
Learning with Opponent-Learning Awareness
Jakob N. Foerster2,†

jakob.foerster@cs.ox.ac.uk
Richard Y. Chen1,†

richardchen@openai.com
Maruan Al-Shedivat4

alshedivat@cs.cmu.edu

Shimon Whiteson2

shimon.whiteson@cs.ox.ac.uk
Pieter Abbeel3

pieter@openai.com
Igor Mordatch1

mordatch@openai.com

1OpenAI 2University of Oxford 3UC Berkeley 4CMU

Abstract

Multi-agent settings are quickly gathering importance in ma-
chine learning. Beyond a plethora of recent work on deep
multi-agent reinforcement learning, hierarchical reinforce-
ment learning, generative adversarial networks and decen-
tralized optimization can all be seen as instances of this set-
ting. However, the presence of multiple learning agents in
these settings renders the training problem non-stationary and
often leads to unstable training or undesired final results.
We present Learning with Opponent-Learning Awareness
(LOLA), a method that reasons about the anticipated learn-
ing of the other agents. The LOLA learning rule includes an
additional term that accounts for the impact of the agent’s pol-
icy on the anticipated parameter update of the other agents.
We show that the LOLA update rule can be efficiently calcu-
lated using an extension of the likelihood ratio policy gradi-
ent update, making the method suitable for model-free rein-
forcement learning. This method thus scales to large parame-
ter and input spaces and nonlinear function approximators.
Preliminary results show that the encounter of two LOLA
agents leads to the emergence of tit-for-tat and therefore co-
operation in the infinitely iterated prisoners’ dilemma, while
independent learning does not. In this domain, LOLA also
receives higher payouts compared to a naive learner, and is
robust against exploitation by higher order gradient-based
methods. Applied to infinitely repeated matching pennies,
LOLA agents converge to the Nash equilibrium. In a round
robin tournament we show that LOLA agents can success-
fully shape the learning of a range of multi-agent learning
algorithms from literature, resulting in the highest average re-
turns on the IPD. We also apply LOLA to a grid world task
with an embedded social dilemma using deep recurrent poli-
cies. Again, by considering the learning of the other agent,
LOLA agents learn to cooperate out of selfish interests.

1 Introduction
Due to the advent of deep RL methods that allow the study
of many agents in rich environments, multi-agent reinforce-
ment learning has flourished in recent years. However, most
of this work considers fully cooperative settings (Omid-
shafiei et al., 2017; Foerster et al., 2018, 2017) and emergent
communication in particular (Das et al., 2017; Mordatch and
Abbeel, 2017; Lazaridou, Peysakhovich, and Baroni, 2016;
Foerster et al., 2016; Sukhbaatar, Fergus, and others, 2016).

†Equal Contribution

Considering future applications of multi-agent RL, such as
self-driving cars, it is obvious that many of these will be
only partially cooperative and contain elements of competi-
tion and selfish incentives.

The human ability to maintain cooperation in a variety
of complex social settings has been vital for the success of
human societies. Emergent reciprocity has been observed
even in strongly adversarial settings such as wars (Axelrod,
2006), making it a quintessential and robust feature of hu-
man life.

In the future, artificial learning agents are likely to take
an active part in human society, interacting both with other
learning agents and humans in complex partially competitive
settings. Failing to develop learning algorithms that lead to
emergent reciprocity in these artificial agents would lead to
disastrous outcomes.

How reciprocity can emerge among a group of learning,
self-interested, reward maximizing RL agents is thus a ques-
tion both of theoretical interest and of practical importance.
Game theory has a long history of studying the learning
outcomes in games that contain cooperative and competi-
tive elements. In particular, the tension between cooperation
and defection is commonly studied in the iterated prison-
ers’ dilemma. In this game, selfish interests can lead to an
outcome that is overall worse for all participants, while co-
operation maximizes social welfare, one measure of which
is the sum of rewards for all agents.

Interestingly, in the simple setting of an infinitely repeated
prisoners’ dilemma with discounting, randomly initialized
RL agents pursuing independent gradient descent on the ex-
act value function learn to defect with high probability. This
shows that current state-of-the-art learning methods in deep
multi-agent RL can lead to agents that fail to cooperate re-
liably even in simple social settings with explicit actions to
cooperate and defect. One well-known shortcoming is that
they fail to consider the learning process of the other agents
and simply treat the other agent as a static part of the envi-
ronment.

As a step towards reasoning over the learning behaviour
of other agents in social settings, we propose Learning with
Opponent-Learning Awareness (LOLA). The LOLA learn-
ing rule includes an additional term that accounts for the im-
pact of one agent’s parameter update on the learning step of
the other agents. For convenience we use the word ‘oppo-

ar
X

iv
:1

70
9.

04
32

6v
2

 [
cs

.A
I]

 1
2

D
ec

 2
01

7

nent’ to describe the other agent, even though the method
is not limited to zero-sum games and can be applied in
the general-sum setting. We show that this additional term,
when applied by both agents, leads to emergent reciprocity
and cooperation in the iterated prisoners’ dilemma (IPD).
Experimentally we also show that in IPD, each agent is in-
centivized to switch from naive learning to LOLA, while
there are no additional gains in attempting to exploit LOLA
with higher order gradient terms. This suggests that within
the space of local, gradient-based learning rules both agents
using LOLA is a stable equilibrium. This is further sup-
ported by the good performance of the LOLA agent in a
round-robin tournament, where it successfully manages to
shape the learning of a number of multi-agent learning al-
gorithms from literature. This leads to the overall highest
average return on the IPD, and good performance on IMP.

We also present a version of LOLA adopted to the deep
RL setting using likelihood ratio policy gradients, making
LOLA scalable to settings with high dimensional input and
parameter spaces.

We evaluate the policy gradient version of LOLA on the
iterated prisoners dilemma (IPD) and iterated matching pen-
nies (IMP), a simplified version of rock-paper-scissors. We
show that LOLA leads to cooperation with high social wel-
fare, while independent policy gradients, a standard multi-
agent reinforcement learning approach, does not. The policy
gradient finding is consistent with prior work, e.g., Sand-
holm and Crites (1996). We also extend LOLA to settings
where the opponent policy is unknown and needs to be in-
ferred from state-action trajectories of the opponent’s be-
haviour.

Finally, we apply LOLA with and without opponent mod-
elling to a grid-world task with an embedded underlying so-
cial dilemma. This task has temporally extended actions and
therefore requires high dimensional recurrent policies for
agents to learn to reciprocate. Again, cooperation emerges
in this task when using LOLA, even when the opponent’s
policy is unknown and needs to be estimated.

2 Related Work
The study of general-sum games has a long history in game
theory and evolution. Thousands of papers have been written
on the iterated prisoners’ dilemma (IPD) alone, including the
seminal work on the topic by Axelrod (2006). This work
popularized tit-for-tat (TFT), a strategy in which an agent
cooperates on the first move and then copies the opponent’s
most recent move, as a robust and simple strategy in the IPD.

