Introduction to Spectral Analysis

Olivier Besson

Some facts

- An ubiquitous problem, in many signal processing applications, is to recover some useful information from data in the time domain $\{x(n)\}_{n=0}^{N-1}$.
- Although time and frequency domains are dual (one goes between them using a Fourier transform), information is often more intuitively embedded in the spectral domain ⇒ need for spectral analysis tools.
- In some cases (e.g., radar), the information itself consists of the frequencies of exponential signals.
- Spectral analysis can also serve as a pre-processing step to recognition and classification of signals, compression, filtering and detection.

Laser anemometry

The received signal can be written as

$$x(t) = A \exp\left\{-2\alpha^2 f_d^2 t^2\right\} \cos(2\pi f_d t) + n(t)$$

with $f_d = v/I$ the information of most interest.

3 / 119

Doppler effect

Assume a signal $s(t)=e^{i\omega_c t}$ is transmitted through an antenna and back-scattered by a moving target with radial velocity v. The received signal is given by

$$r(t) = As\left(t - 2\tau(t)\right) = As\left(t - 2\frac{d_0 - vt}{c}\right) = Ae^{i\omega_c t}e^{-i\omega_c \frac{2d_0}{c}}e^{i\frac{2\omega_c v}{c}t}.$$

After demodulation, one obtains

$$x(t) = Ae^{i\phi}e^{i2\pi\frac{2v}{\lambda}t} + n(t)$$

and hence the target velocity is directly related to the frequency of the useful signal.

Problem statement

From the observation of x(n), $n=0,\cdots,N-1$, retrieve pertinent information about its spectral content.

Parametric and non-parametric approaches

Outline

- Introduction
- 2 Non parametric spectral analysis
- Rational transfer function models
- Damped exponential signals
- 5 Complex exponential signals
- 6 References

Power Spectral Density

Let x(n) denote a 2nd-order ergodic and stationary process, with correlation function

$$r_{xx}(m) = \mathcal{E} \{x^*(n)x(n+m)\} = r_{xx}^*(-m).$$

The Power Spectral Density (PSD) can be defined in 2 different ways:

$$S_x(f) = \sum_{m=-\infty}^{\infty} r_{xx}(m)e^{-i2\pi mf}$$

$$= \lim_{N \to \infty} \mathcal{E} \left\{ \frac{1}{N} \left| \sum_{n=0}^{N-1} x(n)e^{-i2\pi nf} \right|^2 \right\}.$$

Principle

From the theoretical PSD to its estimation

$$S_x(f) = \lim_{N \to \infty} \mathcal{E} \left\{ \frac{1}{N} \left| \sum_{n=0}^{N-1} x(n) e^{-i2\pi n f} \right|^2 \right\}$$

$$\downarrow$$

$$\hat{S}_p(f) = \frac{1}{N} \left| \sum_{n=0}^{N-1} x(n) e^{-i2\pi n f} \right|^2.$$

Remark

The periodogram does not rely on any a priori information about the signal (hence it is robust) and can be computed efficiently using a fast Fourier transform (FFT).

Performance

Mean value

$$\mathcal{E}\left\{\hat{S}_p(f)\right\} = \int_{-1/2}^{1/2} W_B(f-u) S_x(u) du$$

$$\xrightarrow[N \to \infty]{} S_x(f)$$

with
$$W_B(f) = \frac{1}{N} \left[\frac{\sin(\pi N f)}{\sin(\pi f)} \right]^2$$
.

- ullet Smearing of the main lobe $\propto rac{0.9}{N}$
- Sidelobe levels (-13dB).

Variance

$$\operatorname{var}\left\{\hat{S}_p(f)\right\} \simeq S_x(f)^2 \overset{\rightarrow}{\underset{N \to \infty}{\longrightarrow}} 0.$$

Variations

- In order to decrease variance, one can compute several periodograms on shorter time intervals, and then average them: variance is decreased but resolution is poorer.
- Windows can be used, i.e.,

$$\hat{S}_{p-w}(f) = \frac{1}{N} \left| \sum_{n=0}^{N-1} w_n x(n) e^{-i2\pi n f} \right|^2$$

where w_n is selected, e.g., to have lower sidelobe levels (at the price of a larger mainlobe).

Periodogram-Correlogram

The periodogram can be rewritten as

$$\hat{S}_c(f) = \sum_{m=-(N-1)}^{N-1} \hat{r}_{xx}(m)e^{-i2\pi mf}$$

where $\hat{r}_{xx}(m) = N^{-1} \sum_{n=0}^{N-1-m} x^*(n) x(n+m)$ is a biased estimate of the correlation function. The variance of $\hat{S}_p(f)$ is due to a poor estimate $\hat{r}_{xx}(m)$ for large m.

Remark

If the unbiased estimate $\hat{r}_{xx}(m) = (N-m)^{-1} \sum_{n=0}^{N-1-m} x^*(n) x(n+m)$ of $r_{xx}(m)$ is used in $\hat{S}_c(f)$, this may result in a non positive estimated PSD.

◆ロト ◆部ト ◆草ト ◆草ト 草 りなぐ

Principle

$$S_x(f) = \sum_{m=-\infty}^{\infty} r_{xx}(m) e^{-i2\pi mf}$$

$$\downarrow$$

$$\hat{S}_{BT}(f) = \sum_{m=-M}^{M} w_m \hat{r}_{xx}(m) e^{-i2\pi mf}$$

where $\hat{r}_{xx}(m)$ is the biased estimate of the correlation function.

Observations

One has

$$\hat{S}_{BT}(f) = \int_{-1/2}^{1/2} W(f-u)\hat{S}_p(u) du.$$

Use of a window w_m , $m=-M,\cdots,M$ enables one to achieve a good tradeoff between bias and variance: decreasing M lowers variance (but increases bias and penalizes resolution).

Usual windows and their characteristics

For each window w(m) defined on [-M,M], the table below gives the $-3 \mathrm{dB}$ width of the mainlobe (in fraction of N=2M) and the level of the first sidelobe compared to that of the main lobe.

Window	Characteristics	amp. sidelobe amp. main lobe	ΔB_{3dB}
Rectangular	w(m) = 1	-13dB	0.89
Bartlett	$w(m) = 1 - \frac{ m }{M}$	-26dB	1.27
Hanning	$w(m) = 0.5 + 0.5\cos(\pi \frac{m}{M})$	-31.5dB	1.41
Hamming	$w(m) = 0.54 + 0.46\cos(\pi \frac{m}{M})$	-42dB	1.31
Blackman	$w(m) = 0.42 + 0.5\cos(2\pi \frac{m}{M}) + 0.08\cos(4\pi \frac{m}{M})$	-58dB	1.66

Performances

Mean value

$$\mathcal{E}\left\{\hat{S}_{BT}(f)\right\} = \int_{-1/2}^{1/2} W(f-u)\mathcal{E}\left\{\hat{S}_{p}(u)\right\} du$$
$$\simeq \int_{-1/2}^{1/2} W(f-u)S_{x}(u) du.$$

Variance

The variance of the Blackman-Tuckey is given by

$$\operatorname{var}\left\{\hat{S}_{BT}(f)
ight\}\simeqrac{S_{x}(f)^{2}}{N}\sum_{m=-M}^{M}w_{m}^{2}.$$

Properties of Fourier-based methods

- Robust methods which require very few assumptions about the signal, hence applicable to a very large class of signals.
- Good performance, even at low signal to noise ratio.
- Simple and computationally effective algorithms (FFT).
- Estimated PSD proportional to actual signal power.
- Resolution is about $1/N \Longrightarrow$ problem to resolve two closely spaced spectral lines with short samples.
- Problem to recover weak signals in the presence of strong signals.

Interpretation of the periodogram

- ullet The periodogram can be interpreted as an estimate of the power at the output of a filter tuned to f.
- Assume that, for a given f, we wish to design a filter $\boldsymbol{w}(f) = \begin{bmatrix} w_0(f) & \cdots & w_{N-1}(f) \end{bmatrix}^T$ whose output

$$X(f) = \mathbf{w}^{H}(f)\mathbf{x} = \sum_{n=0}^{N-1} w_{n}^{*}(f)x(n)$$

provides information about the signal power at frequency f.

• If the input signal is $x(n)=Ae^{i2\pi nf}+n(n)$, where n(n) denotes white noise with power σ^2 , the output is given by

$$X(f) = A\mathbf{w}^{H}(f)\mathbf{e}(f) + \mathbf{w}^{H}(f)\mathbf{n}$$

with
$$e(f) = \begin{bmatrix} 1 & e^{i2\pi f} & \cdots e^{i2\pi(N-1)f} \end{bmatrix}^T$$
.

• One looks for a filter that lets e(f) pass undistorted, i.e. $w^H(f)e(f)=1$, while maximizing the output signal to noise ratio:

$$SNR = \frac{|A|^2 \left| \boldsymbol{w}^H(f) \boldsymbol{e}(f) \right|^2}{\mathcal{E} \left\{ \left| \boldsymbol{w}^H(f) \boldsymbol{n} \right|^2 \right\}} = \frac{|A|^2 \left| \boldsymbol{w}^H(f) \boldsymbol{e}(f) \right|^2}{\sigma^2 \left| \boldsymbol{w}^H(f) \boldsymbol{w}(f) \right|}$$
$$\leq N \frac{|A|^2}{\sigma^2}$$

with equality iif $w(f) \propto e(f)$. Since $w^H(f)e(f) = 1$ one finally gets $w(f) = N^{-1}e(f)$. The output power is thus

$$|X(f)|^2 = \frac{|e^H(f)x|^2}{N^2} = \frac{1}{N^2} \left| \sum_{n=0}^{N-1} x(n)e^{-i2\pi nf} \right|^2$$

which coincides (up to a scaling factor) with the periodogram.

 The periodogram can be interpreted as matched filter in white noise.

Principle (Capon)

For every frequency f, design a filter, tuned to f, which **eliminates all** other spectral components contained in the signal, and then compute output power:

$$x(n) \xrightarrow{y(n) = \sum_{m=0}^{M-1} w_m(f)x(n-m)} \hat{P}(f)$$

Problem formulation

$$\min_{\pmb{w}(f)} \mathcal{E}\left\{ |y(n)|^2 \right\} \text{ subject to } \sum_{m=0}^{M-1} w_m(f) e^{-i2\pi mf} = 1$$

with
$$\boldsymbol{w}(f) = \begin{bmatrix} w_0(f) & \cdots & w_{M-1}(f) \end{bmatrix}^T$$
.

