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Introduction Problem statement and motivation

Some facts
@ An ubiquitous problem, in many signal processing applications, is to
recover some useful information from data in the time domain
{w(n}fzvz_ol-
@ Although time and frequency domains are dual (one goes between
them using a Fourier transform), information is often more intuitively
embedded in the spectral domain = need for spectral analysis tools.

@ In some cases (e.g., radar), the information itself consists of the
frequencies of exponential signals.

@ Spectral analysis can also serve as a pre-processing step to recognition
and classification of signals, compression, filtering and detection.
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Introduction Examples

Laser anemometry
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The received signal can be written as
x(t) = Aexp {—2a2f§t2} cos(2m fat) + n(t)

with f; = v/I the information of most interest.
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Introduction Examples

Doppler effect

Assume a signal s(t) = ¢! is transmitted through an antenna and

back-scattered by a moving target with radial velocity v. The received
signal is given by

do—vt
C

) — Agiwet pmiwe TR i

r(t) = As (t — 27(t)) = As <t -2
After demodulation, one obtains
2(t) = A2 Xt 4 n(t)

and hence the target velocity is directly related to the frequency of the
useful signal.
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Introduction Modeling

Problem statement

From the observation of z(n), n =0,--- , N — 1, retrieve pertinent
information about its spectral content.

Parametric and non-parametric approaches

NON PARAMETR[O

- ——

N $a(f) = F ({fzm)}¥3)
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\EHIETEN SIS IS EENEIS M Power Spectral Density

Power Spectral Density

Let z(n) denote a 2nd-order ergodic and stationary process, with
correlation function

The Power Spectral Density (PSD) can be defined in 2 different ways:

Sa(f) = Z Tm(m)e_wﬂmf
m=—o00
BLE! . 2
e {5 e
n=0
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Non parametric spectral analysis BTl [T 8

Principle

From the theoretical PSD to its estimation

Su(f) = lmy_so0 { |Zn0m —i27f"f|2}

l

Q = —i27mn, 2
$p(f) = % |05 wln)em s

Remark
The periodogram does not rely on any a priori information about the
signal (hence it is robust) and can be computed efficiently using a fast

Fourier transform (FFT).
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Non parametric spectral analysis BTl [T 8

Performance
Mean value
. 1/2
e{8unt= [, Weld - wSatu)du
m Sz(f)

. 2
with Wp(f) = & |G

@ Smearing of the main lobe %V;g
o Sidelobe levels (—13dB).

Variance

var{gp(f)}:Sgc(f)2 - 0.

N—oo
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Non parametric spectral analysis BTl [T 8

Variations

@ In order to decrease variance, one can compute several periodograms
on shorter time intervals, and then average them: variance is
decreased but resolution is poorer.

@ Windows can be used, i.e.,

L 2
ol f) = | 32 wnatme=r
n=

where wy, is selected, e.g., to have lower sidelobe levels (at the price
of a larger mainlobe).
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Periodogram

PETET CGTR S IENEIVETEl  Periodogram

Periodogram
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Non parametric spectral analysis BTl [T 8

Periodogram-Correlogram

The periodogram can be rewritten as

N-1
Sc(f) = Z P (m)e_ﬂﬂ-mf
=—(N-1)
where 7. (m) = 1ZN '™ g% (n)x(n 4+ m) is a biased estimate of the

correlation functlon. The variance of S,(f) is due to a poor estimate
Tz (m) for large m.

Remark

If the unbiased estimate 7, (m) = (N —m) ™" S22 2% (n)a(n +m) of
T2z(m) is used in Sc(f), this may result in a non positive estimated PSD.

v
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(TN ETEN SR e EREVEWS T Blackman-Tuckey

Principle
5o(f) = Yome—oo Faa(m)e= ™
a . M o —i2mm f
Spr(f) = X me—y Wmfzz(m)e

where 7,,.(m) is the biased estimate of the correlation function.

Observations

One has
. 1/2 .
Spr(f) = ) W(f —u)Sp(u) du.
—-1/2
Use of a window w,,, m = —M,--- , M enables one to achieve a good

tradeoff between bias and variance: decreasing M lowers variance (but
increases bias and penalizes resolution).
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Non parametric spectral analysis Blackman-Tuckey

Usual windows and their characteristics

For each window w(m) defined on [—M, M], the table below gives the
—3dB width of the mainlobe (in fraction of N = 2M) and the level of the
first sidelobe compared to that of the main lobe.

: — —sidelob
Window Characteristics % ABsup
Rectangular w(m ) =1 -13dB 0.89
Bartlett w(m) =1- 7 -26dB 1.27
Hanning w(m) = 0.5+ 0 5cos( ) -31.5dB 141
Hamming w(m) = 0.54 + 0.46 cos(m 57) -42dB 1.31
— m
Blackman | @(m) = 0-4240.5cos(2m37) -58dB 1.66
+0.08 cos (47 77 )
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\ETIETE ST eV EWVS O Blackman-Tuckey

Performances
Mean value
. 1/2 .
ELS = W(f —u)€ w) ¢ du
{Ber(n}= | W -we{Sw}
1/2
~ W(f —u)Sz(u) du.
—1/2 )
Variance

The variance of the Blackman-Tuckey is given by

var{S’BT(f)} o %fﬁ i w?2,.

m=—
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\EINETENE ISRV EIVS O Summary of Fourier-based spectral analysis

Properties of Fourier-based methods

@ Robust methods which require very few assumptions about the signal,
hence applicable to a very large class of signals.

Good performance, even at low signal to noise ratio.
Simple and computationally effective algorithms (FFT).

Estimated PSD proportional to actual signal power.

Resolution is about 1/N = problem to resolve two closely spaced
spectral lines with short samples.

@ Problem to recover weak signals in the presence of strong signals.
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Pz antl flicr
Interpretation of the periodogram

@ The periodogram can be interpreted as an estimate of the power at
the output of a filter tuned to f.