Learning and stability in sequential, general sum games
has also been studied in the multi-agent RL commu-
nity. Seminal work includes the family of WoLF algo-
rithms (Bowling and Veloso, 2002), which achieve con-
vergence by using different learning rates depending on
whether an agent is winning or losing, Joint-action-learners,
(Claus and Boutilier, 1998; Banerjee and Sen, 2007) and
friend-or-foe learning (Littman, 2001). Wunder, Littman,
and Babes (2010), Zinkevich, Greenwald, and Littman
(2006) and Sandholm and Crites (1996) explicitly study the
convergence dynamics and equilibria of learning in iterated
games.

Brafman and Tennenholtz (2003) introduce the solution
concept of an ‘efficient learning equilibrium’ (ELE), in
which neither side is encouraged to deviate from the learning
rule. The algorithm they propose applies to settings where
all Nash equilibria can be computed and enumerated. At the
intersection of RL and evolutionary methods, Tuyls et al.
(2003) uses replicator dynamics for understanding the con-
vergence points of multi-agent systems.

While it is beyond the scope of this work to list all rel-
evant methods in multi-agent RL, we refer the reader to
an excellent review on the subject (Busoniu, Babuska, and
De Schutter, 2008). However, we note that multi-agent RL
historically focuses on settings without function approxima-
tion and often considers methods and feature representations
that are highly tuned towards specific problem settings, such
as the iterated prisoners dilemma. Recent evaluations by Za-
wadzki, Lipson, and Leyton-Brown (2014) suggest that in-
dependent learning is still one of the most robust and versa-
tile methods.

Figure 1: In the coin game, two agents ‘red’ and ‘blue’, get
1 point for picking up each coin. However, the ‘red agent’
loses 2 points when the ‘blue agent’ picks up a red coin and
vice versa. Effectively this is a world with an embedded so-
cial dilemma where the action to cooperate and defect are
temporally extended.

In contrast, potentially due to the issues mentioned above,
most work in deep multi-agent RL focuses on fully co-
operative settings (Omidshafiei et al., 2017; Foerster et
al., 2018, 2017) and emergent communication in particu-
lar (Das et al., 2017; Mordatch and Abbeel, 2017; Lazari-
dou, Peysakhovich, and Baroni, 2016; Foerster et al., 2016;
Sukhbaatar, Fergus, and others, 2016). As an exception,
Leibo et al. (2017) consider the outcomes of independent
learning in general sum settings. Lowe et al. (2017) pro-
pose a centralized actor-critic architecture for efficient train-
ing in these mixed environments. However, none of these

methods explicitly reasons about the learning behaviour of
other agents. Lanctot et al. (2017) generalize the ideas
of game-theoretic best response style algorithms, such as
NFSP (Heinrich and Silver, 2016), to produce more gen-
eral policies. In contrast to LOLA, these best-response-
algorithms assume a given set of opponent policies, rather
than attempting to shape the learning of the other agents.

The problem setting of Lerer and Peysakhovich (2017)
is closest to our setting. They directly generalize tit-for-
tat to complex environments using deep RL. The authors
explicitly train a fully cooperative and a defecting policy
for both agents and then construct a tit-for-tat policy that
switches between these two in order to encourage the oppo-
nent to cooperate. Similar in spirit to this work, Munoz de
Cote and Littman (2008) propose a Nash equilibrium algo-
rithm for repeated stochastic games that explicitly attempts
to find the egalitarian point by switching between compet-
itive and zero-sum strategies. A similar point underlies M-
Qubed, Crandall and Goodrich (2011), which balances best-
response, cautious, and optimistic learning biases.

Reciprocity and cooperation are not emergent properties
of the learning rules in these algorithms but rather directly
coded into the algorithm. By contrast, LOLA makes no as-
sumptions about cooperation and simply assumes that each
agent is maximizing its own return.

Our work also relates to opponent modeling, such as fic-
titious play (Brown, 1951) and action-sequence predic-
tion (Mealing and Shapiro, 2015). Mealing and Shapiro
(2013) also propose a method that finds a policy based
on predicting the opponent’s future action. Furthermore,
Hernandez-Leal and Kaisers (2017) directly model the dis-
tribution over opponents. While these methods model the
opponent strategy, they do not address the learning dynam-
ics of the opponent.

By contrast, Zhang and Lesser (2010) carry out policy
prediction under one-step learning dynamics. However, the
opponents’ policy updates are assumed to be fixed and only
used to learn a best response to the anticipated updated pa-
rameters. By contrast, LOLA directly models the policy up-
dates of all opponents such that each agent actively drives
its opponents’ policy updates to maximize its own reward.
Differentiating through the opponent’s learning step, which
is unique to LOLA, is crucial for the emergence of tit-for-tat
and reciprocity. Hernandez-Leal et al. (2017) offer an up-
to-date survey of methods addressing the non-stationarity in
multi-agent learning.

With LOLA, each agent differentiates its estimated return
through the opponents’ policy update. Similar ideas were
proposed by Metz et al. (2016), whose training method for
generative adversarial networks differentiates through mul-
tiple update steps of the opponent. Their method relies on
an end-to-end differentiable loss function, and thus does not
work in the general RL setting. However, the overall results
are similar: anticipating the opponent’s update stabilises the
training outcome.

Outside of purely computational studies the emergence
of cooperation and defection in RL settings has also been
studied and compared to human data Kleiman-Weiner et al.
(2016).

3 Background
Our work assumes a multi-agent task that is commonly de-
scribed as a stochastic game G, specified by a tuple G =
〈S,U, P, r, Z,O, n, γ〉. Here n agents, a ∈ A ≡ {1, ..., n},
choose actions, ua ∈ U , and s ∈ S is the state of the en-
vironment. The joint action u ∈ U ≡ Un leads to a state
transition based on the transition function P (s′|s,u) : S ×
U×S → [0, 1]. The reward functions ra(s,u) : S×U→ R
specify the reward for each agent, lastly γ ∈ [0, 1) is the dis-
count factor.

We further define the discounted future return from time
t onward as Rat =

∑∞
l=0 γ

lrat+l for each agent, a. As a
naive learner, each agent maximizes its total discounted re-
turn in expectation separately. This can be done with pol-
icy gradient methods (Sutton et al., 1999) such as REIN-
FORCE (Williams, 1992). Policy gradient methods update
an agent’s policy, parameterized by θa, by performing gra-
dient ascent on an estimate of the expected discounted total
reward E [Ra0].

By convention, bold lowercase letters denote column vec-
tors.

4 Methods
In this section, we review the naive learner’s strategy and
introduce the LOLA learning rule. We first derive the up-
date rules when agents have access to exact gradients and
Hessians of their expected discounted future return in Sec-
tions 4.1 and 4.2. In Section 4.3, we derive the learning rules
based purely based on policy gradients, thus removing ac-
cess to exact gradients and Hessians. This renders LOLA
suitable for deep RL. However, we still assume agents have
access to opponent’s policy parameters in policy gradient-
based LOLA. Next, in Section 4.4, we incorporate opponent
modeling into the LOLA learning rule, such that each LOLA
agent only infers the opponent’s policy parameter from ex-
periences. Finally, we discuss higher order LOLA learning
in Section 4.5.

For simplicity, we assume the number of agents is n =
2 and display the update rules for agent 1 only. The same
derivation holds for arbitrary numbers of agents.

