inequality [37,41]. Loosely speaking, if
party B violates Ichain with A, it cannot violate it
simultaneously with C. For some types of
monogamy relations, this result holds for various
generalizations of the CHSH inequality to more
measurements, outcomes, and parties [42].

It is then clear that there is some critical value of ϵ for
which correlations stop being nonlocal and one is able to
simulate them locally.
Let us now notice that the 4n × 4nmatrixH appearing in

Eq. (18) and corresponding to the Hamiltonian Eq. (64) has
the form H ¼ H0 ⊗ H1, where

H0 ≔ m

0

BBBBBBBBBB@

0 f0 0 % % % 0 pf1
−f0 0 f1 0 % % % 0

0 −f1 0 f0 0

. .
. . .

. . .
.

0 % % % 0 −f1 0 f0
−pf1 0 % % % 0 −f0 0

1

CCCCCCCCCCA

; ð69Þ

with f0 ≔ 1þ ϵ and f1 ¼ 1 − ϵ for short, and

H1 ¼
! 1

2 sinð
π
mÞ cos2ð π

2mÞ
cos2ð π

2mÞ − 1
2 sinð

π
mÞ

"

¼ αmσx þ βmσz: ð70Þ

This is seen by applying the JW transformation to Eq. (62).
In this case, to find the Williamson eigenvalues of H it is

sufficient to find those of H0, which will appear with both
signs, as H1 has eigenvalues & cosðπ=2mÞ.
A similar analysis as the previous example shows that H

can also be block diagonalized with a real discrete Fourier
transform (DFT) into 4 × 4 blocks. The Williamson eigen-
values of H0 are
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εk ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½1þ ϵ2 þ ðϵ2 − 1Þ cosðνkÞ&

q
; 0 ≤ k < n;

ð71Þ

where νk ≔ π½2kþ ðpþ 1Þ=2&=n.
Hence, the quantum bound will be

βQðϵÞ ¼ 2 cos
"

π
2m

#Xn−1

k¼0

εk: ð72Þ

Although one should check the superselection rule
Eq. (30), it is not necessary for large n, as the difference
between βQ for p ¼ 1 and βQ for p ¼ −1 vanishes as
n grows.
Let us analyze the behavior of βQðϵÞ in the thermody-

namic limit. The contribution per particle to βQðϵÞ, denoted
~βQðϵÞ, is

~βQðϵÞ ≔ 2 cos
"

π
2m

#
lim
n→∞

Xn−1

k¼0

1

2n
εk;

which is a Riemann sum, so it is by definition

~βQðϵÞ ¼
ffiffiffi
2

p
m cos

"
π
2m

#

×
Z

1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2 þ ðϵ2 − 1Þ cosð2πxÞ

q
dx: ð73Þ

This can be expressed more compactly as

~βQðϵÞ ¼
4

π
m cos

"
π
2m

#
Eð1 − ϵ2Þ; ð74Þ

where EðtÞ is the complete elliptic integral of the second
kind. [The complete elliptic integral of the second kind is
defined as EðtÞ ≔

R π=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t sin2ðθÞ

p
dθ, with the param-

eter t obeying 0 < t < 1.]
In Fig. 4, we see such behavior compared to the

contribution per particle to the classical bound, ~βCðϵÞ ¼
2ðm − 1Þmaxf1; jϵjg. In Fig. 5, we compare the length of
the detected nonlocal parameter region with the number of
measurement settings m.

C. Spin glass

Finally, we consider a Hamiltonian similar to Eq. (64) for
m ¼ 2, where all the couplings are random, generated from
a Gaussian probability distribution with mean μ and
standard deviation σ, like a spin glass:

H ¼
Xn−1

i¼0

JðiÞμ;σ½σðiÞπ=4σ
ðiþ1Þ
π=4 − σðiÞy σðiþ1Þ

y &: ð75Þ

We can efficiently compute the ground state of Eq. (75)
and the classical bound of the CHSH-like Bell inequality
associated to it with the methods we present, although
numerically. We expect that, when jμj=σ ≫ 1, we do not

detect nonlocality, as the resulting inequality is close to the
monogamous limit ϵ ¼ 0 of the example in Sec. V B.
However, if σ is big enough, one expects to have links with
high weight surrounded with links with smaller weight;
then, it may compensate to violate those links with higher
weight. In Fig. 6, we show the result, for n ¼ 102 spins,
averaged over 103 realizations. There is clearly a transition
for which the complexity of the ground state allows or does
not allow for the statistics that one obtains when performing
measurements on it to be simulable locally.

0 1 2 3 4
1

2

3

4

5

6

7

8

FIG. 4. For m ¼ 2, the curves ~βQðϵÞ [cf. Eq. (74)] and
~βCðϵÞ ¼ 2maxf1; jϵjg. These capture the behavior of the non-
locality of the ground state of Eq. (64) in the limit of large n.
Whenever ~βQðϵÞ is above ~βCðϵÞ (blue region), nonlocality is
detected. Otherwise (red region) a more stringent test is needed
or the state admits a local hidden variable model. The inter-
section points between the two curves are ϵ' ≈ 0.327618 and
ϵ' ≈ 3.05234.

20 40 60 80 100
m

0.5

1.0
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FIG. 5. For different values ofm, the intervals ½ϵ'; ϵ'& for which
we detect that the ground state of Eq. (64) is nonlocal. Observe
that, for m ¼ 2, which corresponds to the case where the chained
Bell inequality is the CHSH Bell inequality, we detect nonlocality
in the largest parameter region (cf. Fig. 4). For ϵ ¼ 1, non-
locality is always detected, since ~βQð1Þ= ~βCð1Þ ¼ m cosðπ=2mÞ=
ðm − 1Þ > 1 for all m > 1, as it is shown in Eq. (67).
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D. XXZ-like spin model based on
Gisin’s elegant Bell inequality

In this last example, we present an XXZ-like
Hamiltonian, which is not solvable via the JW transforma-
tion. We find its ground state energy numerically, using
tensor networks and density matrix renormalization group
(DMRG) [30]. In this case, we find a much richer structure
than in Sec. V B. The Bell inequality that we associate to
this Hamiltonian is a modification of Gisin’s elegant Bell
inequality [29]. Gisin’s original inequality is defined in a
bipartite scenario with four dichotomic measurements with
outcomes !1 on Alice and three dichotomic measurements
with outcomes !1 on Bob:

