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Preface 

This book is dedicated to my coauthor, Allan G. Piersol, who died on March 1,2009.1 
met Allan in 1959 when we were both working at Ramo-Wooldridge Corporation in 
Los Angeles. I had just won a contract from Wright-Patterson Air force Base in 
Dayton, Ohio, to study the application of statistics to flight vehicle vibration 
problems. I was familiar with statistical techniques but knew little about aircraft 
vibration matters. I looked around the company and found Allan who had previous 
experience from Douglas Aircraft Company in Santa Monica on testing and vibration 
problems. This started our close association together that continued for 50 years. 

In 1963,1 left Ramo-Wooldridge to become an independent mathematical con-
sultant and to form a California company called Measurement Analysis Corporation. I 
asked Allan to join me where I was the President and he was the Vice President. Over 
the next 5 years until we sold our company, we grew to 25 people and worked for 
various private companies and government agencies on aerospace, automotive, 
oceanographic, and biomedical projects. One of our NASA projects was to establish 
requirements for vibration testing of the Saturn launch vehicle for the Apollo 
spacecraft to send men to the moon and return them safely to earth. Allan was a 
member of the final certification team to tell Werner Von Braun it was safe to launch 
when the Apollo mission took place in 1969. 

In 1965, Allan and I were invited by the Advanced Group on Aeronautical 
Research and Development of NATO to deliver a one-week series of lectures at 
Southampton University in England. Some 250 engineers from all over Europe 
attended this event. Preparation for these lectures led to our first book Measurement 
and Analysis of Random Data that was published by John Wiley and Sons in 1966. 
This first book filled a strong need in the field that was not available from any other 
source to help people concerned with the acquisition and analysis of experimental 
physical data for engineering and scientific applications. From further technical 
advances and experience by others and us, we wrote three updated editions of this 
Random Data book published by Wiley in 1971,1986, and 2000. We were also able to 
write two companion books Engineering Applications of Correlation and Spectral 
Analysis published by Wiley in 1980 and 1993. 

xv 



xvi PREFACE 

In all of our books, Allan and I carefully reviewed each other's work to make the 
material appear to come from one person and to be clear and useful for readers. Our 
books have been translated into Russian, Chinese, Japanese, and Polish and have had 
world sales to date of more than 100,000 copies. We traveled extensively to do 
consulting work on different types of engineering research projects, and we gave 
many educational short courses to engineering companies, scientific meetings, 
universities, and government agencies in the United States as well as in 25 other 
countries. 

The preface to the third edition and the contents should be read to help understand 
and apply the comprehensive material that appears in this book. Chapters 1-6 and 
Chapter 12 in this fourth edition are the same as in the third edition except for small 
corrections and additions. Chapters 7-11 contain new important technical results on 
mathematical formulas and practical procedures for random data analysis and 
measurement that replace some previous formulas and procedures in the third edition. 
Chapter 13 now includes a computer-generated Hilbert transform example of 
engineering interest. Chapter 14, Nonlinear System Analysis, is a new chapter that 
discusses recommended techniques to model and identify the frequency-domain 
properties of large classes of nonlinear systems from measured input/output random 
data. Previous editions deal only with the identification of linear systems from 
measured data. 

This fourth edition of Random Data from 50 years of work is our final contribution 
to the field that I believe will benefit students, engineers, and scientists for many years. 

JULIUS S. BENDAT 

Los Angeles, California 
January 2010 



Preface to the Third Edition 

This new third edition of Random Data: Analysis and Measurement Procedures is the 
third major revision of a book originally published by Wiley in 1966 under the title 
Measurement and Analysis of Random Data. That 1966 book was based upon the 
results of comprehensive research studies that we performed for various agencies of 
the United States government, and it was written to provide a reference for working 
engineers and scientists concerned with random data acquisition and analysis 
problems. Shortly after its publication, computer programs for the computation of 
complex Fourier series, commonly referred to as fast Fourier transform (FFT) 
algorithms, were introduced that dramatically improved random data analysis 
procedures. In particular, when coupled with the increases in speed and decreases 
in cost of digital computers, these algorithms led to traditional analog data analysis 
instruments being replaced by digital computers with appropriate software. Hence, in 
1971, our original book was extensively revised to reflect these advances and was 
published as a first edition under the present title. 

In the mid-1970s, new iterative algorithms were formulated for the analysis of 
multiple-input/output problems that substantially enhanced the ability to interpret the 
results of such analyses in a physically meaningful way. This fact, along with further 
advances in the use of digital computers plus new techniques resulting from various 
projects, led to another expansion of our book that was published in 1986 as the second 
edition. Since 1986, many additional developments in random data measurement and 
analysis procedures have occurred, including (a) improvements in data acquisition 
instruments, (b) modified iterative procedures for the analysis of multiple-input/ 
output problems that reduce computations, and (c) practical methods for analyzing 
nonstationary random data properties from single sample records. For these and other 
reasons, this book has again been extensively revised to produce this third edition of 
Random Data. 

The primary purpose of this book remains the same, namely, to provide a practical 
reference for working engineers and scientists in many fields. However, since the first 
publication in 1966, this book has found its way into a number of university 
classrooms as a teaching text for advanced courses on the analysis of random 
processes. Also, a different companion book written by us entitled Engineering 

xvii 



xviii PREFACE TO THE THIRD EDITION 

Applications of Correlation and Spectral Analysis, published by Wiley-Interscience 
in 1980 and revised in a second edition in 1993, includes numerous illustrations of 
practical applications of the material in our 1971 and 1986 books. This has allowed us 
in the third edition of Random Data to give greater attention to matters that enhance its 
use as a teaching text by including rigorous proofs and derivations of more of the basic 
relationships in random process theory that are difficult to find elsewhere. 

As in the second edition, Chapters 1, 2, and 4 present background material on 
descriptions of data, properties of linear systems, and statistical principles. Chapter 3 
on probability fundamentals has been revised and expanded to include formulas for 
the Rayleigh distribution and for higher order changes of variables. Chapter 5 presents 
a comprehensive discussion of stationary random process theory, including new 
material on wavenumber spectra and on level crossings and peak values of normally 
distributed random data. Chapters 6 and 7 develop mathematical relationships for the 
detailed analysis of single-input/output and multiple-input/output linear systems that 
include modified algorithms. Chapters 8 and 9 derive important practical formulas to 
determine statistical errors in estimates of random data parameters and linear system 
properties from measured data. Chapter 10 on data acquisition and processing has 
been completely rewritten to cover major changes since the publication of the second 
edition. Chapter 11 on data analysis has been updated to include new approaches to 
spectral analysis that have been made practical by the increased capacity and speed of 
digital computations. Chapter 12 on nonstationary data analysis procedures has been 
expanded to cover recent advances that are applicable to single sample records. 
Chapter 13 on the Hilbert transform remains essentially the same. 

We wish to acknowledge the contributions to this book by many colleagues and 
associates, in particular, Paul M. Agbabian, Robert N. Coppolino, and Robert K. 
Otnes, for their reviews of portions of the manuscript and helpful comments. We also 
are grateful to the many government agencies and industrial companies that have 
supported our work and sponsored our presentation of short courses on these matters. 

JULIUS S. BENDAT 

ALLAN G . PIERSOL 

Los Angeles, California 
January 2000 



Glossary of Symbols 

a, b Sample regression coefficients, arbitrary constants 
A Amplitude, reverse arrangements, regression coefficient 

Αφ Frequency response function after linear or nonlinear operation 

b[] Bias error of [] 
Β Cyclical frequency bandwidth, regression coefficient 

Be Frequency resolution bandwidth 

Bn 
Noise spectral bandwidth 

Bs 
Statistical bandwidth 

c Mechanical damping coefficient, arbitrary constant 
C Electrical capacitance 
r Covariance 
C „ ( T ) Autocovariance function 

Cross-covariance function 

Cxyif) Coincident spectral density function (one-sided) 

e(t) Potential difference 
E[] Expected value of [] 

f Cyclical frequency 

Δ / Bandwidth resolution (Hz) 
Fourier transform of [] 

Gxx(f) Autospectral density function (one-sided) 

Gxyif) Cross-spectral density function (one-sided) 

GyyAf) Conditioned autospectral density function (one-sided) 
Gx,y.Xj{f) Conditioned cross-spectral density function (one-sided) 
G(K) Wavenumber spectral density function (one-sided) 

m "Energy" spectral density function 
Ητ) Unit impulse response function 
H(f) Frequency response function 

\H(f)\ System gain factor 

m] Hubert transform of [] 
i Index 

Μ Current 
Im[] Imaginary part of [] 

J y/—T, index 
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XX GLOSSARY OF SYMBOLS 

k Mechanical spring constant, index 
Κ Number of class intervals 
L Electrical inductance, length 

L(f) Frequency response function for conditioned inputs 
m Mechanical mass, maximum number of lag values 
η Degrees of freedom, index 
Ν Sample size, number of sample records 

P(x) Probability density function 

p(x,y) Joint probability density function 

Ρ(χ) Probability distribution function 

P(x,y) Joint probability distribution function 
Prob[] Probability that [] 
PSNR Peak signal-to-noise ratio 
PS/N Peak signal-to-noise ratio in dB 

1 Number of inputs 

q(t) Electrical charge 

q(R) Rayleigh probability density function 

Q(R) Rayleigh probability distribution function 

Qxy<f) Quadrature spectral density function (one-sided) 
r Number of outputs, number of lag values 

Sample correlation coefficient 
R Electrical resistance 

R(t) Envelope function 

R*A*) Autocorrelation function 
Rxy(r) Cross-correlation function 

R(h, t2) Double-time correlation function 
<Μ(τ, t) Alternate double-time correlation function 
Re[] Real part of [] 
s Sample standard deviation 
s 2 Sample variance 

Sample covariance 
s.d.[] Standard deviation of [] 

Sxx(f) Autospectral density function (two-sided) 

Sxy(f) Cross-spectral density function (two-sided) 

Syyxif) Conditioned autospectral density function (two-sided) 
Conditioned cross-spectral density function (two-sided) 
"Energy" spectral density function (two-sided) 

S(fuf2) Double-frequency spectral density function (two-sided) 
Alternate double-frequency spectral density function (two-sided) 

SNR Signal-to-noise ratio 
S/N Signal-to-noise ratio in dB 
SGif, t) Spectrogram 
t Time variable, Student t variable 
At Sampling interval 
Τ Record length 



GLOSSARY OF SYMBOLS 

Noise correlation duration 
Tr 

Total record length 

«« Raw data values 
u(t), v(0 Time-dependent variables 
Var [] Variance of [] 
W Amplitude window width 
W(f,t) Frequency-time spectral density function (one-sided) 

ir(f,t) Frequency-time spectral density function (two-sided) 
WD(f,t) Wigner distribution 
x(t),y(t) Time-dependent variables 
X Sample mean value of χ 
X2 Sample mean square value of χ 
x(t) Hilbert transform of x(t) 
X Amplitude of sinusoidal x(t) 

X(f) Fourier transform of x(t) 

X(f,T) Fourier transform of x(t) over record length Τ 

ζ Standardized normal variable 

ιπι Absolute value of [] 

[Λ] Estimate of [] 
a A small probability, level of significance, dummy variable 

β Probability of a type Π error, dummy variable 
Ordinary coherence function 

y2

r,{f) Multiple coherence function 

Partial coherence function 
8 Spatial variable 

so Delta function 
A Small increment 
ε Normalized error 
κ Wavenumber 
λ Wavelength 
θ Phase angle 

< Μ / ) Argument of G^(/) 

μ Mean value 

Ρ Correlation coefficient 
ρ(τ) Correlation coefficient function 
σ Standard deviation 
σ 2 Variance 
τ Time displacement 

ΦΦ Phase factor 

Φ Arbitrary statistical parameter 

χ2 Statistical chi-square variable 

Ψ Root mean square value 

Φ2 Mean square value 

ζ Mechanical damping ratio 



C H A P T E R 1 

Basic Descriptions and Properties 

This first chapter gives basic descriptions and properties of deterministic data and 
random data to provide a physical understanding for later material in this book. 
Simple classification ideas are used to explain differences between stationary random 
data, ergodic random data, and nonstationary random data. Fundamental statistical 
functions are defined by words alone for analyzing the amplitude, time, and frequency 
domain properties of single stationary random records and pairs of stationary random 
records. An introduction is presented on various types of input/output linear system 
problems solved in this book, as well as necessary error analysis criteria to design 
experiments and evaluate measurements. 

1.1 DETERMINISTIC VERSUS RANDOM DATA 

Any observed data representing a physical phenomenon can be broadly classified as 
being either deterministic or nondeterministic. Deterministic data are those that can 
be described by an explicit mathematical relationship. For example, consider a rigid 
body that is suspended from a fixed foundation by a linear spring, as shown in 
Figure 1.1. Let m be the mass of the body (assumed to be inelastic) and k be the spring 
constant of the spring (assumed to be massless). Suppose the body is displaced from 
its position of equilibrium by a distance X and released at time t = 0. From either basic 
laws of mechanics or repeated observations, it can be established that the following 
relationship will apply: 

Equation (1.1) defines the exact location of the body at any instant of time in the 
future. Hence, the physical data representing the motion of the mass are deterministic. 

Random Data: Analysis and Measurement Procedures, Fourth Edition. By Julius S. Bendat 
and Allan G. Piersol 
Copyright © 2010 John Wiley & Sons, Inc. 

(1.1) 

1 
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Position of 
equilibrium 

m 

x(0 

Figure 1.1 Simple spring mass system. 

There are many physical phenomena in practice that produce data that can be 
represented with reasonable accuracy by explicit mathematical relationships. For 
example, the motion of a satellite in orbit about the earth, the potential across a 
condenser as it discharges through a resistor, the vibration response of an unbalanced 
rotating machine, and the temperature of water as heat is applied are all basically 
deterministic. However, there are many other physical phenomena that produce data 
that are not deterministic. For example, the height of waves in a confused sea, the 
acoustic pressures generated by air rushing through a pipe, and the electrical output of 
a noise generator represent data that cannot be described by explicit mathematical 
relationships. There is no way to predict an exact value at a future instant of time. 
These data are random in character and must be described in terms of probability 
statements and statistical averages rather than by explicit equations. 

The classification of various physical data as being either deterministic or random 
might be debated in many cases. For example, it might be argued that no physical data 
in practice can be truly deterministic because there is always a possibility that some 
unforeseen event in the future might influence the phenomenon producing the data in 
a manner that was not originally considered. On the other hand, it might be argued that 
no physical data are truly random, because an exact mathematical description might 
be possible if a sufficient knowledge of the basic mechanisms of the phenomenon 
producing the data were available. In practical terms, the decision of whether physical 
data are deterministic or random is usually based on the ability to reproduce the data 
by controlled experiments. If an experiment producing specific data of interest can be 
repeated many times with identical results (within the limits of experimental error), 
then the data can generally be considered deterministic. If an experiment cannot be 
designed that will produce identical results when the experiment is repeated, then the 
data must usually be considered random in nature. 

Various special classifications of deterministic and random data will now be 
discussed. Note that the classifications are selected from an analysis viewpoint and do 
not necessarily represent the most suitable classifications from other possible view-
points. Further note that physical data are usually thought of as being functions of time 
and will be discussed in such terms for convenience. Any other variable, however, can 
replace time, as required. 
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1.2 CLASSIFICATIONS OF DETERMINISTIC DATA 

Data representing deterministic phenomena can be categorized as being either 
periodic or nonperiodic. Periodic data can be further categorized as being either 
sinusoidal or complex periodic. Nonperiodic data can be further categorized as being 
either "almost-periodic" or transient. These various classifications of deterministic 
data are schematically illustrated in Figure 1.2. Of course, any combination of these 
forms may also occur. For purposes of review, each of these types of deterministic 
data, along with physical examples, will be briefly discussed. 

1.2.1 Sinusoidal Periodic Data 

Sinusoidal data are those types of periodic data that can be defined mathematically by 
a time-varying function of the form 

jc(r) =Xsin(27t / o i + 0) (1.2) 

where 

X = amplitude 

/o = cyclic frequency in cycles per unit time 

θ = initial phase angle with respect to the time origin in radians 

x{t) = instantaneous value at time t 

The sinusoidal time history described by Equation (1.2) is usually referred to as a sine 
wave. When analyzing sinusoidal data in practice, the phase angle θ is often ignored. 
For this case, 

χ(ή = X sin 2π/ 0 ί (1.3) 

Equation (1.3) can be pictured by a time history plot or by an amplitude-frequency 
plot (frequency spectrum), as illustrated in Figure 1.3. 

The time interval required for one full fluctuation or cycle of sinusoidal data is 
called the period Tp. The number of cycles per unit time is called the frequency / 0 . 

Deterministic 

Periodic Nonperiodic 

Sinusoidal Complex 
periodic 

Almost-
periodic 

Transient 

Figure 1.2 Classification of deterministic data. 
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Amplitude 

X X I *-Time 0 Frequency 

Figure 1.3 Time history and spectrum of sinusoidal data. 

The frequency and period are related by 

Note that the frequency spectrum in Figure 1.3 is composed of an amplitude 
component at a specific frequency, as opposed to a continuous plot of amplitude 
versus frequency. Such spectra are called discrete spectra or line spectra. 

There are many examples of physical phenomena that produce approximately 
sinusoidal data in practice. The voltage output of an electrical alternator is one example; 
the vibratory motion of an unbalanced rotating weight is another. Sinusoidal data 
represent one of the simplest forms of time-varying data from the analysis viewpoint. 

1.2.2 Complex Periodic Data 

Complex periodic data are those types of periodic data that can be defined math-
ematically by a time-varying function whose waveform exactly repeats itself at 
regular intervals such that 

As for sinusoidal data, the time interval required for one full fluctuation is called the 
period Tp. The number of cycles per unit time is called the fundamentalfrequency j \ . A 
special case for complex periodic data is clearly sinusoidal data, where f\ =/0. 

With few exceptions in practice, complex periodic data may be expanded into a 
Fourier series according to the following formula: 

x{t) — x(t ± nTp) η = 1 , 2 , 3 , . . . (1.5) 

oo 
x(t) — + ^ ^ ( β η cos 2nnf\t + bn sin2%nf\t) 

2 n=l 
(1.6) 

where 

0 , 1 , 2 , . . . 

1 , 2 , 3 , . . . 
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An alternative way to express the Fourier series for complex periodic data is 

oo 

x{t) =Χ0+Σχη cos{2nnfi ί-θη) (1.7) 

n = l 

where 

X 0 = a0/2 

Xn = y/aJ+bJ n = l , 2 , 3 , . . . 

0„ = t a n - 1 (£>„/««) n = l , 2 , 3 , . . . 

In words, Equation (1.7) says that complex periodic data consist of a static component 
Xq and an infinite number of sinusoidal components called harmonics, which have 
amplitudes XN and phases θη. The frequencies of the harmonic components are all 
integral multiples o f / j . 

When analyzing periodic data in practice, the phase angles θη are often ignored. 
For this case, Equation (1.7) can be characterized by a discrete spectrum, as illustrated 
in Figure 1.4. Sometimes, complex periodic data will include only a few components. 
In other cases, the fundamental component may be absent. For example, suppose a 
periodic time history is formed by mixing three sine waves that have frequencies of 60, 
75, and 100 Hz. The highest common divisor is 5 Hz, so the period of the resulting 
periodic data is TP = 0.2 s. Hence, when expanded into a Fourier series, all values of XN 

are zero except for η = 12, η = 15, and η = 20. 

Physical phenomena that produce complex periodic data are far more common 
than those that produce simple sinusoidal data. In fact, the classification of data as 
being sinusoidal is often only an approximation for data that are actually complex. For 
example, the voltage output from an electrical alternator may actually display, under 
careful inspection, some small contributions at higher harmonic frequencies. In other 
cases, intense harmonic components may be present in periodic physical data. For 
example, the vibration response of a multicyclinder reciprocating engine will usually 
display considerable harmonic content. 

Amplitude 

•X2 

Γ 
Xs 

h 2fi 3 A 4/"Ι 5Λ 

Figure 1.4 Spectrum of complex periodic data. 

• Frequency 
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1.2.3 Almost-Periodic Data 

In Section 1.2.2, it is noted that periodic data can generally be reduced to a series of 
sine waves with commensurately related frequencies. Conversely, the data formed by 
summing two or more commensurately related sine waves will be periodic. However, 
the data formed by summing two or more sine waves with arbitrary frequencies 
generally will not be periodic. Specifically, the sum of two or more sine waves will be 
periodic only when the ratios of all possible pairs of frequencies form rational 
numbers. This indicates that a fundamental period exists that will satisfy the 
requirements of Equation (1.5). Hence, 

x(t) = Xi sin(2r + 0 i ) + X 2 s i n ( 3 / + 0 2 ) + X 3 s i n ( 7 i + 03) 

is periodic because | , η, and η are rational numbers (the fundamental period is Tp=\). 
On the other hand, 

x(t) =Xi sin(2r + 0 1 ) + X 2 S i n ( 3 r + 0 2 ) + X 3 s i n ( v / 5 O r + 0 3 ) 

is not periodic because 2/\/50 and 3 / v/50 are not rational numbers (the fundamental 
period is infinitely long). The resulting time history in this case will have an almost-
periodic character, but the requirements of Equation (1.5) will not be satisfied for any 
finite value of Tp. 

Based on these discussions, almost-periodic data are those types of nonperiodic 
data that can be defined mathematically by a time-varying function of the form 

χ(ή=Σχηήη(2π/„ί + θη) (1.8) 
n = 1 

where fn/fm φ rational number in all cases. Physical phenomena producing almost-
periodic data frequently occur in practice when the effects of two or more unrelated 
periodic phenomena are mixed. A good example is the vibration response in a 
multiple-engine propeller airplane when the engines are out of synchronization. 

An important property of almost-periodic data is as follows. If the phase angles 0„ 
are ignored, Equation (1.8) can be characterized by a discrete frequency spectrum 
similar to that for complex periodic data. The only difference is that the frequencies of 
the components are not related by rational numbers, as illustrated in Figure 1.5. 

Amplitude 

rXi 

frequency 

Figure 1.5 Spectrum of almost-periodic data. 
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Figure 1.6 Illustrations of transient data. 

1.2.4 Transient Nonperiodic Data 

Transient data are defined as all nonperiodic data other than the almost-periodic data 
discussed in Section 1.2.3. In other words, transient data include all data not 
previously discussed that can be described by some suitable time-varying function. 
Three simple examples of transient data are given in Figure 1.6. 

Physical phenomena that produce transient data are numerous and diverse. For 
example, the data in Figure 1.6(a) could represent the temperature of water in a kettle 
(relative to room temperature) after the flame is turned off. The data in Figure 1.6(b) 
might represent the free vibration of a damped mechanical system after an excitation 
force is removed. The data in Figure 1.6(c) could represent the stress in an end-loaded 
cable that breaks at time c. 

An important characteristic of transient data, as opposed to periodic and almost-
periodic data, is that a discrete spectral representation is not possible A continuous 
spectral representation for transient data can be obtained in most cases, however, from 
a Fourier transform given by 

x(f) = x(t)e-J27lftdt (1.9) 

The Fourier transform X(f) is generally a complex number that can be expressed in 
complex polar notation as 

χι/) = \m\e -J6if) 

Here, \X(f)\ is the magnitude of X(f) and #(/) is the argument. In terms of the 
magnitude \X(f)\, continuous spectra of the three transient time histories in 
Figure 1.6 are as presented in Figure 1.7. Modern procedures for the digital 
computation of Fourier series and finite Fourier transforms are detailed in 
Chapter 11. 
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f 

Figure 1.7 Spectra of transient data. 

1.3 CLASSIFICATIONS OF RANDOM DATA 

As discussed earlier, data representing a random physical phenomenon cannot be 
described by an explicit mathematical relationship because each observation of the 
phenomenon will be unique. In other words, any given observation will represent only 
one of many possible results that might have occurred. For example, assume the 
output voltage from a thermal noise generator is recorded as a function of time. A 
specific voltage time history record will be obtained, as shown in Figure 1.8. If a 
second thermal noise generator of identical construction and assembly is operated 
simultaneously, however, a different voltage time history record would result. In fact, 
every thermal noise generator that might be constructed would produce a different 
voltage time history record, as illustrated in Figure 1.8. Hence, the voltage time 
history for any one generator is merely one example of an infinitely large number of 
time histories that might have occurred. 

A single time history representing a random phenomenon is called a sample 
function (or a sample record when observed over a finite time interval). The collection 
of all possible sample functions that the random phenomenon might have produced is 
called a random process or a stochastic process. Hence, a sample record of data for a 
random physical phenomenon may be thought of as one physical realization of a 
random process. 

Random processes may be categorized as being either stationary or nonstationary. 
Stationary random processes may be further categorized as being either ergodic or 
nonergodic. Nonstationary random processes may be further categorized in terms of 
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Voltage 

Time 

Voltage 

-•-Time 

Time 

Figure 1.8 Sample records of thermal noise generator outputs. 

specific types of nonstationary properties. These various classifications of random 
processes are schematically illustrated in Figure 1.9. The meaning and physical 
significance of these various types of random processes will now be discussed in broad 
terms. More analytical definitions and developments are presented in Chapters 5 
and 12. 

1.3.1 Stationary Random Data 

When a physical phenomenon is considered in terms of a random process, the properties 
of the phenomenon can hypothetically be described at any instant of time by computing 

Stationary 

I 
Nonstationary 

Ergodic Nonergodtc 
Special 

classifications of 
nonstationarrty 

Figure 1.9 Classifications of random data. 
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*t<t) 

* 2 W 

' I * / 1 

I—κ Κ—. 
Figure 1.10 Ensemble of time history records defining a random process. 

average values over the collection of sample functions that describe the random process. 
For example, consider the collection of sample functions (also called the ensemble) that 
forms the random process illustrated in Figure 1.10. The mean value (first moment) of the 
random process at some ti can be computed by taking the instantaneous value of each 
sample function of the ensemble at time ri, summing the values, and dividing by the 
number of sample functions. In a similar manner, a correlation (joint moment) between 
the values of the random process at two different times (called the autocorrelation 
function) can be computed by taking the ensemble average of the product of instant-
aneous values at two times, t\ andi] -I- τ. That is, for the random process {*(?)}, where 
thesymbol {} is used to denote an ensemble of sample functions, the mean value ^ f ^ a n d 
the autocorrelation function R^ (tx, t\ + τ) are given by 

1 N 

Ρχ{*ι) = A , l i m I?Σ 
k— 1 

(1.10a) 

1 N 

Rxx(h,h +τ) = lim - YV(fi)**(ii + T ) (1.10b) 
Ν —> oo i v f—, 

k=\ 
where the final summation assumes that each sample function is equally likely. 
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For the general case where μχ(ί\) and R^itu t\ + τ) defined in Equation (1.10) 
vary as time fi varies, the random process {x(t)} is said to be nonstationary. For the 
special case where μχ(ίι) and RxJit\, h + Ό do not vary as time ty varies, the random 
process {x(t)\ is said to be weakly stationary or stationary in the wide sense. For 
weakly stationary random processes, the mean value is a constant and the auto-
correlation function is dependent only on the time displacement τ. That is, μχ(ί\) = μχ 

a n d f l ^ r , , r, + τ ^ Κ ^ τ ) . 

An infinite collection of higher order moments and joint moments of the 
random process [x(t)} could also be computed to establish a complete family of 
probability distribution functions describing the process. For the special case where 
all possible moments and joint moments are time invariant, the random process 
{x(t)} is said to be strongly stationary or stationary in the strict sense. For many 
practical applications, verification of weak stationarity will justify an assumption 
of strong stationarity. 

1.3.2 Ergodic Random Data 

In Section 1.3.1, it is noted how the properties of a random process can be determined 
by computing ensemble averages at specific instants of time. In most cases, however, 
it is also possible to describe the properties of a stationary random process by 
computing time averages over specific sample functions in the ensemble. For 
example, consider the kth sample function of the random process illustrated in 
Figure 1.10. The mean value μχψ) and the autocorrelation function R^x, k) of the kth 
sample function are given by 

If the random process {x(t)} is stationary, and μχ$) and /?^(τ, k) defined in 
Equation (1.11) do not differ when computed over different sample functions, the 
random process is said to be ergodic. For ergodic random processes, the time-
averaged mean value and autocorrelation function (as well as all other time-
averaged properties) are equal to the corresponding ensemble-averaged values. 
That is, μχ(^ = μχ and Rxx(r, k) = Rxx(s). Note that only stationary random processes 
can be ergodic. 

Ergodic random processes are clearly an important class of random processes since 
all properties of ergodic random processes can be determined by performing time 
averages over a single sample function. Fortunately, in practice, random data 
representing stationary physical phenomena are generally ergodic. It is for this 
reason that the properties of stationary random phenomena can be measured properly, 
in most cases, from a single observed time history record. A full development of the 
properties of ergodic random processes is presented in Chapter 5. 

(1.11a) 

(1.11b) 
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1.3.3 Nonstationary Random Data 

Nonstationary random processes include all random processes that do not meet the 
requirements for stationary defined in Section 1.3.1. Unless further restrictions are 
imposed, the properties of a nonstationary random process are generally time-
varying functions that can be determined only by performing instantaneous 
averages over the ensemble of sample functions forming the process. In practice, 
it is often not feasible to obtain a sufficient number of sample records to permit the 
accurate measurement of properties by ensemble averaging. This fact has tended to 
impede the development of practical techniques for measuring and analyzing 
nonstationary random data. 

In many cases, the nonstationary random data produced by actual physical phe-
nomena can be classified into special categories of nonstationarity that simplify the 
measurement and analysis problem. For example, some types of random data might be 
described by a nonstationary random process {x(t)}, where each sample function is 
given by x(t) = a(t)u(i). Here, u(t) is a sample function from a stationary random process 
{u(t)} and a(t) is a deterministic multiplication factor. In other words, the data might be 
represented by a nonstationary random process consisting of sample functions with a 
common deterministic time trend. If nonstationary random data fit a specific model of 
this type, ensemble averaging is not always needed to describe the data. The various 
desired properties can sometimes be estimated from a single sample record, as is true for 
ergodic stationary data. These matters are discussed in detail in Chapter 12. 

1.3.4 Stationary Sample Records 

The concept of stationarity, as defined and discussed in Section 1.3.1, relates to the 
ensemble-averaged properties of a random process. In practice, however, data in the 
form of individual time history records of a random phenomenon are frequently 
referred to as being stationary or nonstationary. A slightly different interpretation of 
stationarity is involved here. When a single time history record is referred to as being 
stationary, it is generally meant that the properties computed over short time intervals 
do not vary significantly from one interval to the next. The word significantly is used 
here to mean that observed variations are greater than would be expected due to 
normal statistical sampling variations. 

To help clarify this point, consider a single sample record χ^(ί) obtained from the 
Mi sample function of a random process {x(t)}. Assume a mean value and an 
autocorrelation function are obtained by time averaging over a short interval Γ with a 
starting time of tx as follows: 

(1.12a) 

(1.12b) 
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For the general case where the sample properties defined in Equation (1.12) vary 
significantly as the starting time ii varies, the individual sample record is said to be 
nonstationary. For the special case where the sample properties defined in 
Equation (1.12) do not vary significantly as the starting time t\ varies, the sample 
record is said to be stationary. Note that a sample record obtained from an ergodic 
random process will be stationary. Furthermore, sample records from most physically 
interesting nonstationary random processes will be nonstationary. Hence, if an 
ergodic assumption is justified (as it is for most actual stationary physical phenom-
ena), verification of stationarity for a single sample record will effectively justify an 
assumption of stationarity and ergodicity for the random process from which the 
sample record is obtained. Tests for stationarity of individual sample records are 
discussed in Chapters 4 and 10. 

1.4 ANALYSIS OF RANDOM DATA 

The analysis of random data involves different considerations from the deterministic 
data discussed in Section 1.2. In particular, because no explicit mathematical equation 
can be written for the time histories produced by a random phenomenon, statistical 
procedure must be used to define the descriptive properties of the data. Nevertheless, 
well-defined input/output relations exist for random data, which are fundamental to a 
wide range of applications. In such applications, however, an understanding and 
control of the statistical errors associated with the computed data properties and input/ 
output relationships is essential. 

1.4.1 Basic Descriptive Properties 

Basic statistical properties of importance for describing single stationary random 
records are 

1. Mean and mean square values 

2. Probability density functions 

3. Autocorrelation functions 

4. Autospectral density functions 

For the present discussion, it is instructive to define these quantities by words alone, 
without the use of mathematical equations. After this has been done, they will be 
illustrated for special cases of interest. 

The mean value μχ and the variance σ\ for a stationary record represent the central 
tendency and dispersion, respectively, of the data. The mean square value ψ2., which 
equals the variance plus the square of the mean, constitutes a measure of the combined 
central tendency and dispersion. The mean value is estimated by simply computing 
the average of all data values in the record. The mean square value is similarly 
estimated by computing the average of the squared data values. By first subtracting the 
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mean value estimate from all the data values, the mean square value computation 
yields a variance estimate. 

The probability density function p(x) for a stationary record represents the rate of 
change of probability with data value. The function p(x) is generally estimated by 
computing the probability that the instantaneous value of the single record will be in a 
particular narrow amplitude range centered at various data values, and then dividing 
by the amplitude range.The total area under the probability density function over all 
data values will be unity because this merely indicates the certainty of the fact that the 
data values must fall between — oo and + oo. The partial area under the probability 
density function from - oo to some given value χ represents the probability distribu-
tion function, denoted by P(x). The area under the probability density function 
between any two values χλ and x2, given by P(xi) — P(x\), defines the probability that 
any future data values at a randomly selected time will fall within this amplitude 
interval. Probability density and distribution functions are fully discussed in Chapters 
3 and 4. 

The autocorrelation function / ^ ( τ ) for a stationary record is a measure of time-
related properties in the data that are separated by fixed time delays. It can be 
estimated by delaying the record relative to itself by some fixed time delay τ, then 
multiplying the original record with the delayed record, and finally averaging the 
resulting product values over the available record length or over some desired portion 
of this record length. The procedure is repeated for all time delays of interest. 

The autospectral (also called power spectral) density function G „ ( / ) for a 
stationary record represents the rate of change of mean square value with frequency. 
It is estimated by computing the mean square value in a narrow frequency band at 
various center frequencies, and then dividing by the frequency band. The total area 
under the autospectral density function over all frequencies will be the total mean 
square value of the record. The partial area under the autospectral density function 
from /[ to f2 represents the mean square value of the record associated with that 
frequency range. Autocorrelation and autospectral density functions are developed in 
Chapter 5. 

Four typical time histories of a sine wave, sine wave plus random noise, narrow 
bandwidth random noise, and wide bandwidth random noise are shown in Figure 1.11. 
Theoretical plots of their probability density functions, autocorrelation functions, and 
autospectral density functions are shown in Figures 1.12,1.13, and 1.14, respectively. 
Equations for all of these plots are given in Chapter 5, together with other theoretical 
formulas. 

For pairs of random records from two different stationary random processes, joint 
statistical properties of importance are 

1. Joint probability density functions 

2. Cross-correlation functions 

3. Cross-spectral density functions 

4. Frequency response functions 

5. Coherence functions 
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(d) 

Figure 1.11 Four special time histories, (a) Sine wave, (b) Sine wave plus random noise, (c) Narrow 
bandwidth random noise, (d) Wide bandwidth random noise. 

The first three functions measure fundamental properties shared by the pair of 
records in the amplitude, time, or frequency domains. From knowledge of the cross-
spectral density function between the pair of records, as well as their individual 
autospectral density functions, one can compute theoretical linear frequency response 
functions (gain factors and phase factors) between the two records. Here, the two 
records are treated as a single-input/single-output problem. The coherence function is 
a measure of the accuracy of the assumed linear input/output model and can also be 
computed from the measured autospectral and cross-spectral density functions. 
Detailed discussions of these topics appear in Chapters 5, 6, and 7. 
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Figure 1.12 Probability density function plots, (a) Sine wave, (b) Sine wave plus random noise, 
(c) Narrow bandwidth random noise, (d) Wide bandwidth random noise. 

Common applications of probability density and distribution functions, beyond a 
basic probabilistic description of data values, include 

1. Evaluation of normality 

2. Detection of data acquisition errors 

3. Indication of nonlinear effects 

4. Analysis of extreme values 



Figure 1.13 Autocorrelation function plots, (a) Sine wave, (b) Sine wave plus random noise, (c) Narrow 
bandwidth random noise, (d) Wide bandwidth random noise. 
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Figure 1.14 Autospectral density function plots, (a) Sine wave, (b) Sine wave plus random noise, 
(c) Narrow bandwidth random noise, (d) Wide bandwidth random noise. 

The primary applications of correlation measurements include 

1. Detection of periodicities 

2. Prediction of signals in noise 

3. Measurement of time delays 

4. Location of disturbing sources 

5. Identification of propagation paths and velocities 
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Typical applications of spectral density functions include 

1. Determination of system properties from input data and output data 

2. Prediction of output data from input data and system properties 

3. Identification of input data from output data and system properties 

4. Specifications of dynamic data for test programs 

5. Identification of energy and noise sources 

6. Optimum linear prediction and filtering 

1.4.2 Input/Output Relations 

Input/output cases of common interest can usually be considered as combinations of 
one or more of the following linear system models: 

1. Single-input/single-output model 

2. Single-input/multiple-output model 

3. Multiple-input/single-output model 

4. Multiple-input/multiple-output model 

In all cases, there may be one or more parallel transmission paths with different time 
delays between each input point and output point. For multiple-input cases, the various 
inputs may or may not be correlated with each other. Special analysis techniques are 
required when nonstationary data are involved, as treated in Chapter 12, or when 
systems are nonlinear, as treated in Chapter 14. 

A simple single-input/single-output model is shown in Figure 1.15. Here, x(i) and y 
(t) are the measured input and output stationary random records, and n(t) is the 
unmeasured extraneous output noise. The quantity //*>,(/) is the frequency response 
function of a constant-parameter linear system between x(t) and y(t). Figure 1.16 
shows a single-input/multiple-output model that is a simple extension of Figure 1.15, 
where an input x(f) produces many outputs y,<0. / = 1, 2, 3,.... Any output y,(0 is the 
result of x(t) passing through a constant-parameter linear system described by the 
frequency response function Hxi(f). The noise terms n,{t) represent unmeasured 
extraneous output noise at the different outputs. It is clear that Figure 1.16 can be 
considered as a combination of separate single-input/single-output models. 

Appropriate procedures for solving single-input models are developed in Chapter 6 
using measured autospectral and cross-spectral density functions. Ordinary coher-

ed 

Figure 1.15 Single-input/single-output system with output noise. 
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n,(t> 

x(t) 

Figure 1.16 Single-input/multiple-output system with output noise. 

ence functions are defined, which play a key role in both system-identification and 
source-identification problems. To determine both the gain factor and the phase factor 
of a desired frequency response function, it is always necessary to measure the cross-
spectral density function between the input and output points. A good estimate of the 
gain factor alone can be obtained from measurements of the input and output 
autospectral density functions only if there is negligible input and output extraneous 
noise. 

For a well-defined single-input/single-output model where the data are stationary, 
the system is linear and has constant parameters, and there is no extraneous noise at 
either the input or output point, the ordinary coherence function will be identically 
unity for all frequencies. Any deviation from these ideal conditions will cause the 
coherence function to be less than unity. In practice, measured coherence functions 
will often be less than unity and are important in determining the statistical confidence 
in frequency response function measurements. 

Extensions of these ideas can be carried out for general multiple-input/multiple-
output problems, which require the definition and proper interpretation of multiple 
coherence functions and partial coherence functions. These general situations can be 
considered as combinations of a set of multiple-input/single-output models for a given 
set of stationary inputs and for different constant-parameter linear systems, as shown 
in Figure 1.17. Modern procedures for solving multiple-input/output problems are 
developed in Chapter 7 using conditioned (residual) spectral density functions. These 
procedures are extensions of classical regression techniques discussed in Chapter 4. In 
particular, the output autospectral density function in Figure 1.17 is decomposed to 
show how much of this output spectrum at any frequency is due to any input 
conditioned on other inputs in a prescribed order. 

Basic statistical principles to evaluate random data properties are covered in 
Chapter 4. Error analysis formulas for bias errors and random errors are developed 
in Chapters 8 and 9 for various estimates made in analyzing single random records and 
multiple random records. Included are random error formulas for estimates of 
frequency response functions (both gain factors and phase factors) and estimates of 
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Figure 1.17 Multiple-input/single-output system with output noise. 

coherence functions (ordinary, multiple, or partial). These computations are easy to 
apply and should be performed to obtain proper interpretations of measured results. 

1.4.3 Error Analysis Criteria 

Some error analysis criteria for measured quantities will now be defined as back-
ground for the material in Chapters 8 and 9. Let a hat ( Λ ) symbol over a quantity φ, 
namely, φ, denote an estimate of this quantity. The quantity φ will be an estimate of φ 
based on a finite time interval or a finite number of sample points. 

Conceptually, suppose φ can be estimated many times by repeating an experiment 
or some measurement program. Then, the expected value of φ, denoted by Ε[φ], is 
something one can estimate. For example, if an experiment is repeated many times to 
yield results φ{, i = 1, 2, . . . , Λ/, then 

Ε[φ] l i m »r 

1 N 

( = 1 

(1.13) 

This expected value may or may not equal the true value φ. If it does, the estimate φ is 
said to be unbiased. Otherwise, it is said to be biased. The bias of the estimate, denoted 
b[4>], is equal to the expected value of the estimate minus the true value—that is, 

b[4>] = Ε[φ]-φ (1.14) 
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It follows that the bias error is a systematic error that always occurs with the same 
magnitude in the same direction when measurements are repeated under identical 
circumstances. 

The variance of the estimate, denoted by Var [</>], is defined as the expected value of 
the squared differences from the mean value. In equation form, 

Var[<£] = Ε[(φ-Ε[φ})2} (1.15) 

The variance describes the random error of the estimate—that is, that portion of the 
error that is not systematic and can occur in either direction with different magnitudes 
from one measurement to another. 

An assessment of the total estimation error is given by the mean square error, which 
is defined as the expected value of the squared differences from the true value. The 
mean square error of φ is indicated by 

mean square error[$] — Ε[(φ—φ)2} (1.16) 

It is easy to verify that 

Ε[(φ-φ)2]=νπ[φ] + (Β[φ})2 (1.17) 

In words, the mean square error is equal to the variance plus the square of the bias. If 
the bias is zero or negligible, then the mean square error and variance are equivalent. 

Figure 1.18 illustrates the meaning of the bias (systematic) error and the variance 
(random) error for the case of testing two guns for possible purchase by shooting each 
gun at a target. In Figure 1.18(a), gun A has a large bias error and small variance error. 
In Figure 1.1 S(b), gun Β has a small bias error but large variance error. As shown, gun 
A will never hit the target, whereas gun Β will occasionally hit the target. Nevertheless, 
most people would prefer to buy gun A because the bias error can be removed 
(assuming one knows it is present) by adjusting the sights of the gun, but the random 
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error cannot be removed. Hence, gun A provides the potential for a smaller mean 
square error. 

A final important quantity is the normalized rms error of the estimate, denoted by 
ε[φ]. This error is a dimensionless quantity that is equal to the square root of the mean 
square error divided by the true value (assumed, of course, to be different from zero). 
Symbolically, 

4Φ] = V

 φ (1.18) 

In practice, one should try to make the normalized rms error as small as possible. 
This will help to guarantee that an arbitrary estimate φ will lie close to the true 
value φ. 

1.4.4 Data Analysis Procedures 

Recommended data analysis procedures are discussed in more detail in Chapters 
10-14. Chapter 10 deals with data acquisition problems, including data collection, 
storage, conversion, and qualification. General steps are outlined for proper data 
analysis of individual records and multiple records, as would be needed for different 
applications. Digital data analysis techniques discussed in Chapter 11 involve 
computational procedures to perform trend removal, digital filtering, Fourier series, 
and fast Fourier transforms on discrete time series data representing sample records 
from stationary (ergodic) random data. Digital formulas are developed to compute 
estimates of probability density functions, correlation functions, and spectral density 
functions for individual records and for associated joint records. Further detailed 
digital procedures are stated to obtain estimates of all of the quantities described in 
Chapters 6 and 7 to solve various types of single-input/output problems and multiple-
input/output problems. Chapter 12 is devoted to separate methods for nonstationary 
data analysis, and Chapter 13 develops Hubert transform techniques. Chapter 14 
discusses models for nonlinear system analysis. 

PROBLEMS 

1.1 Determine the period of the function defined by 

x(t) = sin l l r + sin 12f 

1.2 For the following functions, which are periodic and which are nonperiodic? 

(a) x(t) - 3 sin t + 2 sin It + sin 3f. 

(b) x(t) = 3 sin t + 2 sin 2t + sin %t. 

(c) x(i) = 3 sin At + 2 sin 5i + sin 6f. 

(d) x{t) = e~' sin t. 
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1.3 If a stationary random process {x(t)} has a mean value of μχ, what is the 
limiting value of the autocorrelation function i? M ( r ) as the time delay τ 
becomes long? 

1.4 An estimate is known to have a mean square error of 0.25 and a bias error of 
0.40. Determine the variance of the estimate. 

1.5 In Problem 1.4, if the quantity being estimated has a true value of φ = 5, what is 
the normalized rms error of the estimate? 

In Problems 1.6-1.9 state which properties are always true. 

1.6 A stationary random process must 

(a) be discrete. 

(b) be continuous. 

(c) be ergodic. 

(d) have ensemble-averaged properties that are independent of time. 

(e) have time-averaged properties that are equal to the ensemble-averaged 
properties. 

1.7 An ergodic random process must 

(a) be discrete. 

(b) be continuous. 

(c) be stationary. 

(d) have ensemble-averaged properties that are independent of time. 

(e) have time-averaged properties that are equal to the ensemble-averaged 

properties. 

1.8 A single sample function can be used to find all statistical properties of a 

random process if the process is 

(a) deterministic. 

(b) ergodic. 

(c) stationary. 

(d) all of the above. 

1.9 The autocorrelation function of a stationary random process 

(a) must decrease as |τ| increases. 

(b) is a function of the time difference only. 

(c) must approach a constant as |τ| increases. 

(d) must always be nonnegative. 

1.10 How do the answers to Problem 1.9 change if the stationary random process is 
mixed with a periodic process? 
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Linear Physical Systems 

Before the measurement and analysis of random physical data is discussed in more 
detail, it is desirable to clarify some pertinent concepts and fundamental definitions 
related to the dynamic behavior of physical systems. This chapter reviews the 
theoretical formulas for describing the response characteristics of ideal linear systems 
and illustrates the basic ideas for simple physical examples. 

2.1 CONSTANT-PARAMETER LINEAR SYSTEMS 

An ideal system is one that has constant parameters and is linear between two clearly 
defined points of interest called the input or excitation point and the output or response 
point. A system has constant parameters if all fundamental properties of the system 
are invariant with respect to time. For example, a simple passive electrical circuit 
would be a constant-parameter system if the values for the resistance, capacitance, and 
inductance of all elements did not change from one time to another. A system is linear 
if the response characteristics are additive and homogeneous. The term additive 
means that the output to a sum of inputs is equal to the sum of the outputs produced by 
each input individually. The term homogeneous means that the output produced by a 
constant times the input is equal to the constant times the output produced by the input 
alone. In equation form, iff(x) represents the output to an input x, then the system is 
linear if for any two inputs x\, x2, and constant c, 

The constant-para meter assumption is reasonably valid for many physical systems 
in practice. For example, the fundamental properties of an electrical circuit or a 
mechanical structure will usually not display significant changes over any time 
interval of practical interest. There are, of course, exceptions. The value of an 
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and Allan G. Hersol 
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f(x\ + x2) = f{x\) +f{xi) additive property 

f{cx) = cf(x) homogeneous property 

(2.1a) 

(2.1b) 
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electrical resistor may change owing to a high-temperature exposure, or the stiffness 
of a structure may change because of fatigue damage caused by continual vibration. 
Furthermore, some physical systems are designed to have time-varying parameters 
that are fundamental to the desired purpose of the system. Electronic communication 
systems are an obvious example. However, such conditions are generally special cases 
that can be clearly identified in practice. 

A linearity assumption for real systems is somewhat more critical. All physical 
systems will display nonlinear response characteristics under sufficiently extreme 
input conditions. For example, an electrical capacitor will ultimately arc as the 
applied voltage is increased and, hence, will no longer pass a current that is directly 
proportional to the applied voltage, or a metal cable will ultimately break as the 
applied load is increased and, hence, will no longer display a strain that is proportional 
to the applied load. To make the problem more difficult, common nonlinearities 
usually occur gradually rather than abruptly at one point. For example, the load-strain 
relationship for the metal cable would actually start deviating from a linear relation-
ship long before the final abrupt break occurs. Nevertheless, the response character-
istics for many physical systems may be assumed to be linear, at least over some 
limited range of inputs, without involving unreasonable errors. See Chapter 14 and 
Ref. 1 for detailed discussions of analysis procedures for nonlinear systems. 

Example 2.1. Illustration of Nonlinear System. Consider a simple square law 
system where the output is given by 

y=f(x) = α χ 2 

For any two inputs X\ and x2, 

f{x\ +xi) = a{x\ +xj)2 = ax\ + 2ax\X2 +ax\ 

but the additive property in Equation (2.1a) requires that 

f(x\ +xi) = ax\-\-ax\ 

Furthermore, for an arbitrary constant c, 

f(cx) = a(cx)2 = c2ax2 

but the homogeneous property in Equation (2.1b) demands that 

f(cx) = cax2 

Hence, the system is not linear, in that it fails to comply with both the additive and 
homogeneous properties of a linear system. 

2.2 BASIC DYNAMIC CHARACTERISTICS 

The dynamic characteristics of a constant-parameter linear system can be described 
by an impulse response function h(z), sometimes called the weighting function, which 
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is defined as the output of the system at any time to a unit impulse input applied a time 
τ before. The usefulness of the impulse response function as a description of the 
system is due to the following fact. For any arbitrary input x(t), the system output y(t) 
is given by the convolution integral 

POO 

y(t) - h{x)x(t-x)dx 
J—oo 

(2.2) 

That is, the value of the output y(t) is given as a weighted linear (infinite) sum over the 
entire history of the input x(t). 

In order for a constant-parameter linear system to be physically realizable (causal), 
it is necessary that the system respond only to past inputs. This implies that 

A(t) = 0 for τ < 0 (2.3) 

Hence, for physical systems, the effective lower limit of integration in Equa-
tion (2.2) is zero rather than - c o . 

A constant-parameter linear system is said to be stable if every possible bounded 
input function produces a bounded output function. From Equation (2.2), 

b (0 < |Λ(τ)| |*(ί-τ)|</τ (2.4) h(x)x(t—x),dx\ 
30 1 

When the input x(t) is bounded, there exists some finite constant A such that 

|jc(r)j < Λ for al l / (2.5) 

It follows from Equation (2.4) that 
• 0 0 

\y(t)\<A \h{x)\dx (2.6) 
J — C O 

Hence, if the constant-parameter linear weighting function h(x) is absolutely integr-
a t e , that is, 

\h(x)\dx<oo 
J — 0 0 

then the output will be bounded and the system is stable. 

(2.7) 

Example 2.2. Illustration of Unstable System. Consider a simple system with a 
unit impulse response function of the form 

Α(τ) 
Aem χ > 0 

Ο τ < 0 

Because Α(τ) = 0 for χ < 0, the system is physically realizable by definition. However, 

\h(x)\dx = \Aem\dx=-{eaco-\) 
a 
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It follows that the system is unstable if a > 0, but stable if a < 0. Specifically for 
a = - b < 0, 

F°° A A 
\Αβ-*\άτ = —(,--!)=-

J o ~° υ 

This completes Example 2.2. 

A constant-parameter linear system can also be characterized by a transfer 
function H(p), which is defined as the Laplace transform of η(τ). That is, 

Hip) h{x)e-pxdz p = a+jb (2.8) 
ο 

The criterion for stability of a constant-parameter linear system (assumed to be 
physically realizable) takes on an interesting form when considered in terms of the 
transfer function H(p). Specifically, if H(p) has no poles in the right half of the 
complex ρ plane or on the imaginary axis (no poles where a > 0), then the system is 
stable. Conversely, if H(p) has at least one pole in the right half of the complex ρ plane, 
then the system is unstable. 

An important property of constant-parameter linear systems is frequency pre-
servation. Specifically, consider a constant-parameter linear system with an impulse 
response function η{τ). From Equation (2.2), for any arbitrary input x(t), the wth 
derivative of the output y(t) with respect to time is given by 

ψ=Γ KT)^pldT (2.9) 
dt» J . ^ W dt" y ' 

Now, assume the input x{t) is sinusoidal, that is, 

x{t) =Xsm{2nft + d) (2.10) 

The second derivative of x(t) is 

ά^=-Αηψχ{ή (2.11) 

It follows from Equation (2.9) that the second derivative for the output y(r) must be 

d-^=-4n2fy(t) (2.12) 

Thus, y(t) must also be sinusoidal with the same frequency as x(t). This result shows 
that a constant-parameter linear system cannot cause any frequency translation but 
can only modify the amplitude and phase of an applied input. 

2.3 FREQUENCY RESPONSE FUNCTIONS 

If a constant-parameter linear system is physically realizable and stable, then the 
dynamic characteristics of the system can be described by a frequency response 
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function H(f), which is defined as the Fourier transform of h(x). That is, 
• C O 

H(f) = h{T)e-j2nftdt (2.13) 
J o 

Note that the lower limit of integration is zero rather than —oo since h(z) = 0 for τ < 0. 
The frequency response function is simply a special case of the transfer function 
defined in Equation (2.8) where, in the exponent ρ — a + jb,a = 0 and b = Inf. For 
physically realizable and stable systems, the frequency response function may replace 
the transfer function with no loss of useful information. 

An important relationship for the frequency response function of constant-
parameter linear systems is obtained by taking the Fourier transform of both sides 
of Equation (2.2). Letting X{f) be the Fourier transform of an input x(t) and letting Y 
( / ) be the Fourier transform of the resulting output y(t), assuming these transforms 
exist, it follows from Equation (2.2) that 

Hence, in terms of the frequency response function of a system and the Fourier 
transforms of the input and the output, the convolution integral in Equation (2.2) 
reduces to the simple algebraic expression in Equation (2.14). 

The frequency response function is generally a complex-valued quantity that may 
be conveniently thought of in terms of a magnitude and an associated phase angle. 
This can be done by writing H(f) in complex polar notation as 

The absolute value \H(f) \ is called the system gain factor, and the associated phase 
angle </>(/) is called the system phase factor. In these terms, the frequency response 
function takes on a direct physical interpretation as follows. Assume a system is 
subjected to a sinusoidal input (hypothetically existing over all time) with a frequency 
/producing an output that, as illustrated in Section 2.2, will also be sinusoidal with the 
same frequency. The ratio of the output amplitude to the input amplitude is equal to the 
gain factor \H ( / ) | of the system, and the phase shift between the output and the input is 
equal to the phase factor </>(/) of the system. 

From physical realizability requirements, the frequency response function, the 
gain factor, and the phase factor of a constant-parameter linear system satisfy the 
following symmetry properties: 

Furthermore, if one system described by Hx(f) is followed by a second system 
described by H2(f), and there is no loading or feedback between the two systems, then 
the overall system may be described by H(f), where 

Y(f) = H(f)X(f) (2.14) 

H(f) = \H(f)\e-»W (2.15) 

H(-f)=H*(f) 

\H(-f)\ = \H(f)\ 

</>(-/) = -Φ{ί) 
(2.16) 

H{f)=Hx{f)H2(f) 

\H{f)\ = \Hx{f)\\H2{f)\ 

<Kf)=<f>l(f)+<h(f) 

(2.17) 
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Thus, on cascading two systems where there is no loading or feedback, the gain 
factors multiply and the phase factors add. 

It is important to note that the frequency response function H(f) of constant-
parameter linear system is a function of only frequency and is not function of either 
time or the system excitation. If the system were nonlinear, H(f) would also be a 
function of the applied input. If the parameters of the system were not constant, H(f) 
would also be a function of time. 

2.4 ILLUSTRATIONS OF FREQUENCY RESPONSE FUNCTIONS 

A clearer understanding of the frequency response function of common physical 
systems will be afforded by considering some examples. The examples chosen 
involve simple mechanical and electrical systems because these particular physical 
systems are generally easier to visualize. The analogous characteristics relating 
mechanical and electrical systems to other physical systems are noted. 

2.4.1 Mechanical Systems 

Assume a simple mechanical structure can be represented by a lumped parameter 
system consisting of a mass, a spring, and a viscous damper (also called a dashpot), 
where the motion of the mass is restricted to translation in only one direction, as shown 
in Figure 2.1. In this figure, m is the mass in kilograms (kg), k is the spring constant in 
newtons/meter (N/m), and c is the damping coefficient in newton-seconds/meter 
(Ns/m). The system in Figure 2.1 is commonly referred to as a single degree-of-
freedom (dof) system because its response can be described by a single coordinate. 

Before a frequency response function can be determined, it is necessary to define 
the input and output parameters of interest. There are a number of possibilities for the 
system in Figure 2.1, as will be illustrated now. 

2.4.1.1 Force Input and Displacement Output 
Assume the input of interest is a force applied to the mass, and the output of interest is 
the resulting displacement of the mass, as illustrated in Figure 2.2. Here, F(t) is an 
applied force in newtons and y(t) is the resulting output displacement of the mass 
in meters. 

m 
mr— 

m m 

Figure 2.1 Simple mechanical system. 
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F(t) 

Figure 2.2 Mechanical system with force input. 

The first step toward establishing an appropriate frequency response function for 
this system is to determine the equation of motion. This is accomplished by using the 
relationship from basic mechanics that the sum of all forces acting on the mass must 
equal zero, as follows: 

where 

F{t)+Fk(t) + Fc(t)+Fm{t)=0 (2.18) 

Fk(t) = ~ky(t) = spring force (2.18a) 

Fc{t) — -cy{t) = damping force (2.18b) 

Fm(t) = —my(t) = inertial force (2.18c) 

y(t) - ^1 = velocity 
at 

• · , Λ d2y(t) , · 
y(t) — ρ = acceleration 

Hence, the equation of motion for this system is 

my(t)+cy(t)+ky(t)=F(t) (2.19) 

In Section 2.3, the frequency response function is defined as the Fourier transform 
of the output of the system to a unit impulse. For this case, the output of the system is 
the displacement y(t) whose Fourier transform is given by 

•oo 

Y(f) = y(t)e-&*dt = H(f) (2.20) 
Jo 

It follows that 

Fourier transform|j(i)] = jlnfH(f) (2.20a) 

Fourier transform[y(i)] = -{2nf)2H{f) (2.20b) 
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Now, by taking the Fourier transform of both sides of Equation (2.19) and noting that 
the Fourier transform for a unit impulse force F(t) = S(t) is unity, one obtains the 
following result: 

[-{Inffm +j2nfc + k]H(f) = 1 (2.21a) 

Thus 

H(f)f-d = [k-(2nf)2m +j2nfc}~1 (2.21b) 

where the subscript f-d is added to indicate that this particular H(f) relates a force 
input to a displacement output. 

It is desirable to write Equation (2.21) in a different form by introducing two 
definitions: 

ζ = -^= (2.22a) 
2vkm 

/ « = T - V - ( 2 - 2 2 b ) 
2π V m 

The term ζ in Equation (2.22a) is a dimensionless quantity called the damping ratio. 
The term/„ in Equation (2.22b) is called the undamped natural frequency and has units 
of cycles per second (Hz). When these definitions are substituted into Equation (2.21), 
the following result is obtained: 

l/k 

l-if/fnf+flSf/fn 

Writing Equation (2.23) in complex polar notation gives the frequency response 
function in terms of a gain factor \H(f)\ and a phase factor (/>(/) as follows: 

H{f) = \H(f)\e-»W (2.24) 

where 

mf)\f-d = \ \ (2.24a) 

4>(f)f-d = t a n 
mis* 

i - ( / / / » r 

(2.24b) 

Note that \H(f)\f_d has units of l/k or meters/newton. This particular function is 
sometimes called a magnification function. 

Plots of \H{f)\f_d and tf>(/)^_d as defined in Equation (2.24) are presented in 
Figure 2.3. Three characteristics of these plots are of particular interest. First, the gain 
factor has a peak at some frequency less than /„ for all cases where ζ < l/y/2. The 
frequency at which this peak gain factor occurs is called the resonance frequency of 
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Figure 2.3 Frequency response function of mechanical system with force input, (a) Gain factor, (b) Phase 
factor. 



34 LINEAR PHYSICAL SYSTEMS 

the system. Specifically, it can be shown by minimizing the denominator of \H(f) \^_d 

in Equation (2.24a) that the resonance frequency, denoted by fr, is given by 

fr=fn^]\-2C2 ζ2<0.5 (2.25) 

and that the peak value of the gain factor that occurs at the resonance frequency is 
given by 

TOI/-d=^= £ 2 < 0 - 5 (2.26) 

Second, defining the half-power point bandwidth of a system gain factor as 

Br=fi-f\ where 

TO)L2 = | / / ( / 2 ) L 2 = ^ ( / R ) L 2 

the half-power point bandwidth of the gain factor peak at the resonance frequency 
may be approximated for light damping by 

Br~2Ur £ < 0 . 1 (2.27) 

Third, the phase factor varies from 0° for frequencies much less than/„ to 180° for 
frequencies much greater than /„. The exact manner in which <£(/) varies between 
these phase angle limits depends on the damping ratio ζ. However, for all values of £, 
the phase </>(/W = 90° f o r / = / „ . 

Example 2.3. Illustration of Resonant System. A simple mechanical system 
like that shown in Figure 2.1 has the following properties: 

m = 0.5kg c = 1 0 N s / m & = 5000N/m 

Determine the undamped natural frequency, the damping ratio, the resonance 
frequency, and the peak gain factor of the system. 

From Equation (2.22) the undamped natural frequency and damping ratio are 
given by 

/ „ = ^ - i / - = 1 5 . 9 H z f = - i = = 0.10 
2π V m 2y/km 

The resonance frequency is then given by Equation (2.25) as 

/ , = / , , ^ / l - 2 f 2 = 15.7 Hz 

and the peak gain factor is given by Equation (2.26) as 
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It is common in practice to present gain factors for physical systems in dimensionless 
terms by multiplying out the stiffness term, that is, 

W ) I = O T = 5 - 0 

This is often called the quality factor of the system, denoted by Q. The reciprocal of Q 
is usually referred to as the loss factor of the system denoted by rj. For the system in 
question, Q = 5.0 and η = 0.2 (η = 2ζ). 

2.4.1.2 Foundation Displacement Input and Displacement Output 
Now consider a different case, where the input of interest is a motion of the foundation 
and the output of interest is the displacement of the mass, as illustrated in Figure 2.4. 
Here, x(t) is an applied foundation displacement in meters measured from a mean 
foundation position, and y(r) is the resulting output displacement of the mass in meters 
measured from the position of equilibrium. 

As before, the equation of motion for the system can be determined from basic 
principles as follows: 

where 

Fk(t)+Fc(t)+Fm(t)=0 

Fk(t) = -k\y(t)-x{t)] = spring force 

(2.28) 

(2.28a) 

Fc(t) = -c\y(t)-x{t)} = damping force (2.28b) 

Fm(t) = —my(t) — inertial force (2.28c) 

Hence, the equation of motion for this system is 

my(t) + cy(t) + ky(t) = fct(r) + cx(t) (2.29) 

Once again the frequency response function of the system will be given by the Fourier 
transform of the response displacement y(i) for a unit impulse foundation displace-
m e n t ; ^ ) = 8{t). By taking the Fourier transform of both sides of Equation (2.29), and 
noting that Fourier transform [δ(ή] = jlnf, one obtains the following result: 

[-(2nf)2m+j2nfc + k]Y(f) = [k+j2nfc] 

Figure 2.4 Mechanical system with foundation motion input. 



36 LINEAR PHYSICAL SYSTEMS 

Thus, 

Y(f)-H(f)d_d= f (2.30) 
k-{2nf) m+j2nfc 

where the subscript d-d means that this particular H(f) relates a displacement input to 
a displacement output. 

Using the definitions from Equation (2.22), the result in Equation (2.30) may be 
written as 

H(f) _ * +-/2£f lfn (2 31) 

^ \-{flfn?+fliflfn 

In complex polar notation, Equation (2.31) reduces to the following gain factor and 
phase factor: 

Η {f) = \H{f)\e-»W (2.32) 

where 

2 \ ' /2 
i + [ 2 Y / / „ ; 

J L - ( / / / » ) 2 ] 2 + [2tf//» 
I ^ W L - d - r , / , / , x 2 , 2 , r l , , / , i 2 (2.32a) 

</»(/),_, = tan" 1 

Note that \H(f)\d_d is dimensionless. This particular function is often called a 
transmissibility function. Plots of \H{f)\d_d and (j>{f)d_d are presented in Figure 2.5. 
Note that the gain factor displays a single peak similar to the example for a force input 
illustrated in Figure 2.3. However, the details of the gain factor as well as the 
phase factor in Figure 2.5 are quite different from the factors in Figure 2.3. In 
particular, \H{f)\d_d = 1 a t / = y/2fa, independent off, and <]>{f)d_d φ 90° a t / = / „ 
except for ζ = 0. 

UiflfnY 

Ι - ( / / Λ ) 2 + 4 Ί 2 ( / / / Β ) 
(2.32b) 

2.4.1.3 Other Input and Output Combinations 
The previous two examples indicate how two different frequency response functions 
are applicable to the same simple mechanical system, depending on the type of input 
to be considered. Actually, a different frequency response function is generally 
required for every different combination of input and output parameters that might be 
desired. For example, the relative displacement output z(t)=y(t) - x(t) to a founda-
tion displacement input x(t) might be of interest for some applications, whereas the 
absolute acceleration output y\t) to a foundation velocity input i ( r ) would 
be appropriate for others. A slightly different frequency response function would 
be required for each case. To illustrate this point, the various possible gain factors of 
the simple mechanical system in Figure 2.1 for 21 different combinations of input and 
output parameters are presented in Table 2.1. 
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Figure 2.5 Frequency response function of mechanical system with foundation motion input, (a) Gain 
factor, (£>) Phase factor. 
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L 

Figure 2.6 Electrical system with voltage input. 

2.4.2 Electrical Systems 

Assume that a simple electrical circuit can be represented by a lumped parameter 
system consisting of an inductor, a resistor, and a capacitor. Further assume that the 
input to the system is a potential difference as shown in Figure 2.6. In this figure, C is a 
capacitance in farads, R is a resistance in ohms, L is an inductance in henries, e(t) is an 
applied potential in volts, and /(/) is the resulting current in amperes. Note that 
i(f) = dq(t)/dt, where q{t) is charge in coulombs. 

Assume the input of interest is an applied voltage and the output of interest is the 
resulting charge. As for the case of mechanical systems in Section 2.4.1, the first step 
toward establishing a proper frequency response function is to determine the 
differential equation describing the system. From basic circuit theory, the sum of 
all potential differences across the circuit elements must equal zero. That is, 

e{t) + ec{t) + eR+ eL{t) = 0 (2.33) 

where 

ec{t) = — ^q(t) = P o t e n t i a l difference across capacitor 

eR{t) = —Rq{t) = potential difference across resistor 

eL(t) — -Lq{t) = potential difference across inductor 

Hence, the differential equation for this system is 

Lq(t)+Rq(t)+^q(t)=e(t) (2.34) 

Note the similarity between Equation (2.34) and the equation of motion for a force 
excited mechanical system given by Equation (2.19). Using the same analysis 
procedures outlined in Section 2.4.1, it follows directly that the frequency response 
function of this simple electrical system is 

(2.35) 

(2.33a) 

(2.33b) 

(2.33c) 

e-q c 
-(2nf)2L+j2nfR 
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Table 2.2 Analogous Terms for Mechanical and Electrical Systems 

Electrical System Mechanical System 
with a Voltage Input with a Force Input 

Input Voltage, e(t) Force, F(t) 

Output Charge, q(t) Displacement, y(r) 
Current, i(t) = dq/dt Velocity, v(r) = dy/dt 

Constant parameters Inductance, L Mass, m 
Resistance, R Damping, c 
Capacitance, C Compliance, l/k 

where the subscript e-q means that this particular H(f) relates a voltage input to a 
charge output. Note that H{f)e_q has the units of coulombs/volt. 

