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We recently presented a constructive solution to the N -representability problem of the two-electron reduced
density matrix (2-RDM)—a systematic approach to constructing complete conditions to ensure that the 2-RDM
represents a realistic N -electron quantum system [D. A. Mazziotti, Phys. Rev. Lett. (to be published)]. In this paper
we provide additional details and derive further N -representability conditions on the 2-RDM that follow from
the constructive solution. The resulting conditions can be classified into a hierarchy of constraints, known as the
(2,q)-positivity conditions, where the q indicates their derivation from the non-negativity of q-body operators. In
addition to the known T1 and T2 conditions, we derive another class of (2,3)-positivity conditions. We also derive
3 classes of (2,4)-positivity conditions, 6 classes of (2,5)-positivity conditions, and 24 classes of (2,6)-positivity
conditions. The constraints obtained can be divided into two general types: (i) lifting conditions, that is, conditions
which arise from lifting lower (2,q)-positivity conditions to higher (2,q + 1)-positivity conditions, and (ii) pure
conditions, that is, conditions which cannot be derived from a simple lifting of the lower conditions. All of
the lifting conditions and the pure (2,q)-positivity conditions for q > 3 require tensor decompositions of the
coefficients in the model Hamiltonians. Subsets of the derived N -representability conditions can be employed
with the previously known conditions to achieve polynomially scaling calculations of ground-state energies and
2-RDMs of many-electron quantum systems even in the presence of strong electron correlation.
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I. INTRODUCTION

Because electrons are indistinguishable with pairwise
Coulomb interactions, the energies and properties of many-
electron atoms and molecules can be evaluated from a knowl-
edge of the two-electron reduced density matrix (2-RDM)
[1–3]. Minimizing the ground-state energy as a functional of
the 2-RDM, however, requires nontrivial constraints on the
2-RDM to ensure that it represents an N -electron system (N -
representability conditions) [1–24]. While advances in theory
and computation enabled the accurate variational calculation
of the 2-RDM for a variety of strongly correlated systems
in chemistry and physics, from polyaromatic hydrocarbons
[25,26] to quantum dots [27], the known N -representability
conditions for the 2-RDM, albeit rigorous, remained in-
complete. Recently, we presented a constructive solution to
the N -representability problem—a systematic approach to
constructing complete N -representability conditions on the
two-electron reduced density matrix (2-RDM)—as well as
examples of new N -representability conditions [28]. In the
present paper we present additional details as well as further
conditions on the 2-RDM that follow from the constructive
solution.

The advantage of reduced variables such as the 2-RDM
and the one-electron density is that, unlike the wave function
expanded in terms of determinants, their degrees of freedom
grow polynomially with the size of the quantum system [3]
even when the electrons are strongly correlated [29,30]. Direct
calculation of the reduced variables, however, requires that
they and their functionals be consistent with a realistic N -
electron quantum system; in other words, the reduced variables
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and functionals must be representable by the integration of
an N -electron density matrix. Such consistency relations are
known as the N -representability conditions [1–18,20–24].
These conditions are particularly important to 2-RDM meth-
ods, where they enable the direct calculation of the 2-RDM
without the wave function, but they are also implicit in the
design of realistic approximations to the density functional in
density functional theory [31,32].

Minimizing the many-electron energy as a functional of
the 2-RDM without N -representability conditions produces an
energy that is much lower than the exact ground-state energy
of the quantum system. The energy is too low because both the
energy and the computed 2-RDM are not realistic—they are
not N representable. In the early 1960s the search for the set of
necessary and sufficient N -representability conditions became
known as the N -representability problem [4]. Three important
constraints, known as the D, Q, and G (or 2-positivity)
conditions, were developed by Coleman [4] and Garrod and
Percus [5]. The D, Q, and G conditions restrict the probability
distributions of two electrons, two holes (where a hole is
the absence of an electron), and an electron-hole pair to be
non-negative. Each condition can be expressed in the form
of a matrix constrained to be positive semidefinite. A matrix
is positive semidefinite if and only if its eigenvalues are
non-negative.

In 1978 Erdahl [8] discovered two additional semidefinite
constraints on the 2-RDM known as the T1 and T2 (or partial
3-positivity) conditions [15,17,18,33], which are derivable
from the non-negativity of the three-electron probability
distributions. Finally, Weinhold and Wilson [34], Yoseloff and
Kuhn [35], McRae and Davidson [36], and Erdahl [8] derived
necessary conditions on the diagonal part of the 2-RDM. These
diagonal conditions were shown, in the context of the Boole
optimization problem [37], to be part of a complete set of
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classical N -representability conditions on the two-electron
reduced density function, which is the diagonal part of the 2-
RDM in a coordinate representation [38]. Despite the solution
of the classical problem, the complete set of quantum N -
representability conditions remained unknown except for the
D, Q, G, T1, and generalized T2 conditions as well as unitary
transformations of the classical N -representability conditions.
In 2001 Mazziotti and Erdahl [11] presented a systematic
generalization of these constraints known as the p-positivity
conditions and in 2002 Mazziotti [13,39] introduced the lifting
conditions; however, except for the conditions given above, the
p-positivity conditions and the lifting conditions depend upon
not only the 2-RDM but also higher-particle RDMs.

The constructive solution to the N -representability problem
provides a systematic approach to building complete N -
representability conditions on the 2-RDM [28]. While an
example of the derived conditions was given previously,
in the present paper we present further N -representability
conditions on the 2-RDM that follow from the constructive
solution. The conditions are in the form of a set of model
Hamiltonians with pairwise interactions whose trace against
the 2-RDM must be non-negative. The resulting conditions can
be classified into an increasing hierarchy of constraints, known
as the (2,q)-positivity conditions, where the first number p in
the name indicates the highest p-RDM required to evaluate
the condition (the 2-RDM in our case) and the second number
q indicates the highest q-particle reduced density operators
(q-RDOs) canceled by non-negative linear combinations in
the derivation of the condition. The (p,p)-positivity conditions
are equivalent to the p-positivity conditions introduced earlier
in Refs. [10], [11], and [13]. We use the two conventions in
nomenclature interchangeably.

In addition to the previously known T1 and T2 condi-
tions [8,15,17,18,33], we derive a class of (2,3)-positivity
conditions. We also derive three classes of (2,4)-positivity
conditions, 6 classes of (2,5)-positivity conditions, and 24
classes of (2,6)-positivity conditions. The conditions obtained
can be divided into two general types: (i) lifting conditions, that
is, conditions which arise from lifting lower (2,q)-positivity
conditions to higher (2,q + 1)-positivity conditions, and (ii)
pure conditions, that is, conditions which cannot be derived
from a simple lifting of the lower conditions. All of the lifting
conditions and the pure (2,q)-positivity conditions for q > 3
require that the expansion coefficients in the model Hamilto-
nians be tensor decomposed. Subsets of the N -representability
conditions can be employed with previously known conditions
for polynomially scaling calculations of ground-state energies
and 2-RDMs of many-electron quantum systems in chemistry
and physics.

II. THEORY

After the constructive solution of N representability is
reviewed in Sec. II A, it is employed in Secs. II C and II D
to derive known and additional N -representability condi-
tions, respectively. The additional constraints are organized
into sections on (2,3)-, (2,4)-, (2,5)-, and (2,6)-positivity
conditions. Two algorithms for implementing the conditions
in a variational 2-RDM calculation are briefly discussed in
Sec. II B.