@ Assume that, for a given f, we wish to design a filter

w(f) = [wo(f) -~ wn_1(f)]" whose output
N—-1
X(f) =w(fle =" wi(f)z(n)
n=0

provides information about the signal power at frequency f.

o If the input signal is z(n) = Ae*®™/ + n(n), where n(n) denotes
white noise with power o2, the output is given by

X(f) = Aw (fe(f) +w (f)n

with e(f) = [1 ei2nf ...ei2ﬂ(N—1)f]T_
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\ETIETEE TS e ELEIVS S Periodogram and filtering

@ One looks for a filter that lets e(f) pass undistorted, i.e.
w!(f)e(f) = 1, while maximizing the output signal to noise ratio:

AP [w (e A2 [wH (fe(f))?
e e{lwh (fynl*} o wi(fu(f)
< wiaP

with equality iif w(f) oc e(f). Since w(f)e(f) = 1 one finally gets
w(f) = N~ 'e(f). The output power is thus

" 2 N P
‘X(f)‘2 — ‘e ](\}f2)$| _ W nz_:o x(n)e—ZQW’nf

which coincides (up to a scaling factor) with the periodogram.

@ The periodogram can be interpreted as matched filter in white
noise.
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Capon'smethod
Principle (Capon)

For every frequency f, design a filter, tuned to f, which eliminates all
other spectral components contained in the signal, and then compute

output power:
x(n) Y- YhiZo wm(F)a(n —m) P(f)

w(f) |

Problem formulation
M—1

w(f)

m=0

with w(f) = [wo(f) -~ wy-1(f)]".

min £ {\y(n)ﬁ} subject to Z Wy (f)e” 2™ =1

v
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Non parametric spectral analysis [EEToIT RN 1S (o]
P P! 5

Capon’s minimization problem

Since &£ {|y(n)|2} = w(f)Rw(f) with

T‘:mc(o) 7':10:10(_1) .. T:mc(_M + 1)
R = sz:(l) T;px:(O) '. '. : Tzz(_].w + 2)
Tzz(M = 1) Txx(M —-2) - Tzz.(o)

one must solve

m(lfI;mH(f)Rw(f) subject to w(fle(f) =1

where e(f) = [1 €2/ ---ei%(M_l)f}T.
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\IHIETET S oIV EIWSE  Capon’s method

Capons's solution (theoretical)
For any vector w(f) such that w! (f)e(f) = 1, one has
|2

L= [wf(De(f)[* = |w! ()RR e(f)

< [w™(f)Rw(f)] [e" (/)R e(f)]

with equality if and only if R1/2'w(f) and R_l/Qe(f) are co-linear. The
(minimal) output power becomes

‘ 2

1

Peapon(f) = W-
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2z gialed
Implementation Capon

@ In practice, implementation is based on an array processing model.
More precisely, for every f, we let

xz(n+1)

x(n) = = A(f)e™ e(f) + n(n).

x(n+M—1)

The objective is to estimate A(f), which corresponds to the
amplitude of the signal component at frequency f.

@ One minimizes w” (f)Rw(f) under the constraint that
w (fle(f) = 1 with

1 N-M
 _ H
R=—71 ;::O x(n)x (n).
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\IHIETET S oIV EIWSE  Capon’s method

Implementation Capon

@ w(f) is given by L,
Rle(n)
" (NR e(f)

@ For each snapshot, we have wf (f)x(n) ~ A(f)e™®™/ and A(f) is
estimated by a coherent summation of the outputs w!(f)x(n), i.e.,

w(f) =

N—-—M
A = iy 2 @ Delme ™ <l (e

with 7(f) = y—7771 M+1 Zn 0 w( ye~i2mn s,
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\IHIETET S oIV EIWSE  Capon’s method

Implementation Capon

@ In order to improve estimation (in particular that of R), one might
consider the snapshot

xp(n) = [z*(n+ M —1) z*(n+M—-2) --- x*(n)]T
whose correlation matrix is R. The latter can therefore be estimated
as

1 N—-M
r H H
R= w3+ 7;) [z(n)z" (n) + b (n)z (n)] -

@ Capon's method offers an improved resolution compared to the
periodogram, at least for sufficiently large M.
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PETE TR RENEIVEEI  Capon’s method

Comparison Capon-Periodogram Comparison Capon-Periodogram
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Non parametric spectral analysis BWAVRI=S)

Amplitude and phase estimation (APES)

Principle

Same approach as Capon: for every f, one looks for a filter w(f) which
lets e(f) pass and such that the output is as close as possible to fe?2™/.
The value of 5 provides the signal amplitude at frequency f.

Problem formulation

Let z(n) = [z(n) z(n+1) -+ z(n+M— 1)]T. One needs to solve
i 1 RS H i2rnf 2 H
S e O R R RO
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Non parametric spectral analysis BWAVRI=S)

Minimization with respect to 3
@ Observe that

1 2

N—-—M .
= T X [ (st — g
n=0

= w (f)Rw(f) — pr (fHw(f) - 8w (f)r(f) + |6
= 8= w ()r()* +wf () (B- (£ () w(f).

Jf

@ The solution for 3 is 3 = w! (f)r(f) and it remains to solve

minaw”!(f) (R~ r(f)r' (1)) w(f) subject to w'(fle() = 1.
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Non parametric spectral analysis APES

APES filter
The weight vector w(f) is hence given by

w(f) =

APES amplitude

After some straightforward calculations, one finally gets

P
) e ()R 'r(f) §

(1=rH(NBr() e (R e(f) + e (R (/)

Observation

APES has a lower resolution than Capon but provides more accurate
estimates of the amplitude of complex exponentials.

v
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REINEIRIEL S E@ TGN LB ARMA models: definition

Modeling

The signal is modeled as the output of a linear filter with rational
transfer function, whose input is a white noise:

B(z Zq: bpz—k W
H(Z) = Agzg = ZézgaZZ_k J

In order to guarantee a stable filter, all zeroes of A(z) are assumed to lie
strictly inside the unit circle.
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REVTNEIRTEN SR el NI [IEM  ARMA models: properties

Temporal properties
The signal obeys the filtering equation

z(n) =— Z arx(n — k) + Z bru(n — k).
k=1 k=0

Spectral properties
The PSD is given by

B(z)B*(1/z*)
A(z)A*(1/z*)
i

i

Sy(2) = H(2)H*(1/2")Sy(2) = Su(2)
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CiFL G papEieE
Influence of A(z) and B(z) on the PSD
The PSD depends entirely on A(z) and B(z). If we denote

Az) = H (1 — zkz_l) = H (1 _ pkeiwkz—l)

=~
Il
—_
b
Il
—_

S

B(z) = f[ (1—¢zt) = (1 _ ,,,keiwkz—l)

b
Il
—_
=~
Il
—_

then

@ the poles z;, correspond to “peaks” in the PSD, located at (27r)_1 Wi,
and all the more sharp that pg is close to 1, i.e. the pole is close to
the unit circle.