I ¼ ðA0 A1 A2 A3 Þ

0

BBB@

1 1 1

1 −1 −1
−1 1 −1
−1 −1 1

1

CCCA

0

B@
B0

B1

B2

1

CA;

ð76Þ

and it reads jIj ≤ 6. We observe that with the following
observables,

A0 ¼
σx þ σy þ σzffiffiffi

3
p ; A1 ¼

σx − σy − σzffiffiffi
3

p ;

A2 ¼
−σx þ σy − σzffiffiffi

3
p ; A3 ¼

−σx − σy þ σzffiffiffi
3

p ;

B0 ¼ σx; B1 ¼ σy; B2 ¼ σz; ð77Þ

the corresponding Bell operator becomes

B ¼ 4ffiffiffi
3

p ðσxσx þ σyσy þ σzσzÞ; ð78Þ

and its ground state is jψ−i ¼ ðj01i − j10iÞ=
ffiffiffi
2

p
, yielding

an expectation value hψ−jBjψ−i ¼ −4
ffiffiffi
3

p ≃ −6.9282.
Let us now introduce the following modification, where

Δ is a real parameter,

Jeven ¼ ðA0 A1 A2 A3 ÞSΔ

0

B@
B0

B1

B2

1

CA; ð79Þ

Jodd ¼ ðB0 B1 B2 ÞSTΔ

0

BBB@

A0

A1

A2

A3

1

CCCA; ð80Þ

where SΔ is a 4 × 3 matrix defined as

SΔ ¼

0

BBB@

1 1 Δ
1 −1 −Δ

−1 1 −Δ
−1 −1 Δ

1

CCCA: ð81Þ

The classical bound becomes

Jeven=odd ≥

8
>>><

>>>:

4Δ if Δ ≤ −2
−4þ 2Δ if −2 < Δ ≤ 0

−4 − 2Δ if 0 < Δ ≤ 2

−4Δ if 2 < Δ:

ð82Þ

Now we have that the Bell operator has become

B ¼ 4ffiffiffi
3

p ðσxσx þ σyσy þ ΔσzσzÞ ð83Þ

in either case. Its ground state energy is

hψgndjBjψgndi ¼

8
<

:

4Δffiffi
3

p if Δ ≤ −1
−4ð2þΔÞffiffi

3
p if Δ > −1.

ð84Þ

FIG. 6. Ratio of the quantum value over the classical bound of
the ground state of Eq. (75) and the Bell inequality we associate
to it. The plot corresponds to a spin glass of n ¼ 100 spins with
PBC, averaged over 1000 realizations. The horizontal axis
corresponds to the mean μ of the Gaussian distribution and
the vertical axis corresponds to its standard deviation σ. If μ ¼ 0,
the value is constant for all σ > 0, as both the expected value
of the ground state and the classical bound grow at the same rate
with σ. The white line represents the level curve for βC ¼ βQ. The
top left part of the plot corresponds to the region of parameters in
which we detect nonlocality (βC < βQ). Note that in the bottom
right region one finds values for which βQ=βC < 1 due to the fact
that there is no simultaneous eigenvalue of σπ=4 and σy (the
classical bound cannot be saturated using σπ=4 and σy as
observables).
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The ground state is jψ−i if Δ > −1 and it lies in the
subspace spanned by j00i and j11i if Δ ≤ −1.
We can now construct the many-body Bell inequality in a

similar fashion as in Sec. V B:

J ¼
Xn=2−1

i¼0

ð1þ ϵÞJð2i;2iþ1Þ
even þ ð1 − ϵÞJð2iþ1;2iþ2Þ

odd : ð85Þ

Note that the Bell inequality J has four binary measure-
ments with outcomes %1 on the even sites and three binary
measurements with outcomes %1 on the odd sites.
The dynamic programing procedure yields the following

classical bound in terms of ϵ andΔ, which is a C0 piecewise
continous function. Because of all the cases that appear,
and the complexity of the inequality, we omit the descrip-
tion of the local deterministic strategy. The regions are
defined as follows (see Fig. 7):

RI ¼ fðΔ; ϵÞ∶jΔj ≤ 2; jϵj ≤ 1g;
RII ¼ fðΔ; ϵÞ∶jΔj > 2; jϵj ≤ 1g;
RIII ¼ fðΔ; ϵÞ∶jΔj · jϵj ≤ 2; jϵj ≤ jΔjþ 1; jϵj > 1g;
RIV ¼ fðΔ; ϵÞ∶jϵj ≤ jΔj=2; jϵj > 1g;
RV ¼ fðΔ; ϵÞ∶jϵj > 1=ð1 − jΔjÞg;
RVI ¼ fðΔ; ϵÞ∶jϵj ≤ 1=ð1 − jΔjÞ; jΔj ≤ 1; jϵj > jΔjþ 1g;
RVII ¼ fðΔ; ϵÞ∶jϵj · jΔj > 2; 1 < jΔj ≤ 2g;
RVIII ¼ fðΔ; ϵÞ∶jϵj > jΔj=2; jΔj > 2g: ð86Þ

If n≡ 2 mod 4, n > 2, the classical bound is, on each
region:

βC;I ¼ −nð4þ 2jΔjÞ;
βC;II ¼ −4njΔj;
βC;III ¼ −8 − 4jΔj − ð4n − 8Þjϵj − ð2n − 4ÞjΔjjϵj;
βC;IV ¼ −8jΔj − ð4n − 8ÞjϵjjΔj;
βC;V ¼ −4njϵj − ð2n − 8ÞjϵjjΔj;
βC;VI ¼ −4 − ð4n − 4Þjϵj − ð2n − 4ÞjϵjjΔj;
βC;VII ¼ −4jΔj − ð4n − 8Þjϵj − 2njϵjjΔj;
βC;VIII ¼ −8jϵj − 4jΔj − ð4n − 8ÞjϵjjΔj; ð87Þ

whereas if n≡ 0 mod 4, the classical bound simplifies to

βC;I ¼ −nð4þ 2jΔjÞ;
βC;II ¼ −4njΔj;
βC;III ¼ βC;V ¼ βC;VI ¼ βC;VII ¼ −njϵjð4þ 2jΔjÞ;
βC;IV ¼ βC;VIII ¼ −4njϵjjΔj: ð88Þ