A. Constructive solution

The energy of an N -electron quantum system in a stationary
state can be computed from the Hamiltonian traced against the
state’s density matrix,

E = Tr(Ĥ ND), (1)

where the Hamiltonian operator is expressible in second
quantization as

Ĥ =
∑
ijkl

2K
ij

kl â
†
i â

†
j âl âk, (2)

in which the matrix 2K is the reduced Hamiltonian operator
in a finite one-electron basis set [40] and the indices label
the members (orbitals) of the basis set. Because electrons are
indistinguishable with pairwise interactions, the energy can
also be universally written as a linear functional of only the
2-RDM,

E = Tr(Ĥ 2D), (3)

where the 2-RDM can be formally defined from integration of
the N -electron density matrix over all electrons save two:

2D = N (N − 1)

2

∫
ND d3 · · · dN. (4)

The expression of the energy as a functional of the 2-RDM
suggests the tantalizing possibility of computing the ground-
state energy of any electronic system as a functional of
only the 2-RDM [1,2,41]. Early calculations by Coleman [4],
Tredgold [42], and others, however, showed that minimization
of the energy as a 2-RDM functional produces unphysically
low energies without additional constraints on the 2-RDM
to ensure that it represents an N -electron density matrix. In
1963 Coleman called these constraints the N -representability
conditions [4].

Building upon work by Garrod and Percus [5], Kummer
in 1967 showed by the bipolar theorem [43] that there exists
a convex set (cone) of two-body operators {2Ôi} whose trace
against a potential 2-RDM will be non-negative,

Tr(2Ô 2D) � 0, (5)

if and only if the 2-RDM is N representable [6]. Hence,
the set of two-body operators {2Ôi} defines the set P 2

N of
N -representable 2-RDMs. We say that the set {2Ôi} is the
polar of P 2

N and denote it P 2
N

∗
. Characterizing the set P 2

N of
N -representable 2-RDMs, therefore, would be complete if we
could characterize its polar set P 2

N

∗
. Kummer’s original result

demonstrates the existence of the set P 2
N

∗
, but it does not

provide a prescription for constructing it.
Recently, a constructive solution to the N -representability

problem has been derived through the complete characteriza-
tion of the polar set P 2

N

∗
[28]. In Ref. [28] it is proven that the

second-quantized representation of the operators {2Ôi} in P 2
N

∗

can be explicitly constructed as

2Ô =
∑

i

wiĈiĈ
†
i , (6)

where Ĉi are polynomials in the creation and/or annihilation
operators of degree less than or equal to r (the rank of the one-
electron basis set) and wi are non-negative integer weights.
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The proof relies on the fact that P 2
N

∗
is contained within the

set P r
N

∗ of operators of degree �2r whose trace against an
N -electron density matrix must be non-negative. Because the
extreme elements (rays) of the convex cone P r

N
∗ are readily

expressed as [44]

ĈiĈ
†
i , (7)

the extreme elements (rays) of P 2
N

∗
can be constructed from

the conic combinations (or non-negative linear combinations)
given in Eq. (6). The conic combinations, if divided by∑

i wi , can be interpreted as convex combinations. Conic
combinations are contained in P 2

N

∗
if and only if they cancel

all three- and higher-body operators, that is, polynomials in
creation and annihilation operators of degree �6.

B. Practical implementation

Before developing known and new N -representability
conditions in Secs. II C and II D, respectively, in this section
we briefly indicate their practical applications by sketching
two algorithms for computing the ground-state 2-RDM.
Minimizing the ground-state energy as a function of the
2-RDM constrained by these conditions can be formulated
as a linear program,

minimize E = Tr(Ĥ 2D) (8)

such that Tr(Ôj
2D) � 0 for all j, (9)

in which the necessary set of operators (model Hamiltonians)
Ôj , defining the boundary of the convex set of 2-RDMs,
must be determined iteratively. Given an initial set of model-
Hamiltonian constraints that bound the minimum energy, the
three key steps in the algorithm are (i) solving the linear
program for the optimal 2-RDM, (ii) updating the set of
model-Hamiltonian constraints in the linear program, and
(iii) repeating steps i and ii until the 2-RDM is non-negative
in its trace, with all model Hamiltonians explored in step ii.
In the second step, the trace of each model Hamiltonian with
the 2-RDM is minimized by optimizing the Hamiltonian’s
parameters (expansion coefficients), and if the final trace is
negative, the model Hamiltonian with its optimized parameters
is added to the constraints in Eq. (9). In practice, only a
subset of model Hamiltonians from the constructive solution
is employed.

Some of the N -representability constraints can be collected
together as a single semidefinite constraint on the 2-RDM. The
generalization of a linear program to include semidefinite con-
straints is known as a semidefinite program, and the solution
of such a program is called semidefinite programming [45,46].
Efficient large-scale semidefinite programming algorithms
have been developed for the variational calculation of the 2-
RDM [14–16,21,23,24,47–49]. While the model Hamiltonians
corresponding to previously known N -representability condi-
tions in Sec. II C can be expressed as semidefinite constraints,
the model Hamiltonians corresponding to the new conditions
in Sec. II D, which use tensor decompositions of the expansion
coefficients in the Ĉi operators, cannot be written as traditional
semidefinite constraints. In practice, however, we can add these
nonstandard constraints to a semidefinite program containing
the standard semidefinite constraints by the three-step iterative

procedure discussed above for the linear program. A main
advantage of this second algorithm is that a large number of
model-Hamiltonian constraints can be included by a single
semidefinite constraint. A similar algorithm, to which we refer
for further details, was proposed in Ref. [50] for imposing the
T2 condition by recursively generated linear inequalities.

C. Known conditions

All previously known N -representability conditions are
generated by the constructive solution. The most important
representability conditions on the 2-RDM, derived by Cole-
man [4] and Garrod and Percus [5], are the D, Q, and G
conditions—also, known as the 2-positivity conditions [11].
These conditions restrict the two-particle RDM 2D, the two-
hole RDM 2Q, and the particle-hole RDM 2G to be positive
semidefinite, that is,

2D � 0, (10)

2Q � 0, (11)

2G � 0, (12)

where the elements of the RDMs are given by

2D
ij

kl = 〈�|â†
i â

†
j âl âk|�〉, (13)

2Q
ij

kl = 〈�|âi âj â
†
l â

†
k|�〉, (14)

2G
ij

kl = 〈�|â†
i âj â

†
l âk|�〉, (15)

and M � 0 indicates that the matrix M is constrained to be
positive semidefinite. Physically, these conditions correspond
to constraining the probability distributions of two particles
and two holes, as well as one particle and one hole, to be
non-negative. The 2-positivity conditions are generated from
the constructive solution by restricting the following three
two-body operators from Eq. (6) to be non-negative for all
coefficients bij :

2ÔD = ĈDĈ
†
D, (16)

2ÔQ = ĈQĈ
†
Q, (17)

2ÔG = ĈGĈ
†
G, (18)

where ĈD , ĈQ, and ĈG cover all polynomials in creation and
annihilation operators of degree 2:

ĈD =
∑
ij

bij â
†
i â

†
j , (19)

ĈQ =
∑
ij

bij âi âj , (20)

ĈG =
∑
ij

bij â
†
i âj . (21)

Note that conic combinations are not present in these con-
ditions because when the Ĉi operators are of degree 2,
the expectation values of the Ôi operators only involve the
2-RDM [28].
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The other previously known N -representability
conditions—the T1 and T2 conditions [8,15,17,18,33]—are
part of the (2,3) conditions that follow from the constructive
solution. These semidefinite conditions on the 2-RDM are
obtainable from conic combinations of three-particle metric
matrices that cancel their dependence on the 3-RDM [17,18]:

T 1 = 3D + 3Q � 0, (22)

T 2 = 3E + 3F � 0, (23)

where in second quantization the matrix elements of these
metric matrices are definable as

3Dijk
pqs = 〈�|â†

i â
†
j â

†
kâs âq âp|�〉, (24)

3Eijk
pqs = 〈�|â†

i â
†
j âkâ

†
s âq âp|�〉, (25)

3F ijk
pqs = 〈�|âpâq â

†
s âkâ

†
j â

†
i |�〉, (26)

3Qijk
pqs = 〈�|âpâq âs â

†
kâ

†
j â

†
i |�〉. (27)

The four metric matrices 3D, 3E, 3F , and 3Q correspond to the
probability distributions for three particles, two particles and a
hole, one particle and two holes, and three holes, respectively
[11,13,18]. Restricting the 3D, 3E, 3F , and 3Q matrices to
be positive semidefinite generates the 3-positivity conditions
[11,18] which depend on the 3-RDM. While the T1 and T2
conditions are a subset of the 3-positivity conditions, they
depend only on the 2-RDM because the three-particle parts of
3D and 3Q (and 3E and 3F ) cancel upon addition [17,18]. For
example, the matrix elements of T 1 are given by

T 1ijk
pqs = 6 3I ijk

pqs − 18 1Di
p ∧ 2I jk

qs + 9 2Dij
pq ∧ 1I k

s , (28)

where pI is the p-particle identity matrix and ∧ denotes the
Grassmann wedge product [40,51].

While the T1 condition is unique, three distinct forms of
the T2 condition can be generated by rearranging the second-
quantized operators in the definition of the 3F metric matrix
relative to those in the 3E metric matrix [18]. Consider the two
variants of the 3F matrix with the following matrix elements:

3F̄ ijk
pqs = 〈�|âpâ†

s âq â
†
j âkâ

†
i |�〉, (29)

3F̃ ijk
pqs = 〈�|â†

s âpâq â
†
j â

†
i âk|�〉. (30)

The 3-positivity condition 3F � 0 implies both 3F̄ � 0 and
3F̃ � 0 because reordering the creation and annihilation
operators does not change the vector space covered by the
metric matrix. Changing the ordering of the second-quantized
operators in the 3F matrix relative to those in the 3E matrix,
however, does generate two additional T2 conditions:

T̄ 2 = 3E + 3F̄ � 0, (31)

T̃ 2 = 3E + 3F̃ � 0. (32)

It was the T̃ 2 form of the T2 condition that was originally
implemented by Zhao et al. [15] and Mazziotti [17,18].

The three T2 conditions are generated in the constructive
solution by keeping the following two-body operators from

Eq. (6) non-negative:

2ÔT 2 = ĈE Ĉ
†
E + ĈF Ĉ

†
F , (33)

2ÔT̄ 2 = ĈEĈ
†
E + ĈF̄ Ĉ

†
F̄
, (34)

2ÔT̃ 2 = ĈEĈ
†
E + ĈF̃ Ĉ

†
F̃
, (35)

where

ĈE =
∑
ijk

bijkâ
†
i â

†
j âk, (36)

ĈF =
∑
ijk

b∗
ijkâi âj â

†
k, (37)

ĈF̄ =
∑
ijk

b∗
ijkâi â

†
kâj , (38)

ĈF̃ =
∑
ijk

b∗
ijkâ

†
kâi âj . (39)

The three T2 conditions can be combined into a single
generalized T2 condition as shown in Refs. [18] and [33].
The T1 condition is also produced in the constructive solution
by keeping the following two-body operator from Eq. (6)
non-negative:

2ÔT 1 = ĈD Ĉ
†
D + ĈQĈ

†
Q, (40)

where

ĈD =
∑
ijk

bijkâ
†
i â

†
j â

†
k, (41)

ĈQ =
∑
ijk

b∗
ijkâi âj âk. (42)

Because the second-quantized operators in ĈD and ĈQ are
anticommutative, there is only one T1 condition. Unlike the
D, Q, and G conditions, both the T1 and the T2 conditions
arise from the conic combination of a pair of three-positive
operators that cancels their dependence on the 3-RDM.

D. Additional conditions

The constructive solution also produces new
N -representability conditions on the 2-RDM [28]. In
this section we discuss the further conditions on the 2-RDM
that emerge from conic combinations of three-, four-, five-,
and six-particle operators in Eq. (6), which we denote
the (2,3)-, (2,4)-, (2,5)-, and (2,6)-positivity conditions,
respectively. All of the new N -representability conditions
require a nonlinear factorization of the expansion coefficients
to cancel the higher particle operators.

1. (2,3)-positivity conditions

In addition to the T1 and T2 conditions, there exists a second
class of (2,3)-positivity conditions that can be generated from
lifting the 2-positivity conditions to the three-particle space
and then canceling the three-particle operators. Consider the
pair of three-body operators

Ô(i,j,k) = Ĉ(i,j,k)Ĉ(i,j,k)†, (43)

Ô(i,j,k̄) = Ĉ(i,j,k̄)Ĉ(i,j,k̄)†, (44)

062507-4



SIGNIFICANT CONDITIONS FOR THE TWO-ELECTRON . . . PHYSICAL REVIEW A 85, 062507 (2012)

where

Ĉ(i,j,k) =
∑
ijk

bij dkâ
†
i â

†
j â

†
k, (45)

Ĉ(i,j,k̄) =
∑
ijk

bij d
∗
k â

†
i â

†
j âk. (46)

The notation for the operators Ô(i,j,k) and Ĉ(i,j,k) includes
their internal summation indices to indicate succinctly (i) the
ordering of the second-quantized operators with indices i, j ,
and k and (ii) the type of second-quantized operator, with k

denoting â
†
k and k̄ denoting âk . Note that the notation does not

indicate the ordering of the indices on the tensor coefficients,
which is alphabetical in both Ĉ(i,j,k) in Eq. (46) and Ĉ(k,i,j )
in Eq. (52). Although the summation indices within Ĉ and its
adjoint are distinct, we only show primes on the indices of
the adjoint when the indices of the two operators appear in
the same sum. Finally, for the N -representability conditions
to be valid for real symmetric and general Hermitian RDMs,
one-index tensors dk and dk̄ denote dk and d∗

k , respectively.
For multi-index tensors we employ the convention that the
first subscript determines conjugacy, that is, bij..m = bij..m and
bīj..m = b∗

ij..m.

The first operator Ô(i,j,k) arises from lifting the D con-
dition through the insertion of a particle projection operator,

∑
k,k′

dkd
∗
k′ â

†
kâk′ , (47)

while the second operator Ô(i,j,k̄) arises from lifting the D
condition through the insertion of a hole projection operator,∑

k,k′
d∗

k dk′ âkâ
†
k′ . (48)

The non-negativity of Ô(i,j,k) and Ô(i,j,k̄) generates a pair
of lifting conditions discussed in Refs. [13] and [39]. While
these two conditions depend not just on the 2-RDM but on
parts of the 3-RDM, the sum of these two three-body operators
produces a two-body operator:

2ÔL1 = Ô(i,j,k) + Ô(i,j,k̄). (49)

Because the two-body operator 2ÔL1 simplifies to the two-
body operator 2ÔD in Eq. (16), its non-negativity regenerates
the D condition. With a generalization of this lifting process,
however, we can generate (2,3)-positivity conditions that are
distinct from the known conditions.