4.1 Naive Learner
Suppose each agent’s policy πa is parameterized by θa and
V a(θ1,θ2) is the expected total discounted return for agent
a as a function of both agents’ policy parameters (θ1,θ2). A
naive learner iteratively optimizes for its own expected total
discounted return separately, such that at the ith iteration, θai
is updated to θai+1 according to

θ1i+1 = argmaxθ1 V 1(θ1,θ2i)

θ2i+1 = argmaxθ2 V 2(θ1i ,θ
2).

In the reinforcement learning setting, agents do not have ac-
cess to {V 1, V 2} over all parameter values. Instead, we as-
sume that agents only have access to the function values and
gradients at (θ1i ,θ

2
i). Using this information the naive learn-

ers apply the gradient ascent update rule f1
nl:

θ1i+1 = θ1i + f1
nl(θ

1
i ,θ

2
i),

f1
nl = ∇θ1

i
V 1(θ1i ,θ

2
i) · δ, (4.1)

where δ is the step size.

4.2 Learning with Opponent Learning Awareness
A LOLA learner optimizes its return under one step look-
ahead of opponent learning. Instead of optimizing the ex-
pected return under the current parameters, V 1(θ1i ,θ

2
i), a

LOLA agent optimizes V 1(θ1i ,θ
2
i + ∆θ2i), which is the ex-

pected return after the opponent updates its policy with one
learning step, ∆θ2i . Going forward we have drop the sub-
script i for clarity. Assuming small ∆θ2, a first-order Taylor
expansion results in:

V 1(θ1,θ2+∆θ2) ≈ V 1(θ1,θ2)+(∆θ2)T∇θ2V 1(θ1,θ2).
(4.2)

The LOLA objective (4.2) differs from prior work, e.g.,
Zhang and Lesser (2010), that predicts the opponent’s pol-
icy parameter update and learns a best response. LOLA
learners attempt to actively influence the opponent’s future
policy update, and explicitly differentiate through the ∆θ2

with respect to θ1. Since LOLA focuses on this shaping of
the learning direction of the opponent, the dependency of
∇θ2V 1(θ1,θ2) on θ1 is dropped during the backward pass.
Investigation of how differentiating through this term would
affect the learning outcomes is left for future work.

By substituting the opponent agent’s naive learning step:

∆θ2 = ∇θ2V 2(θ1,θ2) · η (4.3)

into (4.2) and taking the derivative of (4.2) with respect to
θ1, we obtain our LOLA learning rule:

θ1i+1 = θ1i + f1
lola(θ

1
i ,θ

2
i),

which includes a second order correction term

f1
lola(θ

1,θ2) = ∇θ1V 1(θ1,θ2)

+
(
∇θ2V 1(θ1,θ2)

)T ∇θ1∇θ2V 2(θ1,θ2) · δη, (4.4)

where the step sizes δ, η are for the first and second order
updates. LOLA agents can evaluate (4.4) explicitly if they
have access to the gradients and Hessians of {V 1, V 2} at
each agent’s current policy parameter (θ1i ,θ

2
i).

4.3 Learning via Policy Gradient
When agents do not have access to exact gradients or
Hessians, we derive the update rules fnl, pg and flola, pg
based on approximations of the derivatives in (4.1)
and (4.4). Denote an episode of horizon T as τ =
(s0, u

1
0, u

2
0, r

1
0, r

2
0, ..., sT+1, u

1
T , u

2
T , r

1
T , r

2
T) and its corre-

sponding discounted return for agent a at timestep t as
Rat (τ) =

∑T
l=t γ

l−tral . Given this definition, the expected
episodic return conditioned on the agents’ policies (π1, π2),
ER1

0(τ) and ER2
0(τ), approximate V 1 and V 2 respectively,

as do the gradients and Hessians.

The gradient of ER1
0(τ) follows from the policy gradient

derivation:

∇θ1 ER1
0(τ) = E

[
R1

0(τ)∇θ1 log π1(τ)
]

= E
[∑T

t=0
∇θ1 log π1(u1t |st) ·

∑T

l=t
γlr1l

]
= E

[∑T

t=0
∇θ1 log π1(u1t |st)γt

(
R1
t (τ)− b(st)

)]
,

where b(st) is a baseline for variance reduction. Then the
policy gradient-based update rule fnl, pg for the naive learner
is

f1
nl, pg = ∇θ1 ER1

0(τ) · δ. (4.5)
For the LOLA update, we derive the following estimator of
the second-order term in (4.4) based on policy gradients. The
derivation (omitted) closely resembles the standard proof of
the policy gradient theorem, exploiting that agents sample
actions independently. We further note that this second order
term is exact in expectation:

∇θ1∇θ2 ER2
0(τ)

= E
[
R2

0(τ)∇θ1 log π1(τ)
(
∇θ2 log π2(τ)

)T]
= E

[∑T

t=0
γtr2t ·

(∑t

l=0
∇θ1 log π1(u1l |sl)

)
(∑t

l=0
∇θ2 log π2(u2l |sl)

)T]
. (4.6)

The complete LOLA update for agent 1 using policy gradi-
ents is

f1
lola, pg = ∇θ1 ER1

0(τ) · δ+(
∇θ2 ER1

0(τ)
)T∇θ1∇θ2 ER2

0(τ) · δη. (4.7)

4.4 LOLA with Opponent Modeling
Both versions (4.4) and (4.7) of LOLA learning assume that
each agent has access to the exact parameters of the oppo-
nent. However, in adversarial settings the opponent’s param-
eters are typically obscured and have to be inferred from the
the opponent’s state-action trajectories. Our proposed oppo-
nent modeling is similar to behavioral cloning Ross, Gor-
don, and Bagnell (2011); Bojarski et al. (2016). Instead of
accessing agent 2’s true policy parameters θ2, agent 1 mod-
els the opponent’s behavior with θ̂2, where θ̂2 is estimated
from agent 2’s trajectories using maximum likelihood:

θ̂2 = argmax
θ2

∑
t

log πθ2(u2t |st) (4.8)

Then, θ̂2 replaces θ2 in the LOLA update rule, both for the
exact version (4.4) using the value function and the gradi-
ent based approximation (4.7). We compare the performance
of LOLA agents with opponent modeling against policy-
gradient based LOLA (4.7) in our experiments.

4.5 Higher Order LOLA
By substituting the naive learning rule (4.3) into the LOLA
objective (4.2), the LOLA learning rule so far assumes that

the opponent is a naive learner. We call this setting first-
order LOLA, which corresponds to the first-order learning
rule of the opponent agent. However, we can also consider a
higher order LOLA agent that assumes the opponent applies
a first-order LOLA learning rule, thus replacing (4.3). This
leads to third-order derivatives in the learning rule. While
the third-order terms are typically difficult to compute using
policy gradient due to high variance, when the exact value
function is available it is tractable. We examine the benefits
of higher-order LOLA in our experiments.

5 Experimental Setup
In this section, we summarize the settings where we com-
pare the learning behavior of NL and LOLA agents. The
first setting (Sec. 5.1) consists of two classical infinitely it-
erated games, the iterated prisoners dilemma (IPD) and it-
erated matching pennies (IMP). Each round in these two
environments requires a single action from each agent. We
can obtain the discounted future return of each player given
both players’ policies, which leads to exact policy updates
for NL and LOLA agents. The second setting (Sec. 5.2) is
called ‘Coin Game‘, a more difficult two-player environ-
ment, where each round requires the agents to take a se-
quence of actions and exact discounted future reward can
not be calculated. The policy of each player is parameter-
ized with a deep recurrent neural network.