Capon's minimization problem

Since
$$\mathcal{E}\left\{|y(n)|^2\right\} = oldsymbol{w}^H(f)oldsymbol{R}oldsymbol{w}(f)$$
 with

$$\mathbf{R} = \begin{pmatrix} r_{xx}(0) & r_{xx}(-1) & \cdots & r_{xx}(-M+1) \\ r_{xx}(1) & r_{xx}(0) & \cdots & r_{xx}(-M+2) \\ \vdots & \vdots & \ddots & \vdots \\ r_{xx}(M-1) & r_{xx}(M-2) & \cdots & r_{xx}(0) \end{pmatrix}$$

one must solve

$$\min_{\boldsymbol{w}(f)} \boldsymbol{w}^H(f) \boldsymbol{R} \boldsymbol{w}(f)$$
 subject to $\boldsymbol{w}^H(f) \boldsymbol{e}(f) = 1$

where
$$e(f) = \begin{bmatrix} 1 & e^{i2\pi f} & \cdots e^{i2\pi(M-1)f} \end{bmatrix}^T$$
.

◆ロ → ◆母 → ◆ 章 → ◆ 章 → りゅぐ

Capons's solution (theoretical)

For any vector $\boldsymbol{w}(f)$ such that $\boldsymbol{w}^H(f)\boldsymbol{e}(f)=1$, one has

$$1 = \left| \boldsymbol{w}^{H}(f)\boldsymbol{e}(f) \right|^{2} = \left| \boldsymbol{w}^{H}(f)\boldsymbol{R}^{1/2}\boldsymbol{R}^{-1/2}\boldsymbol{e}(f) \right|^{2}$$
$$\leq \left[\boldsymbol{w}^{H}(f)\boldsymbol{R}\boldsymbol{w}(f) \right] \left[\boldsymbol{e}^{H}(f)\boldsymbol{R}^{-1}\boldsymbol{e}(f) \right]$$

with equality if and only if ${m R}^{1/2}{m w}(f)$ and ${m R}^{-1/2}{m e}(f)$ are co-linear. The (minimal) output power becomes

$$P_{\mathsf{Capon}}(f) = \frac{1}{\boldsymbol{e}^H(f)\boldsymbol{R}^{-1}\boldsymbol{e}(f)}.$$

Implementation Capon

ullet In practice, implementation is based on an array processing model. More precisely, for every f, we let

$$m{x}(n) = egin{bmatrix} x(n) \\ x(n+1) \\ \vdots \\ x(n+M-1) \end{bmatrix} = A(f)e^{i2\pi nf} m{e}(f) + m{n}(n).$$

The objective is to estimate A(f), which corresponds to the amplitude of the signal component at frequency f.

• One minimizes $m{w}^H(f)\hat{m{R}}m{w}(f)$ under the constraint that $m{w}^H(f)m{e}(f)=1$ with

$$\hat{R} = \frac{1}{N - M + 1} \sum_{n=0}^{N-M} x(n) x^{H}(n).$$

Implementation Capon

ullet $oldsymbol{w}(f)$ is given by

$$w(f) = rac{\hat{R}^{-1}e(f)}{e^{H}(f)\hat{R}^{-1}e(f)}.$$

• For each snapshot, we have $w^H(f)x(n) \simeq A(f)e^{i2\pi nf}$ and A(f) is estimated by a coherent summation of the outputs $w^H(f)x(n)$, i.e.,

$$\hat{A}(f) = \frac{1}{N - M + 1} \sum_{n=0}^{N - M} \mathbf{w}^{H}(f) \mathbf{x}(n) e^{-i2\pi nf} = \mathbf{w}^{H}(f) \mathbf{r}(f)$$

with
$$\boldsymbol{r}(f) = \frac{1}{N-M+1} \sum_{n=0}^{N-M} \boldsymbol{x}(n) e^{-i2\pi nf}$$
 .

Implementation Capon

• In order to improve estimation (in particular that of $m{R}$), one might consider the snapshot

$$\mathbf{x}_b(n) = \begin{bmatrix} x^*(n+M-1) & x^*(n+M-2) & \cdots & x^*(n) \end{bmatrix}^T$$

whose correlation matrix is $oldsymbol{R}$. The latter can therefore be estimated as

$$\hat{m{R}} = rac{1}{2(N-M+1)} \sum_{n=0}^{N-M} \left[m{x}(n) m{x}^H(n) + m{x}_b(n) m{x}_b^H(n)
ight].$$

• Capon's method offers an improved resolution compared to the periodogram, at least for sufficiently large M.

Amplitude and phase estimation (APES)

Principle

Same approach as Capon: for every f, one looks for a filter w(f) which lets e(f) pass and such that the output is as close as possible to $\beta e^{i2\pi nf}$. The value of β provides the signal amplitude at frequency f.

Problem formulation

Let
$$\boldsymbol{x}(n) = \begin{bmatrix} x(n) & x(n+1) & \cdots & x(n+M-1) \end{bmatrix}^T$$
. One needs to solve

$$\min_{\boldsymbol{w}(f),\beta} \frac{1}{N-M+1} \sum_{n=0}^{N-M} \left| \boldsymbol{w}^H(f) \boldsymbol{x}(n) - \beta e^{i2\pi nf} \right|^2 / \boldsymbol{w}^H(f) \boldsymbol{e}(f) = 1.$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ りへ@

Minimization with respect to β

Observe that

$$J = \frac{1}{N - M + 1} \sum_{n=0}^{N - M} \left| \boldsymbol{w}^{H}(f) \boldsymbol{x}(n) - \beta e^{i2\pi n f} \right|^{2}$$
$$= \boldsymbol{w}^{H}(f) \hat{\boldsymbol{R}} \boldsymbol{w}(f) - \beta \boldsymbol{r}^{H}(f) \boldsymbol{w}(f) - \beta^{*} \boldsymbol{w}^{H}(f) \boldsymbol{r}(f) + |\beta|^{2}$$
$$= \left| \beta - \boldsymbol{w}^{H}(f) \boldsymbol{r}(f) \right|^{2} + \boldsymbol{w}^{H}(f) \left(\hat{\boldsymbol{R}} - \boldsymbol{r}(f) \boldsymbol{r}^{H}(f) \right) \boldsymbol{w}(f).$$

ullet The solution for eta is $eta=oldsymbol{w}^H(f)oldsymbol{r}(f)$ and it remains to solve

$$\min_{\boldsymbol{w}(f)} \boldsymbol{w}^H(f) \left(\hat{\boldsymbol{R}} - \boldsymbol{r}(f) \boldsymbol{r}^H(f) \right) \boldsymbol{w}(f) \text{ subject to } \boldsymbol{w}^H(f) \boldsymbol{e}(f) = 1.$$

◆ロ > ◆母 > ◆ き > ◆き > き の < で</p>

APES filter

The weight vector w(f) is hence given by

$$egin{aligned} oldsymbol{w}(f) &= rac{\left(\hat{oldsymbol{R}} - oldsymbol{r}(f) oldsymbol{r}^H(f)
ight)^{-1} oldsymbol{e}(f)}{oldsymbol{e}^H(f) \left(\hat{oldsymbol{R}} - oldsymbol{r}(f) oldsymbol{r}^H(f)
ight)^{-1} oldsymbol{e}(f)}. \end{aligned}$$

APES amplitude

After some straightforward calculations, one finally gets

$$\beta(f) = \frac{ \pmb{e}^H(f) \hat{\pmb{R}}^{-1} \pmb{r}(f)}{ \left(1 - \pmb{r}^H(f) \hat{\pmb{R}}^{-1} \pmb{r}(f) \right) \pmb{e}^H(f) \hat{\pmb{R}}^{-1} \pmb{e}(f) + \left| \pmb{e}^H(f) \hat{\pmb{R}}^{-1} \pmb{r}(f) \right|^2}.$$

Observation

APES has a lower resolution than Capon but provides more accurate estimates of the amplitude of complex exponentials.

Modeling

The signal is modeled as **the output of a linear filter with rational transfer function**, whose input is a white noise:

$$\longrightarrow H(z) = \frac{B(z)}{A(z)} = \frac{\sum_{k=0}^{q} b_k z^{-k}}{\sum_{k=0}^{p} a_k z^{-k}}$$

In order to guarantee a stable filter, all zeroes of A(z) are assumed to lie *strictly* inside the unit circle.

Temporal properties

The signal obeys the filtering equation

$$x(n) = -\sum_{k=1}^{p} a_k x(n-k) + \sum_{k=0}^{q} b_k u(n-k).$$

Spectral properties

The PSD is given by

$$S_x(z) = H(z)H^*(1/z^*)S_u(z) = \frac{B(z)B^*(1/z^*)}{A(z)A^*(1/z^*)}S_u(z)$$
$$S_x(f) = \sigma^2 |H(f)|^2 = \sigma^2 \frac{\left|\sum_{k=0}^q b_k e^{-i2\pi kf}\right|^2}{\left|\sum_{k=0}^p a_k e^{-i2\pi kf}\right|^2}.$$

Influence of A(z) and B(z) on the PSD

The PSD depends entirely on A(z) and B(z). If we denote

$$A(z) = \prod_{k=1}^{p} (1 - z_k z^{-1}) = \prod_{k=1}^{p} (1 - \rho_k e^{i\omega_k} z^{-1})$$
$$B(z) = \prod_{k=1}^{q} (1 - \zeta_k z^{-1}) = \prod_{k=1}^{q} (1 - r_k e^{i\psi_k} z^{-1})$$

then

- the poles z_k correspond to "peaks" in the PSD, located at $(2\pi)^{-1} \omega_k$ and all the more sharp that ρ_k is close to 1, i.e. the pole is close to the unit circle.
- the zeroes ζ_k correspond to "nulls" in the PSD, located at $(2\pi)^{-1} \psi_k$ and all the more sharp that r_k is close to 1.
- \implies an ARMA(p,q) model enables one to approximate very accurately (depending on p and q) any PSD.

