Adaptive Thresholding Using the Integral Image
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Figure 1: Real-time adaptive image thresholding. Left: Input image. Center: Wellner’s previous technique. Right:
Our technique.

Abstract. Image thresholding is a common task in many computer vision and graphics applications. The goal of
thresholding an image is to classify pixels as either “dark” or “light”. Adaptive thresholding is a form of thresholding
that takes into account spatial variations in illumination. We present a technique for real-time adaptive thresholding
using the integral image of the input. Our technique is an extension of a previous method. However, our solution
is more robust to illumination changes in the image. Additionally, our method is simple and easy to implement.
Our technique is suitable for processing live video streams at a real-time frame-rate, making it a valuable tool for
interactive applications such as augmented reality. Source code is available online.

1 Introduction

Image thresholding segments a digital image based on a certain characteristic of the pixels (for example, intensity
value). The goal is to create a binary representation of the image, classifying each pixel into one of two categories,
such as “dark” or “light”. This is a common task in many image processing applications, and some computer graphics
applications. For example, it is often one of the first steps in marker-based augmented reality systems [Billinghurst
et al. 2001; Bradley and Roth 2004; Fiala 2005], and it has been used in high dynamic range photography [Ward
2003]. The most basic thresholding method is to choose a fixed threshold value and compare each pixel to that
value. These techniques have been described and evaluated extensively in a number of survey papers [Weszka and
Rosenfeld 1978; Palumbo et al. 1986; Sahoo et al. 1988; Lee et al. 1990; Glasbey 1993; Trier and Jain 1995; Sezgin
and Sankur 2004]. However, fixed thresholding often fails if the illumination varies spatially in the image or over
time in a video stream.

In order to account for variations in illumination, the common solution is adaptive thresholding. The main difference
here is that a different threshold value is computed for each pixel in the image. This technique provides more robust-
ness to changes in illumination. A number of adaptive thresholding methods exist [White and Rohrer 1983; Bernsen
1986; Parker 1991; Wellner 1993; Yang et al. 1994; Shen and Ip 1997; Chan et al. 1998; Savakis 1998; Sauvola
and Pietikainen 2000; Yang and Yan 2000]. Further examples and comparisons can be found in [Venkateswarlu and
Boyle 1995; Sezgin and Sankur 2004]. We present a very simple and clear technique using integral images. Our
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method is easy to implement for real-time performance on a live video stream. Though our technique is an extension
to a previous method [Wellner 1993], we increase robustness to strong illumination changes. In addition, we present
a clear and tidy solution without increasing the complexity of the implementation. Our technique is also similar to
the thresholding method of White and Rohrer for optical character recognition [White and Rohrer 1983], however
we present an implementation designed for real-time video. The motivation for this work is finding fiducials in
augmented reality applications. Pintaric also presents an adaptive thresholding algorithm specifically for augmented
reality markers [Pintaric 2003], however his method requires that a fiducial has been located in a previous frame in
order for the technique to threshold correctly. Our algorithm makes no assumptions and is more general, suitable for
use in any application. The source code is available online at the address listed at the end of this paper.

2 Background

2.1 Real-Time Adaptive Thresholding

In this paper we focus on adaptively thresholding images from a live video stream. In order to maintain real-time
performance, the thresholding algorithm must be limited to a small constant number of iterations through each
image. Thresholding is often a sub-task that makes up part of a larger process. For instance in augmented reality,
input images must be segmented to locate known markers in the scene that are used to dynamically establish the
pose of the camera. A simple and fast adaptive thresholding technique is therefore an important tool.

2.2 Integral Images

An integral image (also known as a summed-area table) is a tool that can be used whenever we have a function
from pixels to real numbers f(x,y) (for instance, pixel intensity), and we wish to compute the sum of this function
over a rectangular region of the image. Examples of where integral images have been applied include texture
mapping [Crow 1984], face detection in images [Viola and Jones 2004], and stereo correspondence [Veksler 2003].
Without an integral image, the sum can be computed in linear time per rectangle by calculating the value of the
function for each pixel individually. However, if we need to compute the sum over multiple overlapping rectangular
windows, we can use an integral image and achieve a constant number of operations per rectangle with only a linear
amount of preprocessing.

To compute the integral image, we store at each location, /(x,y), the sum of all f(x,y) terms to the left and above
the pixel (x,y). This is accomplished in linear time using the following equation for each pixel (taking into account
the border cases),

I(xvy) :f(xvy)+l(x_ lay)+1(xay_ 1)—]()6— Ly— 1) (1

Figure 2 (left and center) illustrates the computation of an integral image. Once we have the integral image, the sum
of the function for any rectangle with upper left corner (x;,y;), and lower right corner (x,y,) can be computed in
constant time using the following equation,

X2 )2

Y ) flxy) =1(x2,32) = I(x2,y1 — 1) = 1(x1 — 1,y2) +1(x; — 1,y1 — 1). (2)

A=X1Y=)1

Figure 2 (right) illustrates that computing the sum of f(x,y) over the rectangle D using Equation 2 is equivalent to
computing the sums over the rectangles (A+B+C+D)-(A+B)-(A+C)+A.
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Figure 2: The integral image. Left: A simple input of image values. Center: The computed integral image. Right:
Using the integral image to calculate the sum over rectangle D.