In the policy gradient experiments with LOLA, we as-
sume offline-learning, i.e., agents play many (batch-size)
parallel episodes using their latest policies. Policies remain
unchanged within each episode, with learning happening
between episodes. One setting where this kind of offline
learning naturally arises is when training policies using real-
world data. E.g., in the case of autonomous cars all data from
a fleet of cars can be collected over night and used for train-
ing in order to release new policies the next day.

5.1 Iterated Games
We first review the two iterated games, IPD and IMP, and
explain how we can model iterated games as memory-1 two-
agent MDP.

C D
C (-1, -1) (-3, 0)
D (0, -3) (-2, -2)

Table 1: Payoff matrix of prisoners’ dilemma.

Table 1 shows the per-step payoff matrix of the prison-
ers’ dilemma. In a single-shot prisoners’ dilemma, there is
only one Nash equilibrium Fudenberg and Tirole (1991),
where both agents defect. In the infinitely iterated prison-
ers’ dilemma, the folk theorem (Roger, 1991) shows that
there are infinitely many Nash equilibria. Two notable ones
are the always defect strategy (DD), and tit-for-tat (TFT). In
TFT each agent starts out with cooperation and then repeats
the previous action of the opponent. The average returns per
step in self-play are −1 and −2 for TFT and DD respec-
tively.

Matching pennies Gibbons (1992) is a zero-sum game,
with per-step payouts shown in Table 2. This game only has
a single mixed strategy Nash equilibrium which is both play-
ers playing 50%/50% heads / tails.

Head Tail
Head (+1, -1) (-1, +1)
Tail (-1, +1) (+1, -1)

Table 2: Payoff matrix of matching pennies.

Agents in both IPD and IMP can condition their actions
on past history. Agents in an iterated game are endowed
with a memory of length K if the agents act based on the
results of the last K rounds. Press and Dyson Press and
Dyson (2012) proved that agents with a good memory-1
strategy can effectively force the iterated game to be played
as memory-1. Thus, we consider memory-1 iterated games
in our work.

We can model the memory-1 IPD and IMP as a two-agent
MDP, where the state at time 0 is empty, denoted as s0, and
at time t ≥ 1 is both agents’ actions from t− 1:

st = (u1t−1, u
2
t=1) for t > 1.

Each agent’s policy is fully parametrized by 5 probabilities.
For agent a in the case of the IPD, they are the probability
of cooperation at game start πa(C|s0), and the cooperation
probabilities in the four memories: πa(C|CC), πa(C|CD),
πa(C|DC), and πa(C|DD). By analytically solving the
multi-agent MDP we can derive each agent’s future dis-
counted reward as an analytical function of the agents’ poli-
cies and calculate the exact policy update for both NL and
LOLA agents.

We also organize a round-robin tournament where we
compare LOLA-Ex to a number of state of the art multi-
agent learning algorithms, both on the IPD and IMP.

5.2 Coin Game
Next, we study LOLA in a more high-dimensional setting
called the ‘Coin Game’, where each round requires agents
to take sequential actions and we parametrize agents’ poli-
cies with deep neural networks. The ‘Coin Game’ was first

IPD IMP
%TFT R(std) %Nash R(std)

NL-Ex. 20.8 -1.98(0.14) 0.0 0(0.37)
LOLA-Ex. 81.0 -1.06(0.19) 98.8 0(0.02)

NL-PG 20.0 -1.98(0.00) 13.2 0(0.19)
LOLA-PG 66.4 -1.17(0.34) 93.2 0(0.06)

Table 3: We summarize results for NL vs. NL and LOLA
vs. LOLA settings with either exact gradient evaluation or
policy gradient approximation. Shown is the probability of
agents playing TFT and Nash for the IPD and IMP respec-
tively as well as the average reward per step, R, and (STD)
at the end of training for 50 training runs.

Figure 2: Shown is the probability of playing heads in the iterated matching pennies (IMP) at the end of 50 training runs for
both agents as a function of state under naive learning NL-Ex, a), and LOLA-Ex b) when using the exact gradients of the value
function. Also shown is the normalized discounted return for both agents in NL-Ex vs. NL-Ex and LOLA-Ex vs. LOLA-Ex
with exact gradient, c), and the normalized discounted return for both agents in NL-PG vs. NL-PG and LOLA-PG vs. LOLA-
PG with policy gradient approximation, d). We can see in a) that NL-Ex results in near deterministic strategies, indicated by
the accumulation of points in the corners. These strategies are easily exploitable by other deterministic strategies leading to
unstable training and high variance in the reward per step in c). In contrast, LOLA agents learn to play the only Nash strategy,
50%/%50, leading to low variance in the reward per step. One interpretation is that LOLA agents anticipate that exploiting a
deviation from Nash increases their immediate return, but also renders them more exploitable by the opponent’s next learning
step. Best viewed in color.

proposed in Lerer and Peysakhovich (2017) as a higher di-
mensional expansion of the iterated prisoner’s dilemma with
multi-step actions. As shown in Figure 1, in this setting two
agents, ‘red’ and ‘blue’, are tasked with collecting coins.

The coins are either blue or red, and appear randomly on
the grid-world. A new coin with random color and random
position appears after the last one is picked up. Agents pick
up coins by moving onto the position where the coin is lo-
cated. While every agent receives a point for picking up a
coin of any colour, whenever an picks up a coin of different
color, the other agent loses 2 points.

As a result, if both agents greedily pick up any coin avail-
able, they receive 0 points in expectation. In ‘Coin Game’,
agents’ policies are parametrized with a recurrent neural net-
work and one cannot obtain the future discounted reward as
a function of both agents’ policies in closed form. Policy
gradient-based learning is applied for both NL and LOLA
agents in our experiments. We further experiment LOLA
with opponent-modelling in this environment to examine the
behavior of LOLA agents without access to the opponent’s
policy parameters.

5.3 Training Details
In policy gradient-based NL and LOLA settings, we train
agents with actor-critic method (Sutton and Barto, 1998)
and parametrize each agent with a policy actor, and a pol-
icy critic for variance reduction during policy updates.

During training, we use gradient descent with step size
0.005 for the actor, 1 for the critic, and the batch size 4000
for rollouts. The discout rate γ is set to 0.96 for the prison-
ers’ dilemma and the coin game and 0.9 for matching pen-
nies. The high value of γ for the ‘Coin Game’ and IPD was
chosen in order to allow for long time horizons, which are

known to be required for cooperation in the IPD. We found
that a lower γ produced more stable learning on the IMP.

For the coin game the agent’s policy architecture is a re-
current neural network with 32 hidden units and 2 convolu-
tional layers with 3× 3 filters, stride 1, and ‘relu’ activation
for input processing. The input is presented as a 4 channel
grid, with 2 channels encoding the positions of the 2 agents
and 2 channels for the red and blue coins respectively.