$\mathsf{ARMA}(p,q)$ PSD example

Relation between models

Every ARMA(p,q) model can be approximated by an AR (∞) or MA (∞) model. For example,

$$\frac{B(z)}{A(z)} = \frac{1}{C(z)} \Leftrightarrow A(z) = B(z)C(z)$$

which implies that the c_n are given by

$$c_n = \begin{cases} 1 & n = 0 \\ -\sum_{k=1}^q b_k c_{n-k} + a_n & 1 \le n \le p \\ -\sum_{k=1}^q b_k c_{n-k} & n > p \end{cases}$$

Remark

The PSD depends only on σ^2 , $\{a_k\}_{k=1}^p$ and $\{b_k\}_{k=1}^q$. Therefore, the correlation function $r_{xx}(m) = \mathcal{F}^{-1}\left(S_x(f)\right)$ also depends on these parameters \Longrightarrow Yule-Walker equations.

The filtering equation is the following

$$x(n) = -\sum_{k=1}^{p} a_k x(n-k) + \sum_{k=0}^{q} b_k u(n-k).$$

Pre-multiplying by $x^*(n-m)$ $(m \ge 0)$ and taking expectation, one obtains

$$r_{xx}(m) = -\sum_{k=1}^{p} a_k r_{xx}(m-k) + \sum_{k=0}^{q} b_k \mathcal{E} \left\{ x^*(n-m)u(n-k) \right\}.$$

However,

$$\begin{split} \mathcal{E}\left\{x^*(n-m)u(n-k)\right\} &= \sum_{\ell=0}^{\infty} h_{\ell}^* \mathcal{E}\left\{u^*(n-m-\ell)u(n-k)\right\} \\ &= \sigma^2 \sum_{\ell=0}^{\infty} h_{\ell}^* \delta(m+\ell-k) \\ &= \begin{cases} \sigma^2 h_{k-m}^* & k \geq m \\ 0 & \text{otherwise} \end{cases} \end{split}$$

which implies that

$$r_{xx}(m) = \begin{cases} r_{xx}^*(-m) & m < 0\\ -\sum_{k=1}^p a_k r_{xx}(m-k) + \sigma^2 \sum_{k=m}^q b_k h_{k-m}^* & m \in [0, q]\\ -\sum_{k=1}^p a_k r_{xx}(m-k) & m > q \end{cases}$$

Yule-Walker Equations

Alternative proof

Taking the inverse z transform of $A(z)S_x(z)=\sigma^2B(z)H^*(1/z^*)$, and observing that $H^*(1/z^*)=\sum_{k=0}^\infty h_k^*z^k=\sum_{k=-\infty}^0 h_{-k}^*z^{-k}$, it ensues

$$[a_n * r_{xx}(n)]_m = \sum_{k=0}^p a_k r_{xx}(m-k)$$

$$= \sigma^2 [b_n * h_{-n}^*]_m$$

$$= \sigma^2 \sum_{k=0}^q b_k h_{k-m}^*$$

$$= \sigma^2 \sum_{k=m}^q b_k h_{k-m}^*.$$

Yule-Walker equations for an ARMA(p, q) model

The coefficients a_k can be obtained as the solution to the following **linear** system of equations:

$$\begin{pmatrix} r_{xx}(q) & r_{xx}(q-1) & \cdots & r_{xx}(q-p+1) \\ r_{xx}(q+1) & r_{xx}(q) & \cdots & r_{xx}(q-p+2) \\ \vdots & \vdots & \ddots & \vdots \\ r_{xx}(q+p-1) & r_{xx}(q+p-2) & \cdots & r_{xx}(q) \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{pmatrix} = -\begin{pmatrix} r_{xx}(q+1) \\ r_{xx}(q+2) \\ \vdots \\ r_{xx}(q+p) \end{pmatrix}$$

The relation between b_k and $r_{xx}(m)$ is more complicated (non linear).

Yule-Walker equations for an AR(p) model

$$r_{xx}(m) = -\sum_{k=1}^{p} a_k r_{xx}(m-k) + \sigma^2 \delta(m).$$

The coefficients a_k obey a linear system of equations:

$$\begin{pmatrix} r_{xx}(0) & r_{xx}(-1) & \cdots & r_{xx}(-p+1) \\ r_{xx}(1) & r_{xx}(0) & \cdots & r_{xx}(-p+2) \\ \vdots & \vdots & \ddots & \vdots \\ r_{xx}(p-1) & r_{xx}(p-2) & \cdots & r_{xx}(0) \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{pmatrix} = - \begin{pmatrix} r_{xx}(1) \\ r_{xx}(2) \\ \vdots \\ r_{xx}(p) \end{pmatrix}$$

Ra = -r

The white noise power is simply

$$\sigma^2 = \sum_{k=0}^p a_k r_{xx}(-k).$$

Remark

• The recurrence equation $r_{xx}(m) = -\sum_{k=1}^{p} a_k r_{xx}(m-k)$ admits as a solution

$$r_{xx}(m) = \sum_{k=1}^{p} A_k e^{i\phi_k} z_k^m = \sum_{k=1}^{p} A_k e^{i\phi_k} \rho_k^m e^{im\omega_k}$$

which is a sum of damped complex exponentials, with frequencies $\omega_k/(2\pi)$ and damping factors ρ_k . The closer ρ_k to 1, the longer the temporal support of $r_{xx}(m)$ and hence the spectral power is concentrated on a smaller frequency band. This is why AR modeling allows for high spectral resolution.

Yule-Walker equations for a MA(q) model

The coefficients b_k now obey **non linear equations**

$$r_{xx}(m) = \begin{cases} \sigma^2 \sum_{k=m}^{q} b_k b_{k-m}^* & m \in [0, q] \\ 0 & m > q \end{cases}$$

Since the correlation function is of finite duration, no way to perform high resolution spectral analysis with a MA(q) model.

Radar signal

The pitfalls of modeling

Question

Let x(n) be an AR(p) process, with parameters σ^2 , a_1, \dots, a_p . Which is the **best linear predictor of order** p of x(n):

$$\hat{x}(n) = -\sum_{k=1}^{p} \alpha_k x(n-k).$$

Linear prediction error (LPE)

One looks for the coefficients α_k that minimize

$$P_{\text{lpe}} = \mathcal{E}\left\{ |e(n)|^2 \right\} = \mathcal{E}\left\{ |\hat{x}(n) - x(n)|^2 \right\}$$

$$= \mathcal{E}\left\{ \left[x(n) + \sum_{k=1}^p \alpha_k x(n-k) \right] \left[x^*(n) + \sum_{k=1}^p \alpha_k^* x^*(n-k) \right] \right\}$$

$$= r_{xx}(0) + \sum_{k=1}^p \alpha_k r_{xx}(-k) + \sum_{k=1}^p \alpha_k^* r_{xx}(k) + \sum_{k=1}^p \sum_{m=1}^p \alpha_k \alpha_m^* r_{xx}(m-k).$$

Linear prediction error

With $r = \begin{bmatrix} r_{xx}(1) & r_{xx}(2) & \cdots & r_{xx}(p) \end{bmatrix}^T$ and $R(k, \ell) = r_{xx}(k - \ell)$, one has

$$\begin{split} P_{\mathsf{lpe}} &= r_{xx}(0) + \boldsymbol{\alpha}^{H}\boldsymbol{r} + \boldsymbol{r}^{H}\boldsymbol{\alpha} + \boldsymbol{\alpha}^{H}\boldsymbol{R}\boldsymbol{\alpha} \\ &= \left(\boldsymbol{\alpha} + \boldsymbol{R}^{-1}\boldsymbol{r}\right)^{H}\boldsymbol{R}\left(\boldsymbol{\alpha} + \boldsymbol{R}^{-1}\boldsymbol{r}\right) + r_{xx}(0) - \boldsymbol{r}^{H}\boldsymbol{R}^{-1}\boldsymbol{r} \\ &\geq r_{xx}(0) - \boldsymbol{r}^{H}\boldsymbol{R}^{-1}\boldsymbol{r} \end{split}$$

with equality iif $lpha=-R^{-1}r=a$: the best linear predictor is the AR parameter vector! Additionally,

$$P_{\mathsf{lpe-min}} = r_{xx}(0) - \boldsymbol{r}^H \boldsymbol{R}^{-1} \boldsymbol{r} = r_{xx}(0) + \boldsymbol{r}^H \boldsymbol{a} = \sigma^2.$$

⇒ Solving the Yule-Walker equations is **equivalent** to minimizing the linear prediction error.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

Remark

The best predictor is the one for which the **prediction error** e(n) is **orthogonal to the data** $\{x(n-k)\}_{k=1}^p$. Indeed,

$$\mathcal{E}\left\{e(n)x^*(n-k)\right\} = \mathcal{E}\left\{\sum_{\ell=0}^p \alpha_\ell x(n-\ell)x^*(n-k)\right\}$$
$$= \sum_{\ell=0}^p \alpha_\ell r_{xx}(k-\ell) = 0.$$

The optimal coefficients α_k make the prediction error e(n) orthogonal (i.e. uncorrelated) to $\{x(n-1), \cdots, x(n-p)\}$. The innovation e(n) can be viewed as the part of information in x(n) which is not already contained in $\{x(n-1), \cdots, x(n-p)\}$.