Using the Ak measurements on the even sites and the Bl
ones on the odd sites, this yields the following XXZ-type
Hamiltonian:

H ¼
Xn−1

i¼0

~fiðϵÞðσ
ðiÞ
x σðiþ1Þ

x þ σðiÞy σðiþ1Þ
y þ ΔσðiÞz σðiþ1Þ

z Þ; ð89Þ

where ~fiðϵÞ ¼ 4½1þ ð−1Þiϵ'=
ffiffiffi
3

p
. The ground state of

Eq. (89) does not have an analytically closed form and
has to be computed using DMRG. To do so, we use the
ITensor library [30]. The results are plotted in Fig. 8, where

FIG. 7. The classical bound of Eq. (85). Each region
[cf. Eq. (86)] has a different expression for the classical bound
[cf. Eqs. (87), (88)]. The classical bound of Eq. (85) depends only
on the absolute values of ϵ and Δ.
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FIG. 8. Level curves for which the quantum value equals the
classical bound. Note the different behavior depending on the
parity of n=2 and the effect of the different regions plotted in
Fig. 7, also sketched here in gray (for odd n=2) and black (even
n=2) for clarity. The region for which there is quantum violation
is the bounded set [i.e., containing the point ðΔ; ϵÞ ¼ ð1; 1Þ].
The plot is symmetric with respect to the line ϵ ¼ 0.
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we observe quantum violations in a parameter region that
does not seem to vanish as n grows. We also observe a
different behavior depending on the parity of n=2, which
we attribute to some sort of frustration arising in the
classical optimization, especially for low values of n.

VI. CONCLUSIONS AND OUTLOOK

In this work, we show, on the one hand, that the ground
states of some spin Hamiltonians are nonlocal. We asso-
ciate a Bell inequality to the Hamiltonian and we compute
its classical bound. We exactly diagonalize the Hamiltonian
and we compute the quantum value of the corresponding
Bell inequality. We achieve this goal by combining two
rather unexplored techniques in quantum information,
which are dynamic programing and the Jordan-Wigner
transformation. This allows us to detect the presence of
nonlocal correlations. On the other hand, these tools
provide us with a new way to determine the classical
bound of certain classes of Bell inequalities, and look for
their quantum violation under conveniently chosen observ-
ables. In the case of two dichotomic measurements, the
optimization also yields the quantum bound (the maximal
quantum violation) of the inequality. In the TI case, we
provide an algorithm to find the classical bound that is
exponentially faster in the system size and we obtain exact
analytical solutions for the quantum value. Then, we apply
these techniques to several examples in which we reveal
nonlocality: a tight TI Bell inequality with a TI Bell
operator for eight parties, a quasi-TI Bell inequality with
a uniparametric quasi-TI XY Hamiltonian, and the ground
state of a XY spin glass in some parameter region. We also
see that, for interacting models such as XXZ-like spin
Hamiltonians, our method can be applied. There, we find
the ground state energy numerically and we map the
Hamiltonian to a modified version of Gisin’s elegant
Bell inequality. These findings open the possibility to
the implementation of multipartite quantum information
protocols that use nonlocality as a key resource, by using
ground states of Hamiltonians that appear naturally.
We remark that the Hamiltonians and the Bell inequal-

ities we study have a finite interaction range, which in the
TI case makes them particularly interesting from an
experimentally friendly perspective. Note that previous
Bell inequalities for quantum many-body systems with
low-order correlators were specially designed for a permu-
tationally invariant (PI) symmetry [25,26]; while being able
to detect nonlocality in ground states of physical
Hamiltonians, such as the Lipkin-Meshkov-Glick [43] or
a spin-squeezed Bose-Einstein condensate [27], the infor-
mation accessible to these inequalities is bound to a de
Finetti theorem [44,45], thus becoming more compatible
with that produced by a separable state as the system grows
[26]. This requires to increase the number of measurements
with the system size in order to close the finite-statistics
loophole [27]. However, many systems of interest are not

PI, but TI, and we study the latter in this work. In this case,
a de Finetti restriction does not apply, making the detection
of nonlocality more robust to experimental imperfections.
Interestingly, to study the Bell inequalities proposed in
Refs. [25,26], in the classical and quantum many-body
regime, one employs powerful mathematical tools (namely,
convex hulls of semialgebraic sets [46] or the Schur-Weyl
duality from representation theory [47], respectively),
which no longer apply when the PI symmetry is broken.
Here, we use other mathematical tools (dynamic program-
ing for the classical bound and the JW transformation for
the quantum value) that allow us to solve, even exactly, the
two cases with this much weaker symmetry.
Let us finalize by pointing out possible future research

directions that stem from our work. Throughout this paper,
we restrict ourselves to the study of nonlocality in one-
dimensional spin short-ranged Hamiltonians, as we can
compute their ground state energy with exact diagonaliza-
tion. One can eliminate this restriction and study short-
ranged spin Hamiltonians by using a matrix product state
description of the state, which is a good ansatz for these
systems [48]. The Bell inequalities that we would naturally
associate to them would still be of the form of Eq. (8),
because the interaction range Rwould be fixed, so we could
still efficiently find their classical bound. Conversely, we
can eliminate the restriction on the subset of observables
that we choose in Sec. III and the string of σz ’s in the
middle of the string operators, thus studying purely two-
body correlator inequalities like the classes derived in
Ref. [38]. In such cases, powerful numerical algorithms
such as DMRG [49] would be suitably tailored to perform
the quantum optimization and check whether nonlocality is
detected. Another interesting problem is related to the
persistency of nonlocality [50]. While the tools to carry this
kind of analysis in the PI case have been put forward [26],
in the case of one spatial dimension, we do not know yet
how robust the inequalities we present are to particle losses.
One could also generalize our results towards other
directions. Since Bell inequalities with more than two
inputs or outputs per party are not, in general, maximally
violated by measuring qubits [51], if one would like to
increase the chance to detect nonlocality with these more
general classes of Bell inequalities, increasing the physical
dimension of the system would be a way to obtain better
results. The tools we present here could be extended by
using a generalized JW transformation [52] from qudits to
parafermions, although the problem becomes algebraically
more involved.
We also see through the examples we present that there is