3 The Technique

Our adaptive thresholding technique is a simple extension of Wellner’s method [Wellner 1993]. The main idea
in Wellner’s algorithm is that each pixel is compared to an average of the surrounding pixels. Specifically, an
approximate moving average of the last s pixels seen is calculated while traversing the image. If the value of the
current pixel is ¢ percent lower than the average then it is set to black, otherwise it is set to white. This method works
because comparing a pixel to the average of nearby pixels will preserve hard contrast lines and ignore soft gradient
changes. The advantage of this method is that only a single pass through the image is required. Wellner uses 1/8th
of the image width for the value of s and 15 for the value of . However, a problem with this method is that it is
dependent on the scanning order of the pixels. In addition, the moving average is not a good representation of the
surrounding pixels at each step because the neighbourhood samples are not evenly distributed in all directions. By
using the integral image (and sacrificing one additional iteration through the image), we present a solution that does
not suffer from these problems. Our technique is clean, straightforward, easy to code, and produces the same output
independently of how the image is processed. Instead of computing a running average of the last s pixels seen, we
compute the average of an s x s window of pixels centered around each pixel. This is a better average for comparison
since it considers neighbouring pixels on all sides. The average computation is accomplished in linear time by using
the integral image. We calculate the integral image in the first pass through the input image. In a second pass, we
compute the s x s average using the integral image for each pixel in constant time and then perform the comparison.
If the value of the current pixel is ¢ percent less than this average then it is set to black, otherwise it is set to white.
The following pseudocode demonstrates our technique for input image in, output binary image out, image width w
and image height A.

procedure AdaptiveT hreshold (in,out,w,h)

1: fori=0towdo
2 sum<—0

33 for j=0tohdo
4 sum «— sum+ inli, j|
5 if i = 0 then
6: intImgli, j| < sum
7 else
8 intImgli, j| < intImg[i — 1, j] + sum
9 end if
10:  end for

11: end for



12: fori=0towdo
13:  for j=0tohdo

14: x1 « i—s/2 {border checking is not shown}

15: X2 —i+s/2

16: yl—j—s/2

17: Y2 — j+s/2

18: count — (x2—x1) x (y2—yl)

19: sum «— intImg[x2,y2] — intImg[x2,y1 — 1] — intImg[x1 — 1,y2] + intImg[x1 — 1,yl — 1]
20: if (in[i, j] x count) < (sum x (100 —1¢)/100) then
21: outli, j] <0

22: else

23: outli, j] < 255

24: end if

25:  end for

26: end for

4 Performance and Examples

We tested our real-time adaptive thresholding technique on a Pentium 4 processor at 3.4Ghz with a Point Grey
Dragonfly camera, capturing at a resolution of 640 x 480 pixels. On average our technique operates at approximately
15 milliseconds per frame, yielding a frame-rate of 65 frames per second. Since we require two iterations through
each image rather than just one as in Wellner’s method, we expect to perform slower. In practice we measured our
technique at approximately 2.5 times slower than that of Wellner, however we still achieve a real-time frame-rate
and a better segmentation.

Two examples of our adaptive thresholding result are presented in Figure 1 and Figure 3. The results of Wellner’s
method are also shown. Figure 1 illustrates a text example with a very dark shadow. Our method is able to segment
all of the text in the image. Figure 3 illustrates an augmented reality example with a number of planar markers that
are tracked in a video stream. In this example our technique provides near perfect segmentation despite the strong
illumination changes in the image. Wellner’s technique fails at the specular reflection in the center of the image at
the bottom, and the dark shadow in the top corners.
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Figure 3: Augmented reality marker example. Left: Input image. Center: Wellner’s method. Right: Our technique.

5 Discussion

Our previous work in augmented reality [Bradley and Roth 2004] demonstrates a need for robust adaptive threshold-
ing of real-time video streams. Our technique is well-suited for scenes with strong spatial changes in illumination.



Temporal variations in illumination are also handled automatically, which is not the case for global thresholding
methods. The main drawback of our method is that we must process the image twice. However, this is not a sig-
nificant drawback with the current speed of processors and our technique is still suitable for real-time applications.
The amount of processing can also be minimized by performing the thresholding step at pixel (i —s/2,j—s/2) at
the same time as computing the integral image at pixel (i, j). In this case, a constant amount of processing must be
performed for the following number of pixels,

S2

(wxh)+ (5 xw)+(5 x )= (5):

2 2 )

This technique for thresholding makes the assumption that the image contains primarily background pixels (to be
segmented as white) and that the foreground pixels are rather distributed in the image. In the case of a foreground
component that is larger than s x s pixels, the center of the component will be incorrectly classified as background.
This problem can be alleviated by using a larger kernel (ie: by increasing s), however fine details in the segmentation
may then be lost. The kernel size should be set appropriately according to the application.
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Web Information:

Source code for our technique and additional image examples are available on the web. The web address is
www.derekbradley.ca/AdaptiveThresholding/index.html.