Theory

The parameters a_1, \dots, a_p are theoretically obtained in an equivalent way

- $oldsymbol{0}$ by solving Yule-Walker equations Ra=-r
- ② or by minimizing the linear prediction error $\mathcal{E}\left\{\left|x(n)+\sum_{k=1}^{p}a_{k}x(n-k)\right|^{2}\right\}$

In practice

In practice the parameters a_1, \dots, a_p are *estimated* (in an *almost* equivalent way)

- lacktriangledown either by solving Yule-Walker equations $\hat{m{R}} a = -\hat{m{r}}$
- ② or by minimizing the linear prediction error $\sum_{n} |x(n) + \sum_{k=1}^{p} a_k x(n-k)|^2$

Yule-Walker method

The correlation function is first estimated

$$\hat{r}_{xx}(m) = \frac{1}{N-m} \sum_{n=0}^{N-m-1} x^*(n)x(n+m) \qquad m = 0, \dots, p$$

• Then, one solves a linear system of p equations in p unknowns

$$\begin{pmatrix} \hat{r}_{xx}(0) & \hat{r}_{xx}(-1) & \cdots & \hat{r}_{xx}(-p+1) \\ \hat{r}_{xx}(1) & \hat{r}_{xx}(0) & \cdots & \hat{r}_{xx}(-p+2) \\ \vdots & \vdots & \ddots & \vdots \\ \hat{r}_{xx}(p-1) & \hat{r}_{xx}(p-2) & \cdots & \hat{r}_{xx}(0) \end{pmatrix} \begin{pmatrix} \hat{a}_1 \\ \hat{a}_2 \\ \vdots \\ \hat{a}_p \end{pmatrix} = - \begin{pmatrix} \hat{r}_{xx}(1) \\ \hat{r}_{xx}(2) \\ \vdots \\ \hat{r}_{xx}(p) \end{pmatrix}$$

whose solution is

$$\hat{m{a}} = -\hat{m{R}}^{-1}\hat{m{r}}$$

ロト 4回ト 4 三ト 4 三 ・ り ()

Minimization of the linear prediction error

ullet One seeks to minimize $\|oldsymbol{X}oldsymbol{a}+oldsymbol{h}\|^2$ with

Since

$$\begin{aligned} &\|\boldsymbol{X}\boldsymbol{a}+\boldsymbol{h}\|^2 = \left(\boldsymbol{X}\boldsymbol{a}+\boldsymbol{h}\right)^H\left(\boldsymbol{X}\boldsymbol{a}+\boldsymbol{h}\right) \\ &= \left[\boldsymbol{a}+\left(\boldsymbol{X}^H\boldsymbol{X}\right)^{-1}\boldsymbol{X}^H\boldsymbol{h}\right]^H\left(\boldsymbol{X}^H\boldsymbol{X}\right)\left[\boldsymbol{a}+\left(\boldsymbol{X}^H\boldsymbol{X}\right)^{-1}\boldsymbol{X}^H\boldsymbol{h}\right] \\ &+ \boldsymbol{h}^H\boldsymbol{h} - \boldsymbol{h}^H\boldsymbol{X}\left(\boldsymbol{X}^H\boldsymbol{X}\right)^{-1}\boldsymbol{X}^H\boldsymbol{h} \end{aligned}$$

the solution is given by $\hat{m{a}} = -\left(m{X}^Hm{X}
ight)^{-1}m{X}^Hm{h}$.

Remarks

- ullet $oldsymbol{X}^Holdsymbol{X}\simeq \hat{oldsymbol{R}}$ and $oldsymbol{X}^Holdsymbol{h}\simeq \hat{oldsymbol{r}}.$
- In general, one avoids computing $(X^HX)^{-1}X^Hh$: rather a decomposition (typically QR) of X is used to solve efficiently the linear least-squares problem $\min_{\boldsymbol{a}}\|X\boldsymbol{a}+\boldsymbol{h}\|^2$.
- The previous algorithm uses only the available data making no assumption about the signal outside the observation interval. One could add rows to \boldsymbol{X} assuming that x(n)=0 for $n\notin [0,N-1]$.
- Fast, order recursive (which compute all predictors of order k, $k=1,\cdots,p$) algorithms are available. They give access to the power of the linear prediction error for all predictors of order $k\leq p$ and can be useful in selecting the best model order.

Levinson algorithm

Inputs:
$$r_{xx}(m)$$
, $m=0,\cdots,p$
$$a_1[1]=-\frac{r_{xx}(1)}{r_{xx}(0)},\ P_{\mathsf{epl}}[1]=\left(1-|a_1[1]|^2\right)r_{xx}(0)$$
 for $k=1,\cdots,p$ do
$$a_k[k]=-\frac{r_{xx}(k)+\sum_{\ell=1}^{k-1}a_{k-1}[\ell]r_{xx}(k-\ell)}{P_{\mathsf{epl}}[k-1]}$$

$$a_k[\ell]=a_{k-1}[\ell]+a_k[k]a_{k-1}^*[k-\ell]\quad \ell=1,\cdots,k-1$$

$$P_{\mathsf{epl}}[k]=\left(1-|a_k[k]|^2\right)P_{\mathsf{epl}}[k-1]$$

end for

Outputs:
$$a_k = -\mathbf{R}_k^{-1} \mathbf{r}_k$$
 et $P_{\mathsf{epl}}[k]$ pour $k = 1, \dots, p$ où $\mathbf{R}_k(\ell, n) = r_{xx}(\ell - n)$, $\mathbf{r}_k(\ell) = r_{xx}(\ell)$, $\ell, n = 1, \dots, k$.

Question

Why using only p Yule-Walker equations while

$$r_{xx}(m) = -\sum_{k=1}^{p} a_k r_{xx}(m-k)$$
, for $m=1,\cdots,\infty$?

Modifed Yule-Walker

One solves in the least-squares sense $\hat{m{R}}m{a} \simeq -\hat{m{r}}$ with

$$\hat{\mathbf{R}} = \begin{pmatrix} \hat{r}_{xx}(0) & \hat{r}_{xx}(-1) & \cdots & \hat{r}_{xx}(-p+1) \\ \vdots & \vdots & \vdots & \vdots \\ \hat{r}_{xx}(p-1) & \hat{r}_{xx}(p-2) & \cdots & \hat{r}_{xx}(0) \\ \vdots & \vdots & \vdots & \vdots \\ \hat{r}_{xx}(M-1) & \hat{r}_{xx}(M-2) & \cdots & \hat{r}_{xx}(M-p) \end{pmatrix}, \hat{\mathbf{r}} = \begin{pmatrix} \hat{r}_{xx}(1) \\ \vdots \\ \hat{r}_{xx}(p) \\ \vdots \\ \hat{r}_{xx}(M) \end{pmatrix}$$

The solution is obtained as

$$\hat{\boldsymbol{a}} = \arg\min_{\boldsymbol{a}} \left\| \hat{\boldsymbol{R}} \boldsymbol{a} + \hat{\boldsymbol{r}} \right\|^2 = -\left(\hat{\boldsymbol{R}}^H \hat{\boldsymbol{R}} \right)^{-1} \hat{\boldsymbol{R}}^H \hat{\boldsymbol{r}}$$

4□▶ 4□▶ 4□▶ 4□▶ □ 90

Spectral analysis based on \hat{a}_k

Once \hat{a}_k , $k=1,\cdots,p$ and $\hat{\sigma}^2$ are obtained, spectral information is made available:

either by estimating the power spectral density

$$\hat{S}_x(f) = \frac{\hat{\sigma}^2}{\left|1 + \sum_{k=1}^p \hat{a}_k e^{-i2\pi kf}\right|^2}$$

and observing the peaks of the PSD.

or by estimating the poles of the model

$$\hat{A}(z) = 1 + \sum_{k=1}^{p} \hat{a}_k z^{-k} = \prod_{k=1}^{p} \left(1 - \hat{\rho}_k e^{i\hat{\omega}_k} z^{-1} \right)$$

and retaining those which are closest to the unit circle.

Question

Let $x(n)=Ae^{i(2\pi nf_0+\varphi)}+w(n)$ where φ is uniformly distributed on $[0,2\pi[$ and w(n) is a white noise with variance σ_w^2 . What happens if an AR(p) model is fitted to such a signal?

Answer

In the case where $r_{xx}(m)$ is **known**, the PSD associated with an AR(p) model of x(n) achieves its maximum at $f = f_0$.

Proof

One has $r_{xx}(m) = Pe^{i2\pi mf_0} + \sigma_w^2 \delta(m)$ which implies that $\mathbf{R} = P\mathbf{s}\mathbf{s}^H + \sigma_w^2 \mathbf{I}$, $\mathbf{r} = P\mathbf{s}$ with $\mathbf{s} = \begin{bmatrix} e^{i2\pi f_0} & \cdots & e^{i2\pi pf_0} \end{bmatrix}^T$.

Proof (cont'd)

It can be deduced that

$$a = -\frac{P}{\sigma_w^2 + pP}s$$
, $\sigma^2 = \sigma_w^2 \left[1 + \frac{P}{\sigma_w^2 + pP}\right]$

Therefore, the PSD can be written as

$$S_x(f) = \frac{\sigma^2}{\left|1 - \frac{P}{\sigma_w^2 + pP}e^H(f)s\right|^2}$$

where $e(f)=\begin{bmatrix}e^{i2\pi f}&\cdots&e^{i2\pi pf}\end{bmatrix}^T$ and its maximum is located at $f=f_0$. However

$$\begin{split} S_x(f_0) &= \sigma_w^2 \left[1 + (p+1) \frac{P}{\sigma_w^2} \right] \left[1 + p \frac{P}{\sigma_w^2} \right] \\ &\simeq p(p+1) \frac{P^2}{\sigma_w^2} \text{ for } \frac{P}{\sigma_w^2} \gg 1 \end{split}$$

Comments

- Even if a complex exponential is **not** an AR(p) signal, an AR(p) model enables one to recover the frequency of the exponential \Longrightarrow one can use an AR(p) model to estimate the frequency of a complex exponential signal (and, by extension, the frequencies of a sum of complex exponentials).
- The amplitude of the AR(p) peak is not commensurate with the actual power of the exponential signal (contrary to Fourier analysis).

Influence of N on AR(p) modeling

Influence of SNR on AR(p) modeling

Problem of differences between components amplitudes

Properties of AR(p) modeling

ullet Better resolution than periodogram, at least for small N and high SNR

$$\delta f_{AR} \simeq \frac{1.03}{p \left[(p+1) SNR \right]^{0.31}}$$
$$\delta f_{PER} \simeq \frac{0.86}{N}$$

- ⇒ interest only for short samples and large signal to noise ratio.
- Contrary to the periodogram, for complex sine waves, the amplitude of the AR peaks is not proportional to the power of the exponentials.
- Contrary to the periodogram, no problem with strong signals masking weak signals.

Model order selection

Model order selection

- ▶ a too small order results in smoothing the spectrum.
- ▶ a too large order gives rise to spurious peaks.

Remark: in case of an AR(4) model, \boldsymbol{R} of size 20×20 is not inversible and $\hat{\boldsymbol{R}}$ is badly conditioned.

Criteria for model order selection

Based on the power of the linear prediction error at order k:

Akaike Information Criterion

$$AIC(k) = N \ln(P_{\mathsf{epl}}[k]) + 2k$$

Final Prediction Error

$$FPE(k) = \frac{N+k+1}{N-k-1}P_{\mathsf{epl}}[k]$$

Minimum Description Length

$$MDL(k) = N \ln(P_{\mathsf{epl}}[k]) + p \ln(N)$$

Principle

One usually proceeds in 2 steps:

① Estimation of parameters a_1, \dots, a_p using Yule-Walker equations

$$r_{xx}(m) = -\sum_{k=1}^{p} a_k r_{xx}(m-k)$$
 $m > q$.