a strong relation between Hamiltonians of physical systems
and Bell inequalities that we associate to them. Whereas we
naturally establish this connection in the following direc-
tion, starting from the Hamiltonian of a physical system, we
assign a Bell inequality to it, one can think of this relation in
a more general way, since there are many Bell inequalities
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that, with the appropriate observables, realize the same
physical Hamiltonian. Moreover, in Sec. V D, we see that
this correspondence can be nontrivial, as the inequality
does not even have the same number of measurements at
every site. With the tools we present here, it is now possible
that, given a physical one-dimensional Hamiltonian with
short-range interactions, we can tailor the best Bell inequal-
ity that reveals the nonlocality of its ground state, as such a
Hamiltonian corresponds to the realization of a Bell
operator of many different Bell inequalities, each with
its own classical bound, which we can compute efficiently.
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APPENDIX A: PARITY OPERATOR

Here, we prove Eq. (31). Let O ∈ Oð2nÞ be an orthogo-
nal transformation relating the sets of Majorana fermions
fĉi;αg and fd̂k;ag, as in Eq. (23). Recall that the Cartan-
Dieudonné theorem [53] states that every orthogonal
transformation O ∈ Oð2nÞ decomposes as a product of a
number of reflections (at most, 2n). Hence, it suffices to
show that a reflection flips the parity operator; i.e., our aim
is to show that

Yn−1

i¼0

iĉi;0ĉi;1 ¼ −
Yn−1

i¼0

id̂i;0d̂i;1; ðA1Þ

whenever O is a reflection. Recall that any reflection with
respect to a hyperplane with normal vector ~u can be written
as 1 − 2~u~uT . We denote the lhs of Eq. (A1) P̂c and the rhs
of Eq. (A1) −P̂d.
The CARs [Eq. (20)] ensure that

½iĉi;0ĉi;1; iĉj;0ĉj;1% ¼ ½id̂k;0d̂k;1; id̂l;0d̂l;1% ¼ 0 ðA2Þ

and

ðiĉi;0ĉi;1Þ2 ¼ ðid̂k;0d̂k;1Þ2 ¼ 1̂: ðA3Þ

Hence, the operators fiĉi;0ĉi;1g and fid̂k;0d̂k;1g, respec-
tively, share an eigenbasis and split the Fock space into
even and odd subspaces with respect to the parity operator
P̂ defined in Eq. (27).
We prove in Theorem 1 that this partition of the Fock

space does not change under orthogonal transformations.
Moreover, if detO ¼ −1, the subspaces are just swapped.
Theorem 1 is supported on Lemma 2, which proves that
reflections swap the eigenspaces, and Lemma 1 contains
the technical steps to prove Lemma 2. Hence, Eq. (A1)
follows and, because every orthogonal transformation is a
product of a number of reflections, we obtain Eq. (31).
Lemma 1.—Consider a reflection O ¼ 1 − ~u~uT , where ~u

is a normalized vector. Let us define the following
quantities:

S0 ≔ uk;0
X

i;α

ui;αĉi;αĉk;1;

S1 ≔ uk;1
X

i;α

ui;αĉk;0ĉi;α;

S01 ≔ uk;0uk;1
X

i;α;j;β

ui;αuj;βĉi;αĉj;β: ðA4Þ

Then, the identities

S01 ¼ uk;0uk;11 ðA5Þ

and

i
Xn−1

k¼0

ðS0 þ S1ÞjΩi ¼ jΩiþ 2i
Xn−1

k¼0

uk;0uk;1jΩi: ðA6Þ

hold.
Proof.—To prove Eq. (A5), we can split the sum into the

indices for which ði; αÞ ¼ ðj; βÞ and the indices for
which ði; αÞ ≠ ðj; βÞ.
In the first case, since the CARs Eq. (20) imply that

ðĉi;αÞ2 ¼ 1, we have a term uk;0uk;1
P

i;αu
2
i;αðĉi;αÞ2 that

contributes uk;0uk;11, because ~u is normalized.
In the second case, we note that we can rewrite the

sum as

uk;0uk;1
X

ði;αÞ<ðj;βÞ
ui;αuj;βfĉi;α; ĉj;βg ¼ 0; ðA7Þ

because of the CARs Eq. (20).
In order to prove Eq. (A6), we begin by noting that

ĉi;αĉk;βjΩi ¼
!
iαþβð−1ÞβjΩi if i ¼ k

iαþβð−1Þαþβâ†i â
†
kjΩi if i ≠ k:

ðA8Þ

We can now split the sum Eq. (A6) into the parts where
i ¼ k and i ≠ k.

ENERGY AS A DETECTOR OF NONLOCALITY OF MANY- … PHYS. REV. X 7, 021005 (2017)

021005-15



For the first part, we have a contribution in Eq. (A6) that
amounts to

i
Xn−1

k¼0

½ðu2k;0 þ u2k;1Þĉk;0ĉk;1 þ 2uk;0uk;11&jΩi;

which, using Eq. (A8), simplifies to

jΩiþ 2i
Xn−1

k¼0

uk;0uk;1jΩi: ðA9Þ

For the second part, the contribution to Eq. (A6) is

i
X

i≠k

X

α

½uk;0ui;αiαþ1ð−1Þαþ1 − uk;1ui;αiαð−1Þα&â†i â
†
kjΩi;

expanding the sum over α, we have
X

i≠k
½ðuk;0ui;0 − uk;1ui;1Þ − iðuk;1ui;0 þ uk;0ui;1Þ&â†i â

†
kjΩi:

Splitting the sum between those indices for which i < k
and those for which i > k, we have that it can be rewritten
into an expression involving the CARs (17):
X

i<k

½ðuk;0ui;0 − uk;1ui;1Þ − iðuk;1ui;0 þ uk;0ui;1Þ&fa†i ; a
†
kgjΩi:

Because fa†i ; a
†
kg ¼ 0, this last expression is zero ▪

Lemma 2.—Let O be a reflection. Then,

Xn−1

k¼0

id̂k;0d̂k;1 þ 1
2

jΩi ¼
!Xn−1

k¼0

iĉk;0ĉk;1 þ 1
2

− 1
"
jΩi:

