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Experimental violation of local causality in a
quantum network
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Bell’s theorem plays a crucial role in quantum information processing and thus several

experimental investigations of Bell inequalities violations have been carried out over the

years. Despite their fundamental relevance, however, previous experiments did not consider

an ingredient of relevance for quantum networks: the fact that correlations between distant

parties are mediated by several, typically independent sources. Here, using a photonic setup,

we investigate a quantum network consisting of three spatially separated nodes whose

correlations are mediated by two distinct sources. This scenario allows for the emergence of

the so-called non-bilocal correlations, incompatible with any local model involving two

independent hidden variables. We experimentally witness the emergence of this kind of

quantum correlations by violating a Bell-like inequality under the fair-sampling assumption.

Our results provide a proof-of-principle experiment of generalizations of Bell’s theorem for

networks, which could represent a potential resource for quantum communication protocols.
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A
s demonstrated by the celebrated Bell’s theorem1,
correlations arising from experiments with distant
quantum mechanical systems are at odds with one of

our most intuitive scientific notions, that of local realism. The
assumption of realism formalizes the idea that physical quantities
have well-defined values independently of whether they are
measured or not. In turn, local causality posits that correlations
between distant particles can only originate from causal
influences in their common past. These two rather natural
assumptions together imply strict constraints on the empirical
correlations that are compatible with them. These are the famous
Bell inequalities, which have been recently violated in a series of
loophole-free experiments2–4 and thus conclusively established
the phenomenon known as Bell non-locality. Apart from their
profound implications in our understanding of nature, such
experiments provide a proof-of-principle for practical
applications of non-local correlations, most notably in the
context of quantum networks5–7.

In a quantum network, short-distance nodes are connected by
sources of entangled systems which can, via an entanglement
swapping protocol8,9, establish entanglement across long
distances as well. Importantly, such long-distance entanglement
can in principle also be used to violate a Bell inequality and thus
establish a secure communication channel10–12. Clearly, for these
and many other potential applications13–16, the certification of
non-local correlations across the network will be crucial. The
problem, however, resides on the fact that experimental
imperfections accumulate very rapidly as the size of the
network and the number of sources of states increase, making
the detection of Bell non-locality very difficult or even impossible
by usual means17,18. One of the difficulties stems from the
derivation of Bell inequalities themselves, where it is implicitly
assumed that all the correlations originate at a single common
source (see Fig. 1b), the so-called local hidden variable (LHV)
models. Notwithstanding, in a network a precise description must
take into account that there are several and independent sources
of states (see Fig. 1c), which introduce additional structure to the
set of classically allowed correlations. In fact, there are quantum
correlations that can emerge in networks that, while admitting a
LHV description, are incompatible with any classical description
where the independence of the sources is considered19–25. For
instance, a network with two independent sources allow for the
emergence of a different kind of non-local correlations violating
the so-called bilocal causality assumption19,20.

The aim of this study is to experimentally observe this different
type of Bell non-locality. We experimentally implemented, using
pairs of polarization-entangled photons, the simplest possible
quantum network akin to a three-partite entanglement swapping
scheme (see Fig. 1c). Two distant parties, Alice and Charlie,
perform analysis measurements over two photons (1 and 4, see
Fig. 2), which were independently generated in two different
sources, whereas a third station, Bob, performs a Bell-state
measurement over the two other photons (2 and 3), one
entangled with Alice’s photon and the other entangled with
Charlie’s one. This scheme allows us to observe Bell non-bilocal
correlations by violating the Bell-like inequality proposed in
refs 19,20. Further, showing that our experimental data is
nevertheless compatible with usual LHV models where the
independence of the sources is not taken into account, we can
conclude that the quantum correlations we generate across the
network are truly of a different kind. Moreover, we
experimentally show that beyond a certain noise threshold one
can enter a region where no standard local causality violation can
be extracted from the shared state between Alice and Charlie after
entanglement swapping and, nevertheless, the correlations of the
entire network can still violate the bilocal causality assumption.