- **②** Estimation of parameters b_1, \dots, b_q :
 - the signal x(n) is filtered by $\hat{A}(z)$ to yield $y(n) = \sum_{k=0}^{p} \hat{a}_k x(n-k)$ which is theoretically MA(q).
 - an AR(L) (with L "large") is fitted to y(n), with coefficients c_1, \dots, c_L , and one uses the equivalence between MA(q) and AR(∞) models:

$$\left(\sum_{k=0}^q b_k z^{-k}\right) \left(\sum_{m=0}^\infty c_m z^m\right) = 1 \Leftrightarrow c_m = -\sum_{k=1}^q b_k c_{m-k} + \delta(m)$$

◆□▶◆圖▶◆臺▶◆臺▶●●</li

Modified Yule-Walker

The linear system of p equations in p unknowns $\hat{m{R}}\hat{a}=-\hat{m{r}}$ is solved, where

$$\hat{\boldsymbol{R}} = \begin{pmatrix} \hat{r}_{xx}(q) & \hat{r}_{xx}(q-1) & \cdots & \hat{r}_{xx}(q-p+1) \\ \hat{r}_{xx}(q+1) & \hat{r}_{xx}(q) & \cdots & \hat{r}_{xx}(q-p+2) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \hat{r}_{xx}(q+p-1) & \hat{r}_{xx}(q+p-2) & \cdots & \hat{r}_{xx}(q) \end{pmatrix}$$

$$\hat{\boldsymbol{r}} = \begin{pmatrix} \hat{r}_{xx}(q+1) \\ \hat{r}_{xx}(q+2) \\ \vdots \\ \hat{r}_{xx}(q+p) \end{pmatrix}$$

Least-squares Yule-Walker

One solves, in the least-squares sense, a linear system of M>p Yule-Walker equations with p unknowns

$$\hat{\boldsymbol{a}} = \arg\min_{\boldsymbol{a}} \left\| \hat{\boldsymbol{R}} \boldsymbol{a} + \hat{\boldsymbol{r}} \right\|^2 = -\left(\hat{\boldsymbol{R}}^H \hat{\boldsymbol{R}} \right)^{-1} \hat{\boldsymbol{R}}^H \hat{\boldsymbol{r}}$$

where

$$\hat{\boldsymbol{R}} = \begin{pmatrix} \hat{r}_{xx}(q) & \hat{r}_{xx}(q-1) & \cdots & \hat{r}_{xx}(q-p+1) \\ \hat{r}_{xx}(q+1) & \hat{r}_{xx}(q) & \cdots & \hat{r}_{xx}(q-p+2) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \hat{r}_{xx}(M+q-1) & \hat{r}_{xx}(M+q-2) & \cdots & \hat{r}_{xx}(M+q-p+1) \end{pmatrix}$$

$$\hat{\boldsymbol{r}} = \begin{pmatrix} \hat{r}_{xx}(q+1) \\ \hat{r}_{xx}(q+2) \\ \vdots \\ \hat{r}_{xx}(M+q) \end{pmatrix}$$

Summary

- An ARMA(p,q) enables one to approximate very accurately the PSD of a large class of signals. The AR part deals with peaks in the spectrum while the MA part models the valleys.
- The model parameters are usually estimated solving the Yule-Walker equations (which involve the correlation function). These equations are linear with respect to the AR parameters, non linear with respect to the MA parameters.
- Information about the spectral content can be retrieved from the (rational) ARMA PSD or from examining the poles and zeroes of the model.
- For an AR(p) model, solving Yule-Walker equations is equivalent to minimizing the linear prediction error.
- AR and ARMA models are suitable for frequency estimation of complex exponential signals, with ARMA offering an enhanced resolution.

Damped exponential signals

We are now interested in (possibly damped) exponential signals embedded in noise:

$$x(n) = s(n) + w(n) = \sum_{k=1}^{p} A_k e^{i\phi_k} e^{(-\alpha_k + i2\pi f_k)n} + w(n)$$

Relation to AR(p) models

Although s(n) is not an AR(p) process, it obeys linear prediction equations, similar to those of an AR(p) signal.

Methods

The main approach consists in solving the linear prediction equations

- either in a least-squares sense (Prony).
- or using the fact that s(n), a linear combination of p modes, lies within a **subspace** of size p (Tufts-Kumaresan).

Original problem

Assume we observe 2p samples $\{x(n)\}_{n=0}^{2p-1}$ of the following signal

$$x(n) = \sum_{k=1}^{p} A_k e^{i\phi_k} e^{(-\alpha_k + i2\pi f_k)n} = \sum_{k=1}^{p} h_k z_k^n.$$

From these 2p samples can we recover the 4p unknown parameters A_k , ϕ_k , α_k and f_k , $k=1,\cdots,p$?

Answer

Let
$$A(z) = \prod_{k=1}^{p} (1 - z_k z^{-1}) = 1 + \sum_{k=1}^{p} a_k z^{-k}$$
. One has

$$\sum_{k=0}^{p} a_k x(n-k) = \sum_{k=0}^{p} a_k \left(\sum_{\ell=1}^{p} h_{\ell} z_{\ell}^{n-k} \right)$$
$$= \sum_{\ell=1}^{p} h_{\ell} z_{\ell}^{n} \left(\sum_{k=0}^{p} a_k z_{\ell}^{-k} \right) = 0.$$

Obtaining z_k

 a_k is obtained by solving

which yields z_k as the roots of

$$A(z) = 1 + \sum_{k=1}^{p} a_k z^{-k} = \prod_{k=1}^{p} (1 - z_k z^{-1}).$$

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

Obtaining h_k

Once the z_k 's are available, the following Vandermonde system is solved

 \Longrightarrow unique solution to this problem with 4p equations and 4p unknowns.

Problem

In general N>p noisy samples are available:

$$x(n) = \sum_{k=1}^{p} A_k e^{i\phi_k} e^{(-\alpha_k + i2\pi f_k)n} + w(n); \qquad n = 0, \dots, N-1$$

from which one tries to estimate $h_k = A_k e^{i\phi_k}$ and $z_k = e^{-\alpha_k + i2\pi f_k}$.

Maximum likelihood

Under the assumption of white Gaussian noise w(n), the maximum likelihood estimator amounts to minimizing the approximation error:

$$\hat{\boldsymbol{h}}, \hat{\boldsymbol{z}} = \arg\min_{\boldsymbol{h}, \boldsymbol{z}} \sum_{n=0}^{N-1} \left| x(n) - \sum_{k=1}^{p} h_k z_k^n \right|^2$$

 \implies non linear least-squares problem with p complex-valued unknowns z_k .

《□》《圖》《意》《意》 ■

Least-squares Prony

Instead of minimizing the approximation error, one minimizes the power of the linear prediction error $e(n) = x(n) + \sum_{k=1}^p a_k x(n-k)$, which is equivalent to solving, in a least-squares sense, the linear system of equations

$$Xa \simeq -h$$

$$\boldsymbol{X} = \begin{pmatrix} x(p-1) & x(p-2) & \cdots & x(0) \\ x(p) & x(p-1) & \cdots & x(1) \\ \vdots & \vdots & \vdots & \vdots \\ x(N-2) & x(N-3) & \cdots & x(N-p-1) \end{pmatrix}, \boldsymbol{h} = \begin{pmatrix} x(p) \\ x(p+1) \\ \vdots \\ \vdots \\ x(N-1) \end{pmatrix}$$

whose solution is given by

$$\hat{a} = \arg\min_{a} \|Xa + h\|^2$$
.

This is equivalent to using an AR(p) model for x(n).

Estimation of z_k

$$\hat{A}(z) = 1 + \sum_{k=1}^{p} \hat{a}_k z^{-k} = \prod_{k=1}^{p} (1 - \hat{z}_k z^{-1})$$

Estimation of h_k

The Vandermonde system is solved in a least-squares sense

The solution can be written as

$$\hat{m{h}} = \left(\hat{m{Z}}^H \hat{m{Z}}\right)^{-1} \hat{m{Z}}^H m{x}.$$

Prony's spectrum

Prony's spectrum is defined from the noiseless signal, in 2 different ways:

One assumes that

$$\hat{x}(n) = \begin{cases} \sum_{k=1}^{p} \hat{h}_{k} \hat{z}_{k}^{n} & n \ge 0 \\ 0 & n < 0 \end{cases} \xrightarrow{\mathcal{Z}} \hat{X}(z) = \sum_{k=1}^{p} \frac{\hat{h}_{k}}{1 - \hat{z}_{k} z^{-1}}$$

One assumes that

$$\hat{x}(n) = \begin{cases} \sum_{k=1}^{p} \hat{h}_{k} \hat{z}_{k}^{n} & n \geq 0 \\ \sum_{k=1}^{p} \hat{h}_{k} (\hat{z}_{k}^{*})^{-n} & n < 0 \end{cases} \xrightarrow{\mathcal{Z}} \hat{X}(z) = \sum_{k=1}^{p} \frac{\hat{h}_{k} (1 - |\hat{z}_{k}|^{2})}{(1 - \hat{z}_{k}z^{-1}) (1 - \hat{z}_{k}^{*}z)}$$

The "PSD" is then obtained as $\hat{S}(f) = \left|\hat{X}(e^{i2\pi f})\right|^2$.

Prony correlation

ullet We assume that the correlation function can be written as a sum of p complex exponentials plus the correlation due to white noise:

$$r_{xx}(m) = \mathcal{E}\{x^*(n)x(n+m)\} = \sum_{k=1}^{p} P_k z_k^m + \sigma^2 \delta(m).$$

 The correlation function hence verifies the following linear prediction equations

$$r_{xx}(m) = -\sum_{k=1}^{p} a_k r_{xx}(m-k) + \sigma^2 \sum_{k=1}^{p} a_k \delta(m-k)$$

which suggests estimating coefficients a_k by minimization of the linear prediction error based on $r_{xx}(m)$.

Reminder

For the signal $x(n) = \sum_{k=1}^{p} h_k z_k^n + w(n)$, Prony's method amounts to solving, in a least-squares sense, the linear system of p linear prediction equations:

$$\mathbf{X}_{N-p|p} \mathbf{a}_{p|1} = -\mathbf{h}_{N-p|1}.$$

Question

What happens, in the noiseless case where $x(n) = \sum_{k=1}^{p} h_k z_k^n$, if one uses a linear prediction filter of order L > p, that is if one tries to solve Xa = -h with

$$\boldsymbol{X} = \begin{pmatrix} x(L-1) & x(L-2) & \cdots & x(0) \\ x(L) & x(L-1) & \cdots & x(1) \\ \vdots & \vdots & \vdots & \vdots \\ x(N-2) & x(N-3) & \cdots & x(N-L-1) \end{pmatrix}, \boldsymbol{h} = \begin{pmatrix} x(L) \\ x(L+1) \\ \vdots \\ \vdots \\ x(N-1) \end{pmatrix}$$

and L>p?