@ the zeroes (j correspond to “nulls” in the PSD, located at (27r)_1 Vi
and all the more sharp that r; is close to 1.

= an ARMA(p, ¢) model enables one to approximate very accurately
(depending on p and ¢) any PSD.

v
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Rational transfer function models

ARMA(p, q) PSD example

PSD (dB)

ARMA(6,2), AR(6) and MA(2) PSD
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REVTNEIRTEN SR el NI [IEM  ARMA models: properties

Relation between models

Every ARMA(p, ¢) model can be approximated by an AR(cc) or MA(o0)
model. For example,

B(z) 1 ) = B(O(s
10 = 5 © AL = BECE

which implies that the ¢,, are given by

1 n=>0
Cn = 4§ — Zz:l bpCn—k +an 1<n<p
— > bkCn—k n>p

O. Besson (U. Toulouse-ISAE) Introduction to Spectral Analysis
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REVINEIRTEN SR el W [ Yule-Walker equations

Remark

The PSD depends only on o2, {a;}_, and {b;}{_,. Therefore, the
correlation function 7,,(m) = F~1 (S.(f)) also depends on these
parameters —> Yule-Walker equations.

The filtering equation is the following

P q
xz(n) =— Z agz(n —k) + Z bru(n — k).
k=1 k=0
Pre-multiplying by z*(n —m) (m > 0) and taking expectation, one obtains

P q
Tee(m) = — Z axrze(m — k) + Z b€ {z*(n —m)u(n —k)}.
k=1 k=0
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REVINEIRTEN SR el W [ Yule-Walker equations

However,

E{z"(n—m)u(n —k)} = Z h;E{u*(n —m — Lu(n — k)}

0=0
[o¢]
=0 hjd(m+€—k)
=0
B a2h};_m k>m
o otherwise
which implies that
T;z(_m) m <0
Tmc(m) =\~ Zzzl akrzm(m - k) + o? Zz:m bkhz_m m e [07 Q]
= 2 he1 Wz (m — k) m>q

Yule-Walker Equations
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REVINEIRTEN SR el W [ Yule-Walker equations

Alternative proof

Taking the inverse z transform of A(2)S,(z) = 0?B(z)H*(1/z*), and
observing that H*(1/2*) = Y 22 hizh = 22:_00 h* 27, it ensues

[an * rpe(n)],, = Z agrez(m — k)
k=0

q
=0 behi_,
k=0

q
=0 bphi_p,-
k=m
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REVINEIRTEN SR el W [ Yule-Walker equations

Yule-Walker equations for an ARMA(p, ¢) model

The coefficients aj, can be obtained as the solution to the following linear
system of equations:

r22(q) rza(q — 1) o Tea(g—p+1) ai ree(q+ 1)

Tex(q+ 1) rez(q) o rea(@—p+2) | [ a2 Tez(q +2)

rea(@+p—1) rza(@g+p—2) --- T2z (q) ap T2z (q + p)
Ra = —7r

The relation between by and r,,(m) is more complicated (non linear).
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VI e
Yule-Walker equations for an AR(p) model

Tee(m) = — Z axryz(m — k) + 026(m).
k=1

The coefficients a; obey a linear system of equations:

7':10:10(0) rmc(_]-) te "”m(—P + ]-) al rmc(l)

Tzz(l) Txx (0) tee T:v:v(_p + 2) a2 _ Tz (2)

P01 re@-2 ) ) \ap)  \ra®)
Ra = —r

The white noise power is simply

P
o2 = Z axTze(—k).
k=0

v
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Rational transfer function models Yule-Walker equations

Remark

@ The recurrence equation ryz(m) = — > 7 _; agrzz(m — k) admits as a
solution

Tyz (M Z Akew”“z Z Akew”“ 2 AT

which is a sum of damped complex exponentials, with frequencies
wg/(2m) and damping factors pi. The closer pj to 1, the longer the
temporal support of 7., (m) and hence the spectral power is
concentrated on a smaller frequency band. This is why AR modeling
allows for high spectral resolution.
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REVINEIRTEN SR el W [ Yule-Walker equations

Yule-Walker equations for a MA(gq) model

The coefficients b, now obey non linear equations

o230 bpbi . m € [0,q]
Toa(m) = 0 h=m Tk m>q

Since the correlation function is of finite duration, no way to perform high
resolution spectral analysis with a MA(g) model.
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Radar signal

Radar signal
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Rational transfer function models

The pitfalls of modeling

PSD (dB)

O. Besson (U. Toulouse-ISAE)

AR(10) power spectral density

On the importance of choosing a good model

MA(20) power spectral density
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Rational transfer function models Relation between AR models and linear prediction
Question

Let 2(n) be an AR(p) process, with parameters 02, aj, - - - ,a,. Which is

the best linear predictor of order p of z(n):

P
- Z agx(n —k
k=1

Linear prediction error (LPE)

One looks for the coefficients ay, that minimize

Rpe=5{|e<n>|2}= {13(0) = 2(m)*}
{ —I-Zakwn— [ +ia2x*(n—k)]}

k=1 k=1m=1

p
= r2:(0) + Z agTez(—k) + Zakrm )+ Z Z a0, Tre(m — k).
k=1
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Rational transfer function models Relation between AR models and linear prediction

Linear prediction error
With r = [rpe(1) 722(2) -+ rm(p)]T and R(k,l) = ryz(k — £), one
has
Pipe = 722(0) + of'r + rfa + o Ra

= (a+ R_lr)H R(a+R'r) +7r,0) —r"R'r

> 7142(0) —rI Ry
with equality iif &« = —R™'r = a: the best linear predictor is the AR
parameter vector! Additionally,

Plpe-min = 722(0) — rA R 1r = T22(0) + rfa = o2

= Solving the Yule-Walker equations is equivalent to minimizing the
linear prediction error.
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Rational transfer function models Relation between AR models and linear prediction

Remark

The best predictor is the one for which the prediction error e(n) is
orthogonal to the data {x(n — k)}}_,. Indeed,

E{le(n)z*(n—k)} =& {Z agx(n — L)z (n — k:)}
=0

p
= arag(k—1€) =0.
£=0

The optimal coefficients aj, make the prediction error e(n) orthogonal (i.e.
uncorrelated) to {x(n —1),--- ,z(n — p}. The innovation e(n) can be
viewed as the part of information in x(n) which is not already contained in