ðA10Þ

Proof.—By hypothesis, Oi;α;j;β ¼ δi;jδα;β − 2ui;αuj;β,
where δ is the Kronecker delta function. Let us now see
how the operator

Pn−1
k¼0 id̂k;0d̂k;1 relates to the fĉi;αg

Majorana fermions.
By definition [cf. Eq. (23)], we can write

id̂k;0d̂k;1 ¼ iĉk;0ĉk;1 − 2iðS0 þ S1Þ þ 4iS01:

Lemma 1 allows us to conclude

Xn−1

k¼0

id̂k;0d̂k;1jΩi ¼
Xn−1

k¼0

iĉk;0ĉk;1jΩi − 2jΩi; ðA11Þ

showing that a reflection flips the parity of the vacuum: The
occupation number operator, in terms of the fd̂k;ag oper-
ators has opposite parity than the occupation number
operator in terms of the fĉi;αg operators:

Xn−1

k¼0

id̂k;0d̂k;1 þ 1
2

jΩi ¼
!Xn−1

k¼0

iĉk;0ĉk;1 þ 1
2

− 1
"
jΩi:

ðA12Þ

▪
Theorem 1.—Let O ∈ Oð2nÞ. Let F be the Fock space

of n Dirac fermions. The operator P̂c splits F into even and
odd subspaces: F ¼ F e ⊕ F o. Similarly, P̂d splits F as
F ¼ F 0

e ⊕ F 0
o. Then, either F e ¼ F 0

e (if detO ¼ 1) or
F e ¼ F 0

o (if detO ¼ −1).
Proof.—Recall that the expectation value of the operator

â†i âi is the occupation number of the ith mode, denoted ni.
Then, a basis of the Fock space of n fermionic Dirac modes
can be defined as

jNi ≔ jn0;…; nn−1i ≔
Yn−1

k¼0

ðâ†kÞnk jΩi; ðA13Þ

where the product is written from left to right. Note that
nk can only be 0 or 1, due to Eq. (17). The CARs

Eq. (17) further imply that âijNi ¼ ð−1Þ
P

i−1
j¼0

nj jN0i when-
ever ni ¼ 1 (N0 and N differ only in its ith index) and
âijNi ¼ 0 whenever ni ¼ 0.
Let jψi be an eigenvector of P̂c of eigenvalue 1. We can

assume, without loss of generality, that jψi is a basis
element jNi of the Fock space, with

Pn−1
i¼0 ni ≡ 0 mod 2.

By noting that id̂k;0d̂k;1 can be expressed as

i
X

i;α;j;β

iαþβOi;α;k;0Oj;β;k;1½âi þ ð−1Þαâ†i Þðâj þ ð−1Þβâ†j &;

we see that the only operators that appear are products of âi
or â†i with âj or â

†
j. Hence, they either annihilate jNi or they

add −2, 0, or 2 to its particle number, always conserving its
parity. This leaves us with a linear combination of vectors
that live in the same subspace F e, so it remains on F e. The
same argument applies to F o.
Hence, the subspaces F e and F o of the operator P̂c are

invariant under orthogonal transformations of the
Majorana fermions. However, under P̂d, they might
change its parity. Because of linearity and Eq. (A13), it
suffices to prove that jΩi is an eigenstate of P̂d, as it stems
from Lemma 2. If its eigenvalue is 1, then F e ¼ F 0

e; if it is
−1, then F e ¼ F 0

o. ▪

APPENDIX B: PBC TO OBC REDUCTION

Here, we describe the reduction of the optimization
problem of finding the classical bound in a Bell inequality
with PBC to the optimization problem of finding the
classical bound for a Bell inequality with OBC in one
dimension.
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For the sake of clarity, we first describe the procedure for
inequalities with an arbitrary interaction range R, but
without the chain of MðjÞ

m observables in the middle of
the string operators [cf. Eq. (7)], so that the inequalities
strictly contain one- or two-body correlators. We pick R
consecutive parties. Without loss of generality, we can
assume them to be labeled from 0 to R − 1. To these parties
we assign one of the dm·R possible deterministic local
strategies. Let ði; jÞ be a pair of parties. There are three
cases to consider.
(i) If i and j are between 0 and R − 1, any correlator

between parties i and j now has a definite value.
(ii) If either i or j but not both are between 0 and R − 1,

only one side of the correlator has a definite value. Because
the classical bound is computed on a deterministic local
strategy, the value of the correlator factorizes as the product

of the local values assigned by the strategy we are
considering. Hence, these correlators can be effectively
moved outside of the interval 0;…; R − 1 by updating the
one-body term of the party outside that interval.
(iii) In any other case, the correlator remains the same.
In Figs. 9(a) and 9(b) we illustrate this procedure for an

example with R ¼ 2. The first case is illustrated in blue, the
second is illustrated in red, and the last one is illustrated
in black.
Finally, if we have an inequality of the form of Eq. (7),

the intermediate MðjÞ
m terms should also be taken into

account when performing this procedure. In order to move
to the one-body terms the R-body terms, now an extra
number of MðjÞ

m observables should also be chosen in
advance for those parties at distance R − 1 to the set
f0;…; R − 1g (but only the mth observable; it is not

(a)

(b)

(c)

