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Computational periscopy with an ordinary digital 
camera
Charles Saunders1,2, John Murray-Bruce1,2 & Vivek K Goyal1*

Computing the amounts of light arriving from different directions 
enables a diffusely reflecting surface to play the part of a mirror 
in a periscope—that is, perform non-line-of-sight imaging 
around an obstruction. Because computational periscopy has 
so far depended on light-travel distances being proportional to 
the times of flight, it has mostly been performed with expensive, 
specialized ultrafast optical systems1–12. Here we introduce a two-
dimensional computational periscopy technique that requires only 
a single photograph captured with an ordinary digital camera. Our 
technique recovers the position of an opaque object and the scene 
behind (but not completely obscured by) the object, when both the 
object and scene are outside the line of sight of the camera, without 
requiring controlled or time-varying illumination. Such recovery is 
based on the visible penumbra of the opaque object having a linear 
dependence on the hidden scene that can be modelled through ray 
optics. Non-line-of-sight imaging using inexpensive, ubiquitous 
equipment may have considerable value in monitoring hazardous 
environments, navigation and detecting hidden adversaries.

The ability to accurately image scenes or detect objects hidden from 
direct view has many potential applications. Active optical methods for 
such non-line-of-sight (NLOS) imaging have been developed recently, 
most of which depend on transient imaging. In a typical transient- 
imaging configuration, an imaging device consisting of a light source 
and a light detector lacks direct view of the scene but does have direct 
view of a diffusely reflecting surface that itself has direct view of the 
scene. Illumination of a small patch on the diffuse surface with a short 
light pulse creates transient illumination of the NLOS scene, which 
is observed indirectly through light that reaches the detector after 
reflection from the diffuse surface. Transient-imaging-based NLOS 
scene geometry recovery was first demonstrated through multilatera
tion1, and the model was extended to include variable reflectivity of 
scene elements and non-impulsive illumination13. Subsequent studies 
used transient imaging to infer shapes of objects with non-specular 
surfaces hidden from the direct view of the observer2,3. These early 
studies used femtosecond-laser illumination and picosecond-resolution 
streak cameras1–3. The cost of transient-imaging acquisition can be 
reduced dramatically with homodyne time-of-flight sensors14–16, and 
the increasing availability of single-photon avalanche diode (SPAD) 
detectors and detector arrays with time-correlated single-photon 
counting (TCSPC) modules has enabled their use in transient-im-
aging-based NLOS imaging4–12. SPADs with TCSPC are common 
in many LIDAR (light detection and ranging) applications and were 
recently used for long-range three-dimensional (3D) imaging17 and 
for capturing photometric and geometric information from as few as 
one detected photon per pixel18–21. In addition to lowering the cost of 
NLOS imaging systems, SPAD-based systems have facilitated the exten-
sion of previous round-trip distances of around 1 m to a few metres 
for NLOS hidden-object estimation5 and to over 50 m for long-range 
human localization by coupling a telescope to a single-element SPAD9. 
Furthermore, room-geometry reconstruction by probing a single vis-
ible wall using a picosecond laser and an SPAD with TCSPC has been 
demonstrated22. Other established applications of transient imaging 

include NLOS estimation of object motion and size23 and single-view-
point estimation of angular reflectance properties24.

To address the high cost and the impracticality of existing meth-
ods outside laboratory conditions, we developed a computational  
periscopy technique that uses only an ordinary digital camera. The 
imaging method is passive, with the radiosity of the NLOS scene 
caused by sources that are hidden from view and uncontrolled. The 
NLOS resolution is based on computational inversion of the influ-
ence of the scene of interest on the penumbra of an occluding object 
of known size and shape, which is in an a priori unknown position. 
Previous techniques exploiting penumbrae required precise knowledge 
of the occluder positions and used laser illumination and SPAD-based 
detection25,26, required occluder motion27, or had the more limited 
objective of producing a one-dimensional projection of the moving 
portion of a scene28. A very recent work used calibration measurements 
of a complex occluder in a light-field reconstruction29. NLOS tracking 
of a moving object using laser illumination—without image forma-
tion—has also been demonstrated30. Our method does not require 
calibration, controlled illumination, time-resolved light detection or 
scene motion, and obtains a full-colour two-dimensional (2D) image.