Linear algebra reminders

Let $A \in \mathbb{C}^{m \times n}$ be a complex matrix of size $m \times n$.

ullet The kernel (null space) and the range space of A are defined as

$$\mathcal{N}\left\{oldsymbol{A}
ight\} = \left\{oldsymbol{x} \in \mathbb{C}^n/oldsymbol{A}oldsymbol{x} = oldsymbol{0}
ight\} \ \mathcal{R}\left\{oldsymbol{A}
ight\} = \left\{oldsymbol{b} \in \mathbb{C}^m/oldsymbol{A}oldsymbol{x} = oldsymbol{b}
ight\}$$

- The rank of A is defined as $\operatorname{rang}(A) = \dim (\mathcal{R} \{A\}) = \dim (\mathcal{R} \{A^H\}).$
- ullet The four subspaces associated with A satisfy

$$\mathcal{N}\left\{oldsymbol{A}
ight\}^{\perp} = \mathcal{R}\left\{oldsymbol{A}^{H}
ight\}; \qquad \mathcal{R}\left\{oldsymbol{A}
ight\}^{\perp} = \mathcal{N}\left\{oldsymbol{A}^{H}
ight\}$$

and, consequently,

$$\mathbb{C}^{n} = \mathcal{N} \left\{ \boldsymbol{A} \right\} \oplus \mathcal{R} \left\{ \boldsymbol{A}^{H} \right\}$$
$$\mathbb{C}^{m} = \mathcal{R} \left\{ \boldsymbol{A} \right\} \oplus \mathcal{N} \left\{ \boldsymbol{A}^{H} \right\}$$

The subspaces associated with \boldsymbol{A} et \boldsymbol{A}^H

• The *pseudo-inverse* of A, $A^{\#}$ (a matrix of size $n \times m$) is defined as:

$$oldsymbol{x} \in \mathcal{R}\left\{oldsymbol{A}^H
ight\} \Rightarrow oldsymbol{A}^\#oldsymbol{A} x = oldsymbol{x} \ oldsymbol{x} \in \mathcal{N}\left\{oldsymbol{A}^H
ight\} \Rightarrow oldsymbol{A}^\#oldsymbol{x} = oldsymbol{0}$$

Therefore

$$\mathcal{N}\left\{\boldsymbol{A}^{\#}\right\} = \mathcal{N}\left\{\boldsymbol{A}^{H}\right\} \qquad \mathcal{R}\left\{\boldsymbol{A}^{\#}\right\} = \mathcal{R}\left\{\boldsymbol{A}^{H}\right\}$$

In the following cases, a direct expression can be obtained

$$\mathbf{A}^{\#} = \begin{cases} \left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H} & \text{if } rank(\mathbf{A}) = n \\ \mathbf{A}^{H} \left(\mathbf{A} \mathbf{A}^{H}\right)^{-1} & \text{if } rank(\mathbf{A}) = m \end{cases}$$

ullet $A^{\#}$ appears naturally when it comes to solving Ax=b.

Illustration of the pseudo-inverse $A^{\#}$

Singular Value Decomposition (SVD)

$oldsymbol{A}$ can be decomposed as

$$egin{aligned} oldsymbol{A} &= oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^H = \sum_{k=1}^r \sigma_k oldsymbol{u}_k oldsymbol{v}_k^H \ &= egin{bmatrix} oldsymbol{U}_1 oldsymbol{U}_2 \end{bmatrix} egin{bmatrix} oldsymbol{\Sigma}_1 oldsymbol{V}_1 & \sigma_k oldsymbol{v}_k^H \ oldsymbol{v}_1 & \sigma_k oldsymbol{v}_2 \end{bmatrix} egin{bmatrix} oldsymbol{V}_1^H & r|n \ oldsymbol{V}_1^H & oldsymbol{V}_2^H \end{bmatrix} egin{bmatrix} r|n \ oldsymbol{V}_2^H & \sigma_k oldsymbol{v}_1 & \sigma_k oldsymbol{v}_2 \end{bmatrix} \\ &= oldsymbol{U}_1 oldsymbol{\Sigma}_1 oldsymbol{V}_1^H & \sigma_k oldsymbol{v}_1 & \sigma_k oldsymbol{v}_2 & \sigma_k oldsy$$

where $\boldsymbol{U}(m\times m)$ and $\boldsymbol{V}(n\times n)$ are the **unitary** matrices of singular vectors, $\boldsymbol{\Sigma}=\mathrm{diag}\left\{\sigma_1,\sigma_2,\cdots,\sigma_r,0,\cdots,0\right\}$ is the quasi-diagonal matrix of singular values $(\sigma_1\geq\sigma_2\geq\cdots\geq\sigma_r)$ where r stands for the rank of \boldsymbol{A} .

SVD, subspaces and pseudo-inverse

ullet The SVD gives access to the 4 subspaces associated with $oldsymbol{A}$:

$$\begin{split} \mathcal{N}\left\{\boldsymbol{A}\right\} &= \mathcal{R}\left\{\boldsymbol{V}_{2}\right\} \\ \mathcal{N}\left\{\boldsymbol{A}\right\}^{\perp} &= \mathcal{R}\left\{\boldsymbol{A}^{H}\right\} = \mathcal{R}\left\{\boldsymbol{V}_{1}\right\} \\ \mathcal{R}\left\{\boldsymbol{A}\right\} &= \mathcal{R}\left\{\boldsymbol{U}_{1}\right\} \\ \mathcal{R}\left\{\boldsymbol{A}\right\}^{\perp} &= \mathcal{N}\left\{\boldsymbol{A}^{H}\right\} = \mathcal{R}\left\{\boldsymbol{U}_{2}\right\} \end{split}$$

The pseudo-inverse can be written simply as

$$m{A}^{\#} = m{V}m{\Sigma}^{\#}m{U}^{H} = \sum_{k=1}^{r}rac{1}{\sigma_{k}}m{v}_{k}m{u}_{k}^{H} = m{V}_{1}m{\Sigma}_{1}^{-1}m{U}_{1}^{H}.$$

The 4 subspaces associated with $A \in \mathbb{C}^{m \times n}$

Let
$$m{A} = egin{bmatrix} m{U}_1 & m{U}_2 \end{bmatrix} egin{bmatrix} m{\Sigma}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} m{V}_1^H \\ m{V}_2^H \end{bmatrix} = m{U}_1 m{\Sigma}_1 m{V}_1^H.$$

Linear prediction equations (noiseless case)

Let $x(n) = \sum_{k=1}^p h_k z_k^n$ and assume that we wish to solve ${m X}{m a} = -{m h}$ with

$$\boldsymbol{X} = \begin{pmatrix} x(L-1) & x(L-2) & \cdots & x(0) \\ x(L) & x(L-1) & \cdots & x(1) \\ \vdots & \vdots & \vdots & \vdots \\ x(N-2) & x(N-3) & \cdots & x(N-L-1) \end{pmatrix}, \boldsymbol{h} = \begin{pmatrix} x(L) \\ x(L+1) \\ \vdots \\ \vdots \\ x(N-1) \end{pmatrix}$$

Remarks

- the matrix X has rank p: every column after the p-th one is a linear combination of the first p columns. $\mathcal{N}\{X\}$ is of size L-p.
- $h \in \mathcal{R} \{X\} \Rightarrow \exists$ at least one solution.
- ⇒ there exists an infinite number of solutions to the system.

4日 > 4間 > 4 直 > 4 直 > 直 の Q ○

The solutions

The set of all possible solutions can be written in 2 ways:

• If $A_p(z)=\sum_{k=0}^p a_k z^{-k}=\prod_{k=1}^p (1-z_k z^{-1})$, then all solutions can be written as

$$A(z) = A_p(z)B(z)$$

where B(z) is an **arbitrary** polynomial of degree L-p.

② Let $X=U_1\Sigma_1V_1^H$ be the SVD of X. Since $h\in\mathcal{R}\left\{X\right\}=\mathcal{R}\left\{U_1\right\}$, one has $h=U_1U_1^Hh$ and hence $a_{\mathsf{mn}}=-V_1\Sigma_1^{-1}U_1^Hh=-X^\#h$ verifies

$$oldsymbol{X} oldsymbol{a}_{\mathsf{mn}} = - \left[oldsymbol{U}_1 oldsymbol{\Sigma}_1 oldsymbol{V}_1^H
ight] \left[oldsymbol{V}_1 oldsymbol{\Sigma}_1^{-1} oldsymbol{U}_1^H oldsymbol{h}
ight] = - oldsymbol{U}_1 oldsymbol{U}_1^H oldsymbol{h} = - oldsymbol{h}.$$

The set of solutions is given by

$$oxed{-oldsymbol{V}_1oldsymbol{\Sigma}_1^{-1}oldsymbol{U}_1^Holdsymbol{h} + oldsymbol{V}_2oldsymbol{eta}; \quad oldsymbol{eta} \in \mathbb{C}^{L-p}}$$

 $a_{
m mn}$ is the minimum norm solution. It ensures that all zeroes of B(z) are strictly inside the unit circle.

Tufts-Kumaresan's method

Linear prediction equations (noisy case)

If now $x(n) = \sum_{k=1}^{p} h_k z_k^n + w(n)$ then

- ullet X is full-rank
- $h \notin \mathcal{R}\{X\}$
- \Rightarrow there is no solution to Xa = -h.

Solution

One can

- lacksquare either solve in the least-squares sense, i.e., $\min_{m{a}} \| m{X} m{a} + m{h} \|^2$ (Prony).
- $oldsymbol{@}$ or "recover" the noiseless case, viz that of a rank-deficient matrix $oldsymbol{X}$ (Tufts-Kumaresan).