Results
Local and bilocal correlations in a tripartite scenario. We start
describing the typical scenario of interest in the study of Bell non-
locality shown in Fig. 1b for the case of three distant parties. A
source distributes a physical system to each of the parties that at
each run of the experiment can perform the measurement of
different observables (labelled by x, y and z), thus obtaining the
corresponding measurement outcomes (labelled by a, b and c). In
a classical description of such experiment, no restrictions other
than local realism are imposed, meaning that the measurement
devices are treated as black boxes that take random (and inde-
pendently generated) classical bits as inputs and produce classical
bits as outputs as well. After a sufficient number of experimental
runs is performed, the probability distribution of their measure-
ments can be estimated, that according to the assumption of local
realism can be decomposed as a LHV model of the form

p a; b; c x; y; zjð Þ¼
X

l

pðlÞp a x; ljð Þp b y; ljð Þp c z; ljð Þ: ð1Þ

The hidden variable l subsumes all the relevant information in
the physical process and thus includes the full description of the
source producing the particles as well as any other relevant
information for the measurement outcomes.

In the description of the LHV model (equation (1)), no
mention is made about how the physical systems have been
produced at the source. For the network we consider here (see
Fig. 1c), the two sources produce states independently, thus the
set of classically allowed correlations

p a; b; c x; y; zjð Þ ¼
P
l1;l2

p l1ð Þp l2ð Þ

p ajx; l1ð Þp bjy; l1; l2ð Þp cjz; l2ð Þ;
ð2Þ
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Figure 1 | Representation of the causal structures underlying the

networks45. Directed acyclic graphs45 can represent different causal

structures, for instance the nodes in the graph represent the relevant

random variables with arrows accounting for their causal relations. There

are three different kinds of nodes: hidden variables (orange boxes),

measurement settings (green boxes) and measurement outcomes (blue

boxes). (a) Bipartite LHV model. (b) Tripartite LHV model. (c) Tripartite

scenario with two independent LHVs, that is, bilocal hidden variable (BLHV)

model. (d) Possible extension of the bilocal model to a linear chain of four

stations with three independent LHVs.
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is now mediated via two independent hidden variables l1 and l2

(ref. 19), thus defining a bilocal hidden variable model.
In our scheme, Bob always performs the same measurement

(no measurement choice) obtaining four possible outcomes that
can be parameterized by two bits b0 and b1. Alice and Charlie can
choose each time one of two possible dichotomic measurements.
Thus, in this case the observable distribution containing the full
information of the experiment is given by p(a, b0, b1, c|x, z). This
allows us to violate the bilocal causality inequality proposed in
ref. 19 and further developed in refs 20,22–25:

B¼
ffiffiffiffiffi
Ij j

p
þ

ffiffiffiffiffi
Jj j

p
� 1 ð3Þ

The terms I and J are sums of expectation values, given by
I¼ 1

4

P
x;z AxB0Czh i and J¼ 1

4

P
x;zð� 1Þxþ z AxB1Czh i, where

AxByCz
� �

¼
P

a;b0;b1;c
ð� 1Þaþ by þ cp a; b0; b1; c x; zjð Þ and x, z, a,

b0, b1, c¼ 0, 1. Inequality (equation (3)) is valid for any classical
model of the form (equation (2)) and its violation demonstrates
the non-local character of the correlations we produce among the
network.

Violation of the bilocal causality inequality. We generate
entangled photon pairs via type-II spontaneous parametric down-
conversion process occurring in two separated nonlinear crystals
(Einstein-Podolsky-Rosen (EPR) 1 and EPR 2) injected by a
pulsed pump laser (see Fig. 2). When a pair of photons is gen-
erated in each of the crystals, one photon from source EPR 1
(EPR 2) is sent to Alice’s (Charlie’s) measurement station, where
polarization analysis in a basis that can be rotated of an arbitrary
angle yA (yC) is performed (see Supplementary Note 1). The
other two photons (2 and 3) are sent to Bob’s station, which
consists of an in-fibre 50/50 beam splitter (BS) followed by two
polarizing BSs for the polarization analysis of each of the outputs.
In the ideal case (which relies on perfect photons’ indis-
tinguishability), an incoming C�j i (singlet) state will feature
antibunching, giving rise to coincidence counts at different out-
puts of the BS. All the other cases (triplet states) will experience

bosonic bunching, ending up in the same BS output (see
Supplementary Note 1). A twofold coincidence corresponding to
different polarizations in a single BS output branch corresponds
to Cþj i detection. A half-wave plate placed before one of the
arms of the BS allows, by setting yB¼ 45�, to change the
incoming state from Fþj i to C�j i and from F�j i to Cþj i. In
this way, depending on the setting yB, we are able to detect either
Cþj i and C�j i or Fþj i and F�j i states. This detection can be

interpreted as a probabilistic Bell-state measurement, where, for
each pair of incoming photons, only two out of four outcomes
can be unambiguously identified.