We demonstrate computational periscopy using an experimental 
setup consisting of a 4-megapixel digital camera, a 20-inch (1 inch = 
2.54 cm) liquid-crystal display (LCD) colour monitor with 4:3 aspect 
ratio, and a black rectangular occluding object of size 7.7 cm × 7.5 cm 
supported by a black flat 7-mm-wide stand (Fig. 1). This occluder shape 
was chosen for computational convenience, but any known occluder 
shape and size could be incorporated similarly. Additional experi-
ments using a three-dimensional, non-black occluder are presented 
in Supplementary Information. Light from the LCD monitor, originat-
ing from the unknown displayed scene and the monitor’s background 
light, illuminates a visible white Lambertian surface placed in a direc-
tion fronto-parallel to the monitor, at a distance of 1.03 m. A moni-
tor is used to allow convenient testing of multiple scenes; additional 
results using both 2D and 3D diffuse reflecting scenes are presented 
in Supplementary Information. The camera measurement, which 
includes shadows and penumbrae cast by the occluder, is a raw 14-bit, 
2,016 × 2,016-pixel image with colour channels interleaved according to 
a Bayer filter RGBG pattern. After averaging of the two green channels 
and averaging each colour channel over 16 × 16 blocks, three 126 × 126 
images (one per colour channel) are extracted and passed to a computer 
algorithm for occluder position and scene image recovery (Fig. 2).

With the occluder positioned at po between the monitor and the 
visible wall, and with the monitor at distance D, the irradiance of a wall 
patch at pw is given by
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where f(x) is the monitor scene radiosity, and integration over 
R∈ = ∈x S x D z x z{( , , ) : , }  represents the combination of contributions 

from the entire scene at pw. The first weighting factor in the integrand 
models the radial falloff of the flux density (the denominator) and two 
foreshortening effects: from the wall patch relative to the direction of 
the incident light and from the monitor pixel relative to the viewing 
angle of that pixel, with nx and nw the monitor and wall surface nor-
mals, respectively, ⋅ ⋅�( , ) denoting the angle between its vector argu-
ments and ‖x‖2 representing the Euclidean norm of a vector. The 
second weighting factor, V(x; pw; po), is a Boolean-valued visibility 
function that equals 1 when the path from x to pw is unoccluded and 0 
otherwise. The factor µ(x, pw) describes the radiometric model for the 
monitor’s variation with viewing angle (see  Supplementary 
Information). The final term, b(pw), represents the contribution from 
sources outside the modelled scene area, S, at the visible wall. Equation 
(1) is the rendering equation for computer graphics adapted to our 
setting31.

Assuming the reflection from the visible wall to be Lambertian, the 
reduced-resolution digital photograph of the visible wall is modelled 
by discretizing equation (1) with pw taking (126)2 = 15,876 values in 
the camera’s field of view (FOV). Namely, for each colour channel we 
obtain a simple affine model y = A(po)f + b, where the digital photo-
graph is vectorized into a column vector, and the light transport matrix 
A(po) has 15,876 rows and a number of columns that depends on the 
attempted reconstruction resolution (see Supplementary Information). 
Forming an image of the hidden scene amounts to inverting the result-
ing linear system for each colour channel.

The visibility function—equivalently, the presence of the occluder—
is central to the conditioning of the inversion. Without an occluder, 
the weighting factors in equation (1) depend too weakly on x for a well 
conditioned recovery of f(x) (see Supplementary Information)2,13,25. 

The presence of an occluder introduces shadows and penumbrae 
that make some image formation possible, but everyday experience 
suggests that this is extremely limited. In discretized form, without 
an occluder, the rows of A are too similar to enable well conditioned 
inversion. Variations in the visibility function V(x; pw; po) caused by the 
presence of an occluder improve the conditioning of A(po) for inversion 
because its columns become more different from each other. By treating 
a portion of the scene plane as resolvable if and only if this portion is 
visible in at least one camera measurement and invisible in at least 
one other, we define a computational FOV (Fig. 3; see Supplementary 
Information).