We can generalize the lifting process by inserting the
creation operator and the annihilation operator responsible for
lifting at nonadjacent positions. For example, consider the pair

of three-body operators

Ô(k,i,j ) = Ĉ(k,i,j )Ĉ(k,i,j )†, (50)

Ô(k̄,i,j ) = Ĉ(k̄,i,j )Ĉ(k̄,i,j )†, (51)

where

Ĉ(k,i,j ) =
∑
ijk

bij dkâ
†
kâ

†
i â

†
j , (52)

Ĉ(k̄,i,j ) =
∑
ijk

bij d
∗
k âkâ

†
i â

†
j . (53)

In Ô(k,i,j ) the creation operator â
†
k in Ĉ and the annihilation

operator âk′ in the adjoint of Ĉ, which perform the lifting
of the D condition, are separated from each other by four
second-quantized operators; similarly, in Ô(k̄,i,j ) the creation
and annihilation operators, âk and â

†
k′ , respectively, are

separated from each other by four second-quantized operators.
Because the components of the projectors are separated, the
non-negativity of Ô(k,i,j ) and Ô(k̄,i,j ) generates a pair of
generalized lifting conditions that extend those discussed in
Refs. [13] and [39].

While individually Ô(k,i,j ) and Ô(k̄,i,j ) depend on three-
particle operators, their sum generates a two-body operator,

2ÔL2 = Ô(k,i,j ) + Ô(k̄,i,j ). (54)

Unlike 2ÔL1, the non-negativity of the lifted operator 2ÔL2 is
not necessarily implied by the D, Q, G, T1, and T2 conditions.
Importantly, 2ÔL2 does not simply rearrange to 2ÔL1 because
the creation and annihilation operators are noncommutative.
Based on the possible orderings of the fundamental second-
quantized operators, there are nine distinct ways to lift
the D condition while canceling the resulting three-particle
operators and, hence, nine distinct lifting conditions from the
D condition. Similarly, there are nine distinct (2,3)-positivity
conditions from lifting the Q condition and nine from lifting
the G condition. Three of these 27 lifting conditions reduce
to the D, Q, and G conditions, respectively, while the other
conditions are distinct because the second-quantized operators
in quantum mechanics form a noncommutative algebra.

Table I summarizes the (2,3)-positivity conditions by giving
a representative condition from each of the two classes:
(i) the lifting conditions and (ii) the pure conditions. While the
lifting conditions arise from lifting the 2-positivity conditions,
the pure conditions cannot be obtained by lifting any of
the lower conditions. Table I gives non-negativity of 2ÔL2

and the T1 condition as representative conditions of the
lifting and pure (2,3)-positivity conditions, respectively. All
of the other (2,3) conditions can be obtained from these
representative conditions through two processes: (i) switching
of the second-quantized operators in the Ĉ(i,j,k) between

TABLE I. The (2,3)-positivity conditions can be derived from conic (linear non-negative) combinations of the (3,3)-positivity conditions
that cancel the three-particle operators.

Class Type Representative condition Ĉ definition

1 Lifted (2,2) Tr[(Ô(k,i,j ) + Ô(k̄,i,j ))2D] � 0 Eq. (52)
2 Pure (2,3) Tr[(Ô(i,j,k) + Ô(ī,j̄ ,k̄)) 2D] � 0 Eq. (41)
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creators and annihilators and (ii) reordering of the second-
quantized operators in the Ĉ(i,j,k).

Switching the second-quantized operators with index j in
the L2 condition of Eq. (54), for example, generates a lifted G
condition:

2ÔL3 = Ô(k,i,j̄ ) + Ô(k̄,i,j̄ ). (55)

Note that switching the second-quantized operators with index
k in Eq. (54) simply regenerates the same condition while
switching the second-quantized operators associated with
indices i and j generates lifted G and Q conditions from
the lifted D condition. Reordering of the second-quantized
operators in the L2 condition of Eq. (54), by contrast, produces
the other nine lifted D conditions; for example, reordering L2
yields the L1 condition in Eq. (49). Similarly, for the pure
(2,3)-positivity conditions, switching of the second-quantized
operators with index k in T1 produces the T2 condition in
Eq. (23). The other two distinct T2 conditions, T̄ 2 and T̃ 2,
in Eqs. (31) and (32) are generated not by switching but by
reordering the second-quantized operators in the T2 condition
of Eq. (23).

2. (2,4)-positivity conditions

The (2,4)-positivity conditions, arising from considering all
Ĉi operators of degree �4 in Eq. (6), consist of two classes of
lifting conditions and one class of pure conditions, which are
summarized in Table II. The two classes of lifting conditions
are generated from lifting the two classes of (2,3)-positivity
conditions. As in the previous section, the generalized lifting
is performed by (i) inserting a creation operator into each
Ĉi operator contributing to the condition, (ii) converting the
inserted creation operator into an annihilation operator in
the operator produced from step i, and (iii) adding the two
lifted operators from steps i and ii together to produce a
two-particle operator. The non-negativity of the resulting two-
particle operator generates a lifting (2,4)-positivity condition.
Representative lifting conditions for both classes are reported
in Table II. The Ĉ operators in the first and second classes of
lifted (2,3)-positivity conditions and the pure (2,4)-positivity
condition are given by

Ĉ(l,k,i,j ) =
∑
ijkl

bij dkel â
†
l â

†
kâ

†
i â

†
j , (56)

Ĉ(l,i,j,k) =
∑
ijkl

bijkdl â
†
l â

†
i â

†
j â

†
k, (57)

Ĉ(i,j,k,l) =
∑
ijkl

bidj ekflâ
†
i â

†
j â

†
kâ

†
l , (58)

where bi , di , ei , fi , bij , bijk , and â
†
i become b∗

i , d∗
i , e∗

i , f ∗
i , b∗

ij ,
b∗

ijk , and âi , respectively, when i = ī. The rank of the largest
tensor changes from 3 in Eq. (56) to 1 in Eq. (58) to effect

the cancellation of the 3- and 4-RDOs in the combinations
of operators in Table II. Fusing the tensors bi and dj into
a single rank 2 tensor bij in Eq. (58), for example, would
cause the operator combinations in Table II to depend on
the 3- and 4-RDOs. Additional (2,4)-positivity conditions can
be generated from the representative conditions through a
combination of switching and reordering of the creation and
annihilation operators.

The pure (2,4)-positivity conditions, presented in Ref. [28],
depend upon only the 2-RDM through conic combinations
that cancel the 3- and 4-RDMs. As in the (2,3) conditions,
the cancellations depend upon the conic combination of pairs
of operators that differ from each other by an odd number of
switchings—exchanges of creators and annihilators. Gener-
ating an extreme condition on the 2-RDM requires that we
consider the minimum number of conic combinations that
effect the cancellation of the higher RDMs. Each pure (2,4)-
positivity condition involves the conic combination of eight
four-particle operators by Eq. (6). These eight four-particle
operators can be grouped into the four pairs that depend upon
only three-particle operators:

Ô(ī,j,k,l) + Ô(ī,j̄ ,k̄,l̄), (59)

Ô(i,j̄ ,k,l) + Ô(i,j,k,l), (60)

Ô(i,j,k̄,l) + Ô(i,j,k,l), (61)

Ô(i,j,k,l̄) + Ô(i,j,k,l). (62)

The operators in the first pair differ from each other by the
switching of three creation and annihilation operators, while
the operators in the other three pairs differ from each other
by the switching of one creation operator and one annihilation
operator. Rearranging the second-quantized operators in the
four pairings into normal order with creators to the left of the
annihilators generates expressions involving the sum of nine,
five, three, and one 3-RDOs, respectively. Upon summation,
the nine 3-RDOs from the one pairing with three switchings
cancel with the five, three, and one 3-RDOs from the three
pairings with one switching, and hence the final operator
depends upon only the 2-RDO.