For the tournament, we use baseline algorithms and the
corresponding hyperparameter values as provided in the
literature (Bowling and Veloso, 2002). The tournament is
played in a round-robin fashion between all pairs of agents
for 1000 episodes, 200 steps each.

6 Results
In this section, we summarize the experimental results. We
aim to answer the following questions:

1. With the exact policy update, how do pairs of LOLA
agents behave in iterated games compared with pairs of
NL agents?

2. How do LOLA-Ex agents fair in a round robin tournament
involving a set of multi-agent learning algorithms from
literature?

3. Does replacing the exact policy update with policy gra-
dient updates change the learned behaviors of LOLA and
NL agents?

4. Does the learning of LOLA agents scale to high-
dimensional settings where the agents’ policies are
parametrized by deep neural networks?

5. When replacing access to the exact parameters of the
opponent agent with opponent modeling, does LOLA

Figure 3: Shown is the probability of cooperation in the iterated prisoners dilemma (IPD) at the end of 50 training runs for
both agents as a function of state under naive learning NL-Ex a), and LOLA-Ex b) when using the exact gradients of the value
function. Also shown is the normalized discounted return for both agents in NL-Ex vs. NL-Ex and LOLA-Ex vs. LOLA-Ex,
with the exact gradient, c), and the normalized discounted return for both agents in NL-PG vs. NL-PG and LOLA-PG vs.
LOLA-PG, with policy gradient approximation, d). We can see that NL-Ex leads to DD, resulting in an average reward of ca.
−2. In contrast, the LOLA-Ex agents play tit-for-tat in b): When in the last move agent 1 defected and agent 2 cooperated (DC,
green points), most likely in the next move agent 1 will cooperate and agent 2 will defect, indicated by a concentration of the
green points in the bottom right corner. Similarly, the yellow points (CD), are concentrated in the top left corner. While the
results for the NL-PG and LOLA-PG with policy gradient approximation are more noisy, they are qualitatively similar. Best
viewed in color.

agents’ behavior preserve?

6. Exploiting LOLA: Can LOLA agents be exploited by us-
ing higher order gradients, i.e., does LOLA lead to an
arms race of ever higher order corrections or is LOLA /
LOLA stable?

We answer the first two questions in Sec. 6.1, the next two
questions in Sec. 6.2 and the last one in Sec. 6.3.

6.1 Iterated Games
We first compare the behaviors of LOLA agents with NL
agents, with either exact policy updates or policy gradient
updates.

Figures 3a) and 3b) show the policy for both agents at
the end of training under naive learning (NL-Ex) and LOLA
(LOLA-Ex) when the agents have access to exact gradients
and Hessians of {V 1, V 2}. Here we consider the settings of
NL vs NL and LOLA vs LOLA. We study mixed learning of
one LOLA agent vs. an NL agent in Section 6.3. Under NL-
Ex, the agents learn to defect in all states, indicated by the
accumulation of points in the bottom left corner of the plot.
However, under LOLA-Ex, in most cases the agents learn
TFT. In particular agent 1 cooperates in the starting state
s0, CC and DC, while agent 2 cooperates in s0, CC and
CD. As a result, Figure 3c) shows that the normalized dis-
counted reward1 is close to−1 for LOLA-Ex vs. LOLA-Ex,
corresponding to TFT, while NL vs. NL results in an normal-
ized discounted reward of−2, corresponding to the fully de-
fective (DD) equilibrium. Figure 3d) shows the normalized
discounted reward for NL-PG and LOLA-PG where agents

1We use following definition for the normalized discounted re-
ward: (1− γ)

∑T
t=0 γ

trt.

learn via policy gradient. LOLA-PG also demonstrates co-
operation while agents defect in NL-PG.

We conduct the same analysis for IMP in Figure 2. In
this game, under naive learning the agents’ strategies fail
to converge. In contrast, under LOLA the agents’ policies
converge to the only Nash equilibrium, playing 50%/50%
heads / tails.

Table 3 summarizes the numerical results comparing
LOLA with NL agents in both the exact and policy gra-
dient settings in the two iterated game environments. In
IPD, LOLA agents learn policies consistent with TFT with a
much higher probability and achieve higher normalized dis-
counted rewards than NL (−1.06 vs −1.98). In IMP, LOLA
agents converge to the Nash equilibrium more stably while
NL agents do not. The difference in stability is illustrated by
the high variance of the normalized discounted returns for
NL agents compared to the low variance under LOLA (0.37
vs 0.02).

In Figure 4 we show the average normalized return of our
LOLA-Ex agent against a set of learning algorithms from
literature. We find that LOLA-Ex receives the highest nor-
malized return in the IPD, clearly indicating that it success-
fully shapes the learning outcome of other algorithms in this
general sum setting.

In IMP LOLA-Ex achieves stable performance close to
the middle of the distribution of results.

6.2 Coin Game
We summarize our experiment results in the Coin Game en-
vironment. To examine the scalability of LOLA learning
rules, we compare NL-PG vs. NL-PG and LOLA-PG vs.
LOLA-PG. Figure 5 demonstrates that NL-PG agents col-
lect coins indiscriminately, corresponding to defection. In

0 200 400 600 800 1000
Episode

−2.5

−2.0

−1.5

−1.0

−0.5

A
ve

ra
ge

re
w

ar
d

pe
rs

te
p

NL-Q
JAL-Q

PHC
WoLF-PHC

NL-Ex
LOLA-Ex

(a)

0 200 400 600 800 1000
Episode

−0.4

−0.2

0.0

0.2

0.4
NL-Q
JAL-Q

PHC
WoLF-PHC

NL-Ex
LOLA-Ex

(b)

Figure 4: Shown are the normalized returns of a round-robin tournament on IPD in a) and IMP in b). LOLA-Ex agents achieve
the best performance on IPD and are within error bars for IMP. Shading indicates a 95% confidence interval of the error of
the mean. Baselines from (Bowling and Veloso, 2002): naive Q-learner (NL-Q), joint-action Q-learner (JAL-Q), policy hill-
climbing (PHC), and “Win or Learn Fast” (WoLF) PHC.

contrast, LOLA-PG agents learn to pick up coins predomi-
nantly (around 80%) of their own color, showing that LOLA
learning rule leads to cooperation Coin Game as well.

Removing the assumption that agents can access the ex-
act parameters of opponents, we examine LOLA agents with
opponent modeling (Section 4.4). Figure 5 demonstrates that
without access to the opponent’s policy parameters, LOLA
agents with opponent modeling pick up coins of their own
color around 70% of the time, slightly inferior compared to
the performance of LOLA-PG agents. We emphasize that
with opponent modeling neither agent can recover the ex-
act policy parameters of the opponent, since there is a large
amount of redundancy in the neural network parameters. For
example, each agent could permute the weights of their fully
connected layers. Opponent modeling introduces noise in
the opponent agent’s policy parameters, thus increasing the
variance of the gradients (4.7) during policy updates, which
leads to inferior performance of LOLA-OM vs. LOLA-PG
in Figure 5.