Tufts-Kumaresan

Principle

Let

$$oldsymbol{X} = egin{bmatrix} oldsymbol{U}_1 & oldsymbol{U}_2 \end{bmatrix} egin{bmatrix} oldsymbol{\Sigma}_1 & oldsymbol{0} \ oldsymbol{0} & oldsymbol{\Sigma}_2 \end{bmatrix} egin{bmatrix} oldsymbol{V}_1^H \ oldsymbol{V}_2^H \end{bmatrix} = \sum_{k=1}^L \sigma_k oldsymbol{u}_k oldsymbol{v}_k^H = oldsymbol{U}_1 oldsymbol{\Sigma}_1 oldsymbol{V}_1^H + oldsymbol{U}_2 oldsymbol{\Sigma}_2 oldsymbol{V}_2^H \end{bmatrix}$$

where $m{U}_1 \in \mathbb{C}^{N-L \times p}$ and $m{V}_1 \in \mathbb{C}^{p \times L}$. Tufts and Kumaresan have proposed not to solve $m{X}m{a} = -m{h}$ but

$$\boldsymbol{X}_{p}\boldsymbol{a}=-\boldsymbol{h}$$

where $\boldsymbol{X}_p = \boldsymbol{U}_1 \boldsymbol{\Sigma}_1 \boldsymbol{V}_1^H$ is the best rank-p approximant of \boldsymbol{X} . Tufts-Kumaresan's method performs filtering of the least singular values and hence noise-cleaning of x(n).

Solution

Since $h \notin \mathcal{R}\{X_p\}$ there is no solution to $X_pa = -h$. One can solve in a least-squares sense, i.e.,

$$\min_{\boldsymbol{a}} \|\boldsymbol{X}_p \boldsymbol{a} + \boldsymbol{h}\|^2$$

The solution is of the form $a=V_1\alpha_1+V_2\alpha_2$. However, $\mathcal{N}\left\{X_p\right\}=\mathcal{R}\left\{V_2\right\}$ and hence $X_pa=X_pV_1\alpha_1=U_1\Sigma_1\alpha_1$. Consequently, α_2 has no influence on $\|X_pa+h\|^2$. The minimum norm solution is thus obtained for $\alpha_2=0$ and

$$\hat{oldsymbol{lpha}}_1 = rg \min_{oldsymbol{lpha}_1} \| oldsymbol{U}_1 oldsymbol{\Sigma}_1 oldsymbol{lpha}_1 + oldsymbol{h} \|^2 = -oldsymbol{\Sigma}_1^{-1} oldsymbol{U}_1^H oldsymbol{h}.$$

Finally

$$oxed{oldsymbol{a}_{\mathsf{TK}} = -oldsymbol{V}_1oldsymbol{\Sigma}_1^{-1}oldsymbol{U}_1^Holdsymbol{h} = -oldsymbol{X}_p^\#oldsymbol{h}.}$$

This is also the minimum norm solution to $m{X}_pm{a} = -m{U}_1m{U}_1^Hm{h}.$

→ □ → → □ → → □ → □ → ○ Q (

A word on backward linear prediction

Let $x(n) = \sum_{k=1}^{p} h_k z_k^n$ and let

$$A^{b}(z) = \sum_{k=0}^{p} a_{k}^{b} z^{-k} = \prod_{k=1}^{p} \left(1 - e^{(\alpha_{k} + i2\pi f_{k})} z^{-1} \right) = \prod_{k=1}^{p} \left(1 - \frac{1}{z_{k}^{*}} z^{-1} \right).$$

It can be shown that x(n) verifies the backward linear prediction equations

$$\sum_{k=0}^{p} a_k^b x^*(n+k) = \sum_{k=0}^{p} a_k^b \left(\sum_{\ell=1}^{p} h_{\ell}(z_{\ell}^*)^{n+k} \right)$$

$$= \sum_{\ell=1}^{p} h_{\ell}(z_{\ell}^*)^n \left(\sum_{k=0}^{p} a_k^b (z_{\ell}^*)^k \right)$$

$$= \sum_{\ell=1}^{p} h_{\ell}(z_{\ell}^*)^n \left(\sum_{k=0}^{p} a_k^b \left(\frac{1}{z_{\ell}^*} \right)^{-k} \right)$$

$$= 0.$$

Backward linear prediction

The minimum norm solution of Xa = -h with

$$\boldsymbol{X} = \begin{pmatrix} x^*(1) & x^*(2) & \cdots & x^*(L) \\ x^*(2) & x^*(3) & \cdots & x^*(L+1) \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ x^*(N-L) & x^*(N-L+1) & \cdots & x^*(N-1) \end{pmatrix}, \boldsymbol{h} = \begin{pmatrix} x^*(0) \\ x^*(1) \\ \vdots \\ \vdots \\ x^*(N-L-1) \end{pmatrix}$$

results in a polynomial $A(z) = \sum_{k=0}^{p} a_k z^{-k}$ such that

- ullet p roots are located at $1/z_k^*$ (outside the unit circle)
- ullet L-p roots are strictly inside the unit circle.

 \Longrightarrow natural separation between poles due to signal and poles due to noise.

Summary

- Estimation of damped complex exponentials is mainly based on minimizing the linear prediction error, a computationally more efficient solution than maximum likelihood.
- The linear prediction error minimization can be conducted in 2 ways:
 - Oconventional least-squares (Prony) which is equivalent to AR modeling.
 - Tufts-Kumaresan's method which consists in filtering the least significant singular values so as to come close to the noiseless case.
- Tufts-Kumaresan's method is very performant but computationally intensive. Moreover, it needs a good signal to noise ratio and requires knowledge of the number of exponentials.

Signal model

Let us consider a sum of complex exponential signals buried in noise:

$$x(n) = \sum_{k=1}^{p} A_k e^{i\phi_k} e^{i2\pi n f_k} + w(n)$$
 $n = 0, \dots, N-1$

where ϕ_k is uniformly distributed on $[0,2\pi[$ and independent of $\phi_\ell,\,w(n)$ is assumed to be a white noise with variance $\sigma^2=\mathcal{E}\left\{w^*(n)w(n)\right\}$. One is interested in estimating f_k (or equivalently $\omega_k=2\pi f_k$).

Correlation function

The correlation function is given by

$$r_{xx}(m) = \mathcal{E} \left\{ x^*(n)x(n+m) \right\}$$

$$= \mathcal{E} \left\{ \left[\sum_{k=1}^p A_k e^{-i\phi_k} e^{-in\omega_k} + w^*(n) \right] \left[\sum_{\ell=1}^p A_\ell e^{i\phi_\ell} e^{i(n+m)\omega_\ell} + w(n+m) \right] \right\}$$

$$= \sum_{k=1}^p P_k e^{im\omega_k} + \sigma^2 \delta(m)$$

with
$$P_k = |A_k|^2$$
.

Correlation matrix

Let us define the following matrix

$$\boldsymbol{R} = \begin{pmatrix} r_{xx}(0) & r_{xx}(-1) & \cdots & r_{xx}(-M+1) \\ r_{xx}(1) & r_{xx}(0) & \cdots & r_{xx}(-M+2) \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ r_{xx}(M-1) & r_{xx}(M-2) & \cdots & r_{xx}(0) \end{pmatrix}$$

$$= \sum_{k=1}^{p} P_k \boldsymbol{a}_k \boldsymbol{a}_k^H + \sigma^2 \boldsymbol{I} = \boldsymbol{A}(\boldsymbol{\omega}) \boldsymbol{P} \boldsymbol{A}(\boldsymbol{\omega})^H + \sigma^2 \boldsymbol{I}$$

$$= \boldsymbol{R}_s + \sigma^2 \boldsymbol{I}$$

where $\boldsymbol{a}_k = \begin{bmatrix} 1 & e^{i\omega_k} & \cdots & e^{i(M-1)\omega_k} \end{bmatrix}^T$, $\boldsymbol{A}(\boldsymbol{\omega}) = \begin{bmatrix} \boldsymbol{a}_1 & \boldsymbol{a}_2 & \cdots & \boldsymbol{a}_p \end{bmatrix}$, $\boldsymbol{\omega} = \begin{bmatrix} \omega_1 & \omega_2 & \cdots & \omega_p \end{bmatrix}^T$ and $\boldsymbol{P} = \operatorname{diag}(P_1, P_2, \cdots, P_p)$.

◆ロト ◆部ト ◆注ト ◆注ト 注 りなぐ

Properties of $oldsymbol{R}_s$

One has

$$oldsymbol{R}_{s}oldsymbol{lpha} = \sum_{k=1}^{p} P_{k}\left(oldsymbol{a}_{k}^{H}oldsymbol{lpha}
ight)oldsymbol{a}_{k}$$

and hence $\mathcal{R}\{\mathbf{R}_s\} = \mathcal{R}\{\mathbf{A}(\boldsymbol{\omega})\}$. Consequently, assuming vectors \mathbf{a}_k are linearly independent, it follows that $\mathrm{rank}(\mathbf{R}_s) = p$.

ullet The eigenvalue decomposition of $oldsymbol{R}_s$ can thus be written as

$$\boldsymbol{R}_{s} = \sum_{k=1}^{p} \lambda_{k}^{s} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{H} + \frac{0}{2} \sum_{k=p+1}^{M} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{H} = \boldsymbol{U}_{s} \boldsymbol{\Lambda}_{s}^{s} \boldsymbol{U}_{s}^{H} + \boldsymbol{U}_{n} \boldsymbol{0} \boldsymbol{U}_{n}^{H}$$

where $egin{bmatrix} oldsymbol{U}_s & oldsymbol{U}_n \end{bmatrix}$ is the orthogonal basis of eigenvectors. Therefore,

$$oxed{\mathcal{R}\left\{oldsymbol{R}_{s}
ight\} = \mathcal{R}\left\{oldsymbol{U}_{s}
ight\}; \quad \mathcal{N}\left\{oldsymbol{R}_{s}
ight\} = \mathcal{R}\left\{oldsymbol{U}_{n}
ight\}}$$

Properties of R

ullet The eigenvalue decomposition (EVD) of R follows from that of R_s :

$$\begin{split} \boldsymbol{R} &= \boldsymbol{R}_s + \sigma^2 \boldsymbol{I} \\ &= \boldsymbol{U}_s \boldsymbol{\Lambda}_s^s \boldsymbol{U}_s^H + \boldsymbol{U}_n \boldsymbol{0} \boldsymbol{U}_n^H + \sigma^2 \boldsymbol{I} \\ &= \boldsymbol{U}_s \boldsymbol{\Lambda}_s^s \boldsymbol{U}_s^H + \boldsymbol{U}_n \boldsymbol{0} \boldsymbol{U}_n^H + \sigma^2 \left(\boldsymbol{U}_s \boldsymbol{U}_s^H + \boldsymbol{U}_n \boldsymbol{U}_n^H \right) \\ &= \boldsymbol{U}_s \left(\boldsymbol{\Lambda}_s^s + \sigma^2 \boldsymbol{I}_p \right) \boldsymbol{U}_s^H + \sigma^2 \boldsymbol{U}_n \boldsymbol{U}_n^H \\ &= \boldsymbol{U}_s \boldsymbol{\Lambda}_s \boldsymbol{U}_s^H + \sigma^2 \boldsymbol{U}_n \boldsymbol{U}_n^H. \end{split}$$