Other pure (2,4)-positivity conditions can be generated
from the representative condition through switching and
reordering of the second-quantized operators. To maintain
the cancellation of the 3- and 4-RDOs, we must perform
the same switching of creation and annihilation operators in
each operator Ĉ(i,j,k,l) contributing to the condition. Because
each fundamental second-quantized operator can be either
a creation or an annihilation operator, there are 24, or 16,
conditions from switching. Eight of these conditions can be

TABLE II. The (2,4)-positivity conditions can be derived from conic (linear non-negative) combinations of the (4,4)-positivity conditions
that cancel the three- and four-particle operators.

Class Type Representative condition Ĉ definition

1 Lifted (2,2) Tr[(Ô(l,k,i,j ) + Ô(l,k̄,i,j ) + Ô(l̄,k,i,j ) + Ô(l̄,k̄,i,j )) 2D] � 0 Eq. (56)
2 Lifted (2,3) Tr[(Ô(l,i,j,k) + Ô(l,ī,j̄ ,k̄) + Ô(l̄,ī,j̄ ,k̄) + Ô(l̄,i,j,k)) 2D] � 0 Eq. (57)
3 Pure (2,4) Tr[(3Ô(i,j,k,l) + Ô(i,j,k,l̄) + Ô(i,j,k̄,l) + Ô(i,j̄ ,k,l) + Ô(ī,j,k,l) + Ô(ī,j̄ ,k̄,l̄)) 2D] � 0 Eq. (58)
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TABLE III. The representative pure (2,4)-positivity condition g1 � 0 as well as three other conditions generated from its reordering, g2 � 0,
g3 � 0, and g4 � 0. Unlike the situation in the classical limit, in the quantum case additional conditions can be generated from each of the 16
conditions obtained from switching by reordering the creation and annihilation operators while preserving the cancellation of the three- and
four-particle operators.

Condition Ĉ definition

g1(2D) = Tr[(3Ô(i,j,k,l) + Ô(i,j,k,l̄) + Ô(i,j,k̄,l) + Ô(i,j̄ ,k,l) + Ô(ī,j,k,l) + Ô(ī,j̄ ,k̄,l̄)) 2D] � 0 Eq. (58)
g2(2D) = Tr[(3Ô(i,j,k,l) + Ô(i,j,k,l̄) + Ô(i,k̄,j,l) + Ô(k,j̄ ,i,l) + Ô(j,ī,k,l) + Ô(ī,j̄ ,k̄,l̄)) 2D] � 0 Eq. (58)
g3(2D) = Tr[(3Ô(i,j,k,l) + Ô(i,j,l̄,k) + Ô(i,l,k̄,j ) + Ô(k,j̄ ,i,l) + Ô(j,ī,k,l) + Ô(ī,j̄ ,k̄,l̄)) 2D] � 0 Eq. (58)
g4(2D) = Tr[(3Ô(i,j,k,l) + Ô(i,j,k,l̄) + Ô(i,k̄,j,l) + Ô(k,j̄ ,i,l) + Ô(j,ī,k,l) + Ô(ī,j̄ ,k̄,l̄)) 2D] � 0 Eq. (58)

generated from the other eight conditions by switching all
creation and annihilation operators by particle-hole symmetry.
In the limit that the expansion coefficients bi , dj , ek , and fl

become orthogonal unit vectors, these 16 conditions reduce
to the 16 conditions in the (2,4) class of the classical (or
diagonal) N -representability problem [8,36,37]. The quan-
tum mechanical formulation of these conditions, however,
is much more general because the expansion coefficients
need not be orthogonal. When the expansion coefficients are
nonorthogonal, the creation and annihilation operators become
noncommutative operators, and hence, the conditions depend
upon their ordering.

In the quantum case additional conditions can be generated
from each of the 16 conditions by reordering the creation and
annihilation operators while preserving the cancellation of the
3- and 4-RDOs. These additional conditions are related to
the original 16 conditions as the generalized T2 conditions
are related to the T2 condition in the (2,3)-positivity condi-
tions. Table III reports the representative pure (2,4)-positivity
condition as well as three other conditions generated from
its reordering. Each of these four conditions differs from the
others by a few terms involving the 2-RDM. For example, the
first and second conditions differ by only one term,

g2 = g1 + 4Re

(
αβ

∑
ik;i ′l′

biek
2Dik

i ′l′ b
∗
i ′f

∗
l′

)
� 0, (63)

where

α =
∑

j

dj e
∗
j , (64)

β =
∑

j

fjd
∗
j , (65)

and Re selects the real part of the expression. When this term is
negative, inequality g2 is stronger than g1, but when this term
is positive, inequality g1 is stronger than g2. In the classical
case, where the expansion coefficients are orthogonal, these
two conditions are equivalent because both α and β are 0, and
hence, this additional term vanishes.

3. (2,5)-positivity conditions

The (2,5)-positivity conditions are generated by considering
all Ĉi operators of degree �5 in Eq. (6). These conditions
consist of three classes of lifting conditions and three classes
of pure conditions, which are listed in Table IV. The lifting
conditions arise from lifting the three classes of (2,4)-positivity
conditions. The Ĉ operators of the first, second, and third

classes of lifting conditions are given by

Ĉ(m,l,k,i,j ) =
∑
ijklm

bij dkelfmâ†
mâ

†
l â

†
kâ

†
i â

†
j , (66)

Ĉ(m,l,i,j,k) =
∑
ijklm

bijkdlemâ†
mâ

†
l â

†
i â

†
j â

†
k, (67)

Ĉ(m,i,j,k,l) =
∑
ijklm

bidj ekflgmâ†
mâ

†
i â

†
j â

†
kâ

†
l , (68)

respectively, and the Ĉ operators of the three classes of pure
conditions are given by

Ĉ(i,j,k,l,m) =
∑
ijklm

bidj ekflgmâ
†
i â

†
j â

†
kâ

†
l â

†
m, (69)

where bi , di , ei , fi , gi , bij , bijk , and â
†
i become b∗

i , d∗
i ,

e∗
i , f ∗

i , g∗
i , b∗

ij , b∗
ijk , and âi , respectively, when i = ī. Note

that the operators in Eqs. (68) and (69) are not equivalent
after switching. Switching of creators to annihilators in the
Ĉ operators in the representative conditions in Table IV
produces 16, 32, and 32 conditions in the pure classes 4, 5,
and 6, respectively. Class 4 has fewer conditions because its
conditions, unlike those in classes 5 and 6, possess particle-
hole symmetry. Particle-hole symmetry is present in all of
the pure (2,3)-positivity conditions and none of the pure (2,4)
conditions. Additional conditions can be generated from the
representative conditions through reordering of the creation
and annihilation operators. Like the (2,3)- and (2,4)-positivity
conditions, the (2,5) conditions generate all of the classical
(diagonal) N -representability conditions when the expansion
coefficients bi , dj , ek , fl , and gm are chosen to be orthogonal
unit vectors.