6.3 Exploitability of LOLA
We address the exploitability of LOLA learning rule in this
section. We consider the IPD setting, where one can cal-
culate the exact value function of each agent giving their
policies. Thus, we can evaluate the higher order LOLA
terms. We pitch a NL-Ex or LOLA-Ex agent against NL-
Ex, LOLA-Ex, and a 2nd-order LOLA agent. We compare
the normalized discounted return of each agent in all set-
tings and address the question of whether there is an arms
race to incorporate ever higher orders of LOLA correction
terms between the two agents.

Table 4 shows a LOLA-Ex learner can achieve higher
payouts against NL-Ex. Thus, there is an incentive for
either agent to switch from naive learning to first order
LOLA. Furthermore, two LOLA-Ex agents playing against
each other both receive higher normalized discounted re-
ward than a LOLA-Ex agent playing against a NL-Ex. This

makes LOLA a dominant learning rule in IPD compared
to naive learning. However, we further find that 2nd-order
LOLA provides no incremental gains when playing against
a LOLA-Ex agent, leading to a reduction in payouts for both
agents. These experiments were carried out with a LR of
0.5. While it is beyond the scope of this work to prove that
LOLA vs LOLA is a dominant learning rule in the space
of all possible gradient-based rules, these initial results are
encouraging.

NL-Ex LOLA-Ex 2nd-Order
NL-Ex (-1.99, -1.99) (-1.54, -1.28) -

LOLA-Ex (-1.28, -1.54) (-1.04, -1.04) (-1.14, -1.17)

Table 4: Higher order LOLA results on the IPD. A LOLA-
Ex agent obtains higher normalized return compared to a
NL-Ex agent. However in this setting there is no incremental
gain from using higher order LOLA in order to exploit an-
other LOLA agent in the IPD. In fact both agents do worse
with the 2nd order corrections.

7 Conclusions & Future Work
We presented Learning with Opponent-Learning Awareness
(LOLA), a learning method for multi-agent settings that con-
siders the learning processes of other agents. We show that
when both agents have access to exact value function and
apply the LOLA learning rule, cooperation emerges based
on tit-for-tat in the infinitely repeated iterated prisoners’
dilemma while independent naive learners defect. We also
find that LOLA leads to stable learning of the Nash equi-
librium in IMP. In our round-robin tournament against other
multi-agent learning algorithms we show that exact LOLA
agents achieve the highest average returns on the IPD and
respectable performance on IMP. We also derive a policy
gradient-based version of LOLA, applicable to deep rein-
forcement learning setting. Experiments on IPD and IMP

(a) (b)

Figure 5: Shown is the percentage of all picked up coins that match in colour, in a), and the total points obtained, in b), for a
pair of naive learners using policy gradient (NL-PG), LOLA-agents (LOLA-PG), and a pair of LOLA-agents with opponent
modelling (LOLA-OM). Also shown is the standard deviation of the percentage and the points obtained in order to indicate
variability of the result, based on 5 training runs. We see that LOLA and LOLA-OM learn to cooperate, while NL does not.
Best viewed in color.

demonstrate similar learning behavior to the setting with ex-
act value function.

In addition, we scale the policy gradient-based version of
LOLA to ‘Coin Game’, a multi-step game which requires
deep recurrent policies. LOLA agents learn to cooperate,
as colored agents pick up coins of their color with high
probability while naive learners pick up coins indiscrimi-
nately. We further remove agents’ access to the opponent
agents’ policy parameters and replace with opponent mod-
eling. LOLA agents with opponent modeling also learn to
cooperate.

We briefly address the exploitability of LOLA agents.
Empirical results show that in the IPD both agents are in-
centivized to use LOLA, while higher order exploits show
no further gain.

In the future we would like to continue to address the ex-
ploitability of LOLA, when adversarial agents explicitly aim
to take advantage of a LOLA learner using global search
methods rather than using gradient-based methods only. Just
as LOLA is a way to exploit a naive learner, there should be
means of exploiting LOLA learners in turn, unless LOLA is
itself an equilibrium learning strategy.

Acknowledgements

We would like to thank Jascha Sohl-Dickstein, David Bal-
duzzi, Karl Tuyls, Marc Lanctot, Michael Bowling, Ilya
Sutskever, Bob McGrew, and Paul Cristiano for fruitful dis-
cussion. We would like to thank Michael Littman for pro-
viding feedback on an early version of the manuscript. We
would like to thank our reviewers for critical and thoughtful
feedback.

References
Axelrod, R. M. 2006. The evolution of cooperation: revised

edition. Basic books.

Banerjee, D., and Sen, S. 2007. Reaching pareto-
optimality in prisoner’s dilemma using conditional joint
action learning. Autonomous Agents and Multi-Agent Sys-
tems 15(1):91–108.

Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.;
Flepp, B.; Goyal, P.; Jackel, L. D.; Monfort, M.; Muller,
U.; Zhang, J.; et al. 2016. End to end learning for self-
driving cars. arXiv preprint arXiv:1604.07316.

Bowling, M., and Veloso, M. 2002. Multiagent learn-
ing using a variable learning rate. Artificial Intelligence
136(2):215–250.

Brafman, R. I., and Tennenholtz, M. 2003. Efficient learning
equilibrium. In Advances in Neural Information Process-
ing Systems, volume 9, 1635–1643.

Brown, G. W. 1951. Iterative solution of games by fictitious
play.

Busoniu, L.; Babuska, R.; and De Schutter, B. 2008. A com-
prehensive survey of multiagent reinforcement learning.
IEEE Transactions on Systems, Man, And Cybernetics-
Part C: Applications and Reviews, 38 (2), 2008.

Claus, C., and Boutilier, C. 1998. The dynamics of re-
inforcement learning in cooperative multiagent systems.
AAAI/IAAI 1998:746–752.

Crandall, J. W., and Goodrich, M. A. 2011. Learn-
ing to compete, coordinate, and cooperate in repeated
games using reinforcement learning. Machine Learning
82(3):281–314.

Das, A.; Kottur, S.; Moura, J. M.; Lee, S.; and Ba-
tra, D. 2017. Learning cooperative visual dialog
agents with deep reinforcement learning. arXiv preprint
arXiv:1703.06585.

Foerster, J.; Assael, Y. M.; de Freitas, N.; and Whiteson, S.
2016. Learning to communicate with deep multi-agent re-
inforcement learning. In Advances in Neural Information
Processing Systems, 2137–2145.

Foerster, J.; Nardelli, N.; Farquhar, G.; Torr, P.; Kohli, P.;
Whiteson, S.; et al. 2017. Stabilising experience replay
for deep multi-agent reinforcement learning. In 34th In-
ternational Conference of Machine Learning.

Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; and
Whiteson, S. 2018. Counterfactual multi-agent policy
gradients. In AAAI.

Fudenberg, D., and Tirole, J. 1991. Game theory, 1991.
Cambridge, Massachusetts 393:12.

Gibbons, R. 1992. Game theory for applied economists.
Princeton University Press.

Heinrich, J., and Silver, D. 2016. Deep reinforcement learn-
ing from self-play in imperfect-information games. arXiv
preprint arXiv:1603.01121.

Hernandez-Leal, P., and Kaisers, M. 2017. Learning against
sequential opponents in repeated stochastic games.

Hernandez-Leal, P.; Kaisers, M.; Baarslag, T.; and de Cote,
E. M. 2017. A survey of learning in multiagent envi-
ronments: Dealing with non-stationarity. arXiv preprint
arXiv:1707.09183.