• The EVD gives access to 2 subspaces:

$$egin{aligned} \mathcal{R}\left\{oldsymbol{U}_s
ight\} &= \mathcal{R}\left\{oldsymbol{A}(oldsymbol{\omega})
ight\} \\ \mathcal{R}\left\{oldsymbol{U}_n
ight\} &= \mathcal{N}\left\{oldsymbol{R}_s
ight\} oldsymbol{\perp} \mathcal{R}\left\{oldsymbol{A}(oldsymbol{\omega})
ight\} \end{aligned}$$

Subspace methods

Subspace-based methods exploit the fact that the correlation matrix can be decomposed into a "signal" subspace (corresponding to largest eigenvalues) which coincides with the subspace spanned by the exponential signals, and a "noise" subspace orthogonal to the signal subspace. ω can thus be estimated from

- $lackbox{0}$ either $oldsymbol{U}_s$ using the fact that $oldsymbol{U}_s = oldsymbol{A}(oldsymbol{\omega})oldsymbol{T} \Rightarrow oldsymbol{\mathsf{ESPRIT}}.$
- ② or U_n using the fact that $\mathcal{R}\left\{U_n
 ight\} \perp \mathcal{R}\left\{A(\pmb{\omega})
 ight\}$, or equivalently

$$\boldsymbol{a}^{H}(\omega_{\ell})\left(\sum_{k=p+1}^{M}\alpha_{k}\boldsymbol{u}_{k}\right)=0 \quad \forall \ell \in [1,p], \ \forall \alpha_{k}, \ k \in [p+1,M]$$

 \Rightarrow MUSIC.

Relation with array processing

- The above result bears much resemblance with array processing since matrix ${\bf R}$ above shares the same algebraic properties as the spatial covariance matrix of p signals impinging on a uniform linear array of M antennas.
- This relation is better highlighted using the "pseudo-snapshot"

$$\mathbf{x}(n) = \begin{bmatrix} x(n) & x(n+1) & \cdots & x(n+M) \end{bmatrix}^{T}$$

$$= \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{p} \end{bmatrix} \begin{bmatrix} A_{1}e^{i\phi_{1}}e^{in\omega_{1}} \\ A_{2}e^{i\phi_{2}}e^{in\omega_{2}} \\ \vdots \\ A_{p}e^{i\phi_{p}}e^{in\omega_{p}} \end{bmatrix} + \begin{bmatrix} b(n) \\ b(n+1) \\ \vdots \\ b(n+M) \end{bmatrix}$$

$$= \mathbf{A}(\boldsymbol{\omega})\mathbf{s}(n) + \mathbf{b}(n)$$

whose covariance matrix is $\mathcal{E}\left\{\boldsymbol{x}(n)\boldsymbol{x}^H(n)\right\} = \boldsymbol{R}$. Yet, the snapshots $\boldsymbol{x}(n)$ are not independent here.

MUSIC

• MUSIC relies on the orthogonality between the noise (minor) eigenvectors and the exponential signals, i.e. $u_k \perp a_\ell$, for $k=p+1\cdots, M$ and $\ell=1,\cdots,p$. It is based on the following pseudo-spectrum

$$P_{\text{MUSIC}}(\omega) = \frac{1}{\boldsymbol{a}^H(\omega)\boldsymbol{U}_n\boldsymbol{U}_n^H\boldsymbol{a}(\omega)}$$

by observing that $P_{\text{MUSIC}}(\omega_{\ell}) = \infty$ for $\ell = 1, \dots p$.

ullet In practice $oldsymbol{R}$ and hence $oldsymbol{U}_n$ are estimated and one looks for the locations of the p largest peaks in

$$P_{\text{MUSIC}}(\omega) = \frac{1}{\boldsymbol{a}^{H}(\omega)\hat{\boldsymbol{U}}_{n}\hat{\boldsymbol{U}}_{n}^{H}\boldsymbol{a}(\omega)}$$

Remarks

- $U_nU_n^H$ is the projection matrix onto the noise subspace: hence, one looks for the exponentials whose projection onto the noise subspace has minimum norm.
- The pseudo-spectrum can be rewritten as

$$P_{\text{MUSIC}}(\omega) = \frac{1}{\sum_{k=p+1}^{M} |\boldsymbol{a}^{H}(\omega)\hat{\boldsymbol{u}}_{k}|^{2}}$$

and $a^H(\omega)\hat{u}_k$ corresponds to the Fourier transform of $\hat{u}_k \Rightarrow$ possibly use FFT for computational gain.

• The pseudo-spectrum can alternatively be rewritten as

$$P_{\text{MUSIC}}(\omega) = \frac{1}{M - \boldsymbol{a}^{H}(\omega)\hat{\boldsymbol{U}}_{s}\hat{\boldsymbol{U}}_{s}^{H}\boldsymbol{a}(\omega)}$$
$$= \frac{1}{M - \sum_{k=1}^{p} |\boldsymbol{a}^{H}(\omega)\hat{\boldsymbol{u}}_{k}|^{2}}$$

Root-MUSIC

An alternative solution consists in finding the roots of the polynomial

$$P(z) = \boldsymbol{a}^T(z^{-1})\hat{\boldsymbol{U}}_n\hat{\boldsymbol{U}}_n^H\boldsymbol{a}(z)$$

with
$$a(z) = \begin{bmatrix} 1 & z & \cdots & z^{M-1} \end{bmatrix}^T$$
.

• This polynomial of degree 2M-1 verifies

$$P^* (1/z^*) = \left[\boldsymbol{a}^T (z^*) \hat{\boldsymbol{U}}_n \hat{\boldsymbol{U}}_n^H \boldsymbol{a} (1/z^*) \right]^* = P(z)$$

- $\Rightarrow P(z)$ has (M-1) roots z_k inside the unit circle and (M-1) roots $1/z_k^*$. Moreover, if $\hat{m U}_n$ is replaced by ${m U}_n$, then $P(e^{i\omega_k})=0$.
- In practice, ω is estimated by picking the p roots of P(z) closest (and inside) the unit circle.

Variations

- When M=p+1 there is only one eigenvector in the noise subspace and one may look for the roots of $H(z)=\boldsymbol{a}^T(z^{-1})\boldsymbol{u}_{p+1}$ which are closest to the unit circle: this is referred to as Pisarenko's method.
- The pseudo-spectrum can be modified to

$$P(\omega) = \frac{1}{\sum_{k=p+1}^{M} w_k |\mathbf{a}^H(\omega)\hat{\mathbf{u}}_k|^2}$$

where $w_{p+1} \leq w_{p+2} \leq \cdots \leq w_M$ in order to give more weight to the smallest eigenvectors (since we are pretty sure they belong to the noise subspace). For instance, one may select $w_k = \hat{\lambda}_k^{-1}$.

• Instead of using all M-p noise eigenvectors, another method consists in finding the vector \boldsymbol{d} with minimum norm (and such that $d_1=1$) which belongs to the noise subspace: this is referred to as **min-norm** method, which is closely related to Tufts-Kumaresan's method presented above.

ESPRIT

- ullet ESPRIT uses the fact that the subspaces spanned $oldsymbol{U}_s$ and $oldsymbol{A}(oldsymbol{\omega})$ are identical, viz. $oldsymbol{U}_s = oldsymbol{A}(oldsymbol{\omega})oldsymbol{T}$.
- One can write

Observe that

Now, if we partition U_s as

$$oldsymbol{U}_s = egin{pmatrix} oldsymbol{U}_{s1} \ - \end{pmatrix} = egin{pmatrix} - \ oldsymbol{U}_{s2} \end{pmatrix}$$

is there a similar relation between U_{s1} and U_{s2} , knowing that $U_s = A(\omega)T$?

One has

$$U_{s2} = A_2 T = A_1 \Phi T = U_{s1} T^{-1} \Phi T = U_{s1} \Psi.$$

The matrices Φ and Ψ share the same eigenvalues, namely $e^{i\omega_k}!$

• In practice, there is no matrix Ψ which satisfies $\hat{U}_{s2}=\hat{U}_{s1}\Psi$. Ψ is then estimated using a least-squares approach as

$$\hat{\boldsymbol{\Psi}} = \arg\min_{\boldsymbol{\Psi}} \left\| \hat{\boldsymbol{U}}_{s2} - \hat{\boldsymbol{U}}_{s1} \boldsymbol{\Psi} \right\|^2 = \left(\hat{\boldsymbol{U}}_{s1}^H \hat{\boldsymbol{U}}_{s1} \right)^{-1} \hat{\boldsymbol{U}}_{s1}^H \hat{\boldsymbol{U}}_{s2}$$

from which the eigenvalues $e^{i\hat{\omega}_k}$ of $\hat{\Psi}$ are obtained.

N=64, SNR=[10 10]

Summary

- Subspace-based methods enable one to estimate the frequencies of noisy exponential signals with high resolution.
- They rely on the partitioning between the subspace spanned by the exponentials and the orthogonal subspace, both of which being obtained from EVD of the correlation matrix.
- Drawbacks :
 - high computational complexity (EVD).
 - require knowledge of the number of exponential signals.
 - require a high signal to noise ratio.

References

- F. Castanié (Editeur), Analyse Spectrale, Hermès Lavoisier, 2003
- S. M. Kay, Modern Spectral Estimation: Theory and Application, Prentice Hall, Englewood Cliffs, NJ, 1988
- S. M. Kay, Fundamentals of Statistical Signal Processing Estimation Theory, Prentice Hall, Upper Saddle River, NJ, 1993
- B. Porat, Digital Processing of Random Signals, Prentice Hall, Englewood Cliffs, NJ, 1994
- P. Stoica, R. L. Moses, Spectral Analysis of Signals, Pearson Prentice Hall, Upper Saddle River, NJ, 2005