The plot for H{f) would be identical to the plot for the mechanical frequency 
response function H{f)f_d presented in Figure 2.3, where the damping ratio ζ and the 
undamped natural frequency /„ of the electrical circuit are given as follows: 

f - f ^ P-36.) 

f-=h^o ( 2 3 6 b ) 

It should now be clear that a direct analogy may be made between mechanical and 
electrical systems as presented in Table 2.2. 

A more common frequency response function for electrical systems is one that 
relates a voltage input to a current output. This particular frequency response function 
is given by 

- 1 

W)e-i R+j[2nfL- 1 

2%fC 
(2.37) 

where H(f)e_; has the units of amperes/volt. The reciprocal of Equation (2.37), which 
may be denoted by / / ( / ) ( . _ e , is called an impedance function: 

H(f)i-e = R +j fa L- (2.38) 

Note that the mechanical analogy to Equation (2.38) is given from Table 2.2 by 

H(f)v-f
 a s follows: 

H(f)v_f = c +j {ΐτφη- ^ (2.39) 

The function in Equation (2.39) is often called a mechanical impedance function 
because of its analogy to the common electrical impedance function. 
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Table 2.3 Analogous Characteristics for Several Physical Systems 

System Input Output Constant Parameters 

Electrical Voltage Current Inductance Resistance Capacitance 
Mechanical Force Velocity Mass Damping Compliance 

(translational) 
Mechanical Torque Angular Moment of Angular Angular 

(rotational) velocity inertia damping compliance 
Acoustical Pressure Particle Inertance Acoustical Acoustical 

velocity (acoustical 
mass) 

damping capacitance 

Thermal Temperature Heat flow — Thermal 
resistance 

Thermal 
capacitance 

Magnetic Magneto- Flux — Reluctance — 
motive 
force 

2.4.3 Other Systems 

By the same analytical procedures outlined in Section 2.4.1, an appropriate frequency 
response function can be developed, at least in theory, for any clearly defined 
constant-parameter linear system that is physically realizable and stable. Moreover, 
the frequency response functions of different physical systems will often display 
analogous parameters, just as illustrated for mechanical and electrical systems in 
Section 2.4.2 and Table 2.2. A summary of analogous characteristics for several 
common physical systems is presented in Table 2.3. 

2.5 PRACTICAL CONSIDERATIONS 

The analytical determination of frequency response functions of physical systems has 
been illustrated in Section 2.4. To facilitate the development and clarification of basic 
ideas, examples were limited to simple mechanical and electrical systems. It should 
not be implied from these examples that the analytical determination of frequency 
response functions of physical systems is always so easy. 

Consider, for example, a mechanical system in the form of a continuous elastic 
structure where the various parameters (mass, damping, and stiffness) are distrib-
uted rather than lumped as hypothetically assumed for the examples in Section 2.4.1. 
Such a mechanical system would have many different possible input and output 
points that might be of interest. Furthermore, the frequency response function of 
each input/output combination would generally display many peaks representing 
many resonant frequencies, as opposed to a single resonance as illustrated for the 
examples in Section 2.4.1. For relatively uncomplicated continuous structures such 
as beams, plates, and shells, appropriate frequency response functions may still be 
established with reasonable accuracy by direct analytical procedures [2]. For more 
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complicated structures, as well as fluids and other physical systems, computer 
modeling procedures such as finite element methods [3] might be used to estimate 
frequency response functions and other response properties. If the physical system 
of interest has been constructed and is available for experimental studies, frequency 
response functions can be estimated by empirical procedures. The most straightfor-
ward empirical approach is to subject the system to a sinusoidal input and measure 
the output amplitude and phase as the input frequency is varied. From Section 2.3, 
the ratio of the output to input amplitudes at any given frequency equals the gain 
factor, and the phase of the output relative to the input at any given frequency equals 
the phase factor. However, the same results can be obtained with substantially less 
experimental time by applying either random or transient inputs to the system, either 
natural or artificial, and measuring the system response. The estimation of fre-
quency response functions from random and transient input/output data will be dealt 
in detail in Chapters 6 and 7. 

PROBLEMS 

2.1 If an input x(t) produces an output y(t) = x(t) \x(t)\, prove that the input/output 
relationship is nonlinear. 

2.2 Write a single equation that defines the required conditions for linearity of 
physical systems. 

2.3 To define the dynamic properties of a system by a single-valued weighting 
function h(x), which of the following requirements apply? The system 
must 

(a) have constant parameters. 

(b) be linear. 

(c) be physically realizable. 

(d) be stable. 

2.4 Determine the frequency response function of a physical system with a 
weighting function h(x) =Ae"az, where a > 0. 

2.5 Assume the mechanical system shown in Figure 2.2 has a spring constant of 
fc = 2000N/m, a viscous damping coefficient of c= ION s/m, and a mass of 
m = 5 kg. Determine the 

(a) undamped natural frequency /„ . 

(b) damping ratio ζ. 

(c) force excited resonance frequency fn 

(d) peak value of the gain factor \H{f)\. 

2.6 Determine the weighting function of the force excited mechanical system 
shown in Figure 2.2. 
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2.7 Prove that the resonance frequency of the force excited mechanical sys-
tem shown in Figure 2.2 is fr = /η\/ΐ-2ζ2, ζ2<0.5, as stated in 
Equation (2.25). 

2.8 The half-power point bandwidth of a resonant physical system is defined as 
Br =fi-fu where | H ( / i ) | 2 = \H(f2)\

2 = \\H{fr)\
2. Given the force excited 

mechanical system shown in Figure 2.2, prove that Br « 2ζ/Γ for small ζ, as 
stated in Equation (2.27). 

2.9 Assume the mass of the mechanical system shown in Figure 2.1 is displaced 
from its position of equilibrium and then released. Prove that the time 
between crossings of the position of equilibrium in the resulting oscillation 

is Τ = I [ / „ v / W ? ] " 1 for ζ2< 1.0. 

2.10 Draw the electrical analog circuit for the mechanical system with the found-
ation motion input shown in Figure 2.4. Determine the values of the analo-
gous circuit parameters in terms of the mechanical parameters k, c, 
and m. 
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C H A P T E R 3 

Probability Fundamentals 

This chapter reviews the fundamental principles of probability theory that are needed 
as background for the concepts of random process theory developed in later chapters. 
The material covers random variables, probability distributions, expected values, 
change of variables, moment-generating functions, and characteristic functions for 
both single and multiple random variables. More detailed developments of probability 
theory from an engineering viewpoint are presented in Refs 1-3. 

3.1 ONE RANDOM VARIABLE 

The underlying concept in probability theory is that of a set, defined as a collection of 
objects (also called points or elements) about which it is possible to determine whether 
any particular object is a member of the set. In particular, the possible outcomes of an 
experiment (or a measurement) represent a set of points called the sample space. 
These points may be grouped together in various ways, called events, and under 
suitable conditions probability functions may be assigned to each. These probabilities 
always lie between zero and one, the probability of an impossible event being zero and 
the probability of the certain event being one. Sample spaces are either finite or 
infinite. 

Consider a sample space of points representing the possible outcomes of a 
particular experiment (or measurement). A random variable x(k) is a set function 
defined for points k from the sample space; that is, a random variable x(k) is a real 
number between - c o and + oo that is associated to each sample point k that might 
occur. Stated another way, the random outcome of an experiment, indexed by k, can be 
represented by a real number x(k), called the random variable. All possible experi-
mental events that might occur constitute a completely additive class of sets, and a 
probability measure may be assigned to each event. 

Random Data: Analysis and Measurement Procedures, Fourth Edition. By Julius S. Bendat 
and Allan G. Piersol 
Copyright © 2010 John Wiley & Sons, Inc. 
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3.1.1 Probability Density and Distribution Functions 

Let x(k) denote a random variable of interest. Then for any fixed value of x, the random 
eventx(fc) < χ is defined as the set of possible outcomes k such that x(k) < x. In terms 
of the underlying probability measure in the sample space, one may define a 
probability distribution function P(x) as the probability that is assigned to the set 
of points k satisfying the desired inequality x(k) < x. Observe that the set of points k 
satisfying x(k) < χ is a subset of the totality of all points k that satisfy x(k) < oo. In 
notation form, 

Clearly, 

P(x) = Prob[x(*) < x] 

P{a)<P(b) \fa<b 

(3.1) 

(3.2) 

P ( -oo) = 0 P(oo) = 1 (3.3) 

If the random variable assumes a continuous range of values (which will be 
assumed hereafter), then a (first-order) probability density function p(x) may be 
defined by the differential relation 

P(x) lim 
Ax^O 

Prob[x < x(k) < χ + Ax 

It follows that 

Δχ 

p{x) > 0 

p(x) dx — 1 

(3-4) 

(3.5) 

(3.6) 

= J* Pi£)dt ^ = P(x) (3-7) 

To handle discrete cases like Example 3.1, the probability density function p(x) is 
permitted to include delta functions. 

The probability density functions for common examples of both random and 
deterministic data are summarized in Table 3.1. Many of these functions are derived in 
this chapter. 

Example 3.1. Discrete Distribution. Suppose an experiment consists of tossing 
a single coin where the two possible outcomes, called heads and tails, are assumed to 
occur with equal probability (1/2). The random variable x(k) for this example takes on 
only two discrete values, x(heads) and x(tails), to which arbitrary real numbers may be 
assigned. Specifically, let x(heads) = a and x(tails) = b, where a and b are real 
numbers with, say, b > a. With these choices for x(k), it follows that the probability 



ONE RANDOM VARIABLE 47 

Table 3.1 Special Probability Density Functions 

Type Probability Density Function 

Discrete 

Uniform (rectangular) 

Sine wave 

Gaussian (normal) 

Rayleigh 

Maxwell 

ftfl ft p(x)=AS{x-a)+BS(x-b) + ••• +Νδ(χ-η) 
" b " where A + B + ••• +N=\ 

! ^ p(x) = (b — a)-1,a < χ < b; otherwise zero 
a b 

p(x) = (jis/X2— x2^j , |*| < X; otherwise zero 
- X X 

p{x) = 

| / \ ^ ^ p ( i ) = ^ e " ^ 2 c 2 , χ > 0; otherwise zero 
ο 

p{x) 
x2 h. 

e Jr2^2t'2, χ > 0; otherwise zero 

Truncated 

Clipped 

Assume original p\(x) defined over (-oo, oo). 
Truncated 

[ \ = Cpi (•*)> a < χ < b; otherwise zero 
-I L 

A Β 

Ε 

where 
roc 

p(x) dx = 
J —oo 

c pi(x)dx = 1 

Assume original px{x) defined over (-oo, oo). 
Clipped 

p(x) = p\ (x) a <x <b 
= Αδ(χ — a) χ = a 
= BS(x-b) x = b 
= 0 χ < a O T X > b 

eoc eb 

where p(x)dx= p\(x)dx+A+B = 1 
J—oo Ja 

distribution function is 

P(x) 

( 0 χ < a 

1 
- a < χ < 
2 

1 χ > b 
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1/2 1/2 

4 

1.0 

0.5 \ 

(b) 

Figure 3.1 Discrete probability density and distribution functions, (a) Probability density function. 
(b) Probability distribution function. 

and the probability density function is given by 

P(x) = ^ ( x - « ) + ^8(x-b) 

where 8(x — a) and S(x — b) are delta functions, as shown in Figure 3.1. 

Example 3.2. Uniform (Rectangular) Distribution. Suppose an experiment 
consists of choosing a point at random in the interval [a, b], including the end points. 
A continuous random variable x(k) for this example may be defined by the numerical 
value of the chosen point. The corresponding probability distribution function becomes 

P(x) 

0 
x — a 

χ < a 

a < χ < b 

U x> b 

Hence, the probability density function is given by 

P(x) = { 
(b-a)~ 
0 

a<x<b 
otherwise 
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Ι 

/»(*) 

a b 
(a) 

(b) 

Figure 3.2 Uniform probability density and distribution functions, (a) Probability density function. 
(b) Probability distribution function. 

For this example, from Equations (3.9) and (3.11) to follow, the mean value and the 
variance are given by 

\2 a + b 
σ2 = 

(b-a) 

2 x 12 

Plots of P(x) and p(x) are shown in Figure 3.2, 

3.1.2 Expected Values 

Assume the random variable x(k) may take on values in the range from -oo to + oo. 
The mean value (also called expected value or average value) of x(k) is obtained by an 
appropriate limiting operation when each value assumed by x(k) is multiplied by its 
probability of occurrence. This gives 

E[x(k)] = xp{x) dx = μχ (3.8) 

where E[] represents the expected value over the index k of the term inside the 
brackets. Similarly, the expected value of any real single-valued continuous function 
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g(x) of the random variable x(k) is given by 

E[g(x(k))} = g{x)p(x)dx (3.9) 

where p(x) is the probability density function associated with x(k). In particular, for 
g(x) —x2, the mean square value of x(k) is given by 

E[x\k)\ = χ2ρ(χ)άχ = φχ (3.10) 

The variance of x(k) is defined by the mean square value of x(k) about its mean value. 

Here, g(x) = (χ-μχ)
2 and 

f O O 

Ε\{χ{Η)-μχ)
2 = {χ-μχ)

2ρ(χ) dx = tf-p2

x = σ\ (3.11) 
J — C O 

By definition, the standard deviation of x(k), denoted by σχ, is the positive square root 
of the variance. The standard deviation is measured in the same units as the mean 
value. 

3.1.3 Change of Variables 

Suppose that x(k) is a random variable with a probability density functionp(x) and that 
y — g(x) is any real single-valued continuous function of x. Consider first the case 
where the inverse function x(y) is also a real single-valued continuous function of y. 
The probability density function p(y) associated with the random variable y{k) = 
g[x(k)] will be a different functional form from p(x) and is not obtained by merely 
replacing χ by y. This different p(y) can be determined from p(x) by noting that χ and y 
have the same probability of falling in associated small intervals. Thus, for small Ax 
and Ay, Equation (3.4) shows that 

p{y)Ay « Prob[y < y(k) < y + Ay] = Prob[jr < x(k) < χ + Ax] « p(x) Ax 

Hence, in the limit when Ax and Ay approach zero, one obtains the result 

assuming the derivative exists and is not zero. The absolute value is required because 
probability density functions are nonnegative quantities. In Equation (3.12), it is 
necessary to replace the variable χ on the right-hand side by its equivalent y so as to 
obtain p(y) as a function of y. 

For the case when the inverse function x(y) is a real η-valued function of y, where η 
is an integer and all of the η values have equal probability, we have 
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For various zero-memory nonlinear transformations of random data, many applica-
tions of Equations (3.12) and (3.13) are contained in Chapter 2 of Ref. 4 to predict 
different non-Gaussian output probability density functions p(y) from Gaussian input 
probability density functions p(x). 

Example 3.3. Sine Wave Distribution with Fixed Amplitude. A sine wave of 
fixed amplitude A and fixed frequency/ 0 can be considered a random variable if its 
initial phase angle θ = 6(k) is a random variable. Let the sine wave random variable be 
represented by 

*(*) = A nn[2nf0t + e(k)} (3.14) 

The probability density functionp(k) of x(k) will be determined assuming that 6{k) has 
a uniform probability density function ρ(θ) given by 

ρ(θ) = (1/2π) 0 < 0 < 2π, otherwise zero 

For this example, the direct function γ(θ) is single valued, but the inverse function 6(y) 
is double valued. From Equation (3.13), with θ replacing χ and χ replacing y, we have 

\dx/de\ 

where 

\άχ/άθ\ = Acos[2nf0t + e{k)} = VA2-x2 

Thus, the sine wave probability density function is 

p(x) = — , 1 Μ < · Α , otherwise zero (3.15) 
πνΑ2-χ2 

From Equations (3.8) and (3.11), the mean value and variance for this sine wave 
example are given by 

μχ = 0 σ\ = [A212) 

The associated sine wave probability distribution function from Equation (3.7) is 

P(x) = 0 χ < -A 

Π 

P(x) = 1 χ > A 

\x) = J P^)dx = \ { ^ + s i n _ 1 ^ -A<x<A (3.16) 

Plots of p(x) and P(x) from Equations (3.15) and (3.16) as a function of (χ/σχ) are 
shown in Figure 3.3. Note that (χ/σχ) is the same as (x\/2/A) so that x = A when 
(χ/σχ) = V2. 
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P(x) 

0.8 • 

0.6 

0.4 

0.2 

- 2 

P(x) 

- 1 0 

(*) 

•x/a 

Figure 3.3 Sine wave probability density and distribution functions, (a) Probability density function. 
(b) Probability distribution function. 

3.1.4 Moment-Generating and Characteristic Functions 

The moment-generating function m(s) of x(k) is defined by letting g(x) = exp(sjc) in 
Equation (3.9), namely, 

ioo 
esxp(x) dx 

— CO 

(3 .Π) 

Now 

Pi*. 
—oo 

)dx = 1 
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Assuming all derivatives exist, then 

dm(s) 
m'{s) 

m"{s) 

and so on. Hence at s = 0, 

xesxp(x) dx 
- 0 0 

dsz
 J - o o 

j"00 

Ε[χ] ~ xp{x)dx — m'(0) 
J—oo 
POO 

E[J?]=\ x2p(x)dx = m"(0) 
J —OO 

and so on. For any integer n, the moments are given by 
poo 

£[*"]= xnp(x)dx = m^(0) (3.18) 
J - o o 

where m ( n ) denotes the nth derivative of m(s). 
The characteristic function C(f) of x(k) is defined by letting g(x) = exp(j2nfx) in 

Equation (3.9), namely, 

io o 

p(x)eJ2,lficdx 
—OO 

(3.19) 

Thus C(f) has the form of an inverse Fourier transform, where p(x) is the Fourier 
transform of C(f). Assuming all integrals exist, 

p(x) C{f)e-^df (3.20) 

If p(x) = δ(χ), a delta function, then 
POO 

C{f) = 5(x)eJ2nfx dx = 1 
J —OO 

ΓΟΟ 

8(x) = e-j2nfxdf 

J—oo 

Note that C(f) is the same as m(s) when s = j2nf, namely, 

C(f) = m(j2nf) 

(3.21) 

(3.22) 

3.1.5 Chebyshev's Inequality 

Suppose that x(k) is an arbitrary random variable with a mean value μχ, a mean square 
value i/r2., and a variance cr2.. Suppose that its probability density function, which may 
be unknown, is p(x). Then 

r O O 

*H χ2ρ{-
J — 0 0 

x)dx > 
\χ\>ε 

x2p(x) dx > ε2 p(x) dx 
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because the integrand is nonnegative and because χ2 > ε2 at every point in the right-
hand region of integration. This proves that 

Prob[|jc(*)| > ε] = f p(x) dx < & (3.23) 

J\x\>e ε 

Now replace x(k) by x(k) — μχ. Then ι/r2 is replaced by σ 2 and Equation (3.23) 

becomes 

σ 2 

PT0b[\x(k) - μχ\ > ε] <-4 (3.23a) 

In particular, if ε = cax, then 

Prob[|x(fc) - μχ\ > cax] < ^ (3.23b) 

which is equivalent to 

Prob[\x(k) - μχ\ < cax] > 1 - ^ (3.23c) 

Any of the forms of Equation (3.23) is known as Chebyshev's inequality. 

Example 3.4. Illustration of Probability Intervals. Consider a random variable 
x(k) with an unknown probability density function. Using the Chebyshev inequality in 
Equation (3.22)b with c = 2 and c = 3, the following probability statements apply: 

Prob[|x(&) -μχ\ > 2σχ] < 0.250 

Prob[|x(£) - μχ\ > 3σχ] < 0.111 

These relatively weak results should be compared to situations where x(k) follows a 
Gaussian distribution. From Table A.2 for Gaussian data, one obtains the stronger results 

Prob[\x(k) - μχ\ > 2σχ\ < 0.050 

Prob[|x(A:) - μχ\ > 3σχ] < 0.003 

Here, one can state that 95% of the values will lie within ± 2 σ of the mean value, 
whereas for an arbitrary distribution one can state that this will occur for only 75% of 
the values. 

3.2 TWO RANDOM VARIABLES 

Consider next two random variables x(k) and y(k), where k represents points in a 
suitable sample space. Let P(x) and P(y) be two distinct probability distribution 
functions associated with x(k) and y{k), respectively. The joint probability distribution 
function P{x, y) is defined to be the probability that is associated with the subset of 
points k in the sample space satisfying simultaneously both of the inequalities 
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x(k) < χ and y(k) < y. The totality of all points k satisfies the inequalities x(k) < oo 
and y(k) < oo. In notation form, 

Clearly, 

P{x,y) = ?Tob[x(k) < xandy{k) < y] 

P(-oo,y) = 0 = P{x, -oo) />(oo,oo) = l 

(3.24) 

(3.25) 

As before, assuming the random variables to be continuous, the joint probability 
density function p(x, y) is defined by 

P(x,y) = lim 
Ax-*0 L 

Ptob[x < x(k) <x + A χ and y < y(k) < y + Ay 

It follows that 

Ax Ay 

p(x,y) > 0 

p(x,y) dxdy — 1 

j — o o J — o o oy 

dP{x,y) 

dx •p{x,y) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

The probability density functions of x(k) and y(k) individually are obtained from the 
joint probability density function by 

Now if 

ΓΟΟ 

p(x) = p(x,y)dy 
J — O O 

p o o 

p(y) = p(x,y)dx 
J — o o 

p{x,y) =p(x)p(y) 

(3.30) 

(3.31) 

then the two random variables x(k) and y(k) are said to be statistically independent. 
It follows for statistically independent variables that 

P(x,y)=P(x)P(y) (3.32) 

3.2.1 Expected Values and Correlation Coefficient 

The expected value of any real single-valued continuous function g(x, y) of the two 
random variables x(k) and y(k) is given by 

E[g(x,y)l = g(x,y)p(x,y)dxdy (3.33) 
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For example, if ^(JC, y) = (x(k) - px)(y(k) - py), where μχ and μγ are the mean values 
of x(k) and y(k), respectively, this defines the covariance between x(k) and y(k). 
That is, 

= E[x(k) - μχ)(γψ) - μ,)] = E[x(k)y(k)] - E[x(k)]E\y(k)] 
OO 

(x-Hx){y-Hy)p{x,y)dxdy ^3-34) 

Note that — σ\, the variance of x(k), as defined in Equation (3.11). 
A simple relation exists between the covariance of x(k) and y(k) and the standard 

deviations of x(k) and y(k) as expressed by the inequality 

|C^ | < σχσγ (3.35) 

Thus the magnitude of the covariance between x(k) and y (k) is less than or equal to the 
product of the standard deviation of x(k) multiplied by the standard deviation of y(k). 
This is proved later in Section 5.1.3. 

It follows from the above result that the normalized quantity 

P x y = ^ (3.36) 
UXUy 

known as the correlation coefficient, will lie between — 1 and + 1. Random variables 
x(k) and y(k) whose correlation coefficient is zero are said to be uncorrelated. This 
concept is quite distinct from the previous definition of independent random variables. 
Note that if x(k) and y(k) are independent random variables, then, from Equa-
tions (3.31) and (3.33), 

OO 

E[x(k)y(k)]= xyp(x,y)dxdy 

-oo (3.37) 

yp(y)dy = E[x(k)}E\y(k)] 
— 0 0 

Hence and, in turn, P x y equal zero so that independent random variables are also 
uncorrelated. The converse statement is not true in general; that is, uncorrelated 
random variables are not necessarily independent. For physically important situa-
tions involving two or more normally (Gaussian) distributed random variables, 
however, being mutually uncorrelated does imply independence. This is proved later 
in Section 3.3.4. 

3.2.2 Distribution for Sum of Two Random Variables 

Suppose x(k) and y(k) are two random variables with a joint probability density 
function p(x, y). Determine the probability density function p(z) of the sum of random 
variable 

z(k)=x(k)+y{k) 
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For each fixed value of x, the corresponding y = z — x. This gives 

p{x,y) =ρ{χ,ζ-χ) 

For each fixed value of z, the values of χ may range from —oo to oo. Hence, 

p(z)=\ p(x,z-x)dx (3.38) 
J—CO 

which shows that the desired sum probability density function requires knowledge of 
the joint probability density function. If x(k) and y{k) are independent random 
variables with probability density functions p\{x) and p2{x), respectively, then 
p(x,y) = P\{x)pi{y) = Pi(x)pi(z — x), andp(z) is given by the convolution integral 

P(z) P\{x) Pi{z - x) dx (3.39) 

Example 3.5. Sum of Two Independent Uniformly Distributed Vari-
ables. Suppose two independent random variables χ and y satisfy 

pl(x) =- 0<x<a otherwise zero 

P2(y)—- 0 < ν < α otherwise zero 
a 

Find the probability density function p{z) for their sum z=x + y. 
The probability density function p2(y) = p2(z - x) forO < ζ - χ < a, which may be 

written as ζ — a < χ < ζ- Hence χ cannot exceed z. Also, ρy(x) requires 0 < χ < a. It 
follows from Equation (3.39) that 

P(z) 

Jo V 

1 \ 2 

- ] d x = 4- 0 < ζ < α 
ο \ a J a 

2 a ~ z so - )dx — —τ— a <z<2a 
z-a \aj a2 

0 otherwise 

Plots of p\(x), p2(y), and p(z) are shown in Figure 3.4. Observe that the sum of two 
independent random variables with uniform probability density functions will have a 
triangular probability density function. It is straightforward to verify that the prob-
ability density function for the sum of four independent random variables, each with 
uniform probability density function, will begin to resemble a Gaussian form, as 
predicted by the central limit theorem in Section 3.3.1. 

3.2.3 Joint Moment-Generating and Characteristic Functions 

The joint moment-generating function m(s, ή of x(k) and y(k) is defined by letting 
g(x, y) = exp(sx + ty) in Equation (3.33), namely, 

m(s, t) = E[esx+,y] = | | esx+typ{x,y)dxdy (3.40) 
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Pzb>) 

l/a I l/o I 

Now 

1(0,0) p(x,y) dxdy = 1 

Assuming all partial derivatives exist, it follows that 

dm(s, t) 

ds 

dm(s, t) 

dt 

^xesx+typ{x,y)dxdy 

^yesx+tip{x,y)dxdy 

d2m^,t) _ ^y2esx+typ(x v ) d x d y 

\{xyesx + ,yp(x,y)dxdy 
dsds JJ 
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and so on. Hence at s = 0 and t = 0, 

y) dxdy = E[x] = ||*P(*> 

E\y] = \^yp(x,y)dxdy 

[x2]= ^x2p{x,y)dxdy = 

dm(s, t) 

ds 

dm(s, t) 

Κ 

E\y2} 

E[xy] 

y2p{x,y)dxdy •• w 
^xyp{x,y) dxdy = 

dt 

d2m(s, ή 
ds2 

d2m(s, t) 
dt2 

d2m(s t) 

(3.41) 

dsdt 

and so on. In general, at s, t = 0, the mixed moments are 

oo 

E[xrf) = | | xYp(x,y)dxdy = ^ f f i 0 (3.42) 

—OO 

The joint characteristic function C(/,g) of x(k) and y(k) is defined by letting 

g(x> y) = £xp[j2n(fa + gy)] in Equation (3.33), namely, 

OO 

C(f, g) = E[ejMfic+sy)} = | | pix^e^+^dxdy (3.43) 

— 0 0 

Thus, C(f, g) has the form of an inverse double Fourier transform, where p{x, y) is the 
double Fourier transform of C(f, g). Assuming all integrals exists, 

0 0 

p(x,y) = | | C{f,g)e-*'U'+rtdfdg (3.44) 

Note that C(f, g) is the same as m(s, t) when s = j2nfand t=j2ng, namely, 

C(f,g)=m(j2nfJ2ng) (3.45) 

3.3 GAUSSIAN (NORMAL) DISTRIBUTION 

A random variable x(k) is said to follow a Gaussian (or normal) distribution if its 
probability density function is given by 

p(x) = {bV2n) 'exp 
(x — a) 

(3.46) 
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where a is any real constant and b is any positive constant. It may be verified that a and 
b constitute the mean value and standard deviation of the random variable x(k) because 

E[x(k)} = xp(x) dx = a = μχ 

?[(*(*) - a)2} = (x - a)2p(x)dx = b2 = σ\ 
J—OO 

Thus, the Gaussian probability density function should be expressed by 

p(x) = ( σ Λ ν 2 π ) exp 
2 σ 2 

The Gaussian probability distribution function is, by definition, 

P{x) = ( σ - , ν ^ Γ ' [ exp 
J —OO 

2σ? 

(3.47) 

(3.48) 

For the purposes of plotting and tabulation of values, it is convenient to present the 
Gaussian probability density and distribution functions in terms of the standardized 
variable ζ defined as 

(3.49) 

The Gaussian probability density and distribution functions are then given in 
standardized form by 

and 

P(z) = (V2nyl\Z 

exp 

(3.50) 

(3.51) 

Plots of the standardized Gaussian (normal) probability density and distribution 
functions are shown in Figure 3.5. The values of p(z) and 1 -P{z) are tabulated in 
Tables A.l and A.2, respectively. These tables can be used for any normally 
distributed random variable χ using Equation (3.49), that is, χ = ζσχ + μχ. Applica-
tions of the normal distribution to statistical data analysis problems are outlined in 
Chapter 4. Further discussions of the normal distribution and its history are available 
from Ref. 5. 

3.3.1 Central Limit Theorem 

The importance of the normal distribution in physical problems may be attributed in 
part to the central limit theorem, [1], which asserts this distribution will result quite 
generally from the sum of a large number of independence, random variables acting 
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—* 

—ζ 

Figure 3.5 Standardized Gaussian (normal) probability density and distribution functions, (a) Probability 
density function, (b) Probability distribution function. 

together. To be a bit more specific, let x\(k), x2(k),..., xN(k) be Ν mutually 
independent random variables whose individual distributions are not specified and 
may be different. Let μ, and σ\ be the mean value and variance of each random 
variable *,(&), i= 1, 2, . . . , N. Consider the sum random variable 

Ν 

x{k) =Y^aiXi{k) (3.52) 
i = l 
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where a, are arbitrary fixed constants. Now, the mean value μχ and the variance σ2 

become 

μχ = E[x(k)] = Ε = ^2aiE[xi(k)} = Ύ^αιμί 

i = l 

σΙ=Ε[(χΜ-μχ)
2)=Ε 

1 = 1 1 = 1 

The last expression is a result of the mutual independence of with ;CJ(&) for i φ j . 
The central limit theorem states that under fairly common conditions, the sum random 
variablexOV) will be normally distributed as Ν —> oo with the above mean value μχ and 

variance at. 

3.3.2 Joint Gaussian (Normal) Distribution 

For two variables x(k) and y{k) with zero mean values and equal variances 
σ\=(τ\= σ1, their joint Gaussian (normal) probability density function is defined 
by 

p(x,y) 
ι 

f exp 

where 

-[x2 —2pxy + y2 

2πσ2^Γ^ρ2""~Λ 2 σ * ( 1 - ρ 2 ) 

E[xy] E[xy] 
P = = T~ 

σχσ2 σ2-

(3.53) 

(3.54) 

It is instructive to verify Equation (3.47) using Equations (3.30) and (3.53). 

Specifically, consider 

<\ Γ ι \a 1 Γ f-jx^-lpxyj^h 
P(x) = lj(x,y)dy = 2 π σ 2 „ ] _ ^ χ Ρ ( 2 σ 2 ( 1 _ ρ 2 ) )dy 

Now 

χ2 - 2pxy + y2 = [\-p2)x2 + {y-Pxf 

so the exponential term can be written as 

exp 
-[x2 - 2pxy+y2] 

2 σ 2 ( 1 - ρ 2 ) 
exp 

x2 

2 σ ν ε Χ Ρ \ 2 σ 2 ( 1 - ρ 2 ) 
-{y-pxf 

Hence 

e\p(-x2/2a2) . . . ! / 2 σ 2 ) f° 

* ) = m ^ I e x p 

-(y-ρχ) 
2σ2{1-ρ2) 

dy 
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Now let 

y-px 
du 

dy 

Then 

p{x) = 
σπ\/2 

in agreement with Equation (3.47) 

o V 2 ( l - P 2 ) « V 2 ( 1 - P 2 ) 

e x p ( - , 2 / 2 . 2 ) Γ e x p ( _ w 2 ) , M = e x p ( - * W ) 

σ\/2π 

3.3.3 Moment-Generating and Characteristic Functions 

From Equations (3.17) and (3.47), the moment-generating function for the zero mean 
value Gaussian variable is 

n= 1 , 2 , 3 . . . 

m(s) = ε χρ (σ 2 χ 2 / 2 ) 

One can now verify from Equation (3.18) that 

E[x2"-1} = 0 

E[x2n] = 1 - 3 - 5 · · • {2η-\)σ2η 

Thus, all odd-order moments are zero while even-order moments become 

Elx2} = σ2 E[x4} = 3 σ 4 

E[x6] = 15σ 6 E[x*} = 105σ 8 

(3.55) 

(3.56) 

(3.57) 

and so on. 
From Equations (3.22) and (3.55), the characteristic function for the zero mean 

value Gaussian variable is 

C(f) = e x p ( - 2 ^ o - 2 / 2 ) (3.58) 

The joint moment-generating function from Equation (3.40) for the two zero mean 
value Gaussian variables satisfying Equation (3.53) is 

m(s, t) = exp [s2 + Ipst +12) (3.59) 

It follows directly from Equation (3.42) that 

E[xryn] =0 if r + η is odd 

E[x2} = E\y2} = σ2 E[xy] = ρσ2 

E[x3y) = E[xy3] = 3 ρ σ 4 

E[JCY] = σ 4 ( 1 + 2 ρ 2 ) 

(3.60) 
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and so on. The joint characteristic function from Equation (3.45) for the two zero 
mean value Gaussian variables satisfying Equation (3.58) is 

C(f,g) = e x p { - 2 7 r V 2 [ / 2 + 2p/g + g 2 ]} (3.61) 

3.3.4 iV-Dimensional Gaussian (Normal) Distribution 

Consider now Ν random variables Xi(k), x2(k), •.., x^k), which may be correlated. 
Denote their respective mean values, variances, and covariances by 

μ, =E[xi(k)] 

σ1=Ε[(φ)-μί)
2} (3.62) 

Qj = Ε[(χ^)-μί)(φ)-μ])] Cu = oj 

Their joint distribution is said to follow an N-dimensional Gaussian (normal) 
distribution if the associated Ν-ΐο\ά probability density function is given by 

e x p [ ( - l / 2 | C | ) Σ!1Μ |C f f | (*/-fc)(*,- / i , )] 
P(X\,X2, • • • ,Xn) 

(2π . W / 2 | r , l / 2 
(3.63) 

where C is the covariance matrix of the Cy- defined below, |C| is the determinant of C, 
and |C,y| is the cofactor of Cy in determinant |C|. To be explicit, 

C21 C22 C2N 

Cm Q NN 

(3.64) 

and the cofactor | Cy | of any element Cy is defined to be the determinant of order Ν - 1 
formed by omitting the ith row and jth column of C, multiplied b y ( - l ) ' + y . 

The outstanding feature of the N-dimensional Gaussian distribution is that all of its 
properties are determined solely from a knowledge of the various mean values μ,· and 
covariances Cy. For N=l, this function reduces to 

n21 

p(xi) = (en ν 2 π ) exp 
(χι-μχ) 

2 σ 2 
(3.65) 

which is the Gaussian probability density function denned previously in Equa-
tion (3.47). For Ν = 2, the joint normal probability density function becomes 

p{xuxi) = 

exp< 
2 ( 1 - P 2

2 ) 

X\~P\ 2p 
12 I σι o-2 

+ 
Χ2~μ2 

0-2 

2naxa2\J\-p]2 

(3.66) 
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where pn — ci2/a\a2 is the correlation coefficient between x}(k) and X2(k). Observe 
that when xx(k) and x2(k) are uncorrelated so that p 1 2 = 0, Equation (3.66) becomes 

p(xi,x2) = p(x\)p(x2) (3.67) 

which shows that Xi(k) and x2(k) are also independent. This result is not true for 
arbitrary distributions. 

Similar formulas may be written for higher order cases where N—3,4,5, For 
arbitrary N, it follows quite easily that if all different pairs of Gaussian distributed 
random variables are mutually uncorrelated (that is, p y = 0 whenever i φ j), then these 
random variables are mutually independent in the probability sense. That is, 

p{xi,x2, • • • ,XN) =p(xi)p{x2) • • • p{XN) (3.68) 

The importance of the N-dimensional Gaussian distribution in physical problems, 
analogous to the common one-dimensional Gaussian distribution, is due in part to the 
multidimensional central limit theorem, [6]. This theorem yields the result that the 
vector sum of a large number of mutually independent ΛΓ-dimensional random 
variables approaches an N-dimensional Gaussian distribution under fairly general 
conditions. 

For any N-dimensional Gaussian probability density function represented by 
Equation (3.63), it follows that 

J · • • Jp (* i ,X2, • • - XN) dx\ dx2 • • • dx^ = 1 (3.69) 

— C O 

Also, the expected value of any real single-valued continuous function g(x\, x2,..., xN) 

of the Ν random variables involved is given by 

E[g(x\,X2,--.,XN)] 

SO 

l •••^g(x\,X2,---,XN)p(x\,X2,---,XN) (3 7 0 ) 
o o 

xdx\ dx2 • • • dxN 

When g(x\, x2,..., xN) = exp(s\Xi + s2x2 + ••• + sNxN), this defines from 
Equation (3.63) that the Nth-order moment-generating function, namely, 

m(sus2,... ,sN) — E[cxp(s)Xi+s2X2+ ••• +SNXN)] (3-71) 

Consider the case of four Gaussian random variables, x\, x2, x3, and x4, with zero 
mean values and equal variances of = σ2. Their respective covariances C y now 
satisfy Cy = ρ ν ·σ

2 where 

C12 = E[xix2] C 2 3 = E[x2x3] 

C13 = E[xix3] C24 = E[x2x4\ (3.72) 

C 1 4 = £ ,[X(X4] C34 = £[^3X4] 
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Let p(x\X2, X3, X4) be given by Equation (3.63). Then the fourth-order moment-
generating function becomes 

m(si,s2,S3,s4) = E{exp(siX] + 52*2 + 53X3+£4X4) ] 

a2 

= exp y ( i 2 + S 2 + i 3 + i 4 + 2 p 1 2 5 1 5 2 + 2 p i 3 i l S 3 

+ 2pHS\Si, + 2ρ23ί2^3 + 2ρ24«2ί4 + 2 p 3 4 S 3 S 4 ) 

One can directly verify that the fourth-order moment is given by the fourth partial 
derivative 

d4m(sus2,S3,s4) E[x\X2XlX4] = 
ds\ds2dsids4 

It is now straightforward but tedious to perform the partial derivatives and to set 
i i — s2 = s3 = s4 — 0 so as to derive 

E[xix2XiX4] — C12C34 + C I 3 C 2 4 + C14C23 (3.73) 

This shows that the fourth-order moment is the sum of 3 = (31) different pairs of 
second-order moments (covariances) contained therein. 

A similar derivation for the sixth-order moment of zero mean value Gaussian data 
gives the result that the sixth-order moment is the product of 15 = (5-3-1) different 
triplets of second-order moments contained therein, namely, 

E[xiX2*3*4*5*6] = C\2[Ct,4C% + C35C46 + C36C45] 

+ C\j,[C24Cs(, + C25C46 + C26C45] 

+ C 1 4 [ C 2 3 C 5 6 + C 2 5 C 3 6 + C26C35] (3.74) 

+ C15 [C23C46 + C24C36 + C26C34] 

+ Ci6[C23C45 + C24C35 + C25C34] 

In general, if η is an even integer, then £[xiX2 ·•• xn] consists of(N—l)(N—3) · · · 
(3)(1) different products of all possible Cy terms. On the other hand, all odd-order 
moments of Gaussian random variables with zero mean values will be zero, that is, 

£[xix2 · • · xn] — 0 if TV is odd (3.75) 

All of these relations apply not only to the original random variables x„ but also to any 
linear transformations, such as their Fourier transforms. 

More complicated expressions occur when mean values are not zero. For example, 
consider four Gaussian random variables with equal nonzero mean 

value μφΟ and equal variances σ 2 . Now, in place of Equation (3.72), the covariances 
Cy for i ψ j are given by 

Cij=E[(xi-μ)(xJ-μ)} (3.76) 
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When i — j , 

Cu = £ [ (χ , - / ι ) 2 ] = σ 2 = ψ 2 - / ! 2 ( 3 . 7 7 ) 

The result in Equation ( 3 . 7 3 ) applies to the four variables (xx — μ), (x2 — μ), 
(x 3 - μ), and (x 4 — μ). Hence, from Equations ( 3 . 7 3 ) and ( 3 . 7 5 ) , it follows that 

E[xiX2XiX4] = C12C34 + C13C24 + C14C23 + μ4 

+ M 2 [ C 1 2 + C13 + C M + C 2 3 + C 2 4 + C 3 4 ] 

C12 = £[(*ι - μ ) ( * 2 - μ ) ] = £ [ * ι * 2 ] - μ 2 

= Λ 1 2 - μ 2 

( 3 . 7 8 ) 

As a special case, 

E[x\xl] = ψ4 + 2 C 2

2 + V C 1 2 ( 3 . 7 9 ) 

The covariance term 

( 3 . 8 0 ) 

where 

Λ12 = E[xxx2] ( 3 . 8 1 ) 

Thus, Equation ( 3 . 7 9 ) can also be written 

£[4^] = φ4 + 2{R\2 - μ4} ( 3 . 8 2 ) 

3.4 RAYLEIGH DISTRIBUTION 

Another important distribution that evolves from the Gaussian distribution is called 
the Rayleigh distribution. In Section 4 . 2 . 2 , it is noted that the Rayleigh distribution 
is the square root of the chi-square distribution with two degrees of freedom. 
However, beyond its applications in classical statistics discussed in Chapter 4 , the 
Rayleigh distribution has an important relationship to narrow bandwidth random 
data; specifically, it describes the probability density function of the envelope for 
such random data, as will now be proved. Further applications of the Rayleigh 
distribution to the peak values in narrow bandwidth Gaussian data are covered later 
in Section 5 . 5 . 2 . 

3.4.1 Distribution of Envelope and Phase for Narrow Bandwidth Data 

Consider some statistical properties about the envelope and phase of an output random 
data record after passage through a narrow bandpass filter. The frequency spread of 
the output record is assumed to be small compared to the center frequency of the filter. 
Figure 3 .6 pictures a typical narrow bandwidth output record with its output 
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autospectrum. The output record r(t) depicted in Figure 3.6 can be expressed as 

r(t) = R(t) cos[2nfct + 0(0] (3.83) 

where the envelope R(t) and the phase angle 0(i) are slowly varying functions of time 
relative to the oscillations at the center frequency fc. An equivalent representation for 
KO is 

r(t) = x(t) cos 2nfct - y(t) sin 2nfct (3.84) 

where 

x{t) = R{t) cos 0(0 (3.85a) 

y(t) = R(t) sin 0(0 (3.85b) 

R2(t)=x2(t)+y2(t) (3.85c) 

0(0 = tan _ 1 [y( i ) /x( f ) ] (3.85d) 

If {x} and [y] are thought of as an ensemble of possible rectangular errors in 
measuring the location of an object in an x,y coordinate system, then {/?} and {0} can 
be considered as the corresponding range and phase angle errors in an R, θ coordinate 
system. 

Suppose that the joint probability density function p(x, y) is known. Then the joint 
probability density function p(R, 0) can be found from 

p(x, y) dx dy = p{R cos Θ, R sin 6)R dR άθ (3.86) 

because the element of area dx dy in the x, y plane corresponds to the element of area R 
dR άθ in the R, 0 plane. Let 

q(R, Θ) = Rp(R cos 0, R sin Θ) (3.87) 
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Then 

p(x, y)dxdy = q(R, Θ) dRd6 (3.88) 

Now, the probability density function of the envelopes R(t) alone can be obtained by 
summing over all possible phase angles 0(f) from (0, 2π) and is given by 

•2π 

q{R,e)dd R > 0 (3.89) 

while the probability density function of the phase angles 0(i) alone can be obtained by 
summing over all possible envelopes R(t) from (0, oo) and is given by 

92(β) = q{R, d)dr 0 < 0 < 2π (3.90) 

The above relations show that the problem of determining the statistical nature of the 
envelope function R(t) and the phase function 0(i) is reduced to finding their joint 
probability density function p(x, y). To this objective, assume that r(t) is a narrow 
bandwidth Gaussian data record with a zero mean value and a variance σ2. Because 
x(f) and y(t) are each of the same form as r(f), consisting of R(t) multiplied by sine and 
cosine functions, it follows that they are also Gaussian distributed with zero mean 
values and the same variance as r(t), namely, 

a2

r=E[r2{t)]=E[x2{t))=E\y2(t)] 

Also, x(t) and .y(f) are independent random variables such that 

E[x(t)y(t)]=0 

(3.91) 

(3.92) 

because the product x(t) y(t) is an odd function of t. Hence, the joint probability density 
function for x{i) and y(t) will be a two-dimensional Gaussian function of the form 

p(x,y) =p(x)p{y) 
ι 

2πσ? 
exp 

(x2+y2) 

2σ2 

From Equations (3.87) and (3.89), it now follows that 

q(R,e) 
R 

2πσ2 

R 

exp 

2σ2 

2σ2 

R>0 

(3.93) 

(3.94) 

(3.95) 

The probability density function qx (R) governing the distribution of the envelope R 
(t) is the Rayleigh probability density function. Note that the parameter R in this 
function is restricted to nonnegative values. The probability distribution function for R 
(t) is computed by integrating Equation (3.95) from zero to R. The result is 

Qi(R) = Prob[J?(f) <R] - q\(ξ)άξ = 1 - exp 
2σ2 

(3.96) 
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Note that the Rayleigh probability density and distribution functions in Equations (3.95) 
and (3.96), respectively, are independent of the original center frequency fc and a 
function only of the variance σ 2 . This allows the Rayleigh probability density and 
distribution functions to be standardized on the variable (Λ/σ>) to obtain 

R 

σ, £ ) e x p R > 0 

R 
P[ — ) = 1 - exp 

(3.97) 

(3.98) 

where Equation (3.97) is determined by taking the derivative of Equation (3.98) with 
respect to (R/ar). These standardized functions are pictured in Figure 3.7. 

From Equation (3.95), the mean value of R(t) over the set of all possible 
envelopes is 

Rqx (R) dR = ( π / 2 ) 1 / 2 σ , « 1.25σγ (3.99) 

pVt/σ) 

(a) 

W o ) 

(b) 

Figure 3.7 Standardized Rayleigh probability density and distribution functions, (a) Probability density 
function, (b) Probability distribution function. 
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and the mean square value is 
POO 

ψΐ = R2

qi (R) dR = 2σ2 (3.100) 
Jo 

From Equations (3.90) and (3.94), the probability density function for θ(ί) is 

ς2(θ)=1- 0<θ<2π (3.101) 

showing that the phase angles θ(ί) are uniformly distributed over (0, 2π). 

3.4.2 Distribution of Output Record for Narrow Bandwidth Data 

In the derivation just conducted for the distribution of the envelope R(t) and phase angle 
0(f) of a narrow bandwidth output record r(t), this record r(t) was assumed to be a 
sample member of a normally distributed random process. It was then shown that the 
envelope function follows a Rayleigh distribution and the phase angle follows a 
uniform distribution. The converse result will now be proved: Specifically, the narrow 
bandwidth output record r(t) has a normal distribution if the noise envelope R(t) follows 
a Rayleigh distribution and the phase angle 0(r) follows a uniform distribution. 

To prove this converse result, let the narrow bandwidth output record r(r) be 
represented as before by 

r(t)=R{t)cos[2nfct + e(t)} (3.102) 

Assume here that the envelope function R(t) is governed by the Rayleigh probability 
density function 

<?!(/?)= ^ exp ( - | ^ ) R>0 (3.103) 

Assume also that the phase angle θ(ή is governed by the uniform probability density 
function 

q2(e)=^- 0<θ<2π (3.104) 
2% 

The probability density function p(r) can now be found from Equation (3.116) in 
Section 3.5 by replacing the variable χ by r and the amplitude A by the envelope R. 
This gives 

p{r) q d R ) dR (3.105) 
r ns/R2-r2 

where q^R) is represented by Equation (3.103). Substitution of this q^R) into 
Equation (3.105) yields 

1 fc 

π σ 2 J r 
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The variable of integration can now be changed by letting u = R2 -r2 and du = 2R dR 
to obtain 

p(r) = 
exp(—r 2/2σ 2) 

2πσΙ 
v y '—rJ-du = _ e x p - — r 3.107 

where the following formula from integral tables is used: 

' ε χ ρ ( - Μ / 2 σ 2 ) 

\fu~ 
-du = arV2n (3.108) 

Equation (3.107) shows that the narrow bandwidth output data record rif) is normally 
distributed with a mean value of zero and a variance of σ2, completing the desired 
proof. 

3.5 HIGHER ORDER CHANGES OF VARIABLES 

Consider two single-valued continuous random variables with continuous partial 
derivatives defined by 

u = u(x,y) v{x,y) (3.109) 

where the inverse functions are also single valued. Let p(x, y) be the joint probability 
density function of χ and y and let p(u, v) be the joint probability density function of u 
and v. Then, as χ and y move about some probability area in the x, y plane, the 
corresponding u and ν move about the same probability area in the u, ν plane. Hence, 

p(u, v) du dv — p(x, y) dx dy 

The relation between the areas in the two planes can be determined by the 
mathematical expression for the Jacobian transformation of coordinates in Ref. 7, 
namely, 

du dv = J dx dy 

where 

J = 

It follows that 

d(u, v) du/dx du/dy 

[d(x,y)\ dv/dx dv/dy 
(du/dx)(dv/dy)-{du/dy)(dv/dx) 

(3.110) 

P(",v) = 
p(x,y) 

\J\ 
(3.111) 

In using this formula, the variables χ and y on the right-hand side must be replaced by 
their appropriate u and ν so as to obtain p(u, v) as a function of u and v. Also, the 
absolute value of / should be used because the joint probability density functions are 
nonnegative quantities. 
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For the case of a three-variable change where 

u = u(x,y,z) ν = v(x, y,z) w = w(x, y, z) 

the Jacobian is given by the determinant 

du/dx du/dy du/dz 
\Hlu.v.w)\ I 

(3.112) 

[d(x,y,z) 
dv/dx dv/dy dv/dz (3.113) 

\_dw/dx dw/dy dw/dz_ 

This indicates the change in probability expressions according to the relations 

p(u,v, w) du dv dw = p(x, y, z) dx dy dz 

with 

dudvdw — J dx dy dz 

Thus, for a three-variable change, we have 

p{x,y,z) 
p(u,v,w) =J 

\J\ 
(3.114) 

Similar formulas can be written down for changes of four or more variables. 

Example 3.6. Sine Wave Distribution with Random Amplitudes. Consider a 
sine wave with random phase angles and random amplitudes represented by the 
variable 

x(k)=A{k) sia[2nf0t + e(k)] (3.115) 

where A(k) and Oik) are independent random variables. The random angle d(k) is 
assumed to be uniformly distributed over (0, 2π), and the random amplitude A(k) is 
assumed to be governed by a probability density function p(A). The problem of 
determining the probability density function p(x) is more difficult here than 
in Example 3.3 because two events must be considered. To accomplish this goal, 
let B(k) — sin[27r/0i + 6(k)] and introduce a second variable u(k) = A(k). From 
Equations (3.110) and (3.111), the change of variables from A(k) to u(k) and B(k) 
to x(k) is given by the formula 

p{u,x) = — 

where the Jacobian is defined as 

J = 
du/dA du/dB 
dx/dA dx/dB 

' 1 0" 
Β A 

= A 

Because A(k) and B(k) are independent random variables with Β = (χ/A), the joint 
probability density function is expressed as 

p(A,B)=p(A)p(B)=P(A)p(x/A) 
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Thus, 

p(u,x) 
p(A)p(x/A) 

Finally, from Equation (3.30), the first-order probability density function p(x) is 
given by 

p(x) p(u,x)du 
p{A)p{x/A) 

dA 

As shown in Example 3.3, for B(k) — sin[2n/ 0i + 6(k)], the probability density 
function 

P(B) 
1 

π ν Ί - Β2 

Because Β = (x/A), this is the same as 

\B\ < 1, otherwise zero 

bcl < A, otherwise zero 

Substitution now yields the general result for any probability density function p(A) of 
the random amplitudes in Equation (3.115), namely, 

P(A) J'OO 

-

χ π V a 2 ^ 2 

dA (3.116) 

A special case of the random processes being discussed in this example is the 
ensemble of time functions {A(k) sin[27t/0f + 9(k)]), where 6(k) is uniformly 
distributed over (0, 2π) and A(k) is governed by a Gaussian distribution. This offers 
a nontrivial example of a stationary random process that is not ergodic. If A(k) reduces 
to a fixed constant amplitude A, then the random process becomes ergodic. 

Example 3.7. Sine Wave in Gaussian Noise. Consider a single fixed sine wave 
plus normal (Gaussian) noise defined by 

z(t) = A sin(2u/ 0i + θ) + n(t) (3.117) 

where A and θ are constants and n(i) is Gaussian noise with a mean value of zero and a 
variance of σ2. The mean value of the sine wave is also zero and its variance is (A212), 
For this type of data, it is proved in Ref. 8 that the probability density functionp(z) of ζ 
(ί) over all time, as defined by 

is given by 

p(z) dz = Prob[z < z(t) <z + dz] 

\z-A cos φ 

πσ„ Jo 
(Τ η 

άφ 

(3.118) 

(3.119) 
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where 

(3.120) 

is the normal probability density function with a mean value of zero and a variance of 
unity. 

Equation (3.119) is derived below by assuming, as in Section 5.3.2, that sufficient 
conditions for ergodicity exist so that the time average on one representative record 
over all time is equivalent to an ensemble average over the collection of records at a 
fixed time. Plots of the standardized p(z) of Equation (3.119) as a function of ζ are 
shown in Figure 3.8 for different values of the variance ratio R = (ajan)

2, where 
σ2 = (A2/2) is the variance of the sine wave and σ2. is the variance of the noise. 

The proof of Equation (3.119) is as follows. By the convolution property of 
Equation (3.39), the probability density function for the sum of the two independent 
random variables in Equation (3.117) is given by 

Γ Ο Ο 

P(z)=\ Px{x)pi{z-x)dx (3.121) 
J — C O 

where ρλ(χ) is the probability density function of A sin(2re/0i + Θ) and p2(x) is the 
probability density function of n(t). To be specific, 

p\ (x)dx « Probbr < A sin(2n/ 0i + Θ) < χ + dx] 
(3.122) 

p2(x)dx « Prob[x < n(t) < x + dx] 

To determine pi(x), instead of keeping the phase angle θ fixed and letting t vary over 
all time, one can hold t fixed and let the phase angles vary uniformly over (0,2π). This 
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gives for px(x) the result of Equation (3.15), namely, 

Pi W = 
π\/Α2 — χ2 

\x\ <A, otherwise zero (3.123) 

By hypothesis, the random noise is assumed to be Gaussian such that 

Pi{x) = (3.124) 

Substitution of pi(x) and ρ2(ζ — χ) into Equation (3.121) yields 

^ I G ^ X ^ H ^ ) * ( 3 · ΐ 2 5 ) 

Now, let x = A cos φ and dx — -Α ύτιφάφ = -\JA2 - χ2 άφ. With this change of 
variables, Equation (3.125) becomes 

where ψ(χ) is given by Equation (3.120). This completes the proof of Equation (3.119) 
for the probability density function of a sine wave in Gaussian noise. 

PROBLEMS 

3.1 A manufacturer produces shafts and bearings that are ultimately assembled by 
placing a shaft into a bearing. The shafts are produced with an outside diameter 
s that is normally distributed with a mean value of μ5 = 1.0 cm and a standard 
deviation of as = 0.003 cm. The inside diameter b of the manufactured 
bearings is also normally distributed with a mean value of μ Α = 1.01 cm and 
a standard deviation of ab — 0.004 cm. If the assembler selects a shaft and a 
bearing at random, what is the probability that a selected shaft will not fit inside 
the bearing? (Assume the shafts and bearings are perfectly circular and a fit 
occurs if s < b.) 

3.2 A manufacturer produces washers with a thickness d that has a mean value of 
μά = 1.0 mm and a standard deviation of ad = 0.1 mm. If Ν = 25 washers are 
selected at random and stacked on top of one another determine the probability 
that the height of the stack will be between 24 and 26 mm, assuming 

(a) the thickness d is normally distributed. 

(b) the thickness d has an unknown distribution function. 

(3.126) 
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3.3 Consider a random variable χ with a probability density function given by 

Γ 4x3 0 < χ < 1 

^ 0 otherwise 

(a) Determine the probability distribution function P(x). 

(b) Determine the mean value and the variance of x. 

3.4 Consider a random variable χ with a probability distribution function 
given by 

( 0 χ < 0 

χ" 0 < x < 1 

1 χ > 1 

(a) Determine the probability density function /?(JE). 

(b) Determine the mean value and variance of x. 

3.5 Assume a computer generates random digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) with 
equal probabilities. Let Γ be a random variable representing the sum of Ν 
digits. Determine the mean value and variance of T. 

3.6 A random variable χ is uniformly distributed such that the probability density 
function is given by 

1 0 < x < 1 

0 elsewhere 

Find the probability density function of the random variable y = 2x + 1. 

3.7 Assume a random variable χ is normally distributed with a mean value of zero 
and a variance of unity. Determine the probability density function of the 
random variable y = x2. 

3.8 Gaussian random noise is passed through a narrow bandpass filter to produce a 
narrow bandwidth output r(f) with an envelope R{t). Assume the envelope R(t) 
has a mean value of μ Λ = 2.50. What is the probability that the envelope at any 
instant will exceed a value of R — 5. 

3.9 Consider a random variable χ with a Poisson distribution defined by p(x) = 
μχε~"/χ\ Determine the mean value and variance of χ using the moment 
generating function. 

3.10 Two independent random variables χ and y have probability density functions 
given by 
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1 
e-A-1)2/4 P(y) = e-(y+ »)2/4 

2ν/π 

Determine the probability density functions of the random variables 

(a) u = x—y. 

(b) ν = x + y. 
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C H A P T E R 4 

Statistical Principles 

Beyond the basic ideas of probability theory discussed in Chapter 3, the measurement 
and the analysis of random data involve uncertainties and estimation errors that must 
be evaluated by statistical techniques. This chapter reviews and illustrates various 
statistical ideas that have wide applications to commonly occurring data evaluation 
problems. The intent is to provide the reader with a minimum background in 
terminology and certain techniques of engineering statistics that are relevant to 
discussions in later chapters. More detailed treatments of applied statistics with 
engineering applications are available from Refs 1-3. 

4.1 SAMPLE VALUES AND PARAMETER ESTIMATION 

Consider a random variable x, as defined in Section 3.1, where the index k of the 
sample space is omitted for simplicity in notation. Further consider the two basic 
parameters of χ that specify its central tendency and dispersion, namely the mean 
value and variance, respectively. From Equations (3.8) and (3.11), the mean value and 
variance are given by 

where p(x) is the probability density function of the variable x. These two parameters 
of Λ: cannot, of course, be precisely determined in practice because an exact knowledge 
of the probability density function will not generally be available. Hence, one must be 
content with estimates of the mean value and variance based on a finite number of 
observed values. 

Random Data: Analysis and Measurement Procedures, Fourth Edition. By Julius S. Bendat 
and Allan G. Piersol 
Copyright © 2010 John Wiley & Sons, Inc. 

xp(x)dx (4.1) 
— O O 

(4.2) 
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One possible method (there are others) for estimating the mean value and variance 
of χ based on Ν independent observations would be as follows: 

1 

ί = 1 

ι=1 Here, χ and s2

b are the sample mean and sample variance, respectively. The hats Q 
over μχ and σ2. indicate that these sample values are being used as estimators for the 
mean value and variance of x. The subscript on s\ means that this is a biased variance 
estimate (to be discussed later). The number of observations used to compute the 
estimates (sample values) is called the sample size. 

The specific sample values in Equations (4.3) and (4.4) are not the only quantities 
that might be used to estimate the mean value and variance of a random variable*. For 
example, reasonable estimates of the mean value and the variance would also be 
obtained by dividing the summations in Equations (4.3) and (4.4) by TV - 1 instead of 
N. Estimators are never clearly right or wrong since they are defined somewhat 
arbitrarily. Nevertheless, certain estimators can be judged as being "good" estimators 
or "better" estimators than others. 

Three principal factors can be used to establish the quality or "goodness" of an 
estimator. First, it is desirable that the expected value of the estimator be equal to the 
parameter being established. That is, 

Ε[φ] = Φ (4.5) 

where φ is an estimator for the parameter φ, If this is true, the estimator is said to be 
unbiased. Second, it is desirable that the mean square error of the estimator be smaller 
than for other possible estimators. That is, 

ΕΚ4Ί-Φ)2} < Ε[(φ,-φ)2] (4.6) 

where φι is the estimator of interest and is any other possible estimator. If this is 
true, the estimator is said to be more efficient than other possible estimators. Third, it is 
desirable that the estimator approach the parameter being estimated with a probability 
approaching unity as the sample size becomes large. That is, for any ε > 0, 

lim Ρ π Λ [ | ψ - ψ | > ε] = 0 (4.7a) 
Ν—* o o 

If this is true, the estimator is said to be consistent. It follows from the Chebyshev 
inequality of Equation (3.23) that a sufficient (but not necessary) condition to meet the 
requirements of Equation (4.7a) is given by 

lim Ε[(φ-φ)2} = 0 (4.7b) 
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Note that the requirements stated in Equation (4.7) are simply convergence require-

ments in (a) the probability and (b) the mean square sense, as defined later in Section 

5.3.4. 

Consider the example of the mean value estimator given by Equation (4.3). 

The expected value of the sample mean χ is 

E[x] = Ε 
1 N 

N4-i 
= l-E 

Ν i=l 
(4.8) 

Hence, from Equation (4.5), the estimator μχ = χ is unbiased. The mean square error 

of the sample mean χ is given by 

(x-Px) Υ,Χί-βχ 
1=1 

Υ(χί-μχ) 
, '=1 

From Section 3.2.1, since the observations Xj are independent, the cross product terms 
in the last expression will have an expected value of zero. It then follows that 

Ε (χ-μχΫ Y (*<'~^)2 

ι = 1 

(4.9) 

Hence, from Equation (4.7b), the estimator μχ = χ is consistent. It can be shown that 
the estimator is also efficient. 

Now consider the example of the variance estimator given by Equation (4.4). The 
expected value of the sample variance s\ is 

E[s 

i=l 
4 * 

Υ (x~xf 
i=l 

However, 

Ν 

Σ(χ<-χ)2 = Υ{χι-μχ+μχ-χ)2 

i=l i=l 
Ν Ν Ν 

= Υ(χί-μχ)2-2(χ-μχ)Υ(χ>-μχ) + Υ(χ-μχ)2 

ι = 1 ι = 1 ι=1 

Ν 

= ^{χ-μ,Ϋ-Ι^-μ^Ν^-μ,) +Ν{χ-μχ)
2 

ι = 1 

Ν 

= Υ(χ·-μχ)2-Ν(χ-μχ)
2 

ι = 1 

Because Ε[(χ~μχ)
2} = σ2 and Ε[(χ-μχ)

2] = σ2

χ/Ν, it follows that 

(4.10) 

E[sl)=jj(N*x-*
2

x) = 
(ΛΤ-1) 

Ν 
(4.11) 
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Hence, the estimator σχ = s\ is biased. Although the sample variance s\ is a biased 
estimator for σχ, it is a consistent and an efficient estimator. 

From the results in Equation (4.11), it is clear that an unbiased estimator for σ2

χ may 
be obtained by computing a slightly different sample variance as follows: 

*2 = ^=>νΤϊΣ(*<-*")2
 (4-12) 

i = l 

The quantity defined in Equation (4.12) is an unbiased estimator for σ2.. For this 
reason, the sample variance defined in Equation (4.12) is often considered a "better" 
estimator than the sample variance given by Equation (4.4). The sample variance 
defined in Equation (4.12) will be used henceforth as an estimator for the variance of a 
random variable. 

4.2 IMPORTANT PROBABILITY DISTRIBUTION FUNCTIONS 

Examples of several theoretical probability distribution functions are given in Chapter 
3. The most important of these distribution functions from the viewpoint of applied 
statistics is the Gaussian (normal) distribution. There are three other distribution 
functions associated with normally distributed random variables that have wide 
applications as statistical tools. These are the χ2 distribution, the f distribution, and the 
F distribution. Each of these three, along with the normal distribution, will now be 
defined and discussed. Applications for each as an analysis tool will be covered in 
later sections. 

4.2.1 Gaussian (Normal) Distribution 

The probability density and distribution functions of a Gaussian distributed random 
variablex are defined by Equations (3.47) and (3.48) in Section 3.3. As noted in that 
section, a more convenient form of the Gaussian distribution is obtained by using the 
standardized variable ζ given by 

z = ^ (4.13) 

When Equation (4.13) is substituted into Equations (3.47) and (3.48), standardized 
Gaussian density and distribution functions with zero mean and unit variance (μζ = 0; 
σ2 = 1) are obtained as given by 

P(z)=-Le-^
2
 (4.14a) 

ν In 

P(z) 
2π) 

ε-ξ>2άξ (4.14b) 
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The standardized Gaussian (normal) probability density and distribution functions in 
Equation (4.14) are plotted in Figure 3.5. 

It is desirable for later applications to denote the value of ζ that corresponds to a 
specific probability distribution function value of P(z) = 1 — α by za- That is, 

p(z)dz = Prob[z < Za] = l-a (4.15a) 

or 
r O O 

l-P(za)=\ p(z)dz = Prob[z > za] = a (4.15b) 

The value of z a that satisfies Equation (4.15) is called the 100a percentage point of 
the normal distribution. A limited tabulation of percentage points for the normal 
distribution is presented in Table A.2. 

4.2.2 Chi-Square Distribution 

Let z\, Z2, Z3, • • •, z„ be η independent random variables, each of which has a Gaussian 
distribution with zero mean and unit variance. Let a new random variable be defined as 

X2

n = z2 + zl + zl+ ••• + z2„ (4.16) 

The random variable χ2 is the chi-square variable with η degrees of freedom. The 
number of degrees of freedom η represents the number of independent or "free" 
squares entering into the expression. From Ref. 3, the probability density function of 
χ2 is given by 

ρ(χ2) = [2"/2r(n/2)}-le-*1/2(x2)in/2)-1
 x2 > 0 (4.17) 

where T(n/2) is the gamma function. The corresponding distribution function of χ2, 
given by the integral of Equation (4.17) from -oo to a specific value of χ 2 , is called 
the chi-square distribution with η degrees of freedom. The 100a percentage point of 
the χ2 distribution will be denoted by χ2.α. That is, 

poo 

P(X2W = Prob[ X

2 > xlj = a (4.18) 

The mean value and variance of the variable χ 2 are 

Ε[χΙ]=μχ1=η (4.19) 

Ε [ ( Χ „ 2 - / ν ) 2 ] = σ 2

2 = 2 η (4-20) 

A limited tabulation of percentage points for the chi-square distribution function is 
presented in Table A.3. 

Several features of the chi-square distribution should be noted. First, the chi-square 
distribution is a special case of the more general gamma function [2]. Second, the 
square root of chi-square with two degrees of freedom ( y ^ f ) constitutes an important 
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case called the Rayleigh distribution function [3]. The Rayleigh distribution has wide 
applications to two-dimensional target problems and is also the limiting distribution 
function of both the envelope (see Section 3.4) and the peak values (see Section 5.5) 
for narrow bandwidth Gaussian random data as the bandwidth approaches zero. Third, 
a chi-square distribution approaches a Gaussian distribution as the number of degrees 
of freedom becomes large. Specifically, for η > 100, the quantity τ/2χ2

ι is distributed 
approximately as a Gaussian variable with a mean of μ = \ / 2 n - l and a variance of 
σ 2 = 1 [Ref. 1]. 

4.2.3 The t Distribution 

Let y and ζ be independent random variables such that y has a χΐ distribution function 
and ζ has a Gaussian distribution function with zero mean and unit variance. Let a new 
random variable be defined as 

tn=-
fyjn 

(4.21) 

The random variable tn is Student's t variable with η degrees of freedom. From Ref. 2, 
the probability density function of tn is given by 

-(«+l)/2 

Pit) 
Π(η_+1)/2] 

πηΓ(η/2) 
1 + (4.22) 

The corresponding distribution function of tn, given by the integral of Equation (4.22) 
from -oo to a specific value of f„, is called the t distribution with η degrees of freedom. 
The 100a percentage point of the t distribution will be denoted by tn:a. That is, 

p(t)dt = Prob[i„ > t„.a] = a (4.23) 

The mean value and variance of the variable /„ are 

E[tn] = μ, = 0 for η > 1 

(tn-μ,) = σ, 
η 

η^ϊ 
for η > 2 

(4.24) 

(4.25) 

A limited tabulation of percentage points for the t distribution function is presented in 
Table A.4. It should be noted that the t distribution approaches a standardized 
Gaussian distribution as the number of degrees of freedom η becomes large. 