Kleiman-Weiner, M.; Ho, M. K.; Austerweil, J. L.; Littman,
M. L.; and Tenenbaum, J. B. 2016. Coordinate to co-
operate or compete: abstract goals and joint intentions in
social interaction. In COGSCI.

Lanctot, M.; Zambaldi, V.; Gruslys, A.; Lazaridou, A.;
Tuyls, K.; Perolat, J.; Silver, D.; and Graepel, T. 2017. A
unified game-theoretic approach to multiagent reinforce-
ment learning. In Advances in Neural Information Pro-
cessing Systems (NIPS).

Lazaridou, A.; Peysakhovich, A.; and Baroni, M. 2016.
Multi-agent cooperation and the emergence of (natural)
language. arXiv preprint arXiv:1612.07182.

Leibo, J. Z.; Zambaldi, V.; Lanctot, M.; Marecki, J.; and
Graepel, T. 2017. Multi-agent reinforcement learning
in sequential social dilemmas. In Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Sys-
tems, 464–473. International Foundation for Autonomous
Agents and Multiagent Systems.

Lerer, A., and Peysakhovich, A. 2017. Maintaining coop-
eration in complex social dilemmas using deep reinforce-
ment learning. arXiv preprint arXiv:1707.01068.

Littman, M. L. 2001. Friend-or-foe q-learning in general-
sum games. In ICML, volume 1, 322–328.

Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Abbeel, P.; and
Mordatch, I. 2017. Multi-agent actor-critic for mixed

cooperative-competitive environments. arXiv preprint
arXiv:1706.02275.

Mealing, R., and Shapiro, J. L. 2013. Opponent mod-
elling by sequence prediction and lookahead in two-
player games. In ICAISC (2), 385–396.

Mealing, R., and Shapiro, J. 2015. Opponent modelling
by expectation-maximisation and sequence prediction in
simplified poker. IEEE Transactions on Computational
Intelligence and AI in Games.

Metz, L.; Poole, B.; Pfau, D.; and Sohl-Dickstein, J. 2016.
Unrolled generative adversarial networks. arXiv preprint
arXiv:1611.02163.

Mordatch, I., and Abbeel, P. 2017. Emergence of grounded
compositional language in multi-agent populations. arXiv
preprint arXiv:1703.04908.

Munoz de Cote, E., and Littman, M. L. 2008. A polynomial-
time Nash equilibrium algorithm for repeated stochastic
games. In 24th Conference on Uncertainty in Artificial
Intelligence (UAI’08).

Omidshafiei, S.; Pazis, J.; Amato, C.; How, J. P.; and Vian, J.
2017. Deep decentralized multi-task multi-agent rl under
partial observability. arXiv preprint arXiv:1703.06182.

Press, W. H., and Dyson, F. J. 2012. Iterated prisoners
dilemma contains strategies that dominate any evolution-
ary opponent. Proceedings of the National Academy of
Sciences 109(26):10409–10413.

Roger, B. M. 1991. Game theory: analysis of conflict.

Ross, S.; Gordon, G. J.; and Bagnell, J. A. 2011. No-regret
reductions for imitation learning and structured predic-
tion. In In AISTATS. Citeseer.

Sandholm, T. W., and Crites, R. H. 1996. Multiagent re-
inforcement learning in the iterated prisoner’s dilemma.
Biosystems 37(1-2):147–166.

Sukhbaatar, S.; Fergus, R.; et al. 2016. Learning multia-
gent communication with backpropagation. In Advances
in Neural Information Processing Systems, 2244–2252.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction, volume 1. MIT press Cambridge.

Sutton, R. S.; McAllester, D. A.; Singh, S. P.; Mansour,
Y.; et al. 1999. Policy gradient methods for reinforce-
ment learning with function approximation. In NIPS, vol-
ume 99, 1057–1063.

Tuyls, K.; Heytens, D.; Nowe, A.; and Manderick, B. 2003.
Extended replicator dynamics as a key to reinforcement
learning in multi-agent systems. In European Conference
on Machine Learning, 421–431. Springer.

Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning 8(3-4):229–256.

Wunder, M.; Littman, M. L.; and Babes, M. 2010. Classes of
multiagent q-learning dynamics with epsilon-greedy ex-
ploration. In Proceedings of the 27th International Con-
ference on Machine Learning (ICML-10), 1167–1174.

Zawadzki, E.; Lipson, A.; and Leyton-Brown, K. 2014. Em-
pirically evaluating multiagent learning algorithms. arXiv
preprint arXiv:1401.8074.

Zhang, C., and Lesser, V. R. 2010. Multi-agent learning
with policy prediction. In AAAI.

Zinkevich, M.; Greenwald, A.; and Littman, M. L. 2006.
Cyclic equilibria in markov games. In Advances in Neural
Information Processing Systems, 1641–1648.

A Appendix

A.1 Derivation of Second-Order derivative

In this section, we derive the second order derivatives of LOLA in the policy gradient setting. Recall that an episode of horizon
T is

τ = (s0, u
1
0, u

2
0, r

1
0, r

2
0, ..., sT , u

1
T , u

2
T , r

1
T , r

2
T)

and the corresponding discounted return for agent a at timestep t is Rat (τ) =
∑T
l=t γ

l−tral . We denote Eπ1,π2,τ as the expec-
tation taken over both agents’ policy and the episode τ . Then,

∇θ1∇θ2 Eπ1,π2,τ R
1
0(τ) = ∇θ1∇θ2 Eτ

[
R1

0(τ) ·
T∏
l=0

π1(u1l |sl,θ1) ·
T∏
l=0

π2(u2l |sl,θ2)

]

= Eτ

R1
0(τ) ·

(
∇θ1

(T∏
l=0

π1(u1l |sl,θ1)
))(

∇θ2

(T∏
l=0

π2(u2l |sl,θ2)
))T

= Eτ

R1
0(τ) ·

(
∇θ1

(∏T
l=0 π

1(u1l |sl,θ1)
)∏T

l=0 π
1(u1l |sl,θ1)

)(
∇θ2

(∏T
l=0 π

2(u2l |sl,θ2)
)∏T

l=0 π
2(u2l |sl,θ2)

)T

·
T∏
l=0

π1(u1l |sl,θ1) ·
T∏
l=0

π2(u2l |sl,θ2)

]

= Eπ1,π2,τ

R1
0(τ) ·

(
∇θ1

(∏T
l=0 π

1(u1l |sl,θ1)
)∏T

l=0 π
1(u1l |sl,θ1)

)(
∇θ2

(∏T
l=0 π

2(u2l |sl,θ2)
)∏T

l=0 π
2(u2l |sl,θ2)

)T
= Eπ1,π2,τ

R1
0(τ) ·

(
∇θ1 log

(T∏
l=0

π1(u1l |sl,θ1)
))(

∇θ2 log
(T∏
l=0

π2(u2l |sl,θ2)
))T

= Eπ1,π2,τ

[
R1

0(τ) ·
(∑T

l=0
∇θ1 log π1(u1l |sl,θ1)

)(∑T

l=0
∇θ2 log π2(u2l |sl,θ2)

)T]
.