{z(n-1),-- ,z(n — p}.
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Rational transfer function models Estimation of AR(p) parameters

Theory
The parameters ay,--- ,a, are theoretically obtained in an equivalent way
© by solving Yule-Walker equations Ra = —r

© or by minimizing the linear prediction error

{ix )+ >k lakw(n—k)|2}

In practice

In practice the parameters ay,--- ,a, are estimated (in an almost
equivalent way)

© either by solving Yule-Walker equations Ra = —#

© or by minimizing the linear pred2iction error
nix ) 1akw(n—k)|
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Estimation of AR(p) parameters
Yule-Walker method

@ The correlation function is first estimated

N—-m—1
S wmatntm)  m=0p

n=0

1
N—m

P (m) =

@ Then, one solves a linear system of p equations in p unknowns

fxx(o) f:v:v(_l) e f:v:v(_p + 1) dl f:m(l)
Traz(1) T22(0) s Trp(—p+2) Qs Toz(2)
Tz (p - 1) Tra (p - 2) T 7z:v:v(O) dp Pra (p)
whose solution is
a=-R 7
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EciliElEn o A ) FerisEe
Minimization of the linear prediction error

@ One seeks to minimize || X a + h|/? with

z(p-1) z(p-2) - z(0) z(p)
z(p) z(p—1) - z(1) z(p+1)
. ) . _ . - .
#(N=2) «(N—=3) -+ a(N—p—1) 2(N = 1)

@ Since
|Xa+h|?=(Xa+h)" (Xa+h)
= |a+ (x7x)"! XHh]H (X7 X) [a+ (X7X) " X7h]
+hfh—hP X (X7X)7 xR
the solution is given by @ = — (X*X) ™! X!,
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Rational transfer function models Estimation of AR(p) parameters

Remarks
o X"X ~Rand X"h ~ .
@ In general, one avoids computing (XHX)_1 XHh: rather a

decomposition (typically QR) of X is used to solve efficiently the
linear least-squares problem min, || X a + k.

@ The previous algorithm uses only the available data making no
assumption about the signal outside the observation interval. One
could add rows to X assuming that z(n) = 0 for n ¢ [0, N — 1].

@ Fast, order recursive (which compute all predictors of order k,
k=1,---,p) algorithms are available. They give access to the power
of the linear prediction error for all predictors of order £ < p and can
be useful in selecting the best model order.
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Rational transfer function models Estimation of AR(p) parameters

Levinson algorithm

Inputs: 7,.(m), m=0,--- ,p
al] =~ 220, P[] = (1= o [1]*) 722 (0)
fork=1,--- ,pdo
Taa (k)48 ap 1 [Qroa(k—C
alh] = — =T e

aipll] = a0 + alklaj_(k—¢] £=1,--- k-1
Pupi[k] = (1= ax[K]I”) Pepilf = 1]
end for

Outputs: a;, = —R;lrk et Popi[k] pour k =1,--- ,p ol
Ri(6,n) = 14e(0 — 1), 7p(£) = 122(£), Lmn=1,--- k.
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Rational transfer function models Estimation of AR(p) parameters

Question
Why using only p Yule-Walker equations while
Tox(M) = — > oy GkTzz(m — k), form=1,--- ,007?

Modifed Yule-Walker

One solves in the least-squares sense Ra ~ —7 with

() Foz(—1) coo Pex(—p+1) Pow(1)
R= Pox (p -1) Pox (p -2) - 72%:8(0) P = fww(p)
Poa(M—1) foa(M—2) - Foa(M—p) Fau(M)

The solution is obtained as

2 2 . ~\—1 .
Rati|| = (R'R) R

a = arg min
a
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Rational transfer function models Estimation of AR(p) parameters

Spectral analysis based on ay,

Once aj, k=1,---,p and 2 are obtained, spectral information is made
available:

© either by estimating the power spectral density
. &2

Su(f) = .
T i ek P

and observing the peaks of the PSD.
@ or by estimating the poles of the model
~ p p A
A(z) =1+ Z apz k= H (1 — ﬁke"“’“z_l)
k=1 k=1

and retaining those which are closest to the unit circle.
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FEVILEIRIELE ORI SINNNILEEN  AR(p) of a noisy exponential signal

Question

Let 2(n) = Ae'®™fo+%)  (n) where ¢ is uniformly distributed on
[0,27[ and w(n) is a white noise with variance o2, What happens if an
AR(p) model is fitted to such a signal?

Answer

In the case where r,,(m) is known, the PSD associated with an AR(p)
model of z(n) achieves its maximum at f = fj.

Proof
One has 74, (m) = Pe??™™f0 4 52 §(m) which implies that
R = Pss + anI, r = Ps with s = [eigﬂfo ei%pfo]T.
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AR(p) of a noisy exponential signal
Proof (cont'd)
It can be deduced that

P o[, P
a=—-————5 o0’=o0 —
o2 +pP v o2 + pP
Therefore, the PSD can be written as
2
g
Sz(f) = - P)
1= e (s
where e(f) = [e™/ ... eiQﬂpf}T and its maximum is located at

f = fo. However

Sz(fo) = o, [1+(p+1)%] [1+p0£2]

w
P? P
~ 1)— for — 1
p(p + )0120 or oz >

_4
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FEVILEIRIELE ORI SINNNILEEN  AR(p) of a noisy exponential signal

Comments

@ Even if a complex exponential is not an AR(p) signal, an AR(p)
model enables one to recover the frequency of the exponential —
one can use an AR(p) model to estimate the frequency of a complex
exponential signal (and, by extension, the frequencies of a sum of
complex exponentials).

@ The amplitude of the AR(p) peak is not commensurate with the
actual power of the exponential signal (contrary to Fourier analysis).
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sfer function models

AR(10) poles for 3 noisy exponentials
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R (S R
Influence of NV on AR(p) modeling
AR(12) + Periodogram AR(12) + Periodogram
R ] i e

PSD (dB)
PSD (dB)

2 02 03 0% 04 04 08 005 01 05 02 _ 0% 03
Frequency Frequency

AR(12) + Periodogram

AR(12) + Periodogram
: Perodogan
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PSD (dB)
PSD (dB)
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REUINEIRIENE S @GN B Comparison AR-periodogram

Problem of differences between components amplitudes

AR(12) + Periodogramm

AR(12) + Periodogramm
Periodogram Periodogran|
AR(12) AR(12)

PSD (dB)

A=[0510.25]

A1 11]

03 04 045 05 o o0 o1 o5 02

o 005 o1 o5 02 03 035 04 045 05

025 038
Frequency
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R (S R
Properties of AR(p) modeling

@ Better resolution than periodogram, at least for small N and high

SNR
1.03
0far ~
pl(p+1) SNR*
0.86
0fPER = T

= interest only for short samples and large signal to noise ratio.