4. (2,6)-positivity conditions

As with the (2,q)-positivity conditions for q � 5, the
(2,6)-positivity conditions are generated from Eq. (6) by
considering all Ĉi operators of degree �6. Six classes of lifting
(2,6)-positivity conditions arise from lifting the six classes
of (2,5)-positivity conditions. While not shown explicitly,
the representative conditions can be readily constructed from
the conditions in Table IV. There are also 18 classes of
pure (2,6)-positivity conditions. The Ĉ operators of these 18
conditions are given by

Ĉ(ijklmn) =
∑

ijklmn

bidj ekflgmhnâ
†
i â

†
j â

†
kâ

†
l â

†
mâ†

n, (70)

where bi , di , ei , fi , gi , hi , and â
†
i become b∗

i , d∗
i , e∗

i , f ∗
i , g∗

i , h∗
i ,

and ai , respectively, when i = ī. Table V lists a representative
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TABLE IV. The (2,5)-positivity conditions can be derived from conic (linear non-negative) combinations of the (5,5)-positivity conditions
that cancel the three-, four-, and five-particle operators.

Class Type Representative condition Ĉ definition

1 Lifted (2,2) Tr[(Ô(m,l,k,i,j ) + Ô(m,l̄,k,i,j ) + Ô(m̄,l,k,i,j ) + Ô(m̄,l̄,k,i,j )
+Ô(m,l,k̄,i,j ) + Ô(m,l̄,k̄,i,j ) + Ô(m̄,l,k̄,i,j ) + Ô(m̄,l̄,k̄,i,j )) 2D] � 0 Eq. (66)

2 Lifted (2,3) Tr[(Ô(m,l,i,j,k) + Ô(m,l,ī,j̄ ,k̄) + Ô(m̄,l,ī,j̄ ,k̄) + Ô(m̄,l,i,j,k)
+Ô(m,l̄,i,j,k) + Ô(m,l̄,ī,j̄ ,k̄) + Ô(m̄,l̄,ī,j̄ ,k̄) + Ô(m̄,l̄,i,j,k)) 2D] � 0 Eq. (67)

3 Lifted (2,4) Tr[(3Ô(m,i,j,k,l) + Ô(m,i,j,k,l̄) + Ô(m,i,j,k̄,l)
+Ô(m,i,j̄ ,k,l) + Ô(m,ī,j,k,l) + Ô(m,ī,j̄ ,k̄,l̄)
+ 3Ô(m̄,i,j,k,l) + Ô(m̄,i,j,k,l̄) + Ô(m̄,i,j,k̄,l)
+Ô(m̄,i,j̄ ,k,l) + Ô(m̄,ī,j,k,l) + Ô(m̄,ī,j̄ ,k̄,l̄)) 2D] � 0 Eq. (68)

4 Pure (2,5) Tr[(3Ô(i,j,k,l,m) + Ô(i,j,k,l,m̄) + Ô(i,j,k,l̄,m)
+Ô(i,j,k̄,l,m) + Ô(i,j̄ ,k,l,m) + Ô(ī,j,k,l,m)
+ 3Ô(ī,j̄ ,k̄,l̄,m̄) + Ô(ī,j̄ ,k̄,l̄,m) + Ô(ī,j̄ ,k̄,l,m̄)
+Ô(ī,j̄ ,k,l̄,m̄) + Ô(ī,j,k̄,l̄,m̄) + Ô(i,j̄ ,k̄,l̄,m̄)) 2D] � 0 Eq. (69)

5 Pure (2,5) Tr[(6Ô(i,j,k,l,m) + 3Ô(i,j,k,l,m̄) + 3Ô(i,j,k,l̄,m)
+3Ô(i,j,k̄,l,m) + 3Ô(i,j̄ ,k,l,m) + 3Ô(ī,j,k,l,m)
+ Ô(i,j,k,l̄,m̄) + Ô(i,j,k̄,l,m̄) + Ô(i,j,k̄,l̄,m)
+ Ô(i,j̄ ,k,l,m̄) + Ô(i,j̄ ,k,l̄,m) + Ô(i,j̄ ,k̄,l,m)
+ Ô(ī,j,k,l,m̄) + Ô(ī,j,k,l̄,m) + Ô(ī,j,k̄,l,m)
+ Ô(ī,j̄ ,k,l,m) + Ô(ī,j̄ ,k̄,l̄,m̄)) 2D] � 0 Eq. (69)

6 Pure (2,5) Tr[(6Ô(i,j,k,l,m) + 3Ô(i,j,k,l,m̄) + 3Ô(i,j,k,l̄,m)
+3Ô(i,j,k̄,l,m) + 3Ô(i,j̄ ,k,l,m) + Ô(ī,j,k,l,m)
+ Ô(i,j,k,l̄,m̄) + Ô(i,j,k̄,l,m̄) + Ô(i,j,k̄,l̄,m)
+ Ô(i,j̄ ,k,l,m̄) + Ô(i,j̄ ,k,l̄,m) + Ô(i,j̄ ,k̄,l,m)
+ Ô(i,j,k,l,m̄) + Ô(i,j,k,l̄,m) + Ô(i,j,k̄,l,m)
+ Ô(i,j̄ ,k,l,m) + 3Ô(ī,j̄ ,k̄,l̄,m̄)) 2D] � 0 Eq. (69)

operator for each of the 18 classes. Each representative
operator arises from the conic combination of potentially 26

(or 64) six-particle operators, which are distinguished from
each other by the switching between creation and annihilation
operators. These 64 operators are grouped into 32 particle-hole
pairs listed in the rows in Table V. For each of the 18
representative conditions, the non-negative integer weights α

and β of the operators in each pair are reported. The conic
combination of all 32 pairs with the weights in the xth column
generates a representative operator for class x. The operator for
each class depends only on the 2-RDO, with the dependence
on the three-, four-, five-, and six-RDOs canceling through the
conic combination. The trace of each representative operator
against the 2-RDM generates a representative condition on the
2-RDM. Additional (2,6)-positivity conditions can be gener-
ated from the representative conditions through a combination
of switching and reordering of the creation and annihilation
operators. From the particle-hole pairing it is easy to observe
that only one class of the (2,6) conditions—class 4—has
particle-hole symmetry, that is, α = β in all pairs.

The (2,6)-positivity conditions yield all classes of the
classical (diagonal) N -representability conditions when the
expansion coefficients bi , dj , ek , fl , gm, and hn are chosen
to be orthogonal unit vectors. Classically, all classes of
(2,q) conditions for q � 5 are in the form of hypermetric
inequalities [36,37]. When q = 6, however, new classes of
classical N -representability conditions emerge [8,36,37,52].
In the classical limit, the first 6 classes of pure (2,6)-positivity
conditions in Table V reduce to hypermetric inequalities, while

the remaining 12 can be grouped into cycle, parachute, and
Grishukhin inequalities [52].

III. DISCUSSION AND CONCLUSIONS

Both new and known N -representability conditions on the
2-RDM have been derived from the constructive solution to
the N -representability problem [28]. In addition to all of
the previously known conditions, we generate new (2,3)-,
(2,4)-, (2,5), and (2,6)-conditions where the first number
p in each pair indicates the highest p-RDM required to
evaluate the condition (the 2-RDM in our case) and the second
number q indicates the highest RDMs canceled by conic
(linear non-negative) combinations in the derivation of the
condition. There are two classes of (2,3) conditions: (i) lifting
conditions. which are derivable from lifting the D, Q, and G
(2-positivity) conditions to the three-particle space, and (ii)
pure conditions, which are not derivable from lifting and,
hence, are without precedent in the 2-positivity conditions.
The (2,4) conditions have 2 classes of lifting conditions and
1 class of pure conditions, the (2,5) conditions have 3 classes
of lifting conditions and 3 classes of pure conditions, and the
(2,6) conditions have 6 classes of lifting conditions and 18
classes of pure conditions. A similar procedure of using conic
combinations to cancel operators higher than two-body can be
followed to derive the (2,q) conditions for q > 6.