Recovering po and f from the single-snapshot camera measurement y 
is a nonlinear problem. Because the number of measurements (rows of 
A(po)) is large relative to the recoverable resolution of the hidden scene, 
the measurements y reside close to a low-dimensional affine subspace 
that is dependent on the occluder position po and the background b. 
The occluder position is estimated from y through
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where A(po) is the computed light-transport matrix for an occluder 
position po; the omission of the unknown b does not greatly degrade 
the estimate (see Supplementary Information). The three estimates 
obtained by solving this maximization for each colour channel are aver-
aged to obtain a single p̂o

.
Given the estimated occluder position p̂o

, an estimate = pA Aˆ (ˆ )o
 of 

the true light-transport matrix A(po) is computed. If the estimated 
occluder position were exactly correct and model mismatch and  
background contributions were inconsequential, pre-multiplying the 
vectorized measurements y (for each colour channel) by the pseudo-
inverse = −A A A Aˆ ( ˆ ˆ) ˆ† T 1 T would yield the least-squares estimate of the 
hidden scene’s RGB content. To improve robustness to noise and model 
mismatch, we exploit transverse spatial correlations that are prevalent 
in real-world scenes by promoting sparsity in the scene’s gradient via 
total variation (TV) regularization32

λ= − +f f y fAˆ argmin ˆ (3)
f

2
2

TV

where the operator · TV denotes the TV semi-norm and λ is the 
TV-regularization parameter.

To further improve image quality, we take the differences of meas-
urements y for (vertically) neighbouring blocks of 16 × 16 pixels and 
of the corresponding rows of Â before solving an optimization problem 
analogous to equation (3) (see equation (7) in Methods). Because any 
light originating from outside the computational FOV has slow spatial 
variation, the background contribution b is approximately constant 
(that is, bi+1 ≈ bi ≈ b) for neighbouring pixels and is thus approximately 
cancelled
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where ai
T is the ith row of A. This also provides some robustness to 

ambient light, as verified by additional experiments described 
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of unknown position

Fig. 1 | Experimental setup for computational periscopy. Controlled 
by a laptop PC, the standard digital camera obtains a snapshot of the 
irradiance distribution on a visible imaging wall, which is induced by the 
penumbra of an occluding object owing to light emanating from a scene 
of interest. The scene of interest is displayed on an LCD monitor for ease 
of performing experiments with many scenes. The snapshot is fed through 
a computer algorithm to recover an image of the scene of interest and an 
estimate of the position of the hidden occluder.
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G

c Fig. 2 | Reconstruction procedure. 
a, Camera measurements are  
de-interleaved to give RGB data 
from Bayer pattern measurements,  
with the green channels averaged. 
b, Occluder position is estimated.  
c, Hidden-scene reconstruction 
from camera measurements and 
from the estimated occluder 
position.
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in Supplementary Information. Ultimately, one is able to produce an 
image of the computational FOV because all appreciable variations in 
y are due to this portion of the scene.

We propose also an alternative reconstruction method that exploits 
a property of the light-transport matrices as po is varied. Inaccurate 
occluder transverse position or depth leads to shifted or magnified  
(or minified) estimates of the displayed scene. This observation is 
exploited to produce a multiplicity of additional reconstructions, which 
are nonlinearly combined to produce a single noise-reduced image (see 
equation (8) in Methods).

Each hidden-scene patch is a block of 35 × 35 monitor  
pixels; because the monitor has 1,280 × 1,024 resolution, 

⌊ ⌋ ⌊ ⌋/ × / = ×[ 1,280 35 ] [ 1,024 35 ] 36 29  rectangular scene pixels are 
obtained, each of size 1.12 cm × 1.05 cm ( ⌊ ⌋⋅[ ]  denotes the floor 
function). The scene is aligned to the screen’s top and left edges, occu-
pying 30.5 cm vertically and 40.3 cm horizontally. The distance from 
the camera to the visible wall is approximately 1.5 m, such that its FOV 
is 43.7 cm × 43.7 cm, centred at (74.1 cm, 26.4 cm). With this config-
uration, several 36 × 29 scene-pixel test images are used to evaluate 
our computational periscope. One experimental scene is an anthro-
pomorphic mushroom image with approximate dimensions of 
26 cm × 19 cm (Fig. 4a, top). An exposure of 175 ms maximizes signal 
strength while avoiding saturation, and 20 such exposures are taken 
and averaged, yielding an effective exposure of 3.5 s. The snapshot is 
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Fig. 3 | Computational field of view. Portions 
of the scene plane that are visible to a part 
of the camera FOV (region A) and occluded 
from another part of the camera FOV form 
the computational FOV (region B). Within 
the computational FOV, portions from which 
projections of multiple occluder edges fall 
within the camera FOV are better conditioned 
than those from which the projection of only 
one occluder edge falls within the camera FOV. 
The best-conditioned region is the portion of 
the scene plane from which projections of all 
four occluder edges fall within the camera FOV 
(region C).