@ Contrary to the periodogram, for complex sine waves, the amplitude
of the AR peaks is not proportional to the power of the exponentials.

@ Contrary to the periodogram, no problem with strong signals masking
weak signals.
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Rational transfer function models

Model order selection

PSD (dB)

PSD (dB)

O. Besson (U. Toulouse-ISAE)

AR(2) PSD for an AR(4) signal

Model order

AR(4) PSD for an AR(4) signal

PSD (dB)

e
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2 o2 03 0% 04
Frequency
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05 0z 0% 03
Frequency

AR(20) PSD for an AR(4) signal
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e
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Frequency
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Rational transfer function models BV R

Model order selection

AR(p) poles

+ 0 > o

» a too small order results in smoothing the spectrum.

» a too large order gives rise to spurious peaks.

Remark: in case of an AR(4) model, R of size 20 x 20 is not inversible
and R is badly conditioned.
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Rational transfer function models BV R

Criteria for model order selection

Based on the power of the linear prediction error at order k:

Akaike Information Criterion
AIC (k) = N In(Pepi [k]) + 2k
Final Prediction Error

 N+k+1

Pepi[k]
Minimum Description Length

MDL(k) = N In(Pap[K]) + pIn(N)
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GEVWILEIRIENE ORI SINNNILEEN  ARMA(p, g) parameters estimation

Principle
One usually proceeds in 2 steps:

Q@ Estimation of parameters ay,--- ,a, using Yule-Walker equations

P
rzg(m) = — Zakrm(m —k) m>gq.
k=1

@ Estimation of parameters by, --- ,by:
the signal z(n) is filtered by A(z) to yield y(n) = S-0_, axz(n — k)
which is theoretically MA(q).
an AR(L) (with L “large") is fitted to y(n), with coefficients

1, ,cr, and one uses the equivalence between MA(q) and AR(0)
models:

(Zq: bkz_k> (i cmzm> =1<c¢,=— zq: bCrm—1 + 6(m)
k=0 m=0 k=1
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GEVWILEIRIENE ORI SINNNILEEN  ARMA(p, g) parameters estimation

Modified Yule-Walker
The linear system of p equations in p unknowns Ra = —# is solved, where
fzz(Q) 72:m(q_l) 72:t:t(q_p‘i‘l)
72:t:t((_l‘+‘17_1) fxx(Q+p_2) fzz((l)
72:t:v(q + 1)
. Fex(q + 2)
T — )
Fee(q + D)
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GEVWILEIRIENE ORI SINNNILEEN  ARMA(p, g) parameters estimation

Least-squares Yule-Walker

One solves, in the least-squares sense, a linear system of M > p
Yule-Walker equations with p unknowns

2 12 a8 2N =1 4 H
Rati|| = (R'R) R

a = arg min
a

where

R— 7ﬁ:73:73((1"’1) 7ﬁ:73:73((]) 7ﬁ:73:73((]_17""2)
f:mc(M_Fq_l) fxx(M+q_2) fmc(M—kq—p—kl)
Pea(q + 1)

X Fra(q +2)

= i
oz (M + q)

v
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sfer function models
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GEVWILEIRIENE ORI SINNNILEEN  ARMA(p, g) parameters estimation

Summary

@ An ARMA(p, q) enables one to approximate very accurately the PSD
of a large class of signals. The AR part deals with peaks in the
spectrum while the MA part models the valleys.

@ The model parameters are usually estimated solving the Yule-Walker
equations (which involve the correlation function). These equations
are linear with respect to the AR parameters, non linear with respect
to the MA parameters.

@ Information about the spectral content can be retrieved from the
(rational) ARMA PSD or from examining the poles and zeroes of the
model.

@ For an AR(p) model, solving Yule-Walker equations is equivalent to
minimizing the linear prediction error.

@ AR and ARMA models are suitable for frequency estimation of
complex exponential signals, with ARMA offering an enhanced
resolution.

~
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Damped exponential signals Damped exponential signals

Damped exponential signals

We are now interested in (possibly damped) exponential signals embedded
in noise:

P
z(n) = s(n) + w(n) = Z Apei®rel—anti2nfi)n | w(n)
k=1

Relation to AR(p) models

Although s(n) is not an AR(p) process, it obeys linear prediction
equations, similar to those of an AR(p) signal.

Methods

The main approach consists in solving the linear prediction equations
@ either in a least-squares sense (Prony).

@ or using the fact that s(n), a linear combination of p modes, lies
within a subspace of size p (Tufts-Kumaresan).

4
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[DET I MSGINIIEIRST-GEI  Prony’s method

Original problem

2p—1

n—po oOf the following signal

Assume we observe 2p samples {z(n)}
P p
z(n) = ZAkei‘bke(_akH?ﬂfk)n — Z hizg .
k=1 k=1

From these 2p samples can we recover the 4p unknown parameters Ay,
d)kv (6773 and fkv k= 1’ ’p?

Answer
Let A(z) = [[5_;(1 — 2x271) =1+ 3>7_, axz=*. One has

P p P
Z arx(n — k) = Z ay Z hgz?_k
k=0 k=0 /=1
P P
:Zhgz? Zakzek =0
(=il k=0

v

O. Besson (U. Toulouse-ISAE) Introduction to Spectral Analysis 72 /119



[DET I MSGINIIEIRST-GEI  Prony’s method

Obtaining 2,
ay, is obtained by solving

z(p—1) z(p-—2)
z(p) z(p—1)

m(2p.— 2) m(2p.— 3)

which vyields zj as the roots of

x(0) aj
x(1) as
z(p—1) ap

O. Besson (U. Toulouse-ISAE)

Introduction to Spectral Analysis

73 / 119




[DET I MSGINIIEIRST-GEI  Prony’s method

Obtaining hy,
Once the z;'s are available, the following Vandermonde system is solved
1 | R 1 hi z(0)
21 29 .. .. Zp h2 x(]_)
z{’_l zg_l TR hy x(p—1)