4.2.4 The F Distribution 

Let yi and y 2 be independent random variables such that yt has a χ2 distribution 
function with nx degrees of freedom and y 2 has a χ2 distribution function with n2 

degrees of freedom. Let a new random variable be defined as 

yi/tt! =yw2 

y2/n2 y2ti\ 
* ι Λ = ^ = ^ (4-26) 
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The random variable F„, ,„2 is the F variable with ti\ and n2 degrees of freedom From 
Ref. 3, the probability density function of F„lA2 is given by 

n^mM-j"1^ F > 0 (4.27) 

The corresponding distribution function of Fnuni, given by the integral of 
Equation (4.27) from -oo to a specific value of Fnu„2, is called the F distribution 
with ni and n2 degrees of freedom. The 100a percentage point of the F distribution 
will be denoted by F„un2;a. That is, 

p o o 

p(F)dF = Prob[F„„ n 2 > F„„„ 2 ; a] = a (4.28) 

The mean value and variance of F„ I ) / l 2 are 

E[Fnuni] = μΓ = forn 2 > 2 (4.29) 

Ε[(Εηι,ηΊ-μργ]=4=

 2?in\+/r2l f o - 2 > 4 (4.30) 
» i ( « 2 - 2 ) ( « 2 - 4 ) 

A limited tabulation of percentage points for the F distribution function is presented in 
Tables A.5(a), A.5(b), and A.5(c). It should be noted that the statistic r 2, the square of 
the variable defined in Equation (4.21), has an F distribution with n\ = 1 and n2 = n 
degrees of freedom. 

4.3 SAMPLING DISTRIBUTIONS AND ILLUSTRATIONS 

Consider a random variable χ with a probability distribution function P(x). Let x\, 
x2,..., xN be a sample of TV observed values of x. Any quantity computed from these 
sample values will also be a random variable. For example, consider the mean value χ 
of the sample. If a series of different samples of size Ν were selected from the same 
random variable x, the value of χ computed from each sample would generally be 
different. Hence, χ is also a random variable with a probability distribution function 
P{x). This probability distribution function is called the sampling distribution of x. 

Some of the more common sampling distributions that often arise in practice will 
now be considered. These involve the probability distribution functions defined and 
discussed in Section 4.2. The use of these sampling distributions to establish 
confidence intervals and perform hypothesis tests is illustrated in Sections 4.4-4.8. 

4.3.1 Distribution of Sample Mean with Known Variance 

Consider the mean value of a sample of Ν independent observations from a random 
variable χ as follows: 
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First, consider the case where the random variable χ is normally distributed with 
a mean value of μχ and a known variance of σ2.. From Section 3.3.1, the sampling 
distribution of the sample mean χ will also be normally distributed. From 
Equation (4.8), the mean value of the sampling distribution of χ is 

μ, = μ, (4-32) 

and from Equation (4.9), the variance of the sampling distribution of χ is 

= § (4-33) 

Hence, from Equation (4.13), the following sampling distribution applies for the 
sample mean x: 

i__±_M = z (4.34) 

where ζ has a standardized normal distribution, as defined in Section 4.2.1. It follows 
that a probability statement concerning future values of the sample mean may be made 
as follows. 

Prob (4.35) 

Now, consider the case where the random variable χ is not normally distributed. 
From the practical implications of the central limit theorem (see Section 3.1.1), the 
following result occurs. As the sample size /Vbecomes large, the sampling distribution 
of the sample mean χ approaches a normal distribution regardless of the distribution 
of the original variable x. In practical terms, a normality assumption for the sampling 
distribution of χ becomes reasonable in many cases for Ν > 4 and quite accurate in 
most cases for 7V> 10. Hence, for reasonably large sample sizes, Equation (4.34) 
applies to the sampling distribution of χ computed for any random variable x, 
regardless of its probability distribution function. 

4.3.2 Distribution of Sample Variance 

Consider the variance of a sample of Ν independent observations from a random 
variable χ as follows: 

' 2 N-j ^ £ > - i ) 2 < 4 ' 3 6 ' 
= 1 

If the variable χ is normally distributed with a mean of μχ and a variance of σ\, it is 
shown in Ref. 1 that 

Y(Xi-xf = ayn n = N-l 
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where χ 2 has a chi-square distribution with n = N—l degrees of freedom, as defined 
in Section 4.2.2. Hence, the sampling distribution of the sample variance s2 is given by 

„2 
tn n = N-l (4.37) 

It follows that a probability statement concerning future values of the sample variance 
s2 may be made as follows: 

Prob 
σ2γ2 

= a (4.38) 

4.3.3 Distribution of Sample Mean with Unknown Variance 

Consider the mean value of a sample of Ν independent observations from a random 
variables, as given by Equation (4.31). If the variable* is normally distributed with a 
mean value of μχ and an unknown variance, it is seen from Equations (4.21) and (4.37) 
that 

(χ-μχ) σχζ/\/Ν 
tn 

where t„ has a t distribution with n — N—\ degrees of freedom, as defined in 
Section 4.2.3. Hence, the sampling distribution of the sample mean χ when σ 2 is 
unknown is given by 

(χ-μχ)>/Ν 
Ν-I (4.39) 

It follows that a probability statement concerning future values of the sample mean χ 
may be made as follows: 

Prob χ > 
( St„;a 

(4.40) 

4.3.4 Distribution of Ratio of Two Sample Variances 

Consider the variances of two samples: One consists of Nx independent observations 
of a random variable x, and the other consists of Ny independent observations of a 
random variable y, as given by Equation (4.36). If the variable χ is normally dis-
tributed with a mean value of μχ and a variance of σ 2 , and the variable y is normally 
distributed with a mean value of μγ and a variance σ 2 , it is seen from Equations (4.26) 
and (4.37) that 
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where F„^„y has an F distribution with nx = Nx-\ and ny = Ny-\ degrees of 
freedom, as defined in Section 4.2.4. Hence, the sampling distribution of the ratio 
of the sample variances sx and s2 is given by 

*M _ F 

nx=Nx-l 

Hy = Ny—\ 
(4.41) 

It follows that a probability statement concerning future values of the ratio of the 
sample variances s2 and s2 may be made as follows: 

Prob 
2 2 

i>^F 
v2 > σ2

Γ "'<"*'><* 

(4.42) 

Note that if the two samples are obtained from the same random variable x = y, then 
Equation (4.41) reduces to 

Πχ =Νχ-\ 

n2 = N2 — l 
(4.43) 

4.4 CONFIDENCE INTERVALS 

The use of sample values as estimators for parameters of random variables is 
discussed in Section 4.1. However, those procedures result only in point estimates 
for a parameter of interest: no indication is provided as to how closely a sample value 
estimates the parameter. A more meaningful procedure for estimating parameters of 
random variables involves the estimation of an interval, as opposed to a single point 
value, which will include the parameter being estimated with a known degree of 
uncertainty. For example, consider the case where the sample mean χ computed from 
Ν independent observations of a random variable χ is being used as an estimator for the 
mean value μχ. It is usually more desirable to estimate μχ in terms of some interval, 
such as χ ± d, where there is a specified uncertainty that μχ falls within that interval. 
Such intervals can be established if the sampling distributions of the estimator in 
question is known. 

Continuing with the example of a mean value estimate, it is shown in Section 4.3 
that probability statements can be made concerning the value of a sample mean χ as 
follows: 

Prob 
(x-^/N 

l - a (4.44) 

The above probability statement is technically correct before the sample has been 
collected and χ has been computed. After the sample has been collected, however, the 
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value of χ is a fixed number rather than a random variable. Hence, it can be argued that 
the probability statement in Equation (4.44) no longer applies since the quantity 
(χ—μχ)\/Ν J σχ either does or does not fall within the indicated limits. In other words, 
after a sample has been collected, a technically correct probability statement would be 
as follows: 

Prob Zl-a/2 < S Za/2 (4.45) 

Whether the correct probability is zero or unity is usually not known. As the value of a 
becomes small (as the interval between Zi~a/2

 a r>d za/2 becomes wide), however, one 
would tend to guess that the probability is more likely to be unity than zero. In slightly 
different terms, if many different samples were repeatedly collected and a value 
of χ were computed for each sample, one would tend to expect the quantity in 
Equation (4.45) to fall within the noted interval for about 1 — a of the samples. In this 
context, a statement can be made about an interval within which one would expect to 
find the quantity (χ—μχ)\/Ν/σχ with a small degree of uncertainty. Such statements 
are called confidence statements. The interval associated with a confidence statement 
is called a confidence interval. The degree of trust associated with the confidence 
statement is called the confidence coefficient. 

For the case of the mean value estimate, a confidence interval can be established for 
the mean value μχ based on the sample value χ by rearranging terms in Equation (4.45) 
as follows: 

<*xZg/2 

\/N 
<μχ<χ + 

<7χΖα/2 

V^VJ 
(4.46a) 

Furthermore, if σχ is unknown, a confidence interval can still be established for the 
mean value μχ based on the sample values χ and s by rearranging terms in 
Equation (4.39) as follows: 

_ stn;a/2 . _ _ , ί Γ η ; α / 2 

x \=- < μχ < x + \/N 
n=N-l (4.46b) 

Equation (4.46) uses the fact that Z\-a/2 = —za/2 and tn-i-a/2 — ~ r « ; a / 2 - The 
confidence coefficient associated with the intervals is 1 - a. Hence, the confidence 
statement would be as follows: The true mean value μχ falls within the noted interval 
with a confidence coefficient of 1 - a, or, in more common terminology, with a 
confidence of 100(1 - a)%. Similar confidence statements can be established for any 
parameter estimates where proper sampling distributions are known. For example, 
from Equation (4.37), a 1 — a confidence interval for the variance σ2 based on a 
sample variance s2 from a sample of size TV is 

ns 

_%n;a/2 
<at< 

^ « ; l - a / 2 J 

n=N-l (4.47) 
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Example 4.1. Illustration of Confidence Intervals. Assume a sample of 7V= 31 
independent observations are collected from a normally distributed random variable* 
with the following results: 

60 61 47 56 61 63 
65 69 54 59 43 61 
55 61 56 48 67 65 
60 58 57 62 57 58 
53 59 58 61 67 62 
54 

Determine a 90% confidence interval for the mean value and variance of the random 
variable *. 

From Equation (4.46b), a 1 - α confidence interval for the mean value μχ based on 
the sample mean χ and the sample variance s2 for a sample size of Ν=31 is given by 

·#30;β/2 
* 

<μχ< [χ 
st30;a/2\ 

/31 J - - Λ λ 
From Table A.4, for a = 0.10, t3Q-a/2 = i3o;o.o5 — 1 -697, so the interval reduces to 

[(*-0.3048s) <μχ< (* +0.3048s)] 

From Equation (4.47), a 1 - a confidence interval for the variance σ 2 based on the 
sample variance s2 for a sample size of N= 31 is given by 

30s 2 

%ίθ;α/2 
<<< 

30s 2 

^30;l-a/2j 

From Table A.3, for a = 0.10, χ 2

0 ; α / 2 = χ2

30.005 = 43.77 and χ^ 0 ; 1 _ α / 2 = = 
18.49, so the interval reduces to 

[0.6854/ < σ 2 < 1.622s2] 

It now remains to calculate the sample mean and the variance, and substitute these 
values into the interval statements. From Equation (4.3), the sample mean is 

1 N 

x = ~y^Xi= 58.61 
TV 4 - i 

(=1 

From Equation (4.12), the sample variance is 

i=l V, '=1 
33.43 

Hence, the 90% confidence intervals for the mean value and variance of the random 
variable * are as follows: 

[56.85 < μΧ < 60.37] 

[22.91 < σ 2 < 54.22] 
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4.5 HYPOTHESIS TESTS 

Consider the case where a given estimator φ is computed from a sample of TV 
independent observations of a random variable x. Assume there is reason to believe 
that the true parameter φ being estimated has a specific value φ0. Now, even if φ = φ0, 
the sample value φ will probably not come out exactly equal to φ0 because of the 
sampling variability associated with φ. Hence, the following question arises. If it is 
hypothesized that φ = φ0, how much difference between φ and φ0 must occur before 
the hypothesis should be rejected as being invalid? This question can be answered 
in statistical terms by considering the probability of any noted difference between φ 
and φ0 based upon the sampling distribution of φ. If the probability of a given 
difference is small, the difference would be considered significant and the hypothesis 
that φ = φο would be rejected. If the probability of a given difference is not small, the 
difference would be accepted as normal statistical variability and the hypothesis that 
φ = Φο would be accepted. 

The preceding discussion outlines the simplest form of a statistical procedure 
called hypothesis testing. To clarify the general technique, assume that a sample 
value φ, which is an estimate of a parameter φ, has a probability density function of 
ρ(φ). Now, if a hypothesis that φ = φ0Ί& true, then ρ(φ) would have a mean value of 
φ0 as illustrated in Figure 4.1. The probability that φ would fall below the lower level 

Φΐ~α/2 IS 

Prob Φ < Φΐ-α Ρ{φ)άφ = τ (4.48a) 

The probability that φ would fall above the upper value φα/2 is 

Prob Φ>Φα 72 
F>A/2 

ρ{φ)άφ = - (4.48b) 

Hence, the probability that φ would be outside the range between φ\-α/2 and φα/2 is 
a. Now let a be small so that it is very unlikely that φ would fall outside the range 

Region of 
rejection 

* l - a / 2 *0 * e / 2 

Figure 4.1 Acceptance and rejection regions for hypothesis tests. 
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between φι _ α / 2 and φαα. If a sample were collected and a value of φ were computed 
that in fact fell outside the range between φ\-αα and φα/2, there would be a strong 
reason to question the original hypothesis that φ — φο because such a value for φ 
would be very unlikely if the hypothesis were true. Hence the hypothesis that φ = φο 
would be rejected. On the other hand, if the value for φ fell within the range between 
φ ι-a/2 and φα/2, there would be no strong reason to question the original hypothesis. 
Hence the hypothesis that φ = φο would be accepted. 

The small probability a used for the hypothesis test is called the level of 
significance of the test. The range of values of φ for which the hypothesis will be 
rejected is called the region of rejection or critical region. The range of values of φ for 
which the hypothesis will be accepted is called the region of acceptance. The simple 
hypothesis test outlined above is called a two-sided test because, if the hypothesis is 
not true, the value of φ could be either greater or less than φ0. Hence, it is necessary to 
test for significant differences between φ and φ0 in both directions. In other cases, a 
one-sided test might be sufficient. For example, let it be hypothesized that φ>φ0. 
For this case, the hypothesis would be false only if φ were less than φ0. Thus, the test 
would be performed using the lower side of the probability density function ρ(φ). 

Two possible errors can occur when a hypothesis test is performed. First, the 
hypothesis might be rejected when in fact it is true. This possible error is called a Type I 
error. Second, the hypothesis might be accepted when in fact it is false. This possible 
error is called a Type II error. From Figure 4.1, a Type I error would occur if the 
hypothesis were true and φ fell in the region of rejection. It follows that the probability 
of a Type I error is equal to a, the level of significance of the test. 

In order to establish the probability of a Type II error, it is necessary to specify some 
deviation of the true parameter φ from the hypothesized parameter φ0 that one desires 
to detect. For example, assume that the true parameter actually has a value of either 
φ = φ0 + d or φ — φ0 —d, as illustrated in Figure 4.2. If it is hypothesized that φ = φ0 

when in fact φ — φ0±ά, the probability that φ would fall inside the acceptance 
region between φ\-αη

 a n d φα/2 is β- Hence, the probability of a Type II error is β for 
detecting a difference of ±d from the hypothesized value φ0. 

Ρ<·) 

*0~d * 1 - β / 2 *0 *β/2 *0 + α" 

Figure 4.2 Type Π error regions for hypothesis tests. 
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The probability 1 — β is called the power of the test. Clearly, for any given sample 
size N, the probability of a Type I error can be reduced by reducing the level of 
significance a. However, this will increase the probability β of a Type II error (reduce 
the power of the test). The only way to reduce both a and β is to increase the sample 
size Ν for the estimate φ. These ideas form the basis for selecting the necessary sample 
sizes for statistical experiments. 

Example 4.2. Illustration of Hypothesis Test Design. Assume there is reason to 
believe that the mean value of a random variable χ is μχ = 10. Further assume that the 
variance of χ is known to be cx = 4. Determine the proper sample size to test the 
hypothesis that μχ = 10 at the 5% level of significance, where the probability of a Type 
II error is to be 5% for detecting a difference of 10% from the hypothesized value. 
Determine the region of acceptance to be used for the test. 

An unbiased estimate for μχ is given by the sample mean value χ as 
defined in Equation (4.3). The appropriate sampling distribution of χ is given by 
Equation (4.34) as 

where ζ is normally distributed with zero mean and unit variance. Note that this 
sampling distribution of χ is precise if χ is normally distributed and is still a good 
approximation if χ is not normally distributed. 

The upper and lower limits of the acceptance region for the hypothesis test are as 
follows: 

Upper limit = ~ζα/2+μχ 

Lower limit = ^=Ζι-<*/2 + μχ 

Now if the true mean value were in fact μ'χ = μχ ± d, a Type II error would occur with 
probability β if the sample value χ fell below the upper limit or above the lower limit. 
In terms of the sampling distributions of χ with a mean value μ'χ = μχ + d or 

μ'χ = μχ-d, 

σχ 

Upper limit — —ι=ζι-β+μχ + ά 
yN 

Lower limit = -^β=Ζβ + μχ-ά 
VN 

Hence the following equalities apply: 

^=Ζα,2 + μχ = ~ζχ-β+μχ + ά 
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These relationships both reduce to 

Za/2 = Zl-B Η « = —Ζβ Η a 

It follows that the required sample size is given by 

N _ ~σχ(Ζα/2+Ζβ)' 2 

L d 

For the specific values in this example (σχ = 2, ζ α / 2 = 1 . 9 6 , Ζβ —1.645, d = 
0.1(10)= 1), the required sample size is 

TV = 52 

The region of acceptance for the hypothesis test will be 

σχ 

Upper limit — -j=za/2 + μχ = 10.54 

ax 

Lower limit = —i=Z\-a/2 + μχ = 9.46 

4.5.1 Chi-Square Goodness-of-Fit Test 

A special type of hypothesis test that is often used to test the equivalence of a 
probability density function of sampled data to some theoretical density function is 
called the chi-square goodness-of-fit test. The general procedure involves the use of a 
statistic with an approximate chi-square distribution as a measure of the discrepancy 
between an observed probability density function and the theoretical probability 
density function. A hypothesis of equivalence is then tested by studying the sampling 
distribution of this statistic. 

To be more specific, consider a sample of Ν independent observations from a 
random variable χ with a probability density function of p(x). Let the TV observations 
be grouped into Κ intervals, called class intervals, which together form a frequency 
histogram. The number of observations falling within the ith class interval is called the 
observed frequency in the ith class and will be denoted by f. The number of 
observations that would be expected to fall within the ith class interval if the true 
probability density function of χ were po(x) is called the expected frequency in the ith 
class interval and will be denoted by F,. Now, the discrepancy between the observed 
frequency and the expected frequency within each class interval is given by / ; — F,. To 
measure the total discrepancy for all class intervals, the squares of the discrepancies in 
each interval are normalized by the associated expected frequencies and summed to 
obtain the sample statistic 
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X2^J2^-II (4.49) 
i = l t > 

It is shown in Ref. 2 that the distribution of X2 in Equation (4.49) is approximately 
the same as for χ 2 discussed in Section 4.2.2. The number of degrees of freedom η in 
this case is equal to Κ minus the number of different independent linear restrictions 
imposed on the observations. There is one such restriction due to the fact that the 
frequency in the last class interval is determined once the frequencies in the first Κ — 1 
class intervals are known. If the comparison is made by fitting the expected theoretical 
density function to the frequency histogram for the observed data, then one additional 
constraint results from each independent parameter of the theoretical density function 
that must be computed to make the fit. For example, if the expected theoretical density 
function is a normal density function with unknown mean and variance, then two 
additional constraints are involved, because two parameters (a mean and a variance) 
must be computed to fit a normal density function. Hence, for the common case where 
the chi-square goodness-of-fit test is used as a test for normality, the number of 
degrees of freedom for X2 in Equation (4.49) is η = Κ— 3. 

Having established the proper degrees of freedom forX 2 , a hypothesis test may be 
performed as follows. Let it be hypothesized that the variable x has a probability 
density function of p(x) = po(x). After grouping the sampled observations into Κ class 
intervals and computing the expected frequency for each interval assuming p(x) = 
p0(x), compute X2 as indicated in Equation (4.49). Because any deviation of p(x) from 
pQ(x) will cause X2 to increase, an one-sided (upper tail) test is used. The region of 
acceptance is 

X2 < lla (4-50) 

where the value of χ 2 . α is available from Table A.3. If the sample value X2 is 
greater than χ 2 . α , the hypothesis that p(x)=p0(x) is rejected at the a level of 
significance. If X2 is less than or equal to χ2.α, the hypothesis is accepted at the a 
level of significance. 

There are two basic ways to apply the chi-square goodness-of-fit test. The first way 
is to select class intervals in a manner that will provide equal expected frequencies 
within each interval. Excluding a uniform distribution hypothesis, this procedure will 
result in different interval widths from one class interval to another. The second way is 
to select class intervals of equal width. Again, except for the uniform distribution 
hypothesis, this procedure will result in different expected frequencies from one class 
interval to another. Chi-square tests for normality are usually performed using the 
constant interval width approach. Given sample data with a standard deviation of s, a 
class interval width of Ax ~ 0.4i is often used. A more fundamental requirement is 
that the expected frequencies in all class intervals must be sufficiently large to make 
Equation (4.49) an acceptable approximation to χ2. A common recommendation is 
that > 3 in all intervals. In a normality test where the expected frequencies diminish 
on the tails of the distribution, this requirement is complied with by letting the first and 
last intervals extend to —oo and + oo, respectively, such that F\,FK> 3. 
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Table 4.1 Sample Observations Arranged in Increasing Order 

-7.6 -3.8 -2.5 -1.6 -0.7 0.2 1.1 2.0 3.4 4.6 
-6.9 -3.8 -2.5 -1.6 -0.7 0.2 1.1 2.1 3.5 4.8 
-6.6 -3.7 -2.4 -1 .6 -0.6 0.2 1.2 2.3 3.5 4.8 
-6.4 -3.6 -2.3 -1.5 -0 .6 0.3 1.2 2.3 3.6 4.9 
-6.2 -3 .5 -2.3 -1.5 -0.5 0.3 1.3 2.3 3.6 5.0 
-6.1 -3.4 -2.3 -1.4 -0.5 0.3 1.3 2.4 3.6 5.2 
-6.0 -3.4 -2.2 -1.4 -0.4 0.4 1.3 2.4 3.7 5.3 
-5.7 -3.4 -2.2 -1.2 -0.4 0.4 1.4 2.5 3.7 5.4 
-5.6 -3.3 -2.1 -1.2 -0.4 0.5 1.5 2.5 3.7 5.6 
-5.5 -3.2 -2.1 -1.2 -0.3 0.5 1.5 2.6 3.7 5.9 
-5.4 -3.2 -2.0 -1.1 -0.3 0.6 1.6 2.6 3.8 6.1 
-5.2 -3.1 -2.0 -1.1 -0.2 0.6 1.6 2.6 3.8 6.3 
-4.8 -3.0 -1.9 -1.0 -0.2 0.7 1.6 2.7 3.9 6.3 
-4.6 -3.0 -1.9 -1.0 -0.2 0.8 1.7 2.8 4.0 6.5 
-4.4 -2.9 -1.8 -1.0 -0.1 0.9 1.8 2.8 4.2 6.9 
-4.4 -2.9 -1.8 -0.9 -0.0 0.9 1.8 2.9 4.2 7.1 
-4.3 -2.9 -1.8 -0.9 0.0 1.0 1.8 3.1 4.3 7.2 
-4.1 -2.7 -1.7 -0.8 0.1 1.0 1.9 3.2 4.3 7.4 
-4.0 -2.6 -1.7 -0.8 0.1 1.1 1.9 3.2 4.4 7.9 
-3.8 -2.6 -1.6 -0.7 0.2 1.1 2.0 3.3 4.4 9.0 

Example 4.3. Illustration of Test for Normality. A sample of TV=200 inde-
pendent observations of the digitized output of a thermal noise generator are presented 
in Table 4.1. The sample values have been rank ordered from the smallest to largest 
value for convenience. Test the noise generator output for normality by performing a 
chi-square goodness-of-fit test at the a = 0.05 level of significance. 

The calculations required to perform the test are summarized in Table 4.2. For an 
interval width of Ax = OAs, the standardized values of the normal distribution that 
define the class interval boundaries are as shown under za in the table. These interval 
boundaries are converted to volts in the next column. From Table A.2, the probability 
Ρ that a sample value will fall in each class interval is determined using the za values. 
The product of Ρ and the sample size TV yields the expected frequency in each interval 
as listed under F in Table 4.2. Note that the first and last class intervals are selected so 
that F> 3. A total of 12 class intervals result. The observed frequencies are now 
counted using the interval boundaries in volts as indicated in Table 4.1. The normal-
ized squared discrepancies between the expected and observed frequencies are then 
calculated and summed to obtain X 2 = 2.43. Note that the appropriate degrees of 
freedom isn = K — 3 = 9. The acceptance region for the test is found in Table A.3 to be 
X2 < X% ο 05 — 16.92. Hence, the hypothesis of normality is accepted at the a = 0.05 
level of significance. 

4.5.2 Nonparametric Trend Test 

Situations often arise in data analysis where it is desired to establish if a sequence of 
observations or parameter estimates include an underlying trend. This is partiularly 
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Upper Limit of 

Interval Interval 

Number x = sz + x Ρ F = NP f \F-f\ 
(F-ff 

F 
1 -2.0 -6.36 0.0228 4.5 4 0.5 0.06 
2 -1.6 -5.04 0.0320 6.4 8 1.6 0.40 
3 -1.2 -3.72 0.0603 12.1 10 2.1 0.36 
4 -0.8 -2.40 0.0968 19.4 21 1.6 0.13 
5 -0.4 -1.08 0.1327 26.5 29 2.5 0.24 
6 0 0.24 0.1554 31.1 31 0.1 0.00 
7 0.4 1.56 0.1554 31.1 27 4.1 0.54 
8 0.8 2.88 0.1327 26.5 25 1.5 0.08 
9 1.2 4.20 0.0968 19.4 20 0.6 0.02 
10 1.6 5.52 0.0603 12.1 13 0.9 0.07 
11 2.0 6.84 0.0320 6.4 6 0.4 0.03 
12 oo oo 0.0228 4.5 6 1.5 0.50 

1.000 200 200 2.43 
Ν =200 X = 0.24 5 = 3.30 n = K- 3 = 9 X 2 = 2.43 

true in the analysis of nonstationary data discussed later in Chapter 12. Because the 
observations or parameter estimates of interest may have a wide range of probability 
distribution functions, it is convenient to perform such evaluations with distribution-
free or nonparametric procedures, where no assumption is made concerning the 
probability distribution of the data being evaluated. One such procedure that is easy to 
apply and useful for detecting underlying trends in random data records is the reverse 
arrangement test. 

Consider a sequence of Ν observations of a random variable x, where the 
observations are denoted by xt, i= 1, 2, 3, . . . , TV. Now, count the number of times 
that Xi > Xj for i < j . Each such inequality is called a reverse arrangement. The total 
number of reverse arrangements is denoted by A. 

A general definition for A is as follows. From the set of observations X\, x2, • • Xni 
define 

^ _ { 0 otherwise ^ ^ 

Then 

A = (4.52) 
i = l 

where 

Ν 

At = Σ h'J ( 4 · 5 3 ) 

j=i+l 

Table 4.2 Calculations for Goodness-of-Fit Test 
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For example, 

Ν Ν Ν 

Αι=Σηυ Α2 = Σ η Ζ Α 3 = ^ Ζ % etc. 
j=2 j=3 j=4 

To help clarify the meaning of reverse arrangements, consider the following 
sequence of TV = 8 observations: 

JCI = 5, x2 = 3, *3 = 8, x 4 = 9, *5 = 4, *6 = 1, *7 = 7, x$ = 5 

In the above sequence x\ >x2, X\ > * 5 , and X\ >x6, which gives Ai = 3 reverse 
arrangements for χγ. Now, choosing x2 and comparing it against subsequent observa-
tions (i.e., f o r / = 2 and / < j = 3 ,4 , . . . , 8), one notes x2 >x6 only, so that the number of 
reverse arrangements for x2 is A 2 = 1. Continuing on, it is seen that A 3 = 4, A 4 = 4, 
A 5 = 1, A 6 = 0, and A 7 = 1. The total number of reverse arrangements is, therefore, 

A=Ai+A2+ ••• + A 7 = 3 + 1 + 4 + 4 + 1 + 0 + 1 = 14 

If the sequence of /Vobservations is independent observations of the same random 
variable, then the number of reverse arrangements is a random variable A, with a mean 
variable and a variance as follows [Ref. 4]: 

( 4 . 5 4 ) 

2 _ 2N3+3N2-5N _ N{2N + 5)(N-l) 

72 72 
(4.55) 

A limited tabulation of 100a percentage points for the distribution function of A is 
presented in Table A.6. 

Example 4.4. Illustration of Reverse Arrangement Test. Assume a sequence 
of TV = 2 0 observations of a random variable produces results as noted below: 

(1) 5.2 

(2) 6.2 

(3) 3.7 

(4) 6.4 

(5) 3.9 

(6) 4.0 

(7) 3.9 

(8) 5.3 

(9) 4.0 

(10) 4.6 

(11) 5.9 

(12) 6.5 

(13) 4.3 

(14) 5.7 

(15) 3.1 

(16) 5.6 

(17) 5.2 

(18) 3.9 

(19) 6.2 

(20) 5.0 

Test the sequence of TV = 2 0 observations for a trend at the α = 0.05 level 
of significance. The number of reverse arrangements in the observations is as follows: 

Ai = 10 A 6 = 3 A n = 7 A16 = 3 

A 2 = 15 A 7 = 1 Al2 = 8 An = 2 

A 3 = 1 A 8 = 7 Al3 = 2 Al8 = 0 

A 4 = 15 Ag = 2 A , 4 = 5 Al9 = 1 

A 5 = 1 Aio = 3 Ais = 0 

The total number of reverse arrangements is A = 86. 
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Let it be hypothesized that the observations are independent observations of a 
random variable x, where there is no trend. The acceptance region for this 
hypothesis is 

[A20;i-a/2 < A < A20;a/2] 

FromTableA.6,fora = 0.05,A 2 0;i-a/2 - A2o;o.975 = 64andA 2 0 ; Q , / 2 = A20 ;0.025 = 125. 
Hence, the hypothesis is accepted at the 5% level of significance because A = 86 falls 
within the range between 64 and 125. 

4.6 CORRELATION AND REGRESSION PROCEDURES 

Techniques of correlation and regression analysis are fundamental to much of the 
material developed in this book. The concept of correlation between two random 
variables has already been introduced in Chapter 3 and will be expanded on in Chapter 
5. The concept of linear regression is basic to the techniques of frequency response 
function estimation from input/output data, as formulated in Chapters 6 and 7. The 
material in these chapters, however, is developed in a frequency domain context that 
may obscure associations with more familiar classical presentations. Hence, a brief 
review of correlation and regression concepts from the viewpoint of elementary 
statistics may be helpful as an introduction to this later material. 

4.6.1 Linear Correlation Analysis 

For a wide class of problems, a matter of primary interest is whether or not two or more 
random variables are interrelated. For example, is there a relationship between 
cigarette smoking and life expectancy, or between measured aptitude and academic 
success? In an engineering context, such problems often reduce to detecting a 
relationship between some assumed excitation and an observed response of a physical 
system of interest. The existence of such interrelationships and their relative strength 
can be measured in terms of a correlation coefficient ρ as defined in Section 3.2.1. For 
the simple case of two random variables χ and y, the correlation coefficient is given by 
Equation (3.36) as 

P*y = VZT (4-56) 

where is the covariance of χ and y as defined in Equation (3.34). 
Now assume the random variables χ and y are sampled to obtain TV pairs of observed 

values. The correlation coefficient may be estimated from the sample data by 

rxy — Pxy — 
Ej= ι (·*<—*) Cy>—y) 

1/2 

TH=iXiyi-Nxy 

[(^xf-N^iELyl-Nf)]^2 

(4.57) 
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Figure 4.3 Illustration of varying degrees of correlation, (a) Perfect linear correlation, (b) Moderate linear 
correlation, (c) Nonlinear correlation, (d) No correlation. 

Like pxy, the sample correlation coefficient will lie between - 1 and + 1, and will 
have a bounding value only when the observations display a perfect linear relation-
ship. A nonlinear relationship and/or data scatter, whether it be due to measurement 
errors or imperfect correlation of the variables, will force the value of toward zero, 
as illustrated in Figure 4.3. 

To evaluate the accuracy of the estimate it is convenient to work with a 
particular function of given by 

1, 
w • :ln 

1 + Γ ; 

l-rr 

(4.58) 

From Ref. 1, the random variable w has an approximately normal distribution with a 
mean and a variance of 

1 + P . 

l-Pxy 

1 

7V-3 

(4.59) 

(4.60) 
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Using the above relationships, confidence intervals for p x y based on a sample 
estimate may be readily established as outlined in Section 4.4. 

Because of the variability of correlation estimates, it is usually desirable to verify 
that a nonzero value of the sample correlation coefficient indeed reflects the existence 
of a statistically significant correlation between the variables of interest. This may be 
accomplished by testing the hypothesis that P x y = 0, where a significant correlation is 
indicated if the hypothesis is rejected. From Equations (4.59) and (4.60), the sampling 
distribution of w given P x y = 0 is normal with a mean of μ„ — 0 and a variance of 
aw ~ 1 Hence the acceptance region for the hypothesis of zero correlation is 

given by 

-Za/2 < 
\ / jV-3 

In 
1-

< Za/2 (4.61) 

where ζ is the standardized normal variable. Values outside the above interval would 
constitute evidence of statistical correlation at the a level of significance. 

Example 4.5. Illustration of Linear Correlation Analysis. The heights 
and weights of Ν=25 male university students selected at random are presented 
in Table 4.3. Is there reason to believe that the height and weight of male students 
are correlated at the α = 0.05 level of significance? 

Let χ be height and y be weight. From the data in Table 4.3, the following values 
needed in Equation (4.61) are calculated: 

Ν Ν Ν 

Yjayi = 299,056 = 124,986 ^ y 2 = 723,604 
i = l i = l 

1 N 1766 

i = l 

Ν 

25 
= 70.64 

1 

1 = 1 

4224 

~2ΊΓ 
168.96 

Substituting the above values into Equation (4.57) yields the estimated correlation 

coefficient as follows: 

299,056-(25)(70.64)(168.96) 

[ (124,986-25(70.64) 2 ) (723,604-25(168.96) 2 ] I / 2 

= 0.44 

Table 4.3 Height and Weight Data for Male Students 

χ = height in inches y= weight in pounds 

X 70 74 70 65 69 73 72 69 72 76 74 72 

y 140 210 148 145 182 165 155 170 174 155 185 185 

X 68 70 71 68 73 65 73 74 64 72 72 67 73 

y 165 220 185 180 170 135 175 180 150 170 165 145 170 



102 STATISTICAL PRINCIPLES 

From Equation (4.58), the quantity w = 0.472; thus \fN—2>w — 2.21. Now using 
Equation (4.61), the hypothesis that P x y = 0 is rejected at the 5% level of significance 
since y/N—Zw = 2.21 falls outside the acceptance region bounded by ±za/2 = ± 1 -96. 
Hence, there is reason to believe that significant correlation exists between the height 
and weight of male students. 

4.6.2 Linear Regression Analysis 

Correlation analysis can establish the degree to which two or more random variables 
are interrelated. Beyond this, however, a model for the relationship may be desired so 
that predictions can be made for one variable based on specific values of other 
variables. For instance, a significant linear relationship between the height and weight 
of male university students is indicated by the correlation analysis of data presented in 
Example 4.5. A logical second step would be to evaluate the relationship further so 
that the weight of students can be predicted for any given height. Procedures for 
dealing with problems of this type come under the heading of regression analysis. 

Consider the simple case of two correlated random variables χ and y. Referring 
again to Example 4.5, χ might be student height and y student weight. A linear 
relationship between the two variables would suggest that for a given value of x, a 
value of y would be predicted by 

where A and Β are the intercept and slope, respectively, of a straight line. For the case 
of data that display perfect linear correlation (r^ = 1), the predicted value y, would 
always equal the observed value y, for any given xt. In practice, however, data usually 
do not display a perfect linear relationship. There generally is some scatter due to 
extraneous random effects, and perhaps distortion due to nonlinearities, as illustrated 
in Figure 4.3. Nevertheless, if a linear relationship is assumed and unlimited data are 
available, appropriate values of A and Β can be determined that will predict the 
expected value of y, for any given xt. That is, y, will not necessarily equal the observed 
value y, associated with the corresponding x(, but it will be an average for all such 
values that might have been observed. 

The accepted procedure for determining the coefficients in Equation (4.62) is to 
select those values of A and Β that minimize the sum of the squared deviations of the 
observed values from the predicted values of y. This procedure is called a least squares 
fit. Specifically, noting that the deviation of the observed values from the predicted 
values is 

y = A+Bx (4.62) 

yi-yi = yi-(A+Bxi) (4.63) 

it follows that the sum of this squared deviations is given by 

Ν 

(4.64) 
i=l 
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Hence, a least squares fit is provided by those values of A and Β that make 

£=§=· 
In practice, the available data will be limited to a sample of TV pairs of observed values 
for χ and y. This means that Equation (4.65) will yield only estimates of Λ and B, to be 
denoted by a and b, respectively. Substituting Equation (4.64) into Equation (4.65) 
and solving for the estimates of A and Β yields 

a = y—bx (4.66a) 

Σίι (*.-*) EL*2-"*2 

These estimates can now be used to write a prediction model for y given χ as 
follows: 

y = a + bx = {y-bx) + bx = y + b(x-x) (4.67) 

The straight line defined by Equation (4.67) is called the linear regression line for 
y on x. By switching the dependent and independent variables in Equation (4.66), 
a regression line for χ on y could also be calculated. Specifically, 

x = x + b'(y-y) (4.68) 

where 

Έΐσΐ-Ny2 

Comparing the product of Equations (4.66b) and (4.69) to Equation (4.57), it is seen 
that the slopes of the regression lines for y on χ and χ on y are related to the sample 
correlation coefficient of χ and y by 

Txy = [bb'}l/1 (4.70) 

Now consider the accuracy of the estimates a and b given by Equation (4.66). 
Assuming a normal distribution of y given x, it is shown in Ref. 1 that a and b are 
unbiased estimates of A and B, respectively, with sampling distributions related to 
the t distribution as follows: 

a—A 

1 + N ΣΓ : ··<< > 

b-B 

1/2 = ty*^ (4-71) 

1/2 
= sy\xtN-2 (4.72) 
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Of particular interest is the sampling distribution of y associated with a specific 
value of χ = x 0 . This is given by 

y-y 

1 ι (xo-x)1 

x 

sy\xtN-2 (4.73) 

In Equations (4.71)-(4.73), the term sy^ is the sample standard deviation of the 
observed values of y, about the prediction y,• — a + bxt and is given by 

sy\x ~~ 
Ef=, {yt-% )21 1/2 

v) 
1/2 

N-2 \n-2j Λ x 

(4.74) 

The above relationships provide a basis for establishing confidence intervals for A, B, 
and y based on the estimates a, b, and y. 

Example 4.6. Illustration of Linear Regression Analysis. Using the data 
presented in Table 4.3 for Example 4.5, determine a regression line that will provide 
a linear prediction for the average weight of male university students as a function of 
their height. Determining a 95% confidence interval for the average weight of male 
students who are 70 in. tall. 

As in Example 4.5, let χ be height andy be weight. The values needed to determine the 
slope and intercept of the regression line for y on χ have already been calculated in 
Example 4.5. Substituting these values into Equation (4.66) yields the estimated 
slope and the intercept as follows: 

b = 299,056-(25)(70.64)(168.96) = 2 g f . 

168.96-(25)(70.64) 2 

a = 168.96-(2.85)(70.64) = -32 .6 

Hence, the regression line estimating the average weight of male university students 
given height is 

y = - 3 2 . 6 + 2.85* 

which yields an estimated weight of y = 167.1 lb for a height of * = 70 in. 
To establish a confidence interval for the average weight y based on the estimate 

y = 167.1 lb, it is necessary to calculate sy\x given by Equation (4.74). A more 
convenient equation for sy\x from the computational viewpoint is 

sy\x N-2 
[ l£ i (* . -*) (y . - -y) f 

Ef=i ( * - * ) 2 

Π 1/2 
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where the terms in the above expression are further simplified for computational 

purposes by noting that 

Ν 

i=l i=l 1=1 1=1 

Substitution of the appropriate values into these expressions yields 

1 / (673Γ 
— 9 9 1 7 - - -
23 I 236 

1/2 

= 18.65 

Then, from Equation (4.73), a 95% confidence interval for the average weight of male 
university students with a height of 70 in. is 

S ± sy\xtN-2;a/2 
J _ (xo-x) 

1/2 

= 167.2 ± (18.65)ί23;0. .025 
J_ (70-70 .64) 2 

25 + 236 

1/2 

= 167.2 ± 7.9 = 159.3 to 175.1 lb 

This concludes Example 4.6. 
The techniques of correlation and regression analysis are readily extended for 

applications involving more than two random variables. As noted earlier, such 
extensions are fundamental to the analysis of multiple-input/output problems devel-
oped in Chapter 7. Hence, further discussions of this subject are deferred to that 
chapter. 

PROBLEMS 

4.1 Given the random variable y~cx where c is a constant and Λ; is a random 
variable with a mean value and a variance of μχ and σ 2 , respectively, prove that 
the following relationships are true. 

(a) μγ = ομχ. 

(b) a) = c2a2

x. 

4.2 Given a random variable JC with a probability density function of 

Ρ 0 ) = _ L ^ - t * - ' ) 2 / * 
2 V 2 I R 

What are the mean value and variance of x? 
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4.3 Given two independent random variables, χ and y, with mean values of μχ and 
μγ, and variances of σ2 and σ2, determine the 

(a) mean value of the product xy. 

(b) variance of the difference χ — y. 

4.4 The normalized random error (coefficient of variation) e r of an unbiased 
parameter estimate φ is defined as the ratio of the standard deviation of the 
estimate to the expected value of the estimate, that is, ε Γ = σ^/μ^. Determine 
the normalized random error of a variance estimate s2 computed from Ν=200 
sample observations using Equation (4.12). 

4.5 Given four independent standardized normally distributed random variables, 
Zi, z 2 , Z3, and z 4 , define the distribution functions of the following combinations 
of these variables. For each case, specify the associated degrees of freedom or 
mean value and variance, as appropriate. 

(a) z2 + z2 + z2 + z2. 
(b) Z\ +Z2-Z3-Z4-

{[ζ2 + ζ2+ζ2

3]βγ/2' 
(d) [z2+zl + z2}/3 

z\ 

4.6 What distribution function would be used to establish confidence intervals for 
the following parameters of two independent normally distributed random 
variables, χ and y? 

(a) Interval for μχ based on a sample mean χ and known variance σ2. 

(b) Interval for σ2/σ2 based on a ratio of sample variances s2/s2. 

(c) Interval for σ2 based on a sample variance s2. 

(d) Interval for μχ based on a sample mean χ and sample variance s2. 

4.7 A correlation study is performed using a sample of Ν = 7 pairs of observations 
(x\yu X2V2, · · ·, Xiyi)- A sample correlation coefficient of = 0.77 is 
calculated. Test the hypothesis that is greater than zero at the α = 0.01 
level of significance. 

4.8 Assume the sample mean values of two correlated random variables are χ = 1 
andy = 2. Further assume that the sample correlation coefficient is ^ = 0.5. If 
the regression line for y on χ is given by y = 1 + x, 

(a) what is the slope b' of the regression line for χ on y? 

(b) what is the equation for the regression line for χ on y(x = d + b'y)l 

4.9 Given a sample of Ν independent observations of a random variable χ with a 
known mean value of zero, an efficient estimator for the variance of χ is 

1 N 

s 2 = - Y x 2 
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(a) Prove the above estimator is unbiased. 

(b) Write an expression relating the above estimator to a chi-square variable 

with the appropriate degrees of freedom specified. 

(c) What is the variance of the above estimator? (Hint: The variance of χΐ is 

In.) 

4.10 Assume a time sequence of TV=20 measurements are made of a normally 
distributed random variable x with the following results: 

Time Value Time Value Time Value Time Value 

1 10.1 6 10.6 11 10.9 16 11.4 
2 10.4 7 11.3 12 10.1 17 10.1 
3 9.9 8 9.7 13 10.5 18 11.5 
4 10.0 9 10.2 14 10.7 19 10.3 
5 10.0 10 11.2 15 10.8 20 10.9 

Test the time sequence of measurements for a trend at the 5% level of 
significance in two ways, namely, 

(a) by computing the reverse arrangements and performing a nonparametric 
test. 

(b) by comparing the slope b of the linear regression line and testing the 
hypothesis that Β = 0. 
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C H A P T E R 5 

Stationary Random Processes 

This chapter discusses elementary and advanced concepts from stationary random 
processes theory to form a foundation for applications to analysis and measurement 
problems as contained in later chapters and in Refs 1-3. Material includes theoretical 
definitions for stationary random processes together with basic properties for correla-
tion and spectral density functions. Results are stated for ergodic random processes, 
Gaussian random processes, and derivative random processes. Nonstationary random 
processes are covered in Chapter 12. 

5.1 BASIC CONCEPTS 

A random process {Xk(t)}, — o o < i < o o (also called a time series or stochastic 

process), denoted by the symbol { }, is an ensemble of real-valued (or complex-
valued) functions that can be characterized through its probability structure. For 
convenience, the variable t will be interpreted as time in the following discussion. 
Each particular function Λ^(ί), where t is variable and k is fixed, is called a sample 

function. In practice, a sample function (or some time history record of finite length 
from a sample function) may be thought of as the observed result of a single 
experiment. The possible number of experiments represents a sample space of index 
k, which may be countable or uncountable. For any number Ν and any fixed times 
f ι, t2, • •., tN, the quantities Xk(t\), Xk(t2), • • ·> Χ&Ν)> represent TV random variables over 
the index k. It is required that there exist a well-defined TV-dimensional probability 
distribution function for every TV. An ensemble of sample functions forming a random 
process is illustrated in Figure 1.10. 

A particular sample function xk(t), in general, would not be suitable for represent-
ing the entire random process {Xk(t)} to which it belongs. Under certain conditions to 
be described later, however, it turns out that for the special class of ergodic random 
processes, it is possible to derive desired statistical information about the entire 

Random Data: Analysis and Measurement Procedures, Fourth Edition. By Julius S. Bendat 
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random process from an appropriate analysis of a single arbitrary sample function. For 
the situation of a pair of random processes {**(ί)} and {yk(t)}, the corresponding 
problem is to estimate joint statistical properties of the two random processes from a 
proper analysis of an arbitrary pair of sample functions xk(t) and yk(t). 

Consider two arbitrary random processes [xk(t)} and {yk(t)}. The first statistical 
quantities of interest are the ensemble mean values at arbitrary fixed values of t, where 
xk(t) and yk(t) are random variables over the index k. These are defined as in Equation 
(3.8) by 

(5.1) 
μγ(ή = E\yk(t)} 

In general, these mean values are different at different times and must be calculated 
separately for every t of interest. That is, 

Ρχ(*\) Φ P-Ah) if* l ^ f c 
(5.2) 

Py(h) φ μγ(ΐ2) ifti^h 
The next statistical quantities of interest are the covariance functions at arbitrary 

fixed values of t\ = t and f2 = / + τ. These are defined by 

Ca(t,t + x) = Ε[{Χΐ[(ή-μχ(ή)(χώ + τ)-μχ{ί + τ))] 

C„(t,t + t) = E[(yk{t)-^(t))(yk(t + z)^(t + x))] (5.3) 

Cv{t,t + z) = Ε{(χιι(ή-μχ{ή)^(ί + τ)-μγ(ί + τ))} 

In general, these quantities are different for different combinations of t\ and t2. 
Observe that at τ = 0 (f ι -12 — t), 

εχχ(ί,ή = Ε{(χ,(ή-μχ(ή)2}=σχ(ή 

Cyy(t,t) = E{(yk(t)^y(t))
2}=a2

y(t) (5.4) 

Cxy(t,t) = Ε[(χ,(ή-μχ(ή)Μή-μγ(ή)} = C^t) 

Thus, the covariance functions C ^ r , t) and Cyy(t, t) represent the ordinary variances 
of {xk{t)\ and {yk(t)} at a fixed value of t, whereas C^(i, t) represents the covariance 
between {xk(t)\ and {yk(f)}. As before, different results would generally be obtained 
for different values of t. 

Other statistical quantities can be defined over the ensemble that involve fixing 
three or more times. The probability structure of the random processes is thus 
described in finer and finer detail. If [xk(t)} and {yk(t)} form a two-dimensional 
Gaussian distribution at a fixed value of r, however, then {xk(t)} and {yk(t)} are 
separately Gaussian. The mean values and covariance functions listed above then 
provide a complete description of the underlying probability structure. For this 
reason, the main emphasis in this chapter is on only these two statistical quantities 
and their relationships to spectral density functions. 

If the mean values μχ{ί) and μγ(ή, together with the covariance functions C^t, 
t + τ), Cyy{t, t + τ), and C ^ r , / + τ), yield the same results for all fixed values of t 
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(that is, are independent of time translations), then the random processes {xx(t)} and 
are said to be weakly stationary. If all possible probability distributions 

involving [xk(t)} and {yk(t)} are independent of time translations, then the random 
processes are said to be strongly stationary. Because the mean values and covariance 
functions are consequences of only the first- and second-order probability distribu-
tions, it follows that the class of strongly stationary random processes is a subclass of 
the class of weakly stationary random processes. For Gaussian random processes, 
however, weak stationarity implies strong stationarity because all possible probability 
distributions may be derived from the mean values and covariance functions. Thus, for 
Gaussian random processes, these two stationary concepts coincide. 

5.1.1 Correlation (Covariance) Functions 

For stationary random processes {xx(t)} and {yk(t)}, which will be considered 
henceforth in this chapter, the mean values become constants independent of /. That 
is, for all t, 

xp(x) dx 

(5.5) 

yp(y) dy 

μχ = E[xk(t)] 

μγ = E\yk(t)} 

where p(x) and p{y) are the probability density functions associated with the random 
variables xk(t) and yk(t), respectively. The covariance functions of stationary random 
processes are also independent of i. 

For arbitrary fixed t and τ, define 

Λ„(τ) = E[xk(t)xk{t + x)} 

Ryy{t)=E\yk(t)yk{t + T)] (5.6) 

Rxy(x)=E[xk(t)yk(t + x)} 

where R is introduced instead of C to distinguish these expressions from the 
covariance functions defined in Equation (5.3). For nonzero mean values, R is 
different from C. The quantities R^ix) and Ryy(x) are called the autocorrelations 
functions of {xk(t)} and {yk(t)}, respectively, whereas Rxy(x) is called the cross-
correlation function between {xk(t)\ and \yk(f)}. 

A necessary and sufficient condition thati?^(r) be the autocorrelation function of 
a weakly stationary random process {xk{t)} is that R^ix) = R^i—x), and that RxJs) 
be a nonnegative definite function. One can also prove that R^ix) will be a 
continuous function of τ if it is continuous at the origin. Similarly the cross-
correlation function / ^ ( τ ) will be continuous for all τ if ^ ( τ ) orRyy(x) is continuous 
at the origin [Ref. 4]. 

For a pair of stationary random processes {xk(t)} and {yk(t)}, the joint probability 
density function p(xx, x2) of the pair of random variables xx — xk(t) and x2 — xk(t + x) 
is independent of i, and the joint probability density function p(y j , y2) associated with 
the pair of random variables yx = yk(t) and y2 = yk(t + x) is independent of t. This is 
also true for the joint probability density function p(xh y2) associated with the pair of 
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random variables xx = xk(i) and y2 = yk(t + x)- In terms of these probability density 
functions, 

Λ«(τ) = 

Ryy(x) = 

χ\χ2ρ(χι,χ2) dx\dx2 

yiy2p(yi,y2)dyidy2 (5.7) 

xiy2P(x\,y2)dxidy2 

For arbitrary values of μχ and μ^ the covariance functions are related to the correlation 
functions by the equations 

Ca(z) = Λ „ ( τ ) - / / 2 

Cyy(x) = Ryy{x)-p2

y (5.8) 

Cxy(x) = Rxy(x)^^ 

Thus, correlation functions are identical with covariance functions when the mean 
values are zero. Note that, by definition, two stationary random processes are 
uncorrelated if Cxy(x) = 0 for all x. This occurs, from Equation (5.8), whenever 
ĵcyM — V-xV-y for all x. Hence, the two processes will be uncorrelated when / ^ ( τ ) = 0 

for all τ only if also either μχ or μγ equals zero. 

From the stationary hypothesis, it follows that the autocorrelation functions R^ix) 
and Ryy(x) are even functions of x. That is, 

Rxxi-τ) = Rxx(x) 

Ryy(-X) = Ryy(x) 

while the cross-correlation function is neither odd nor even, but satisfies the relation 

Rxyi-τ) = Ryx(x) (5.10) 

Equation (5.10) can be proved as follows. By definition, 

Rxyi-τ) = E[x(t)y(t-x)} 

where the dependence on k is omitted to simplify the notation. Since results are 
invariant with respect to translations in time, one can replace t by t + χ wherever t 
appears prior to taking the expected value. Hence, 

Rxyi-τ) = E[x{t + x)y(t + x-x)\ 

= E\y(t)x(t + x)]=Ryx(x) 

which completes the proof. When χ = y, one obtains 

Λ „ ( - τ ) = Λ„(τ) Ryy(-x) = Ryy{x) 

showing that Equation (5.9) is a special case of Equation (5.10). 



BASIC CONCEPTS 113 

The correlation properties of stationary random processes {Λ*(ί)} and {yjt(f)}, 
which are described by the four functions / ^ ( τ ) , Ryy{z), Rxy(z), and Ryx(z), need be 
calculated only for values of τ > 0, because the relations of Equations (5.9) and (5.10) 
yield results for τ < 0. 

5.1.2 Examples of Autocorrelation Functions 

Examples of special autocorrelation functions that are useful in theoretical studies 

will now be derived. 

Example 5.1. Autocorrelation Function of Sine Wave Process. Suppose 
{xk(t)} = [X sin[27t/oi + 9(k)]} is a sine wave process in whichX and / 0 are constants 
and Q(k) is a random variable with a uniform probability density function ρ(θ) over 
(0,2π). Determine the autocorrelation function Rxx{z). 

Here, for any fixed value of r, the random variable 

xk(t) = X sin[27u/0 + e{k)} = JC, (0) 

xk(t + z)=X sin[27r/0(r + 1 ) + 0(jfc)] = χ2(θ) 

From Equation (5.6), 

R„(x) = E[xk(t)xk{t + z)} = Ε[χχ{θ)χ2{θ)} 

with 

ρ(θ) = (2π)" ' 0 < θ < 2π otherwise zero 

Hence, 

X2 f2" 
= r - s i n (2^ 0 i + θ) sin[2n/0(f + τ) + β] άθ 

2π Jo 

= — cos 2π/οτ 

giving the autocorrelation function of a sine wave stationary random process as 

pictured in Table 5.1. 

Example 5.2. Autocorrelation Function of Rectangular Wave Process. Consi-
der a physical situation where a sample function xk(t) from a random rectangular 
wave process [xk(t)} is restricted so as to assume only values of c or —c, where the 
number of changes of sign in an interval (r, t + z) occurs at random and 
independent times with an average density of λ. Assume also that what happens 
inside an interval (f, t + z) is independent of what happens outside the interval. 
Define 

An — Event[exactly η changes of sign fall inside (t, t + z)] 
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This type of physical situation follows a Poisson distribution [Ref. 1], where the prob-
ability of event An is 

Ρ ( Λ . ) 

Determine the autocorrelation function of {xk(t)}. 
The autocorrelation function may be calculated as follows. An individual product 

term xk(t)xk(t + τ) equals c2 if xk(f) and xk(t + τ) are of the same sign, and it 
equals —c 2 if they are of opposite sign. The total probability for c 2 is given by the 
sum P(A 0) + P(A 2) + P(A4) + • • •, and the total probability for -c2 is given by the 
sum P(Ai) + P(A 3) + P(A 5) + · • •. Hence, 

OO 

Ρχ , ( τ ) = E[xk(t)xk(t + T)] = c 2 ^ ( - l ) " P ( A „ ) 

= C 2 e - A w g ( _ i r ( M ; = C 2 E - 2 1 M 

n—\ 

This exponential function is pictured in Table 5.1 with a = 2 A and c2—l. 

Example 5.3. Autocorrelation Function of Sum of Two Processes. Assume 
that a random process {yk(t)} is the sum of two stationary processes {xi,k(t)} and 
{*2,*(0} such that each sample function 

yk(t) = a\x\,k{t) +a2X2,k(t) 

where ax and a2 are constants. Assume also that {x\,k(i)} and {x2,k(t)} may be 
correlated. Determine the autocorrelation function Ryy(z). 

From Equation (5.6), one obtains 

Ryy{z)=E\yk(t)yk{t + x)} 

= Elfax^kit) + a2x2,k(t)){aixi,k{t + Τ ) + A 2 ^ 2 , * ( I + Τ ) ) ] 

= a\E{x] ,k{t)x\,k {t + τ)] + αλα2Ε[χ\(t)x2,k(t + τ)] 

+ α\α2Ε[χ2^{ήχ\^{τ + τ)] + ajE[xu(t)x2,k{t + τ)} 

= a]RX[Xl (τ) + α ι α 2 [ Ρ , „ 2 ( τ ) +RXlXi (τ)} + a2

2RX2X2(r) 

Thus, the sum autocorrelation function requires knowledge of the input cross-
correlation functions as well as their autocorrelation functions. 

Example 5.4. Uncorrelated-Dependent Random Variables. Assume that two 
random variables χ and y are such that χ — cos φ and y = sin φ, where φ is uniformly 
distributed from 0 to 2π. Here, χ and y are related because 

y = Vl-x2 

It follows that 

p(x,y) ^p(x)p(y) 
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showing that χ and y are statistically dependent. However, the covariance between χ 
and y is 

Cxy = E{xy]-E[x}E\y] 

= £jcos φ sin φ}— £[cos <£]£[sin φ] 

= ±£[sin2 φ] = 0 

Hence χ and y are uncorrelated. 

5.1.3 Correlation Coefficient Functions 

The cross-correlation function is bounded by the cross-correlation inequality 

\Rxy(T)\2 < R„(0)R„(0) ( 5 . 1 1 ) 

which may be proved as follows. For any real constants a and b, the expected value 

E[(ax(t)+by(t + z))2} > 0 

since only nonnegative quantities are being considered. This is equivalent to 

a2Rxx(0)+2abRxy(z)+b2Ryy(0) > 0 

Hence, assuming b Φ 0 , 

Q V ( 0 ) + 2 ( | ) Μ τ ) + 7 ^ ( 0 ) > 0 

This is a quadratic equation in alb without real different roots since one side is 
nonnegative. Therefore, the discriminant of this quadratic equation in a/b must be 
nonpositive. That is, 

Thus 

Discriminant = 4R2 ( τ ) - 4 Λ « ( 0 ) Λ Χ ) , ( 0 ) < 0 

4(τ) = Ι Μ * ) | 2 < * « ( 0 ) Μ 0 ) 
This completes the proof. 

By considering x(t) — μχ and y(t + τ) — μν instead of *(i) and y(t + τ), the same 
proof gives the cross-covariance inequality 

| ^ ( τ ) | 2 < C „ ( 0 ) C W ( 0 ) ( 5 . 1 2 ) 

Noting that 

|Λ«(τ ) | < Λ „ ( 0 ) | C „ ( T ) | < C „ ( 0 ) ( 5 . 1 3 ) 

it follows that the maximum possible values of / ^ ( τ ) and C^z) occur at τ = 0 
and correspond to the mean square value and variance, respectively, of the data. 
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That is, 

Λ Λ ( 0 ) = Ε[4(ή] = ψ2 C„(0) = σ\ 

Ryy(0) = E\yl(t)] = Cyy(0) = σ 2 

(5.14) 

Hence, Equation (5.12) takes the form 

| < ^ ( τ ) | 2 < σ > 2 (5.15) 

The correlation coefficient function (normalized cross-covariance function) may 
now be defined by 

σχσγ 

and satisfies for all τ 

- 1 < ρ „ ( τ ) < 1 (5.17) 

If either ux or uy is equal to zero, then ρ^(τ) becomes 

because C^(r) = R^T) in these cases. The function p^( r ) measures the degree of 
linear dependence between {xk(t)} and [yk(t)} for a displacement of τ in (y^/)} 
relative to [xifjt)}. It is essentially a generalization of the correlation coefficient used 
in classical statistics as discussed earlier in Sections 3.2.1 and 4.6.1. 

5.1.4 Cross-Correlation Function for Ήπιε Delay 

Assume a transmitted signal is represented by a zero mean value stationary random 
signal x(f). Let the received signal be represented by another zero mean value 
stationary random signal y(t) such that 

y(t)=ax(t-x0)+n(t) (5.19) 

The quantity α is a constant attenuation factor, the quantity τ 0 = (d/c) is a constant time 
delay equal to a distance d divided by a velocity of propagation c, and n(t) represents 
uncorrelated zero mean value noise at the output, as illustrated in Figure 5.1. 

For this problem, the cross-correlation function between x(t) and y(t) is given by 

Rxy(T)=E[x(t)y(t + x)]=E[x(t){cuc{t + T-z0)+n(t + T)}] 

= α£[χ(ήχ(ί + τ-τ0)] - θ£/? Χ Ι(τ-τ 0) 

Thus, Rjcy(t) is merely the autocorrelation function R^T) displaced by the time 
delay r 0 and multiplied by the attenuation factor a. The peak value of / ^ ( r ) occurs at 
τ = τ 0 , namely, 
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η(ί) 

Time delay *•>(«) 
t ( i - 0 W 

Figure 5.1 Model for time-delay problem. 

^ ( T ) P e a k =
 RxyM = «Rxx(0) = α σ 2 (5.21) 

This result is pictured in Figure 5.2. Note that measurement of the value τ 0 where the 
peak occurs plus knowledge of either the distance d or the velocity of propagation c 
will yield the other quantity because d = c r 0 . See Ref. 2 for physical illustrations of 
time-delay measurement problems. 

Again assuming x{t) and n(r) have zero mean values, the correlation coefficient 
function at τ = τ 0 from Equation (5.18) is given by 

Ρχγ(τθ) = ' 
σχ 

α — 

Thus, measurement of ρ^(το) yields the attenuation factor α by 

« = P x y ( T o ) [ V t r J 

Also, the variance in y(f), for uncorrelated x(t) and n(t), is 

al = E\y\t)}=a2oi+ai 

(5.22) 

(5.23) 

(5.24) 

Figure 5.2 Typical cross-correlation function for time-delay problem. 
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where the two components are 

α

2

σ

2 = variance iny(r) due tox(t) 

σ 2 = ( Ι - ρ ^ σ 2 = variance iny(r) due ton(i) 

Equation (5.24) is a special case at τ — 0 of the result 

Ryy(x) = E\y(t)y{t + x)} = α 2 Λ „ ( τ ) + Λ Μ ( τ ) 

(5.25) 

(5.26) 

5.2 SPECTRAL DENSITY FUNCTIONS 

Spectral density functions can be defined in three different equivalent ways as will be 

proved in later sections: 

a. Via correlation functions 

b. Via finite Fourier transforms 

c. Via filtering-squaring-averaging operations 

Important relations will also be developed for these functions that are needed for many 
applications. 

5.2.1 Spectra via Correlation Functions 

The first way to define spectral density functions is a (historical) mathematical 
method where a single Fourier transform is taken of a previously calculated 
correlation function. When mean values are removed, this (infinite) Fourier transform 
will usually exist even though the (infinite) Fourier transform of the original 
stationary random data does not exist. This approach yields two-sided spectral density 
functions, denoted by S(f), which are defined fo r /over (—oo, oo). 

Specifically, assume that the autocorrelation and cross-correlation functions 
Rxxix), Ryy(T), and Rxy(x) exist, as defined in Equation (5.6). Further assume that 
the integrals of their absolute values are finite, namely, 

This will always be true in practice for finite record lengths. Then Fourier transforms 

of R(x) will exist as defined by 

Such integrals over finite record lengths always exist. The quantities S^if) and Syy(f) 
are called the autospectral density functions of {xk(t)} and {yfc(r)K respectively, 

\R(x)\dx < oo 
— OO 

(5.27) 
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whereas Sxy(f) is called the cross-spectral density function between [Xk(t)} and 

bk(t)}. 
Inverse Fourier transforms of Equation (5.27) yield 

* » ( τ ) 

Ryy(t) 

SUfW^df 
JO 

ROC 

Syy(f)e^df 
J—OO 

(5.28) 

To handle practical problems, both R(x) and S(f) are permitted to include delta functions. 
The results in Equations (5.27) and (5.28) are often called the Wiener- Khinchine relations 
in honor of the two mathematicians, N. Wiener of the United States and A. I. Khinchine of 
the USSR, who independently proved the Fourier transform relationship between 
correlation functions and spectral density functions in the early 1930s. 

From the symmetry properties of stationary correlation functions given in Equa-
tions (5.9) and (5.10), it follows that 

SXX{-F) = S M = S X X { F ) 

( j . z y ) 
Syy(~f) = S;y(f)=Syy(f) 

SXY(-f) = s*{f) = Syx(f) (5.30) 

Thus, the autospectral density functions (/) and Syy ( / ) are real-valued even functions 
off, whereas the cross-spectral density function is a complex-valued function of/. It is 
also true that both SjJJ) and 5 W ( / ) are nonnegative for all / , to be proved later. 

Equation (5.30) can be proved as follows. By definition, 

- / ) = R ^ y ^ d t 

POO 

Siy(f) = R^)e^dx 
J —OO 

poo 

Syx(f) = Ryx(x)e-^dx 
J —OO 

It is immediately obvious that S^—f) = S£y(f). Now make a change of variable in 
the first integral by letting τ = —w, dx — —du. Then 

'OO 

Sxy(-f) = R^i-^e-^du 
J —OO 

But Rjcyi—u) = Ryx(u) from Equation (5.10). Hence, 

sv(-f) = Ryx(u)e-jl7lfudu = Syx(f) 

This completes the proof. Results in Equation (5.29) are special cases of Equa-
tion (5.30) when x(t) =y(t). 



120 STATIONARY RANDOM PROCESSES 

The autospectral relations in Equation (5.27) may be simplified to 

Syy(f) 

Conversely, 

^χχ(τ) cos 2π/τ dx — 2 

r o o 

= Ryy 
J —OO 

•OO 

. ο 
: ( r )cos 2nfxdx 

(τ) cos 2π/τ dx = 2 Ryy(x) cos 2π/τ dx 

(5.31) 

RxxW = 2 

Ryy(x) = 2 

Sxx{f)cos2nfxdf 

£„,(/) cos 2π / τ ί / / 

(5.32) 

The one-sided autospectral density functions, G^if) and G y ) , ( / ) , where / varies 
only over (0, oo), are defined by 

Gxx{f) = 2Sxx(f) 0 < / < oo otherwise zero 

Gyyif) = 1Syy{f) 0 < / < oo otherwise zero 
(5.33) 

Theoretically, at the exact f r equency /= 0, Gxx(0) = Sxx(G), and Gyy(0) = Syy(0). 
However, this rigorous relationship between one-sided and two-sided spectral density 
functions at zero frequency will be omitted in all equations henceforth for simplicity. 
The one-sided spectral density functions defined in Equation (5.33) are the quantities 
measured by direct filtering procedures in practice. For mathematical calculations, 
however, the use of 5 ^ / ) and Syy(f) defined over (-00,00) and exponentials with 
imaginary exponents often simplifies the analysis. It is important to be able to deal 
properly with both of these representations, and both will be used in this book. See 
Figure 5.3 for a graphical illustration of the relationship. 