FIG. 9. In (a), we have a two-body Bell inequality with R ¼ 2 and PBC. The coefficients below the circles correspond to the weights of
the one-body correlators associated to those parties, and the coefficients next to the arrows correspond to the weights of the correlators
between the parties they join. In (b), we consider the intermediate case in which there are no observablesMðiÞ

m in the middle of the string
operators, whereas in (c) we include them [the big circles represent the set of observables labeled from 0 to m − 1 and the smaller circle
represents the mth one [cf. Eq. (7)]. In order to transform it to an OBC case, we choose a deterministic local strategy for the parties
labeled by 0 and 1. and we choose a deterministic local strategy for parties labeled by 0 and 1, represented in red in (a). Thus, the values
of the one-body correlators from zeroth and first parties have a fixed value, as well as the two-body correlators between them. These are
marked in blue. These terms’ contribution represents an offset on the classical bound. The two-body correlators starting at n − 2 and
ending at 0 are updated to the one-body terms of the (n − 2)th party. The correlators starting at n − 1 and ending either at 0 or 1 are
updated to the one-body terms of the (n − 1)th party. Similarly, we update the one-body terms of parties 2 and 3. These terms are marked
in red. The rest of the inequality remains untouched and such terms are marked in black. This process is the transformation from (a) to
(b). Note that if the local deterministic strategy chosen in parties 0 and 1 is the optimal one, then the classical bound for the PBC problem
is given by the offset generated by parties 0 and 1 (blue) plus the classical bound of the OBC problem between parties 2 and n − 1. Since
there is a finite number of deterministic local strategies that parties 0 and 1 can have, eventually we find the optimal bound for the PBC
problem. Finally, in (c) we depict the same procedure, but some more assignments MðiÞ

m have to be fixed in advance to update the one-
body terms accordingly.
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necessary to fix the rest). For instance, in the example of
Fig. 9(c), one would have to specify the value ofMðn−1Þ

m and
Mð2Þ

m . Observe that if R > 2, then in the OBC problem,
some of the MðjÞ

m values closest to the boundary become
fixed [2ðR − 2Þ of them]. This has to be taken into account
when performing the dynamical programing, as one should
explore only those configurations compatible with the
boundary conditions imposed by the PBC problem with
the deterministic local strategy that we have chosen to make
the reduction.

APPENDIX C: QUANTUM OPTIMIZATION
OF TRANSLATIONALLY INVARIANT

BELL INEQUALITIES

Here, we discuss the quantum optimization for the
translationally invariant case (i.e., when the Bell inequality
is TI and the same set of measurements is performed at each
site, thus leading to a TI Bell operator). We begin by
observing that there are two cases to consider, depending
on the choice of the parity p of the fermion number. If
p ¼ −1, the matrix H [cf. Eq. (18) is block circulant:
Hi;α;j;β ¼ Hiþ1;α;jþ1;β, where the party indices are taken
modulo n. We can then define hr to be the 2 × 2 block ofH
whose entries are given by ðhrÞα;β ≔ H0;α;r;β. If p ¼ 1, the
matrix H is no longer block circulant because the blocks of
H that correspond to interactions that cross the origin carry
a minus sign (these blocks are located on the R top right
diagonals and R bottom left diagonals of H). In this latter
case, it is convenient to construct

~H ≔ j−ih−j ⊗ H; ðC1Þ

where j−i ≔ ðj0i − j1iÞ=
ffiffiffi
2

p
, which is now circulant. Note

that half of the spectrum of ~H is zeros and the other half
coincides with the spectrum ofH. For instance, for the case
of nearest-neighbor interactions (R ¼ 1), n ¼ 3 parties and
p ¼ 1, H takes the block form

H ¼

0

B@
h0 h1 hT1
−hT1 h0 h1
−h1 −hT1 h0

1

CA: ðC2Þ

It is then clear that ~H is block circulant.
Circulant matrices can be diagonalized via a discrete

Fourier transform (DFT). The DFT matrix is unitary in
general, but we want to use an orthogonal transformation
instead, so that we can transform Majorana fermions into
Majorana fermions and obtain Eq. (21). Let us consider the
following real DFT matrix of order n:

ðRnÞkl ≔
ffiffiffi
2

n

r
cos

"
2πkl
n

−
π
4

#
; 0 ≤ k; l < n: ðC3Þ

It is easy to see that Rn ¼ RT
n and R2

n ¼ 1, so Rn is
orthogonal. In the following, we are going to use the fact
that for any n, detðRn ⊗ 12Þ ¼ ðdetRnÞ2 ¼ 1.
Let us now, with the aid of the orthogonal transformation

Rn, study which invariant subspaces H acts upon.
If p ¼ −1, then we compute ðRn ⊗ 12ÞHðRn ⊗ 12Þ; if
p ¼ 1, then we calculate ðR2n ⊗ 12Þ ~HðR2n ⊗ 12Þ. Note
that 12 acts on the two Majorana modes associated to
one site.
On the one hand, if p ¼ −1, a direct calculation of H0 ≔

ðRn ⊗ 12ÞHðRn ⊗ 12Þ shows that

H0 ¼
 

⨁
⌊ðn−1Þ=2⌋

k¼1

Jk

!
⊕

$Xn−1

q¼0

hq

%
⊕

$Xn−1

q¼0

ð−1Þqhq
%
; ðC4Þ

where the last subspace appears only if n is even and each
Jk is a 4 × 4 block defined as

Jk ≔
Xn−1

q¼0

"
cosð2πkq=nÞ − sinð2πkq=nÞ
sinð2πkq=nÞ cosð2πkq=nÞ

#
⊗ hq: ðC5Þ

On the other hand, if p ¼ 1, one similarly proves that
H00 ≔ ðR2n ⊗ 12Þ ~HðR2n ⊗ 12Þ:

H00 ¼
"

⨁
⌊n=2⌋

k¼1

J0k

#
⨁

$Xn−1

q¼0

ð−1Þqhq
%
; ðC6Þ

where the last subspace appears only if n is odd, and each
J0k is a 4 × 4 block defined as

J0k ≔
Xn−1

q¼0

" cos ðπq 2k−1
n Þ − sin ðπq 2k−1

n Þ
sin ðπq 2k−1

n Þ cos ðπq 2k−1
n Þ

#
⊗ hq: ðC7Þ

We can further simplify these expressions by noting that
H ¼ −HT is blockwise equivalent to hq ¼ −hTn−q. This
implies that the 2 × 2 blocks in Eqs. (C4) and (C6) are
already brought to the Williamson form:

Xn−1

q¼0

hq ¼
Xn−1

q¼0

"
0 ðhqÞ0;1

−ðhqÞ0;1 0

#
ðC8Þ

and

Xn−1

q¼0

ð−1Þqhq ¼
Xn−1

q¼0

ð−1Þq
"

0 ðhqÞ0;1
−ðhqÞ0;1 0

#
: ðC9Þ

We then define the quantity

ε0;% ¼
Xn−1

q¼0

ð%1ÞqðhqÞ0;1; ðC10Þ
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which corresponds to the Williamson eigenvalue(s) for the
2 × 2 blocks.
To bring H to a Williamson form, it remains to bring the