= unique solution to this problem with 4p equations and 4p unknowns.

v
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Damped exponential signals Prony’'s method

Problem

In general N > p noisy samples are available:

p
z(n) = Z Akeiqbke(—ak—i-i%fk)n + w(n); n=0---,N—1
k=1

from which one tries to estimate hy = Age'® and zj, = e~ +i127fk,

Maximum likelihood

Under the assumption of white Gaussian noise w(n), the maximum
likelihood estimator amounts to minimizing the approximation error:

N-1 D 2
h,z = argmin Z z(n) — Z hizp;
# =0 k=1

= non linear least-squares problem with p complex-valued unknowns zj.
v
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Damped exponential signals Prony’'s method

Least-squares Prony

Instead of minimizing the approximation error, one minimizes the power of
the linear prediction error e(n) = z(n) + >_¥_; axz(n — k), which is
equivalent to solving, in a least-squares sense, the linear system of

equations
Xa~—h
z(p—-1) ax(p-2) - z(0) z(p)
z(p) z(p—1) - (1) z(p+1)
. . . . . e .
2(N—=2) a(N—-3) --- a(N—p—1) 2(N —1)

whose solution is given by

a = argmin | Xa + h|®.
a

This is equivalent to using an AR(p) model for x(n).

v
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Prony's method
Estimation of z;

Estimation of Ay
The Vandermonde system is solved in a least-squares sense

1 1 hy x(0)
21 22 2p hg x(l)
;3{\’—1 gé\’—l AIJ)V—I ﬁp (N —1)

The solution can be written as
A ~H-\N"1.§g
h = (Z Z) 7"z
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[DET I MSGINIIEIRST-GEI  Prony’s method

Prony poles

Original signal

o 5 o 15 20 0 85 40 45 50

25
Time

Approximated signal (Prony)

Prony modelling errors

o 5 10 15 20 25 80 3 40 45 50
Time
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[DET I MSGINIIEIRST-GEI  Prony’s method

Prony's spectrum

Prony's spectrum is defined from the noiseless signal, in 2 different ways:

@ One assumes that

3 SP_hE n>0 oz o Py
x(n) = - — X(z) = —_—
(n) {0 T XE =

© One assumes that

P hpn > . P Py (1= |25
PO O L LN T N L Gl i
e he(ZF) n <0 o (=221 (1—2;2)

~ N 2
The "PSD" is then obtained as S(f) = ‘X(eﬁ“f)‘ .
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Damped exponential si

AR-Prony PSD for damped exponentials
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[DET I MSGINIIEIRST-GEI  Prony’s method

Prony correlation

@ We assume that the correlation function can be written as a sum of p
complex exponentials plus the correlation due to white noise:

P
ree(m) =E{x*(n)x(n +m)} = Z P2 + 025(m).
k=1

@ The correlation function hence verifies the following linear prediction
equations

P

p
Tez(m) = — Z agryz(m — k:)+02 Z ard(m — k)

k=1 k=1

which suggests estimating coefficients a; by minimization of the
linear prediction error based on r,,(m).
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Damped exponential signals

Original signal

Prony’s method

A
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. h
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Prony spectrum
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ET I RSGINEIRSTGEIS  Tufts-Kumaresan’s method

Reminder
For the signal z(n) = Y7 _, hxz+w(n), Prony’s method amounts to
solving, in a least-squares sense, the linear system of p linear prediction

equations:

X a=—- h .
N—plp p|1 N—pl1

Question

What happens, in the noiseless case where z(n) = Y ?_; hiz]!, if one
uses a linear prediction filter of order L > p, that is if one tries to solve
Xa = —h with

z(L-1) z(L-2) --- z(0) z(L)
z(L) z(L—1) --- z(1) z(L+1)
. . . . . .
2(N=2) o(N—-3) - a(N—L-1) 2(N —1)

and L > p?

v
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ET I RSGINEIRSTGEIS  Tufts-Kumaresan’s method

Linear algebra reminders
Let A € C™*"™ be a complex matrix of size m x n.

@ The kernel (null space) and the range space of A are defined as

N{A} ={x € C"/Az = 0}
R{A} = {bcC"/Az - b)

@ The rank of A is defined as
rang (A) = dim (R {A}) = dim (R {AH})
@ The four subspaces associated with A satisfy

N{AY =R{AT};  R{A} =N {a"}
and, consequently,

C'=N{A}aR{A"}
C"=R{A}aN {A"}
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Damped exponential signals

The subspaces associated with A et AY

O. Besson (U. Toulouse-ISAE)
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ET I RSGINEIRSTGEIS  Tufts-Kumaresan’s method

o The pseudo-inverse of A, A% (a matrix of size n x m) is defined as:

weR{AH}iA#Aw:m
$€N{AH}:>A#$:O

Therefore
n{at}—n{afy  r{at}-r{a"}

@ In the following cases, a direct expression can be obtained

At {(AHA)_IAH if rank(A)

n
AT (AAT)T if rank(A) = m

o A7 appears naturally when it comes to solving Az = b.
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Damped exponential signals

llustration of the pseudo-inverse A"

cr cm

N{A} =R {A%}
=R {A"}

R{A} =N {A*}
=N {Af}
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ET I RSGINEIRSTGEIS  Tufts-Kumaresan’s method

Singular Value Decomposition (SVD)

A can be decomposed as

A=USVT =" gruvff
k=1

2]_ 0 VH rln
= [U; U] |rIr [ 1]
“EP‘ mlm—]r 0 O V%I n—rln
=U,x, v

where U(m x m) and V' (n x n) are the unitary matrices of singular
vectors, ¥ = diag {01,092, -+ ,0,,0,--- ,0} is the quasi-diagonal matrix
of singular values (01 > 03 > - -+ > 0,) where r stands for the rank of A.

v
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ET I RSGINEIRSTGEIS  Tufts-Kumaresan’s method

SVD, subspaces and pseudo-inverse
@ The SVD gives access to the 4 subspaces associated with A :

NA{A} =R{V2}
N{A} =R{AT} =R{V}}
R{A} =R{U;}
R{A} =N {AT) = R{U,}

@ The pseudo-inverse can be written simply as

T
1
A* =VEHUT =Y —wuf =V 137U
Of
k=1
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ET I RSGINEIRSTGEIS  Tufts-Kumaresan’s method

The 4 subspaces associated with A € C™*"
H
Let A= [U; U, [21 O] [Vl

c cm

R{A} =R {U)
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ET I RSGINEIRSTGEIS  Tufts-Kumaresan’s method

Linear prediction equations (noiseless case)

Let 2(n) = >} _; hxz) and assume that we wish to solve X a = —h with
z(L-1) z(L-2) --- z(0) z(L)
z(L) z(L—1) --- z(1) z(L+1)
. . . . . e .
e(N-2) a(N-3) - a(N—L-1) 2(N - 1)
Remarks

@ the matrix X has rank p: every column after the p-th one is a linear
combination of the first p columns. N {X} is of size L — p.
@ h € R{X} = 3 at least one solution.