b Measurementa  Ground truth d Shift-and-combine
 reconstruction

e Occluder position
known a priori

c Differential
reconstruction

Fig. 4 | Reconstructions of different hidden scenes. a, Four ground-truth 
scenes displayed on the monitor. b, Camera measurement obtained for 
the corresponding scenes. c, A single reconstruction using the differential 
framework and the estimated occluder position. d, Reduced-noise final 

reconstructions, obtained by combining reconstructions acquired from 
each of 49 postulated occluder positions, around the estimated value.  
e, Reconstructions obtained assuming the true occluder position is a priori 
known and using the same algorithm as in d.
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fed to a computer algorithm to produce a reconstruction (Fig. 4c, top) 
by estimation of the occluder position, vertical differencing of the data 
and the light-transport matrix, and image estimation. This snapshot 
(Fig. 4b, top) is also fed into another computer algorithm to produce 
a reconstruction (Fig. 4d, top) by estimation of the occluder position, 
formation of 49 image estimates for a 7 × 7 array of postulated 
occluder positions, and nonlinear combination of the 49 estimates. 
For comparison, a reconstruction (Fig. 4e, top) is formed from the 
snapshot along with the actual occluder position. Using unoptimized 
code on a desktop computer, the initial occluder estimation takes 
18 min, and subsequent hidden-scene recovery (using the approximate 
background-cancellation method) takes an additional 48 s. Most of 
that computation time is for forming A(po) matrices (see Methods). 
Reducing the exposure time to under 1 s enables the capture of a one-
frame-per-second movie (Supplementary Video).

Results are provided for three additional scenes (Fig. 4, bottom 
three rows). The exposure time required to maximize signal strength 
while avoiding saturation varies between 175 ms and 425 ms, and the 
averages of 20 such exposures give the inputs to the computational 
method (Fig. 4b). The estimated occluder positions are reported 
in Supplementary Table S1.

The results for the initial scene (Fig. 4, top) show that our computa-
tional imaging method clearly resolves moderately sized features, such 
as the white and red patches, along with larger features, such as the head 
and yellow face; smaller features, such as the eyes and unibrow, are 
visible but with worse accuracy. Similarly, for the second scene (Fig. 4, 
second row from the top), even the white teeth and blue plus on the 
hat are present in the reconstructions, along with larger features, such 
as the face and hat. These two scenes demonstrate that measurements 
that are difficult to distinguish visually (Fig. 4b) may yield distinct and 
clearly identifiable reconstructions.

The occluder position estimates have roughly centimetre accu-
racy (Supplementary Table S1). Reconstructions based on estimated 
occluder positions (Fig. 4c, d) have similar quality to those based on 
known occluder positions (Fig. 4e), demonstrating robustness to the 
lack of knowledge of the occluder position.

The results show that the penumbra cast by an object may contain 
enough information to both estimate the position of the object and 
computationally construct an image of the computational FOV created 
by the object. In such a setting, we demonstrate that 2D colour NLOS 
imaging is possible with an ordinary digital camera, without requiring 
time-varying illumination and high-speed sensing.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-018-0868-6.
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Methods
Equipment. The scenes were displayed on a Dell LCD monitor model 2001FP, 
which has 4:3 aspect ratio and 1,280 × 1,024 resolution. With no line of sight from 
the monitor to the camera, visibility was achieved via a white Elmer’s foam board, 
which is visually diffuse; any specular component present was not modelled and 
thus not directly exploited. The camera was a FLIR Grasshopper3 model GS3-U3-
41S4C-C, which has 2,016 × 2,016 resolution (4.1 megapixels) and was used with 
a Tamron M118FM16 lens with 16 mm focal length and f/1.4 aperture. The scene 
and the camera were controlled using a Lenovo ThinkPad P51s laptop computer.
Data acquisition from the camera. A Python script was used to control the data 
acquisition. It performed the following steps. First, a test scene was displayed 
on the scene monitor. Then, to form a snapshot with suppressed noise, multiple 
camera measurements were taken in succession and summed. A pre-calibrated 
shutter speed that utilized approximately the full dynamic range of the camera 
per exposure was used. The final measurement for each block was a raw, 14-bit, 
2,016 × 2,016-pixel image with the three colour channels interleaved according to 
the RGBG Bayer filter pattern. In forming the three 1,008 × 1,008 colour-channel 
images, the two green channels were averaged. Each colour channel was further 
averaged over 16 × 16 blocks to produce a 126 × 126 data matrix that was reshaped 
to column vector y of length 15,876.
Computing a light transport matrix A(po). Recall that the element [A(po)]i,j of 
the light transport matrix A(po) represents the weighting of the contribution of 
light from the hidden-scene pixel i∈{1, 2, …, N} to the camera FOV pixel 
j∈{1, 2, …, M}, where M = 15,876 and N is the resolution at which recovery of the 
hidden scene is attempted (for example, N = 1,044 for producing a 29 × 36 recon-
struction). For any calculation of A(po), including the many computations for 
finding an estimate p̂o