4 × 4 blocks Jk and J0k to a Williamson form. To this end,
let us start by defining υk;q ≔ qπ½2k − ðpþ 1Þ=2%=n and

xk ≔
Xn−1

q¼0

cosðυk;qÞðhqÞ0;1; ðC11Þ

ak ≔ −
Xn−1

q¼0

sinðυk;qÞðhqÞ0;0; ðC12Þ

bk ≔ −
Xn−1

q¼0

sinðυk;qÞðhqÞ0;1; ðC13Þ

ck ≔ −
Xn−1

q¼0

sinðυk;qÞðhqÞ1;1: ðC14Þ

Let us note that the blocks Jk (or J0k) take the following
form:

0

BBB@

0 x a b

−x 0 b c

−a −b 0 x

−b −c −x 0

1

CCCA

k

: ðC15Þ

Now we are ready to find an orthogonal transformation that
brings Jk or J0k to a Williamson form, which we state in the
following lemma.
Lemma 3.—For every Jk (or J0k) of the form Eq. (C15),

there exists an orthogonal transformation Ok that brings it
to a Williamson form:

OT
k JkOk ¼

0

BBB@

0 εk;þ 0 0

−εk;þ 0 0 0

0 0 0 εk;−
0 0 −εk;− 0

1

CCCA: ðC16Þ

Its two Williamson eigenvalues εk;' are given by

εk;' ¼ ak þ ck '
ffiffiffiffiffiffi
Δk

p
; ðC17Þ

where Δk ≔ ðak − ckÞ2 þ 4ðb2k þ x2kÞ and k ranges from 1
to ⌊n=2þ ðp − 1Þ=4⌋. Furthermore, this orthogonal trans-
formation always satisfies detOk ¼ −1.
Proof.—The choice of Ok is not unique in general. Here,

we construct Ok as the product of three matrices. Since k is
fixed, we skip explicitly stating the subindex throughout
the proof. We constructO asO ≔ LMR, where L and R are
diagonal matrices whose entries are defined by

L−1 ¼ 1

4
diagfa − c −

ffiffiffiffi
Δ

p
; 2; a − cþ

ffiffiffiffi
Δ

p
; 2g ðC18Þ

and

R−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

b2 þ x2

r
diagfr−; r−; rþ; rþg; ðC19Þ

where r' ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ' ða − cÞ

ffiffiffiffi
Δ

pq
. The matrix M in the

middle is not diagonal, and in its most general form can
depend on two real parameters, which we denote ϕ and θ.
We have that the entries of M are given by

0

BBB@

fb;−xðϕÞgþ f−x;bðϕÞgþ f−b;xðθÞ fx;bðθÞ
cosϕ − sinϕ cos θ − sin θ

−fx;bðϕÞ f−b;xðϕÞ fx;bðθÞg− fb;−xðθÞg−
sinϕ cosϕ sin θ cos θ

1

CCCA;

ðC20Þ

where

fy;zðαÞ ≔ y cos αþ z sin α

and

g' ≔ ðc − a'
ffiffiffiffi
Δ

p
Þ2=4ðb2 þ x2Þ:

We can now show that O is indeed an orthogonal trans-
formation with determinant −1, since detL ¼ −16=
ðb2 þ x2Þ, detR ¼ ðb2 þ x2Þ=16Δ, and the determinant
of M is independent of both φ and θ, and it is detM ¼ Δ.
The multiplication of these three terms gives the result
detO ¼ −1. Hence, one can pick convenient values for ϕ
and θ in order to show that OTJO already has a Williamson
form Eq. (C16) simply by matrix multiplication. ▪
Tracking all the transformations we have made, i.e.,

counting the parity flips imposed by the choice of all the
orthogonal transformations we have made, the superselec-
tion rule Eq. (30) that must be obeyed takes the form
of Eq. (52).
If, in addition, we impose a finite interaction range R,

then we can further simplify the expressions for xk, ak, bk,
and ck thanks to the property hr ¼ −hTn−r and arrive at
Eqs. (47), (48), (49), (50).

APPENDIX D: TIGHT TRANSLATIONALLY
INVARIANT INEQUALITIES

Here, we provide a list of tight optimal TI Bell inequal-
ities Eq. (53) for R ¼ 2 that are violated when performing
the same set of measurements on each party, which are of
the form
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M0 ¼ cosφσx þ sinφσy;

M1 ¼ cos θσx þ sin θσy;

M2 ¼ σz:

Note that, since

TrðBρÞ ¼ Tr½ðUBU†ÞðUρU†Þ&; ðD1Þ

where U is a unitary transformation of the form U⊗n, the
maximal quantum violation of a TI Bell inequality with the
above measurements depends only on θ − φ, as there
always exists a unitary U that brings M0 to σx by
performing a rotation in the x − y plane [26]. Hence, there
is no loss of generality in assuming φ ¼ 0.
For n ≤ 8, it is still computationally feasible to find all

the facets of the polytope of local correlations projected
onto the space of the correlators appearing in Eq. (53). To
achieve this goal, we construct all the vertices of the local
polytope of correlations for n parties, three measurements,
and two outcomes, which are 23n in total, and we project
them to the space of translationally invariant correlators that

appear in Eq. (53), following the same procedure of
Ref. [38]. With linear programing, we can remove all
the projected vertices that are a convex combination of
other projected vertices. Then, we can use an algorithm
such as CDD [54] to compute the convex hull of the
extremal projected vertices and obtain a minimal descrip-
tion of it in terms of facets. We call these facets tight Bell
inequalities. We summarize these findings in Table I.
Following the same procedure as in Sec. VA, we find the

inequalities that are violated, which we classify in Table II.
Note that, by renaming the outcomes of the measure-

ments, the labels of the measurements, or the labels of the
parties, one can obtain other inequalities that are not listed
in Table II; however, these relabelings do not change the
properties we are interested in, such as the classical bound
or its quantum violation, so we consider them to be
equivalent and we include only one representative for each
equivalence class.
From the values of Table II, we see that QV=βC

approaches zero as n grows. Similar to what was found
in Ref. [38], numerics suggest that, for translationally
invariant Bell inequalities, there is a trade-off between n
and R. In Ref. [38], the maximal n for R ¼ 1 was 5, whereas
here for R ¼ 2 we did not find any violation beyond n ¼ 8.
Furthermore, for n ¼ 6, 7 there are no translationally
invariant Bell inequalities of the form Eq. (53) that are
violated by performing the same qubit measurements at each
site. One may still perform different qubit measurements on
each site and be able to maximally violate the inequality, as it
was proven in Ref. [37]; however, to achieve the same
violation with the same set of measurements at each site, one
may then need to increase the dimension of the state and use
positive-operator valued measures [38].