= there exists an infinite number of solutions to the system.
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ET I RSGINEIRSTGEIS  Tufts-Kumaresan’s method

The solutions
The set of all possible solutions can be written in 2 ways :
Q If Ay(2) =3 _yarzF =TIE_, (1 — z,z™1), then all solutions can
be written as

A(z) = 4,(2) B(2)

where B(z) is an arbitrary polynomial of degree L — p.

Q Let X = U X, V¥ be the SVD of X. Sinceh € R{X} =R{U,},
one has h = U U% h and hence amy = — V137U h = - X#h
verifies

Xam, = — [U:Z V] [ViZ'UYR] = U Uh = —h.

The set of solutions is given by

-V i 'UTR +V,eB; pect

amn is the minimum norm solution. It ensures that all zeroes of
B(z) are strictly inside the unit circle.
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Solutions of Xa=-h
90

O arbitrary B(z)
*  arbitrary B
+  min-norm

270
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Linear prediction equations (noisy case)
If now z(n) = Y7 _, hxz} + w(n) then

o X is full-rank

o h¢ R{X}
= there is no solution to Xa = —h.

Solution
One can
O either solve in the least-squares sense, i.e., min, | Xa + k| (Prony).

@ or “recover’ the noiseless case, viz that of a rank-deficient matrix X
(Tufts-Kumaresan).
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Tufts-Kumaresan

Principle
Let
¥ 0] [vH] &
X =[U; U, [ o 22] [V%,] = opupvfl = U1 SV HU5VY
k=1

where U, € CN=LXP and V; € CP*E. Tufts and Kumaresan have
proposed not to solve Xa = —h but

X,a=—h

where X, = U121V{I is the best rank-p approximant of X.
Tufts-Kumaresan's method performs filtering of the least singular values
and hence noise-cleaning of z(n).
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Solution

Since h ¢ R {X} there is no solution to X,a = —h. One can solve in a
least-squares sense, i.e.,
min || X pa + h|?
a

The solution is of the form a = V11 + Voas. However,

NA{X,} =R{V3} and hence Xpa = X, Va1 =U Z;;.
Consequently, ay has no influence on || X ,a + h||*>. The minimum norm
solution is thus obtained for ay = 0 and

&) =argmin | U130 + h”2 = —EIIU{{h.
o

Finally

atk = -V157'U{'h = -X7h.

This is also the minimum norm solution to X ,a = ~U,UMh.
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AR(10) poles with/without SVD AR(10) poles with/without SVD

+  TKnoiseless.
% Tufts—Kumaresan|
O Least-squares

+  TKnoiseless
+  Tuts-Kumaresan|
Least-squares
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AR(10) poles with/without SVD AR(10) poles with/without SVD

+  TKnoiseless
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O Least-squares
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ET I RSGINEIRSTGEIS  Tufts-Kumaresan’s method

A word on backward linear prediction
Let z(n) = >_F_; hiz) and let

P
Ab(2) = zp:azz_k = ﬁ (1 — e(a”mﬁf’“)z_l) = H (1 — 2_1*2—1) .
k=0

k=1 k=1 k

It can be shown that x(n) verifies the backward linear prediction equations

P P P
Z apz(n+k) = Z ab Z ho(z5)" R
k=0 k=0 =1
P P
=D he(z)" | D ah (=)
=1 k=0
P P 1\ ~*
= th(zf)n Za’é (z—*>
=1 k=0 ¢
= 0.

v

O. Besson (U. Toulouse-ISAE) Introduction to Spectral Analysis 98 / 119



ET I RSGINEIRSTGEIS  Tufts-Kumaresan’s method

Backward linear prediction

The minimum norm solution of Xa = —h with
z*(1) z*(2) z*(L)
z*(2) z*(3) coo x*(L+1)
X = : : : : Jh =
2*(N—L) 2*(N—L+1) --- a*(N—1)
results in a polynomial A(z) = >-%_, apz~" such that

@ p roots are located at 1/z; (outside the unit circle)

@ L — p roots are strictly inside the unit circle.

—> natural separation between poles due to signal and poles due to noise.

2*(N - L —1)

v
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Poles - Backward linear prediction

Poles - Backward linear prediction 90
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ET I RSGINEIRSTGEIS  Tufts-Kumaresan’s method

Summary

o Estimation of damped complex exponentials is mainly based on
minimizing the linear prediction error, a computationally more
efficient solution than maximum likelihood.

@ The linear prediction error minimization can be conducted in 2 ways:

@ conventional least-squares (Prony) which is equivalent to AR modeling.
@ Tufts-Kumaresan's method which consists in filtering the least
significant singular values so as to come close to the noiseless case.

@ Tufts-Kumaresan's method is very performant but computationally
intensive. Moreover, it needs a good signal to noise ratio and requires
knowledge of the number of exponentials.
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Signal model

Let us consider a sum of complex exponential signals buried in noise:

p
x(n) = Y Awe @™ L w(n)  n=0,- N1
k=1

where ¢y, is uniformly distributed on [0, 27[ and independent of ¢y, w(n) is
assumed to be a white noise with variance 02 = £ {w*(n)w(n)}. One is
interested in estimating f (or equivalently wy = 27 f).
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Correlation function
The correlation function is given by

rez(m) = E{x*(n)x(n +m)}

P P
& Z Age™ k™™ | qy* (n) Z AgePrelmtmee 4 ay(n 4 m)
k=1 =1

P
Z Ppe™k 4 525(m)
k=1

with P, = |Ak|2
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Correlation matrix
Let us define the following matrix

T22(0) Tza(—1) Tzz(—M + 1)
Tre(1) 722(0) Tee(—M + 2)
e : : :
Tee(M — 1) 7u0(M —2) T22(0)
p
= Z Pragall +0°T = A(w)PA(w) 4 0°T
k=1
=R, + oI
where @, = [1 ™k ... ei(M_l)‘”k]T, Aw) = [a1 ay ayl,
w=[|w wy - wp]T and P = diag (P, P2, , Bp).
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Properties of R

@ One has »
R.a = ZPk (akHa) a;
k=1

and hence R {Rs} = R {A(w)}. Consequently, assuming vectors ay,
are linearly independent, it follows that rank (R) = p.