, we performed the calculation in equation (S6) 
in Supplementary Information with L = 64.
Computing the estimate p̂o

 of occluder position po. Estimation of the occluder 
position po was performed using the grid-search approach outlined in Algorithm 
1 in Supplementary Information. The algorithm is based on the camera measure-
ments y being made to reside near the range of pA( ˆ )o

, which is a low-dimensional 
subspace of the 15,876-dimensional space of downsampled measurements. The 
desired estimate of the position of the hidden occluder, p̂o

, is the one that minimizes 
the Euclidean distance between y and the range space of pA( ˆ )o

 or, equivalently, 
maximizes the Euclidean norm of the orthogonal projection of y onto the range 
space33 of pA( ˆ )o

. In practice, poor conditioning of A(po) for certain candidate 
occluder positions po makes it more robust to orthogonally project to the smaller 
subspace spanned by the left singular vectors of pA( ˆ )o

 that are associated with the 
‘significant’ singular values—that is, those that are within a factor κ∈(0,1) of the 
largest singular value. (For instance, when po is such that the occluder does not 
cast a shadow in the camera’s FOV, A(po) is very poorly conditioned for inversion. 
Only a number N0 < N of the singular values will be substantially larger than zero. 
Hence, orthogonally projecting to the range of A(po) will retain N − N0 dimensions 
of y that depend deterministically, but very erratically, on po; it is as if those direc-
tions are chosen uniformly at random, reducing the reliability of estimating the 
correct po.) Then, if A(po) is approximated by the truncated singular value decom-
position UΣVT using only significant singular values, equation (2) can be written 
using
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as in Algorithm 1 (see Supplementary Information).
For a given discretization in equation (S6), the cost of computing A(po) for a 

single occluder position is Ο(LMN) and the cost of its singular value decomposi-
tion34 is Ο(N2M) for N < M. Hence the cost of computing the occluder position 
estimate using Algorithm 1 is Ο[(LMN + N2M)n], where n is the total number of 
possible occluder positions considered.

Although this approach is effective (Supplementary Table S1), it can be compu-
tationally prohibitive for large n. With minimal loss in performance, considerable 
cost reduction can be achieved by first searching a coarse grid of, say, m ≪ n points 
to obtain an initial estimate p̂o

 and then refining that estimate by searching within 
its neighbourhood. An initial coarse search is more accurate with projections to 
low-dimensional subspaces, and finer searches are more accurate with projections 
to higher-dimensional subspaces. We found three searches, with first κ = 0.75, 
then κ = 0.5 and finally κ = 0.05, to be effective. In addition, a coordinate  

ascent-based search provided further improvements in terms of computational 
complexity.
Computing the scene estimate f̂  using single occluder position estimate p̂o

. Each 
time a scene estimate f̂  was to be computed from a single occluder position estimate, it 
was found by solving the TV-regularized optimization problem of equation (3) for each 
colour channel independently. Specifically, the isotropic total-variation semi-norm

= ∑ − + −+ +� �f F F F F( ) ( ) (5)
i j

i j i j i j i jTV ,
, 1,

2
, , 1

2

was used, where R∈ ×F N N1 2 is f reshaped to the dimensions of the N1 × N2 image 
that we are reconstructing.