The second equality is due to πl is only a function of θl. The third equality is multiply and divide the probability of the episode
τ . The fourth equality factors the probability of the episode τ into the expectation Eπ1,π2,τ . The fifth and sixth equalities are
standard policy gradient operations.

Similar derivations lead to the the following second order cross-term gradient for a single reward of agent 1 at time t

∇θ1∇θ2 Eπ1,π2,τ r
1
t = Eπ1,π2,τ

[
r1t ·

(∑t

l=0
∇θ1 log π1(u1l |sl,θ1)

)(∑t

l=0
∇θ2 log π2(u2l |sl,θ2)

)T]
.

Sum the rewards over t,

∇θ1∇θ2 Eπ1,π2,τ R
1
0(τ) = Eπ1,π2,τ

[∑T

t=0
γtr1t ·

(∑t

l=0
∇θ1 log π1(u1l |sl,θ1)

)(∑t

l=0
∇θ2 log π2(u2l |sl,θ2)

)T]
,

which is the 2nd order term in the Methods Section.

A.2 Derivation of the exact value function in the Iterated Prisoners’ dilemma and Iterated Matching
Pennies

In both IPD and IMP the action space consists of 2 discrete actions. The state consists of the union of the last action of both
agents. As such there are a total of 5 possible states, 1 state being the initial state, s0, and the other 4 the 2 x 2 states depending
on the last action taken.

As a consequence the policy of each agent can be represented by 5 parameters,θa,the probabilities of taking action 0 in each
of these 5 states. In the case of the IPD these parameters correspond to the probability of cooperation in s0, CC, CD, DC and

DD:

πa(C|s0) = θa,0, πa(D|s0) = 1− θa,0,
πa(C|CC) = θa,1, πa(D|CC) = 1− θa,1,
πa(C|CD) = θa,2, πa(D|CD) = 1− θa,2,
πa(C|DC) = θa,3, πa(D|DC) = 1− θa,3,
πa(C|DD) = θa,4, πa(D|DD) = 1− θa,4, a ∈ {1, 2}.

We denote θa = (θa,0, θa,1, θa,2, θa,3, θa,4).
In these games the union of π1 and π2 induces a state transition function P (s′|s) = P (u|s). Denote the distribution of s0 as

p0:
p0 =

(
θ1,0θ2,0, θ1,0(1− θ2,0), (1− θ1,0)θ2,0, (1− θ1,0)(1− θ2,0)

)T
,

the payout vector as
r1 = (−1,−3, 0,−2)T and r2 = (−1, 0,−3,−2)T ,

and the transition matrix is

P =
[
θ1θ2, θ1(1− θ2), (θ1 − 1)θ2, (1− θ1)(1− θ2)

]
Then V1, V2 can be represented as

V 1(θ1,θ2) = pT0
(
r1 +

∑∞

t=1
γtP tr1

)
V 2(θ1,θ2) = pT0

(
r2 +

∑∞

t=1
γtP tr2

)
.

Since γ < 1 and P is a stochastic matrix, the infinite sum converges and

V 1(θ1,θ2) = pT0
I

I− γP r1,

V 2(θ1,θ2) = pT0
I

I− γP r2,

where I is the identity matrix.
An equivalent derivation holds for the Iterated Matching Pennies game with r1 = (−1, 1, 1,−1)T and r2 = −r1.

A.3 Figures

0.0 0.2 0.4 0.6 0.8 1.0
P(cooperation | state)_agent 0

0.0

0.2

0.4

0.6

0.8

1.0
P(

co
op

er
at

io
n

| s
ta

te
)_

ag
en

t 1

0.0 0.2 0.4 0.6 0.8 1.0
P(cooperation | state)_agent 0

0.0

0.2

0.4

0.6

0.8

1.0

CC
CD
DC
DD
P0

0 50 100 150 200
Iterations

2.0

1.8

1.6

1.4

1.2

1.0

0.8

Av
er

ag
e

re
wa

rd
 p

er
 st

ep

a0 Lola
a1 Lola
a0 NL
a1 NL

(a)

0.0 0.2 0.4 0.6 0.8 1.0
P(Head | state)_agent 0

0.0

0.2

0.4

0.6

0.8

1.0

P(
He

ad
 |

st
at

e)
_a

ge
nt

 1

0.0 0.2 0.4 0.6 0.8 1.0
P(Head | state)_agent 0

0.0

0.2

0.4

0.6

0.8

1.0

HH
HT
TH
TT
P0

0 50 100 150 200
Iterations

0.2

0.1

0.0

0.1

0.2

Av
er

ag
e

re
wa

rd
 p

er
 st

ep

a0 Lola
a1 Lola
a0 NL
a1 NL

(b)

Figure 6: Shown is the probability of cooperation in the prisoners dilemma (a) and the probability of heads in the matching
pennies game (b) at the end of 50 training runs for both agents as a function of state under naive learning (left) and LOLA
(middle) when using the exact gradients of the value function. Also shown is the average return per step for naive and LOLA
(right)

0.0 0.2 0.4 0.6 0.8 1.0

P(cooperation | state)_agent 0

0.0

0.2

0.4

0.6

0.8

1.0

P
(c

o
o
p
e
ra

ti
o
n
 |

 s
ta

te
)_

a
g
e
n
t

1

0.0 0.2 0.4 0.6 0.8 1.0

P(cooperation | state)_agent 0

0.0

0.2

0.4

0.6

0.8

1.0

CC

CD

DC

DD

P0

0 20 40 60 80 100

Iterations

2.0

1.5

1.0

A
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

st
e
p

a0 Lola

a1 Lola

a0 NL

a1 NL

(a)

0.0 0.2 0.4 0.6 0.8 1.0

P(Head | state)_agent 0

0.0

0.2

0.4

0.6

0.8

1.0

P
(H

e
a
d
 |

 s
ta

te
)_

a
g
e
n
t

1

0.0 0.2 0.4 0.6 0.8 1.0

P(Head | state)_agent 0

0.0

0.2

0.4

0.6

0.8

1.0

HH

HT

TH

TT

P0

0 20 40 60 80 100

Iterations

0.3

0.2

0.1

0.0

0.1

0.2

0.3
A

v
e
ra

g
e
 r

e
w

a
rd

 p
e
r

st
e
p

a0 Lola

a1 Lola

a0 NL

a1 NL

(b)

Figure 7: Same as Figure A.3, but using the policy gradient approximation for all terms. Clearly results are more noisy by
qualitatively follow the results of the exact method.

	1 Introduction
	2 Related Work
	3 Background
	4 Methods
	4.1 Naive Learner
	4.2 Learning with Opponent Learning Awareness
	4.3 Learning via Policy Gradient
	4.4 LOLA with Opponent Modeling
	4.5 Higher Order LOLA

	5 Experimental Setup
	5.1 Iterated Games
	5.2 Coin Game
	5.3 Training Details

	6 Results
	6.1 Iterated Games
	6.2 Coin Game
	6.3 Exploitability of LOLA

	7 Conclusions & Future Work
	A Appendix
	A.1 Derivation of Second-Order derivative
	A.2 Derivation of the exact value function in the Iterated Prisoners' dilemma and Iterated Matching Pennies
	A.3 Figures