TABLE I. Number of tight Bell inequalities (facets) and
number of extremal points (vertices) of the local polytope
projected onto the space of TI, n party, up to R-range correlators
[cf. Eq. (53)].

n Number of facets Number of vertices

3 166 72
4 5628 204
5 46 804 1148
6 20 268 1816
7 175 444 6064
8 29 290 4044

TABLE II. Classes of inequalities of the form of Eq. (53) that are violated for different n with the same set of measurements at each
site. We present one representative per class; the rest can be found by applying a suitable symmetry such as a renaming of the
measurements, outcomes, and/or parties [38]. The γ’s constitute the coefficients of the Bell inequality, βC is the classical bound, QV is
the quantum violation achieved with the measurement settings defined through φ0 and φ1. Note that due to Eq. (D1), this depends only
on φ1 − φ0 (recall that the measurement settings we use parametrize the quantum observables as MðiÞ

k ¼ cosφðiÞ
k σðiÞx þ sinφðiÞ

k σðiÞy , and
we omit the index i because we are in the TI case).

n γ γ00 γ01 γ10 γ11 γ020 γ021 γ120 γ121 βC QV φ1 − φ0

3 −2 1 −1 1 1 −1 −1 1 −1 6 −2.9282032303 π=2
3 0 1 −1 3 −3 1 1 1 1 12 −2.5830052443 π=2
3 2 −1 1 1 1 −1 1 1 1 6 −2.5830052443 π=2

4 0 0 0 0 0 1 −2 0 −1 8 −3.313708499 π=2
4 −2 4 2 2 0 5 −3 1 −1 32 −0.5471047512 0.3254696365π
4 0 2 2 2 2 5 −5 1 −1 32 −0.5115214246 π=2
4 −1 2 5 5 6 −2 −10 2 11 72 −0.4999666746 0.3188572387π
4 −1 −2 −3 −3 −4 −7 7 −1 2 48 −0.4670552431 0.278787455π
4 2 0 −2 −2 −4 3 1 −3 −3 32 −0.218521874 0.2029607403π

5 0 1 1 −1 −1 1 −1 1 −1 12 −0.3107341487 π=2

8 0 2 −2 2 −2 −1 −1 1 1 32 −0.2187 π=2
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Interestingly, we also note that the highest ratio QV=βC
is obtained for n ¼ 3. This is not surprising, as for n ¼ 3
our inequalities contain full-body correlators (see Table II).
However, for n ¼ 4, the first class achieves a much higher
violation than the others. This is because the inequality
consists of a sum of CHSH-like inequalities between
parties 0 and 2 and between parties 1 and 3:

I ¼
X3

i¼0

Mði;2Þ
ð0;2;0Þ − 2Mði;2Þ

ð0;2;1Þ −Mði;2Þ
ð1;2;1Þ: ðD2Þ

The minimum over quantum values that can be achieved is
βQ ¼ −4ð2

ffiffiffi
2

p
Þ, so that jβQj=βC ¼

ffiffiffi
2

p
. This inequality can

be generalized to any even number of parties at the price of
increasing the interaction range R. By picking R ¼ n=2 one
can always pair party k with party kþ R into a CHSH-like
link while maintaining jβQj=βC ¼

ffiffiffi
2

p
for any even n.

However, let us remark that for the scope of this work, we
are interested in studying the nonlocality of ground states of
local Hamiltonians (i.e., with a fixed R).

APPENDIX E: ORTHOGONAL
TRANSFORMATION FOR
MAJORANA FERMIONS

We consider an antisymmetric matrixH of size 2n. If we
want to decompose it as H ¼ OJOT , where O is a 2n × 2n
orthogonal matrix and J has the form Eq. (21), we can, in
the majority of situations, use the spectral theorem to find
O: The matrix H2 is symmetric, so it diagonalizes as
H2 ¼ ODOT , with D a diagonal matrix with entries −ε2k,
appearing with multiplicity 2 for each k, and the columns of
O forming an orthonormal basis. If all the εk are different,
then one can safely conclude thatH ¼ OJOT , because ifH
is antisymmetric, then J has to be of the form Eq. (46).
Hence, one can say that O is unique (up to permutations
that determine the order and the signs of εk).
However, if εk has a multiplicity greater than 1, this need

no longer be the case, as the O found via the spectral
theorem is no longer unique (one can perform an arbitrary
orthogonal transformation in each eigenspace). Note that
this pathologic case is of interest to our problem, as for tight
Bell inequalities with the optimal set of measurements, it is
common to find εk’s with the same value (for instance, in
the example in Sec. VA). There are twoways to circumvent
this problem. One way is to add some noise to H such that
all the εk’s can be considered different; however, we lose
precision in the solution and add numerical instability. We
describe the other way below.
Let ε be a nonzero Williamson eigenvalue of H with

multiplicitym. Then,OTHO has a 2m × 2m block, denoted
Jε, that satisfies

J2ε ¼ −ε212m: ðE1Þ

Thus, any orthogonal transformation acting on Jε leaves J2ε
invariant, but not necessarily Jε in the form Eq. (21).
Let je1i be a unit vector in the Jε eigenspace (picked from
the corresponding columns of O) and let je2i ≔ Jεje1i=ε
be another unit vector. Then, we observe that je1i ¼
−Jεje2i=ε because of Eq. (E1). Now, by picking another
unit vector je3i from 12m − je1ihe1j − je2ihe2j, we find je4i
with the same procedure. We repeat this process m times.
By multiplying O by the orthogonal transformation given
by the vectors je1i; je2i;…; je2mi, we obtain the right
transformation bringing H to the form Eq. (21).
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