The classical (diagonal) N -representability conditions [8,
34–37] are constraints on the two-electron reduced density
function, the diagonal part of the 2-RDM, to ensure that
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TABLE V. The (2,6)-positivity conditions can be derived from conic combinations of the (6,6)-positivity conditions that cancel the three-,
four-, five-, and six-particle operators. There are six classes of lifting conditions (not shown) and 18 classes of pure conditions (shown). The
table lists a representative operator for each of the 18 classes. The conic combination of all 32 pairs with the weights in the xth column generates
a representative operator for class x. The trace of each representative operator against the 2-RDM generates a representative condition on the
2-RDM.

Weight (α/β)

Operator 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

αÔ(ijklmn) + βÔ(ī j̄ k̄l̄m̄n̄) 20/2 12/6 20/6 12/12 20/12 20/12 9/6 5/3 9/5 9/3 5/2 14/9 14/6 14/3 6/3 6/5 1/6 3/3
αÔ(ijklmn̄) + βÔ(ī j̄ k̄l̄m̄n) 12/0 6/2 12/2 6/6 12/6 12/6 5/3 2/1 3/1 5/1 3/1 9/5 9/3 9/1 5/2 5/3 0/3 2/1
αÔ(ijklm̄n) + βÔ(ī j̄ k̄l̄mn̄) 12/0 6/2 12/2 6/6 12/6 12/6 6/3 3/1 6/3 6/1 3/1 9/5 9/3 9/1 3/1 3/3 0/3 1/1
αÔ(ijklm̄n̄) + βÔ(ī j̄ k̄l̄mn) 6/0 2/0 6/0 2/2 6/2 6/2 3/1 1/0 1/0 3/0 1/0 5/2 5/1 5/0 3/1 2/1 0/1 1/0
αÔ(ijkl̄mn) + βÔ(ī j̄ k̄lm̄n̄) 12/0 6/2 12/2 6/6 12/6 12/6 5/3 2/1 5/2 5/1 3/1 9/5 9/3 9/1 3/1 3/2 0/3 3/2
αÔ(ijkl̄mn̄) + βÔ(ī j̄ k̄lm̄n) 6/0 2/0 6/0 2/2 6/2 6/2 2/1 0/0 1/0 2/0 1/0 5/2 5/1 5/0 2/0 3/1 0/1 3/1
αÔ(ijkl̄m̄n) + βÔ(ī j̄ k̄lmn̄) 6/0 2/0 6/0 2/2 6/2 6/2 3/1 1/0 3/1 3/0 2/1 5/2 5/1 5/0 1/0 1/1 0/1 2/1
αÔ(ijkl̄m̄n̄) + βÔ(ī j̄ k̄lmn) 2/2 0/0 2/0 0/0 2/0 2/0 1/0 0/0 0/0 1/0 0/0 2/0 2/0 2/0 1/0 1/0 1/0 3/1
αÔ(ij k̄lmn) + βÔ(ī j̄ kl̄m̄n̄) 12/0 6/2 12/2 6/6 12/6 12/6 3/2 3/2 6/3 6/2 3/1 6/3 9/3 6/0 3/1 3/2 1/5 2/3
αÔ(ij k̄lmn̄) + βÔ(ī j̄ kl̄m̄n) 6/0 2/0 6/0 2/2 6/2 6/2 1/1 1/1 2/1 3/1 2/1 3/1 5/1 3/0 3/1 3/1 0/2 1/1
αÔ(ij k̄lm̄n) + βÔ(ī j̄ kl̄mn̄) 6/0 2/0 6/0 2/2 6/2 6/2 1/0 1/0 3/1 3/0 1/0 3/1 5/1 3/0 1/0 1/1 0/2 0/1
αÔ(ij k̄lm̄n̄) + βÔ(ī j̄ kl̄mn) 2/2 0/0 2/0 0/0 2/0 2/0 0/0 0/0 0/0 1/0 0/0 1/0 2/0 1/1 2/1 1/0 0/0 0/0
αÔ(ij k̄l̄mn) + βÔ(ī j̄ klm̄n̄) 6/0 2/0 6/0 2/2 6/2 6/2 1/1 1/1 3/1 3/1 2/1 3/1 5/1 3/0 1/0 1/0 1/3 1/1
αÔ(ij k̄l̄mn̄) + βÔ(ī j̄ klm̄n) 2/2 0/0 2/0 0/0 2/0 2/0 0/1 0/1 1/1 1/1 1/1 1/0 2/0 1/1 1/0 2/0 1/1 1/0
αÔ(ij k̄l̄m̄n) + βÔ(ī j̄ klmn̄) 2/2 0/0 2/0 0/0 2/0 2/0 0/0 0/0 1/0 1/0 1/1 1/0 2/0 1/1 0/0 0/0 1/1 0/0
αÔ(ij̄ klmn) + βÔ(īj k̄l̄m̄n̄) 12/0 6/2 12/2 6/6 6/2 12/6 3/1 3/1 5/2 5/1 2/0 3/1 3/0 9/1 1/0 1/1 1/5 1/1
αÔ(ij̄ klmn̄) + βÔ(īj k̄l̄m̄n) 6/0 2/0 6/0 2/2 2/0 6/2 1/0 1/0 1/0 2/0 1/0 1/0 1/0 5/0 1/0 1/0 1/3 1/0
αÔ(ij̄ klm̄n) + βÔ(īj k̄l̄mn̄) 6/0 2/0 6/0 2/2 2/0 6/2 2/0 2/0 3/1 3/0 1/0 1/0 1/0 5/0 0/0 0/1 1/3 0/0
αÔ(ij̄ klm̄n̄) + βÔ(īj k̄l̄mn) 2/2 0/0 2/0 0/0 0/0 2/0 1/0 1/0 0/0 1/0 0/0 0/0 0/1 2/0 1/1 0/0 2/2 1/0
αÔ(ij̄ kl̄mn) + βÔ(īj k̄lm̄n̄) 6/0 2/0 6/0 2/2 2/0 6/2 1/0 1/0 2/0 2/0 1/0 1/0 1/0 5/0 0/0 0/0 0/2 1/0
αÔ(ij̄ kl̄mn̄) + βÔ(īj k̄lm̄n) 2/2 0/0 2/0 0/0 0/0 2/0 0/0 0/0 0/0 0/0 0/0 0/0 0/1 2/0 0/0 1/0 1/1 2/0
αÔ(ij̄ kl̄m̄n) + βÔ(īj k̄lmn̄) 2/2 0/0 2/0 0/0 0/0 2/0 1/0 1/0 1/0 1/0 1/1 0/0 0/1 2/0 0/1 0/1 1/1 1/0
αÔ(ij̄ k̄lmn) + βÔ(ījkl̄m̄n̄) 6/0 2/0 6/0 2/2 2/0 6/2 0/0 2/1 3/1 3/1 1/0 0/0 1/0 3/0 0/0 0/0 0/3 1/2
αÔ(ij̄ k̄lmn̄) + βÔ(ījkl̄m̄n) 2/2 0/0 2/0 0/0 0/0 2/0 0/1 1/1 1/1 1/1 1/1 0/1 0/1 1/1 1/1 1/0 0/1 1/1
αÔ(ij̄ k̄lm̄n) + βÔ(ījkl̄mn̄) 2/2 0/0 2/0 0/0 0/0 2/0 0/0 1/0 1/0 1/0 0/0 0/1 0/1 1/1 0/1 0/1 0/1 0/1
αÔ(ij̄ k̄l̄mn) + βÔ(ījklm̄n̄) 2/2 0/0 2/0 0/0 0/0 2/0 0/1 1/1 1/0 1/1 1/1 0/1 0/1 1/1 0/1 0/0 0/1 0/0
αÔ(ījklmn) + βÔ(ij̄ k̄l̄m̄n̄) 12/0 6/2 6/0 2/2 6/2 2/0 5/3 3/2 3/1 3/0 3/1 6/3 6/1 6/0 5/3 3/3 0/3 1/2
αÔ(ījklmn̄) + βÔ(ij̄ k̄l̄m̄n) 6/0 2/0 2/0 0/0 2/0 0/0 2/1 1/1 0/0 1/0 2/1 3/1 3/0 3/0 3/1 2/1 0/1 0/0
αÔ(ījklm̄n) + βÔ(ij̄ k̄l̄mn̄) 6/0 2/0 2/0 0/0 2/0 0/0 3/1 2/1 2/1 2/0 2/1 3/1 3/0 3/0 2/1 1/2 0/1 0/1
αÔ(ījkl̄mn) + βÔ(ij̄ k̄lm̄n̄) 6/0 2/0 2/0 0/0 2/0 0/0 2/1 1/1 1/0 1/0 1/0 3/1 3/0 3/0 3/2 1/1 0/1 1/1
αÔ(īj k̄lmn) + βÔ(ij̄ kl̄m̄n̄) 6/0 2/0 2/0 0/0 2/0 0/0 1/1 1/1 1/0 1/0 1/0 1/0 3/0 1/0 2/1 1/1 1/3 1/3
αÔ(ī j̄ klmn) + βÔ(ij k̄l̄m̄n̄) 6/0 2/0 2/0 0/0 0/0 0/0 1/0 1/0 1/0 1/0 1/0 0/0 0/0 3/0 1/1 0/1 0/2 0/1