In terms of the one-sided autospectral density functions G^if) and Gyy(f), the 
correspondence with the stationary correlation functions / ^ ( τ ) and / ^ ( τ ) becomes 

p o o 

Gxx{f) = 4 /?«(T)COS 2π/τdx 0 < / < 00 
Jo 

io o 

i? x c (r)cos 2π/τ dx 0 < / < 00 

(5.34) 

Figure 5.3 One-sided and two-sided autospectral density functions. 
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Conversely, 

Λ«(τ) 

Ryy(z) 

G^f) cos 2nf τ df 

Gyy{f) cos 2nfτ df 

(5.35) 

In particular, at τ = 0, one obtains 
p o o 

Rxx(0)=E[x2(t)]=tf= G„{f)df 
Jo 

Ryy{0)=E\y(t)]=tf 

(5.36) 

Gyy{f)df 

The one-sided cross-spectral density function Gxy(f), where /var ies only over 
(0, oo), is defined by 

Gxy(f) — 2Sxy(f) 0 < / < oo otherwise zero 

From Equation (5.27) 

G*y(f) = 2 Rv{T)e-^dT = CvW-JOcyif) 

(5.37) 

(5.38) 

where C^if) is called the coincident spectral density function (co-spectrum), and 
Qxyif) is called the quadrature spectral density function (quad-spectrum). In terms of 
Cxyif) and Qxy(f), the cross-correlation function is given by 

p o o 

Rxy^)=\ [ C „ ( / ) c o s 2 ^ T + Q ^ ( / ) s i n 2 ^ T ] 4 f (5.39) 
Jo 

Observe that C^f) and Qxy(f) are defined in terms of Gxy(f) rather than S^f). Note 
also that τ = 0 yields the result 

p c o 

R^O) = E\x(t)y(t)} = C ^ C / V / (5.40) 
Jo 

The one-sided cross-spectral density function may be presented in complex polar 
notation as 

Gxy{f) = \Gxs{f)\e-M 0 < / < o o (5.41) 

where the absolute value (magnitude) and phase angle are determined by 

\GM\ = \]c%(f) + Q%(f) 
M / ) = t a n - ' ^ ( / ) Cxyif) 

(5.42) 

(5.43) 

The signs of the terms C^f) and <2 .ry(/) may be positive or negative and give the 
quadrant for the phase angle. These signs also determine at each frequency/whether 
y(f) leads x(t) or x(f) leads y(t). When the record y(f) leads x(t), this means y(t) = 
x(t — τ 0 ) , where τ 0 > 0 and 0 ^ ( / ) = 2π/τ 0 · The relation of the phase angle to C^,(/) 
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n/2 a exy(f) < π 0 « exy(f) <5 π/2 
y(t) leads x(t) y(t) leads x(t) 
at frequency / at frequency / 

-π/2^θχ,(β^0 
x(t) leads y(r) x(t) leads y(t) 
at frequency / at frequency / 

Figure 5.4 Relation of phase angle to cross-spectral terms. 

and Qxy(f) is illustrated in Figure 5.4. Similarly, the two-sided cross-spectral density 

function in complex polar notation is 

Sv(f) = M / ) l ^ ' M / ) (5-44) 

where = \ | G ^ ( / ) | and O^if) is the same as in Equations (5.41) and (5.43). 

Referring now to Equation (5.38), it follows that 

[RxyW + M"0]cos 2π/τ dx = Cv(-f) 
0 

5.45 
POO 

Qvif) = 2 [Λ ν (τ ) -Λ„(τ) ]8 ΐη 2φάτ = -&,(-/) 
Jo 

Thus Cxyif) is a real-valued even function of/, whereas Qxy(f) is a real-valued odd 

function of/. Also, 

C ^ ( / ) =RGxy(f) + Gyx(f)] = \G„(f)\cos M / ) 
(5.46) 

Gxytf) = ( / • /2 ) [G^( / ) -G > , ( / ) ] = | G ^ ( / ) | s i n ^ . ( / ) 

The spectral properties of stationary random processes [Xk(t)} and {)>&)}, which 
are described by the three functions S^if), 5 W , ( / ) , and 5^.(/), or by the four functions 
Sxxif), Syy(f), Cxyif), and Qxyif), need be calculated only for values o f / > 0, since the 
relations of Equations (5.29), (5.30) and (5.45) yield results f o r / < 0 . Of course, 
corresponding G functions should be calculated only f o r / > 0. 

When dealing with spectral functions involving delta functions at / = 0 , it is 
convenient to let the lower limit of integration, zero, be approached from below. In 
particular, for R(x) = c 2 , this allows the corresponding G(f) to be G ( / ) = c28(f). For 
this situation, S(f) is also given by S(f) = c25(f), showing that the factor of 2 in 
Equation (5.37) should not be applied to delta functions a t / = 0 . This consideration 
does not exist for correlation functions involving delta functions at τ = 0, because 
correlation functions are defined for all τ. Thus, R(r) = (α/2)δ(τ) corresponds to 
S(f) = (a/2) for all / and G(f) = a for / > 0. 

Examples of special autospectral density functions that are useful in theoretical 
studies are given in Table 5.2. 
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5.2.1.1 Bandwidth-Limited White Noise 
By definition, bandwidth-limited white noise is a stationary random process with a 
constant autospectral density function as follows: 

* .< />- (" ° ^ - W 2 > £ / « + W 2 > (5.47) 
I 0 otherwise 

Here,/ C is the center frequency of a rectangular filter of bandwidth B. This case is also 
called bandpass white noise. From Equation (5.35), it follows that the associated 
autocorrelation function is 

Λ«(τ) = 
fc + (B/2) Λ ϊ η π ΰ Λ 

a cos Infxdf = aB cos 2nfcx (5.48) 
Λ - ( β / 2 ) \ π Β τ J 

For the special case where fc = (B/2), this case becomes low-pass white noise defined 
as follows: 

(a 0 < / < Β 

G»(f) = { n u . ( 5 4 9 ) 
1 0 otherwise 

with v 

These results are pictured in Tables 5.1 and 5.2. For either bandpass white noise or 
low-pass white noise, the data have a finite mean square value given by 

(•OO 

G„(f)df = aB = R„(0) (5.51) 
Jo 

It is theoretically possible to approximate such cases with real data. 
An extreme version of low-pass white noise, called white noise, is defined by a 

Gxxif) that is assumed to be a constant over all frequencies. This case never occurs for 
real data. Specifically, for white noise, 

G„(f)=a / > 0 o n l y (5.52) 

Hence, 

S „ ( / ) = (a/2) a l l / (5.53) 

R„{x) = (α/2)δ(τ) (5.54) 

G„(f)df = oo = R„(0) (5.55) 

showing that white noise has an infinite mean square value. Such theoretical white 
noise cannot be Gaussian because a Gaussian process must have a finite mean square 
value in order to be well defined. 
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Table 5.1 Special Autocorrelation Functions 

Type Autocorrelation Function 

Constant (τ) c1 

Sine wave (τ) = yCOs27r/ 0T 

White noise Rxx{x) = a8{x) 

Low-pass, white noise 

Bandpass white noise -W" 

Exponential 

Exponential cosine 

Exponential cosine, 
exponential sine 

Λ/-1Λ 1 

0 

c 

r Λ / \ J * V _ n 

< ) 

R»(t) = o f i 
sin 2πβτ 

2πΒτ 

, . „ /sin πβτλ „ , 
(τ) = ο β ( ——— ] cos2n/oT 

I (b cos 2π/οτ + c sin 2π/ο|τ[ 

Example 5.5. Autospectral Density Function of Sine Wave Process. The sine 
wave process described in Example 5.1 has an autocorrelation function given by 

Λχτ(τ) = y C o s 2 7 r / 0 T 

Substitution into Equation (5.27) yields the two-sided result 

SUf)=^W-fo)+8(f+fo)} 
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Table 5.2 Special Autospectral Density Functions 

Type (One-Sided) Autospectral Function 

Constant ί Gxx(f) = c2 8(f) 

Sine wave 

White noise 

0 

2a 

G „ ( f l = y e ( f - / o ) 

Gxx(f) = 2a, / > 0; otherwise zero 

Low-pass, 
white noise 0 Β 

Gxxif) = a, 0 < / < B; otherwise zero 

Bandpass | 
white noise 0 Id 

G«(f) = a, 0 < / c - ( B / 2 ) < / < / c + (fl/2); 
otherwise zero 

Exponential Ga{f) = 
4a 

α2 + 4πψ 

Exponential 
cosine 

G„(f) = 2a + · 
a2+4n2(f+f0Y a2+4n2(f-f0) 

Exponential cosine, 
exponential sine £ 

G„(f) 
2ab + 4nc(f+f0) , 2ab-4nc(f-f0] 

a2+4n2(f+f0y a2+4n2(f-f0) 

which consists of two delta functions at / = / 0 and / = —/0. Then, the one-sided 
autospectral density function is 

G „ a ) = y S ( f - / o ) 

as pictured in Table 5.2. Note that 

Gxx(f)df = — = R„(0) 



126 STATIONARY RANDOM PROCESSES 

Example 5.6. Autospectral Density Function of Rectangular Wave Process. 
The rectangular wave process described in Example 5.2 has an exponential auto-
correlation function given by 

* „ ( τ ) = Λ - ^ Ι 

Substitution into Equation (5.27) yields the two-sided result 

Then, the one-sided autospectral density function is 

as pictured in Table 5.2, where a — 21 and c2 = 1. Note that 

GtiifW = c2= R„{0) 

Example 5.7. Autospectral Density Function of Sum of Two Processes. The 
autocorrelation function of the sum of two stationary random processes described in 
Example 5.3 is 

Ryy(r) = a]RilXl (τ) + cna2[RXlX2 (τ) + RX2Xl (τ)] + a2

2RX2X2(%) 

Substitution into Equation (5.27) yields the two-sided result 

S„{f) = a2SXlXl (/) + aia2[SXlX2 (f) + SX2Xl (/)] + a2SXlX2 (/) 

But 

Sx»,(f) = s;lXl(f) 

Hence, 

SXlX2(f)+SX2X,(f) = 2Re[SXiX2(f)] = CX[X2{f) 

Thus Syy{f) is real valued and may be expressed as 

S„(f) - a\SXiXx {f) + aia2CXlX2 (/) + a\SX2X2(/) 

The corresponding one-sided result is 

Gyy(f) = a2

lGXlXl(f)+2ala2CXlX2(f)+a2GX2X2(f) 

5.2.2 Spectra via Finite Fourier Transforms 

The second method to define spectral density functions is also mathematical. It is 
based on finite Fourier transforms of the original data records and represents the 
procedure that is followed in present spectral density calculations. 

Consider a pair of associated sample records xk(f) and yk(t) from stationary random 
processes [xk(t)} and {yk(t)}. For a finite time interval 0 < t< T, define 
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Sxy(f,T,k)=^Xk*(f,T)Yk(f,T) (5.56) 

where 

Xk(f,T) = xk(t)e-^dt 
Jo (5.57) 

YkifJ) = ί yk(t)e-J2nf'dt 
Jo 

The quantities Xk(f, T) and Yk(f, 7) represent finite Fourier transforms of xk(t) and yk(t), 
respectively, and Xk (f, T) is the complex conjugate of Xk(f, 7) These finite-range Fourier 
transforms will exist for general stationary records, whereas their infinite-range Fourier 
transforms would not exist, because the stationary data theoretically persist forever. 

A common mistake made by many people is now to use analogies from periodic 
data to define the cross-spectral density function by 

This is an unsatisfactory definition for general stationary random data because the 
estimate of S^if, k) by S^if, T, k) does not improve in the statistical sense of consistency 
(defined in Section 4.1) as Γ tends to infinity. Also, observe that the left-hand side is still 
a function of the index k. The correct way to define S^if) is by the expression 

where EiS^yif, T, k)] is, of course, the expected value operation over the ensemble index 
k in question. The autospectral density functions S^if) and Syy(f) are merely special 
cases of Equation (5.59). The equivalence of the result in Equation (5.59) with that 
previously given in Equation (5.27) will now be proved. 

Using different variables of integration to avoid confusion, Equation (5.56) becomes 

Sv(f,k) = lim S^ifJ^k) 
Τ —* oo 

(5.58) 

5 ^ ( / ) = lim E[Sv(f,T.. 
1 —* OO 

*)] (5.59) 

(5.60) 

Now, change the region of integration from (α, β ) to (α, τ), where τ — β 
This changes the limits of integration as shown in the sketch below. 

« Τ 

— <x,dz = άβ. 
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Proceed by integrating in the order (α, τ) instead of the order (α, β). This leads to 

da άβ = \ da dx + I 
0 J - r J - τ J0 

Τ-τ 
dadx (5.61) 

As a check, it is readily verified that both sides of Equation (5.61) yield the value T2. 
Hence, this change of the region of integration allows Equation (5.60) to take 
the form 

SXy(f,T,k) 
ι ( T 

j,j xk(a)yk{a + x)da 

+ 
Τ Γ 1 fT-τ 1 f 

~ xk(a)yk(a + x)da 
ο l 1 Jo 

e-j2nfldx 

e~i2nfxdx 

(5.62) 

By definition, the cross-correlation function Rxy(x) is given by the expected value 

Rxy{x) = E[xk{a)yk(a + x)} 

The expected value of both sides of Equation (5.62) then gives 

- - 1 tT 

(5.63) 

E[Sxy(f,T,k)} Rxy{t)da 

f 
Jo 

Γ Jo 

-βΦάτ 

Rxy[x)da ~βφάχ (5.64) 

l - £ )Rxy(x)e-^dx 

In the limit as Τ tends to infinity, it follows that 

• o o 

lim E[Sxy(f, T, k)} = R ^ e - ^ d x 
Τ —> c o 

(5.65) 

This is the desired result of Equation (5.59) since the right-hand side of Equa-
tion (5.65) is Sxy(f), as previously defined in Equation (5.27). 

Observe that when S(f) is replaced by its corresponding G( / ) , the following 
formulas are obtained: 

Gv{f)=2 lim l-E[X*k{f,T)Yk(f,T)} 
I —* o o / J 

G„(f) = 2 lim X-E\\Xk(f,T)\2 

o o 1 L 

Gyy{f) = 2 lim l£[|y,(/,r)|2" 

(5.66) 

(5.67) 
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These formulas are estimated in fast finite Fourier transform digital computer 
procedures discussed later in Chapter 11. In practice, the record length Twill always 
be finite since the limiting operation Τ —> oo can never be performed. The expected 
value operation E[ ] will also always be taken over only a finite number of ensemble 
elements because an infinite ensemble is impossible to obtain with real data. 

5.2.3 Spectra via Filtering-Squaring-Averaging 

The third way to compute autospectral density functions consists of the following 
operations, as pictured in Figure 5.5. 

1. Frequency filtering of the signal x(t) by a narrow bandpass filter of bandwidth Be 

and center frequency/to obtain x(f, Be, t). 

2. Squaring of the instantaneous value of the filtered signal. 

3. Averaging of the squared instantaneous value over the record length Γ to obtain 
a mean square value estimate of the filtered signal. 

4. Division by the filter bandwidth Be to obtain an estimate of the rate of change of 
mean square value with frequency at the center frequency/. 

The autospectral density function estimate is then 

1 ' r 

G„(f) 
{Be)T 

x2(f,Be,t)dt (5.68) 

Computation of the cross-spectral density function is a direct extension of this 
procedure using two different signals x(t) and y(t) with the following operations: 

1. Individual frequency filtering of the two signals x(t) and y(r) by narrow bandpass 
filters having identical bandwidths Be and the same center frequency/to obtain 
x(f, Be, t) and y(f, Be, t). 

2. Multiplying the instantaneous values of the two filtered signals with no phase 
shift to obtain the in-phase terms, needed for the co-spectrum. 

3. Multiplying the instantaneous values of the two filtered signals with y(f, Be, t) 
shifted 90° out of phase compared with x(f, Be, t) to obtain the out-of-phase 
terms, needed for the quad-spectrum. 

4. Averaging each of the above instantaneous product values over the record 
length Τ to obtain mean product value estimates of the in-phase and out-of-
phase terms. 

Narrow bandpass filter 
Bandwidth = 8. 
Center frequency ™ / 

Square 
and 

average 
Divide Narrow bandpass filter 

Bandwidth = 8. 
Center frequency ™ / 

Square 
and 

average oyB. G<f) 

Figure 5.5 Autospectrum estimate by filtering-squaring-averaging. 
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5. Division of each of the two mean product value estimates by the filter 
bandwidth Be to obtain estimates of Cxy(f) and Qxy(f)-

The cross-spectral density function estimate is then 

Gtyif) = C^-jQ^f) (5.69) 

where 

Cxyif) = 7 ^ [ x(f,Be,t)y(f,Be,t)dt 
\t>e)l Jo 

Qxyif) = J^f *(Λ Be, t)y° if, Be, t)dt 

(5.70) 

The symbol y°(f, Be, t) denotes a 90° phase shift from the filtered signal y(f, Be, t). 
The equivalence of this third definition of spectral density functions with the 

previous two definitions in Sections 5.2.1 and 5.2.2 is not obvious and requires a 
proof. This will now be done for the autospectral computation. A similar proof applies 
for the cross-spectral computation. 

Consider the autospectral formula of Equation (5.67) where 

G„(f) = 2 lim -E \Xk(f,T) 
Τ —* oo 1 Y 

Although not obvious, the term 

\xk(fJ)\z Xk(t) cos Inftdt 
ο 

+ 
RRT -|2 

Xk(t) sin Inftdt 

(5.71) 

(5.72) 

acts as a filter to help obtain the mean square value in any xk(t) associated with a 
narrow frequency band around the center frequency/. To derive this result, define for 
each xk(t) in {xk(t)} 

' Xk(t) 0<t<T 

0 otherwise 
xk(t,T) = { , . (5.73) 

Then the mean square value of a particular xk(t) may be determined by 

x2

k(t,T)dt (5.74) 

By Parseval's theorem, if F(f) is the Fourier transform of/(i), then 

I'OC /"OO 

f2(t)dt=\ \F(f)\2df (5.75) 
J—oo J - oo 

\lr(k) = lim -
1 iT 1 

x\{t)dt = lim -
0 Τ -» oo / 
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a relation proved in Equation (5.83). Hence, since Xk(f, T) is the Fourier transform for 
xk(t, T), namely, 

rT 

xk (t)e-j2«ftdt = xk (r, T)e~j2nfidt (5.76) 

it follows that 

1 f°° 1 f°° 
<?A*) = lim - \Xk(f, T)\2df = 2 lim - \Xk(f,T)\2df (5.77) 

Now, the expected value of ^(k) over all possible records xk(t) in {xk(t)} yields the 
familiar formula 

G„(f)df (5.78) 

where G ^ ( / ) is defined by Equation (5.71). 
Next, suppose that xk{f) is passed through a narrow bandpass filter with a center 

frequency/ c and a bandwidth Be such that the frequency response function H{f) of the 
filter is 

H(f) 
1 0<fc-(Be/2)<f<fc + {Be/2) 

0 otherwise 
(5.79) 

Then, the Fourier transform of the filter output is given by H{f)Xk(f, T) instead of 
by %k(f> T). Hence in place of Equation (5.77), the mean square value of a particular 
filtered xk(t) becomes 

tf(fc,Be,k) = 2 lim I 
Τ —>oo I 

\H(f)\2\Xk(f,T)\2df 

The expected value of both sides of Equation (5.80) gives 

(fc + (Be/2) 

rxifc,Be) = \H(fWG> <(f)df = 
Jfc-(Be/2) 

GMdf. 

(5.80) 

(5.81) 

In words, Equation (5.81) states that GXK(f) is the rate of change of mean square value 
with frequency. Furthermore, the term \Xk(f, T)\2 must be acting as a filter on xk(t), 
which passes only a narrow band of frequency components in a certain range, and then 
squares these outputs prior to the final desired averaging operations. This is precisely 
how early analog spectral density analyzers operated and is the basis for the 
computation of time-varying spectral density functions using digital filters, as 
discussed in Chapter 11. 

Parseval's Theorem. Let Xx ( / ) and X2(f) be the Fourier transforms of real functions 
x\(t) and x2(t), respectively. The general Parseval's theorem states that 

x\{t)x2{t)dt X*(f)X2(f)df (5.82) 
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dt 

df 

where X^{f) is the complex conjugate of X\(f). 

Proof 

xi (t)x2 (t) = X l (f) X2 (f)exp(j2nft)df 
J —OO 

' O O Γ Ο Ο Γ p o o 

Xl(t)x2{t)dt = jc,(f) X2(f)exp(j2nft)df 
J — o o J — o o LJ—oo 

io o Γ P O O 

X 2 ( / ) Xl(t)exp(fl*ft)df 
—oo LJ — o o 

x,*(/)W)4f 
— o o 

This proves the general result. As a special case, if 

Xi{t)=x2(t)=x{t) and X ! ( / ) = X 2 ( / ) = X ( / ) 

then 

X;(f)X2(f)=X*(f)X(f) = \X(f)\2 

This gives the form of Parseval's theorem used in Equation (7.75), namely, 

io o 

\X(f)\2df (5.83) 

— o o 

5.2.4 Wavenumber Spectra 

The random data considered in this book are generally defined as a function of time, 
denoted by t in seconds (s). However, any other parameter can replace time as the 
independent variable if warranted by the application of the data. In particular, some 
phenomena that produce random data are more conveniently described as a function 
of distance, denoted by δ in meters (m), rather than time. Examples include road 
roughness data, which are commonly measured in terms of the elevation of a road 
surface versus distance along the road, and atmospheric turbulence data, which are 
usually presented as particle velocity versus distance through the turbulence path. If 
such spatial random data have average properties that are invariant with distance, the 
data are said to be homogeneous, which is analogous to being stationary in time. 
Given two associated sample records xk(8) and yt(8) from homogeneous spatial 
random processes {xk(8)} and {yk(8)}, the spatial Fourier transforms over a total 
distance D are 

Xk{K,D)=\Dxk(8)e-J1"KSd8 Yk(K,D) = f' y ^ e ^ d S (5.84) 
Jo Jo 

where κ is called wavenumber, which has the units of cycles/m. The reciprocal of 
wavenumber is wavelength λ = (Ι/κ), which has the units of m. If the units of x(8) and 
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y(S) are magnitudes V a and Vb, respectively, versus m, then the units of XK(K, D) and 
Yk(K, D) are V a m and V f em, respectively, versus cycles/m. 

Analogous to the frequency spectral density functions for time history data defined 
in Equations ( 5 . 6 6 ) and ( 5 . 6 7 ) , wavenumberspectral density functions (usually called 
wavenumber spectra) are defined as 

GXX(K) 

2 lim ±-E[XK*(K,D)YK(K,D) 
D —* oo L) 

2 lim -E 
D-+00D 

\Xk(K,D)\2 

Gyy(K) = 2 lim -E \YK{K,D)\' 
U —* oo υ 

( 5 . 8 5 ) 

( 5 . 8 6 ) 

where all the approximations and errors discussed for frequency spectral density 
functions in Chapters 8 and 9 apply with time replaced by distance. If the units of χ(δ) 
and y(8) are magnitudes in V a and \ b , respectively, the wavenumber cross-spectrum 
G^,(K) in Equation ( 5 . 8 5 ) is generally a complex-valued function whose real and 
imaginary parts have the units of V 0Vi/(cycles/m) versus cycles/m, while the 
wavenumber autospectra G^K) and GYY(K) in Equation ( 5 . 8 6 ) are always real-valued 
functions that have the units of V^/(cycles/m) and V^/(cycles/m) versus cycles/m. 
Various related quantities and typical units for the wave-number and frequency 
domains are shown in Table 5 . 3 , where the unit volts (V) represents the measured 
quantity, for example, height in m, velocity in m/s 2 , force in N, pressure in Pa, and 
so on. 

It should be mentioned that, when the measured quantities V\ and V2 are heights in 
meters, it is common to label the ordinate axis of a wavenumber spectrum plot as m 3 

rather than m 2/(cycles/m). Also, if a spatial input load such as a road with a 
wavenumber spectrum of G^K) in m 2/(cycles/m) versus cycles/m is transversed 
by a vehicle moving with a constant velocity of ν in m/s, the temporal input 
load seen by the vehicle can be described by a frequency autospectrum Gxx(f) in 
m 2 /Hz, where 

f = kv;Gxx(f) = Gxx(k)/v ( 5 . 8 7 ) 

Table 5.3 Related Quantities for Wavenumber and Frequency 

Quantity Units Quantity Units 

Data record, x(8) Volts (V) Data record, x(t) Volts (V) 
Distance, δ Meters (m) Time, t Seconds (s) 
Wavenumber, κ Cycles/m Frequency, / Cycles/ί (Hz) 
Wavelength, λ — Μ κ m Period, P= 1/f s 
Wavenumber V2/cycles/m Frequency V2/cycles/s 

spectra G^K) spectra, GJf) (V2/Hz) 
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5.2.5 Coherence Functions 

A simple, direct mathematical proof will now be carried out to show that the cross-
spectral density function is bounded by the cross-spectrum inequality 

\Gxx(f)\
2 < GUmAf) (5.88) 

This result is much more powerful than the corresponding cross-correlation inequality 
of Equation (5.11), which bounds |/?^,(τ)| 2 in terms of the product Rxx(Q)Ryy(0) using 
values of Rjjix) and Ryy(z) at τ = 0. 

For any value of/, the function G^if) can be expressed as 

Gxy{f) = \Gv{f)\e-»»W 

using the magnitude factor | G ^ ( / ) | and the phase factor B^f), It is also known 
that 

Gyx(f) = G;y(f) = \Gxy(f)\e
i^ 

Consider now the quantities Xk(f) and Ykif)^"^, where Xk{f) and !*( / ) are finite 
Fourier transforms of records xk(t) and yk(t), respectively. For any real constants a and 
b, the absolute value quantity shown below will be greater than or equal to zero, 
namely, 

\aXk(f)+bYk(fy
e»{f)\2>0 

This is the same as 

« 2IW)I 2+ ab[x; (mifyo^+xk(f)Yk* (/κ ;'Μ / )]+& 2ι W) | 2 > ο 

By taking the expectation of this equation over the index k, multiplying by (2/7), and 
letting Τ increase without bound, one obtains 

a 2 G „ ( / ) + ablG^fy^ + Gyx(fy^} + b2Gyy(f) > 0 

Use has been made here of the autospectra and cross-spectra formulas of Equa-
tions (5.66) and (5.67). From Equation (5.41), 

G ^ ( / y M / ) +Gyx{f)e-M) = 2\Gxy{f)\ 

Hence, 

a2Gxx(f) + 2ab\Gxy{f)\+b2Gyy(f) > 0 

It now follows exactly as in the earlier proof for the cross-correlation inequality that 
Equation (5.88) is true, namely, 

| G ^ ( / ) | 2 < G»(f)G„{f) (5.89a) 
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This also proves that for any/ , the two-sided quantities satisfy 

\SV(f)\
2 < SnWSyytf) (5.89b) 

The coherence function (sometimes called the coherence squared function) may 
now be defined by 

2 ( / ) = \G*y(f)\2

 = \S*y(f)\2

 ( 5 9 Q ) 

7 x 3 , U ) G„(f)G„{f) su^sAf) [ ' 
and satisfies for a l l / , 

o < y%{f) < 1 (5.91) 

A complex coherence function y x y ( / ) may be defined by 

M/) = l^(/)k"^ ( / )
 (5.92) 

where 

M/)l= +ψϊ~{ί) (5.93) 

and dxyif) is the phase angle of G^f). Throughout this book, the coherence function 
will always stand for the real-valued squared function of Equation (5.90) with (/) | 
as the positive square root of ^ ( Z ) . 

5.2.6 Cross-Spectrum for Time Delay 

From Equation (5.20), the cross-correlation function for the time-delay problem 
illustrated in Figure 5.1 is 

Λ^(τ) = α Λ „ ( τ - τ 0 ) (5.94) 

Substitution into Equation (5.27) yields the two-sided cross-spectral density 
function 

Sxy(f) = aSMe-M* (5.95a) 

The corresponding one-sided cross-spectral density function is 

Gv(f) = aG„(f)e-^ (5.95b) 

Hence, from Equation (5.41), 

\Gxy{f)\ = *Gxx{f) (5.96) 

Μ / ) = 2 π / τ 0 (5.97) 

Thus, the time delay τ 0 appears only in the phase angle O^if). Measurement of dxy(f) 
enables one to determine the time delay by noting that ^ ( / ) is a linear function of 
/ w i t h a slope equal to 2πτ 0 , as illustrated in Figure 5.6. The attenuation factor α is 



136 STATIONARY RANDOM PROCESSES 

Figure 5.6 Typical phase angle plot for time-delay problem. 

given at any frequency / b y 

α = [|G^(/)|/G„(/)1 (5-98) 

The one-sided autospectral density functions for the transmitted signal x{i) and the 
received signal y{t) in Figure 5.1 are given by Gxx(f) and Gyy(f), respectively, where 

Gyy(f)=a1Gxx(f) + Gnn(f) (5.99) 

This result also follows directly from Equation (5.26). The coherence function at any 
value of / f rom Equations (5.90) and (5.98) is given by 

|2 
2 ( / ) = K M / ) I 2 

GM) 

IGyyif). 

Observe also that the two components in Gyy(f) are 

α 2 0 « ( / ) = yi,(f)Gyy(f) = spectrum iny(r) due tojc(i) 

(5.100a) 

Gnnif) = [l-)4(/)]Gyv(/) = spectrum iny(i) due tow(f) •2 ί 
ixy\ 

These results are more significant than their integrated values over all frequencies as 
shown in Equation (5.25) where there is no frequency discrimination. 

The coherence function of Equation (5.100) using Equation (5.99) for Gyy(f) takes 
the form 

. . 2 ^ _ «2GM) 
otGnifl + GM 

where the terms on the right-hand side are nonnegative. For all values of/, it is clear 
that Jxyif) < 1 because the denominator is larger than the numerator. This result is 
equivalent to 

..2 f n _ W2GUf) + Gm(f)}-Gnn(f) = Gyy(f)-Gnn(f) 
y ^ J ) ofiGnW + GM Gyy(f) 

= \-[Gm{f)lGyy{f)\ 
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Again, it is clear that y2

xy{f) < 1 for a l l / s ince G„„(/) < Gyy(f). When G„„(/) = 0, 

then 7%(f) = 1. When Gnn{f) = Gyy(f), then l x y ( / ) = 0. 

5.2.7 Location of Peak Value 

From Equations (5.21) and (5.28), the peak value of Rxy(x) is given by 

Let estimates of Rxy(x0) and Sxy(f) be denoted by ^ ( τ ο ) and S^f), respectively. 

Then 

gives the estimate 

|^(/)Μ 1 2 π / τ°~Μ /% 

| 4 ( / ) | c o s [ 2 ^ r 0 - ^ ( / ) ] 4 f 

because Rxy{xo) is real valued. At the peak location τ 0 , 

dRxyJTo) 

dx0 

'OO 

= 0 = ( - 2 π / ) | ^ ( / ) | 8 ί η [ 2 π / τ 0 - ^ ( / ) ] ί / / 
J —oo 

From Equation (5.97), the estimate 

θν(/) =i 2 π / τ 0 

so that 

5 ί η [ 2 π / τ 0 - ^ ( / ) ] ~ 2 π / τ 0 - ^ ( / ) 

Hence, one obtains the approximate formula 

" ( - 2 π / ) | ^ ( / ) | [ 2 π / τ 0 - ^ ( / ) ] # 0 
-oo 

This can be solved for τ 0 to yield the result 

τ 0 ^ : 

( 2 π / ) | ^ ( / ) | ^ ( / ) # 

'OO 

( 2 π / ) 2 | ^ ( / ) | « ί / 
J -oo 

(5.101a) 

The use of one-sided cross-spectral density function estimates Gxy(f) instead of the 
two-sided S^,(/) gives the equivalent result 

to -
(2π/)|̂ (/)|Μ/ν/ 
•oo 

( 2 π / ) 2 | ( ^ ( / ) | 4 Γ 
Jo 

(5.101b) 
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5.2.8 Uncertainty Relation 

Consider a zero mean value stationary random process (y(r)} with an autocorrelation 
function Ryy{x) and an associated two-sided spectral density function Syy{f) as defined 
in Equations (5.6) and (5.27), where 

POO 

Syyif) = Ryy(t)e-Wdx = 2 
J - c o 

POO 

*yyW = Syy(f)e>2^df = 2 
J—OO 

Ryy(x)cos 2nfrdi 
ο 

oo 
(5.102) 

Syy(f)cos2nfxdf 

It is known also that 

Ryy{0) > Ryyir) for all τ 

Syy(f) > 0 for a l l / 

In place of Syy(f), a one-sided spectral density function Gyy(f) can be denoted by 

2Syy(f) / > 0 

o / < 0 

Thus, 

Gyy(f) 

(5.103) 

(5.104) 

Gyy(f) = 4 Ryy (r)cos 2π/τάτ Ryy (τ) Gyy(f)cos2nfTdf (5.105) 

Definitions can now be given for equivalent noise spectral bandwidth and equivalent 
noise correlation duration. A useful uncertainty relation can be proved for the product 
of these two quantities. 

The noise spectral bandwidth is defined by 

Bn = G w ( / ) d / / G w ( / ) | m a x = Ryy(0)/Gyy(f)\ 

The noise correlation duration is denned by 

Ryy(r)\dT/Ryy(T)\m!i>i \Ry. 

o 
.(T)\dx/R„(0) 

From these definitions, it follows that 

BnTn — 2 ftyyWdT/GyyWl 

(5.106) 

(5.107) 

(5.108) 

and estimation of this product leads to the uncertainty relation: for an arbitrary Ryy(x) 
and the associated Gyy(f), the product of Bn and Tn satisfies the inequality 

BnTn > \ (5.109) 

Hence, as Bn becomes small, T„ must become large and, conversely, as Tn becomes 
small, Bn must become large. 
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The uncertainty relation can be proved as follows. From Equation (5.105), for any/, 

ioo ΓΟΟ 

| J ? w ( T ) c o s 2 n / r | d T < 4 |Λ„,(τ)|</τ (5.110) 
ο Jo 

Hence, |.co 

Gyy(f)U<4\ \RyyW\dx (5.111) 
Jo 

Substitution of Equation (5.111) into Equation (5.108) leads immediately to the result 
stated in Equation (5.109). Note that this simple proof does not require use of the 
Schwartz inequality of Equation (5.116). 

Example 5.8. Low-Pass White Noise. For low-pass white noise, one has 

Syyif) = a/2 —B <f<B otherwise zero 

Gyy{f) = a 0 < / <B otherwise zero 

Ryy(x) = αΒ{ήη(2πΒτ)/(2πΒτ)} 

The noise spectral bandwidth is given here by 

B„ = ^ ( 0 ) / G w ( / ) | m a x = Β 

However, the noise correlation duration becomes 

2 
Tn = -

\Ryy(x)\dX . 
1 X V W I I f |sin« 

K~B{ 

du = oo 
R„{0) π β j 0 

Thus BnTn = oo, which clearly satisfies the uncertainty relation of Equation (5.109). 
Because of the shape of R y 3,(r), it would appear to be appropriate here to define Tn as 
the width of the main lobe that represents most of the energy, namely, 

Tn = l/B 

This gives BnTn= 1, which still satisfies the uncertainty relation. 

Example 5.9. Gaussian Spectrum Noise. For such noise, one has 

Ryy(r) = α < Γ 2 Η σ ν 

Sy,(f) = ( α / σ ν ^ ) « " / ! / 2 σ ! -oo < / < oo 

= (aV2/a^t)e-f2^2 / > 0 only 
ΓΟΟ 

\Ryy(T)\dT=-
a Gyy(0) 

Jo 2aV2n 4 

Here, the noise spectral bandwidth is 

V2 
Now 

Gyy(Bn) = Gyy(u)e-«14 w 0.456 Gyy{Q) 
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The noise correlation duration is 

1 0.40 
Tn = —= « 

σ\ /2π σ 

Then 

Ryy(T„) = Ρνγ(0)β~π « 0 .043/^(0) 

Note that Gaussian noise achieves the minimum uncertainty value 

BnTn — \ 

Example 5.10. Exponential Autocorrelation Function Noise. For noise with an 
exponential autocorrelation function, one has 

Ryy{z) =Ae~aW a>0 

Syy(f) = 2Aa/{a2 + (2π / ) 2 } -oo < / < oo 

G„(f) = 4Aa/{a2 + (2π / ) 2 } / > 0 only 

\Ryy(t)\dT 
A _ Gyy(0) 

JO 

The noise spectral bandwidth is given by 

fi - a 

Then 

Gyy(Bn) = Gyy(0)[l/{1 + (π/2) 2 }] w 0.288G y,(0) 

The noise correlation duration is 

τ =2-
1 η — 

a 

Thus, 

Ryy{Tn) = Ryy(0)e-2 » 0.10/? w(0) 

In this case also the minimum uncertainty value is achieved, that is, 

RnTn = \ 

Other illustrations of the uncertainty relation can be seen from corresponding ^ ( τ ) 
and Gxxif) functions in Tables 5.1 and 5.2. 

5.2.9 Uncertainty Principle and Schwartz Inequality 

A more general uncertainty principle will now be derived using the Schwartz 
inequality of Equation (5.116). This result applies to an arbitrary function y(i) and 
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its Fourier transform Y(f). The function y(t) should be standardized so that by the 
Parseval Theorem of Equation (5.83), 

y2(t)dt=\ \Y{f)\2df = 
) J — o o 

A measure of the spread of y(t) on the timescale is given by 

To = t2y2(t)dt 
1 1/2 

(5.112) 

(5.113) 

A corresponding measure of the spread of Y(f) on the frequency scale is given by 

Bo f2\Y(f)\2df 
1/2 

The uncertainty principle states that the product 

TQBo > (1/4π) 

(5.114) 

(5.115) 

Thus, a small value for T0 implies a large value for B0, and conversely. The physical 
implication of this result is that it is impossible to localize y{t) within a small region in 
the timescale and simultaneously to localize Y{f) within a narrow band in the 
frequency scale. To derive the uncertainty principle, note that 

j(2nf)Y(f) = Fourier transform ofy(r) 

It follows by Parseval's theorem and Equation (5.114) that 

f O C POO 

y2(t)dt=\ (2nf)2\Y(f)\2df = (2n)2B2 

J — o o J — o o 

Hence, the product 7OB0 is the same as 

T0Bo = (1/2π) 
• λ ο ο "1 1/2 r λ ο ο 1 1/2 

^y2(t)dt y2(t)dt 
J — o o J LJ- o o 

The Schwartz inequality of Equation (5.116) should now be applied by letting/(i) = ty{t) 
and g(t) = y(t). This gives the result that 

( •OO 

ToBo > (1/2π) ty(t)y(t)dt 
J — o o 

One should next integrate by parts with the formula j udv = uv— J ν du by setting u = t 
and dv = y(t)y(t). Then du = dt and ν = [y2(r)/2]. Assuming the integrated portion goes 
to zero as ί approaches ± infinity, 

T0Bo > (1/4π) y2{t)dt = (1/47Γ) 

because y(t) is standardized. This completes the proof. 
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5.2.9.1 Schwartz Inequality 
The Schwartz inequality states that for two functions f{t) and g(t) with arbitrary 
integral limits, under quite general conditions, 

\g(t)\2dt> f(t)g{t)dt (5.116) 

The equality occurs only when fit)/g(t) equals a constant. A simple proof of 
Schwartz's inequality comes from the observation that the integral 
J \af(t) + bg(t)\2dt > 0 for all real values of a and b unless aflj) + bg(t) = 0. This 
implies that the discriminant of the resulting quadratic equation in {alb) must be 
negative. Setting this discrimination less than zero proves the Schwartz inequality. 

5.3 ERGODIC AND GAUSSIAN RANDOM PROCESSES 

The most important stationary random processes in practice are those considered to be 

a. Ergodic with arbitrary probability structure. 

b. Gaussian whether ergodic or not. 

Various cases will now be examined, including linear transformations of random 
processes. 

5.3.1 Ergodic Random Processes 

Consider two weakly stationary random processes [xk(t)} and {yk(t)} with two 
arbitrary sample functions xk(t) and yk(t). These stationary random processes are 
said to be weakly ergodic if the mean values and covariance (correlation) functions, 
which are defined by certain ensemble averages in Section 5.1.1, may be calculated by 
performing corresponding time averages on the arbitrary pair of sample functions. In 
this way, the underlying statistical structure of the weakly stationary random 
processes may be determined quite simply from an available sample pair without 
the need for collecting a considerable amount of data. 

To be more specific, the mean values of the individual sample functions xk(t) and 
yk(t), when computed by a time average, may be represented by 

1 
PxW = hm -

Τ —tea 1 

= lim ψ 

xk(t)dt 

°T (5.117) 

yk(t)dt 

Observe that the answer is no longer a function of t, because t has been averaged out. In 
general, however, the answer is a function of the particular sample function chosen, 
denoted by the index k. 
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The cross-covariance function and cross-correlation function between xk(t) and 
yk(t + τ), when computed by a time average, are defined by the expression 

1 f 

Cxy{x,k) = lim - [**(0-μχ(*)Μ* + τ ) - Μ * ) 1 Λ 

T—> oo 1 Jq 
Xk{t)yk{t + τ)άί-μχ(ήμν(ή lim — 

T-ozT 

(5.118) 

The autocovariance functions and autocorrelation functions are defined by 

Cxx{r,k) = lim ] -
Τ —> oo / 

W (Ο -μ χ &)] [χ& + τ)-μχ {k)}dt 

Rxx(hk)-P2

x(k) 

: w ( T , * ) = r l im -

(5.119) 

= Λ^(τ, * ) - μ 2 (*) 

These quantities should now be compared with the previously defined ensemble mean 
values μχ, μ^ and ensemble covariance functions C „ ( r ) , Cyv(x), and C ^ ( T ) for stationary 
random processes developed in Section 5.1.1. If it turns out that, independent of k, 

Px(k) = μ* 

μ ν(£) = μγ 

C„{T,k) = Cxx(x) (5.120) 

Cyy(X,k) = Cyy(x) 

Cxy(x,k) = Cxy{x) 

then the random processes {xk(t)} and {yk(t)} are said to be weakly ergodic. If all 
ensemble-averaged statistical properties of {x^(/)} and {yk(t)}, not just the means and 
covariances, are deducible from corresponding time averages, then the random processes 
are said to be strongly ergodic. Thus strong ergodicity implies weak ergodicity, but not 
conversely. No distinction between these concepts exists for Gaussian random processes. 

For an arbitrary random process to be ergodic, it must first be stationary. Each 
sample function must then be representative of all the others in the sense described 
above so that it does not matter which particular sample function is used in the time-
averaging calculations. With arbitrary ergodic processes {x(t)} and {y(i)h in place of 
Equation (5.6), their autocorrelation and cross-correlation functions are defined by 

1 t T 

Rxx(*) = J i m -

Ryy{x) 
1 

lim — 

x(t)x(t + x)dt 

y(t)y(t + x)dt 

Rxy(x) = J ™ 
O O Τ 

(5.121) 

x(t)y(t + x)dt 
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Example 5.11. Nonergodic Stationary Random Process. A simple example of 
a nonergodic stationary random process follows. Consider a hypothetical random 
process \xk{t)) composed of sinusoidal sample functions such that 

{xk{t)} = {Xksm[2nfi + ek}} 

Let the amplitude Xk and the phase angle 6k be random variables that take on a 
different set of values for each sample function, as illustrated in Figure 5.7. If 6k is 
uniformly distributed, the properties of the process computed over the ensemble at 
specific times will be independent of time; hence the process is stationary. The 
properties computed by time averaging over individual sample functions are not 
always the same, however. For example, the autocovariance (or autocorrelation) 
function for each sample function is given here by 

X2 

Cxx(T,k) = ^-ύη2π/τ 

Because Xk is a function of k, C^l j , Κ)φϋχ{τ). Hence, the random process is 
nonergodic. 

Instead of having random amplitudes {Xk}, suppose each amplitude is the same X 
independent of k. Now the random process consists of sinusoidal sample functions 
such that 

{xk(t)} = {Xsm(2nfi + ek)} 

Note: Different initial phase angles, 
different amplitude, same frequency 

|i(i)) = (Jf*sin(2̂ t + e*)) 
Figure 5.7 Illustration of nonergodic stationary sine wave process. 
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Note. Different initial phase angles, 
same amplitude, same frequency 

!*(t)| = |X sin(2n/i + * t ) | 

Figure 5.8 Illustration of ergodic sine wave process. 

For this case, the random process is ergodic, with each record statistically equivalent 
to every other record for any time-averaging results, as illustrated in Figure 5.8. This 
concludes Example 5.11. 

5.3.2 Sufficient Condition for Ergodicity 

There are two important classes of random processes that one can state in advance will 
be ergodic. The first ergodic class is the class of stationary Gaussian random processes 
whose autospectral density functions are absolutely continuous; that is, no delta 
functions appear in the autospectra corresponding to infinite spectral densities at 
discrete frequencies. The second ergodic class (a special case of the first class) is the 
class of stationary Gaussian Markov processes; a Markov process is one whose 
relationship to the past does not extend beyond the immediately preceding observa-
tion. The autocorrelation function of a stationary Gaussian Markov process may be 
shown to be of a simple exponential form [Ref. 4]. 

Sufficient conditions for a random process to be ergodic are as follows: 

I. A sufficient condition for an arbitrary random process to be weakly ergodic is 
that it be weakly stationary and that the time averages μχ(Κ) and C^Cr, k) be the 
same for all sample functions k. 
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The proof of this result is as follows. By definition, 

1 [ T 

px{k) = lim - xk{t)dt 

By hypothesis, px(k) is independent of k. Hence, the expected value over k is 
the same as an individual estimate, namely, 

Ε\μΜ] = 

Also, as will be proved later, expected values commute with linear operations. 
Hence, 

= lim ]= [ E[xk(t)]dt 

τ 
= lim 4 

T^ocT J( 

μχάΐ = μχ 

ο 

The assumption of weak stationarity is used in setting E[xk(t)] — μχ. Thus, 

μ,Ο) = μχ 

Similarly, 

Cxx(z,k) = C „ ( T ) 

because the hypothesis that Cx{x, k) is independent of k yields 

ElC^x^k)} = C^z^k) 

whereas the stationary hypothesis yields 

E[Cxx{zM = Cxx{z) 

This completes the proof. 

II. A sufficient condition for a Gaussian random process to be ergodic is that it be 

weakly stationary, and the autocovariance function C^iz) has the following 
four integrable properties. 

| ^ ( τ ) | ί ί τ < oo 

|τΟ«(τ)|Λ: < oo 

(5.122) 

\z\C2Jz)dz < oo 

The four conditions of Equation (5.122) can be replaced by the single 
requirement that 

1 Γ 
- | C „ ( r ) | d T - 0 a s T ^ o o (5.123) 
* J-T 

The proof of this result is in Sections 8.2.1 and 8.2.2, where it is shown that 
mean value and autocorrelation function estimates produced by time averages 
are independent of the particular sample record when Equation (5.122) is 
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satisfied. Result II then follows from Result I. In practice, these conditions are 
usually satisfied, justifying the assumption of ergodicity. 

5.3.3 Gaussian Random Processes 

The formal definition of a Gaussian random process is as follows. A random process 
{xk(t)} is said to be a Gaussian random process if, for every set of fixed times {t n}, the 
random variables xk{tn) follow a multidimensional normal distribution as defined by 
Equation (3.63). Gaussian random processes are quite prevalent in physical problems 
and often may be mathematically predicted by the multidimensional central limit 
theorem. Also, it can be shown that if a Gaussian process undergoes a linear 
transformation, then the output will still be a Gaussian process. This property is quite 
important in various theoretical and practical applications of random process theory. 

Consider a time history x(t), which is a sample function from an ergodic Gaussian 
random process with a zero mean value. Note that the index A: is no longer needed because 
the properties of any one sample function will be representative of all other sample 
functions. From the ergodic property, the behavior of jc(f) over a long period of time will 
exhibit the same statistical characteristics as corresponding ensemble averages at 
various fixed times. As a consequence, it follows that the probability density function 
associated with the instantaneous values of x(t) that will occur over a long time interval 
is given by the Gaussian probability density function with zero mean value, as follows: 

ρ(χ) = {σχν2^)-ιε-χ2/2σ' (5.124) 

The variance σ2 when x{t) has a zero mean is determined by 
| * 0 O 

σ\ = Ε[χ2(ή] — x2p(x)dx independent of t 
J — o o 

1 ( T 

« - ^{ήώ for l a rge r (5.125) 
1 Jo 
ΛΟΟ ΓΟΟ ( Ό Ο 

S „ ( O d f = 2 = G„(f)df 
J - o o Jo Jo 

Thus, the Gaussian probability density function p(x) is completely characterized 
through a knowledge of S^if) or G^if) since they alone determine σχ. This important 
result places a knowledge of Sxx(f) or G^f) at the forefront of much work in the 
analysis of random records. It should be noted that no restriction is placed on the shape 
of the autospectral density function or its associated autocorrelation function. 

If the mean value of x(t) is not zero, then the underlying probability density 
function is given by the general Gaussian formula 

p{x) = {σχν2Ίι)-1β-{χ-^2/2σ1' (5.126) 

where the mean value 
r C C 

μχ = E[x(t)} = xp(x)dx independent of t 
J - o o 

1 (T (5-127) 
x{t)dt for large Τ 
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and the variance 

ατ2

χ = Ε[(χ(ΐ)-μχ)
2}=Ε[χ2(ή]-μ2

χ (5.128) 

Assume that [x(t)} is a stationary Gaussian random process where the index k is 
omitted for simplicity in notation. Consider the two random variables x\ =x(t) and 
x2 = x(t + τ) at an arbitrary pair of fixed times t and t + τ. Assume that X\ and x2 

follow a two-dimensional (joint) Gaussian distribution with zero means and equal 
variances σ 2 . By definition, then 

σ\ = E^it)] = E^(t + T)] = x2p(x)dx (5.129) 
J — O O 

O O 

Λ„(τ) = E[x(t)x{t + τ)] = pjx)^ = Jj x\x2p(x\,x2)dxxdx2 (5.130) 
-oo 

The quantity ρ^(τ) is the correlation coefficient function of Equation (5.16) for 

CXlXl{x) = R^x) and σΧι = σΧι = σχ, namely, 

P « W = T (5-131) 

Letting ρ = Pxx(x) and μ = 0, the joint Gaussian probability density function is given 

by 

p{x\,X2) = ( 2 π σ ^ ν

/ 1 - Ρ 2 ) ' e x P (yX\—2PX\X2+x\) 
2 σ 2 ( 1 - ρ 2 ) 

(5.132) 

All properties developed in Section 3.3 apply to joint Gaussian random processes at 
any set of fixed times. 

Consider four random variables χ · , x2, x3, x4, with zero mean values, which follow a 
four-dimensional Gaussian distribution. From Equation (3.73), 

E\xiX2X3X4 ] = E[x\X2\E[x3X4\ + £[Χ1Χ3]£[Χ2*4] + £[·*1-*4]£[·*2*3] (5.133) 

In particular, letxi =x(u),x2 = y(u + x),x3 = x(v),x4=y(v + τ), and let R^x) be the 
stationary cross-correlation function given by 

Rxy(x)=E[x(t)y(t + x)} (5.134) 

It now follows from Equation (5.133) that 

E[x{u)y{u + x)x{v)y{v + x) = R^x) + J ? „ ( V - I I ) * W ( V - U ) ^ 5 

+ Rxy(v—u + x)Ryx(v—u-x) 

This result will be used later in Equation (8.99). 
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5.3.4 Linear Transformations of Random Processes 

The dynamic behavior of representative linear physical systems has been discussed in 
practical terms in Chapter 2. It will be helpful at this time to consider very briefly the 
mathematical properties of linear transformations of random processes. This back-
ground will be assumed in Chapters 6 and 7 to develop important input/output 
relationships for linear systems subjected to random inputs. 

Consider an arbitrary random process {xk(t)}. An operator A that transforms a 
sample function xk(t) into another function yk(v) may be written as 

yk(v) = A[xk(t)] (5.136) 

where A denotes a functional operation on the term inside the brackets [ ]. The 
argument ν may or may not be the same as t. For example, if the operation in question 
is differentiation, then ν = t and yk(t) will be a sample function from the derivative 
random process {xk(t)}, assuming of course that the derivative exists. A different 
example is when the operation in question is integration between definite limits. Here, 
νφί, and yk(v) will be a random variable over the index k, determined by xk(t) and the 
definite limits. The operator A can take many different forms. In the following, the 
sample space index k will be omitted for simplicity in notation. 

The operator A is said to be linear if, for any set of admissible values X\X2,. • ·, XN 

and constants au a2,..., aN, it follows that 

i=l 

= ΣαίΑ[χί} (5.137) 
i=l 

In words, the operation is both additive and homogeneous. The admissible values here 
may be different sample functions at the same r, or they may be different values from 
the same sample function at different t. 

The operator A is said to be time invariant if any shift i 0 of the input *(i) to x(t + i 0) 
causes a similar shift of the output y{f) to y(t + i 0 ) . In equation form, 

y(t + t0) =A[x(t + t0)] foranyio (5.138) 

Unless stated otherwise, all linear systems will henceforth be assumed to be time 
invariant. Such systems are the constant-parameter linear systems of Chapter 2. 

For any linear operation where all quantities exist, the procedure of taking 
expected values of random variables is commutative with the linear operation. That 
is, for fixed t and v, 

E\y(v)}=E[A[x(t)}}=A[E[x(t)}} (5.139) 

This result is proved easily, as follows. Assume x(t) takes on Ν discrete values x\, x2,..., 
xN,andy(v)takesonJVcorrespondingdiscretevaluesy!,y2,.. .,yw, wherey,=A[xi\.Then 

£ [ y ( v ) ] = ^ f > = ^ f > M and Ε[χ(ή]=±Σ* 

i— 1 ('= 1 i= 1 
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Now, because A is a linear operator, 

^ ί > Μ = Λ =A[E[*(t)}] 

ί=1 L '=' 
Hence 

E\y(v)]=A[E[x(t)}} (5.140) 

The continuous case follows by letting Ν approach infinity and using an appropriate 
convergence criterion, such as Equation (5.143) to follow. This completes the proof. 

A basic result whose proof evolves directly from definitions is as follows. If x(t) is 
from a weakly (strongly) stationary random process and if the operator A is linear and 
time invariant, then y(v)=A[x(t)] will form a weakly (strongly) stationary random 
process. Another result of special significance, proved in Ref. 5, is as follows. Ifx(t) 
follows a Gaussian distribution and the operator A is linear, then y(v) = A[x(t)] will 
also follow a Gaussian distribution. 

An integral transformation of any particular sample function x(t) from an arbitrary 
random process [x(t)} is defined by 

χ{ήφ(ήώ (5.141) 

where φ(ί) is an arbitrary given function for which the integral exists. For any given 
φ(ή and limits (a, b), the quantity / is a random variable that depends on the particular 
sample function x(t). To investigate statistical properties of the random variable /, it is 
customary to break up the integration interval (a, b) into subintervals Δί and consider 
the approximation linear sum 

Ν 

IN = γ^χ(ίΑήφ(ϊΑή At (5.142) 
i=l 

Convergence of IN to / may be defined by two different criteria. Specifically, the 

sequence [IN] is said to converge to I 

1. In the mean square sense if 

lim £-[|/ΛΙ-/ | 2] = 0 (5.143) 

Ν—* o o 

2. In probability if for every ε > 0 

lim Prob[|//v-/| > ε] = 0 
Ν—»oo 

From the Chebyshev inequality of Equation (3.23), it follows directly that conver-
gence in the mean square sense implies convergence in probability. In practice, most 
integral expressions involving random variables exist by assuming convergence in the 
mean square sense. 
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5.4 DERIVATIVE RANDOM PROCESSES 

The derivative of any particular sample function x(t) from an arbitrary random process 

{x(t)} is defined by 

x(t) = —y = lim 
x(t + e)-x(t) 

(5.144) 

Existence of this limit may occur in different ways. The derivative x(t) is said to exist 

1. In the usual sense if the limit exists for all functions x(t) in (χ(ί)}· 

2. In the mean square sense if 

121 

lim Ε 
x{t + B)-X(t) 

-m = 0 (5.145) 

For a stationary random process, a necessary and sufficient condition fori(r) to exist 
in the mean square sense is that its autocorrelation function Rxx(x) should have 
derivatives of order up to 2; that is, Λ^(τ) and R"^ must exist [Ref. 5]. 

5.4.1 Correlation Functions 

Consider the following derivative functions, which are assumed to be well defined: 

i(r) = 

dx 

dx(t) 

dt 

dx2 

d2x(t) 

dt2 

(5.146) 

By definition, for stationary random data, 

Ra(z) = E[x(t)x(t + x)} = E[x(t-x)x(t)} 

ΛώΟ) = E[x(t)x(t + x)} = E[x(t-x)x(t)} 

Ra(x) = E[x(t)x(t + x)} = E[x(t-x)x(t)] 

Now 

Also, 

Hence, 

R'Jx) = -E[x(t)x(t + x)} = E[x(t)x(t + x)] = Rtiix) 

R ' ^ ) = ΤτΕ[χ(ί-χ)χ(ή] = -E[x(t-x)x(t)} = -R^x) 

R'JO) = R^O) = -Λ&ίΟ) - 0 

(5.147) 

(5.148) 

(5.149) 
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since R'^iO) equals the positive and negative of the same quantity. The corresponding 
Rxx(0) is a maximum value of /?«(τ). This proves that for stationary random data 

Ε[χ(ήχ{ή] = 0 (5.150) 

In words, at any t, Equation (5.150) indicates that the derivative {x(t)} for 
stationary random data {x(t)} is equally likely to be positive or negative. Equa-
tion (5.148) states that the derivative R'^x) of the autocorrelation function/^(τ) with 
respect to τ is the same as the cross-correlation function between [x(t)} and {x(t)}. A 
maximum value for the autocorrelation function Λ«(τ) corresponds to a zero crossing 
for its derivative R'^t), which becomes a zero crossing for the cross-correlation 
function between {x(t)} and {x(t)}. This crossing of zero by Λ^(τ) will be with 
negative slope, that is 

7 4 ( 0 - ) > 0 and R'xx(0 + )<0 (5.151) 

as can be seen from the picture in Figure 5.9. In practice, determining the location 
where zero crossings will occur is usually easier than determining the location of 
maximum values. 

Figure 5.9 Illustration of derivatives of autocorrelation functions, (a) Original function, (b) First 
derivative, (c) Second derivative. 
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It will now be shown that R'^iz) is an odd function of τ corresponding to ««(τ) 
being an even function of τ. By definition 

Rxxi-τ) = E[x(t)x(t-z)} = E[x(t + z)x(t)] (5.152) 

Hence, 

R'xx(-z)=^E[x(t + z)x(t)]=E[x(t + z)x(t)]=Rxx(z) (5.153) 

But, as shown earlier, Rja(z) = —Λ^(τ). Hence Equation (5.153) becomes 

/ 4 ( - τ ) = - / 4 ( τ ) (5.154) 

This proves that R'xx(z) is an odd function of z. 

The second derivative gives 

= -E[x(t-z)x(t)} = -Ruiz) 

Also, 

< , Μ = | ^ Μ = ^ τ ) = - ^ Κ , « , + τ ) ] ( 5 i 5 6 ) 

= E[x(t)x(t + z)}=Rxx{z) 

One can also verify directly that R'^iz) is an even function of τ, namely, 

= * L W (5-157) 

At τ = 0, one obtains 

£[ i 2 ( i ) ] = Κΰ(0) = -RnW-R'jO) (5.158) 

As shown earlier, 

Rxx{z)=^Rxx{z)=R'xx{z) (5.159) 

Typical plots for Rxx(z), R'xx(z), and R'^z) are drawn in Figure 5.9, based on a sine 
wave process where 

Rxx{t) = Xcos2nfoz 

R'xxW = -Χ(2π/ο)8ίη2π/ 0 τ (5.160) 

R"xx(z) = -Χ(2π / 0 )
2 αχ>2π / 0 τ 
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The results given above can be extended to higher order derivatives. For example, 

feW=^W = - C W (5-161) 

% ( t ) = ~ « f i ( t ) = J r n ( t ) (5.162) 

At τ = 0, one obtains 

E[x2(t)}=Rxx(0) = R^(0) (5.163) 

Thus, knowledge of R^x) and its successive derivatives can enable one to state the 

properties for autocorrelation and cross-correlation functions between {ΛΓ(/)1 and its 

successive derivatives {i(r)}, {·*(?)}> and so on. 

5.4.2 Spectral Density Functions 

It is easy to derive corresponding properties for the autospectral and cross-spectral 
density functions between {x(t)} and its successive derivatives {x(t)} and {x{t)}. Let 

X(f) = &\x{t)\ = Fourier t ransformer) ] (5.164) 

Then 

!F\x(t)\ = (j2nf)X(f) (5.165) 

*[x(t)] = -(2nf)2X(f) (5.166) 

From Equations (5.66) and (5.67), it follows directly that 

Grf(/) =j{2nf)G„(f) (5.167) 

Gxif) = (2nf)2Gxx(f) (5.168) 

Gmif) =j(2itf)3Gxx(f) (5.169) 

Gjsiif) = (2nf)4Gxx(f) (5.Π0) 

and so on. These formulas are the same with one-sided G's replaced by the 
corresponding two-sided S's. 

These results can also be derived from the Wiener-Khincnine relations of 
Equation (5.28). Start with the basic relation 

Then successive derivatives will be 

S^fy^df (5.171) 

poo 

R'xx{x)=j\ (2nf)Sxx(fy
2^df (5.172) 

J — O O 

POO 

R'a(T) = - (2nf)2Sxx(fy
2^df (5.173) 

J — O O 
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C ( T ) = -j (InfYSUfy^df (5.174) 
J — O O 

• O O 

C ( T ) = (2nf)4Sxx(f)^df (5.175) 
J— oo 

The Wiener-Khinchine relations, together with previous formulas in Section 5.4.1, 
show that these four derivative expressions are the same as 

Corresponding terms in the last eight formulas yield Equations (5.167)-(5.170). 

5.5 LEVEL CROSSINGS AND PEAK VALUES 

This section addresses the probability functions for certain characteristics of random 
data including 

1. Expected number of level crossings per unit time 

2. Peak probability functions for narrow bandwidth data 

3. Expected number and spacing of positive peaks 

4. Peak probability functions for wide bandwidth data 

Most of these results were originally derived by Rice in Ref. 6, and various 
extensions of these matters are presented in Refs 6-10. 

5.5.1 Expected Number of Level Crossings per Unit Time 

Consider a stationary random record x(t) that has the time derivative v(r) = x(t). Let 
p(a, β) represent the joint probability density function of x(t) and v(f) at x(t) = a and 
ν{ί) = β. By definition, for all t, 

ρ(α,β)ΑιχΑβ « Prob[a < x(t) < a + Aaand)3 < ν (ή <β + Αβ] (5.180) 

In words, /?(a, β) Αα,Αβ estimates the probability over all time that x(t) lies in the 
interval [α, a + Δα] when its derivative v(i) is in the interval [β, β + Αβ]. For unit 
total time, when Αβ is negligible compared to β, the value of v(r) is essentially β. 

To find the expected number of crossings of x(t) through the interval [a, a + Δα], 
the amount of time that x(t) is inside the interval should be divided by the time required 

(5.176) 

(5.177) 

(5.178) 

(5.179) 
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to cross the interval. If ίβ is the crossing time for a particular derivative β, then 

*=! <5i8i» 
where the absolute value of β is used because the crossing time must be a positive 
quantity. Hence, the expected number of passages of jc(r) per unit time through the 
interval [α, a + Δα] for a given value of v(t) = β is 

« ^ = | / 3 W a , W (5.182) 

In the limit as Αβ —> 0, the total expected number of crossings of x(t) per unit time 
through the level x(t) — α for all possible values of β is found by 

\β\ρ(α,β)άβ (5.183) 

This represents the expected number of crossings of the level a with both positive 
and negative slopes as shown in Figure 5.10. 

The expected number of zeros of x(t) per unit time is found by the number of 
crossings of the level x(t) = 0 with both positive and negative slopes. This is given by 
Na when α = 0, namely, 

N0 
\β\ρ(0,β)άβ (5.184) 

This value of N0 can be interpreted as twice the "apparent frequency" of the record. 
For example, if the record were a sine wave of frequency f0 Hz, then N0 would be 2 / 0 

zeros per second (e.g., a 60 Hz sine wave has 120 zeros per second). For random data, 
the situation is more complicated, but still a knowledge of NQ, together with other 
quantities, helps to characterize the particular random data. The above formulas apply 
to arbitrary Gaussian or non-Gaussian random data. 

For an arbitrary random record x(t) and its derivative v(r) — x(t) from a zero mean 
value stationary random process, it follows from Equations (5.147), (5.150) and (5.158) 

Figure 5.10 Illustration of crossings of level α with positive and negative slopes. 
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that the variances and covariance are 

σ 2 = E[x2{t)) = Λ„(0) 

o\ = E[v\t)} = Rvv(0) = -R"J0) 

σ„ = Ε[χ{ήν(ή] = 0 

From Equations (5.171) and (5.173), it also follows that 

σΙ = 

POO 

J —oo 

{inff sum = 

G„tf)df 

' (2nf)2Gxx(f)df 

(5.185) 

(5.186) 

(5.187) 

(5.188) 

(5.189) 

If x(t) and v(r) are statistically independent with p(a, β) = p(a)q(fi), then Equa-
tions (5.183) and (5.184) show that 

Na _ p{a) 

N0~p(0) 
(5.190) 

regardless of the nature of p(a) orqifi). The formulas in Equations (5.18)—(5.19) apply 
to stationary random data with any joint probability density function. 

5.5.1.1 Gaussian Data 
Assume now that x(t) and its derivative v(t) = x(t) have zero mean values and form a 
joint Gaussian distribution with the above variances and zero covariance. Then, the 
joint probability density function 

p{a,p)=p(*)q{fi) 

with 

/ > ( « ) : 

9 0 S ) 

1 

σχ\/2π. 

1 

exp of-
2σϊ 

jexp 

(5.191) 

(5.192) 

(5.193) 

Substitution of Equation (5.190) into (5.183) now shows for Gaussian data that 

α 2 λ M e x p ( - a 2 / 2 C T

2 ) r / β2 \ 1 (σΛ ( 

In particular, for α = 0, one obtains the simple formula 

1 (σν 

Nn = - — 
π \ σ · 

( 5 . 1 9 4 ) 

(5.195) 
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Thus, for Gaussian data, the expected number of level crossings per unit time at 
level α is given by 

Nx = 7V0exp 
2σΙ 

(5.196) 

These simple results for Na and N0 were derived originally in a different way in 
Ref. 6. 

Non-Gaussian data do not satisfy Equations (5.195) and (5.196), and different 
types of non-Gaussian data will produce different results. This fact can be used to help 
detect and identify the properties of nonlinear systems when Gaussian data pass 
through these systems. 

Example 5.12. Zero Crossings of Low-Pass Gaussian White Noise. To illus-
trate the above formulas, consider the case of low-pass white noise where 

Gxx{f) = Κ 0 < / < Β otherwise zero 

Here, 

σ 2 = 

Kdf = KB 

(2nf)2Kdf=(4^)KB3 

From Equation (5.195), 

N0 

i ( l l 
π \σ. 

Β « 2(0.58β) 

This shows for low-pass Gaussian white noise cutting off at Β Hz that the apparent 
frequency of the noise is about 0.58 of the cutoff frequency. 

Example 5.13. Zero Crossings of Bandwidth-Limited Gaussian White Noise. 
As in Equation (5.47), the autospectral density function of bandwidth-limited white 
noise is 

G^if) = Κ 0 <fc-(B/2) <f <fc + (B/2) otherwise zero 

Here, 

Jfc 

•Λ + (Β/2) 

(B/2) 

ΓΛ + (Β/2) 

Kdf = KB 

-(B/2) 
(2nf)2Kdf-. 

Απ2 

KB 

From Equation (5.195), 

"o = - p ) = 2 
3/2 + ( β / 2 ) 2 

3 / / 

1/2 



LEVEL CROSSINGS AND PEAK VALUES 159 

This shows for bandwidth-limited Gaussian white noise with a center frequency fc and 
bandwidth Β that the apparent frequency of the noise is greater than 1fc for any Β 
greater than zero. 