The optimization in equation (3) was performed using the fast iterative shrinkage–
thresholding algorithm of Beck and Teboulle32. The algorithm requires an initial 
estimate f (0), which was taken as the least-squares estimate − yA A A( ˆ ˆ ) ˆT 1 T . The 
regularization parameter λ was chosen empirically for each test scene.
Computing the final scene estimate with spatial differencing. By noting that 
un-modelled, multi-bounce light and ambient background light will tend to be 
spatially slowly varying or close to constant in the camera measurements, we can 
augment the model with an approximately constant background term. Specifically, 
the model in equation (S3) in Supplementary Information

= +y p f bA( )o

where b = [b1, b2, …, bi, bi+1, …, bM], models the unknown background and 
M = 15,876 is the number of camera FOV pixels. Taking the difference between 
two neighbouring camera measurements, that is, yi+1 − yi, gives

− ≈ + − − ≈ − + −+ + + + +a f a f a a fy y b b b b( ) ( )i i i i i i i i i i1 1
T

1
T

1
T

1

Further imposing the slowly varying background assumption, bi+1 ≈ bi, implies 
that

− ≈ −+ +a a fy y ( ) (6)i i i i1 1
T

Equation (6) can therefore be rewritten in matrix-vector form as

=y fD DA

where D is the so-called difference matrix. Similarly to equation (3), we formulate 
and solve the optimization problem

λ= − +f f y fDA Dˆ argmin ˆ (7)
f

2
2

TV

obtained by combining the new linear forward model with the usual TV prior. This 
new approach empirically exhibits increased robustness to model mismatch. As 
such, only slight improvements can be made by combining multiple hidden-scene 
reconstructions using different postulated occluder locations. This slight improve-
ment is considerably outweighed by the reduction in computational complexity by 
not having to compute a multiplicity of reconstructions.
Computing the postulated occluder positions =p{ ˆ }k ko, 1

48  from the occluder posi-
tion estimate p̂o,0

. We generated a set of postulated occluder positions that give 
scene reconstructions with predetermined horizontal or vertical shifts. Shifts in 
the x or z components of p̂o

 lead to shifts of the entire scene reconstruction by  
an amount proportional to / pD ( ˆ )yo,0

, following from an application of the similar- 
triangles property.

Let po,h,v = ((po)x + hW(po)y/D, (po)y, (po)z + vH(po)y/D) denote an occluder 
position that results in an h-pixel horizontal shift and v-pixel vertical shift in the 
reconstructed scene, where W is the width and H the height of a scene pixel. Then 
lexicographic ordering of the set

∈ − − … × − − … ≠p h v h v{ : ( , ) { 6, 4, , 4, 6} { 6, 4, , 4, 6}, ( , ) (0, 0)}h vo, ,

gives =p{ ˆ }k ko, 1
48  as required. We note that p̂o,0

 is precisely po,0,0.
Computing the final scene estimate from scene estimates =f{ˆ }k k 0

48 . Once a set of 
scene estimates =f{ˆ }k k 0

48  was computed, they were registered and combined. The 
scene estimates were generated using postulated occluder positions that resulted 
in intentional integer-pixel shifts in the reconstruction. Thus, to align each of  
the scene estimates, the reverse shifts were applied with zero padding to form a 
registered ensemble of estimates =f{ˆ }k k

reg
0

48 . Examples are shown in Supplementary 
Figs. S1, S2.

To form the final estimate f̂ , we combined the 49 registered estimates with a 
nonlinear procedure used independently for each pixel. Consider the set of regis-
tered estimates =f{ˆ }k k

reg
0

48  for one pixel f̂i. To balance the outlier rejecting property 
of the median with the variance reduction property of the sample mean, we select 
a parameter θ (empirically set to 0.25) and use the sample mean of the samples that 
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are within θ of the median. More explicitly, let mi denote the median of =f{ˆ }k k
reg

0
48 . 

The estimate is

θ= ∈ … | − | <f f fk mˆ mean({ˆ , {0, 1, , 48} : ˆ }) (8)i i k i k i,

reg

,

reg

as illustrated in Supplementary Fig. S3. This method of combining the ensemble 
is inspired by the alpha-trimmed mean35.
Code availability. The computer codes used to generate the results presented in 
this manuscript are available on GitHub at https://github.com/Computational-
Periscopy/Ordinary-Camera. Documentation on how to use the codes to repro-
duce the results is also included therein.

Data availability
Raw data captured with our digital camera during the experiments presented here 
are available on GitHub at https://github.com/Computational-Periscopy/Ordinary-
Camera.
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