In the ideal case, Bob should be able to distinguish between all
of the four Bell states, but this cannot be done by means of
linear optics26. By this approach, however, we are able to measure
all the combinations (A0, C0),(A0, C1),(A1, C0),(A1, C1) of the
observables A0¼C0¼ sz þ sxð Þ=

ffiffiffi
2
p

and A1¼C1¼ sz �sxð Þ=
ffiffiffi
2
p

of
Alice and Charlie, for the two possible yB configurations. The
fair-sampling assumption allows us to reconstruct from these data
the probability p(a, b0, b1, c|x, z) and then to compute the
quantities I and J, which appear in equation (3).

The maximum value reached in our experimental setup was
B¼1:268� 0:014, corresponding to a violation of inequality
(equation (3)) of almost 20 sigmas. This value is fully compatible
with a theoretical model that considers both colored and white
noise in the state generated by the spontaneous parametric down-
conversion process sources and takes into account the partial
distinguishability of the generated photons (see Supplementary
Note 2).

Next, we address the robustness of the bilocal causality
inequality violation with respect to experimental noise. To this
aim, we tuned the noise in the Bell-state measurement by
modifying the temporal overlap between photons 2 and 3. This
can be achieved by using a delay line before one of the two inputs
of the BS, thus controlling the temporal delay between these
photons (see Fig. 2). We can therefore define a noise parameter p,
which is equal to 1 in the ideal case of a perfect Bell-state
measurement and is equal to 0 when the probability of having a
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Figure 2 | Experimental apparatus for the violation of bilocal causality. Two polarization-entangled photon pairs are generated via Spontaneous

Parametric Down-Conversion (SPDC) in two separated nonlinear crystals. Photon 1 (4) of the first (second) pair is directed to Alice’s (Charlie’s) station,

where one of the local observables A0, A1 (C0, C1) is measured via a motorized half-wave plate (HWP) (angles yA and yC) followed by a polarizing BS (PBS).

Photons 2 and 3 are sent to Bob’s station, where a complete Bell-state measurement is performed. A 50/50 in-fibre BS followed by two PBSs allows to

discriminate C�j i and Cþj i when the HWP angle yB is set to 0 and discriminate F�j i and Fþj i when yB¼45�. A motorized delay line is adopted to

control the amount of noise p in the Bell measurement, by changing the photons wavepacket temporal overlap in the BS.
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successful measurement is 1/2. This parameter can be tuned from
pmax to zero by changing the delay from zero to a value larger
than the coherence time of the photons.

The measured values of B versus p are shown in Fig. 3a. As
expected, the violation decreases with increasing noise19,20. This
plot shows two sets of different data points: considering a fixed
measurement basis (optimal in the absence of the additional
noise) and optimizing the measurement basis at Alice and
Charlie’s stations as a function of p, that is, changing the
measurement basis in order to counteract noise effects (see
Supplementary Note 2). In both cases, our setup can tolerate a
substantial amount of noise before inequality (equation (3)) is
not violated anymore, but it is clear how the optimization
increases both the degree and region of bilocal causality
violation.

Another relevant way to visualize the non-bilocal correlations
generated in our experiment and its relation to usual local models
is displayed in Fig. 3b. A bilocal model (defined by equation (2))
must respect the inequality

ffiffiffiffiffi
Ij j

p
þ

ffiffiffiffiffi
Jj j

p
� 1, while a standard

LHV model (defined by equation (1)) in turn fulfils Ij j þ Jj j � 1.
As shown in Fig. 3b, the measured values of I and J are clearly
incompatible with bilocal causality (apart from the cases with the
highest amount of noise) and behave in good agreement with
the theoretical model. Moreover, it clearly shows how optimizing
the measurement settings improves the robustness of violation
against noise.

Characterizing non-bilocal correlations against LHV models.
The data in Fig. 3b show that the observed values for I and J do
not violate the corresponding LHV inequality. However, this only
represents a necessary condition. To definitively check whether
we are really facing a new type of local causality violation beyond
the standard LHV model (equation (1)), we also checked that all
Bell inequalities defining our scenario are not violated in the
experiment. In general, given an observed probability distribu-
tion, it is a simple linear program to check if it is compatible with
LHV model (see, for example, ref. 27 for further details).
Equivalently, noticing that a LHV model defines a polytope of
correlations compatible with it28, one can derive all the Bell
inequalities constraining that model. As described in the
Supplementary Note 3, we have derived all the Bell inequalities

constraining p(a, b0, b1, c|x, z) compatible with LHV models.
Apart from trivial ones, there are 61 of these inequalities and we
have checked for all the collected data with different noise
parameter p whether they are violated. The results are shown in
Fig. 4a. It can be seen that none of the points (even those that do
violate the bilocal causality inequality (equation (3)), as shown in
Fig. 3) show any significant evidence (taking into account the size
of the error bars) for the violation of any of the all LHV
constraints.