5.5.2 Peak Probability Functions for Narrow Bandwidth Data 

The peak probability density function pp(a) describes the probability of positive peaks 
falling inside the interval (a, a + da). To be specific, 

pp(a)da ss Prob[a < positive peak < a + da] (5.197) 

The peak probability distribution function that a positive peak is less than a is given by 
the formula 

Pp(a) = Prob[positive peak < a] ΡΡ{ζ)άζ (5.198) 

Because pp(a) is a probability density function over (—oo, oo), it must satisfy 

•00 

Pp(oo) = pp{*)d&=\ (5.199) 
J — OO 

From Equation (5.198), 

d P ^ - P p { a ) (5.200) 
da 

Note that the probability that a positive peak is greater than α is 

Prob [positive peak > a] = Ρρ(ζ)άζ= l-Pp(a) (5.201) 

The above formulas apply to arbitrary Gaussian or non-Gaussian random data. 
If each cycle of the random data leads to a single positive peak as occurs for narrow 

bandwidth random data, then Nia

+ = (1 /2)Na estimates the expected number of 
crossings of x(t) per unit time with positive peaks above the level x(t) — a. Thus, for 
such narrow bandwidth random data, an estimate of the fraction of the crossings 
having peaks greater than x(t) = a is given by 

N+ Ν 
1 -Pp(a) = Prob[positive peak > a] = = — (5.202) 

No No 

From Equation (5.190), when x(t) and v(r) = x(t) are statistically independent, one 
obtains 

l - P p ( a ) = Prob[positive peak > a] (5.203) 
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> t 

Figure 5.11 Illustration of positive peaks above level a. 

Hence, for narrow bandwidth random data, from Equation (5.200), a reasonable 
approximation for the peak probability density function is 

Pp(«) 
P(0) 

(5.204) 

Equations (5.202)-(5.204) apply to positive peaks above a level a as shown in 
Figure 5.11. 

5.5.2.1 Gaussian Data 
Now consider the case where x{t) is Gaussian with a mean value of zero and a variance 
of σ\ such that the probability density function is 

p[x) 
1 

σχν2π 
exp 

xr 

2ai 
(5.205) 

Here, from Equation (5.203), the probability of x{t) having positive peaks greater than 
α is simply 

\—Pp{a) = Prob[positive peak > a] = expi —-^-z J (5. 

V 2 σ ^ 

206) 

This simple exponential result for Gaussian data is plotted in Figure 5.12. The 
associated peak probability density function from Equations (5.204) and (5.205) is 

pp(a) = ( a / o - 2 ) e x p ^ - ^ j (5.207) 

Thus, for narrow bandwidth Gaussian random data, the resulting peak probability 
density function pp(a) will have the Rayleigh probability density function of 
Equation (3.95). A generalization of this result that applies to wide bandwidth 
Gaussian random data is derived in Section 5.5.5. 

Example 5.14. Peak Probability for Narrow Bandwidth Gaussian Data. 
Consider a narrow bandwidth Gaussian random signal with a zero mean value and a 
root-mean-square (rms) amplitude of σχ = 1V. What is the probability of a 
positive peak occurring with an amplitude greater than 4 V? From Equation (5.206), 
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• \-*Όΐσ, 

0 1 2 3 4 

Figure 5.12 Probability (positive peak > a) for narrow bandwidth Gaussian data. 

the answer is 

Prob[positive peak > 4] = exp ( -8 ) = 0.00033 

Hence, there is only about one chance in 3000 that any given positive peak will have an 

amplitude greater than 4 V. 

5.5.3 Expected Number and Spacing of Positive Peaks 

Let Μ denote the total expected number of positive peaks of x(t) per unit time and let 
Ma denote the expected number of positive peaks of x(t) per unit time above the level 
x(t) = a. Then 

Ma=M[l-Pp(a) (5.208) 

where [1 — P p (a)] is the probability that a positive peak exceeds a, as given by 
Equation (5.203). Hence, if Τ is the total time during which x(t) is observed, the 
expected number of positive peaks that exceeds the level α in time Τ is given by 

MaT = M[l-P„(a)]T (5.209) 

The average time (spacing) between positive peaks above the level a, denoted by 
To, is equal to the reciprocal of the expected number of positive peaks per unit time 
above that level, that is 

1 

M„ 
(5.210) 

Consider the special case where x{t) is a narrow bandwidth random record. For this 
case, each peak above the level <x is associated with a crossing of this level. Then, the 
average time between crossings (with positive slope) of the level α is T^, as given by 
Equation (5.210). Also, for this case, the total expected number of positive peaks of 
x(t) per unit time, denoted by M, is equal to one-half of the expected number of zeros 
of v(i) = i (r) per unit time—that is, the number of crossings by v(r) of the level ν 
(r) = 0. The factor of one-half comes from the observation that, on the average, half of 
the zeros of v(r) represent negative peaks. 
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Let a(t) = v(t) = x(t). By analogy with Equation (5.195), it follows that if [x(t), 
v(f)] and [v(r), a(f)] are pairwise independent, have zero mean values, and follow 
Gaussian distributions, then one-half of the expected number of zeros of v(f) per unit 
time, which is the same as the total expected number of positive peaks of x(t) per unit 
time, is given by 

As derived here, this result is for narrow bandwidth Gaussian data. However, it also 
applies to wide bandwidth Gaussian data. From Ref. 6, a general expression that is 
valid for arbitrary (non-Gaussian) stationary random data is 

where p(a, 0, 7) is the third-order probability density function associated with 
x(t) = a, v(i) = 0, and a(t) = y. Equations (5.211) and (5.212) for wide bandwidth 
Gaussian random data and for arbitrary random data are derived in Section 5.5.5. 

Example 5.15. Expected Number of Positive Peaks for Narrow Bandwidth 
Gaussian Data. Consider a narrow bandwidth Gaussian random signal, as in 
Example 5.14, where the total expected number of positive peaks per second is 
Μ = 100. What is the expected number of positive peaks per second with an amplitude 
greater than α = 4 Vand what is the average time between such peaks? In Example 5.14, 
the probability of a positive peak occurring with an amplitude greater than 4 V is 
0.00033. It follows from Equations (5.209) and (5.210) that the expected number of 
positive peaks per second above 4 V is M4 = M(0.00033) = 0.033, and the average time 
between such positive peaks is given by T4 — (1/M 4) = 30 s. 

5.5.4 Peak Probability Functions for Wide Bandwidth Data 

Assume that x(t) is a sample record from a stationary Gaussian random process with a 
zero mean value and variance σ\. Let N0 denote the expected number of zero crossing 
per unit time and let Μ denote the expected number of positive peaks (maxima) per 
unit time. Then 2M is the expected number of both positive and negative peaks per unit 
time. As derived in Sections 5.5.1 and 5.5.5, the quantities NQ and Μ are given by 

(5.211) 

(5.212) 

and (5.213) 

where v(r) = x{t), a(t) = v(t) = x(t), and 

(5.214) 

(5.215) 
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σ2

α = E[a2(t)} = {2uf)AGxx{f)df (5.216) 
Jo 

The peak probability density function represents the probability that a positive 
peak will be found among the population of all positive peaks. In terms of a 
standardized variable ζ with zero mean value and unit variance where z = («/o"J 
with σ\ = 1, the peak probability density function pp(a) is replaced by w(z), where 
w(z) describes the probability that a positive peak will fall between ζ and ζ + dz. This 
peak probability density function w(z) is expressed in Ref. 6 by 

ζ2 \ , fNA ( z2 

l-Qn (5.217) 

where 

. ϊ - . - i s r m-(^r) (««) 2M) V \2M] \2M) \σχσα 

2 

2 α"(£)=ττΙ eM-"4]du <5·219) 
h/k2 

The function Qn(z/k2) is the probability for a standardized Gaussian density 

function with a zero mean value and a unit variance that the value (z/k2) will be 

exceeded. Equation (5.217) is derived in Section 5.5.5. 
The shape and nature of w(z) is determined by the dimensionless parameter 

(N0/2M). It is verified in Section 5.5.5 that (N0/2M) always falls between zero and 
unity, namely, 

If (N0/2M) = 0 , then w(z) reduces to the standardized Gaussian probability density 
function 

^-{jshi-*) <5·221) 

This case occurs in practice for wide bandwidth random data where the expected 
number of maxima and minima per second, 2M, is much larger than the expected number 
of zero crossings per second, Λ̂ ο, so\h&\.(N0/2M) approaches zero. If (N0/2M) = l,then 
w(z) becomes the standardized Rayleigh probability density function, 

w ( Z ) = z e x p ( - y ) (5.222) 

This case occurs in practice for narrow bandwidth random data where the expected 
number of maxima and minima per second, 2M, is approximately equal to the 
expected number of zero crossings per second N0, so that (NQ/2M) approaches unity. 
The general form of w(z) from Equation (5.217) is thus something between a Gaussian 
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and a Rayleigh probability density function. Figure 5.13 shows plots of w(z) as a 
function of ζ for various values of the dimensionless parameter (NQIIM). 

In terms of w{z), the probability that a positive peak chosen at random from among 
all the possible positive peaks will exceed the value ζ = (α/σχ) is 

Prob [positive peak > z] w{C)dl = \-W{z) 

Qn 
No_ 
2M exp - l-Qn 

(5.223) 

where Equation (5.219) is used to compute the Qn terms. The function W(z) is the peak 
probability distribution function for the standardized variable z, which defines the 
probability that a positive peak will not exceed the value z. Equation (5.223) is derived 
in Section 5.5.5. 

5.5.5 Derivations 

Detailed mathematical derivations will now be carried out for the main formulas in 
Sections 5.5.1-5.5.4. Readers not interested in these matters should proceed to 
Chapter 6. 

Assume that x(t) is a random record from an ergodic stationary random process 
with an arbitrary probability density function p(x). By definition, the third-order 
probability density function of x(t), v(t) = x(t), and a(t) = v(f) = x(t) is given by 
p(a, β, γ), where 

ρ(α,β, y)d^dy « Probia < x(t) < a + dec, β < v(t) < β + άβ, 
(5.224) 

y < a(t) <y + dy] 

This represents the probability over all time that x(t) lies in the interval (a, a + dot.) 
when v(r) is in the interval (β,β + άβ) and a{t) is in the interval (y, y + dy). For unit 
total time, when άβ and dy are small, this represents the probability that x(t) is in the 
interval (a, a + da) with a velocity that is essentially β and an acceleration that is 
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essentially y. If ν(ί) = β = 0 and also if a(r) = y < 0 , this can be related to the 
probability that x(t) has maxima (peaks) in (a, a + da) with the given negative value 
of a(t). 

The amount of time that ν(ί) = β spends in the interval (β, β + άβ) with a given a 

(t) = y < 0 can be expressed by the formula 

τ==^ (5.225) 

where the negative sign is required because the crossing time must be positive. Hence, 
the expected number of maxima (peaks) of x(t) per unit time when x(t) is in (a, a + da) 
for fixed values of β = 0 and γ < 0 is 

v ' ' / ; —- = -yp(a,0,y)dyda (5.226) 
τ 

Then, the expected number of maxima (peaks) of x(t) per unit time for all possible 
values of γ < 0 can be obtained by summing from y = —oo to y = 0. This gives the 
formula 

—yp(a, 0, y)dy da = 
J — o o 

where 

*(«) = 

yp(«, 0, y)dy da = g{a)da (5.227) 

W>(a,0,y)rfy (5.228) 

The above result is for x(r) lying in the interval (a, a + da). It follows that the 
expected number of maxima (peaks) of x{t) per unit time for all possible values of α 
over the range (— oo, oo) is given by 

Μ 
' O O 

g{a)da (5.229) 
J — o o 

and the expected number of maxima (peaks) of x(t) lying above the line where x(t) = a 
can be computed by 

This result is the same as 

g(a)da (5.230) 

r o o 

Mx = Μ Pp(a)da (5.231) 
Jot 

where pp(a) is the peak probability density function that a positive peak falls inside (a, 
a + da). Note that 

pp{a) = (l/M)g(a) (5.232) 

These formulas apply to arbitrary stationary random data. 
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5.5.5.1 Special Results for Gaussian Data 

Assume now that x(t), v(r) = x(t), and a(t) = x(t) have zero mean values and form a 
three-dimensional Gaussian distribution. The threefold probability density function 
p(a, 0, γ) from Equation (3.63) is 

r(y. 0 r) ^ ρ [ ( 1 / 2 | € [ ) ( σ > α

2 α 2 + lojay + ojalf)] 

where the covariance matrix is 

C-

The determinant ICI is 

0 
0 -oi 
σ2 0 

-σί 0 

|C| = ^{aWa-O 
with the variance terms 

poo 

oi = £[^(0] = G„(/)4T 
Jo 

ΓΟΟ 

σ 2 = Ε [ ν 2 ( ί ) ] = [InffG^M 
Jo 

iOO 

(27tf ) 4 G„(/ )£f / 
0 

(5.233) 

(5.234) 

(5.235) 

(5.236) 

(5.237) 

(5.238) 

It follows from Equation (5.235) and the Schwartz inequality of Equation (5.116) that 
|C| > 0 because σ2

χσ
2

α > σ\ for any GJJ) > 0. To apply the Schwartz inequality 
here, one should choose 

A(f) = [ G « ( / ) ] 1 / 2 and B(f) = ( 2 π / ) 2 ^ ( / ) ] ' / 2 

and use the formula 

1 2 

0 
W)Ydf [B(f)Ydf> 

'OO 

A(f)B(f)df 
Jo 

(5.239) 

(5.240) 

This result that |C| > 0 proves Equation (5.220). 

5.5.5.2 Expected Number of Maxima per Unit Time 

Equation (5.211) will now be derived for M, the expected number of maxima of x(t) 
per unit time. This formula applies to any Gaussian stationary random data, narrow or 
wide bandwidth. 

From Equation (5.233), the term p(a, 0, y) can be represented by 

e x p ( - y 2 / 2 o - 2 ) e x p { - » 2 / 2 | C | ) [ « + (σν/σα)
ζγ}2} 

(2π) 3/2 , r 11/2 (5.241) 
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using the relation 

σ 2 σ 2 α 2 + 2a4

vay + σ 2 ^ 2 = σ2

νσ
2

α α + I — ) y 
σ 

2 + \c\r (5.242) 

From Equations (5.228), (5.229) and (5.241), the quantity Μ can be computed by 

Μ 
/•OO Γ ρ—oo 

YP{*,O,Y)DY 
J-oo Uo 

1 

* —oo 
dot = y 

0 
p(x,0,y)da dy 

1 f~°° 1 (σ 
: y exp(y2/2a2

a)dy = τ - — 
2πσνσα J 0 2π \σν 

(5.243) 

The strong similarity of this result to N0 in Equation (5.195) should be noted. 

5.5.5.3 Peak Probability Density and Distribution Functions 
Formulas will now be derived for the standardized peak probability density and 
distribution functions in Equations (5.217) and (5.223). To compute these results, use 
the relation 

σ 2 σ 2 α 2 + 7*fa + a2

xa
2

vy
2 = a2

xa
2

v[y + (σν/σχ)
2α}2 + ( | C | a 2 / ^ ) 

This changes Equation (5.233) to 

_ e x p ( - a 2 / 2 a 2 ) e x p { - K 2 ^ / 2 | C | ) [ y + ( σ ν Κ ) 2 « ] 2 } 

**>Ό'ν)- {2nY'2\C\"2 

By making the substitutions 

χ = y + (σν/σχ)
2ιχ and dx = dy 

the formula for the g(a) of Equation (5.228) can be written as 

g(a)=A(a)+B(u) 

where 

ε χ ρ ( - α 2 / 2 σ 2 ) f - o c 

(5.244) 

(5.245) 

(5.246) 

(5.247) 

A (a) 
( 2 T T ) 3 / 2 | C | 1 / 2 

I C I ' / 2 

χ exp 
2 2 

2\C\ ^ 
dx 

(2π)ν2σχσΙ 
exp 

2 2 

2\C\ 

(5.248) 
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B(a) 
{σν/σχ) a e x p ( - a 2 / 2 a 2 ) 

( 2 T I ) 3 / 2 | C | 1 / 2 

σ ν α exp(—α 2 /2σ 2 ) 

.2λ ((<τ»/σχ) α 
exp 

2 2 
« \χ2 
2\C\ 

dx 

(2π)ο-3 
l-Qn 

3 

11/2 

(5.249) 

In Β(α), like in Equation (5.219), the function 

Qn(x) = exp (5.250) 

is the probability under the standardized normal density function that χ will be 
exceeded. This function is listed in Table A.2. 

From the above results, the peak probability density function of Equation (5.232) is 
given by 

P p i a ) = {h)8{a) = 2π{σ^)8{α) = 2 n { o ^ ) [ A { a ) + m ] ( 5 - 2 5 1 ) 

One should now change the variable α to the variable z, where ζ is the standardized 

normal variable with zero mean value and unit variance, by setting α — σχζ. Then pp(a) 

is replaced by w(z), where 

w(z) = σχρρ{σχζ) = 2π 

satisfies the requirement that 

w(z)dz = 

\Α{σχζ) + Β(σχζ) 

pp(a)da = 1 

(5.252) 

(5.253) 

Substituting for Α(σχζ) and Β(σχζ) in Equation (5.252) gives the formula 

I ' A 
w(z) 

2πσχο~νσα 

exp 
2 2 2 

σ 2 ζ ε χ ρ ( - ζ 2 / 2 ) 

2 | C | ) 

ojz 

i r i V 2 

(v4) exp 2k2)\2M) 
ζ exp 

(5.254) 

where the terms 

σχσνσα) σχσ. 
= 1-

2M 
(5.255) 
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•Ι 1/2 No 

2Μ 

use the relations that 

N0 = U^) and M = ~(— 

(5.256) 

(5.257) 

This proves the desired result for the peak probability density function w{z) stated 
in Equation (5.217). 

The formula for the peak probability distribution function W(z) can be obtained by 
computing 

l-W(z) = J " w(z)dz = / i ( z ) +fz(z) +Mz) 

where the functions 

m = 

h{z) = 

Mz) = -

E X P ( - ^ 2 \ d z = 1 -
No_ 

2M 

mi 
(δ)Γ-ΗΜέ)* 

(5.258) 

(5.259) 

(5.260) 

(5.261) 

The sum of these three functions shows that 

' ζ 
l-W(z)=Qn 

ΝΛ ( ζ 

2MfXP - 2 
\-Qn (5.262) 

This proves the desired result for W(z) stated in Equation (5.223). A different 
method of proof was used in Ref. 6 to obtain these important special formulas. 

PROBLEMS 

5.1 Which of the following properties are always true of autocorrelation functions 
of stationary data? 

(a) must be an even function. 

(b) must be nonnegative. 

(c) must be bounded by its value at zero. 
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5.6 Given data with a two-sided autospectral density function defined by 

16δ(/) + 20( l - j £ j ) / < 1 0 

0 1/| > 10 

determine for the data 

(a) the mean value and the variance. 

(b) the associated autocorrelation function. 

5.7 Assume a record x(t) from an ergodic random process has a one-sided 
autospectral spectral density function given by 

G*x(f) = ° < / < 2 5 otherwise zero 

Determine the average number of zero crossings per second in the record x(t). 

5.8 For the random record x(t) in Problem 5.7 determine the average number of 
positive peaks (maxima) per second. 

(d) can determine the mean value of the data. 

(e) can determine the variance of the data. 

5.2 Which of the properties in Problem 5.1 are always true of cross-correlation 
functions of stationary data? 

5.3 Which of the properties in Problem 5.1 are always true of the two-sided 

(a) autospectral density functions? 

(b) cross-spectral density functions? 

5.4 Which of the following properties are always true for two ergodic random 
processes? 

(a) Rxy(oo) = μxμy. 

(b) RUO) = 0 when μχ = 0 or py = 0. 

(c) fl^ij) = 0 when R^t) = 0 or Λ^(τ) = 0. 

(d) | / Μ τ ) | 2 < Λ„(τ)Λ„,(τ). 

(e) Gry(O) = 0 when μχ = 0 or μν = 0. 

(f) \Gxy{f)\2 < G „ ( 0 ) G w ( 0 ) . 

(g) G^f) = 0 when GJf) = 0 or Gyy(f) = 0. 

5.5 Given data with an autocorrelation function defined by Rxx(z) = 
25e _ 4 ' r ' cos 4πτ + 1 6 , determine 

(a) the mean value and the variance. 

(b) the associated one-sided autospectral density function. 
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5.9 Assume data have an one-sided cross-spectral density function given by 
Gxyif) = (6/ / 2 ) + y(8// 3 ). Determine the two-sided cross-spectral density 
function Sxyif) for all frequencies in terms of 

(a) real and imaginary functions. 

(b) gain and phase functions. 

5.10 If a record x(t) from an ergodic Gaussian random process has an autocorrela-
tion function given by ϋχχ(τ) = e~a^cos2π/0τ with a>0, determine the 
autocorrelation function for the first time derivative of the data x(t). 
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C H A P T E R 6 

Single-Input/Output Relationships 

This chapter is concerned with the theory and applications of input/output relation-
ships for single-input problems. It is assumed that records are from stationary random 
processes with zero mean values and that systems are constant-parameter linear 
systems. Single-input/single-output (SI/SO) models and single-input/multiple-output 
(SI/MO) models are discussed. Ordinary coherence functions and optimum frequency 
response functions are defined for these models. Multiple-input problems are covered 
in Chapter 7. 

6.1 SINGLE-INPUT/SINGLE-OUTPUT MODELS 

Consider a constant-parameter linear system with a weighting function h{x) and 
frequency response function H(f) as defined and discussed in Chapter 2. Assume the 
system is subjected to a well-defined single input x{t) from a stationary random 
process {x(t}} and produces a well-defined output y{t), as illustrated in Figure 6.1. 
This output will belong to a stationary random process {y(t)}. 

6.1.1 Correlation and Spectral Relations 

Under ideal conditions, the output y(t) for the system in Figure 6.1 is given by the 
convolution integral 

y{t) η(τ)χ(ί-τ)άτ (6.1) 

where λ(τ) = 0 for τ < 0 when the system is physically realizable. The product 
y{t)y{t + τ) is given by 

Random Data: Analysis and Measurement Procedures, Fourth Edition. By Julius S. Bendat 
and Allan G. Piersol 
Copyright © 2010 John Wiley & Sons, Inc. 
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Figure 6.1 Ideal single-input/single-output linear system. 

y(t)y{t + T) h{a)h{fi)x(t-fi)x{t + τ-α) da άβ) (6.2) 

Taking expected values of both sides yields the input/output autocorrelation 
relation 

o o 

Ryy{t) = | | Λ(α)Α03)Λ«(τ + β-α)άα άβ (6.3) 

ο 

Similarly, the product x(t)y(t + τ) is given by 

x(t)y(t-

' 0 0 

= h(a)x(t)x(t + z-a)da (6.4) 
. ο 

Here, expected values of both sides yields the input/output cross-correlation 
relation 

h{a)Rxx(z-a)da (6.5) 
ο 

Note that Equation (6.5) is a convolution integral of the same form as 
Equation (6.1). 

Direct Fourier transforms of Equations (6.3) and (6.5) after various algebraic steps 
yield two-sided spectral density functions S^if), Syy(f), and S^if), which satisfy the 
important formulas 

S„{f) = mftfsM) (6-6) 

Sv(f) = H(f)SM) (6-7) 

Here /may be either positive or negative. Note that Equation (6.6) is a real-valued 
relation containing only the gain factor \H(f)\ of the system. Equation (6.7) is a 
complex-valued relation, which can be broken down into a pair of equations to give both 
the gain factor \H(f)\ and the phase factor <b(f) of the system. Equation (6.6) is called the 
inputJoutput autospectrum relation, while Equation (6.7) is called the input/output 
cross-spectrum relation. These results apply only to ideal situations where no extra-
neous noise exists at input or output points, and the systems have no time-varying or 
nonlinear characteristics. Interpretation of these spectral relations in the frequency 
domain is much easier than their corresponding correlation relations in the time domain. 
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In terms of one-sided spectral density functions Gxxif), Gyy(f), and G>y(/), where G 
(/) = 2S(/) f o r / > 0, Equations (6.6) and (6.7) become 

Gyy(f) = \H(f)\2GM) (6-8) 

Gv(f) = H(f)GM) (6-9) 

Let 

Gxy(/) = iGMle-i^f) (6.10) 

/ / ( / ) = | Η ( / ) | Β " ^ Λ (6.11) 

Then Equation (6.9) is equivalent to the pair of relations 

\GM)\ = Mf)\Gx*(f) (6-12) 

Μ / ) = Ψ(/) ( 6· 1 3) 
These results provide the basis for many engineering applications of spectral density 
functions. See Ref. 1 for physical illustrations. Figure 6.2 shows how an input 
spectrum G^if) is modified in passing through a linear system described by H(f). 

f 

f 

f 
(a) (b) 

Figure 6.2 Input/output spectral relationships for linear systems, (a) Autospectra. (b) Cross-spectra. 
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From Equation (6.8), the output mean square value is given by 

Gyy(fW : yy 
ο 

\H{f)\lGM)df (6.14) 
ο 

Equation (6.8) also permits the determination of G^if) from a knowledge of Gyy(f) 
and \H<J)\, or the determination of \H{f)\ from a knowledge of G^if) and Gyy(f). 
Equation (6.8) does not yield the complete frequency response function H(f) of 
the system, however, since it contains no phase information. The complete fre-
quency response function in both gain and phase can only be obtained from 
Equations (6.9)-(6.13) when both Gxy(f) and Gxx{j) are known. 

An alternative direct transform is available to derive Equations (6.8) and (6.9) 
without first computing the correlation expressions of Equations (6.3) and (6.5). For 
any pair of long but finite records of length T, Equation (6.1) is equivalent to 

Y(f) = H(f)X(f) (6.15) 

where X(f) and Y(f) are finite Fourier transforms of x(t) and y(r), respectively. It 

follows that 

Y*(f)=H*(f)X*(f) 

\Y(f)\2 = \H(f)\2\X(f)\2 

X*(f)Y(f) =H(f)\X(f)\2 

Taking the expectation of the last two equations over different independent records, 
multiplying by (2/Γ), and letting Τ increase without bound now proves from 
Equations (5.66) and (5.67) that 

Gyy(f) = \H(f)\2GM) (6-16) 

GM = H(f)GM) ( 6 · 1 7 ) 

Note the simplicity of this direct derivation. This method will be used in Section 6.1.4 
and in Chapter 7. 

Complex conjugation of Equation (6.17) yields the result 

Gxy(f) = Gyx(f)=H*(f)Gxx(f) (6-18) 

where 

Gyxif) = iG^Dle^ (6.19) 

H\f) = \H(f)\e»M (6.20) 

Thus, to determine the phase factor of the system, one can use the formula 

G*y(f) - HW - e-fl4>(f) (6 21) 
Gyx(f) ~ H\f) ~ ( 6 " 2 1 J 
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To determine the complete frequency response function of the system, 
Equations (6.16) and (6.18) show that 

Gyy(f) = Η(/)\Η*(/)θΜ)} = H(f)Gyx(f) (6.22) 

Hence, for the ideal single-input/single-output model, one can determine H{j) using 
Equation (6.17) to yield 

while Equation (6.22) gives 

Thus, 

H ( f ) = ^ ( 6 , 3 ) 

H{f)=p4S (6·24) 
GyxU) 

G^f) = Gyy(f) 

GUf) Gyx{f) 
(6.25) 

which is equivalent to 

| G ^ ( / ) | 2 = Ga{f)GM) (6-26) 

For transient data, discussed in Chapter 12, "energy" spectral density functions are 
used instead of "power"-type spectral density functions defined in Chapters 5 and 6. 
These are related by %y(f) — TG^if) where ^(f) represents the "energy" cross-
spectral density function. The transients x{t) and y(t) are assumed to exist only in the 
range 0 < t < T. Input/output formulas derived in this chapter and Chapter 7 apply to 
such transient data by merely replacing "power" spectral density functions by 
corresponding "energy" spectral density functions. 

Example 6.1. Response Properties of Low-Pass Filter to White Noise. Assume 
white noise is applied to the input of a low-pass RC filter with a time constant Κ = RC. 
Determine the output autospectral density function, the output mean square value, and 
the output autocorrelation function. 

The frequency response function of the low-pass filter is 

H(f) = (l+jInKf)-1 = \H(f)\e-»M 

corresponding to a weighting function of 

\\e-*lK τ > 0 

Α(τ) = \k 

[ 0 τ < 0 

Here 

\H(f)\ = {l + (2nKf)2)^2 

φ(/) =ten-l(2nKf) 
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If GUf) is white noise where G^( / ) = A, a constant for a l l / > 0, then 

G„(/) = W ) f e , / ) = T T ^ 

pOO A 

G„(m=\ —7Γ-
Jo 1 + (2π. 

(2nKf) 4K 

= A „ - M / * G y y ( / ) c o s Infxdf = —e 

Example 6.2. Response Properties of Low-Pass Filter to Sine Wave. Assume a 
sine wave with an autospectral density function 

GM) = { Χ 2 / 2 ) δ ( / - / 0 ) 

is applied to the low-pass RC filter in Example 6.1. Determine the output autospectral 
density function, the output mean square value, and the output autocorrelation 
function. 

For this problem, 

Gyy(f) = \H(f)\2GM) = 

Gyy(fW 

(X2/2)8(f-f0) 

1 + ( 2 π * / ) 2 

X 2 / 2 

1 + (2nKf)2 

(°° X212 
Ryy{x) = Gyy(f)cos 2π/τ df = - — 7 cos 2π/ 0 τ 

Jo 1 + (2nKf0) 

Example 6.3. Force-Input/Displacement-Output System. Determine the out-
put autospectral density function, the output autocorrelation function, and the output 
mean square value when the input is white noise for the force-input/displacement-
output system in Figure 2.2. These results apply also to other analogous systems, as 
discussed in Chapter 2. 

Assume G„(J) = G, a constant. Then, from Equation (2.24a) or Table 2.1, when the 
force is expressed in displacement units, that is x{t) = F(t)/k, the output autospectral 
density function becomes 

Gyy{f) = \H{f)\2

f_dG = u f _ 2 

! i - ( / / A ) T + W « ) 
The corresponding output autocorrelation function is given by 

2 0 < / < O O 

Ryy(x) 
Gnf„e -2πΜ\τ\ 

4ζ 
cos ι-ΓΜ + J=sin(2nfn^i2 
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The output mean square value is 

Gnfn 

Gyy(f)df = Ryy(0)=H 

Thus, for a white noise input, the output mean square value ψ2, is inversely propor-
tional to ζ. 

For a sine wave input, it will now be shown that the maximum value of ψ2, is 
inversely proportional to ζ2. Consider 

F{t) = fcr(f) = kXunlnfot f0 = {l/T) 

passing through a force-input/displacement-output system specified by the H(f) in 
Figure 2.2. Here, the output y(r) from Equation (2.28) becomes 

y(t) = kX\H(fo)sm[2nf0t-<b(f0)} 

with 

1 tTy2(t)dt = k2(X2/2)\H(f0)\
2 

Ψ2=-

Yy j Jo 

From Equation (2.26), for small ζ, 

max|H(/b)| = 

Hence 

X2 1,2 ^ m a x ^ ~ 2 

proving the stated result. 

Example 6.4. Displacement-Input/Displacement-Output System. Determine 
the output autospectral density function, the output autocorrelation function, and the 
output mean square value when the input is white noise for the displacement-input/ 
displacement-output system in Figure 2.4. These results apply also to other analogous 
systems, as discussed in Chapter 2. 

Assume Gx(f) = G, a constant. Then, from Equation (2.38a) or Table 2.1, the output 
autospectral density function becomes 

2 „ G[l + (2£/7/„) 2] 
Gyy{f) = \H{f%_dG = 

f/fn)2]2 + W/fn)
2 

The corresponding output autocorrelation function is given by 

cos 2 # „ ^ W 2 ~ | x | ) 
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The output mean square value is 

Wy = GyyifW = Ryy{°) = 77 

Jo 4fc 

The importance of exponential-cosine and exponential-sine autocorrelation func-
tions for many physical problems is apparent from the last two examples. In cases 
where ζ <C 1, results can be approximated using only exponential-cosine functions. 

6.1.2 Ordinary Coherence Functions 

Assuming G^if) a r>d Gyy(f) are both different from zero and do not contain delta 
functions, the coherence function between the input x(t) and the output y(f) is a real-
valued quantity defined by 

(f\= = l S x y ( f ) ] I (627) 
' ^ ' G^G^if) Sxx(f)Syy(f)

 [ • 1 

„2 /t\ - 1"^ 

where the G's are the one-sided spectra and the S's are the two-sided theoretical 
spectra defined previously. From Equation (5.91), it follows that the coherence 
function satisfies for all / 

0<l%(f)<1 (6-28) 

To eliminate delta functions at the origin, mean values different from zero should be 
removed from the data before applying these last two results. Note that the coherence 
function is analogous to the square of the correlation function coefficient / ^ ( τ ) 
defined by Equation (5.16). 

For a constant-parameter linear system, Equations (6.16) and (6.17) apply and may 
be substituted into Equations (6.27) to obtain 

1xy"" GMHiffG^if) 
Ίΐ(/) = „ = 1 (6-29) 

Hence, for the ideal case of a constant-parameter linear system with a single clearly 
defined input and output, the coherence function will be unity. If x(t) and y(t) are 
completely unrelated, the coherence function will be zero. If the coherence function is 
greater than zero but less than unity, one or more of three possible physical situations 
exist. 

a. Extraneous noise is present in the measurements. 

b. The system relating x(t) and y(t) is not linear. 

c. y(i) is an output due to an input x(t) as well as to other inputs. 

For linear systems, the coherence function y^if) can be interpreted as the fractional 
portion of the mean square value at the output y(r) that is contributed by the inputx(i) at 
frequency / . Conversely, the quantity [1 —y^if)] is a measure of the mean square value 
of y(t) not accounted for by x(t) at frequency / . 
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Ouput^(/) = vertical C.G. acceleration 

Input x(t) = vertical gust velocity 

Figure 6.3 Airplane flying through atmospheric turbulence. 

Example 6.5. Physical Illustration of Coherence Measurement. Consider an 
airplane flying through a patch of atmospheric turbulence, as illustrated in Figure 6.3. 
Let the input x(t) be vertical gust velocity in meters/second (m/s) as measured with a 
probe extending forward of the airplane, and the output y(f) be vertical acceleration in 
G's measured with an accelerometer at the center of gravity of the airplane. The 
resulting coherence function and autospectra for actual data of this type are presented 
in Figures 6.4 and 6.5. In this problem, the spectral data were computed over a 
frequency range from 0.1 to 4.0 Hz with a resolution bandwidth of 0.05 Hz and a 
record length of about 10 min. 

From Figure 6.4, it is seen that the input gust velocity and output airplane 
acceleration display a relatively strong coherence of 0.8-0.9 over the frequency 
range from about 0.4 to about 2.0 Hz. Below and above this range, however, the 

1.0 

Frequency, Hz 

Figure 6.4 Coherence function between gust velocity and response acceleration of airplane. These data 
resulted from studies funded by the NASA Langley Research Center, Hampton, Virginia, under Contract 
NAS 1-8538. 
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10° 10-1-2 

0.1 0.2 0.4 0.7 1.0 2.0 4.0 

Frequency, Hz 

Figure 6.5 Autospectra of gust velocity and response acceleration of airplane. These data resulted from 
studies funded by the NASA Langley Research Center, Hampton, Virginia, under Contract NAS 1-8538. 

coherence function diminishes. At the lower frequencies, the vertical acceleration of 
the airplane is increasingly due to maneuver loads induced through the control system 
by the pilot, rather than due to atmospheric turbulence loads. Hence, the loss of 
coherence at the lower frequencies probably reflects contributions to the output y(t) 
from inputs other than the measured input x(f). At the higher frequencies, the low-pass 
filtering characteristics of the airplane response plus the decaying nature of the input 
autospectrum cause the output autospectrum to fall off sharply, as indicated in 
Figure 6.5. On the other hand, the noise floor for the data acquisition and recording 
equipment generally does not fall off with increasing frequency. Hence, the dimin-
ishing coherence at the higher frequencies probably results from the contributions of 
extraneous measurement noise. This concludes Example 6.5. 

For any two arbitrary records x(t) and y(f), one can always compute the ordinary 
coherence function from G^f), Gyy(f), and G^if). The value of this coherence 
function indicates how much of one record is linearly related to the other record. It 
does not necessarily indicate a cause-and-effect relationship between the two records. 
The issue of causality is addressed in Section 6.2.1. 

For applications of coherence functions to problems of estimating linear frequency 
response functions, the coherence function may be considered to be the ratio of two 
different measures of the square of the system gain factor. From Equation (6.16), one 
measure is given by 

W)\\ = 
2 _ G„(f) 

(6.30) 
G„[f) 
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From Equation (6.17), the second measure is given by 

Now, their ratio gives the coherence function 

\H(f)\ Gxx(f)Gyy(f)~lxy(S) ^ j 

In practice, measured values of Equation (6.32) will be between zero and unity. The 
gain factor estimate of Equation (6.30), based on autospectra calculations of input and 
output, will be a biased estimate for all cases except when the coherence function 
equals unity. The gain factor estimate of Equation (6.31), however, based on the input 
autospectrum and the cross-spectrum between input and output, will be a biased 
estimate for cases where extraneous noise is present at the input, but will be an 
unbiased estimate for cases where extraneous noise is present at the output only. In 
particular, Equation (6.31) provides an unbiased estimate of the frequency response 
function gain factors in multiple-input problems when the inputs are uncorrelated. 
These matters are discussed further in Chapter 9, where it is shown how the accuracy 
of frequency response function estimate increases as the coherence function ap-
proaches unity. 

Coherence functions are preserved under linear transformations. To be specific, 
suppose one desires the coherence function between x{t) and y(t) where these two 
quantities cannot be easily measured. Assume, however, that one can measure two 
other quantities X\(t) and yi(r), where, from physical considerations, it can be stated 
that x\(t) has a perfect linear relationship to x(t) and y^r) has a perfect linear 
relationship to yi{t). Then the coherence function between Xi{i) and yi(r) will give 
the desired coherence function between x(t) and y(t). The proof is as follows. 

Perfect linear relationships mean that there exist hypothetical frequency response 
functions A(f) and B(f), which do not have to be computed, such that 

Xl(f)=A(f)X(f) Yi(f) = B(f)Y(f) 

Then, at any value of / , 

GXlXl — \A\2Gxx G y m = \B\2Gyy GXiyi =A*BGxy 

Hence, 

2 _ \GXiy, I2

 = lA*£| 2|G.ry| 2 _ | G ^ | 2

 = 2 

U y i GXlXlGXiyi | A | 2 G j f i | 2 G y > GaGyy ^ 

This result is important for many applications discussed in Ref. 1. 

6.1.3 Models with Extraneous Noise 

Consider models where extraneous noise is measured at the input and output points to a 
linear system H(f). Let the true signals be u{t) and v(r) and the extraneous noise be m{t) 
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Figure 6.6 Single-input/single-output system with extraneous noise. 

and n(t) respectively, as shown in Figure 6.6. Assume that only u(t) passes through the 
system to produce the true output v(t), but that the measured input and output records are 

x(t) = u(t)+m(t) 

y(t) = v{t)+n(t) 
(6.33) 

For arbitrary correlations between the signal and noise terms, autospectral and 
cross-spectral density functions for x(t) and y{t) will be 

G„(f) 

Gyyif) 

Gxyif) 

where 

Guu if) + Gmm (f) + Gum (f) + Gmu if) 

Gvv(f) + Gm(f) + Gnv(f) + Gnv(f) 

Guv(f) + Gun(f) + Gmv(f) + Gmn(f) 

Gyyif) = \H(f)\2Guu(f) 

Gm(f) = H(f)Guu(f) 

(6.34) 

(6.35) 

(6.36) 

Various cases occur, depending on the correlation properties of m(t) and n(t) to each 
other and to the signals. Three cases of interest are 

Case 1. No input noise; uncorrelated output noise 

Case 2. No output noise; uncorrelated input noise 

Case 3. Both noises present; uncorrelated with each other and with the signals 

CASE 1. No Input Noise; Uncorrelated Output Noise 

n(t) 

xit) — u(t) 
= v(t) + n{t) G 

Gxx if) = Guuif) 

Gyyif) = Gvv(f)+Gnn(f) 

4> y(t) 

n(f)=0 
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Giy{f) = Gm[f)=Hi{f)Gxx{f) 

Gtyif) 

G„(f) 

Gvv(f) = | / / , ( f ) | 2 G M H ( f ) = 
\Gxy(f)\

2 

G„(f) 

(6.37) 

(6.38) 

Note that Gvv(f) can be calculated from x(t) and y(r) even though v(r) cannot be 
measured. Also, Gnn(f) can be calculated without measuring n(t). For applications in 
practice, this is by far the most important case because one can often define inputs and 
minimize input noise. However, one will have no control over the output noise, which 
is due to nonlinear operations or the contributions from other unmeasured inputs. 

For Case 1, the ordinary coherence function is 

nyif) 

because 

Gtyif)]2 

\Guv(f)\ 1 

G^Gyyif) ^ Ml 

(f)[Gn(f) + Gnn(f)} 

\Guv(f)\
2 

l+Gm(f)/Gyy(f) 
(6.39) 

Guu(f)Gvv(f) 
= 1 

Note that y2

xy(f) < 1 when Gn„(f) > 0 with 

GVV(f) = lly(f)Gyy(f) (6.40) 

This product of γ 2^ with Gyy{f) is called the coherent output spectrum. Note also that 
the noise output spectrum is 

Gnnif) = [l-y%(f)}Gyy(f) (6.41) 

Thus, Hy(f) can be interpreted here as the portion of Gyy(f) that is due to x(t) at 
frequency / , while [1—Y ,̂(/")] is a measure of the portion of Gyy(f) not due to x(t) at 
frequency/. Here, the ordinary coherence function decomposes the measured output 
spectrum into its uncorrected components due to the input signal and extraneous 
noise. Equation (6.40) is the basis for solving many source identification problems 
using ordinary coherence functions, as illustrated in Ref. 1. 

CASE 2. No Output Noise; Uncorrelated Input Noise 

tf2</> tf2</> 

m(t) 

x(t) = u(t)+m(t) Gum(f)=Q 
y(t) = v(t) 

Gxx(f)=Guu(f) + Gmm(f) 

Gyy(f) = Gvv(f) = \H2{f)\2Guu(f) = H2(f)[H'2(f)Guu(f)} 

Gxy(f) = Guv(f) = H2(f)Gm(f) 
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Gyxif) = H2(f)Gm(f) 

" " σ ) _ ί ^ = ^ Γ " ^ Γ ( 6 · 4 3 ) 

Here G„ u(/) and Gmm{f) can be determined from x(r) and y(t). This case is useful for 
special applications where extraneous noise contamination of the input measurement 
only is anticipated. It should not be applied when output noise is expected because of 
possible nonlinear operations, the contributions from other inputs, and/or output 
measurement instrumentation noise. Case 1 is always preferred in these situations. 

For Case 2, the ordinary coherence function is 

γ 2 ( / Η \Gv(f)\
2

 = \Guv(f)\
2

 = 1 ( 6 4 4 ) 

Ga(S)Gyy(f) [Guu(f) + Gmm(f)}Gvv(f) 1 + \Gmm(f)/Guu(f)]
 1 ' 

It follows that yxy(f)<l when Gmm{f) > 0 with 

Guu(f) = y%(f)Gxx(f) (6·45) 

Gmm(f) = [l-y2

xy(f)}Gxx(f) (6.46) 

Thus, for Case 2, the ordinary coherence function can decompose a measured input 
spectrum into its uncorrelated signal and noise components. 

If one divides the frequency response function / /•(/) for Case 1 as given by 
Equation (6.37) by the frequency response function H2(f) for Case 2 as given by 
Equation (6.42), the result is the coherence function, namely, 

Hxif) _Gxy(f)/Gxx(f) _ λ / 2 

H2(f) Gyy(f)/Gylt(f) 
Y 2 ( / 1 (6-47) 

CASE 3. Both Noises Present; Uncorrelated with Each Other and with the Signals 

x(t) = u(t)+m(t) Gum(f) = Gun(f) = 0 

y(0 = v(f) + «(0 Gm(f) = 0 
Gxx(f) = Guu(f) + Gmm(f) 

Gyy(f) = Gvv(f) + Gnn(f) 

Gxytf) = Guv(f) = H(f)Guu(f) 

Gvv(f) = \H(f)\2Guu(f) (6-48) 

Here, H(f) cannot be determined from the measured x(t) and y(r) without a knowledge 
or measurement of the input noise. Specifically, 

H ( f ) =

 (Ml = <M1 (6.49) 

Guu(f) G„{f)-Gm{f)
 { ' 

l „ r f x , 2 Gw(f) _ Gyy(f)-Gnn(f) 
l H ( f ) l -GUf)-GxxiS)-Gmm{f)

 ( 6 · 5 0 ) 
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Note that H( f) is a function of Gmm(f), but is independent of Gnn(J) by Equation (6.49). 
Using Equation (6.50) to calculate \H(f)\2 shows that \H(f)\2 is a function of both 
Gmm(f) and Gnn(f). 

For Case 3, the ordinary coherence function is 

\Gm(f)\
2 

[Gm{f) + Gmm(f)}[Gvv(f) + Gnn(f)) 
i (6.51) 

l + c i ( / 0 + c 2 ( / 0 + c , ( /> 2 ( /0 

where Ci(f) and c2(f) are the noise-to-signal ratios given by 

cl(f) = [Gmm(f)/Guu(f)} 

ciif) = \Gnn(f)/Gvv(f)} 

Clearly, y^if) < 1 whenever c-(/) > 0 orc 2 (/> > 0. Here, using only x(t) andy(i), it is 
not possible to decompose G^f) or Gyy{f) into their separate signal and noise 
components. 

6.1.4 Optimum Frequency Response Functions 

Return now to the basic single-input/single-output system with output noise only 
(Case 1), as illustrated in Figure 6.7. Without assuming that n(t) is uncorrelated with 
v(f), let H(f) be any linear frequency response function acting on x(t). Of interest is the 
specific H(f) that will minimize the noise at the output; that is, the optimum estimate 
of H{f) in the least squares sense. Note that if there is any correlation between the 
output signal and the noise, as would occur if the output included signal-dependent 
instrumentation noise or the contributions of other inputs that are correlated with the 
measured x(t), then the resulting optimum H(f) will not represent the physical direct 
path between the points wherex(t) and y(t) are measured. Also, there may be nonlinear 
operations between the measured input and output data. In any case, the optimum H(f) 
will simply constitute a mathematical function that defines the best linear relationship 
between x(t) and y(r) in the least squares sense. 

For any set of long records of finite length Tin Figure 6.7, the governing relation is 

Y(f)=H(f)X(f)+N(f) (6.53) 
where capital letters are finite Fourier transforms of associated time-domain records. 
Solving for N(f) and N*(f) gives 

Ν if) = Yif)-H(f)X(f) N'(f) = Y*(f)-H*(f)X*(f) 
It follows that 

ΊΙ if) = 
G^ift 

GaV)Gyy{f) 

\Nif)\2 = \Y(f)\2-H(f)Y*(f)X(f)-H*(f)X*(f)Y(f) +H(f)H*(f)\X(f)\2 (6.54) 
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Taking the expectation of Equation (6.54), multiplying by (2/7), and letting ^increase 
to infinity yields 

Gnn{f) = G„(f)-H(f)Gxy(f)-H
t(f)Gxy(f)+H(f)lf(f)Gxx(f) (6.55) 

This is the form of Gnn(f) for any H(f). By definition, the optimum H(f) will now be 
defined as that H(f) that minimizes Gnn(f) at any/over all possible choices of H(f). 
This is called the least squares estimate. 

The minimization of Gnn(f) as a function of H(f) will now be carried out. To 
simplify the derivation, the dependence o n / w i l l be omitted. Thus, 

Gn„ = Gyy—HGyx—H Gxy + HH G „ (6.56) 

Now let the complex numbers be expressed in terms of their real and imaginary parts 
as follows: 

H = HR-jH, H*=HR+jH, 
Gxy — GR—jGi Gyx = GR +jG[ 

Then 
Gnn = Gyy—(HR—jHi)Gyx—(HR +y///)Gxy + (HR+H, )GXX 

To find the form of Η that will minimize Gnn, one should now set the partial derivatives 
of Gnn with respect to HR and H, equal to zero and solve the resulting pair of equations. 
This gives 

= —Gyx — Gxy + IHrGJU — 0 
dHR 

dGm 

dH, 
— jGyx-jGjcy + IHlGja — 0 

which leads to 

HR = 
^xy + Gyx _ GR 

Hence, the optimum Η is 

2GJO: G 

i(( 
Hi 

j(Gxy-Gyx) _ Gj 

2Gvv Gv 

GR—jGi G^ 
H = HR-jHI=-^^ = -^ (6.57) 

*-*χχ ^xx 
Again, the optimum Η calculated by Equation (6.57), using arbitrary measured 
records, does not have to be physically realizable; it may be only a theoretically 
computed result. 

Another important property satisfied by the optimum H(f) is revealed by sub-
stitution of the optimum system satisfying Equation (6.57) into Equation (6.55). This 
gives the noise output spectrum 

G„nif) = [l-jlif^Gyyif) (6.58) 
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which leads to the coherent output spectrum 

GW[f) = Gyy(f)-Gnn(f) = f„{f)Gyy{f) (6.59) 

Moreover, using the optimum H(f) shows that 

G„{f) = H(f)Ga(f) 

and 

Gxn(f) = Gv[f)-H{f)Ga(f) = 0 (6.60) 

It follows that 

Gvn(f)=H*(f)Gxn(f)=0 (6.61) 

Thus, n(t) and v(r) will automatically be uncorrelated when the optimum H(f) is used 
to estimate the linear system in Figure 6.7. 

It should also be noted here that because of the special form of Equation (6.56), a 
simple way to derive the same optimum / /can be obtained by setting either the partial 
derivative of Gnn with respect to Η equal to zero (holding H* fixed) or setting the 
partial derivative of Gnn with respect to H* equal to zero (holding Η fixed). By this 
alternative method, 

The following steps justify this method. Equation (6.56) shows that Gnn is a real-
valued functions of (HR, Hi) or of (Η, H") denoted by 

(6.62) 

Gm=f(HR,Hl)=g(H,H*) 

which has the structure 

g{H, H*)=AH +A*H* + BHH* + C (6.63) 

vU) 

Figure 6.7 Single-input/single-output system with output noise. 
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where A is complex valued and B, C are real valued. The quantity HR(f) is the real part 
of H(f), while H^f) is the imaginary part of H(f) satisfying H = HR —jHj, and 
H*=HR+ jH,.Now 

dGnn =dg dH dg dH* = dg dg 

dHR dH dHR dH' dHR dH dH* 

dGnn = dgdH dg dH* ^ .(dg dg 

dH, dHdH, dH" dH, J\dH dH* 

Hence, minimization requirements that both 

are equivalent to setting both 

From Equation (6.63), this will occur when 

^L = A+BH*=0 giving//* = - | 

J|̂  = A * + B / / = 0 giving/ / = - A 

(6.64) 

n , dGnn 

— = 0 and _ = 0 (6.65) 

^ = A + B / 7 * = 0 and ^L = 0 (6.66) 

(6.67) 

Thus, both of the conditions of Equation (6.66) hold when 

H = - j (6.68) 

Note that this solution is obtained by setting either dg/dH = 0 (holding H* fixed) or 
setting dg/dH* = 0 (holding Η fixed) without going back to HR and H,. From 
Equation (6.56), A = - Gyx(f) and Β = G^if). Hence, 

H{f)'W) (6·69) 

which is the same as Equation (6.57). 

6.2 SINGLE-INPUT/MULTIPLE-OUTPUT MODELS 

Models will now be formulated that are appropriate for studying the properties of 
multiple transmission paths between a single source and different output points. It will 
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be assumed that constant-parameter linear systems can be used to describe these 
different possible paths and that all unknown deviations from ideal cases can be 
included in uncorrelated extraneous output noise terms. 

6.2.1 Single-Input/Two-Output Model 

Consider the special case of a single-input/two-output system, as pictured in 
Figure 6.8. The following frequency domain equations apply to this situation 
assuming that the noise terms n^t) and n2{f) are incoherent (uncorrelated) with 
each other and with the input signal x(t). The dependence on frequency / will be 
omitted here to simplify the notation. 

Jxrt\ Gvln\ — Gxni 

- G V | - h Gn\n\ \H\\ Gxx + Gn,, 

Gy2yi — GV2V2 + G„2„2 = I#21 G„ + Gn 

Gxy} — GXVl 
H\G Gxv2 — H2GXX 

Gyxyi — GVlV2 = HlH2Gx 

(6.70) 

(6.71) 

(6.72) 

For this model, the coherence function between the output records is given by 

|2 I/-. |2 
_ \Gy,y21 

' y\yi Gyiy, Gy2y2 
Gy,yiGy2y2 

2 2 

where the last equality occurs because 

= \H\H2Gxx\ — {\H\\ GXX)(\H2\ Gxc) — GV l V lGV 2v 2 

γ 2 
_ \Gxyx^ \HiGjal2 GV1V| 

γ 2 

GXXGylyt GXXGylyl Gyiyi 

J2 
_ \Gm? \H2GXX^ G\i2v2 

J2 

GxxGy2y2 GxxGy2y2 Gy2y2 

(6.73) 

(6.74) 

A number of applications exist for these results, depending on whether or not the input 
signal x(t) can be measured along with the two output records yi(r) and y 2 (0-

Figure 6.8 Single-input/two-output system with output noise. 



192 SINGLE-INPUT/OUTPUT RELATIONSHIPS 

CASE 1. x(t), yrft), and y2(t) Can Be Measured Simultaneously 

For this case, Equation (6.71) yields Hx and H2 by 

Then one can determine from Equations (6.70) and (6.74), 

G V 1 V I = |tfi| 2G** = llGym G»,- = (1-Τ&,)3 

\H2\
2G„ = γ; «2«2 ~~ 

Thus all quantities in Equations (6.70)-(6.74) can be found. 

CASE 2. Only yrft) andy2(t) Can Be Measured Simultaneously 

For this case, Η γ and H2cannot be determined using Equation (6.71). If, however, Ηλ 

and H2 are known from other considerations, such as theoretical ideas, then 
Equation (6.72) can be used to obtain by 

The assumed Ηλ and H2 together with the computed G„ will give all the remaining 
quantities in Equations (6.70)-(6.74) . 

If H\ and H2 are not known from other considerations, one can still compute 
Gy,y, · Gyiy2, and Gym. One can then use Equation (6.73) to determine the coherence 
function γ 2 ^ . A high value for y y m indicates that yi(t) and y2{t) can come from an 
unmeasured common source x(t) via unknown linear transformations and that 
extraneous output noise is small compared to the signal terms. It should be noted 
here that a high coherence value does not indicate a causal relationship between y\(t) 
and y2(t). In fact, there is no causal relationship between them in this model. 
Applications of two output models in energy source location problems are detailed 
in Ref. 1. 

6.2.2 Single-Input/Multiple-Output Model 

Consider the system shown in Figure 6.9, consisting of a single stationary random 
input x(t) and r measured outputs y,(f), / = 1,2,..., r. Here for i = 1,2,..., r, frequency 
domain equations are 

where the capital letters represent finite Fourier transforms of corresponding time 
domain records in lowercase letters. For simplicity and without loss of generality, 
assume that all records have zero mean values. Assume also that each of the output 
noise terms n,(r) is uncorrelated with x(t) and that they are mutually uncorrelated with 
each other. 

Yi(f) = Hi(f)x(f)+W) (6.75) 
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» l ( t ) 

v,(t) 
• * * ( £ ) * - > Ί ( Ί > 

«2(0 

H2(f) 

nr(t) 

Hr(f) • > ( Σ 

Figure 6.9 Single-input/multiple-output system with output noise. 

CASE 1. Input Plus Output Measurements 

From simultaneous measurements of x(f) with each of the outputs y ;(r), i = 1,2,..., r, 
one can compute 

Gxy,{f)=Hi{f)Gxx{f) (6.76) 

These equations are the same as for earlier single-input/single-output models. Each 
Hi(f) is then given by the formula 

ΗΜ)=ψφ~ (6.77) 
Gxx\J ) 

In words, the frequency response function H,{f) is the cross-spectral density function 
between the input x(t) and the particular output y,(i), divided by the autospectral 
density function of the input. The ordinary coherence function between x(t) andy,(i) is 

Each output can be easily decomposed into its separate signal and noise components. 
In the time domain, the cross-correlation function between x(t) and y,(r) is given by 

hi(z)R„{*-a)da (6.79) 
ο 

where /ζ,(τ) is the inverse Fourier transform of //,(/)—that is, the unit impulse 
response function of the ith path. 

CASE 2. Output Measurements Only 

Consider cases where only the outputs y ;(r) can be measured. For each i = 1 , 2 . . . , r, 
one can compute the autospectral density functions 
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Gy„l(f) = \H,(f)\2Gxx(f) + Gnini(f) 

The associated autocorrelation functions are 

W . W x r f r + α-β)άα άβ + R„im (τ) 

(6.80) 

(6.81) 

It is also possible here between all pairs of different output records to compute their 
cross-spectral density functions and cross-correlation functions. For / φ j, because 
Rn,nj (τ) = 0 and R„t„ (f) = 0, the cross-correlation function is given by 

* Λ „ ( τ ) =E\yi(t)yj(t + T)] 

hi(a)hj$)E[x(t-a)x(t + τ-β)]άα άβ 

ht(a)hj(fi)R„(t + α-β)}άα άβ 

(6.82) 

with other terms that average to zero. On the other hand, the cross-spectral density 
function between any two of the output records is the simple expression 

Gyiyi(f)=H](f)H;(f)Gxx(f) (6.83) 

Algebraic operations are now involved to interpret this result easily. Measurement of 
Gyiyj (f) plus separate knowledge of / / ,( /) and Hj(f) enables one to estimate G^if) 
when GUf) cannot be measured directly. 

From Equations (6.80) and (6.83), the coherence function between any two of the 
output records is given by 

\Gyiyi(f)\
2 

Gm(f)Gm(f) 

| / f i ( f l l 2 lg ; ( f ) l 2 G„y) 
(6.84) 

mfGxxif) + Gnini(f)}l\W)\2G**(f) + Gm(f)} 

Various special cases of Equation (6.84) of physical interest are discussed in Chapter 7 
of Ref. 1. 

6.2.3 Removal of Extraneous Noise 

Assume that three or more output measurements, say, y {(ή, γ2{ί), and y3{i), are noisy 
measurements of the desired output signals ν·(ί), v2(t), and v 3(r), as shown in 
Figure 6.9. The noise terms n,(i), n2(t) and n3(t) are assumed to be mutually 
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uncorrelated with each other and with vj (i), v2(r) and v 3(r). It will now be shown how to 
determine the autospectral density function properties of the true output signals v,(r) 
from an analysis of the measured yi(t). 

The following equations are all functions of frequency/, which is omitted to simply 
the notation. The measured output autospectra are 

G v , v , + G „ , B | = G V l V l ( l + c i ) 

G V 2 v 2 + G„2„2 = GV2V2 (1 + c2) (6.85) 

Gy3v3 "I" G n 3 n 3 — G V 3 y 3 ( l -I-C3) 

where the c, > 0, i= 1, 2, 3, represent 

c\ = G „ i n , /G V l V , = noise-to-signal ratio at output 1 

ci = Gn2n2/GV2V2 = noise-to-signal ratio at output 2 (6.86) 

C3 = G „ 3 „ 3 / G V 3 V 3 = noise-to-signal ratio at output 3 

The measured cross-spectra between pairs of outputs are 

G „ 

G22 = Gy2y2 

G33 = 

Gl2 = Gy,y2 
= G, 

G13 ~ Gyiy3 
= G, 

G23 = Gy2yi 
= G, 

V ] V 2 

VI v 3 

V2V3 

(6.87) 

In Figure 6.9, it is assumed that V|(r), v 2(r), and v3(r) are due to a common single 
unmeasured source x{t). Hence, the ordinary coherence functions between pairs of 
v,(r) must be unity, namely, 

2 _ l < J V | V2 I _ 1 

^ V j V l l J V 2 V 2 

^ , 3 = ^ ^ - 1 (6-88) 

2 l ^ w l __ 1 

υ 1 » 2 V2 V3 V3 

Thus 

|G i2 | 2 — |GVlv2|
2
 — G V | V | G V ; 

|2 _ 1/̂ · |2 G 1 3r = |G V l l , 3 |
2 = G V l V ,G V 3 V 3 (6.89) 

IG23P — |GV3v3|
2
 — G V 2 v 2 G V 3 V 3 
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From Equations (6.85) and (6.89), it follows that 

| G n | 2 1 

G\ ι G22 ( l + c , ) ( l + c 2 ) 

\Gn\2 1 

G11G33 ( l + C l ) ( l + c 3 ) 

|G23|
2 

1 

G22G33 (1+C2K1+C3) 

= TTfft = η^,.,η^ (6-90) 

Ύ23 

It is reasonable to assume that none of the measured coherence functions in 
Equation (6.90) will be zero to obtain 

(1 + c i ) = ^5-—i -

( 1 + ^ = ν Γ 7 Τ Τ ^ (6 ·9ΐ ) 

( l + c 3 ) = 

Y2 3 (l+c 3 ) 

1 

Y ? 3 ( l + c i ) 

This yields 

q + C l ) = riAl + ci) = Ύ23 ( 6 9 2 ) 

with similar formulas for (1 + c 2 ) and (1 + c 3 ) . Hence, 

IY23I 

IY12I Iy 131 

( l + c 3 ) -

IybIIy23I 
From Equation (6.85), one now obtains the desired results 

GviVj 

Gv2V2 — 

Gv3V3 

G n IY12I IY13I G „ = 
| G i 2 | | G 1 3 | 

( 1 + c i ) Iy23I 
G „ = 

| G 2 3 | 

G22 _ ΙΎΙΖΙ ΙΎ13I 
-G22 — 

| G 1 2 | | G 2 3 | 

( I + C 2 ) IybI 
-G22 — 

IG13I 

G 3 3 lYisI ΙΎ23Ι G 3 3 — 
|Gi 3 | | G 2 3 | 

ΙΥ12Ι 
G 3 3 — 

IG12I 

(6.94) 
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Because GV,V | < G\i,GVlV2 < G22, and G V 3 V 3 < G33, the coherence functions must 
satisfy 

Yl2Yl3<Y23 Y?2Y23<Yl3 Yl3Y23 < Y?2 ( 6 · 9 5 ) 

One can also solve for the noise autospectra Gnini,Gn2n2, and G„3„3 using Equa-
tions (6.85) and (6.94). 

Example 6.6. Illustration of Noisy Measurements. The spectral densities of 
three output measurements are computed to be Gu(f) = G22(f) = G 3 3 ( / ) = G, a 
constant, and the coherence values among the output measurements are computed 
to be γ 2

2 = 0.25, γ 2

3 = 0.25, and γ 2

3 = 0.16. Determine the signal-to-noise ratios 
and the spectral densities of the signals in the three output measurements. 

From Equation (6.93), the noise-to-signal ratios are given by 

« = β - | = ι · 5 0 

Hence the signal-to-noise ratios, given by SNR = 1/c (see Section 10.1.4), at the 
output measurements are 

SNRi = 1.67 SNR2 = 0.67 SNR3 =• 0.67 

and the spectral densities of the signals in the output measurements are 

G V l V | = 0.625G G V 2 V 2 = 0.40G GV 3„ 3 = 0.40G 

PROBLEMS 

6.1 The input to a physical system has an autospectral density function given by 
Gxx(f) = 2/f2. The cross-spectral density function between the input and 
output is G ^ ( / ) = (41 f) -j(4/f2). Determine 

(a) the gain factor of the system. 

(b) the phase factor of the system. 

(c) the time delay through the system. 

6.2 Assume that three identical physical systems with uniform gain factors of 
\H(f)\ = 10 have statistically independent white noise inputs with spectral 
densities of GXlXl (f) = l,GXlX2(f) = 2, and GXlXi(f) = 3. Further assume that 
the systems produce a common output with extraneous noise having a spectral 
density of Gnn(f) = 100. Determine the coherence function between each input 
and output. 
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6.3 Consider the simple mechanical system shown in Figure 2.2, where the 
frequency response function between the input force in displacement units 
x(t) — F(t)/k and the output displacement y(t) is given by 

i-(f/fn)2+j2Cf/fn 

Assuming fn= 10Hz and £ = 0.01, determine the rms value of the response 
displacement to a white noise excitation with a mean value of zero and a 
spectral density of G x c ( / ) = 0 . 1 at all frequencies. 

6.4 For the mechanical system in Problem 6.3, determine the maximum rms; value 
of the response displacement to a sinusoidal excitation given by x{t) = 2 sin 
20πί. 

6.5 In Problem 6.3, assume there is extraneous noise in the output measurement 
with a spectral density of G„„(/) = 0.1 at all frequencies. Determine the 
coherence function between x(t) and y(t) at 

(a) / = 0 H z . 

(b) / = 10 Hz. 

(e) / = 1 0 0 H z . 

6.6 In Problem 6.3, assume there is extraneous noise in the input measurement 
with a spectral density of Gmm(f) = 0.\ at all frequencies. Determine the 
frequency response function that would be computed (ignoring estimation 
errors) using the equations 

(a) H,(f) = Gxy(f)/Gxx(f) 

(b) H2{f) = Gyy{f)/Gyx(f) 

6.7 Consider two physical systems with frequency response functions given by 

Hy(f) = 1(1 +j4f)~l H2(f) = (1 + J 8 / ) - 1 

Assume the two systems have a common input with a spectral density of 
Gxx(f) = 1 0 and that the outputs of the two systems are contaminated by 
extraneous noise signals with identical spectral densities of G„ini(f)— 

Gn2n2(f) = 0.1. At a frequency of 1 Hz, determine 

(a) the coherence function between the input and each output. 

(b) the coherence function between the two outputs. 

6.8 In Problem 6.9, assume the common input signal, rather than the output 
signals, is contaminated by extraneous noise with a spectral density of G m m ( 
f) = 10. Again, at a frequency of 1 Hz, determine 

(a) the coherence function between the input and each output. 

(b) the coherence function between the two outputs. 
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6.9 Consider the simple mechanical system shown in Figure 2.4, where the 
frequency response function between an input acceleration x(t) and the output 
acceleration y(t) is given by 

1 +PiflfH 

l-(f/fnY+W/fn 

Assuming /„ = 100 Hz and ζ = 0.7, determine the rms value of the response 
acceleration to a white noise acceleration input with a mean value of zero and a 
spectral density of G^if) = 0.01. 

6.10 In Problem 6.9, determine the rms value of the relative displacement response 
[y(r) — x(t)] of the system to the white noise acceleration input x(t). {Hint: See 
Table 2.1.) 
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C H A P T E R 7 

Multiple-Input/Output Relationships 

Material contained in Chapter 6 is now extended to multiple-input problems. As 
before, all data are assumed to be from stationary random processes with zero mean 
values, and all systems are constant-parameter linear systems. Section 7.1 describes 
multiple-input/single-output (MI/SO) models for general cases of arbitrary inputs and 
for special cases of mutually uncorrelated inputs. These ideas are discussed for special 
cases of two-input/one-output models in Section 7.2. Optimum frequency response 
functions, and partial and multiple coherence functions are defined for these models. 
Iterative computational procedures to decompose MI/SO models into physically 
meaningful ways are presented in Section 7.3, based upon original ideas in Refs 1 
and 2. A practical modified procedure with simpler notation is recommended in 
Section 7.4, with details given for cases of three-input/single-output models. Results 
for multiple-input/multiple-output (MI/MO) models are stated in Section 7.5 using a 
matrix formulation. Many engineering applications of MI/SO procedures for different 
fields are in Refs 2 and 3. 

7.1 MULTIPLE-INPUT/SINGLE-OUTPUT MODELS 

Consider q constant-parameter linear systems / / , ( / ) , i = 1, 2 , . . . , q, with q clearly 
defined and measurable inputs x,{t), i = 1, 2 , . . . , q, and one measured output y(t), as 
illustrated in Figure 7.1. There is no requirement that the inputs be mutually 
uncorrelated. The output noise term n(t) accounts for all deviations from the ideal 
model, which may be due to unmeasured inputs, nonlinear operations, and instrument 
noise. Measured records are assumed to be realizations of stationary (ergodic) random 
processes, where nonzero mean values and any periodicities have been removed prior 
to this analysis. Multiple-input/multiple-output models are direct extensions of these 
techniques by merely considering such models to be combinations of the multiple-
input single-output cases of Figure 7.1. 