@ The eigenvalue decomposition of R4 can thus be written as

P M
R,=> Nuwwu +0 Y wauy! =UAUY +U,0U]
k=1 k=p+1

where [Us Un] is the orthogonal basis of eigenvectors. Therefore,

[R{R.} =R{U.}; N{R.}=R{U,}|
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Properties of R

@ The eigenvalue decomposition (EVD) of R follows from that of Rj:
R=R,+ %I
=UAUY +U,0UY 1 5°1
=U,AUY + U, 0UY + 02 (U U? +U,UY)
=U, (A +0°1,) U + s*U, U
=UAUY +0%U,U".

® The EVD gives access to 2 subspaces:

R{U:} =R{A(w)}
R{Un} = N{Rs} 1 R{A<w)}
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Subspace methods

Subspace-based methods exploit the fact that the correlation matrix can
be decomposed into a “signal” subspace (corresponding to largest
eigenvalues) which coincides with the subspace spanned by the exponential
signals, and a “noise” subspace orthogonal to the signal subspace.
w can thus be estimated from

@ either U using the fact that U; = A(w)T = ESPRIT.

@ or U, using the fact that R{U,} L R{A(w)}, or equivalently

M
aH(wg) Z arur | =0 Ve e [l,p], Yag, k€ [p+ 1, M]
k=p+1

= MUSIC. )
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Relation with array processing

@ The above result bears much resemblance with array processing since
matrix R above shares the same algebraic properties as the spatial
covariance matrix of p signals impinging on a uniform linear array of
M antennas.

@ This relation is better highlighted using the “pseudo-snapshot”

z(n) = [z(n) z(n+1) - z(n+ M)]T
Ajeifieine b(n)
AgeP2¢inwz b(n+1)
Apeidreinwr b(n + M)

= A(w)s(n) + b(n)
whose covariance matrix is € {x(n)z (n)} = R. Yet, the snapshots
x(n) are not independent here.
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@ MUSIC relies on the orthogonality between the noise (minor)
eigenvectors and the exponential signals, i.e. u; L ay, for
k=p+1--- M and {=1,--- ,p. It is based on the following
pseudo-spectrum

1
(WUU; a(w)

P w) =
Music(w) o

by observing that Pyysic(w¢) = oo for £ =1,---p.

@ In practice R and hence U,, are estimated and one looks for the
locations of the p largest peaks in
1

B w) =
Music(w) aH(w)ﬁnﬁfa(w)
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Remarks

° UnU,I;[ is the projection matrix onto the noise subspace: hence, one
looks for the exponentials whose projection onto the noise subspace
has minimum norm.

@ The pseudo-spectrum can be rewritten as
1

— M N 2
Zkzp—i—l |a‘H (w)uk|

and a® (w);, corresponds to the Fourier transform of 4 = possibly
use FFT for computational gain.

Puusic(w)

@ The pseudo-spectrum can alternatively be rewritten as

Puusic(w) = v

~ 2
M — Zz:1 |aH(w)uk| )
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Root-MUSIC

@ An alternative solution consists in finding the roots of the polynomial
P(z) = aT(z"HU,U, a(z)
. M—-11T
witha(z)=[1 =z --- M7,
@ This polynomial of degree 2M — 1 verifies
* * T/ $\NTT T H * *
P*(1/2%) = [a (MU a(1)29)] = P(2)

= P(z) has (M — 1) roots 2 inside the unit circle and (M — 1)
roots 1/z}. Moreover, if U,, is replaced by U, then P(e“*) = 0.

@ In practice, w is estimated by picking the p roots of P(z) closest (and
inside) the unit circle.
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Variations

@ When M = p+ 1 there is only one eigenvector in the noise subspace
and one may look for the roots of H(z) = a’(271)u,1 which are
closest to the unit circle: this is referred to as Pisarenko’s method.

@ The pseudo-spectrum can be modified to
1

M )
2 k=pt1 Wk | (W)

P(w) =

where w41 < wpqo < -+ < wyy in order to give more weight to the
smallest eigenvectors (since we are pretty sure they belong to the
noise subspace). For instance, one may select wy = )\_

@ Instead of using all M — p noise eigenvectors, another method
consists in finding the vector d with minimum norm (and such that
dy = 1) which belongs to the noise subspace: this is referred to as
min-norm method, which is closely related to Tufts-Kumaresan's
method presented above.
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Root-MUSIC
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ESPRIT

@ ESPRIT uses the fact that the subspaces spanned U and A(w) are
identical, viz. Us = A(w)T.

@ One can write

1 1 1

w1 elw2 el e er

i(M.—l)wp

>
VR
s
N———

lI>
N

B

[\

N———
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@ Observe that

eZ(IJ1

w2

Ay =A1P=4A

@ Now, if we partition U, as

0= ()= 0)

eiwp

is there a similar relation between U and U s, knowing that

Us;=A(w)T7?
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@ One has
Uyp=AT=A9T=U, T '®T =U,, V.

The matrices ® and W share the same eigenvalues, namely ¢/ |

@ In practice, there is no matrix ¥ which satisfies U'Sg = f]sllIl. W is
then estimated using a least-squares approach as

\Il:argmqi’nHljsg sl\IJH ( 81U$1>_ lj IAJ

from which the eigenvalues ¢k of ¥ are obtained.

O. Besson (U. Toulouse-ISAE) Introduction to Spectral Analysis 116 / 119



Complex exponential signals
ESPRIT
90
o True 1
+ ESPRIT :

180

270
N=64, SNR=[10 10]
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Summary
@ Subspace-based methods enable one to estimate the frequencies of
noisy exponential signals with high resolution.

@ They rely on the partitioning between the subspace spanned by the
exponentials and the orthogonal subspace, both of which being
obtained from EVD of the correlation matrix.

@ Drawbacks :
© high computational complexity (EVD).
@ require knowledge of the number of exponential signals.
@ require a high signal to noise ratio.
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