Finally, we addressed the question whether, in an entanglement
swapping scenario, bilocal causality violation could represent a
stronger test rather than the usual CHSH violation29, in order to
certify non-local correlations in presence of experimental noise.
We therefore performed a tomography of the quantum state
shared between Alice and Charlie upon conditioning on Bob’s
outcome (that is, entanglement swapped state) followed by an
experimental test of bilocal causality (see Supplementary Note 4).
This allows us to compare our experimental bilocal causality
violation with the maximum possible CHSH of the swapped state
in different regimes of noise30. Figure 4b clearly shows the
existence of quantum states, which violate bilocal causality (even
without any settings’ optimization) but cannot violate the CHSH
inequality, thus turning unfeasible any protocol10–12 based on its
violation.

Discussion
Our results provide an experimental proof-of-principle for
network generalizations of Bell’s theorem. However, similarly to
any Bell test31, our violation of the bilocal causality inequality is
subjected to loopholes, in particular the locality and detection
efficiency loopholes, as the parties are not space-like separated
and we make use of the fair-sampling assumption. Given the
nature of our experiment, a new loophole—similar to the
measurement independence loophole in Bell’s theorem27,32—is
also introduced if the sources of states cannot be guaranteed to be
truly independent. Regarding usual Bell tests, it was not until
recently that such loopholes were finally overcome2–4. Thus, from
the practical perspective it would be highly desirable to design
future experiments achieving that also for more complex
networks.
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(equation (3)), whereas error bars indicates 1 s.d. of uncertainty, due to Poissonian statistics. (b) Measured values in the I–J plane. Error bars show 1 s.d. for
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From a fundamental perspective, recent results21,27,33–40 at the
interface between quantum theory and causality have shown that
Bell’s theorem represents a very particular case of much richer
and broader range of phenomena that emerge in complex
networks and that hopefully will lead to a deeper understanding
of the apparent tension between quantum mechanics and our
notions of causal relations. Furthermore, given the close
connections between causal inference and machine learning41,
it is pressing to consider what advantages the recent progresses in
quantum machine learning42,43 can provide in such a causal
context.

From a more applied perspective, such generalizations offer an
almost unexplored territory and it is still unclear how to use this
new form of non-local correlations in information processing. As
we showed here, we can still violate a bilocal causality inequality
even if the data admits a LHV model where the independence of
the sources is not taken into account. That is, quantum states
generating classical correlations in conventional scenarios can
become powerful resources in a network, thus hopefully enlarging
our current capabilities to process information in a non-classical
way. For instance, a natural next step is to experimentally realize

even larger quantum networks as the one shown in Fig. 1d. For
sufficiently long networks, the final quantum state swapped
between the end nodes may be separable and thus irrelevant as a
quantum resource. Still, the correlations in the entire network
might be highly non-local25, allowing us to probe a whole new
regime in quantum information processing. Finally, we notice
that during the review process of this work, an independent
experimental investigation of the bilocal causality violation has
appeared44.

Methods
Experimental details. Photon pairs were generated in two equal parametric
down conversion sources, each one composed by a nonlinear crystal beta barium
borate (BBO) injected by a pulsed pump field with l¼ 392.5 nm. The data shown
in Figs 3 and 4a and the purple point in Fig. 4b were collected by using 1.5 mm -
thick BBO crystals, whereas for the red and blue points in Fig. 4b we used 2 mm-
thick crystals to increase the generation rate. After spectral filtering and walkoff
compensation, photon are sent to the three measurement stations. The observable
A0, that is, sz þ sxð Þ=

ffiffiffi
2
p

, corresponds to a half-wave plate rotated by yA
0 ¼ 11.25�,

whereas A1, that is, sz � sxð Þ=
ffiffiffi
2
p

, corresponds to yA
1 ¼ 78.75�. Analogously, C0

and C1 can be measured at Charlie’s station using the same angles yC
0 ¼ yA

0 and
yC

1 ¼ yA
1 .
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Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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