Random Data: Analysis and Measurement Procedures, Fourth Edition. By Julius S. Bendat 
and Allan G. Piersol 
Copyright © 2010 John Wiley & Sons, Inc. 
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7.1.1 General Relationships 

Referring to the multiple-input model in Figure 7.1, four conditions are required for 
this model to be well defined. 

1. None of the ordinary coherence functions between any pair of input records 
should equal unity. If this occurs, these two inputs contain redundant informa-
tion and one of the inputs should be eliminated from the model. This 
consideration allows distributed input systems to be studied as discrete inputs. 

2. None of the ordinary coherence functions between any input and the total output 
should equal unity. If this occurs, then the other inputs are not contributing to 
this output and the model should be considered as simply a single-input/single-
output model. 

3. The multiple coherence function (defined later) between any input and other 
inputs, excluding the given input, should not equal unity. If this occurs, then this 
input can be obtained by linear operations from the other inputs. This input is 
not providing any new information to the output and should be eliminated from 
the model. 

4. The multiple coherence function between the output and the given inputs, in a 
practical situation, should be sufficiently high, say above 0.50, for the theore-
tical assumptions and later conclusions to be reasonable. Otherwise, some 
important inputs are probably being omitted, or nonlinear effects should be 
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with the corresponding finite Fourier transforms 

Each output term Y£f) for i = 

(=1 

n / ) = ! > ( / ) + ( / ) 

1,2,..., q satisfies 

Yi(f) = Hi(f)Xi(f) 

(7.1) 

(7.2) 

(7.3) 

Thus, the basic frequency-domain equation for Figure 7.1 is 

K(/) = ^ / / ; ( / ) X i ( / ) + W ) (7-4) 
i = l 

where each X-,(f) and Y(f) can be computed from the measured Jt;(r) and y(r). From 
this information, it is required to determine the systems //,·(/) and other quantities of 
interest where all results are functions of frequency. 

Finite Fourier transforms X,(/) and Y(f) for single records Xj{t) and y(r) of length Τ 
are 

X,(f) = fxMe-Wdt Y(f) = \Ty(t)e-^dt (7.5) 
Jo Jo 

considered. This value of 0.50 is not precise but is a matter of engineering and 
statistical judgment, based on the physical environment and the amount of data 
available for analysis. 

It is assumed that one can make simultaneous measurements of the input and 
output time history records in any specified multiple-input/output model. It is also 
assumed that possible system errors and statistical errors in computed quantities have 
been minimized by careful calibration and choice of data processing parameters. In 
particular, it is required that one obtain good estimates of the real-valued autospectral 
density functions of each record and the complex-valued cross-spectral density 
functions between every pair of records. From these stored spectral quantities, the 
following results are desired: 

1. Decomposition of the output spectra into physically meaningful components 
due to the measured input records. 

2. Determination of optimum constant-parameter linear systems between each 
input and the output to minimize any noise spectra at the output that is not due to 
linear operations from the measured input records. 

The output y(r) may be considered to be the sum of the unmeasured q outputs yt(t), 
i = 1, 2, . . . , q, plus the noise term n{t) namely, 
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As per Equations (5.66) and (5.67), one-sided autospectral and cross-spectral density 
functions are defined by 

These one-sided functions where G(f) = 0 f o r / < 0 can be replaced by theoretical 
two-sided functions S(f), as discussed in Section 5.2.1. All formulas in this chapter 
can be stated in terms of either G ( / ) or S(f) quantities on both sides of the equations. 
The ratio of two G(f) quantities is the same as the ratio of the corresponding two S(f) 
quantities. Further work here, as in Chapter 6, will use the one-sided G ( / ) quantities. 

In practice, one obtains only estimates of Equations (7.6) and (7.7) because Twill 
be finite and the expected value operation E[ ] can be taken only over a finite number 
of sample records. Also, when records are digitized, as discussed in Chapters 10 and 
11, results will be obtained only at selected discrete frequencies. At any such 
frequency/, an estimate of G ^ ( / ) , denoted by Gxy(f), is usually obtained by 

where nd is the number of different (disjoint) sample records of x(t) and y(t), each of 
length T, so that the total record length Tr = ndT. It is proved in Chapter 8 that to reduce 
bias errors, Τ should be made as large as possible, while to reduce random errors, nd 

should be as large as possible. Hence, compromise choices are necessary when Tr is 
fixed. 

If desired, corresponding time-domain equations can be written involving con-
volution integrals of the respective weighting functions λ,-(τ), i = l , 2, . . . , q, 
associated with the H,{f). In place of Equation (7.3), one would have 

where the lower limit of integration is zero only when the systems are physically 
realizable. Such convolution integrals and their extensions to correlation functions are 
much more complicated than the associated Fourier transform spectral relations and 
will not be used in the further development here. These correlation relations do not 
show how results vary as a function of frequency. That such information is hidden 
within the correlation functions is no justifiction for computing them when it is 
unnecessary and more efficient to compute spectral quantities directly. 

Guif) = GXiXi(f) = lim ΙΕ\Χ,(/)\2' 
Τ—· oo I L 

Gdf) = GXiXj(f) = r l i m ) ^ £ [ x ; ( / ) ^ ( / ) ] 

G , , ( / ) = lim ΙΕ\\Υ(/)\2 

Τ —>oo i L 

Giyif) = GXiy{f) = lim h[X*(f)Y(f)] 
Τ —> oo / 

(7.6) 

(7.7) 

(7.8) 

(7.9) 
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7.1.2 General Case of Arbitrary Inputs 

Consider the general case of arbitrary inputs. From Equation (7.4), with a different 
index of summation j instead of i, 

Y(f) = f^Hj(f)Xj(f)+N(f) (7.10) 

Multiplication of both sides by X*{f) for any fixed i = 1,2, . . . , q yields 

x*(f)Y(f) = J2Hj(f)x;(f)Xj(f) +x*{f)N(f) 
7=1 

Expected values of both sides show that 

E[X*(f)Y(f)} = ^2Hj(f)E[X;(f)Xj(f)]+E[X;(f)N{f)) 
7=1 

Equations (7.6) and (7.7), with a scale factor of (2/7) to obtain one-sided results, now 
prove at any / t h a t 

Gi,(f) = YgH)(f)Gll<J) + Gbl<J) i = 1 , 2 , . . . , * 

where the cross-spectral terms G,-„(/) will be zero if n(t) is uncorrelated with each 
Xj(t). Making this assumption gives the set of equations 

Giy(f) = Y/HJ(f)Gij(f) i = l , 2 , . . . , 9 (7.11) 

This is a set of q equations with q unknowns, namely, #,·(/) for i = 1,2,..., q, where all 
the spectral terms shown are computed from the measured input and output records. If 
the model is well defined, one can solve for the //,·(/) by matrix techniques using 
Cramer's rule or the equivalent. 

In terms of the computed H\{f), as found by solving Equation (7.11), the total 
output autospectral density function Gyy(f) is 

9 1 

Gyy(f) = Y^ntmWGijif) + Gm(f) 
;=i i=i 

(7.12) 

assuming, as before, that n(t) is uncorrelated with each J t j ( f ) . Equation (7.12) is derived 
from 

Y*(f) = T,nnf)x*(f)+NXf) 
i=l 

Y*(f)Y(f) ΣΗ*(/)Χ*(/)+ΝΧ/) 
;=I 

« 1 

J2Hj(f)Xj(f)+N(f) 
.7=1 

(=1 j = l 
1 

ΣΗ*(/)Χ;(/)Ν(/)+J2Hj(f)N*(f)xj(f) 
i=l j=l 
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Expected values of both sides, multiplication of both sides by the scale factor (2/Γ), 
and passage to the limit give the result 

i=l j=l i=l 7=1 

This reduces to Equation (7.12) when the cross-spectral terms Gin(f) = 0 for a l l /and 
all i. For q different inputs and for terms Gyif) φ 0 when i φj, the output Gyy(f) of 
Equation (7.12) contains (q2 + 1) parts. Decomposing G w ( / ) into each of these parts 
and interpreting their meaning can be a very involved exercise. 

7.1.3 Special Case of Mutually Uncorrelated Inputs 

Consider the important special case when not only is n{f) uncorrelated with each of the 
x(t), but the inputs are mutually uncorrelated with each other. For this special case, 
Equations (7.11) and (7.12) become 

Giy(f) = H^Gtjif) i=l,2,-..,q (7.13) 

Gyyif) = Σ I W ) f W ) + Gnn(f) (7.14) 

These relations have a very simple interpretation as a collection of distinct single-
input/single-output models. No system of equations is required to solve for the ff,•(/). 
From Equation (7.13), each Ht(f) is given by the ratio 

Gu(J) 

The output Gyy(f) of Equation (7.14), unlike the output of Equation (7.12), now 
contains only (q + 1) parts. Each of the q parts is the coherent output spectrum result 
for single-input/single-output models, namely, 

\Hi{f)\2Gu{f)=l%{f)Gyy{f) (7.16) 

These quantities represent the input record x,{t) passing only through its particular 
Hi(f) to reach y(t). No leakage of jc,(i) occurs through any other system // ,{/) because 
Xi(t) is uncorrelated with x}{t) for i φ j . 

For general cases of multiple-input records, with arbitrary correlations between the 
inputs, any input record ;c,(r) can reach y(i) by passage through any of the systems 
Hi(f) for all i = 1 ,2 , . . . , q. It can now be quite difficult to decompose Gyy(f) into its 
respective contributions from each of the input records if one attempts to solve the 
general multiple-input/output problem by the usual "brute force" matrix techniques. 
These matrix techniques also give no physical insight into how models should be 
formulated to provide good agreements between mathematical results and physical 
situations. Better methods are required to solve many problems, as explained in this 
chapter. 
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7.2 TWO-INPUT/ONE-OUTPUT MODELS 

For an understanding of the methodology to solve general multiple-input/output 
problems, one should consider special cases of two-input/one-output models and 
three-input/one-output models. The general case is then merely more of the same 
features encountered in these special cases. This will now be done in detail for the two-
input/one-output model. Equations for the three-input/one-output model are given in 
Sections 7.3 and 7.4. 

7.2.1 Basic Relationships 

Consider a two-input/one-output model as pictured in Figure 7.2, where the two inputs 
may be correlated. Assume that xi(t), x2(t), and y(t) can be measured. This system is 
defined by the basic transform relation 

Y(f) = H, (/)*, (/) + H2(f)X2(f) + N(f) (7.17) 

For arbitrary n(t), which may be correlated with χ}(ί) and/or x2(t), the one-sided 
autospectral density function of y(t) from Equations (7.5-7.8), for a very long but 
finite record length T, is given by 

G„(f)=Gyy=^E[Y*Y] 

2 (7-18) 
= jE[{H'X* +H;x; +N*}{H1Xl +H2X2+N}} 

where the dependence on / and the limiting operation on Τ have been omitted to 
simplify the notation. Equation (7.18) becomes 

Gyy = \H\ | 2 G n +H*H2Gu + H\H2 G2\ + \H2\
2G22 + Gnn 

+ H\ G\n + H\ Gn\ + H2 G2n + H2G„2 

where the last four terms occur only when n(t) is correlated with X\(t) and x2(t). 
For arbitrary n(t), the cross-spectral density functions between χχ(ή and y{i), and 

between x2(t) and y(t), are given in a similar way by 

y(t) 

Figure 7.2 Two-input/one-output model. 
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Gly = jE[X*X Y] = jE[x; (ff.X, +H2X2+N)} 

— H\G\\ +H2Gu + Gin 

G2y = ^E[X*Y] = \E[X2 {H,XX +H2X2+N)} 

= H\ G2\ + H2G22 + G]„ 

where, again, the dependence on/and the limiting operation on Thave been omitted to 
simplify the notation. The terms G l n and G2n occur only when n(t) is correlated with 
Xi(t) and x2(t). 

From a knowledge of x:(t), x2{t), and y(t) the one-sided spectral quantities will be 

= Gn(f) = autospectrum of x\ (t) 

G22 = G22(f) — autospectrum of x2(t) 

Gyy = Gyy{f) = autospectrum of y(t) 

G\2 = Gn{f) = cross-spectrum between JCI (r) andx 2 (f 

Gly = Gly(f) — cross-spectrum between x\ (t) andy(r) 

G2y = G2y(f) = cross-spectrum betweenx 2(t) andy(r) 

G21 = G ; 2 ( / ) = complex conjugate of G\2 

All spectral quantities involving n(t) will be unknown. In particular, Equations (7.20) 
and (7.21) cannot be solved for Hx and H2 unless the terms G l n = 0 and G2n = 0, where 

Gin = G\„{f) = cross-spectrum betweenxi(f) andn(r) 
G2« = G2„(f) = cross-spectrum betweenx 2(t) andn(r) 

When n(t) is uncorrelated with xv{t) and x2(t), Equations (7.20) and (7.21) become 

G l y ( / ) = Hu(f)Gu(f)+H2(f)Gn(f) „ x 
G2y(f) = HMG21 (/) + H2(f)G22(f)

 [ '-ZZj 

The solutions for Hx(f) and H2(f), assuming J2

2(f) ^ 1, are 

G i 2 ( / ) G 2 y ( / ) 
Giy(f) 1 -

G22(f)Gly(f) 

Gu(f)[l-fl2(f)} 

G2l(f)Gly(f) 
G2y(f) 

Hi(f) 

1 -
Gu(f)G2y(f) 

(7.23) 

G 2 2 ( / ) [ l - Y 2

2 ( / ) ] 

where the ordinary coherence function 

^ = σ £ & ( 7 ' 2 4 ) 
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*,<0 

1 

* 2 ( t) 

Figure 7.3 Illustration of fully coherent inputs. 

For the special case of uncorrelated inputs when γ 2

2 ( / ) = 0 terms G i 2 ( / ) and G2i(f) 
are also zero, and Equation (7.23) reduces to the usual relations for single-input/ 
single-output models 

Glyjf) 

Gn(f) 

Gly{f) 

G22(f) 
(7.25) 

The case in which γ 2

2 ( / ) = 1 must be handled separately. A coherence function of 
unity between xi(t) and x2(t) implies complete linear dependence. Hence, one would 
consider a linear system existing between them, as illustrated in Figure 7.3. The 
implication is that the first input xx{f) is actually taking two different paths to arrive at 
the output y(t). For this situation, a single frequency response function / / ( / ) will relate 
y(t) to χι(ί), namely, 

H{f)=Hi(f) + H2(f)H3(f) 

When n(t) is uncorrelated with x^t) and x2{t), but Gl2(f)^0, Equation (7.19) 
becomes 

Gyy(f) = \H,(f)\2Gn(f)+H;(f)H2(f)Gl2(f) 

+ Hl{f)Hx ( / ) G 2 1 ( /) + \H2{f)\2G22(f) + Gn„(f) 

This can be written as 

Gyyif) = Gw{f) + Gm{f) = Gy,{f) + Gy:n{f) 

(7.26) 

(7.27) 

where G„„(/) — Gr„(f) is the output spectrum due to the noise, and G v v ( / ) = Gy-X(f) 
represents the ideal output spectrum due to the two inputs, as computed by the first 
four terms in Equation (7.26). To be explicit, G v v ( / ) comes from a knowledge of the 
terms G n ( / ) , G J 2 ( / ) , and G22(f) plus the computed H ) ( / ) and H2(f) by the general 
Equation (7.23). Finally, even though n(t) is unmeasured, the autospectral density 
function Gnn(f) can be computed by the formula 

Gnn(f) = Gyy(f )-Gvv(f) (7.28) 
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For the special case of uncorrelated inputs where G i 2 ( / ) = 0, the ideal output 
spectrum reduces to 

Gw(/) = | t f i ( / ) | 2 G „ ( / ) + \H2(f)\
2G22(f) (7.29) 

where H2(f) and H2(f) are given by the special Equation (7.25). Here 

(7.30) 
\Hl(f)\

2Gu(f) = y2

iy(f)Gyy(f) 

\H2(f)\
2G2i(f) = y2

2y(f)Gyy(f) 

where y2

ly(f) and y2y{f) are the ordinary coherence functions 

v 2 f n _ \Gly{f)\2 2 ( f ) _ \G2y(f)\
2

 ( 7 3 ) 

y ^ [ J ) Gu(f)Gyy(f) W> GvWGyyif) 

It follows for uncorrelated inputs that 
.2 
(ly\J i τ \ 2 y \ 

GM = \lUf) + ll{f)]Gyy{f) (7.32) 

and 

Gm{f) = [i-y2

ly(f)-J
2

2y(f))Gyy(f) (7.33) 

The quantity | # i | 2 G i i represents the spectral output of xx through the Hx system 
only. Similarly, | i i2 | 2 G22 represents the spectral output of x2 through the H2 system 
only. These two results are the ordinary coherent output spectra y\yGyy and y2yGyy, 
respectively, between input xx and the output y, and between input x2 and the 
output y. 

7.2.2 Optimum Frequency Response Functions 

Equations (7.22) and (7.26) are based on the assumption that n(f) is uncorrelated 
with χι (t) and x2(t). Without making this assumption, when xx (r) and x2(t) pass through 
any pair of constant-parameter linear systems H\(f) and H2(f), respectively, 
Equation (7.17) states that 

N(f) = Y(f)-Hi(f)Xi{f)-H2(f)X2(f) 

Hence, for any Hx(f) and H2(f), the noise output spectrum is 

Gnn{f)=\E[N\f)N{f)\ 

= Gyy{f)-Hx(f)Gyl{f)-H2{f)Gy2{f) 

-Ht(f)Gly(f) +Hl*(f)Hl(f)Gu(f)+H:(f)H2(f)Gl2(f) 

- / / ; ( / ) G 2 v ( / ) + / / 1 ( / ) / y 2 * ( / ) G 2 1 ( / ) + H 2 ( / ) / I ; ( / ) G 2 2 ( / ) 
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The optimum frequency response functions are now defined as the particular Hi(f) 
and H2(f) that minimize G„n(f) at any/over all possible choices of # ] ( / ) and H2(f). 
They yield the least squares estimate of y(f) from x^r) and x2(t). 

To derive the optimum H\{f) and H2(f), as explained previously in Chapter 6, it is 
sufficient to set the following partial derivatives equal to zero: 

holding Hi ( /) fixed 

holding H2(f) fixed 

This leads to the pair of equations 

-Gly(f) +Hx{f)Gn(f) +H2(f)Gu(f) = 0 

-G2y(f) + Hl{f)G2lif) +H2(f)Gl2(f) = 0 

which are identical to Equation (7.22). 
For any pair, H]{f) and H2(f), the cross-spectral density functions G l n ( / ) and 

G2„(f) are given by 

Gin(f)=^E[x;(f)N(f)} 

= Giy{f)-Hx{f)Gu{f)-H2{f)Gn{f) 

G2n{f) =jE[x;{f)N{f)} 

= G2y(f)-Hx(f)G2l(f)-H2(f)G22(f) 

When Hi(f) and H2(f) are the optimum results that satisfy the relations of Equation 
(7.22), these two cross-spectra will be identically zero for a l l / . Thus, computation 
of the optimum Hx(f) and H2(f) to minimize Gnn(f) automatically makes «(/) 
uncorrelated with xx(t) and x2(t), namely, 

Gln(f) = 0 G2n(f) = 0 

It should be pointed out here that the optimum computed H\{f) and H2{f) satisfying 
Equation (7.22) do not have to be physically realizable. That is, their associated 
weighting functions h\(x) and h2{x) may not be zero for τ less than zero. In fact, if the 
actual systems are nonlinear, these results will only represent optimum linear 
approximations as done by the computer and could never be the true nonlinear 
systems. Of course, if the actual systems are physically realizable constant-parameter 
linear systems where the model includes all the inputs producing the output, then these 
computed results would represent the true conditions provided the output noise is 
uncorrelated with all the inputs and there is negligible input noise. Henceforth, it will 
be assumed that Ht ( / ) and H2{f) are computed by Equation (7.23). These results 
come from either (a) assuming in advance that n{t) is uncorrelated withX\{f) and x2{t), 
or (b) requiring H\ ( / ) and H2(f) to be the optimum constant-parameter linear systems 

dGnn(f) = 

dHl{f) 

dGnn{f) _ 
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to minimize Gnn(f), whereupon the n(t) in the model will become uncorrelated with 
xi(t) and x2{t). 

7.2.3 Ordinary and Multiple Coherence Functions 

Return to the general case of correlated inputs where γ 2

2 ( / ) is any positive value less 
than unity. The ordinary coherence functions between each input and the output are 

|2 

flyif) ,2 t * _ \Hi(f)Gu(f) + H2(f)Gn(f)\z 

Gn(f)Gyy(f) 

\Hi(f)G2i(f) + H2(f)G22(f)f 
2 (7-34) 

f2Y(f) = 
G22(f)Gyy(f) 

where the numerators represent | G ] y ( / ) | 2 and | G 2 y ( / ) | 2 as computed using Equa-
tion (7.22). The product j}yGyy still represents the ordinary coherent output spectrum 
between the input xx and the output y. However, x\ does not now get to the output via 
the Ηγ system only. Instead because γ 2

2 φ 0, part of χλ also gets to the output y via the 
H2 system. Similarly, x2 gets to the output via both Hi and H2 when γ 2

2 φ 0, and the 
ordinary coherent output spectrum Y 2 y G y y represents all the ways x2 can get to the 
output y. In general, for small G„„(/) the sum of yjy ( /) with y\y ( / ) will be greater than 
unity when the inputs are correlated. 

The multiple coherence function is a relatively simple concept and is a direct 
extension of the ordinary coherence function. By definition, the multiple coherence 
function is the ratio of the ideal output spectrum due to the measured inputs in the 
absence of noise to the total output spectrum, which includes the noise. In equation 
form, the multiple coherence function is 

2 ( n = G v v ( / ) 
y r - A J > Gyy{f) 

Gnn(f) 

Gyy(f). 
(7.35) 

because G v v ( / ) = Gyy(f) - Gnn(f). For the general two-input case, G v v ( / ) is shown in 
Equation (7.26). The multiple coherent output spectrum is defined by the product of 
the multiple coherence function and the output spectrum, namely, 

Gw(/) = y2

TM)Gyy{f) (7.36) 

Clearly, for all values of/, Equation (7.35) shows 

0 < y2

y:x(f) < 1 (7.37) 

The value of unity occurs when G„„(/) = 0, indicating a perfect linear model, and the 
value of zero occurs when Gyy{f) = G„„(/), indicating that none of the output record 
comes from linear operations on the measured input records. 

For a single-input/single-output model where x2(t) — 0 and H2(f) = 0, the ideal 
output spectrum as previously derived in Equation (6.59) is 

GwCO = | « ( / ) | 2 G « ( / ) = ^(fjGyyif) (7.38) 



MULTIPLE-INPUT/OUTPUT RELATIONSHIPS 213 

where xx{t) = x(t) and H(f) = [ (G i > , ( / ) /G x r ( / ) ] . It follows that 

In words, the multiple coherence function is the same here as the ordinary coherence 
function. 

For a two-input/one-output model with uncorrelated inputs, the ideal output 
spectrum as previously derived in Equation (7.32) is 

G w ( / ) - [ y 2

y ( / ) + Y y / ) ] G w ( / ) 

Here, the multiple coherence function is 

l2

r.x{f)=y2ly(f)+lly(f) (7-40) 

In words, for uncorrelated inputs, the multiple coherence function is the sum of the 
ordinary coherence functions between each input and the output. No such simple 
relation exists for correlated inputs. 

Example 7.1. Multiple Coherence Function for Two Uncorrelated Inputs. 
Consider the example of an uncorrelated two-input/one-output system with negligible 
output noise and assume that the two inputs produce equal output spectra. For this 
example, 

Y , 2 : * ( / ) = Y l v ( / ) + Y 2 , ( / ) = l-0 

with 

Yi,(/) = f2y{f) = 0.50 

Here, there are ideal constant-parameter linear systems H\{f) and H2(f) between 
each input and the output. The fact that y2

y ( /) = 0.50 is due to the second input. If this 
was not known and one assumed a single-input/single output model, erroneous 
conclusions would be drawn. 

7.2.4 Conditioned Spectral Density Functions 

When correlation exists between any pair of input records, to make mathematical 
results agree with the physical situation, wherever possible one should try to 
determine if one record causes part or all of the second record. If this can be 
determined, then turning off the first record will remove the correlated parts from 
the second record and leave only the part of the second record that is not due to the first 
record. To be precise, if engineering considerations state that any correlation between 
Xi(r) and x2(t) comes fromx\(i), then the optimum linear effects of X\(t) to x2(t) should 
be found, as denoted by χ2Λ(ή. This should be subtracted from x2(t) to yield the 
conditioned record (also called the residual record) x2.\{t) representing the part of 
x2(t) not due to x^t). In equation form, x2(t) is decomposed into the sum of two 
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* 2 . i ( t ) 

£ ι2ω £ ι2ω -(J)—*2<0 

Figure 7.4 Decomposition of x2(t) from jt](r). 

uncorrelated term shown in Figure 7.4, where 

*2(0 = *2 : l ( 0+*2 - l ( 0 (7.41) 

Fourier transforms yield 

X 2 ( / ) = X 2 : l ( / ) + X 2 . l ( / ) (7.42) 

where 

X2-A(f) = Ln{f)Xy{f) (7.43) 

This defines the optimum linear least squares prediction of x2(t) from The 
Fourier transform of x2\{t) is 

Xx.i(f)=X2(f)-Ll2(f)X1(f) (7-44) 

The constant-parameter linear system Ll2(f) represents the optimum linear system to 

predict x2(t) from *i(t) taken in that order. As proved in Chapter 6, LX2{f) is given by 

the ratio of the cross-spectrum from input to output divided by the autospectrum of the 

input, namely, 

It is also known from Equation (6.60) that this makes x2.\(f) uncorrelated with x\(t) 
and decomposes the spectrum of ;c2(r) into 

G22(f)=G22:l(f) + G22.l(f) (7.46) 

where G22:i(f) is the coherent output spectrum 

G 2 2 : , ( / ) = | Z 4 2 ( / ) | 2 G „ ( / ) = fl2(f)G22(f) (7.47) 

and G 2 2 . i ( / ) is the noise output spectrum 

G 2 2 . , ( / ) = [ 1 - Y 2

2 ( / ) ] G 2 2 ( / ) (7.48) 

Note carefully the destinction between the indices 2 2 : 1 and 22 1. 

Example 7.2. Illustration of Erroneous High Coherence. An example of 
erroneous high ordinary coherence is shown in Figure 7.5. Assume that a coherence 
function value near unity is computed between the two variables *ι(ί) and y(i). One 
would be inclined to believe that there is a physical linear system relating these two 
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Xi(0 system 

Figure 7.5 Illustration of erroneous high coherence. 

variables as input and output. But suppose there is a third variable x2(t), which is 
highly coherent with xt(t) and also passes through a linear system to make up y(f). In 
this type of situation, the high coherence computed between χγ(ί) and y(r) might be 
only a reflection of the fact that x2(t) is highly coherent with Xi(t), and x2(t) is related 
via a linear system to y(t). In reality, there may be no direct physical system between 
x\(t) and y(t) at all. If the partial coherence function (to be defined) were computed 
between xx (t) and y(t) in this situation, it would be a very small number near zero. This 
concludes Example 7.2. 

For cases where cause-and-effect matters are not clear between the input records, 
one might compute the cross-correlation function between the two records to see if 
there is a relative time delay to indicate which record precedes the other record. As 
noted in Section 6.2.1, a strong cross-correlation can exist between any pair of records 
that come from a common source, even when neither record is the cause of the other. 

When no physical basis exists for ordering the records and when the relative time 
delay from a cross-correlation function is insignificant, a recommended approach is to 
compute the ordinary coherence function between each input record and the output 
record. At special frequencies of interest, such as peaks in the output spectrum where 
most of the power or energy is being transmitted, the records should be ordered 
according to their ordinary coherence functions. For example, at a selected frequency 
fi, that input xx(i) or x2(t) giving the highest ordinary coherence function γ 2 (/i) or 
J2yifi) should be selected as the first record. At a different selected frequency f2, a 
similar examination of the ordinary coherence functions i\y(Si) and y\y(fi) may result 
in choosing a different ordering of the input records. Thus, different models may be 
appropriate at different frequencies. 

For definiteness in this discussion, assume that xx{t) should precede x2{t). In place 
of Figure 7.2, one can now draw the equivalent Figure 7.6, where Ηλ =Hly and 
Hz = H2y. Figure 7.6 shows that the input xi(t) reaches the output via two parallel 
paths, whereas the conditioned input x2.\{t) goes via only one path. This is drawn 
explicitly in Figure 7.7. 

In the original Figure 7.2, the two measured inputs χχ(ί) and x2(f) are correlated, 
with linear outputs y I (r) andy 2(r) that are also correlated. In the equivalent Figure 7.7, 
the two inputs x{(t) and x2.\{t) will be uncorrelated as accomplished by the data 
processing. The linear outputs νλ(ι) and v 2(i) will also be uncorrelated. Figure 7.7 is 
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Figure 7.8 Model equivalent to Figure 7.7. 
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equivalent to Figure 7.8 using different systems Lly(f) and L^yif), where 

Lly(f)=Hly(f)+Ll2(f)H2y(f) 

LTyif) = H2y(f) 
(7.49) 

Figure 7.8 represents a two-input/one-output model, where the output y(r) and the 
noise n(t) are the same as in Figure 7.2. The inputs are now mutually uncorrelated, 
however, so that Figure 7.8 is equivalent to two separate single-input/single-output 
models whose nature will now be described. The constant-parameter linear system Lly 

is the optimum linear system to predict y(t) from xx (t), whereas the constant-parameter 
linear system is the optimum linear system to predict y(r) from x2.\(t). In equation 
form, for stationary random data, the basic frequency domain relation for Figure 7.8 is 

Y(f) = LXy{f)Xx (/) + L2y(f)X2.,(/) + N(f) 

where 

Uyif) = 
Glyjf) 

Gn(f) 

The quantities 
Gly{f) 

Gn(f) 

G22.x(f) 

f m . G2y.i(f) 

cross-spectrum between x\ (i) and y(r) 

autospectrum oix\{t) 

cross-spectrum between x2. \ (t) and y(r) 

autospectrum of x2. ι (r) 

(7.50) 

(7.51) 

The quantity G2y. i(f) is called a conditioned (residual) cross-spectral density func-
tion, and G22.\(f) is called a conditioned (residual) autospectral density function. 

Computation of these conditioned spectral density functions can be done by 
algebraic operations on previously computed basic spectral density functions of the 
original measured records. It is not necessary to do any averaging of conditioned 
Fourier transforms except as a way to derive the desired algebraic formula. By 
definition, if averaging were performed, for finite T, 

G2y.l(f)=^E[Xll(f)Y(f)} 

G 2 2 . l ( / ) = | £ [ X 2 * . l ( / ) ^ 2 . l ( / ) ] 

From Equations (7.43) and (7.45), 

X2.i(f)=X2(f)-Li2(f)Xl(f) 

where Lx2(f) = [G\2(f)IGn(f)]. Hence, for any three records *ι(ί), x2(t), and y(t), 
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o2y.,(/) = JE[{X; (f)-L;2(f)x; (/)}¥(/)} 

= ψΕ[χ; (f)Y(f)] - L ; 2 ( / ) | ( / ) y ( / ) ] } 

= G 2 , ( / ) - [ G 2 I ( / ) / G „ ( / ) ] G I y ( / ) (7.52) 

As a special case, replacing y(r) by JC2(0> we obtain 

G 2 2 . , ( / ) = G 2 2 ( / ) - [ G 2 1 ( / ) / G „ ( / ) ] G 1 2 ( / ) 

= [1-Tf 2 ( / ) ]G2 2 ( / ) ( 7 · 5 3 ) 

showing that G 2 2 1 ( / ) is the noise output spectrum for a single-input/single-output 
model with Χχ(ή as the input and x2(t) as the output as in Figure 7.4. Similarly, 
replacing x2(t) by y(r) yields 

Gvv.i(/) = [1 -Yi , ( / ) ]G^( / ) (7.54) 

which is the noise output spectrum for a single-input/single-output model with Xi(t) as 
the input and y(r) as the output. Equations (7.52)-(7.54) are algebraic equations to 
compute conditioned cross-spectra and conditioned autospectra from the original 
computed spectra. 

The result in Equation (7.54) applies to the model pictured in Figure 7.9 showing 
how y(r) can be decomposed into the sum of two uncorrelated terms representing the 
part of y(t) due to jc^r) via optimum linear operations and the part of y(t) not due to 
X\(t). This model is described in the frequency domain by the Fourier transforms 

Y(f) = YyA(f) + Yyl(f) (7.55) 

where 

Yy.y{f)=Llyif)X\{f) (7-56) 

M / ) = [ G l v ( / ) / G n ( / ) ] (7.57) 

Yy.l(f) = Y(f)-Lly(f)Xl(f) (7.58) 

Note that results here are of the same nature as Equations (7.42)-(7.45). 

Figure 7.9 Decomposition of y(r) from X\(t). 
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7.2.5 Partial Coherence Functions 

Return now to Figure 7.8. Because the output terms Vj(i), v2(f), and n{t) are mutually 
uncorrelated, the measured output autospectrum G w ( / ) is the sum of three auto-
spectra terms with no cross-spectra terms, namely, 

where 

Gyyif) = GV 1 V, ( / ) + GV2V2(f) + Gn„(f) 

GVlVt(f) = \Lly(f)\
2Gn(f) 

GV2V2(f) = \L2y(f)\2G22.l(f) 

(7.59) 

(7.60) 

(7.61) 

(7.62) 

The notation G w . I j 2 ( / ) indicates the autospectrum of y(r) not due to either x\{t) or 
x2(t). Observe also that the first output vi(i) in Figure 7.8 is the same as the output 
yy.\(t) in Figure 7.9. The first autospectrum term 

, ( /) § ĵ| Gn(f)=y%(f)Gyy(f) (7.63) 

is the ordinary coherent output spectrum associated with a single-input/single-output 
model with *ι(ί) as the input and y(t) as the output as in Figure 7.9. Here, 

|2 

l\y{f) 
|Glv(/)r 

Gu(f)Gyy(f) 
(7.64) 

is the ordinary coherence function between x\(t) and y(r). 
The second autospectrum term 

Gv 2v 2(/) = 
G 2 v - l ( / ) 

G 2 2 . , ( / ) 
G 2 2 · 1 ( / ) = jly . ! (f)Gyy(f) (7.65) 

where 

v 2 m _ | ^ 2 v l ( / ) | /_ 
Ί ^ Μ ) ~ G22.l{f)Gyy{f) ( 7 ' 6 6 ) 

is, by definition, the partial coherence function between the conditioned record x2. λ (ί) 
and y(t). It follows that GVlV2 ( /) is the partial coherent output spectrum associated 
with a conditioned-input/output model with x2. [(f) as the input and y(i) as the output 
as shown in Figure 7.10. The uncorrelated noise term in Figure 7.10, which is denoted 
yy-1,2(0> is the same as n(t) in Figure 7.8. 

It is important to note that the partial coherence function defined by Equation (7.66) 
is not the same as the partial coherence function between a conditioned-input record 
x2. i(t) and a conditioned-output record yy. as used previously in earlier editions 
of this book and in Ref. 2. These previous definitions give the percentage of the 
spectrum of the conditioned-output record due to the conditioned-input record. This 
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* 2 · ΐ ( 0 - L2y(f) L2y(f) •y(t) 

Figure 7.10 Decomposition of y(f) from x2 \ (t). 

is a mathematical result rather than a physical result. The present definition by 
Equation (7.66) gives the percentage of the spectrum of the total output record y(t) due 
to the conditioned input record x2.\(i). This is a much more meaningful physically 
significant result. 

Examination of Figure 7.10 shows that it is precisely the same form as Figure 7.9 
except that 

1. The input record ^i(i) is replaced by the uncorrelated conditioned-input record 

χ2Λ(ΐ). 

2. The optimum linear system L\y{f) is replaced by the optimum linear system 

Llyif). 

3. Original spectral quantities G\\(f) and G\y(f) are replaced by conditioned-

spectral quantities G22.\(f) and G2y.\(f). 

4. The ordinary coherence function between χ λ (t) and y (t) is replaced by the partial 

coherence function between x2.\(t) and y(t). 

From this viewpoint, it is clear that partial coherence functions play the same role as 
ordinary coherence functions, except that they apply to conditioned-input records 
instead of to the original records. For all values of/, by the cross-spectrum inequality 
of Equation (5.88), it follows that 

0 < Y i , . , ( / ) < l (7-67) 

A formula is still needed for the noise output spectrum in Figure 7.8. From 
Equations (7.59), (7.63), and (7.65), this is given by 

Gnn(f) = [\-l\y{f)-ylyM)\Gyy{f) (7-68) 

The multiple coherence function for Figure 7.8 from Equation (7.35) is now the 

simple sum 

γ £ * ω = γ ? , ω + γ ΐ . ι ( / ) (7-69) 

This formula shows how the multiple coherence function is related to associated 
ordinary and partial coherence functions for the special ordering of the two-input 
records where xy(i) precedes x2(t). Equations (7.64) and (7.66) give the maximum 
percentage of the output spectrum of y(t) that is due to x\(t) and the minimum 
percentage of the output spectrum of y{t) that is due to x2.\(t). 
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For the reverse ordering of the two-input records in Figure 7.8 where x2{t) precedes 
x\(t), one would have the ordinary and partial coherence functions 

[G2y(/)1
2 

G12{f)Gyy{f) 

Ν·2(/)12 

Gu.2(f)Gyy(f) 

with the multiple coherence function given by 

γ 2 , ( / ) = Υ 2 Ν ( / ) + Ύ 2 ν . 2 σ ) 

yUf) 

(7.70) 

(7.71) 

Here, Equation (7.70) gives the maximum percentage of the output spectrum of y{t) 
that is due to x2{f) and the minimum percentage that is due to x\.2{t). Thus, upper and 
lower bounds can be found for the response effects of y(f) in two-input/one-output 
models depending upon the ordering of the two inputs. 

7.3 GENERAL AND CONDITIONED MULTIPLE-INPUT MODELS 

The general multiple-input/output model for arbitrary inputs is illustrated in 
Figure 7.11, where the terms X,(/) , i = 1 ,2 , . . . , q, represent computed finite Fourier 
transforms of the input records x,{t). The finite Fourier transform of the computed 
output record y(t) is represented by Y(f) =Xq+1(/). Constant-parameter 
linear frequency response functions to be determined are represented by H i y ( / ) , 

Hly(f) Hly(f) 

X2(f)-

* 3 < / > 

H2y(f) H2y(f) 

X.(f) 
I I 

Hqy(f> Hqy(f> 

Figure 7.11 Multiple-input model for arbitrary inputs. 
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i=\,2,...,q, where the input index precedes the output index. All possible deviations 
from the ideal overall model are accounted for in the finite Fourier transform N{f) of 
the unknown extraneous output noise. Similar models can be formulated by inter-
changing the order of the input records or by selecting different output records. It is 
assumed that the input and output records are measured simultaneously using a 
common time base. It is also assumed that nonzero mean values are removed and 
that possible bias errors due to propagation time delays are corrected prior to 
computing X,{f) and Y(f). 

An alternative conditioned multiple-input/output model is shown in Figure 7.12 by 
replacing the original given input records of Figure 7.11 by an ordered set of 
conditioned-input records. No change is made in Y(f) or N(f). One can then compute 
the finite Fourier transforms X,.^-!)! ( / ) , i=\,2,...,q, selected in the order as shown 
in Figure 7.12. For any i, the subscript notation 1)! represents the ith record 
conditioned on the previous (i — 1) records, that is, when the linear effects of Xi(t), 
;c2(r), up to Xi-\(t) have been removed from jc,-(r) by optimum linear least squares 
prediction techniques. These ordered conditioned-input records will be mutually 
uncorrelated, a property not generally satisfied by the original arbitrary records. 
Constant-parameter linear frequency response functions to be determined are re-
presented by Liy(f), i = 1, 2 , . . . , q, where again the input index precedes the output 
index. 

For the q input records, one can formulate a total of q\ different ordered 
conditioned multiple-input/output models since any of the original q records could 
be the first record, any of the remaining (q — 1) records could be the second record, 
any of the remaining (q — 2) records could be the third record, and so on. No one wants 
to or should analyze q\ models when q is a large number. For example, q = 5 could 
conceivably involve 120 different models. Fortunately, in practice, the number of 

X2i(f)-

*>-2!(/)-

Xi-(i-V»(f>' 

* , ( , - ΐ ) | ( / ) -

-ί Ί— 

Figure 7.12 Multiple-input model for ordered conditioned inputs. 
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orders is often limited to only a few that make physical sense. However, as discussed in 
Section 7.2.4, in the absence of clear physical reasons to establish an order, it is 
recommended that the input records be ranked in terms of the magnitude of the 
ordinary coherence functions computed between each input record and the output 
record. Specifically, the input record with the highest ordinary coherence function 
would be first, the input record with the second highest ordinary coherence function 
would be second, and so on. Note that this procedure may result in a different ordering 
of the input records for different frequency ranges. See Ref. 2 for a detailed 
illustration. 

From the previous discussion in Section 7.1, it is clear that solutions for the [Hiy] 
systems in Figure 7.11 will be considerably more difficult than solutions for the {Liy} 
systems in Figure 7.12. It is also clear from Equations (7.12) and (7.14) that the output 
autospectrum Gyy{f) in Figure 7.11 will contain (q2 + 1) terms, whereas this same 
output autospectrum Gyy(f) in Figure 7.12 will contain only (q + 1) terms. 

Henceforth, Fourier transforms of original records and of conditional records will 
be denoted by capital letters where the dependence on frequency / w i l l be omitted. 
Optimum systems {Hiy} and optimum systems {Liy} will be calculated for both 
Figures 7.11 and 7.12, as well as the relationship between these optimum systems. To 
this end, one must know how to computed conditioned Fourier transforms and 
conditioned spectral density functions, as will be explained in succeeding sections. 

7.3.1 Conditioned Fourier Transforms 

For Figure 7.12, the defining Fourier transform equation is 

Y = YtLiyX,.(i.1y.+N (7.72) 
i=l 

If the output Yis considered to be a (q + l)th record X(g + i) and if the noise Ν is 
considered to be this (q + l)th record conditioned on the previous q records, then 
N = X(q + i ) . q ! and Equation (7.72) becomes 

ι 

*(<?+!) — ^A-( i+i)Xi-(!- i)!+*(?+i)-?! (7.73) 
i = I 

Here, X(q + i).q\ is considered to be the (q + l)th record conditioned on all of the 
preceding q records. 

Various subsets are of interest. For the first r conditioned-input records only where 
r < q, one can write 

Γ 

X{l + 1) = Σ L'(l + 1 ) X ' · ( » ' - 1 ) ! + * ( < ? + 1) · /•! ( 7 - 7 4 ) 

i '=l 

Here, X ( 9 + 1 ) . r ! is considered to be the (q + l)th record conditioned on the first r 
records, where r— l,2,...,q. Substitution of any jth record Xj for X ( ( ? + i ) , where / > r, 
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yields the more general relation 

r 

i- -Xir: (7-75) 
i=l 

Here, the {L,y} systems replace the previous {Z. l ( 9 + i )} systems. If r is now changed to 
(r— 1), then Equation (7.75) becomes 

r-l 

Xj = Σιυχι-(>-!)! +Χί-(r-l)! (7-76) 
i=l 

These last two results yield the conditioned Fourier transform algorithm 

Xj-r\ =Xj(r-\)\—LrjXr{r-\)\ (7.77) 

Thus, {Xj.r\} can be computed from a knowledge of {X,-. ( r_ l ) !} and the {Lrj} systems 
for all j > r. In particular, Equation (7.77) shows that the {Xj.\} terms follow from a 
knowledge of the [Xj] terms and the {Lu} systems. Then the {Xy.2 !} terms follow from 
a knowledge of the {Xj.\} terms and the [Ly] systems, and so on. 

7.3.2 Conditioned Spectral Density Functions 

For the original records { X ; } , = 1,2, . . . , q, and Y—Xq+1, their original autospectra 
and cross-spectra can be defined by the expressions 

G,V = |£[X;X,-] G i y = |£[X,*X,] 

2 2 ( 7 · 7 8 ) 
Giy = -E\X*Y] Gyy = —E[Y* Y] 

Similarly, for conditioned records X, r ! , where j > r, their conditioned autospectral 
density functions are defined by 

Gjjr' - . ^ Χ / , , Χ / . Λ " (7.79) 

Conditioned cross-spectral density functions between Χ,·.Γι and Xj.r\, when ίφ] with 
both / > r and 7 > r, are defined by 

G , y . r ! = | £ [ x ; r ! ^ . H ] (7.80) 

The results in Equation (7.78) are special cases of Equations (7.79) and (7.80) when 
r = 0. Note also that 

G i M = \ψΜ = γΕ[χ;χ^] (7.81) 

To compute conditioned spectral density functions from the original spectral 
density functions, one uses the transform algorithm of Equation (7.77). Specifically 
multiply both sides by X*, take expected values, and multiply by the scale factor (2/7). 
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This gives the conditioned spectra algorithm 

Gij-(r-l)\—LrjGir.(r-\)\ (7.82) 

Thus {Gij.r\} can be computed from a knowledge of {Gy. ( r _ i ) r} and the {Lrj} systems 
for all i > r and j > r. 

Equation (7.82) is the basic algorithm required to solve multiple-input/output 
problems. In particular, Equation (7.82) shows that the {Gyi) terms follow from a 
knowledge of the {Gy} terms and the {Ly} systems. Then the {Gyn} terms follow 
from a knowledge of the {Gy.i} terms and the {L2 7} systems, and so on. The key to 
using this algorithm is to determine the {Lrj} systems for all r= 1, 2, . . . , q, and all 
j > r. This will now be developed. 

7.3.3 Optimum Systems for Conditioned Inputs 

The systems {Liy\, i = 1, 2, . . . , q, in Figure 7.12 are optimum linear systems for a 
collection of single-input/single-output systems because the inputs in Figure 7.12 are 
mutually uncorrelated. Consequently, as proved in Chapter 6, each system L i y is 
defined by the ratio of the cross-spectral density function between its input and the 
output divided by the autospectral density function of its input. Without assuming it, 
the noise n(t) will be automatically uncorrelated with each input in Figure 7.12 when 
Liy is computed in this fashion. Thus, because conditioned inputs are present, one 
obtains the result 

" • « • ( / - Ι ) ! 

Equation (7.83) can also be proved directly from Equation (7.72) if one assumes in 
advance that n(t) is uncorrelated with each input in Figure 7.12. To derive this result, 
write Equation (7.72) with a different index of summation as 

Multiply through both sides by X'r^y, where i= 1, 2 , . . . , q. This gives 

Now, taking expected values of both sides and multipling by the factor (2/7) yields 
Equation (7.83), namely, 

i = 1 ,2 , . . . (7.83) 

Giy (;-!)! — LiyGu. (,·_!)! 

because 

£Κ(,·-ΐ)Λ··ο·-ΐ)!] = 0 f O T 'Vi 
Ε[Χ*(ί_ιγΝ] = 0 for alh' 
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As special cases of Equation (7.83), note that 

= 1 Lly 

= 2 L2y 

= 3 L3y 

Gn 

G 2 y 1 

G22 1 

G3y . 2! 

G33 · 2! 

(7.84) 

and so on. The last system where i = q is 

L ? v = ^ H i z l 2 I ( 7 . 8 5 ) 

The separate uncorrelated optimum conditioned single-input/single-output sys-
tems contained in Figure 7.12 are shown in Figure 7.13. For any i— 1, 2, ...,q, the 
coherent output spectrum from the passage of the conditioned-input X ;. (,·_ \γ through 
Liy is given by 

Uy\ G«.((·_ΐ)ΐ — γ; 

where G, 

iy(i-\yyyy 

-,·,·. μ_ΐ)! is the conditioned-input spectrum and where 

2 

•)%,(;-1)! 
|G,y.(,-l)!| 

G».(i-l)!Gyy 

(7.86) 

(7.87) 

is the partial coherence function between X,-. and the output 7 in Figure 7.13. 
The output autospectrum in Figure 7.13 for any i = 1, 2 , . . . , q is given by 

Gyy — \Liy\ Gu. (,·_!)! + Gmn. 

where the separate noise spectrum terms are 

G„,„. = I - Y ; ly-(i-l)! Jyy 

(7.88) 

(7.89) 

These separate noise terms should not be confused with the total output noise 
spectrum Gnn(f) in Figure 7.12, as given later in Equation (7.121). 

7.3.4 Algorithm for Conditioned Spectra 

The algorithm to compute conditioned spectral density functions is contained in 
Equation (7.82), where the {Lrj} systems must still be defined. This will now be done 

ι * t -*-Y 

Figure 7.13 General conditioned-input/output model. 
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by extending the interpretation of the optimum {Liy} systems of Equation (7.83) for 
the inputs XitX2.\, X3.2! up to Xq.^iy. with the output Y. In place of Y, consider any 
output Xj, where 7 = 1, 2 , . . . , (9 + 1). Let the inputs be Χχ, Χ2.γ,Χ3.2\ up to Xr.(r_iy, 

where r can be any integer r < 7, that is, r = 1,2, . . . , ( / — 1)· Conceptually, this creates 
new conditioned multiple-input/single-output models where the associated optimum 
linear systems {L r j} per the derivation of the optimum {L i y} systems must be such that 
7 replaces y and r replaces i to give the result 

G,, <7-(r-I)!_ 

-1)! 

r = l , 2 , . . . , ( / - l ) 
7 = 1 , 2 , . . . , ( 9 + 1 ) (7.90) 

Note that Lrj involves conditioned records of order (r— 1)! In particular, for r = 1,2,3, 
one obtains 

r = l L v = 

r = 2 L2; = 

r = 3 L 3 , = 

Gn 

G2/ . 1 

G22 1 

G3/ .2! 

G33 · 2! 

7 = 2 , 3 , . . . , 9 , ? + l 

7 = 3 , 4 , . . . , 9 , 9 + 1 

7 = 4 , 5 , . . . , 9 , 9 + l 

(7.91) 

(7.92) 

(7.93) 

Lgy, as in and so on. The case where r = q and 7 = (9 + 1) yields the system Lq 

Equation (7.85). 
Return now to the previous iterative spectrum algorithm of Equation (7.82) and 

substitute Equation (7.90) for Lrj. This yields the final desired formula 

Gj/.r! = Gy. (r-l)P 
G ry.( r_i)i 

Grr • ( Γ -1)!. 

Jir-(r-l)\ (7.94) 

which shows exactly how conditioned spectral quantities of order r! can be computed 
from previously known conditioned spectral quantities of order (r — 1)! for any 
r = 1, 2, . . . , 9 and any i, j up to (9 + 1), where /' > r and 7 > r. 

To make this result as explicit as possible, consider special cases where r — 1,2,3. 
For r= 1, Equation (7.94) states 

Gy.l = Gy— 
Gn 

Gn (7.95) 

All terms on the right-hand side are original autospectra and cross-spectra from the 
collected input and output records. The conditioned spectral quantities Gyi are 
obtained by the algebraic operations in Equation (7.95) without choosing any 
bandwidth resolution or performing any averaging. These quantities are real-valued 
conditioned autospectra G,,.] when i=j and complex-valued conditioned cross-
spectra G y l when ϊφ]. The indices i and 7 must be greater than 1. 
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For r = 2, Equation (7.94) states 

Gy.2! — Gjj. ι (7.96) 

Now, all terms on the right-hand side are the computed conditioned spectra { G y i } 
from the previous step. The algebraic operations in Equation (7.96) yield the 
conditioned spectra {Gy-.2!} without choosing any bandwidth resolution or perform-
ing any averaging. These quantities are real-valued conditioned autospectra G, i 2 ! 
when ί = j and are complex-valued conditioned cross-spectra when i φ j . The indices i 
and j must now be greater than 2. 

For r = 3, Equation (7.94) becomes an equation where the conditioned spectra 
{Gy.3 !} can be calculated algebraically from the previously computed conditioned 
spectra {Gy-.2 !} and so on. This iterative procedure is displayed in Figure 7.14 using 
the Lrj of Equation (7.90), where one goes from the first inner loop to the next inner 
loop successively. The results in Figure 7.14 apply to both conditioned autospectra 
where i = j and conditioned cross-spectra where i φ j . An alternative special algo-
rithm, however, can be used for conditioned autospectra. When i — j , Equation (7.94) 
becomes 

Gjj(r-\)\-\Lrj\ G r r . ( r _!)! (7.97) 

This procedure is displayed in Figure 7.15. 

'ij-4\ 

G «i -H Lu 

G, 

G, i3-2! 

G, ι4·3! 

Figure 7.14 Algorithm to compute conditioned spectral density functions. (Results extend to any number 
of inputs.) 
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G 11" 

'22-1" 

G 33-2! 1 * 3 / 

'44-3!' IV 2 

Figure 7.15 Special algorithm to compute conditioned autospectral density functions. (Results extend to 
any number of inputs.) 

7.3.5 Optimum Systems for Original Inputs 

For me original inputs in Figure 7.11, the optimum linear systems [Hiy},i = 1,2,.. .,q, 
are more complicated to compute than the optimum {Liy} systems in Figure 7.12. 
These [Hiy \ systems must satisfy the various q equations in q unknowns specified in 
Equation (7.11). It is not difficult, however, to derive relations that must exist between 
the {Hiy} and {Liy} systems, as will now be demonstrated. 

The governing equation for Figure 7.11 is 

γ = Σ Η » + Ν (7.98) 

Multiply through by Χ*.^_ψ where i = l,2, . . . , q, and take expected values of 
both sides. A scale factor of (2/7) then proves 

7=1 

(7.99) 

where the index j starts at j = i since Gy.^iy, = 0 for j < i. Divide both sides by 
G,,-.(,_!)! to obtain the result 

Liy = ^HJyLij i = 1 ,2 , . . . ,g }>i 
7=1 

(7.100) 

where, from Equation (7.83) 
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_ Gjy . ( i - l ) ! 

" l i - ( i - l ) ! 
(7.101) 

Equation (7.100) is the desired relation between the {Hiy} and {Liy} systems. 
To understand Equation (7.100), consider some special cases. For i=j = q, since 

Lqg = 1, 

'-'qy — HqyLqq — iiqy 

Thus the optimum system Hqy, as in Equation (7.85), is 

••Ha (7.102) 

gy-Q?-i)! 

<?,-( , - l ) ! 

^•1,2,. . . ,( ,-1) 

' w - l , 2 , . . . , ( i - l ) 
(7.103) 

The optimum system Hiy for any / now follows by merely interchanging X, with Xq to 
show that 

As special cases, 

Hh 

*iy-l ,2 , - , ( i - l ) , ( i + l ) , . . . , , 

Jii-l ,2 , . . . , ( i-l) ,( i+!), . . . ,« 

Hly = 

H2y = 

H3y = 

G\y 2,3, . . . , , 

Gn 2,3, . . . , , 

G2y 1,3,4,...,, 

G22 1,3,4,...,? 

G3y 1,2,4,5,...,, 

G33 1,2,4,5,...,, 

(7.104) 

(7.105) 

and so on. Comparison of Equation (7.84) with Equation (7.105) shows that the {Liy} 
systems are always simpler than the corresponding {Hiy} systems for every 
i — 1, 2, . . . , (q — 1), except for i = q, where Lqy — Hqy. 

For the two-input/single-output system of Figure 7.2, where HXy and H2y are given 
by Equation (7.23), one now sees from Equation (7.105) that a shorthand way to 
describe these answers is 

H\y — 

#2y = 

" l y - 2 

G i l -2 

Gly. 1 

G22-1 

(7.106) 

Corresponding L\y and L2y systems are given in Equation (7.51). Note that relation-
ships between these L and Η systems are shown in Equation (7.49), in agreement with 
Equation (7.100). 

Equation (7.100) provides a general procedure to determine the {Hiy} systems 
from the {Liy} systems by working backward, as follows: 
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(7.107) 

j=i+l 

where i = (q- 1), (q - 2), . . . , 2,1. For example, if q = 3, 

# 3 v = Ljy 

H2y = Uy-LnHiy (7.108) 

H\y = L\y—Li2H2y—L\i,Hiy 

In practice, to solve for the possible [HJy} systems, rather than finding them directly, 
a simpler two-step method is to compute the {L y} systems first and then use 
Equation (7.107) to obtain the associated {Hiy} systems. 

7.3.6 Partial and Multiple Coherence Functions 

Ordinary coherence functions between any input X, for i — 1,2, . . . , q and the total 
output Fare defined by 

|2 

il = P^ (7·109) 

Partial coherence functions between any conditioned-input Χ,·.ι for i = 2 , 3 , . . . , q and 
the total output Fare defined by 

lU=P4- (7-110) 

Partial coherence functions between any conditioned input Χ,·.2! for i = 3 , 4 , . . . , q and 
the total output Fare defined by 

^ = ψ 4 ~ ( 7 - l l D 

and so on up to 

r 2 

V ( , - i ) ! - G , , . , G

 ( ' 

^qq-iq-iyMyy 

It is now easy to define multiple coherence functions for any ordered multiple-input/ 
single-output model like Figure 7.12, where the conditioned inputs are mutually 
uncorrelated. For a single-input/single output model, 

fyu=l\y (7-113) 

For a two-input/single-output model, 

Ί2

τ.ν=Ί\+Ί%.ι (7 .Π4) 
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For a three-input/single-output model, 

7 , : 3 ! = ϊ 2 , + ^ . 1 + γ | , . 2 ! ( 7 · 1 1 5 ) 

and so on. For a general ^-input/single-output model like Figure 7.12, the multiple 
coherence function is given by 

Ύ^! = Σ ^ · 0 - 1 ) ! ( ? · 1 1 6 ) 
i=l 

Equations (7.13)—(7.16) are easy formulas to apply in practice where the physical 
interpretation of these formulas depends upon the ordering of the input records. 

For the special case where the q original input records in Figure 7.11 are mutually 
uncorrelated, the multiple coherence function becomes 

12

τ.φ = ΣΐΙ (7-117) 
i=l 

In words, the multiple coherence function is now the sum of the ordinary coherence 
functions between each input and the total output. 

The noise output spectrum in a single-input/single-output model is 

Gyyi=[\-fxy]Gyy (7.118) 

For a conditioned two-input/single-output model, 

^ . 2 ! = [ 1 - ^ : 2 1 ] 0 „ (7.119) 

For a conditioned three-input/single-output model, 

GyyV. = [\-fy^Gyy (7.120) 

and so on. For a general conditioned 9-input/single-output model as shown in 
Figure 7.12, the noise output spectrum is 

Gm = Gyy.qi = [l-y%fl}Gyy (7.121) 

where γ2,.^ is the multiple coherence function. 

7.4 MODIFIED PROCEDURE TO SOLVE MULTIPLE-INPUT/ 
SINGLE-OUTPUT MODELS 

An alternative modified procedure, described and applied in Refs 2 and 3, will now be 
outlined to solve general multiple-input/single-output (MI/SO] linear models. Like 
the previous material in this chapter, this modified procedure applies to stationary 
random data with arbitrary probability and spectral properties. The advantages of this 
modified procedure are as follows: 
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ί/, = χ, 

'yu, 

A Y 

υ2-Χ~2.ι- ™ 

Yyu2 

(7 3 -Χ 3 .2ΐ I A 

J ( 
\ 

Figure 7.16 Modified single-input/single-output models. 

1. The set of mutually uncorrelated conditioned-input records in Figure 7.12 are 
denoted by the simpler notation ί/, = = X l ( , _ 1 ) ! ( / ) for / = 1, 2, . . . , q. 

2. The set of conditioned single-input/single-output (SI/SO) models in Figure 7.12 
can be replaced by the simpler set of modified SI/SO models shown in 
Figure 7.16, where now each of the mutually uncorrelated inputs goes to the 
total output Y= Y(f). 

3. Ordinary coherence functions can be computed between each of the uncorre-
lated inputs and the total output to determine the percentage of the output 
spectrum due to each input. This makes it relatively easy to interpret the 
computed results because there is now no need to interpret partial coherence 
functions as defined by Equation (7.87). 

4. The complicated multiple coherence function formula of Equation (7.116) can 
now be replaced by the simple additive formula of Equation (7.117) using the 
set of ordinary coherence functions between each of the uncorrelated inputs and 
the total output. 

By computing the autospectra and cross-spectra of the input/output terms in 
Figure 7.16, an associated new set of modified SI/SO spectral models is obtained as 
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G w . B l 

Figure 7.17 Modified single-input/single-output spectral models. 

illustrated in Figure 7.17. Statistical random error formulas for the estimates of 
various terms in Figure 7.17 are listed in Section 9.3.8. 

Formulas to solve the modified models in Figures 7.16 and 7.17 will now be 
discussed in some detail for the special case of a three-input/single-output linear 
model. The notation and procedure used here extend directly to analyzing general 
multiple-input/single-output cases. 

7.4.1 Three-Input/Single-Output Models 

The special case of a three-input/single-output linear model is shown in Figure 7.18 
where the three-input records, X,(/) , i = 1,2,3, can be correlated. The revised model 

riffl - Η ς ) *-m 

y,(f> 

Figure 7.18 Three-input/single-output linear model where the inputs can be correlated. 
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/ 
1-30 / 1-30 

YM 

- W X j > W 

Figure 7.19 Revised three-input/single-output linear model equivalent to Figure 7.18 where the inputs are 
mutually uncorrelated. 

equivalent to Figure 7.18 is shown in Figure 7.19 where the three new inputs, £/,(/), 
/ = 1, 2, 3, are mutually uncorrelated. Note that the linear systems in Figure 7.18 are 
denoted here by Aiy(f), i— 1,2,3, instead of by Hiy(f), i=l, 2, 3, as shown in 
Figure 7.11. These two sets of linear systems are exactly the same. The reason for this 
change in notation from H(f) to A(f) is explained in Chapter 13 of Ref. 2 and Chapter 
4 of Ref. 3. In Chapter 14, A(f) represents linear systems that are "after" specified 
nonlinear operations. It is proved in these two references that the key to solving many 
important types of nonlinear system problems is to change their nonlinear system 
models into equivalent direct or reverse MI/SO linear models. These MI/SO linear 
models can then be replaced with a set of mutually uncorrelated SI/SO linear models 
where the desired A(f) systems can be identified by the techniques in this chapter. 
Thus, the material developed here is not only applicable to identifying the various 
systems and response properties in general MI/SO linear models, but is also applic-
able to the determination of various systems and response properties for a large class 
of nonlinear system problems, as detailed in Refs 2 and 3. 

The basis of the MI/SO procedure for identifying the A(f) systems in Figure 7.18 is to 
use conditioned spectral density techniques to change the generally correlated input 
records, X , ( / ) , / = 1,2,3, into the mutually uncorrelated input records, U,{f),i= 1,2,3, 
so the first input record is Ui(f) = X](f), the second input record is U2(f) = X 2 i ( / ) , a n d 
the third input record is U3(f) = X 3 2 : ( / ) . These mutually uncorrelated conditioned input 
records, t / /( /) , i = 1,2,3, are the inputs to the revised model in Figure 7.19. The noise 
output record N(f) and the total output record Y(f) are exactly the same in Figures 7.18 
and 7.19. However, the correlated output records, Y\{f), Yi(f), and Yj(f), in Figure 7.18 
are now replacedin Figure7.19by three new mutually uncorrelated outputrecords, Ya(f), 
Yb(f), and Yc(f). The three linear systems, Aiy(f), i— 1, 2, 3, in Figure 7.18 are now 
replaced in Figure 7.19 by three different linear systems, namely, Liy(f), i = 1,2,3. 
Identification of the systems by basic SI/SO linear system spectral density 
techniques then gives the A(f) systems by the algebraic operations developed in 
Section 7.3.5. 

7.4.2 Formulas for Three-Input/Single-Output Models 

General formulas for the L(f) and A(f) systems in the three-input/single-output 
models of Figures 7.18 and 7.19 are as follows: 
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" 1 1 if) "«,«,/ 

Τ (f\ - G2y\{f) _ Guiy(f) Λ7 1 Τ 1 \ 
( 7 · 1 2 3 ) 

, / . X _ G3y.2\(f) _ GU3y(f) 
( 7 · ΐ 2 4 ) 

A3y(f) = L3y(f) (7.125) 

A 2 v ( / ) = ̂ (/)-§2^τ|Α3^/) (7.126) 

A l y ( / ) = L l y ( / ) - ^ A 2 , ( / ) - ^ A 3 y ( / ) (7-127) 

Equations (7.125)—(7.127) show that the computed linear system A 3 v ( / ) is the same as 
L3y(f), the computed linear system A2y{f) is a function of L^yif) and L3y(f), and the 
computed linear system A ly(f) is a function of Liy(f),A2y(f), and A 3 y ( / ) . Note that, in 
general, Lly(f) is not the same as Aly(f), and Lay(f) is not the same as L2y(f). 

The coherent output spectral density functions in Figures 7.17 and 7.19 are given 
by the formulas 

GyAf) = K(f)\2GUlUl ( / ) = yly(f)Gyy(f) (7.128) 

<W/) = M/)|2G„2„2(/) = tiy{f)Gyy{f) (7.129) 

Gycyc(f) = \L3y(f)\
2Gum(f) = Υ ^ ( / ) < ^ ( / ) (7.130) 

The total output spectral density function in Figure 7.19 is 

Gyyif) = Gy.y.(f) + Gybyb(f) + Gycyc{f) + Gm(f) (7.131) 

where Gn„(f) is the output noise spectrum. The total coherent output spectral density 
function in Figure 7.19 is 

Gyyif) = Gyy(f)-Gnn(f) = fy..x{f)Gyy{f) (7.132) 

The various terms in Equations (7.128) through (7.132) can be interpreted as follows: 

1. The first ordinary coherence function given by 

γ 2 if) = \ G u ^ \ (7 133) 
Ju>yU) GUlUl(f)Gyy(f) [ Ι Λ ί ί ) 

is the ordinary coherence between the input Ui(f) — Xi(f) and the total output 
Y(f). It states the proportion of the output spectrum Gyyif) that is due to U\(f) 
passing through the linear system L\(f), which represents all of the possible 
ways that U\(f) can reach Y(f). 
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2. The second ordinary coherence function given by 

is the ordinary coherence between the input U2if) — X2.\ if) and the total 
output Yif). It states the proportion of the output spectrum Gyyif) that is due to 
U2if) passing through the linear system L^if), which represents all of the 
possible ways that U2(f) can reach Y(f). 

3. The third ordinary coherence function given by 

γ 2 (f)= l G ^ ( / ) l f7 135) 
1 U ^ J ) Gum(f)Gyy(f) ( ' A M ) 

is the ordinary coherence between the input U3if)=X3.2\if) and the total 
output Yif). It states the proportion of the output spectrum Gyyif) that is due to 
U3{f) passing through the linear system L 3 ( / ) , which represents all of the 
possible ways that U3(f) can reach Yif). 

4. The multiple coherence function for the model in Figure 7.19 is the additive 
sum of the three ordinary coherence functions in Equations (7.133)—(7.135)— 
that is, 

frAf) = fUly(f) +J2u2yif)+liyif) (7-136) 

It defines the goodness-of-fit of the model at each frequency. Note that 
Equation (7.136) does not involve any partial coherence function. Good models 
occur at those frequencies where the multiple coherence function is close to 
unity. 

5. The associated uncorrelated noise output spectrum in Figure 7.19 that repre-
sents all possible deviations from the model is given by 

Gnn(f) = [l-y2y:x(f))Gyy(f) (7-137) 

Good models occur at those frequencies where Gnnif) is negligible compared to 
the total output spectrum Gyyif). 

7.5 MATRIX FORMULAS FOR MULTIPLE-INPUT/ 
MULTIPLE-OUTPUT MODELS 

General cases will now be considered as represented in multiple-input/multiple-
output models, where the number of output records is the same as the number of input 
records. It is straightforward to extend these results to cases of uneven numbers of 
input and output records. For the greatest physical insight into these problems, it is 
recommended that they be broken down into multiple-input/single-output problems 
and solved by the algebraic procedures outlined in Sections 7.2-7.4. If one desires to 
solve these multiple-input/multiple-output models by employing matrix techniques, 
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however, a consistent set of definitions and matrix formulas are stated in this section. 
Different but equivalent sets of definitions and matrix formulas are presented in 
Ref. 4. These matrix results provide no useful decomposition of measured output 
spectra into their components from measured input records. Also, error analysis 
criteria for these matrix results are considerably more complicated than error analysis 
criteria for the results computed in Sections 7.2-7.4, where a multiple-input/single-
output model is changed into a set of single-input/single-output models. Relatively 
simple error analysis criteria are developed in Chapter 9 for such single-input/single-
output linear models. 