it represents an N -electron density function. A solution to
the diagonal problem was developed in the context of both
the Boole 0-1 programming problem and the maximum cut
problem of graph theory [37,53]. The recent constructive
solution of the N -representability problem for fermionic
density matrices extends the classical solution to the more
general quantum case. All of the quantum conditions can be
cast in the form of restricting the trace of two-body operators
(model Hamiltonians) against the 2-RDM to be non-negative.
In the limit that all tensors in the model Hamiltonians
are decomposed into products of orthogonal rank 1 (one-
index) tensors, the quantum conditions reduce to the classical
(diagonal) conditions for all unitary transformations of the
one-electron basis set. The quantum (2,6) conditions presented
here reduce in the classical limit to the complete set of classical
(2,6) conditions [36,37], which were shown to be complete by
Grishukhin [52].

A significant difference between the classical and the quan-
tum conditions is the orthogonality (classical) or nonorthog-
onality (quantum) of the rank 1 tensors. Consequently, in the
classical case the creation and annihilation operators form a
commutative algebra, while in the quantum case they form
a noncommutative algebra. The nonorthogonality leads to
active N -representability conditions on the 2-RDM that lack a
classical analog. For example, all classes of lifting conditions
that we presented are inactive in the classical limit. Because
the creation and annihilation operators commute, each class
of classical (2,q)-lifting conditions reduces to a class of
classical (2,p)-pure conditions where p < q. Furthermore,
typically more than one pure quantum condition reduces
to each classical condition in the classical limit. Table III
lists four pure (2,4) conditions that reduce to the same
classical condition. These quantum conditions differ only
in the ordering of the creation and annihilation operators—
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a difference that disappears in the classical, commutative
limit.

The conic combination of the extreme two-body operators
in the N -representability conditions forms a convex set (cone)
of model Hamiltonians for which the N -representability
conditions are exact. From the perspective of quantum
information the computational complexity of enforcing all
N -representability conditions on the 2-RDM can be shown
to be nondeterministic polynomial-time complete, meaning
that in the worst-case scenario, enforcing exact N repre-
sentability scales nonpolynomially with system size. Despite
this complexity, however, many realistic quantum systems are
much more tractable than the worst-case scenario implies.
For example, the 2-positivity conditions, particularly the G
condition, are exact for pairing Hamiltonians whose ground
states are antisymmetrized geminal power wave functions.
Such pairing Hamiltonians have been employed to model
the Cooper pairing and long-range order associated with
superconductivity. For any strength of interaction the ground-
state energy for this class of Hamiltonians can be computed in
polynomial time.

More generally, for fixed q the (2,q)-positivity condi-
tions, which contain the lower positivity conditions, cover
a large class of model Hamiltonians whose ground states
are computable in polynomial time—in a time that scales
polynomially with system size. Even when the Hamiltonian of
interest is not rigorously contained in this class, the associated
N -representability conditions, which intrinsically are not
constrained by the approximations of perturbation theory, may
produce an accurate lower bound on the ground-state energy.
Computational experience with the variational calculation of
the 2-RDM in atoms and molecules [3,14,15,18,25,26,54,55]
shows that sufficiently accurate lower-bound ground-state
energies are often produced with (2,q)-positivity conditions
where q � 3.

The practical implementation of the variational 2-RDM
method requires that the energy be minimized as a functional of
the 2-RDM constrained by its N -representability conditions.
Both the 2-positivity conditions and the T1 and T2 conditions
can be expressed as positive semidefinite constraints (also
known as linear matrix inequalities) in which metric matrices
are constrained to be positive semidefinite. These constraints
on the 2-RDM can be imposed during the minimization
of the ground-state energy through a genre of constrained
optimization known as semidefinite programming [14–16,
21,23,24,47–49]. The remaining (2,q)-positivity conditions,
however, cannot be expressed as a traditional semidefinite
constraint because the coefficients in the Ĉi operators must

be tensor decomposed to remove the dependence of the
constraints on the higher RDMs. Practically, as described in
Sec. II B, these constraints can be added to the semidefinite
program through recursively generated linear inequalities,
similar to those described in Ref. [50] for T2.

The constructive solution of N representability establishes
2-RDM theory as a fundamental theory for many-particle
quantum mechanics for particles with pairwise interactions.
Lower bounds on the ground-state energy can be computed
and improved systematically within the theory. While not
all of the 2-RDM conditions will be imposed in practical
calculations, a complete knowledge of the conditions—their
form and function—can be invaluable in devising and testing
approximate N -representability conditions for different types
of quantum systems and interactions. Like Feynman diagrams,
the positivity conditions represent different physical inter-
actions of the electrons. Adding positivity conditions to the
2-RDM calculation expands the class of exactly describable
model Hamiltonians. Just as classes of Feynman diagrams
differ in importance according to the nature of the interaction,
for a given system some positivity conditions will be signif-
icantly more important than others. For example, both the G
and the T2 conditions have proven to be especially important in
calculations of many-electron atoms and molecules [14,15,17],
while the T1 condition has rarely been of any significance.
Similar evaluations must be performed in a variety of many-
electron quantum systems for the conditions resulting from the
constructive solution.

Previous variational 2-RDM computations on metallic
hydrogen chains [55], polyaromatic hydrocarbons [25,26], and
firefly luciferin [54] show that they can capture strong, mul-
tireference correlation effects for which appropriate ansätze
for the wave function are difficult to construct. With a
suitable choice of N -representability conditions, therefore,
strong electron correlation effects can be computed at a
computational cost that scales polynomially with the system
size. Although the exploration of the conditions following
from the constructive solution is still in its earliest stages, a
2-RDM-based theory with systematically improvable accuracy
promises fresh theoretical and computational possibilities for
treating strong correlation in quantum many-electron systems.
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