7.5.1 Multiple-Input/Multiple-Output Model 

Let X be a column vector representing the Fourier transforms of the q input records 
Xi = X~i(f)> ' = 1 . 2, q, and Y be a column vector representing the Fourier 
transforms of the q output records Yk = Yk(f), k = 1, 2 , . . . , q; 

-xr 

x2 Yl 
x = Y = 

Λ . 

X*, Y* = complex conjugate(column) vectors of Χ, Y 

X', Y' = transpose (row) vectors of Χ, Y 

Gxx = ψΕ{Χ*Χ'} = input spectral density matrix (7.139) 

2 

Gyy = - £ {Y*Y ' } = output spectral density matrix (7.140) 

2 

G*y = γΕ{Χ*Υ'} = input/output cross-spectral density matrix (7-141) 
Ideally, Equations (7.139)—(7.141) involve a limit as Τ —> oo, but the limit notation, 
like the frequency dependence notation, is omitted for clarity. In practice, with finite 
records, the limiting operation is never performed. 

The basic matrix terms are defined as follows: 

Gtf (7-142) 

Gyiyj=lE[Yi'YJ] (7.143) 

Gxiy<=YE[X*Yj] (7.144) 
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2 
— I 
Τ 

"X,*" 

x2* 

ί 
G n 

G\2 

G21 G22 

Gql Gq2 

G\q 

Glq 

Xq\\ 

(7.145) 

J y,yi 

Jy2y2 

Jyqyi 

Jy\yq 

Jyiyq 

Jy<<y« 

f Γ7 . Ί 

2 
Y2 ••• Yq]> Gyy = ~E< Y2 ••• Yq]> 

γ* 
LIq J 

(7.146) 

Observe that and Gyy are Hermitian matrices, namely, G y = G? for all i and 7. 
For these Hermitian matrices, G* = G'^ and G* = G' 

Gyy — 

'X* ' 

2 x2* 
-E< 
Γ 

Xq . 

" G ! y i G\yi 

G 2 yi G 2 y 2 

[ϊΊ Y2 Yq] 

L G «Vl 

G2y, 

Jqy<i 

(7.147) 

In all these terms, Giyj = GXiyj{f), where the input precedes the output. 
Define the system matrix between X and Y by = H ^ ( / ) , where, as above, the 

input always precedes output. The matrix terms Hiyt 
HXin.Then 

Hry — 

lyi 

2yi H2y2 

Hiyq 

H2yq 

LHqy\ H, «V2 qyq 

(7.148) 

From this definition, it follows that 

Υ = H ' X (7.149) 
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where Hiy is the transpose matrix to H^. Thus 

#2y, 

Yi 
— 

H\y7 H2y2 

Λ . .H\yq 

H2yq 

Note that this gives the algebraic results 

(7.150) 

(7.151) 
1=1 

This is the logical way to relate any Yk to the inputs {X,}, where X\ passes through 
H\yk, X2 passes through H2yi, and so on, until Xq passes through Hqyt (see Figure 7.11). 

The consequences of these definitions will now be developed that provide matrix 
solutions for general multiple-input/multiple-output linear models when the number 
of outputs is the same as the number of inputs. It is assumed that all inverse matrix 
operations can be performed. 

Determination of and H^: 

Y = H^X 

Y' = (HiyX)' = χ Ή ς 

Χ*Υ' = X*X'H •xy 

Taking expected values of both sides and multiplying by (2IT) gives 

*xy 
G 0 Η n 

(7.152) 

(7.153) 

(7.154) 

(7.155) 

This shows how to obtain G^ from G^ and H^. Multiply both sides of Equa 
tion (7.155) by G x 

1 to obtain 

where 

G J is the/nveriematrix of Gx 

Equation (7.156) is the same as 

H r 
Gxx G*y 

(7.156) 

(7.157) 

(7.158) 

This shows how to obtain from G M and G ŷ. The result of Equation (7.155) is 
easily pictured as the product of two q χ q matrices G „ and H^, to give G ŷ. 

Determination of Gyy and G 

HjtyX 

Y' — (H^yX)' — X'H/̂ y 

Y* =(HiyX)* = H ^ X * 

(7.159) 

(7.160) 

(7.161) 
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Υ*Υ' = ( Η ς χ · ) ( Χ ' Η ^ ) 

Taking expected values of both sides and multiplying by (2/T) gives 

lyy 
H i* η χι 

xy^xxRxy 

(7.162) 

(7.163) 

(7.164) 

assuming the required inverse matrices exist. The result of Equation (7.163) is easily 
pictured as the product of three qxq matrices, , G ^ , and to give Gyy. The 
complex conjugate transpose matrix is as follows: 

It follows that 

Gxt - (Η'* ) GyyiKxy) 

HI* 

XJ LI* 

TJ* IT * 
H h i H2y2 

H\y, H2yq 

II * 

"qyi 
IT* 

nqyi 
(7.165) 

Equations (7.155), (7.158), (7.163), and (7.164) are the main matrix formulas to solve 
multiple-input/multiple-output problems. 

Matrix formulas will next be stated for a general multiple-input/single-output 
model. As before, the input records are not ordered or conditioned in any way. 

7.5.2 Multiple-Input/Single-Output Model 

X = 

'Χι' H\y 

X2 
H2y H2y 

A . .Hqy. 

Y = rl'xyX=[Hly H. 

Ϋ = Υ = X'R = [χ, χ. 

Y = Y 

2y ••• Hqy) 

x2 

H\y 

H2y 

\-Hqy J 

(7.166) 

(7.167) 

(7.168) 

X* X' = [Χι X2 (7.169) 
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The input spectral density matrix is here 

GXX=-E{X*X'} 

The input/output column vector is 

Gi\ G22 

Gql Gq2 

G\q 

G2q 

Jqq 

Gxy = -E{X*Y} 

Gly 

G2y 

Jqy 

The output spectral density function is 

2 _ , _ „ 2 
Gyy = —E{Y* Y'} = - fiJH^X'X'H^} = H ^ G „ H , 

Equation (7.172) is equivalent to writing 

Gyy - \H\y H2y 

Gn G12 

G21 G22 

lGq\ Gq2 

G\q 

G2q 

Gqq 

H\y 

H2y 

.Hqy. 

Also, 

yy - υ XX^^ti^ 

G * g~*f 
xx - « 

For the multiple-input/single-output model 

Gyy = Gyy = G yy 

G « = (H*y) ' G j y ( H ^ ) 1 

Gxx - ( H ^ ) lGyy{Hxy)
 1 

y = 

Equation (7.179) is equivalent to writing 

Gjry G^H^y 

Gly 
G2y 

— 

,Gqy. 

Gn G12 

G21 G 2 2 

L Gql Gq2 

G\q 

G2q 

Gqq 

H\y 

H2y 

.Hqy. 

(7.170) 

(7.171) 

(7.172) 

(7.173) 

(7.174) 

(7.175) 

(7.176) 

(7.177) 

(7.178) 

(7.179) 

(7.180) 

Note also that 

(7.181) 
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follows directly from Equation (7.179), where G ^ 1 is the inverse matrix of G ^ . It is 
assumed here that the model is well defined and that all inverse matrices exist. 

7.5.3 Model with Output Noise 

Consider now a more realistic multiple-input/single-output model where extraneous 
uncorrelated output noise can occur. Instead of the ideal Equation (7.167), r"is given 
by 

Y = H'xyX + N (7.182) 

where N = N(f) is the finite Fourier transform of the output noise n(t). In place of 
Equation (7.172), one now obtains 

Jyy 
GxcHry + Gn (7.183) 

No change occurs in Equations (7.179), so that G^ with extraneous noise present is 
still 

Gxy G x * H r y 

Thus, Gyy can be expressed as 

Jyy H^, Gxy + Gn 

(7.184) 

(7.185) 

The input spectral density matrix G ^ of Equation (7.170) is a q χ q Hermitian matrix. 
Define an augmented spectral density matrix of the output y(r) with the inputs x,{t) by 
the (q + 1) χ (q + 1) Hermitian matrix 

Gyxx — 

Gyy Gy\ Gy2 • Gyq 
G\y Gn Gn Glq 
Gly G2\ G22 G2q 

Gqy Gql Gql • Gqq 

(7.186) 

The determinant \Gyxx\ of this augmented matrix will now be shown to be zero for a l l / 
in an ideal noise-free situation, where G„„ = 0 in Equation (7.185). 

The Giy terms for i = 1,2,..., q in the first column of Gyxx (below the Gyy term) are 
linear combinations of the G y terms that appear in the columns of its row. That is, from 
Equation (7.170), 

Giy = J2HJ>GiJ ' = 1 . 2 , . . . , ? (7-187) 

For the ideal noise-free case, the output spectrum is 

Gyy — W* Gxy — H'xyGyx (7.188) 
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where the last relation occurs because Gyy = Gyy and = Gyx. Equation (7.188) is 
the same as 

Gyf = YiHiyGyi (7.189) 
1=1 

Thus, Gyy is a linear combination of the Gyi terms that appear in the columns of the 
first row of Gyxx. It follows that the matrix Gyxx is such that its entire first column is 
the result of linear combinations from corresponding terms in the other columns. 
By a theorem proved in Ref. 5, the determinant of this matrix must then be zero, 
that is 

\Gyxx\ = 0 when G O T = 0 (7.190) 

Return to the noise model where Gyy is given by Equation (7.185) with G „ „ / 0 . 
As noted earlier, no change occurs in Equation (7.179) whether or not extraneous 
output noise is present. Hence, by using the results derived for the noise-free 
case, the determinant IG^I of the matrix Gyxx can be computed at any / by the 
formula 

I G ^ I = G M | G „ | (7.191) 

where I G J is the determinant of the matrix G^. Note that this equation gives 
\Gyxx\ = 0 when G„„ = 0. 

From Equation (7.35), it follows that the multiple coherence function is given by 
the determinant formula 

(7.192) 

As a check on this formula, when q=\, corresponding to a single-input/single-output 
model, 

Gyxx — 
Jyx (7.193) 

Here, the determinants 

| G , „ | = G ^ - I G ^ I 2 | G „ | = G „ (7.194) 

Substitution into Equation (7.192) yields 

f = (GxxG \ G x y \ 2 \ = ( 7 . 1 9 5 ) 

which is the required ordinary coherence function for this situation. 
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7.5.4 Single-Input/Single-Output Model 

X = X' = X Y = Y' = y (7.196) 

H ^ = H ^ = H (7.197) 

Y = HX (7.198) 

Gxx=jE[X*X]=G*xx (7.199) 

Gyy = jE[Y*Y] = G^ (7.200) 

GV=^E[X'Y\ Gxy = Gyx (7.201) 

From Equations (7.198)-(7.201), it follows that 

GV = HG„ (7.202) 

with 

Jyy 

and 

Η = (7.203) 
Gxx 

Gyy=H*GxxH=\H\1Gxx (7.204) 

G „ = T % ( 7 · 2 0 5 ) 
l # l 

The relations given above are well-known results from Chapter 6 for single-input/ 
single-output problems. They are special cases of previously derived matrix 
formulas in Sections 7.5.1 and 7.5.2, and show that definitions used there are 
appropriate for multiple-input/multiple-output problems and multiple-input/single-
output problems. 

PROBLEMS 

7.1 Consider a multiple-input linear system where the q inputs are mutually 
uncorrelated except for nonzero mean values. Determine the equations for 

(a) the cross-spectrum between the ith input and the output that replaces 

Equation (7.13). 

(b) the autospectrum of the output that replaces Equation (7.14). 
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7.2 Consider a two-input/single-output system where the following spectral 
density functions are measured at a frequency of interest 

G]l = 3 G22 = 2 Gyy — 10 

G 1 2 = 1 +jl Giy = 4 +jl G2y = 3-7I 

Determine the conditioned spectral density functions 

(a) G22.1 

(b) Giy. 1 

(C) Gyy. I 

Also, determine the estimated frequency response function H2. 

7.3 Using the data in Problem 7.2, determine the multiple coherence function 
between the two inputs and the output. 

7.4 Consider a two-input/single-output system with uncorrelated output noise as 
shown below. 

G n = 2 A - O 

G22 = A-

H12 = 0 2 

Determine the output spectral density Gyy What would be the output spectral 
density if the two inputs were uncorrelated (Hi2 = 0)? 

7.5 In Problem 7.1, determine the coherence γ , 2 between the two inputs as well as 
the coherence y\ and j 2 y between each input and the output. 

7.6 In Problem 7.1, determine the multiple coherence function between the two 
inputs and the output. 

7.7 Using the data in Problem 7.4, determine the systems Liy and L^y that relate the 
uncorrelated inputs with autospectra G] 1 and G22.1 to the output, as defined in 
Equation (7.51). 

7.8 In a three-input/single-output model, the following input quantities are 
measured at a frequency of interest: 

Gn = 10 G 2 2 = 8 G33 = 6 

Gn = 2 +jl G 3 2 = 1-J2 G o = 3 + ;3 
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Determine an appropriate order for the three input records that would provide 

the most physically meaningful results from a conditioned analysis using the 

model in Figure 7.12. 

7.9 Consider an ideal two-input/single-output system where the frequency re-

sponse functions are defined by 

Assume the inputs satisfy 

Λ„(τ ) = 3δ(τ) G 2 2 ( / ) = 12 G 1 2 ( / ) = 8 

Determine the following quantities: 

(a) fn(f) 
(b) ^ ( r ) a n d G y y ( / ) 

(c) i ? l y ( r ) a n d G , y ( / ) 

(d) l\y{f) 

7.10 Verify Equations (7.125)-(7.127) and explain physically why Lly(f) is not the 
same as Aly(f). 
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C H A P T E R 8 

Statistical Errors in Basic Estimates 

As noted in Chapter 4, the descriptive properties of a random variable cannot be 
precisely determined from sample data. Only estimates of the parameters of interest 
can be obtained from a finite sample of observations. The accuracy of certain basic 
parameter estimates is discussed in Chapter 4 for the case of data in the form of 
discrete independent observations of sample size N. In this chapter, the accuracy of 
parameter estimates is developed for data in the form of continuous time history 
records of record length T. It is assumed that the data are single sample records from 
continuous stationary (ergodic) random processes with arbitrary mean values. 
Statistical error formulas are developed for 

Mean value estimates 

Mean square value estimates 

Probability density function estimates 

Correlation function estimates 

Autospectral density function estimates 

Attention in this chapter and the next chapter is restricted to those errors that are due 
solely to statistical considerations. Other errors associated with data acquisition and 
processing are covered in Chapter 10. 

8.1 DEFINITION OF ERRORS 

Referring to Section 4.1, the accuracy of parameter estimates based on sample values 
can be described by a mean square error defined as 

Mean square error = Ε[(φ - φ)2] (8.1) 

Random Data: Analysis and Measurement Procedures, Fourth Edition. By Julius S. Bendat 
and Allan G. Piersol 
Copyright © 2010 John Wiley & Sons, Inc. 
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where φ is an estimator for φ. Expanding Equation (8.1) yields 

Ε[(φ - φ)2} = Ε[(φ - Ε[φ] + Ε[φ] - φ)2} 

= Ε[(φ-Ε[φ})2}+2Ε[(φ - Ε[φ])(Ε[φ] - φ)} 

+ Ε[(Ε[φ]-φ)2} 

Note that the middle term in the above expression has a factor equal to zero, namely, 

Ε[φ-Ε[φ]]=Ε[φ]-Ε[φ]=0 

Hence, the mean square error reduces to 

Mean square error = Ε[(φ - Ε[φ])2} + Ε[(Ε[φ] - φ)2} (8.2) 

In words, the mean square error is the sum of two parts. The first part is a variance term 
that describes the random portion of the error, 

Var[0] = Ε[(φ-Ε[φ})2} = Ε[φ2)~Ε2[φ] (8.3) 

and the second part is the square of a bias term that describes the systematic portion of 
the error, 

#[φ]=Ε[1?[φ]]=Ε[(Ε[φ]-φ)2] (8.4) 

Thus, the mean square error is the sum of the variance of the estimate plus the square of 
the bias of the estimate, that is, 

Ε[{φ-φ)2} = νκ{φ]+ο2[φ] (8.5) 

It is generally more convenient to describe the error of an estimate in terms that 
have the same engineering units as the parameter being estimated. This can be 
achieved by taking the positive square roots of the error terms in Equations (8.3)—(8.5). 
The square root of Equation (8.3) yields the standard deviation for the estimate, called 
the standard error or random error, as follows: 

Random error = σ[φ] = \JΈ[φ2] -Ε2[φ] (8.6) 

The square root of Equation (8.4) gives the bias error directly as 

Bias error = b[ij>} = Ε[φ] - φ (8.7) 

The square root of the sum of the squared errors, as given by Equation (8.5), defines 
the root-mean-square (rms) error as 

rms error = ^Ε[{φ-φ)2) = \]σ2[φ] +b2\4>] (8.8) 

As a further convenience, it is often desirable to define the error of an estimate in 
terms of a fractional portion of the quantity being estimated. This is done by dividing 
the error by the quantity being estimated to obtain a normalized error. For φ φ 0, the 
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normalized random, bias, and rms errors are given by 

σ[φ]_^Ε[φ2]-Ε*[φ] 
Normalized random error = sr = 

Normalized bias error = Sb = 

Φ Φ 

ο[Φ\ Ε[φ] 

Φ Φ 

Ja^+b2^} ΙΕ[(Φ-Φ)2 

Normalized rms error = ε = - = γ ^ 

(8.9a) 

(8.9b) 

(8.9c) 

Note that the normalized random error εΓ is often called the coefficient of variation. 
For situations where e r is small, if one sets 

φ =φ2(1±εΓ) 

then 

Thus 

φ = φ(1±ε, , 1 / 2 . 

r-.2 
εΓ[φ ] « 2εΓ[φ] (8.10) 

In words, when εΓ is small, the normalized random error for squared estimates φί is 
approximately twice the normalized random error for unsquared estimates φ. 

When estimates φ have a negligible bias error b[4>] « 0 and a small normalized rms 
errors = ε[φ] = ο-[φ]/φ, says < 0.10, then the probability density functionp(<£) for 
these estimates can be approximated by a Gaussian distribution, where the mean value 
Ε[φ] « φ and the standard deviation σ[φ] = εφ, as follows: 

Ρ(Φ) exp 
- ( Φ - Φ Ϋ 

2(εφΥ εφ\/2π 

This gives probability statements for future values of the estimates φ, such as 

Prob[<£(l - ε) < φ < φ(1 - ε)} « 0.68 

Prob[^(l -2ε) <φ< φ{ί+2ε)] « 0.95 

(8.11) 

(8.12) 

A confidence interval for the unknown true value φ based on any single estimate 
φ then becomes 

Φ 
l+ε 

Φ 
1+2ε 

< Φ < 

<φ< 

\~ε 

Φ 
\-2ε 

with 68% confidence 

with 95% confidence 

(8.13) 
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For small ε, say ε < 0.10, this simplifies to 

[φ(1-ε)<φ< φ(1 + ε)} with 68% confidence 
(8.14) 

[φ( 1 - 2ε) < φ < φ( 1 + 2ε)} with 95% confidence 

These confidence claims can be made when ε is small even though the actual unknown 
sampling distribution for φ is theoretically chi-square, F, or some other more 
complicated distribution detailed in Chapter 4. 

For cases where normalized rms errors are not small, confidence interval state-
ments can still be made, as described in Section 4.4. Such matters will be discussed for 
spectral density estimates later in this chapter. Along with the derivation of errors, the 
consistency of various estimates will also be noted, as defined by Equation (4.7). 

Example 8.1. Approximate 95% Confidence Intervals for Mean Square and 
rms Value Estimates. Assume the mean square value of a signal x(f) is estimated to 
be tj/x = 4 with a normalized random error of εΓ — 0.05. Determine the approximate 
95% confidence intervals for the mean square value ψ2, and the rms value ψχ of the 
signal. 

From Equation (8.14), the approximate 95% confidence interval for ι//2, is 

[4(0.90) <ipi< 4(1.10)] = [3.6 < φ2 < 4.4] 

Using the result in Equation (8.10), s r = 0.025 for ψχ = 2, so the approximate 95% 
confidence interval for ψχ is 

[2(0.95) <ψχ< 2(1.05)] = [1.9 <ψχ< 2.1] 

Note that the confidence interval for ψχ is approximately the square root of the interval 
for φ2. 

8.2 MEAN AND MEAN SQUARE VALUE ESTIMATES 

8.2.1 Mean Value Estimates 

Suppose that a single sample time history record x(t) from a stationary (ergodic) 
random process {x(t)} exists over a finite time T. The mean value of {x(t)} can be 
estimated by 

px = j\x{t)dt (8.15) 

The true mean value is 
μχ = Ε[χ(ή] (8.16) 

and is independent of t because {x(t)} is stationary. The expected value of the estimate 
μχ is 

Ε[μχ 

1 Γ 1 1 Γ 1 f 
- x(t)dt =- E\x(t)]dt = - \ μχώ = μχ (8.17) 
/ J o J ι Jo 1 Jo 
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because expected values commute with linear operations. Hence μχ is an unbiased 
estimate of μχ, independent of T. Because μχ is unbiased, the mean square error of the 
estimate μχ is equal to the variance as follows: 

Var[/iJ = Ε[(μχ - μχ)
2} = £[£2] - μ\ (8.18) 

where from Equation (8.15), 

E\xtf)x(v)]diidi (8.19) 

Now the autocorrelation function R^x) of a stationary random process {x(t)} is 
defined by Equation (5.6) as 

Rxx(x) = E{x(t)x{t + x)} (8.20) 

From the stationary hypothesis, R^x) is independent of f, and an even function of τ 
with a maximum at τ = 0. It will be assumed that Rxx{x) is continuous and finite for all 
values of τ and that all periodic components in R^ix) have been removed at the onset. 
The autocovariance function C^x) is defined by Equation (5.8) as 

C«(r ) = / ? « ( τ ) - μ 2 (8.21) 

It turns out that whenever μχ φ 0, it is more convenient to work with C^x) than with 
R^ix). It will be assumed that C M ( r ) satisfies the integrable properties of Equation 
(5.122) so as to make {x(t)} ergodic. 

In terms of the autocovariance function C M ( r ) , the variance (mean square error) 
from Equations (8.18) and (8.19) becomes 

Varfc] = ~ J J C„(V - t)dv ^ = ^ f f ^ C„^)dx # 

1 f / ww ° ~* (8·22) 

The last expression occurs by reversing the orders of integration between τ and ξ and 
carrying out the ξ integration. This changes the limits of integration for χ and ξ as 
shown in the sketch below so that 

eT ρΤ-ξ i-O ΛΓ rT ρΤ-τ 

JO J-ξ J - T i - τ JO Jo 

= ί (7- + T ) C „ 0 ) d T + ί {Τ-τ)ϋ„{τ)άτ 
J - 7 Jo 

(r -M )c„(T)rfT 
- 7 

Now on letting Τ tend to infinity, Equation (8.22) becomes 
'OO 

l i m r V a r [ / t J = <Γ„(τ ) ί / τ<οο (8.23) 
Γ ^ ° ° J - 0 0 
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where Equation (5.122) is used, which provides that C ^ r ) and T C ^ T ) are absolutely 
integrable over ( - oo, oo) to justify passage to the limit inside the integral sign. In 
particular, Equation (8.23) shows that for large T, where |τ | < T, the variance is given by 

1 f°° 
V a r [ / i J « - C„{x)dx (8.24) 

Hence, when the integral is finite valued, Var[/ix] approaches zero as Τ approaches 
irvfmiry, proving that μχ is a consistent estimate of μχ. 

Consider the important special case where {x(t)} is bandwidth-limited white noise 
with a mean value μχ Φ 0 and a variance σχ. Its autospectral density function can be 
described by 

C ^ j i ^ (8.25) 

U f>B 

where Β is the bandwidth. The associated autocovariance function is given by 

' O O 

C„{z) = G„ i / )cos 2nfxdf - μ\ 
. ο 

_ / 5 ί η 2 π / 3 τ \ ( 8 · 2 6 ) 

Note that C ^ O ) = σχ and C„( r ) = 0 for τ = (η/2Β), where η is an integer. Thus 
points (1 /2B) apart are uncorrelated. They will be statistically independent if {x(t)} is 
also Gaussian. For this case, Equation (8.24) yields the approximate result when 
BT>5 that 

V a r [ / y « ^ | (8.27) 

When μχ φ 0, the normalized rms error is 
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From Equation (8.3), note that 

Ε\μχ\=Νκ[μχ] + μΙ (8.29) 

Hence, using Equation (8.27), 

Εψλ^^ϊ+μΙ (8-30) 

For Gaussian data, when μχφ0, the fourth-order moment from Equation (3.82) 
becomes 

Ε[μχ] = 3{Ε[μ2

χ}}2-2μχ (8.31) 

Then, neglecting terms of order (l/BT)2, 

V a r [ A 2 ] = £ ^ ] - { £ [ A 2 ] } 2 « ^ (8.32) 

Thus, the normalized mean square random error for bandwidth-limited Gaussian 
white noise is given by 

j m V g [ f f ] , , ^ ( σ λ 2 

* M - A ~BT{J 

Now, comparing with Equation (8.28), 

ε2

Γ\μχ]^4ε2[μχ} 

and 

εΓ\μ
2} ss 2ε[μχ] « -^=L (— 

This agrees with the general relation of Equation (8.10). 

(8.33) 

Example 8.2. Random Error in Mean Value Estimate. Consider a bandwidth-
limited white noise signal x(t) with a bandwidth of Β = 100 Hz, a mean value of μχ = 0, 
and a standard deviation of σχ = 2. If the mean value of x(t) is to be estimated by 
averaging over a record of length T= 2 s, determine an interval that will include the 
mean value estimate with a probability of approximately 95%. 

From Equation (8.27), the random error of the estimate μχ will have a standard 
deviation of 

2 
σ[μχ] = . = 0.10 

V

/ 2(100)(2) 

It then follows from Equation (8.12) that the probability is about 95% that an estimate 
μχ will fall within the interval 

[ - 0.2 < μχ < 0.2] 
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8.2.2 Mean Square Value Estimates 

As in Section 8.2.1, let x(i) be a single sample time history record from a stationary 
(ergodic) random process {x(t)}. The mean square value of [x(t)} can be estimated by 
time averaging over a finite time interval Τ as follows: 

ι2 1 ' Τ 

χ2 {ή dt (8.34) 

The true mean square value is 

Ψ2

Χ = Etfit)] (8.35) 

and is independent of t because [x(t)} is stationary. The expected value of the estimate 

Ψχ i s 

,21 1 t T 1 ( T 

Ψχ if E[x2(t)]dt = i\ = £ (8.36) 
' J o ' J o 

»2 τ 

Hence φχ is an unbiased estimate of ψχ, independent of T. 
The mean square error here is given by the variance 

νκ[φχ] = Ε[{φχ-ψ])2] = Ε[φ2

χ]-φ!ί 

= ±ζ\\Ε\χ2(ξ)χϊ(ν)]-ψ*χ)<1ηάξ 
(8.37) 

Assume now that {x(t)} is a Gaussian random process with a mean value μχ^0. Then 

the expected value in Equation (8.37) takes the special form, derived from Equation 

(3.82) as follows: 

£[*W(t?)] = 2 ( ^ ( τ , -ξ)- μ*) + φχ (8.38) 

From the basic relationship in Equation (8.21), we obtain 

R2xx(v -ξ)-ύ = CKv -ξ)+ 2nlCxx(V - ξ) (8.39) 

Hence 

= ^ f r ( i - y ) ( ^ W - ^ ) ^ (8-40) 

= ψ\Τ

 T{l~^yC2

xx(r)+2M

2

xCxx(x))dz 

For large T, where |r| <C T, the variance becomes 

Var 9 f°° 
- ( ^ ( τ ) + 2 μ ^ „ ( τ ) ) Λ (8.41) 
* J — 0 0 
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Λ 2 Λ 2 

Thus ψχ is a consistent estimate of t//2. because Var[i/fJ will approach zero as Τ 
approaches infinity, assuming that C ^ ( T ) and C^f r ) are absolutely integrable over 
( - oo, oo), as stated in Equation (5.122). 

Consider the special case of bandwidth-limited Gaussian white noise as defined by 
Equation (8.25). From Equation (8.26). 

sin 2πΒτ\ 

2πΒτ ) 

For this case, Equation (8 .41 ) shows that 

Var Ξ1 _ 
ΒΤ + BT 

, 2 ^ 2 

(8 .42) 

(8 .43 ) 

This is the variance of mean square value estimates, where Β is the total bandwidth of 
the data and Τ is the total record length of the data. In general, for μχ φ 0, the 
normalized rms error is 

£ 1 « . d . [ # ] 1 'ψΫ+^ίψ) (8 .44) 
Ψχ) y/BT V β J VBT 

For those cases where μχ = 0, the quantity i/r2. = cr2

x and results simplify to 

Var 
111 BT 

with 

BT 

(8 .45) 

(8 .46) 

Corresponding results for rms value estimates ψχ instead of ψχ, when μχ = 0, are found 
from Equation (8 .10) to be 

1 

2VBT 
(8 .47) 

Plots of Equations (8.46) and (8.47) versus the BTproduct are presented in Figure 8 .1 . 
Again for cases where μχ = 0, the normalized random error for mean square value 

estimates, as given for bandwidth-limited white noise in Equation (8 .46) , can be 
generalized for Gaussian random data with any arbitrary autospectral density function 
as follows. From Parseval's theorem in Equation (5.75), because SUf) is the Fourier 
transform of C a ( r ) and G ^ ( / ) = 2Sxx(f) w h e n / > 0, it follows that 

/•OO POO J»00 1 | *00 

C £ ( T ) A = = 2 S2

xx(f)df = - \ Glifidf (8 .48) 
J - o o J - o o JO Z J 0 

Substituting Equation (8 .48) into Equation (8 .41) with μχ = 0 yields 

Var Ψχ 
roc 

JO 

GzM)df (8 .49) 



Hence, the normalized variance of the mean square value estimate becomes 

and the normalized random error may be written as 

where 

B, 

Ψ: 
1 

=[^Gxx(f)df}2 

(8.50) 

(8.51) 

(8.52) 

is called the statistical bandwidth of the data. The statistical bandwidth Bs should not be 
confused with the noise spectral bandwidth Bn denned in Equation (5.106), which is the 
bandwidth of a stationary random process with an arbitrary autospectral density function 
that has the same mean square value as white noise with a bandwidth Β = Bn. Instead, the 
statistical bandwidth is the bandwidth of a stationary random process with an arbitrary 
autospectral density function where mean square value estimates have the same random 
error as the mean square value estimates of white noise with a bandwidth Β = Bs. In other 
words, Bs is that value of bandwidth that makes Equations (8.46) and (8.47) correct for 
any Gaussian random data with an arbitrary autospectral density function of G^f). 
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Example 8.3. Bandwidths for Random Noise with a Nonuniform Autospec-
trum. Assume a random process {x(r)} has an autospectral density function given by 

G„(f) = 
« 2 + ( / - / r ) (f+frY 

a<£fr 

A plot of this autospectrum for the special case where a = 0. l / r is shown in Figure 8.2. 
It is seen from Figure 8.2 that the autospectrum has a single peak with a maximum 
value of G „ ( / ) ~ 1 at the frequency f—fr and a spectral shape similar to the response 
of the resonant system shown in Figure 2.3 to a white noise input. For this random 
process, the noise bandwidth Bn defined in Equation (5.106) is given by 

B„ = + df -= πα 
[a2 + (f-frY a* + ( / + / r ) 2 1 

while the statistical bandwidth defined in Equation (8.52) is given by 

{ ί ο y + U-frT «2+ (/+/>)' 
df}2 

poo r A 2 

Jo 1«2 + ( / - Λ γ + β 2 + (/+/ , ) 

(™γ 
πα/2 

2πα 

It follows that Bs = 2Bn for this particular random process. It should be mentioned that 
these same bandwidth descriptions can be applied to filters or spectral windows by 
simply substituting the squared frequency response function magnitude \H(f)\2 of the 
filter or window for the autospectral density function Gyy(f) in Equation (5.106) and 
Gxxif) in Equation (8.52). 

Frequency, flfr 

Figure 8.2 Autospectral density function of example random process. 
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8.2.3 Variance Estimates 

Variance estimates can be obtained from 

(8.53) 

Now 

V a r [ ^ ] = £ [ ^ ] - ( £ [ ^ ] ) 2 (8.54) 

where 

Ε[όϊ]=Ε[φΖ

χ]-Ε\μϊ] 

Ε[σχ] = Ε[φχ-2φ2

χμ
2

χ+μχ\ 

= εΐφχ}-2Εΐφ2

χμ
2

χ]+ΕΓμχ] 
(8.56) 

(8.55) 

Hence 

Var [^ ] = V a # * ] + Var[£ 2] - 2(Ε[ψ2

χμχ] - Ε[φ2

χ]Ε\μ2

χ]) (8.57) 

Unlike mean value and mean square value estimates, variance estimates based 
on Equation (8.53) will be biased estimates. Specifically, for bandwidth-limited 
Gaussian white noise, substitution of Equations (8.36) and (8.30) into Equation (8.55) 
shows that 

This result agrees with Equation (4.11), letting N=2BT. 
Consider again the important special case of bandwidth-limited Gaussian white 

noise where the variance terms for φχ and μ2, are known from Equations (8.43) 
and (8.32), respectively. For Gaussian data, when μχ φ 0, the fourth-order moment 
from Equation (3.78) becomes 

(8.58) 

Hence, the bias error is 

(8.59) 

Ε[φ2

χμΙ}=Ε[ψ2

χ}Ε[μ

2

χ}+2(Ε[μ2

χ})2^2μ*χ (8.60) 

Equation (8.30) gives 

(8.61) 
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neglecting terms of order (l/BT)2. Hence 

ΨχΚ -Ε Ψχ Ε[?χ] 

2^-2 

ΒΤ 
(8.62) 

Now, substitutions of Equations (8.32), (8.43), and (8.62) into Equation (8.57) yield 

L xi B T 

which is independent of μχ. The normalized random error is then given by 

s . d . [ ^ ] _ 1 
' r l" χ. BT 

(8.63) 

(8.64) 

Note that the above result applies even if μχ Φ 0, whereas the result in Equation (8.46) 
for mean square value estimates should be used only when μχ = 0. In either case, the 
random error can be generalized for all Gaussian random data with an arbitrary 
autospectral density function Gxx(f) by substituting the statistical bandwidth Bs 

defined in Equation (8.52) for Β in Equation (8.64). From Equation (8.10), the 
normalized random error for the standard deviation estimate σχ is given by 

1 
ε,\σχ\ = • 

2JBT 
(8.65) 

The plots for the normalized random errors in mean square and rms value estimates in 
Figure 8.1 also apply to variance and standard deviation estimates with arbitrary mean 
values, as given in Equations (8.64) and (8.65). 

8.3 PROBABILITY DENSITY FUNCTION ESTIMATES 

Consider a probability density measurement of a single sample time history record 
x(t) from a stationary (ergodic) random process {x(t)}. The probability that x(t) 
assumes values between χ - (VV72) and χ + (W/2) during a time interval Γ may be 
estimated by 

P[x, W] = Prob 
W 

~2 

Τ 
1 X 

Ύ 

w 
~2 (8.66) 

where Δί, is the time spent by x(t) in this range during the ith entry into the range, and 
Tx — Σ Δί,. The ratio 7Vr is the total fractional portion of the time spent by x{t) in the 
range fx - (W/2), χ + (W/2)]. It should be noted that Tx will usually be a function 
of the value x. The estimated probability P[x,W] will approach the true probability 
P[x, W] as ^approaches infinity. Moreover, this estimated probability is an unbiased 
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estimate of the true probability. Hence 

P[x,W}=E\P[x,W}} = lim P[x,W] = lim -± 
Γ-» o o Τ—>σο Τ 

The probability density function p(x) is defined by 

p(x) = to L

I 1 7 = hm L

I I 7 = hm p{x) 
w^o W 

where 

p(x) 

Τ —• O G 

W->0 

w 

w 

(8.67) 

(8.68) 
Τ —* o o 

W-»0 

TW 
(8.69) 

is a sample estimate of p(x). In terms of the probability density function p(x), the 
probability of the time history x(t) falling between any two values xx and x2 is given by 

In particular, 

P[x, W] -= Prob 

Prob[jci < x(t) < x2] = 

W W 
χ—— < x(t) < X 

p{x)dx 

r* + (w/2) 

P( f ) 
Jx-{W/2) 

2 ~ v ' " 2 

Then, from Equation (8.69) 

E[P[x, W}} P[x, W] _ 1 ( x + { w / 2 ) 

E\p(x)] 

Thus for most p(x), 

W W 
.=±r 

(W/2) 
ρ(ξ)Ίξ 

Ε\ρ(χ)}φρ(χ) 

(8.70) 

(8.71) 

(8.72) 

(8.73) 

proving that p(x) is generally a biased estimate of p(x). 
The mean square error of the estimate p(x) is calculated from Equation (8.5) by 

E[(p(x)-p(x))2}=Var\p(x)}+b2\p(x)} 

where Var[/?(jc)] is the variance of the estimate as defined by 

VK\p{x))=E[(p{x)-E\p{x)])2] 

and fr[/?(x)] is the bias of the estimate as defined by 

b\p{x)]=E\p{x))-p{x) 

(8.74) 

(8.75) 

(8.76) 
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8.3.1 Bias of the Estimate 

An expression will now be derived for the bias term of Equation (8.76). In terms of the 
true probability density function, Equation (8.72) shows that 

•x+{W/2) 
ρ(ξ)άξ (8.77) 

χ-(W/2) 

By expanding ρ(ξ) in a Taylor series about the point ξ = χ, and retaining only the first 
three terms 

ρ(ξ) « p[x) + (ξ- x)p'{x) + {^£p"(x) (8.78) 

From the two relations 

and 

it follows that 

ex + (W/2) 
(ξ-χ)άξ = 0 (8.79) 

χ-(W/2) 

{x + (W/2) (£_χ)2 W 3 
{±YL"€ = ^ (8.80) 
3x-(W/2) 1 Z 4 

w2 

E\p(x)]*p(x)+—P"(x) (8.81) 
Thus, a first-order approximation for the bias term is given by 

% W 1 ^ / W (8-82) 

where p"{x) is the second derivative of p(x) with respect to x. 

Example 8.4. Bias in Probability Density Estimate of Gaussian Random 
Data. Probability density estimates are generally made using a window width of 
W< 0.2σχ. However, consider the case where a crude probability density estimate is 
made using a window width of W= σχ. Assume the data being analyzed are Gaussian 
random noise with a mean value of zero and a variance of unity. From Equation (8.72), 
the expected value of the estimate is given by 

α + 0.5 

E\p(x)}=— e^'2dx 
ν 2 π ix-o.5 

where solutions of the integral are available from Table A.2. For example, at the mean 
value (x = 0), E\p(0)] = 0.3830. From Table A. 1, however, p(0) = 0.3989. Hence, the 
actual bias error in the estimate of a Gaussian probability density function at its mean 



264 STATISTICAL ERRORS IN BASIC ESTIMATES 

value is given by Equation (8.76) as 

b\p(0)} = 0.3830 - 0.3989 = - 0.0159 

where the minus sign means the estimate is less than the actual value. 
Consider now the first-order approximation for the bias error given by Equation 

(8.82). For Gaussian data with zero mean value and unity variance, 

„"( x )= " ί 1 " * 2 ) e - * / 2 
P [ ) s/ϊκ 

Hence, at χ = 0, the bias is approximated by 

* P ( 0 ) ] = r - 4 = = - 0 . 0 1 6 6 
24\ /2π 

which is within 5% of the actual bias error computed earlier. 

8.3.2 Variance of the Estimate 

To evaluate the variance of an estimate p(x) it is necessary to know the statistical 
properties of the time intervals Δί, that constitute Tx. Unfortunately, such time 
statistics for a random process are very difficult to obtain. However, the general 
form of an appropriate variance expression for p(x) can be established by the 
following heuristic argument. 

From Equation (8.69), the variance of p(x) is given by 

V a r [ p ( x ) ] = - ^ V a r [ P ( * , W ) ] (8.83) 

where P(x, W) is the estimate of a proportion P(x, W). The variance for a proportion 
estimate based on Ν independent sample values is given by 

r-, P(x,W)\l-P(x,W)] / Ο Ω , λ 

Var[P(jc,l¥)] = v n v n (8.84) 

Substituting Equation (8.84) into Equation (8.83), and assuming P(x, W) « Wp(x) 
•C 1, the variance of probability density estimates may be approximated by 

V a r | £ W ] = ^ (8.85) 

where Ν is still to be determined. Now from the time-domain sampling theorem 
derived in Section 10.3.1, a sample record x(t) of bandwidth Β and length Tcan be 
completely reproduced with Ν = 2BT discrete values. Of course, the JV discrete values 
will not necessarily be statistically independent. Nevertheless, for any given sta-
tionary (ergodic) random process, each sample record will represent n = N/c2 

independent sample values (degrees of freedom), where c is a constant. Hence from 
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Equation (8.85), 

V " P W 1 « ^ ( 8· 8 6) 

The constant c is dependent on the autocorrelation function of the data and the 
sampling rate. For continuous bandwidth-limited white noise, experimental studies 
indicate that c « 0.3. If the bandwidth-limited white noise is digitized to N=2BT 
discrete values, the experimental studies indicate that c = 1.0, as would be expected 
from the results of Equation (8.85). 

8.3.3 Normalized rms Error 

The total mean square error of the probability density estimate p(x) is the sum of 
the variance defined in Equation (8.86) and the square of the bias defined in 
Equation (8.82). That is, 

(p{x)-p{x))2 c2PJx) 
2BTW 

W2p"{x) 

24 

Hence, the normalized mean square error is approximated by 

ελ\β{χ) 
W4 

2BTWp{x) 576 [p(x) 

J'{x) 

(8.87) 

(8.88) 

The square root gives the normalized rms error. 
It is clear from Equation (8.88) that there are conflicting requirements on the 

window width Win probability density measurements. On the one hand, a large value 
of Wis desirable to reduce the random error. On the other hand, a small value of Wis 
needed to suppress the bias error. However, the total error will approach zero as 
Τ —> oo if W is restricted so that W —> oo and WT —> oo. In practice, values of 
W< 0.2σχ will usually limit the normalized bias error to less than 1%. This is true 
because of the p"(x) term in the bias portion of the error given by Equation (8.88), 
Probability density functions of common (approximately Gaussian) random data do 
not display abrupt or sharp peaks, which are indicative of a large second derivative. 

8.3.4 Joint Probability Density Function Estimates 

Joint probability density function estimates for a pair of sample time history records 
x(t) and y(i) from two stationary (ergodic) random processes {x(t)} and (y(i)} may be 
defined as follows. Analogous to Equation (8.66), let 

P[X,Wx;y,Wy] = ψ (8.89) 

estimate the joint probability that x(t) is inside the interval Wx centered at x, while 
simultaneously y(t) is inside the interval Wv centered at y. This is measured by the ratio 
TXiy j T, where Tx v represents the amount of time that these two events coincide in time 
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T. Clearly, TXi> will usually be a function of both χ and y. This estimated joint 
probability will approach the true probability P[x, Wx; y, Wy] as Tapproaches infinity, 
namely, 

Ρ [χ, Wx; y, Wy] = lim Ρ [χ, Wx; y, Wy] = lim ^ (8.90) 

The joint probability density function p(x, y) is now defined by 

p * , y ) = hm . . . . . . — - = hm — — — ' - = hm p[x,y) (8.91) 
W i _ o WxWy τ -^οο WxWy 
Wy^Q W,->0 W , - . 0 

Wy^O Wy->0 

where 

P[x,Wx;y,Wy]=J^y_ 

^ WXWy TWxWy ^ ' 

Assume that Wx and Wy are sufficiently small that the bias errors are negligible. 
Then the mean square error associated with the estimate p(x, y) will be given by the 
variance of the estimate. As for first-order probability density estimates, this quantity 
is difficult to determine precisely by theoretical arguments alone. However, by using 
the same heuristic arguments that produced Equation (8.86), a general form for the 
variance can be approximated. Specifically, for the special case where x(t) and y (i) are 
both bandwidth-limited white noise with identical bandwidfhs B, 

Vai\p(x,y)] « ° 2 p ^ (8.93) \yy ,y)\ 2BTWxWy

 v ; 

where c is an unknown constant. 

8.4 CORRELATION FUNCTION ESTIMATES 

Consider now two sample time history records x(t) and y(r) from two stationary 
(ergodic) random processes {x{t)} and {y(r)}. The next statistical quantities of interest 
are the stationary autocorrelation functions /?»(τ) and Ryy(x) and the cross-correlation 
function R^x). To simplify the following derivation, the mean values μχ and μ ν will be 
assumed to be zero. For continuous data, x(t) and y(r), which exist only over a time 
interval Γ, the sample cross-correlation estimate Λ^,(τ) can be defined by 

- * - f 1x(t)y(t + x)dt 0<x<T 
Τ-τ)0 

ι C 
— γ τ *(*Μ-

(8.94) 

t + x)dt -T<x<0 
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To avoid the use of absolute value signs, τ will be considered positive henceforth 
since a similar proof applies for negative τ. The sample autocorrelation function 
estimates Λ ^ ( τ ) and Ryy(z) are merely special cases when the two records coincide. 
That is, 

Λ » ( τ ) = 

* x y ( t ) = 

1 

Τ-τ 

1 

Τ-τ 

Τ-τ 

0 
•Τ-τ 

x(t)x{t + τ)ώ 0 < τ < Τ 

(8.95) 

γ(ήγ(ί + τ)ώ 0<τ<Τ 

Thus by analyzing the cross-correlation function estimate, one derives results that are 
also applicable to the autocorrelation function estimates. 

If the data exist for time Τ + τ instead of only for time T, then an alternative 
definition for Λ ^ ( τ ) is 

Λ „ ( τ ) = i [ x{t)y{t + τ)ώ 0 < τ < Τ (8.96) 
' J o 

This formula has a fixed integration time Γ instead of a variable integration time as in 
Equation (8.94) and is the way the correlation functions have been defined previously. 
Note that for either Equation (8.94) or Equation (8.96), mean square estimates of x(t) 
ory(r) are merely special cases when τ = 0. For simplicity in notation, Equation (8.96) 
will be used in the following development instead of Equation (8.94). The same final 
results are obtained for both definitions, assuming the data exist for time Γ + τ. 

The expected value of the estimate Λ^,(τ) is given by 

E\Rxy(x)\= U T Ε[χ(ήγ(ί + τ)}ώ 
1 Jo 

! (t (8-97) 
= f\0

Rxy^)dt = Rxy^ 

Hence, Λχν(τ) is an unbiased estimate of ^ ( τ ) , independent of T. The mean square 
error is given by the variance 

V a r [ ^ ( T ) ] - Ε[(&ν{τ) -Κν(τ))
2} = £ [ / ζ ( τ ) ] - ^ ( τ ) 

1 (Τ [Τ (8-98) 
= Τ* Jo Jo ^ " Μ " + τ ) * ( ν Μ ν + τ ^ _

 RUr^ dvdu 

At this point, in order to simplify the later mathematical analysis and to agree with 
many physical cases of interest, it will be assumed that the random processes {x(t)} 
and (y(r)} are jointly Gaussian for any set of fixed times. This restriction may be 
removed by substituting certain integrability conditions on the non-Gaussian parts of 
the random processes without altering in any essential way the results to be derived. 
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When {jc(f)} and {y(t)} are jointly Gaussian, it follows that [x(t)} and (y(r)} are 
separately Gaussian. 

For Gaussian stationary random processes with zero mean values, the fourth-order 
statistical expression is obtained from Equation (5.135) as follows: 

E[x(u)y(u + z)x(v)y(v + τ)] = Λ ^ τ ) + Λ„ (ν - u)Ryy(v - u) 

+ Rxy(v — u + x)Ryx(v — u — T) 

Hence, the variance expression may be written as 

(8.99) 

Var[4 , ( r ) ]=^j o

r 
(Rxxiv - ll)Ryy(v - U.) 

+ Rxy(v — u + x)Ryx{v — u - z))dv du (8.100) 

The second expression occurs from the first by letting ξ = ν - u, άξ = dv, and then 
reversing the order of integration between ξ and u. Now, 

lim r V a r [ ^ ( T ) ] = ( Λ « ( ί ) Λ ^ ( ί ) + Λ χ ν ( ί + τ ) Λ , χ ( ί - τ ) ) ί / ί < oo (8.101) 

assuming Rxx(C)Ryy^) and RxyORyx(Q are absolutely integrable over ( - ο ο , ο ο ) . This 
proves that Rxy(r) is a consistent estimate of Rxy(r), and for large T, has a variance 
given by 

Var[4y(? 
1 

+ R ^ + z)R^ - (8·102) 

Several special cases of Equation (8.102) are worthy of note. For autocorrelation 

estimates, Equation (8.102) becomes 

1 f°° 
Var[£„(τ)] « - ( / £ (£ ) + R„(£ + ~ 

* J — o o 

At the zero displacement point τ — 0, 

Var[4c(0)] 

(8.103) 

(8.104) 

The assumption that R ^ T ) approaches zero for large τ shows that 

R\M) > R„(i + z)R„{i - τ) for τ » 0 
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Hence for large τ, 

1 f°° 
V a r [ M i ) ] « - *}J£)dt (8.105) 

1 J — o o 

which is one-half the value of Equation (8.104). 

8.4.1 Bandwidth-Limited Gaussian White Noise 

Consider the special case where [x(t)} is bandwidth-limited Gaussian white noise 
with a mean value μχ = 0 and a bandwidth Β as defined in Equations (8.25) and (8.26). 
For sample records x(t) of length T, from Equation (8.103), the variance for ^ ( τ ) is 
given conservatively by 

V a r [ * „ ( T ) ] * ^ [ J £ ( 0 ) + / £ ( T ) ] (8.106) 

This reduces to Equation (8.45) at the point τ = 0. Similarly, when both x{t) and y(r) 
are samples of length Τ from bandwidth-limited Gaussian white noise with mean 
values μχ — μγ = 0 and identical bandwidths B, it follows from Equation (8.102) that 

1 
V a r [ / ^ ( r ) ] 

2BT 
(8.107) 

This result requires that Τ be sufficiently large that Equation (8.102) can replace 
Equation (8.100). Satisfactory conditions in practice are Τ > 10|τ| and BT>5. 

For μχ = μγ = 0 and R^ix) φ 0, the normalized mean square error is given by 

S2[Rxy[X 
Varfcy(T)] 1 

2BT 
1 + 

Λ„(0)Λ ν ν (0) 
(8.108) 

The square root gives the normalized rms error e, which includes only a random error 
term because the bias error is zero if the record length is longer than Τ + τ. Thus, for 
cross-correlation function estimates, 

ε Rr 

1 

/2BT 
[1 + P ^ 2 « 

l ' / 2 

where 

Pxy (^) = • 

(8.109) 

(8.110) 
( 0 ) ^ ( 0 ) 

is the cross-correlation coefficient function. Note that Λ^(τ) = C^,(r) when μχ = 
μγ = 0. When x(t)=y(t), at the special point τ = 0, the quantity ^ ( 0 ) = φχ and 
ΡΧΪ(0) = 1 so that one obtains 

•[Rxx(0)} Ψχ 
1 

BT 
(8.111) 
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in agreement with Equation (8.46). In general, for autocorrelation function estimates, 

/2BT 

where 

PxxKV 
Λ«(0) 

Equation (8.112) is plotted in Figure 8.3. 

(8.112) 

(8.113) 

(8.114) 

8.4.2 Noise-to-Signai Considerations 

Some applications of Equation (8.109) are worthy of note. Suppose x(t) and y(r) are 
given by 

x(t) =s(t)+m{t) 

y{t)=s(t) + n(t) 

where s(t), m(t), and «(/) are mutually uncorrelated. Then 

i M t ) = Λ„(τ) = Λ„(0)ρ„(τ) = 5ρ„(τ) 

Λ«(0) = Λ„(0) +Λ™,(0) = 5 +Λ/ 

Μ ° ) = Λ„(0) +/?„„(0) = S + 

(8.115) 

1.00 

5 10 20 50 100 200 500 1000 
ΒΤ 

Figure 8.3 Normalized random error of autocorrelation function estimates. 
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It follows from Equation (8.108) that the normalized mean square error is 

(S + M)(S + N)' 

At τ = 0, where pss(0) = 1, 

1 + (8.116) 

*2 ^ ( 0 ) ] * 2BT12 + { M / S ) + { N / S ) + (M/5)^/5^ 
(8.117) 

These relations are useful for two-detector systems where x{t) and y(r) of Equa-
tion (8.114) measure the outputs of the two detectors containing a common signal s(t) 
but uncorrelated noises m(t) and n(t). 

CASE 1. M = 0 where (N/S) > 1: 

(8.118) 

CASE 2. M=N where (N/S) > 1: 

(8.119) 

These two cases can represent important physical applications. For example, in Case 
1, x(t) might be a noise-free reference signal being cross-correlated against a 
corrupted received signal y(t). In Case 2, a corrupted received signal y(r) is being 
autocorrelated against itself. For any given value of (N/S) » 1, a much larger value 
of BT is required in Case 2 than in Case 1 to achieve a desired mean square error. 
Applications for these and other formulas in this chapter are given in Ref. 1. 

8.4.3 Location Estimates of Peak Correlation Values 

Previous results in this section give random error formulas that indicate how well one 
can estimate the magnitudes of peak values of /c^(z) and Ρ*χχ(τ). There remains the 
difficult related problem of determining the precise location where these peak 
correlation values occur. For definiteness, assume that ^ ( τ ) has the form associated 
with bandwidth-limited white noise, namely, 

*»M=JW0)(^y^) (8.120) 

The maximum value of /?^(τ) occurs at τ = 0. Expansion of sin 2πΖ?τ near τ = 0 yields 

ήηΐπβτ w (2πΒτ) - i _ _ ^ _ L (8.121) 
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Thus near τ = 0, the estimate Λ«(τ) is given by 

Λ«(τ) 1 -
2{πΒτ)2 

where the mean value is 

£[Λ„(0)] = Λ„(0) 

(8.122) 

(8.123) 

Hence, Rxx(0) is an unbiased estimate of Rxx(0). The variance in these estimates is 
given by 

Var [&,(())] =E[{Rxx(0)-Rxx(0)}2} « ^ ( π δ ) 4 / 4 ( 0 ) £ [ τ 4 ] 

The normalized mean square error is then 

(8.124) 

(8.125) 

Assume next that these values of τ are such that τ follows a Gaussian distribution 
with zero mean value and variance σ 2 ( τ ) , namely, 

μ , ( τ ) = £ ( τ ) = 0 

σ 2 ( τ ) = £ [ τ 2 ] 

Then, the fourth-order moment in Equation (8.125) satisfies 

Ε [ τ 4 ] = 3 σ 4 ( τ ) 

It follows that 

* 2 [ 4 * ( 0 ) ] ^ ( * B ) V 4 ( t ) 

This proves that 

σ ι ( τ ) * ^ { * [ Λ „ ( 0 ) ] } 1 / 2 

(8.126) 

(8.127) 

(8.128) 

(8.129) 

The 95% confidence interval for determining the location where the peak value occurs 
is now 

' - 2 σ , ( τ ) < τ < 2σι(τ)] (8.130) 

Example 8.5. Time-Delay Estimate from Cross-Correlation Calculation. 
Assume that two received time history records, x(t) and y(r), contain a common 
signal s(t) and uncorrelated noises, m(t) and n(t), such that 
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x(t) = s(t)+m(t) 

y(t)=s{t-x0) + n(t) 

From the developments in Section 5.1.4, the maximum value in the cross-correlation 
function 

Rxy(r) = RSS(T - τ 0 ) 

will occur at τ = τ 0 , which defines the time delay between the received signal s(t) in 
x(t) and y(r). Now assume that s(t) represents bandwidth-limited white noise with 
a bandwidth of Β = 100 Hz, and the noise-to-signal ratios in x(t) and y(t) are given by 
M/S — N/S = 10. If the available record lengths for x(t) and y(t) are Τ = 5 s, determine 
the accuracy of the time-delay estimate τ 0 based on the time of the maximum value of 
the cross-correlation estimate Λ^,(τ). 

From Equation (8.119), the normalized random error of the cross-correlation 
estimate at its maximum value is approximated by 

e[Rxy(*o)] ~e[Rss(0)] 
102 

L(2)(100)(5). 

1/2 

0.32 

Note that a more exact error is given by Equation (8.117) as £ = 0.35. Now the 
standard deviation of the estimate το is approximated from Equation (8.129) by 

, . 0 .93(0.35) 1 / 2 

g l ( T ) * »(ioo) = 0 0 0 1 7 s 

Hence, from Equation (8.130), an approximate 95% confidence interval for the time 
delay τ 0 in seconds is given by 

[ΐ 0 - 0.0034 < τ 0 < τ 0 + 0.0034] 

It should be mentioned that more accurate time delay estimates can often be achieved 
using the Hubert transform procedures discussed in Chapter 13 or the phase analysis 
procedures detailed in Ref. 2. 

8.5 AUTOSPECTRAL DENSITY FUNCTION ESTIMATES 

Assume the autospectral density function associated with a sample time history record 
x{t) is estimated using the filtering-squaring-averaging procedure detailed in Section 
5.2.3 and illustrated in Figure 5.5. From Equation (5.68), the autospectral density 
function estimate computed by this procedure is 

γ "2 

G M ) = ^ \ χ2{ί,Β^)ώ = ^ ^ ί (8.131) 
Bel Jo Be 

where x(f, Be, t) is that portion of x(t) passed by an ideal rectangular bandpass filter 
with a bandwidth of Be centered at frequency / , and ψχ(/, Be) is an estimate of the 
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mean square value of x(f, B e , t). The true mean square value that would be computed 
with an infinite averaging time is given by 

rf + (BJ2) 

*l{f,Be)=\ β„(ξ)άξ (8.132) 

Equations (8.131) and (8.132) show that 

tf(f,Be) 1 f + i / / (f Β ) 1 Ρ + \Β< l> 

Be ae Jf-(Be/2) 
(8.133) 

Thus, for most Gxx{f), 

M / G ^ / ) (8.134) 

so that Gxxtf) is generally a biased estimate of G^if), 
The mean square error of the estimate Gxx(f) is calculated from Equation (8.5) by 

E[(G„(f) - GM))2} = Var[G„(/ ) ] + b2[Gxx(f)} (8.135) 

where VarfGx^/)] is the variance of the estimate as defined by 

Var[G„( / ) ] = £ [ ( G „ ( / ) - £ [ G „ ( / ) ] ) 2 ] (8.136) 

and i [ G x c ( / ) ] is the bias of the estimate as defined by 

= E[G„(f)] - GM) (8-137) 

8.5.1 Bias of the Estimate 

An expression for the bias term of Equation (8.136) may be derived by the procedure 
used to derive the bias term for probability density estimates in Section 8.3.1. 
Specifically, by expanding G^) in a Taylor series about the point ξ = / a n d retaining 
only the first three terms, it follows from Equation (8.133) that 

E[GM)} * GM) + ^G"M) (8.138) 

Thus, the bias term is approximated by 

b[GM)] ™%G"„(f) (8.139) 

where G " x c ( / ) is the second derivative of G^if) with respect t o / a n d is related to 
Rxx(t) by the expression 

G"M) = - 8 π 2 t2RM)e-j2,lfTdT (8.140) 

It should be emphasized that Equation (8.139) is only a first-order approximation of 
the bias error, which is applicable for cases where B 2 G " « ( / ) < G x t ( / ) . Because 
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Figure 8.4 Illustration of bias error introduced by frequency smoothing of spectral density estimates. 

autospectra in practice often display sharp peaks reflecting large second derivatives, 
this may provide an inadequate measure of the bias error in some cases. Generally 
speaking, Equation (8.139) will exaggerate the degree of bias in estimates where 
Β]0"Μ) is large. 

The bias error in Equation (8.139) is derived assuming that the spectral estimation 
is accomplished using an ideal rectangular spectral window as defined in Equa-
tion (8.132) and illustrated in Figure 8.4. It will be seen in Section 11.5 that spectral 
estimation procedures in practice involve spectral windows that deviate widely from 
an ideal rectangular form. Nevertheless, Equation (8.139) constitutes a useful first-
order approximation that correctly describes important qualitative results. In parti-
cular, the bias error increases as G"(f) increases for a given Be, or as Be increases for a 
given G"(f). Also, it is clear from Figure 8.4 that the bias error is always in the 
direction of reduced dynamic range; that is, spectral density peaks are underestimated 
and spectral density valleys are overestimated. 

Example 8.6. Illustration of Bias Error in Autospectrum Estimate. Assume 
that white noise is applied to a single degree-of-freedom system defined in Section 
2.4.1. From Example 6.3, the displacement response of the system will have an 
autospectral density function given by 

C (f)= -
5 7 [ l - ( / / / , ) T + [2{f//»f 

where G is the spectral density of the excitation in displacement units, f„ is the 
undamped natural frequency of the system, and ζ is the damping ratio of the system. As 
pointed out in Equation (2.25), the peak value of Gyy(f) occurs at the resonance 

frequency fr = f„ yj 1 — 2ζ2. For the case where ζ <C 1 so that fr « / „ , the second 
derivative of Gyy(f) at the frequency fr yields 

( - 8 / f l ? ) G w f t ) 
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where Br is the half-power point bandwidth of the resonance peak given by Equation 
(2.27) as 

Hence, the normalized bias error from Equation (8.139) becomes 

This concludes Example 8.6. 

To check the accuracy of Equation (8.141), consider a more exact solution for the 
bias error in the autospectral density analysis of the response of a single degree-of-
freedom system to white noise when ζ <C 1 so that fr « / „ . Specifically, from 
Equation (8.133), 

1 (f, + (Be/2) G (Jr + (He 

E[Gyy(fr)]=W\ Gyy(f) df = -
r/r + (B«/2) df 

/2)[l-(///«)T + [2# / /„ 

Now 

Hence, 

[1 - if/fn)2}2 + Wlfnf = {[(/ / /«) " ΙΕ///») + I ] ) ' + Wlfnf 

« 4 [ ( / / / „ ) - l ] 2 + 4 £ 2 w h e n / « / „ 

Γ (fr + {Be/2) 
df 

:m [{f/fn) - l ] 2 + £ 2 

Letting χ = (///„) - 1, it follows that dx = df/f„ and 

E[G>y(fr)] = 
Gfn^ 

4Be 

•B./V. fr 

-Β,/2ΑΧ2+ζ2 

From integral tables, 

dx 
tan" 

Hence, 

E[Gyy(fr)] = 
Gfn 

_ 1 

α + ζΊ~ζ 

G / " t a n - ' i A 
UBe 

Noting that the half-power bandwidth Br « 2[fr « 2£fn when ζ < 1, it follows that 
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A t / = / „ , the actual value of Gyyif) is 

Q 

Gyy(fn) = 4^2 = Gyy(f^ 

Thus, 

which is in agreement with a formula determined by different procedures in Ref. 3. In 
terms of the normalized bias error defined in Equation (8.9b), 

^[Gyy(fr)]=^n-l(^j-l (8.142) 

The normalized bias error results given by Equations (8.141) and (8.142) are 
compared in Figure 8.5. It is seen from this figure that the two results are in good 
agreement for resolution to half-power point bandwidth ratios of Be jBr < 0.5, which 
corresponds to a normalized bias error of about - 9%. When adequate record lengths 
are available, it is common practice to choose Be = Br/4so that a negligible bias error 
of sb w - 2% is obtained. Even for relatively short record lengths where the resolution 
bandwidth might be selected using the minimum mean square error criterion in 
Section 8.5.3 to follow, it is unusual to choose a resolution bandwidth of greater than 
Be = Br/2. Hence, the simpler and more conservative result in Equation (8.141) is 
usually an acceptable approximation for the maximum bias error in autospectral 
density estimates of data representing the response of lightly damped mechanical and 
electrical systems. See Ref. 4 for further details on the bias errors in autospectral 
density analysis when the resolution filter has other than an ideal rectangular 
bandwidth. 

0.0 0.2 0.4 0.6 0.8 

Resolution to talf-powec point bandwidth ratio. BJB, 

Figure 8.5 Normalized bias error for autospectral density estimates of single degree-of-freedom system 
response to white noise. 
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8.5.2 Variance of the Estimate 

The most direct way to arrive at a variance expression for autospectral density 
estimates is to apply the results derived in Section 8.2.2 as follows. From Equa-
tion (8.131), the estimate 

BeG„(f)=£(f,Be) (8.143) 

is an unbiased estimate of the mean square value of x(t) within the bandwidth Be 

centered at/. The true value is given by i /^( / , Be) = fi«Gxc(/) when G ^ ( / ) is constant 
over the bandwidth Be. This will be approximately the case if Be is sufficiently small. 
The result of Equation (8.45) applies to these estimates with R^iO) = BfiM)- Hence 

Va r [B g G„( / ) ] * * ^ - ( / ) (8.144) 
tsei 

But, because Be is a constant, 

Var[f l e G„(/)] = Z? 2Var[G^(/)] (8.145) 

This gives for the variance of the estimate 

V a r [ G „ ( / ) ] « ^ ^ (8.146) 

The result in Equation (8.146) is based on the assumption that the filtered data 
behave like bandwidth-limited Gaussian white noise. This is an excellent assumption 
in practice when the filter resolution bandwidth Be is small. The central limit theorem 
applies to indicate that the filtered data should be more Gaussian than the input data, 
and the fact that Be is small means that the output spectrum must be essentially 
constant. Hence, for small Be, one can strongly state that the normalized random error 
will be 

* r [ G „ ( / ) ] « - ^ = (8.147) 

Note that this result is independent of frequency. 

8.5.3 Normalized rms Error 

The total mean square error of the autospectral density estimate G^f) is the sum of 
the variance defined in Equation (8.146) and the square of the bias defined in 
Equation (8.139). That is, 

G2M) 

BeT + 
B2

eG"M) 

24 
(8.148) 
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Hence, the normalized mean square error is approximated by 

ε 
G"M) 

Gxx(f) 
(8.149) 

The square root gives the normalized rms error. 
Two important features of the error expression for autospectral density estimates 

should be noted. First, there are conflicting requirements on the resolution bandwidth 
Be, namely, a small value of Be is needed to suppress the bias portion of the error, while 
a large value of Be is desired to reduce the random portion of the error. This is similar to 
the situation discussed in Section 8.3.3 for the window width Win probability density 
measurements. The problem here, however, is more critical since autospectra in 
practice often display sharp peaks (large second derivatives), which aggravate the bias 
error problem. Second, the random portion of the error includes only the resolution 
bandwidth Be, and not the total data bandwidth B. Hence, the random portion of the 
error is a function primarily of analysis parameters rather than unknown data 
parameters. This greatly enhances the practical value of Equation (8.149) in experi-
mental design and data analysis. 

Example 8.7. Illustration of Optimum Resolution Bandwidth Selection. As in 
Example 8.6, consider the response of a single degree-of-freedom system to white 
noise. The maximum frequency resolution bias error in an autospectral density 
estimate of the response data for this case is given by Equation (8.141). Hence, the 
maximum normalized mean square error in an autospectral density estimate is given 
from Equation (8.149) by 

*'[<w>]^+±(|)4 

If one assumes that the system has light damping (ζ <C l ) , then Equation (2.27) 

applies and 

The resolution bandwidth that will minimize the normalized mean square error is 
obtained by taking the derivative of the error with respect to Be, equating to zero, and 
solving for the optimum resolution bandwidth Ba. This yields 

See Ref. 5 for further discussions of optimum resolution bandwidths for the 
computation of autospectral density estimates. 
Two aspects of Equation (8.150) are important to note. First, the optimum resolution 
bandwidth is inversely proportional to the one-fifth power of the averaging time T, 
meaning that the optimum bandwidth is not very sensitive to the averaging time. For 
example, the value of BD for T= l s is less than 60% greater than the Ba for T— 10. 
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Second, the optimum resolution bandwidth is a function of the four-fifths power of the 
system resonant frequency/„ meaning that the optimum bandwidth is almost directly 
proportional to the resonance frequency assuming a constant damping ratio ζ. This 
explains why a resolution bandwidth that is proportional to the bandwidth center 
frequency (referred to as a constant percentage resolution bandwidth) is often 
recommended for the autospectral density analysis of random data representing the 
resonant response of lightly damped mechanical and electrical systems. 

8.5.4 Estimates from Finite Fourier Transforms 

In Section 8.5.2, an expression is derived for the variance of autospectral density 
estimates obtained by the filtering, squaring, and averaging operations illustrated in 
Figure 5.5. This approach evolves from the definition of the autospectral density 
function given in Section 5.2.3 and was implemented in the past by analog instru-
ments, as well as currently on digital computers using computational procedures 
involving digital filters. However, as detailed in Chapter 11, most current digital data 
analysis procedures for the estimation of autospectral density functions use finite 
Fourier transform computations that evolve from the definition of the autospectral 
density function given in Section 5.2.2. The finite Fourier transforms are accom-
plished using a fast Fourier transform (FFT) algorithm and, hence, are commonly 
referred to as FFT procedures. The normalized random error for the spectral estimates 
obtained using FFT procedures is equivalent to that given in Equation (8.147), but the 
parameters in the error expression are different. The direct derivation of the normal-
ized random error for autospectral density estimates using FFT procedures may add 
insight into the spectral density estimation error problem. 

Consider the autospectral density function of a stationary (ergodic) Gaussian 
random process [x(t)}, as defined in Equation (5.67). Specifically, given a sample 
record x(t) of unlimited length T, the autospectrum is 

G « ( / ) = 2 lim lE\\X(f,T)\2} (8.151) 

where X(f, T) is the finite Fourier transform of x(t), that is, 

tT 

X(f,T) x(t)e-j2nfldt (8.152) 

Now an estimate of G»(/) can be obtained by simply omitting the limiting and 
expectation operations in Equation (8.151). This will yield the "raw" estimate 

G „ ( / ) = i | X ( / , r ) | 2 (8.153) 

with the narrowest possible resolution Δ / = (1/7). 
To determine the variance of this estimate, observe that the finite Fourier transform 

X(f, T) is defined by a series of components at frequencies f=k/T, k = 1,2,3, 
Further observe that X{f, T) is a complex number where the real and imaginary parts, 
XR.(f T) and Xj(f, 7), can be shown to be uncorrelated random variables with zero 
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means and equal variances. Because a Fourier transformation is a linear operation, 
XR(f, T) and Xj{f, T) will be Gaussian random variables if x(t) is Gaussian. It follows 
that the quantity 

\X(f,T)\2 =X2

R(f,T)+XJ(f,T) (8.154) 

is the sum of the squares of two independent Gaussian variables. Hence, from the 
definition of Equation (4.16) as applied in Equation (4.37), each frequency compo-
nent of the estimate G^if) will have a sampling distribution given by 

where χ\ is the chi-square variable with η = 2 degrees-of-freedom. 
Note that the result in Equation (8.155) is independent of the record length T; that 

is, increasing the record length does not alter the distribution function defining the 
random error of the estimate. It only increases the number of spectral components in 
the estimate. If the record length is interpreted as a measure of the sample size for the 
estimate, this implies that Equation (8.153) produces an inconsistent estimate of 
autospectral density functions, as previously stated in Section 5.2.2. Furthermore, the 
random error of the estimate is substantial. Referring to Equations (4.19) and (4.20), 
the mean and variance of the chi-square variable are η and 2n, respectively. Then the 
normalized random error is 

,\r m l σ\°Μ)\ V2^ J2 
S r [ G M ] = ~ G M r = ^-=\ln (8'156) 

For the case at hand, η = 2, so ετ = 1, which means that the standard deviation of the 
estimate is as great as the quantity being estimated. This would be an unacceptable 
random error for most applications. 

In practice, the random error of autospectra estimates produced by Equa-
tion (8.153) is reduced by computing an ensemble of estimates from nd different 
(distinct, disjoint) subrecords, each of length T, and averaging the results to obtain a 
final "smooth" estimate given by 

2 " d 

< U / " ) = — Σ \ Η ί , Τ ) \ 2 (8.157) 

Since each spectral calculation in Equation (8.157) adds two statistical degrees-of-
freedom to the estimate, it follows that 

* r [ G „ ( / ) ] = . / — = — (8.158) 

The minimum total record length required to compute the autospectrum estimate is 
clearly 

Tr = ndT (8.159) 
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and the resolution bandwidth of the analysis is approximated by 

Hence, nd = {TrlT)^BeTr, so Equation (8.158) is equivalent to 

1 

(8.160) 

(8.161) 

in agreement with Equation (8.147) where Tr replaces T. 
Referring back to Equation (8.155), the sampling distribution for an autospectral 

density estimate may now be written as 

GM) ^xl 
GM) η 

η = 2nd 
(8.162) 

From Equation (4.47), it follows that a (1 — a) confidence interval for G ^ / ) based 
on an estimate όχχ(/) is given by 

Xn;a/2 
η = 2η</ (8.163) 

As before, if the normalized random error is relatively small, say sr < 0.10, then 95% 
confidence intervals can be approximated from Equations (8.14) and (8.158) by 

(8.164) 

It should be mentioned that the random errors in spectral density calculations might be 
somewhat greater than indicated in the foregoing equations, depending on the exact 
details of the calculations, as discussed in Section 11.5.2. 

8.5.5 Test for Equivalence of Autospectra 

An estimate G ( / ) of an autospectral density function G(f) will have a sampling 
distribution that is approximately Gaussian if the number of averages nd is large, say 
nd > 30. It is shown in Section 8.5.4 that the mean value (assuming no bias) and 
variance of the estimate are given by 

E[G(f)} = G(f) 

Var[G(/)] =^G\f) 
nd 

(8.165) 

(8.166) 

Hence, a (1 — a) confidence interval for G( / ) based on a measurement G(f) may be 
approximated by 

G(f)[ 1 - z a / 2 ] / £ ) < G(f) < G(f) (l +za/2]jld 
(8.167) 
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where zaii is the ΙΟΟα/2 percentage point of the standardized Gaussian distribution. 
To arrive at Equation (8.167), it is assumed that za/2y/^/nd ^ 1> so that 

1 ±Za/2\ ~ (8.168) 

A logarithmic transformation of the estimate G(f) to log G ( / ) has the effect of 
producing a distribution that is closer to Gaussian than the original distribution. The 
sample mean value and variance of log G ( / ) become 

£ [ l o g G ( / ) ] ^ l o g G ( / ) 

1 
Var[ logG(/ ) ] ~ 

nd 

(8.169) 

(8.170) 

Thus the variance here is independent of frequency. Now, a (1 - a) confidence 
interval for log G ( / ) may be approximated by 

lOgG(f)-Za,2\l-
"d 

< l o g G ( / ) < l o g G ( / ) + z a / 2 1 (8.171) 

This result can be derived directly from Equation (8.167) to provide a heuristic 
explanation for Equations (8.169) and (8.170). This derivation uses the assumption 
that za/2\/T/nd < 1, so that 

l0g(1±Ze/2vS)^±V2vS (8.172) 

Consider now two different autospectral density function estimates G\ ( / ) and 
G2(f) obtained under different conditions—for example, from two different sample 
records or from two different parts of the same sample record. The problem is to 
decide whether or not these two autospectra are statistically equivalent over some 
frequency interval (fm fb) of bandwidth Β =fb — fa. 

Assume that each of the two autospectral density function estimates is based on a 
resolution bandwidth Be, where Nf bandwidths are needed to cover the frequency 
range of interest. That is, 

Β 

B~e 

(8.173) 

Further assume the number of averages for each estimate are ndX and n^, respectively, 
meaning that the averaging time (record length) for each estimate may be different 
even though the resolution bandwidth is the same. From Equations (8.169) 
and (8.170), the sampling distributions of the logarithm of the estimates in the ith 
bandwidth are approximated by 
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log G, (/;•) = ? 

log G 2 (/;) = )> 

log G, (fi),-
n<t\ 

log G 2 ( / • ) , — 
»d2 

(8.174) 

where yĵ u, σ 2 ] is a Gaussian distributed random variable with a mean of μ and a 
variance of σ2. Now, if the two sample records in question have the same autospectral 
density function G(f) = G}(f) = G 2 ( / ) , it follows from Equations (8.174) that 

log — = y 

Hence, from Section 4.6, the statistic 

(8.175) 

' 1 J _ 

1</1 «d2. 

- 1 

Σ 
1=1 

log 

12 

<h{fi) 

has a chi-square distribution with Nf degrees-of-freedom. That is, 

•Xi n = N3 if 

(8.176) 

(8.177) 

The result in Equation (8.176) provides a basis for testing the hypothesis that 
G, ( / ) = G 2 ( / ) . The region of acceptance for the hypothesis test is 

X 2 < x l , a n=Nf (8.178) 

where a is the level of significance for the test, as detailed in Section 4.5.1. 

8.6 RECORD LENGTH REQUIREMENTS 

The error expressions derived in Sections 8.2-8.5 provide ways to assess the statistical 
accuracy of various parameter estimates after an experiment has been completed. It 
would be desirable if these error expressions could also be used to predict the 
minimum record lengths required in future experiments to obtain data with a 
predetermined degree of accuracy. The error formulas do relate the total record 
length Tr to the random error er for each parameter estimate. However, these 
relationships generally include other factors, primarily the autospectrum of the data, 
which are usually unknown prior to data collection. If one could assume that the data 
have an autospectrum that can be approximated by bandwidth-limited white noise, 
then the minimum total record length or minimum number of averages needed to 
achieve a desired accuracy, ignoring bias errors, would be as shown in Table 8.1. 
Unfortunately, such an assumption is rarely justified in practice so, in most cases, the 
relationships in Table 8.1 constitute only crude guidelines. 
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There is one important parameter estimate where reasonable assumptions often 
can be made that justify the direct use of a result in Table 8.1, namely, an autospectral 
density estimate. From Equation (8.147), under the assumptions that the autospec-
trum is relatively smooth over the resolution bandwidth Be and the data are Gaussian, 
it is seen that the random portion of the normalized rms error of an estimate is a 
function only of the total record length Tr and the resolution bandwidth Be, which are 
both analysis parameters and not parameters of the data. The only problem then is to 
select an appropriate value for the resolution bandwidth Be. This often can be 
accomplished when the data represent the response of a lightly damped mechanical 
or electrical system, as detailed in Section 8.5.1. In this case, the potential bias error 
for a selected resolution bandwidth Be can be predicted by either Equation (8.141) 
or (8.142). Specifically, using Equation (8.141), the resolution bandwidth required to 
achieve a desired maximum bias error sb can be predicted by Be = 7^fr(7>sb)

x^2, 
where ζ a n d / r are the damping ratio and resonance frequency, respectively, of the 
lightly damped system. At least lower bound values for ζ a n d / r commonly can be 
predicted based upon past experience to achieve a conservative estimate for Be, which 
in turn can then be used to predict the minimum required record length from 
Tr = (Β,,ε2) ~as given in Table 8.1. 

The foregoing discussions of record length selections for autospectral density 
function estimates are particularly important for two reasons. First, the spectrum is the 
single most important parameter of random data for many engineering applications. 
Second, spectral estimates are generally the most demanding of the various parameter 
estimates considered in this chapter from the viewpoint of required record length for a 
given error. This latter fact is easily verified by comparing the error expression for 
autospectra estimates to the error expressions for other parameter estimates. It is seen 
that the denominators of the error terms for other parameter estimates generally involve 
factors that are larger than the value Be required for well resolved spectral estimates. 

Table 8.1 Record Lengths and Averages for Basic Estimates 

Required Total Required Number 
Estimate Record Length of Averages 

At 
Tr 

A? Tr BP, \μχ) 

Tr 

1 
— 4B~S. 

Tr 
1 

~B?R 

iV = 4 

Tr 

_ 1 
ΨΒΡ(χ)ε} 

N - 1 , 

Tr =5δ?[ι+ρ^ 2ω] N = ^+Px~y2 

G„(f) Tr 

1 
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PROBLEMS 

8.1 The mean value of a bandwidm-limited Gaussian white noise random signal χ 
(/) is estimated from a sample record of length T. Assume the standard 
deviation of x(t) is σχ — 1 and the standard deviation of the estimate is 
σ[μχ] = 0 . 1 . Determine the normalized random error ε associated with 
estimates of the following parameters from the same sample record. 

(a) Mean square value. 

(b) rms value. 

(c) Standard deviation. 

8.2 Assume x{t) is a sample record of bandwidth-limited Gaussian white noise 
where μχ = 0.10, σχ = 0.20, Β = 200 Hz, and T= 2 s. Compute the normalized 
rms error for 

(a) mean value estimates. 

(b) mean square value estimates. 

8.3 Which of the following parameter estimates usually involves a bias error as 
well as a random error? 

(a) Mean value. 

(b) Mean square value. 

(c) Probability density function. 

(d) Autocorrelation function. 

(e) Autospectral density function. 

8.4 Consider two bandwidth-limited white noise records x(t) and y(t) of bandwidth 
Β and length Γ where 

x(t) = s(t) + «i (/) and y(t) = s{t) + n2 (t) 

Assume s(t), n\(i), and n2(t) are mutually uncorrelated with zero mean values 
and mean square values of ψ2 = S, i/^, = N\, and i/^2 = N2. Determine 

(a) the normalized rms error of the autocorrelation estimates Rxx(r) and Ryy{r) 
at τ = 0. 

(b) the normalized rms error of the cross-correlation estimate ^ ( τ ) at τ = 0. 

(c) the result in (b) if N\ > S and N2 > 5. 

(d) the result in (b) if W, = 0 and N 2 > S. 

8.5 Given the two bandwidth-limited white noise signals defined in Problem 8.4, 
determine an approximate 95% probability interval for the time delay τ 
corresponding to the maximum value of the estimated cross-correlation 
function ^ ( τ ) . 

8.6 Assume the probability distribution (not density) function of a Gaussian 
random process [x(t)} is estimated by ensemble-averaging procedures over 
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N = 100 independent sample records. Determine the normalized random 
error of the estimate P(x) at χ = μ. Is there a bias error in this estimate? 

8.7 Assume the probability density function of a Gaussian random signal x(t) is 

estimated using a window width of W — 0.25σχ. Determine the bias error of the 

estimate p(x) atx = px + 2.5σχ. 

(a) by exact calculations. 

(b) using the first-order approximation of Equation (8.82). 

8.8 Assume a random process [χ(ή} has an autospectral density function given by 

X X V J > [ l - ( / / 1 0 0 ) 2 ] 2 + [0.1//100] 2 

If the autospectrum is to be estimated from sample data, determine 

(a) the resolution bandwidth Be and the total record length Tr required to limit 
the normalized bias error to eb < 0.05 and the normalized random error to 
£V = 0.10. 

(b) the resolution bandwidth Be that will minimize the mean square error of 
the estimate a t / = 100 Hz, assuming that a total record length of Tr = 60 s 
is collected. 

8.9 Let 1(f) = | G x t ( / ) / G " „ ( / ) | 1 / 2 and define km as the maximum value of k(J). 
Determine the requirements on Be and Γ as a function of Xm if the normalized 
bias error and the normalized random error of an autospectral density function 
estimate are each to be less than 5%. 

8.10 Consider an autospectral density function estimate G „ ( / ) computed from 
finite Fourier transform operations and the ensemble-averaging procedure 
described in Section 8.5.4. Suppose a sample record x{t) of total length 
T r = 60s is divided into 12 independent contiguous segments. Determine the 
95% confidence interval for the true value G^if) when G^f) = 0.30 units 2/ 
Hz. What is the normalized random error of the estimate? 
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C H A P T E R 9 

Statistical Errors in Advanced 
Estimates 

This chapter continues the development from Chapter 8 on statistical errors in random 
data analysis. Emphasis is now on frequency domain properties of joint sample 
records from two different stationary (ergodic) random processes. The advanced 
parameter estimates discussed in this chapter include magnitude and phase estimates 
of cross-spectral density functions, followed by various quantities contained in single-
input/output problems and multiple-input/output problems, as covered in Chapters 6 
and 7. In particular, statistical error formulas are developed for 

Frequency response function estimates (gain and phase) 

Coherence function estimates 

Coherent output spectrum estimates 

Multiple coherence function estimates 

Partial coherence function estimates 

9.1 CROSS-SPECTRAL DENSITY FUNCTION ESTIMATES 

Consider the cross-spectral density function between two stationary (ergodic) 
Gaussian random processes {*(/)} and (y(r)}, as defined in Equation (5.66). Speci-
fically, given a pair of sample records x(t) and y(r) of unlimited length T, the one-sided 
cross-spectrum is given by 

G„{f) = lim lE{X*(f,T)Y(fJ)} (9.1) 

Random Data: Analysis and Measurement Procedures, Fourth Edition. By Julius S. Bendat 
and Allan G. Piersol 
Copyright © 2010 John Wiley & Sons, Inc. 
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where X(f, T) and Y(f, T) are the finite Fourier transforms of x(t) and y(i), 
respectively-that is, 

tT 
X(f)=X(f,T) x{t)e-j2,rf'dt 

ο 
•τ 

y(t)e-j27rftdt 

(9.2) 

Y(f) = y(f,T) 
"0 

It follows that a "raw" estimate (no averages) of the cross-spectrum for a finite record 
length Τ is given by 

Gxy = 2,[x\f)Y(f)] (9.3) 

and will have a resolution bandwidth of 

Be~Af = j (9.4) 

meaning that spectral components will be estimated only at the discrete frequencies 

/ * = ! * = 0 , 1 , 2 , . . . (9.5) 

As discussed in Section 8.5.1, the resolution Be«(1/7) in Equation (9.4) establishes 
the potential resolution bias error in an analysis. It will be assumed in this chapter, 
however, that Τ is sufficiently long to make the resolution bias error of the cross-
spectrum estimates negligible. 

As for the autospectrum estimates discussed in Section 8.5.4, the "raw" cross-
spectrum estimate given by Equation (9.3) will have an unacceptably large random 
error for most applications. In practice, the random error is reduced by computing an 
ensemble of estimates from nd different (distinct, disjoint) subrecords, each of length 
T, and averaging the results to obtain a final "smooth" estimate given by 

2 " d 

ndTj^ 

It follows that the minimum total record length required to compute the cross-
spectrum estimate is Tr — ndT. Special cases of Equation (9.6) produce the autospectra 
estimates Gxx(f) and Gyy(f) by letting x(t) = y(t). 

The quantities X(f) and Y(f) in Equation (9.2) can be broken down into real and 
imaginary parts as follows: 

X(f) = XK(f)-jXi(f) Y(f) = YR{f)-jYi{f) (9-7) 

where 

x(t)cos2Trfidt X,(f) = 
ο 

x(t)sin2vftdt (9.8) 
ο 

Yn(f) = \ y(t)cos27rftdt Y,(f) = \ y(t)sm27Tfldt (9.9) 
Jo Jo 

If x(t) and y(t) are normally distributed with zero mean values, the quantities in 
Equations (9.8) and (9.9) will be normally distributed with zero mean values. From 
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Equation (9.3), omitting the frequency/to simplify the notation, "raw" estimates are 
then given by 

G„ = I (X2

R + Χ2,) Οπ = \{Y2 + Yj) (9.10) 

Gxy = Cxy-jQxy = \Gxy\e~j''xy (9.11) 

where 

2 - 2 
CXy = j{XRYR + XiY,) QXy = j{XRYI-XiYR) (9.12) 

fo|2 = + t a n ^ - g y c ^ (9.13) 

For values computed only at / = d e f i n e d in Equation (9.5), one can verify from 
Equations (9.8) and (9.9) that 

E[XRX,} = E[YRY,) = 0 

E[X2

R] = E[X2} = ( r / 4 ) G „ 

E\Y2}=E{Y2] = (T/4)Gyy (9.14) 

E[XRYR] = E[X,Y,\ = (r /4)Cq, 

E[XRY,] = -E[X,YR] = [T/A)Qxy 

Hence, E[Cxy] = and E[Qxy} — Qxy with 

Ε[όχχ] — Gxx E[Gyy] = Gyy (9.15) 

E[GV] = EiC^-jElQ^] = Cty-jQ^ = Gv (9.16) 

The Gaussian assumption for any four variables au a2, a3, and with zero mean 
values gives from Equation (3.73) 

Ε[α\αιατ,α4\ = Ε[α\α2\Ε[ατ,α4\ + Ε[α\α3]Ε[α2α^} + E[a\a/\\E[a2a3] (9.17) 

Repeated application of this formula shows that 

Λ , 

= ^E[XR + 2XJXl+X*}=2Gl 
(9.18) 

where the following relationships are used: 

E[XR]=3{E[XR])
2 = 3{T/A)2GXX 

E[X2X2} = E[X2]E[X2

R] = ( Γ / 4 ) 2 ( % (9.19) 

E[X^)=3{E[X2})2 = 3{T/A)2G2

XX 
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Similarly, one can verify that 

E[Gyy\ = 2G 2

y 

= \(GxxGyy + 3C2

xy-Q%) 

(9.20) 

(9.21) 

(9.22) 

9.1.1 Variance Formulas 

Basic variance error formulas will now be calculated. By definition, for any unbiased 
"raw" estimate A, where E[A] =A, its variance from Equation (8.3) is 

Hence 

Var[A] = E[A}-A2 

Vax[Gxx) = G2

xx V a r [ G w ] = G 
yy 

Var[Cxy]=l-(GxxGyy + C2

xy-Q
2

xy) 

V a r [ G ^ ] = I ( G „ G w + 

Observe also from Equations (9.13), (9.21) and (9.22) that 

-2 - 2 . 
£ [ | G ^ ] = £ [ C J + E[Q„] = G ^ + |G 'xy\ 

(9.23) 

(9.24) 

(9.25) 

(9.26) 

(9.27) 

Hence 

*y\ Var[|G^|J = G « G W = 2 
(9.28) 

where y2^ is the ordinary coherence function defined by 

y2 Jxyl 
GxxGyy 

(9.29) 

In accordance with Equation (4.9), the corresponding variance errors for "smooth" 
estimates of all of the above "raw" estimates will be reduced by a factor of nd when 
averages are taken over nd statistically independent "raw" quantities. To be specific, 

V a r [ G j = G2Jnd Var[G w ] = G2

yy/nd 

Var[|G^|] = [G^2/y2nd 

(9.30) 

(9.31) 



CROSS-SPECTRAL DENSITY FUNCTION ESTIMATES 293 

CJf) 

\jxy(f)\\/n~d 

[G^Gyy^ + ClifhQlyif)]1'2 

Cv(f)y/SQ 

Q*y(f) [Gxx(f)Gyy(f) + ( 4 (f)-£%,(/)] ' / 2 

Qxy(f)y/2n~d 

From Equation (8.9), the normalized rms errors (which are here the same as the 
normalized random errors) become 

4 4 , ] = ^ = • [ 0 * 1 = ^ 

'^-ιώά (933) 

The quantity ly^l is the positive square root of y1 . Note that ε for the cross-spectrum 
magnitude estimate IGy varies inversely with ly^l and approaches (l/y/h~d) as y1^ 
approaches one. 

A summary is given in Table 9.1 on the main normalized random error formulas for 
various spectral density estimates. The number of averages nd represents nd distinct 
(nonoverlapping) records, which are assumed to contain statistically different in-
formation from record to record. These records may occur by dividing a long 
stationary ergodic record into nd parts, or they may occur by repeating an experiment 
nd times under similar conditions. With the exception of autospectrum estimates, all 
error formulas are functions of frequency. Unknown true values of desired quantities 
are replaced by measured values when one applies these results to evaluate the random 
errors in actual measured data. 

9.1.2 Covariance Formulas 

A number of basic covariance error formulas will now be derived. By the definition in 
Equation (3.34), for two unbiased "raw" estimates A and B, where E[A] = A and 
E[B] = B, their covariance is 

Cov(A, Β) = £[(ΔΑ)(ΔΒ)] = E[{A-A)(B-B)} = E[AB]-AB (9 .34) 

where the increments AA — (A—A) and AB = (B — B). The estimates A and Β are said 
to be uncorrelated when Cov(A, B) — 0. 

Table 9.1 Normalized Random Errors for Spectral Estimates 

Estimate Normalized Random Error, e 

G„if), Gyy{f) J _ 

\Gxy(f)\
 1 
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The application of Equation (9.17) shows that 

EiCtyQty] = ^E[(XRYR +X,Y,)(XRY,-XIYR)} = 2 C ^ (9.35) 

Hence, by Equation (9.34), at every frequency fk 

C O V ( Q , Qxy) = CtyQxy 

Similarly, one can verify that 

(9.36) 

Also, 

Hence, 

Cov(G„, Cty) = G^Ciy Cov(G„, 4 y ) = G „ & y 

C O V ( G W , Cxy) = GyyCxy COV (Gyy , Q^) = GyyQ^y 

EiG^Gty] = ^E[(X2

R+XJ)(Y2

R + Y2)] = G^Gyy + \Gryl2 

C o v ( G x l , G x y ) = \Gxyl2 = ylyG^Gyy 

The following covariance results will now be proved. 

CO\(G„, θ ν ) = 0 COV(Oyy, θ ν ) = 0 

α>ν(|< ι̂Λ) = ο 

(9.37) 

(9.38) 

(9.39) 

(9.40) 
(9.41) 

In words, is uncorrelated with G^, Gyy, and |G^,| at every frequency fk. To prove 
Equation (9.40), note that 

^xy 

as illustrated below. Then, differential increments of both sides yield 

CxyAQty-QxyACxy 
se^dxyAdry 

C2 

^xy 
where 

Thus 

sec 2 0„ = 
C2 

*~xy 

A a CxyAQxy QxyACxy 
M w ΤΤΓΩΓ 

I Gey I 

(9.42) 
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Now, one can set 

Αθχγ — Θχγ—Qxy &Qxy — Qxy~Qxy ACxy = Cxy Cxy 

Then, using Equation (9.37), 

α > ν ( σ „ , β ^ ) = £ [ ( Δ σ „ ) ( Δ β ^ ) ] 

w T ^ C o v ( G „ , G ^ ) - - ^ _ C o v ( G e , C x y ) = 0 

\Gxy\ \Gxy\ 

Similarly 

C o v i G j y , ^ ) = 0 
This proves Equation (9.40). 

To prove Equation (9.41), note that 

icy 2 = 

Taking differential increments of both sides yields 

iGrylAlG^I « CxyACxy + QxyAQxy 
Thus 

Now, Equations (9.42) and (9.43) give 

θ3ν(\Ον\,θν) = Ε[{Α\βν\)(Αθν)] 

J - j E^AC^ + β ^ Δ β ^ ^ Δ β ^ - β ^ Δ ^ ) ] 

* { ( ^ - β ^ Ο ο ν ^ , β ^ ) 

+ C ^ G ^ ( V a r [ f 2 j - V a r [ C ^ ) } = 0 

This proves Equation (9.41). 
From Equation (9.43), one can also derive the following covariance results: 

Cov(G„, |G^|) = £[(AG„)(A|G^|)] « G j G ^ I 
(9.44) 

C o v ( G w , |G^|) = £[(AG W )(A|G^|)] « Gyy I Gjy I 

C o v ( 4 y , \GV\) = £ [ ( Δ β , ) ( Δ | α >M ~ 

C ^ l G ^ | ( l + y 2

y ) 

Q x y l ^ K l + y j ) 
,2 (9-45) 

2y: 
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Equation (9.43) offers a way to derive an approximate formula for Var[|G^|] as 
follows: 

Var[|G^|] = Ε (A |G„|) 
1 

'xy\ 

{CtyACty + QtyAQty) 

£ρ {ϋ% Var(C^) + 2 C ^ Cov(C^, Q^) + Q% Var(f i^)} 

"T GwOyv Η -Γ-
\G*y\ 2y2 

I XV 

(9.46) 

This approximate formula from Ref. 1, based on differential increments, is 
inferior to the direct derivation producing the more exact formula of Equation (9.28), 
namely, 

Var | G r 

Jxy\ 

fxy 
(9.47) 

Note that the variance from Equation (9.47) will always be greater than the variance 
from Equation (9.46) because 

ι l+yl 

y2 

Ixy 

> 2y2 

IXV 

for all yly < 1 

Consider the coherence function defined by 

Jxy\ 
"^xy f~< (-· 

^xx^yy 

Logarithms of both sides give 

(9.48) 

log y x y = 2 l og |G^ | - log G „ - l o g G yy 

Then, differential increments of both sides show that 

Ay% 2A\Gxy\ AGxx AG-
yy 

ixy Jyy 

where 

A)?xy 7xy 7xy 

AGxx = Gxx — Gxx 

A\Gxy\ - \Gxy\-Gxy 

^(jyy (jyy (jyy 



CROSS-SPECTRAL DENSITY FUNCTION ESTIMATES 297 

Cov(C^, |G^|)= ^ 2 

Cov«L, |G^|) = xy, l^xyi; — 

Thus 

^ - * { ^ - ^ } 
Now, using Equations (9.40) and (9.41), it follows directly from Equation (9.49) that 

C o v ( % , ^ ) = 0 (9.50) 

In words, the estimates y2^ and are uncorrelated at every frequency fk. 
A summary is given in Table 9.2 of some of the main covariance formulas derived 

in this section. 

9.1.3 Phase Angle Estimates 

A formula for the variance of "raw" phase estimates (expressed in radians) can be 
derived from Equation (9.42) as follows: 

Var[0„] = Ε\(ΑΘ^)2] * - ^ E U C ^ Q ^ - ^ A C ^ ) 2 

L J I G^ I L 

1 
{c% Var(^)-2Cxy!2xy Cov(Cxy, Qxy) + 0% Var(Cxy)} (9.51) 

2y2 

xy 

Table 9.2 Covariance Formulas for Various Estimates 

C0V (C A 7 ,G^,) = CxyQxy 

COV(G„, Cxy) = GxjGxy 

Cov{GJZ,Qxy) = G„QXy 

Cov(G„,G w ) = \Gxyf = y^G^G^ 

Cov(G„,fl^) = 0 

Cov(|G v | ,e v) = 0 

C o v ( ^ , e v ) = 0 

Cov(Gxx,|Gxy|) = G„|Gxy| 
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For "smooth" estimates of from nd averages, one obtains 

sA[h]=imjp^ (9.52) 

This gives the standard deviation of the phase estimate θ^,. Here, one should not use 
the normalized random error because may be zero. The result in Equation (9.52) 
for the cross-spectrum phase angle, like the result in Equation (9.33) for the cross-
spectrum magnitude estimate, varies with frequency. Independent of nd for any nd > 1, 
note that s.d.[r)^] approaches zero as y2^ approaches one. 

Example 9.1. Illustration of Random Errors in Cross-Spectral Density 
Estimate. Consider a pair of sample records x(t) and y(i), which represent stationary 
Gaussian random processes with zero mean values. Assume that the coherence 
function between the two random processes at a frequency of interest is y2^ = 0.25. 
If the cross-spectral density function Gxy(f) is estimated using nd = 100 averages, 
determine the normalized random error in the magnitude estimate and the standard 
deviation of the phase estimate at the frequency of interest. 

From Equation (9.33), the normalized random error in the magnitude of the cross-
spectral density function estimate will be 

41^1]=^^ = 0.20 
Note that this is twice as large as the normalized random errors in the autospectra 
estimates given by Equation (9.32). The standard deviation of the phase estimate is 
given by Equation (9.52) as 

(0 75 ) 1 , / 2 

s . d . [ 0 j = v ' ;. = 0.12rad 

or about 7°. 

9.2 SINGLE-INPUT/OUTPUT MODEL ESTIMATES 

Consider the single-input/single-output linear model of Figure 9.1 where 

X(f) = Fourier transform of measured input signal x(t), assumed noise free 

Y(f) = Fourier transform of measured output signal y(i) = v(f) + n{t) 

X(f) · Hx {f) j ( 
V(f) ' v 

•Yin 

Figure 9.1 Single-input/single-output linear model. 
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V(f) = Fourier transform of computed output signal v(r) 

N(f) = Fourier transform of computed output noise n{f) 

Hxyif) = frequency response function of optimum constant-parameter linear 

system estimating y(t) from x{t) 

Assume that x(t) and y{t) are the only records available for analysis and that they are 
representative members of zero mean value Gaussian random processes. Data can be 
either stationary random data or transient random data. For definiteness here, 
stationary data will be assumed and spectral results will be expressed using one-
sided spectra. Normalized error formulas are the same for one-sided or two-sided 
spectra. 

From Section 6.1.4, the following equations apply to this model in Figure 9.1 to 
estimate various quantities of interest. The optimum frequency response function 
estimate is 

Gxx{j) 

where Go-(/) and G^f) are "smooth" estimates of the input autospectral density 
function and the input/output cross-spectral density function, respectively. The 
associated ordinary coherence function estimate is 

f (/) = . \G*yU)\2
 ( 9 . 5 4 ) 

where Gyy(f) is a "smooth" estimate of the output autospectral density function. The 
coherent output spectrum estimate is 

Gw(/) = l * M / ) | 2 G „ ( / ) = llyifiGyyif) (9.55) 

The noise output spectrum estimate is 

Gm(f) = [l-fv(f)]Gyy(f) (9.56) 

It is also known from Equation (6.61) that 

Gyy(f) = G„(f) + Gm(f) (9.57) 

since v(r) and n(t) are uncorrelated with Gvn(f) = 0 when Hxy(f) is computed by 
Equation (9.53). 
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In polar form, the frequency response function can be expressed as 

where 

HM = \HM)\e-^U)
 (9-58) 

IG (f)\ 
\HM)\ = - = system gain factor estimate (9.59) 

GM) 

ΦΜ) = tan" 1 
QM) 

CM) 
— system phase factor estimate (9.60) 

This quantity ΦΜ) is the same as the phase angle &M) m Gxy(f),u ^ also the 
phase that would be assigned to y^f) when is defined as the complex-valued 
function given by 

Uf) = \%{ί)\*-*»(ί) = + \/y2Jf)e^f) (9.61) 

Note that all of the above "smooth" estimates can be computed from the original 
computed "smooth" estimates of G^f), Gyy(f) and Gxy(f). 

Random error formulas for all of these quantities will be derived in terms of the 
unknown true coherence function y2^ ( / ) and the number of independent averages nd. 
To apply these results to evaluate measured data, one should use the computed 
coherence function estimate y\y{f) with an appropriate number of independent 
averages nd. This will give practical results, particularly if the resulting normalized 
random errors are less than 20%. 

9.2.1 Bias in Frequency Response Function Estimates 

Estimation of the frequency response function and coherence function will generally 
involve bias errors from a number of sources as follows: 

1. Bias inherent in the estimation procedure 

2. Bias due to propagation time delays 

3. Nonlinear and/or time-varying system parameters 

4. Bias in autospectral and cross-spectral density estimates 

5. Measurement noise at the input point (no bias problem from uncorrelated noise 

at the output point) 

6. Other inputs that are correlated with the measured input (no bias problem from 
other uncorrelated inputs, which merely act as uncorrelated output noise with 
respect to the measured input) 
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The first noted source of bias error results from the fact that, in general, 

Ε\Ην] = E 
Gxy 

Gxx 
Φ 

E[Gxy] 

E[Ga] 

Ebly] = Ε 
\Gxy Μ φ E\\Gxyf] 

Ebly] = Ε 
GxxGyy E\fixx\E\Gyy\ 

(9.62) 

Hence Ε[Η^\ φ Hxy andis])^] Φ y1^. These bias errors are usually negligible com-
pared to other possible errors that occur in practice, and they can be ignored when 
combinations of nd and y1^ make associated normalized random errors small. As either 
nd —> oo oryly —> 1, these inherent bias errors go to zero. 

The second noted source of bias error occurs because it is required to measure x(t) 
and y(r) using a common time base and to correct for propagation time delays τλ that 
may occur between x(t) and y(f) if τ j is not negligible compared to the sample record 
lengths T. Assume 

x(t) = x(t) 0<t<T 

j arbitrary 0 < t < τχ (9.63) 

^ [ χ ( ί - τ ι ) τ\ <t<T 

Then, to a first order of approximation, one can express the cross-correlation function 
estimate Rxy{t) by 

Λ ^ ( τ ) « ( l - y ) ^ ( r ) (9.64) 

showing that Rxy(x) is a biased estimate of «^(τ) because ^ [ ^ ( τ ) ] φΚ^(τ). It 
follows that 

Gxy(f) * (l-J^Gxyif) 

HxyiD^^-J^Hxyif) (9.65) 

fxy(f) « ( l - y ) 2 ^ ( / ) 

Thus Gxy(f), Hxyif), and y^if) are also biased estimates. To remove these possible 
bias errors, the signal y(i) should be shifted in time by the amount i ! so as to bring 
x(t) and y(r) into time coincidence. The time delay τ χ can be estimated either from 
the physical geometry of the problem with a known velocity of propagation or from a 
separate measurement of Rxy(x) to determine where the first peak value occurs. 

The third indicated source of bias results from violations of the basic assumptions that 
the system is a constant-parameter linear system. Even when the constant-parameter 
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assumption is reasonably valid, the linearity assumption will often be violated if the 
operating range of interest is sufficiently wide. It should be noted, however, that the 
application of Equation (9.53) to nonlinear systems will produce the best linear 
approximation (in the least squares sense) for the frequency response function under 
the specified input and output conditions. This fact constitutes an important advantage 
to estimating frequency response functions from actual data rather than from laboratory 
or simulated data, which do not reproduce the actual input conditions. 

The fourth source of bias occurs because of bias errors in spectral density estimates. 
As noted in Section 8.5.1, this error can be quite significant at frequencies where 
spectral peaks occur. These errors can be suppressed by obtaining properly resolved 
estimates of autospectra and cross-spectra, that is, by making Be sufficiently narrow to 
accurately define peaks in the spectra. A quantitative formula is developed in 
Example 8.6 for spectra representing the response of a resonant system. 

The fifth source of bias is measurement noise m(t) at the input, where this noise does not 
actually pass through the system. Assuming the true input to be w(r), the measured input 
autospectrum G« = Guu + Gmm. In place of Equations (9.53) and (9.54), one obtains 

Guu + Gm 

f = Jxy\ 

(Gu 
(9.66) 

where the frequency / is omitted to simplify the notation. If all other bias errors are 
ignored, then £[G^] G^ and 

+ G 
mm 

H, uy 

>uy\ 
(Guu + Gm^)G 

= 7, 

Guu ~ T * Gmm 

Guu 

yy 
uy Guu + Gm 

(9.67) 

(9.68) 

Hence, because Gmm > 0, these expected values will be too low and the resulting bias 
errors will be negative. The normalized bias errors of Equation (8.9b) become here 

fy> [Hxy\ — &b 
~2 1 
. V Guu ~r~ Gmm 

(9.69) 

For example, if G m m = 0.10 Guu, then the resulting estimates would be biased 
downward by (0.10/1.10) « 9 % . 

The sixth source of bias is due to the contributions of other inputs that are correlated 
with the measured input. This error is readily illustrated for the simple case of one 
additional correlated input by the developments in Section 7.2. Specifically, when the 
problem is treated properly, the correct frequency response function for if] (/) is stated 
in Equation (7.23). On the other hand, when treated as a single-input/single-output 
problem, the estimate ΛΓ• ( / ) is given by Equation (9.53). The expected value of this 
estimate does not yield the correct result, showing that it is biased. Also, the correct 
coherence function between x\ and the output y when x2 is present and correlated with 
X\ is stated in Equation (7.34). When JCI alone is assumed to be present, the estimate 
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yly ( / ) is given by Equation (9.54). Again, the expected value of this estimate does not 
yield the correct result. 

The types of bias errors discussed above also occur in general multiple-input/output 
problems, where more complicated expressions are needed to evaluate the bias errors. 

9,2.2 Coherent Output Spectrum Estimates 

From Equation (9.57), assuming G v v and Gnn are statistically independent, it follows 

that 

Var[G w ] = Var[G w ] + Var[G M ] (9.70) 

where the frequency/is omitted to simplify the notation. From Equation (9.30), the 

variances are 

V a r [ G w ] = ^ V a r [ G m ] = ^ (9.71) 

Hence, by substituting Gnn — (l—yxy)Gyy and G v v = ylyGyy, 

V a r f G j = G ' y ~ G " " = ( 2 ~ ^ ) G " (9.72) 
nd yi],nd 

Finally, the normalized random error becomes 

s.d.[Gw] [ 2 - y 2 l l / 2 

y%Gyy = 4 G v v ] = ^ i = ^ _ (9.73) 
1 1 Gvv \7xy\Vnd 

This derivation does not use any differential increments. Note that e[Gw] = £[GVV] = 

(1 / \ /nd) as yly —> 1. Note also that 

e[G v v] > s[Gyy] for all < 1 (9.74) 

Figure 9.2 plots Equation (9.73) as a function of y1^ for the special case when nd = 100. 
Figure 9.3 plots Equation (9.73) for arbitrary values of nd and y^. Table 9.3 contains 
appropriate values that must be satisfied between y1^ and nd to achieve e[G v v] = 0.10 
using Equation (9.73). 

Example 9.2. Illustration of Bias and Random Errors in Coherent Output 
Spectrum Estimate. Consider the case where a number of independent acoustic 
noise sources in air produce an acoustic pressure signal y(r) at a receiver location of 
interest. A coherent output spectrum is estimated based on an input measurement x(t) 
representing a source located about 30 m from the receiver. Assume that the analysis is 
performed using nd = 400 averages and subrecord lengths of T= 0.1 s (Be sa 10 Hz). 
Further assume that x(t) and y(f) are measured and analyzed on a common time base; 
that is, no precomputational delay is used. If the true coherence and the output spectral 
density at a frequency of interest are y1^ = 0.4 and Gyy = 10, determine the primary 
bias and random errors in the coherent output spectrum estimate. 
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0 0.2 0.4 0.6 0.8 1.0 
Coherence function, γ 2 ( / ) 

Figure 9.2 Normalized random error of coherent output spectral estimates when 100. 

Number of averages, nd 

Figure 9.3 Normalized random error of coherent output spectral estimates versus number of averages. 
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First considering bias errors, the time required for acoustic noise to propagate about 
10 m in air (c « 340 m/s) is approximately X\ — 0.03 s. Hence from Equation (9.65), 
the coherence estimate will be biased to yield on the average 

ft 

rather than the correct value of y1^ = 0.4, and the coherent output spectrum estimate 
will be on the average 

Gm = (0.2)10 = 2 

rather than the correct value of G v v = 4. The time delay bias error in this case causes an 
underestimate of the coherent output spectrum by 50% on the average. 
Now considering the random error, it is the biased value of the coherence estimate that 
will control the random error. Hence, from Equation (9.73), the normalized random 
error of the coherent output spectrum estimate at the frequency of interest is 

9.2.3 Coherence Function Estimates 

An approximate result for the bias error in coherence function estimates is derived in 
Ref. 2. It is stated there that 

U^-yly)2 (9-75) 

For example, if nd> 100, as will often occur in practice, then for all y\y, 

billy] < 0.01 

This bias error approaches zero as nd —> oo or ψ —> 1. 
To obtain a formula for the random error, start with the equation 

Gw = y%Gyy (9.76) 

Then, differential increments of both sides yield 

A G w ^ A G ^ + G ^ (9-77) 

Table 9.3 Conditions for ε[Ονν]=0.10 

f O30 O40 050 O60 O70 O80 090 LOO 
f XV 

nd 567 400 300 234 186 156 123 100 
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where, using "smooth" estimates, 

AGVV = GVV-GVV AGyy = Gyy-Gyy AVxy = y^-y^ (9.78) 

By definition, for unbiased estimates, 

Var[G w ] = E[AGVVAGW] Vai[Gyy] = E[AGyyAGyy] 

V a r [ ^ ] = E[Ay%Ay%} 

Also, 

because 

AGyy = AGm + AGnn and E[AGvvAGm] = 0 

Solving Equation (9.77) for G^Ay2^ gives 

GyyAyly ~ AGvv—y2

yAGyy 

Squaring both sides and taking expected values yields 

G ^ V a r ^ ] « V a r [ G w l - 2 y : ; C o v ( G v v , G w ) +7^Var [G 

Substitutions from Equations (9.71), (9.72), and (9.80) then show 

Var 

Finally 

f 
fxy 

2 -,2 
,2 

nd 

fxy ~ |y^lv/n? 

(9.79) 

Cov(G v v , G y y ) = E[AG„AGyy] = Var[G w ] (9.80) 

(9.81) 

(9.82) 

For small ε, Equation (9.82) agrees with results in Ref. 2. Note that efŷ J approaches 
zero as either nd —» oo or y2^ —> 1. For any nd > 1, the coherence function estimates 
can be more accurate than the autospectra and cross-spectra estimates used in their 
computation provided y2^ is close to unity. The restriction that nd > 1 is of course 
needed because y2^ = 1 at a l l /when nd = 1 and gives a meaningless estimate for y2^. 

Figure 9.4 plots Equation (9.82) as a function of y2^ for the special case when 
nd = 100. Figure 9.5 plots Equation (9.82) for arbitrary values of nd and y2^. Table 9.4 
contains appropriate values that must be satisfied between f x y and nd to achieve 
ε ^ ] = 0.10 using Equation (9.82). 

Example 9.3. Illustration of Confidence Interval for Coherence Function 
Estimate. Suppose the coherence function between two random signals x(t) and y(f) 
is estimated using nd= 100 averages. Assume a value of ψ = 0.5 is estimated at a 
frequency of interest. Determine approximate 95% confidence intervals for the true 
value of y 2 . 
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Table 9.4 Conditions for e[y^,]=0.10 

O30 O40 O50 O60 O70 O80 O90 
nd 327 180 100 54 26 10 3 

From Equation (9.82), the normalized random error of the coherence function 
estimate is approximated by using the estimate y2^ in place of the unknown y1^. For 
the problem at hand, this yields 

Ixy 
\ /2( 1-0.5) _ 0 1 

(0.71)VT00 

Hence, from Equation (8.14), an approximate 95% confidence interval for the true 

value of coherence at this frequency is 

[0.4 < y 2 < 0.6] 

9.2.4 Gain Factor Estimates 

To establish the random error in gain factor estimates, because random error formulas 
are known for G K and GV V ) one can start with the equation 

G v v = iHxyfGxx (9.83) 

Taking differential increments of both sides yields 

AGVV « \Hxy\2AGxx + GxxA\Hxy\2 (9.84) 

The quantities AG^ and AGVV are as given in Equation (9.78), while 

and, assuming unbiased estimates, 

Vard&yl 2 ] = £ [ Δ | / / ^ | 2 Δ | / ^ | 2 ] 

Also, because |Gxv|2 = G„G, V , from Equation (9.39), 

Cov(G„, G v v ) = E[AGxxAGn] = (9.85) 

Solving Equation (9.84) for G^A^^ gives 

GxxA\Hxy\2 « AGvv—\Hxy\2AGxx 

Squaring both sides and taking expected values yields 

G^Var[ |H^| 2 ] « Var [G v v ] -2 | / i x y |
2 Cov(G^ , Gvv) + | i ^ | 4 V a r [ G „ ] 
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Substitutions then show 

Var 
2 ( 1 - ^ ) 1 ^ , 

(9.86) 

For any estimate A, as a first order of approximation, 

AA2 « 2AAA 

where 

Now 

AA =A-A AA2 = A -A2 

E[AA] = 0 E[AA2} = 0 

(AA2)2 « 4 4 2 ( Δ Α ) 2 

E[AA2AA2} « 4Α 2£[ΔΑΔΑ] 

This is the same as 

Var[A ] « 4A 2 Var [A] (9.87) 

Dividing through by A 4 gives 

• ?2 Var[A ] 4Var[A] 

A 4 A2 
4ε 2 [A' 

Hence 

ε[Α ] w 2e[A] (9.88) 

This useful result can compare random errors from mean square and rms estimates, as 
shown earlier in Equation (8.10). 

Applying Equation (9.87) to Equation (9.86) gives the formula 

r . . (l~yl)\Hj2 

Var H„] s fxy/\"xy\ 
2y2nd 

Finally 

8 Ift 
s.d.f|ffr 

xy\. 
( i - y p 1 / 2 

l T x y l V ^ « r f 

(9.89) 

(9.90) 

Note that this result is the same as Equation (9.52). It shows that e[|//xj,|] approaches 
zero as y2^ approaches one, independent of the size of nd, and also approaches zero as 
nd becomes large, independent of the value of y2^. These results agree with the nature 
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of much more complicated formulas in Ref. 3, where error results were obtained using 
the F distribution. 

Figure 9.6 plots Equation (9.90) as a function of y2^ for the special case when 
nd = 100. Figure 9.7 plots Equation (9.90) for arbitrary values of nd and y2^. Table 9.5 
gives examples of values that must be satisfied between y2^ and nd to achieve 
ε[\Η^\] = 0.10 using Equation (9.90). 

9.2.5 Phase Factor Estimates 

Phase factor estimates φ^(/) from Equation (9.60) are the same as phase angle 
estimates 0xy(/) whose standard deviation is derived in Equation (9.52). Hence 

s.d. 
\yJV2nd 

Equation (9.90) now shows that 

s . d # J « ε[\Η •*yl. 

(9.91) 

(9.92) 

In words, the standard deviation for the phase factor estimate φ measured in radians, 
is approximately the same as the normalized random error for the gain factor estimate 
\Ηφ\. This claim is reasonable whenever e[|i/jcy|] is small, say ε <0.20, as 
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Figure 9.7 Normalized random error of gain factor estimates versus number of averages. 

demonstrated in Ref. 4. Hence, one can state that Figure 9.6 plots the standard 
deviation s . d . f ^ ] in radians as a function of y1^ for the special case when nd = 100. 
Also, Table 9.5 gives examples of values that must be satisfied between y1^ and nd to 
achieve s.d.[<^,] « 0 . 1 0 radian. 

Example 9.4. Illustration of Random Errors in Frequency Response 
Function Estimate. Suppose the frequency response function between two random 
signals x{t) and y{t) is estimated using nd = 50 averages. Assume that the coherence 
function at one frequency of interest is y2^ (/I) = 0.10 and at a second frequency of 
interest is y^fo) = 0.90. Determine the random errors in the frequency response 
function gain and phase estimates at the two frequencies of interest. 
From Equation (9.90), the normalized random error in the gain factor estimates at 
frequencies/j and / 2 will be 

( 1 - 0 1 0 ) 1 / 2 

( 1 - 0 9 0 ) 1 / 2 

• n f f ' « > n = W K W " 0 J B 3 

Table 9.5 Conditions for ε[\Η^\]=0.10 

yjy O30 O40 O50 060 0~7(j 080 O90 
nd 117 75 50 34 22 13 6 
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Table 9.6 Summary of Single-Input/Output Random Error 
Formulas 

Function Being Estimated Normalized Random Error, ε 

From Equation (9.91), the results given above also constitute approximations for the 
standard deviation (not normalized) in the phase factor estimate as follows: 

Hence, the estimates made with a coherence of ylyifj) = 0.90 are almost 10 times as 
accurate as those made with a coherence of yly(f]) = 0.10. This concludes the example. 

A summary is given in Table 9.6 on the main normalized random error formulas for 
single-input/output model estimates. Some engineering measurements are shown in 
Ref. 4. A general theory for resolution bias errors is presented in Ref. 5. 

9.3 MULTIPLE-INPUT/OUTPUT MODEL ESTIMATES 

Consider the more general multiple-input/output model of Figure 7.11. All records 
should be measured simultaneously using a common time base. The first series of 
steps should be to replace this given model by the conditioned model of Figure 7.12 as 
defined in Chapter 7. Procedures for doing this are described by the iterative 
computational algorithms in Section 7.3. The only averaging required is in the 
computation of "smooth" estimates G y ( / ) of autospectra and cross-spectra from the 
original given data. All other quantities are then computed algebraically as follows 
(for simplicity in notation, the dependence on / w i l l be omitted). 

Compute first the initial set of conditioned estimates Gy. • by the formula 

s.d.[^(/0] = 0.30rad s . d . [ ^ ( / 2 ) ] = 0.033rad 
= 17° = 1.9° 

= Gij—L\jGn (9.93) 

where 

(9.94) 
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This is the only step that uses the original Gy. From these results, compute next the 
second set of conditioned estimates Gy.2\ by exactly the same procedure as in 
Equations (9.93) and (9.94), namely, 

Gy. 2 ! = Gij.x-L2jGa.i (9.95) 

where 

4 = 7 ^ (9-96) 
L722 1 

Compute next the third set of conditioned estimates Gy. 31 using the just obtained Gy. 2! 
by a similar procedure and so on to as many terms as required. Further algebraic 
operations on these results yield estimates for all of the partial coherence functions, 
the multiple coherence function, and related quantities. 

The computation of the "smooth" conditioned spectral density estimates in 
Equation (9.93), where the first record is removed, followed by the computation of 
the "smooth" spectral density estimates in Equation (9.95), where the first two records 
are removed, and so on involves a subtraction of terms. This leads to reducing the 
number of records by one for each successive step. Thus, when the original 
autospectra and cross-spectra terms are computed using nd averages, then the terms 
in Equation (9.93) will be associated with (nd — 1) averages, the terms in Equa-
tion (9.95) will be associated with (nd - 2) averages, and so on. 

Figure 7.12 can be replaced by the set of modified uncorrelated conditioned single-
input/single-output SI/SO models of Figure 7.16 where Ui = f o r / = 1,2,.. .,q. 
The first system in Figure 7.16 is the same as the basic single-input/single-output linear 
model of Figure 9.1. The succeeding systems in Figure 7.16 are direct extensions where 
it is obvious which terms should be related to terms in the first system. The top three 
systems in Figures 7.16 and 7.17 represent the three-input/single-output linear model 
discussed in Section 7.4.1 where Figure 7.19 replaces Figure 7.18. 

Assume in Figure 7.16 that estimates of spectral functions that use the first input record 
U\ = X\ are computed with nd averages. It follows that spectral estimates computed from 
the second input record U2 = X2.i will have (nd - 1) averages, spectral estimates computed 
from the third input record C/3 = X32\ will have (nd - 2) averages, and so on up to spectral 
estimates computed from the qth input record that will have (nd+ 1 — q) averages. 

Random error formulas are listed below for estimates of various functions in 
Figures 7.17 and 7.19. These results extend directly to general MI/SO cases. The top 
three ordinary coherence functions in Figure 7.17 can be computed by Equations 
(7.133) to (7.135). In place of Equation (9.82), normalized random errors for 
estimates of these three functions are given by 

2 
At 
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For the model in Figure 7.19 with the modified notation, the multiple coherence 
function can be computed by the simple additive formula of Equation (7.136). The 
normalized random error for this computed multiple coherence function is given by, 

' yx 

V2[l-y2

y:. y:xi 
\yy.xWnd-2 

(9.98) 

The normalized random error for the associated total coherent output spectrum 
estimate of Equation (7.132) is given by 

Gvv 

[2-yl i I / 2 

ly.xi 
\yr.xWnd-2 

(9.99) 

The top three coherent output spectral density functions in Figure 7.17 can be 
computed by Equations (7.128)-(7.130). In place of Equation (9.73), the normalized 
random errors for estimates of these three functions are given by 
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The top three L-systems in Figure 7.17 can be computed by Equations 
(7.122)-(7.124). In place of Equation (9.90), normalized random errors for estimates 
of the gain factors of these three L-systems are given by 
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Error formulas for associated phase factor estimates of the three L-systems are the 
same as stated in Equation (9.92). 
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PROBLEMS 

9.1 Consider a single-input/single-output system where the coherence function 
between the input x(t) and the output y(f) is y2^ — 0.75 at a frequency of interest. 
Suppose the autospectra of the input and output are G ^ = 2.1 and Gyy = 0.&, 
respectively. What should be the minimum number of averages nd in a frequency 
response function estimate to ensure that the estimated gain factor \ίϊ^ | is within 
±10% of the true gain factor \Hxy\ with a probability of 95%? 

9.2 For the single-input/single-output system in Problem 9.1, what value of 
coherence is needed to provide a gain factor estimate and autospectra estimates 
with the same normalized random error? 

9.3 Consider two random signals x(i) and y(r) representing stationary random 
processes. Assume the autospectra of the two signals, as well as the cross-
spectrum between the signals, is to be estimated using nd = 100 averages. If the 
coherence function between x(t) and y(r) is y2^ = 0.50 at a frequency of interest, 
determine the normalized random error for 

(a) the autospectra estimates G « and Gyy. 

(b) the cross-spectrum magnitude estimate \Gxy\. 

9.4 For two random signals x(t) and y(r), suppose that at the frequency of interest the 
autospectra values are G^ = Gyy — 1 and the coincident and quadrature spectral 
values are Cxy = Qxy = 0.5. Assuming nd = 100 averages, determine the normal-
ized random error for estimates of the coincident and quadrature spectral density 
values and Q^. 

9.5 For the two random signals in Problem 9.4, determine at the frequency of 
interest approximate 95% probability intervals for the estimated values of 

(a) the coherence function y2^. 

(b) the coherent output spectrum G v v — y%Gyy. 

9.6 For the two random signals in Problem 9.4 determine an approximate 95% 
probability interval for the estimated value of the phase factor θχγ at the 
frequency of interest. 

9.7 Consider two bandwidth-limited white noise random signals defined by 

x(t) = u(t) + m(t) 
y(t) = lOw(f-ri) +n(t) 

where m(r) and n(t) are statistically independent noise signals. Assume the 
spectral density values of the input signal and noise at a frequency of interest are 
equal, that is, Guu — Gmm, and the delay value T ! = 0 . 1 S . If the frequency 
response function from x(t) to y{t) is estimated using a large number of averages 
and individual record lengths of T= 0.5 s, determine the primary sources of bias 
errors and the magnitude of the bias errors. 
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9.8 For the two bandwidth-limited white noise signals in Problem 9.7, assume 
Gmm = 0 and Gnn = 100GU„ at a frequency of interest. If the output spectral 
density at the frequency of interest is Gyy= 1, determine 

(a) the true value of the coherent output spectrum Gvv = y^G^ . 

(b) the bias error in the estimate G v v . 

(c) the random error in the estimate Gvv assuming nd = 400 averages. 

9.9 Consider a two-input/one-output system as in Figure 7.2 where the inputs are 
xx(t) and x2(t) and the output is y(f). Assume estimates are computed using 
nd— 100 averages to obtain the following quantities at a frequency of interest 
Gn = 20, G 2 2 = 25, Gyy = 40, G i 2 = 15, and GXy = G2y = 16-yl2 . Deter-
mine the normalized random error and the standard deviation, respectively, for 
the gain and phase factors of the frequency response function H2y between x2(t) 
and y(t). 

9.10 Using the data in Problem 9.9, determine the expected value and normalized 
random error for the multiple coherence function estimate y 2^ between the two 
inputs and the output. 
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Data Acquisition and Processing 

Some random time history data that might be of interest occur naturally in a digital 
format, for example, stock or commodity prices from one transaction to the next. In 
such cases, the data can be entered directly into a digital computer for analysis by the 
procedures detailed in Chapter 11. This chapter is concerned with those random data 
that represent continuous physical phenomena where specific data acquisition and 
processing procedures are required before an analysis of the data can be accom-
plished. The appropriate techniques for the acquisition and processing of continuous 
random data are heavily dependent on the physical phenomena represented by the 
data and the desired engineering goals of the processing. In broad terms, however, the 
required operations may be divided into four primary categories as follows: 

Data acquisition 

Data conversion 

Data qualification 

Data analysis 

Each of these categories involves sequential steps as schematically illustrated in 
Figure 10.1. The purpose of this chapter is to summarize the basic considerations 
associated with each of these key steps. The emphasis throughout is on potential 
sources of error beyond the statistical errors inherent in the data sampling considera-
tions developed in Chapters 8 and 9. The digital computations required for the 
analysis of stationary and nonstationary random data through linear and nonlinear 
systems are covered in Chapters 11 through 14. 

Random Data: Analysis and Measurement Procedures, Fourth Edition. By Julius S. Bendat 
and Allan G. Piersol 
Copyright © 2010 John Wiley & Sons, Inc. 
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Acquisition Η Conversion Qualification Analysis Out 

(a) Data acquisition 

Transducer Signal conditioning Transmission Calibration 

(b) Data conversion 

Analog-to-digital conversion —> Sampling errors — * • Storage 

(c) Data qualification 

Classification Validation Editing 

(d) Data analysis 

Individual sample records Multiple sample records 

Figure 10.1 Key steps in data acquisition and processing. 

10.1 DATA ACQUISITION 

Referring to Figure 10.1, a data acquisition system usually involves a transducer with 
signal conditioning, transmission of the conditioned signal to an analog-to-digital 
converter (ADC), and a calibration of the data acquisition system (sometimes called 
standardization) to establish the relationship between the physical phenomena being 
measured arid the conditioned signal transmitted to the analog-to-digital converter. 
Each element of the data acquisition system must be carefully selected to provide the 
frequency range and dynamic range needed for the final engineering applications of 
the data, as discussed in Ref. 1. 

10.1.1 Transducer and Signal Conditioning 

The primary element in a data acquisition system is the instrumentation transducer. In 
general terms, a transducer is any device that translates power from one form to 
another. In an engineering context, this usually means the translation of a physical 
phenomenon being measured into an electrical signal. In some cases, the physical 
phenomenon being measured may be an electrical signal so that no transducer is 
required—for example, the voltage output of a power-generating device. In other 
cases, the transducer may be a simple device that directly translates the physical 
phenomenon being measured into an electrical signal without intermediate mechan-
ical operations—for example, a thermocouple. In many data acquisition problems, 
however, the physical phenomenon being measured is a mechanical quantity such as 
force, pressure, or motion (displacement, velocity, or acceleration). In these situa-
tions, the transducer typically consists of a mechanical element that converts the 
physical phenomenon into a deformation of a sensing element, which in turn produces 
an electrical quantity that is proportional to the magnitude of the physical phenom-
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enon. A signal conditioner then converts the generated electrical quantity into a 
voltage signal with a low source impedance (generally less than 100Ω) and the 
desired magnitude and frequency range for transmission to the remainder of the data 
acquisition system. 

Sensing elements for force, pressure, and motion transducers commonly employ 
piezoelectric or strain-sensitive materials. A piezoelectric material is one that 
produces an electrical charge when it is deformed. Examples include (a) naturally 
polarized single crystals such as quartz and (b) artificially polarized ferroelectric 
polycrystalline ceramics such as barium titanate. The basic signal conditioning 
element for a piezoelectric transducer is a charge amplifier. A strain-sensitive material 
is one that changes its electrical resistance when it is deformed. There are two basic 
types of strain-sensitive materials, namely, metallic and semiconductor. A common 
metallic strain-sensitive material is constantan. (a copper-nickel alloy), while a 
common semiconductor material for this application is nearly pure monocrystalline 
silicon. The basic signal conditioning element for strain-sensitive transducers is a 
power supply and a conventional Wheatstone bridge circuit. There are many other 
types of sensing elements for force, pressure, and motion transducers, including 
capacitance, electrodynamic, servo-control, and electro-optical devices, as detailed in 
Refs 2 and 3. In most cases, however, the transducer will have dynamic properties that 
limit its useful frequency range, as illustrated in Example 10.1 to follow. 

Example 10.1. Illustration of Piezoelectric Accelerometer. Consider an idea-
lized piezoelectric accelerometer, as schematically illustrated in Figure 10.2(a). The 
mechanical conversion in this transducer is achieved through a seismic mass 
supported by a flexible piezoelectric material, where an input acceleration at the 
base of the accelerometer is converted to a relative displacement of the mass. The 
piezoelectric material generates a charge that is proportional to its deformation—that 
is, the displacement of the mass relative to the base of the accelerometer. A signal 
conditioner in the form of a charge amplifier converts the charge produced by the 
piezoelectric material into a voltage signal with a low source impedance. In most 
cases, the charge amplifier is incorporated into the accelerometer, but in some cases all 
signal conditioning is accomplished by a separate instrument. 

Again referring to Figure 10.2(a), the piezoelectric accelerometer is mechanically 
equivalent to the simple mechanical system shown in Figure 2.4, where the piezo-
electric material is represented by the spring and the dashpot. From Table 2.1, the 
frequency response function of this system between the input acceleration and the 
output voltage is given by 

H(f)= —i (10.1) 
4n^[\-if/f„)2+j2Cf/fn] 

where c is a calibration constant, and ζ and/„ are the damping ratio and undamped 
natural frequency, respectively, of the system, as defined in Equation (2.22). The gain 
and phase factors for this system are plotted in Figure 10.2(b) and (c). Note that these 
gain and phase factors are identical in form to those for a simple mechanical system 
with force excitation, as plotted in Figure 2.3. Hence, the same gain and phase factors 
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Charge amplifier 

O.Ot 0,! 1.0 
Frequency ratio,y% 

(c) 

Figure 10.2 Schematic diagram and frequency response characteristics of piezoelectric accelerometer. 
(a) Schematic diagram, (b) Gain factor, (c) Phase factor. 

apply to various types of force and pressure transducers, including microphones and 
hydrophones. 

Consider first the gain factor given in Figure 10.2(b). It is seen that the widest 
frequency range with a near-uniform gain is obtained when the damping ratio is about 
ζ = 0.7. It is for this reason that certain types of large, high-gain accelerometers are 
designed with added damping to achieve the £ w 0 . 7 damping ratio and, hence, 
maximize their useful frequency range. On the other hand, small piezoelectric 
accelerometers (as well as many other types of piezoelectric and piezoresistive 
transducers) are available that have a first natural frequency approaching 1 MHz— 
that is, many times higher than the highest frequency of normal interest. From 
Figure 10.2(b), it is seen that the gain factor is relatively uniform (within 2%) for 
frequencies up to about 20% of the undamped natural frequency of the transducer, 
independent of the damping ratio. Hence, it is common for the manufacturers to 
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ignore the damping in such transducers, which is usually very small, and simply 
advertise a useful frequency range up to 20% of the first natural frequency of the 
transducer. 

Now referring to the phase factor in Figure 10.2(c), the £ « 0 . 7 damping ratio 
produces a near-linear phase function (when viewed on a linear frequency scale) over 
the frequency range where the gain factor is near-uniform. A linear phase function 
corresponds to a simple time delay (see Figure 5.6) that does not distort the time 
history of the physical phenomenon being measured. However, any substantial 
deviation from the £ « 0 . 7 damping ratio will result in a phase distortion of the 
measured phenomenon. On the other hand, if the transducer has low damping but a 
high natural frequency so that the frequency range of the physical phenomenon being 
measured does not exceed 20% of the first natural frequency of the transducer, the 
phase factor is essential zero. This concludes Example 10.1. 

In summary, considerable care is warranted in the selection and use of data 
acquisition transducers and signal conditioning equipment. When transducers are 
obtained from commercial sources, supporting literature is normally provided that 
specifies the limitations on their use. These specifications are generally accurate, but it 
must be remembered that commercial manufacturers are not inclined to be pessimistic 
in the claims they make for their products. Hence, it is unwise to use a commercially 
procured transducer under conditions that exceed the limits of the manufacturer's 
specifications unless its applicability for such use has been substantiated by appro-
priate studies. See Refs 2-4 for more detailed discussions of transducer systems. 

10.1.2 Data Transmission 

There are two primary ways to transfer data signals from the transducer and signal 
conditioner to the remainder of the data acquisition system, namely, (a) landlines and 
(b) radio frequency (RF) telemetry, also called wireless. Landlines include wires, 
coaxial cables, twisted shielded cables, and fiber-optic cables. Unshielded wire 
should be avoided for the transmission due to interchannel modulation (cross talk) 
and excessive background noise problems. To further surpass such problems, land-
lines should be kept as short as feasible. Coaxial cables are the most commonly used 
landlines for data transmission at this time, but the use of fiber-optic data links is 
rapidly increasing due to their ability to meet low noise and security requirements. See 
Ref. 2 for details on the selection of landlines for various data transmission 
requirements. 

Landlines are usually the preferred mode of data transmission when their use is 
feasible. There are situations, however, where the use of landlines is not feasible. This 
occurs primarily when measurements must be made on an object that is moving 
relative to the reference frame for the remainder of the data acquisition system and, in 
particular, when the object carrying the transducer cannot be recovered. A common 
example is the measurement of various types of data on a missile or expendable space 
vehicle in flight. For these situations, RF telemetry is used to transmit the measured 
data to a receiver station in the same reference frame as the remainder of the data 
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acquisition equipment. This usually involves an air-to-ground transmission, but could 
also be a ground-to-air, air-to-air, or even a ground-to-ground transmission in some 
situations. Details on RF telemetry are available from Refs 2 and 3. 

10.1.3 Calibration 

The calibration procedure for all elements of the data acquisition system may be 
divided into three separate categories: (a) laboratory calibration of individual 
instruments, (b) end-to-end electrical calibration of the data acquisition system 
excluding the transducer, and (c) end-to-end mechanical calibration of the entire data 
acquisition system. The calibration process should also include a determination of the 
dynamic range of the data acquisition system. This subject is addressed separately in 
Section 10.1.4. 

10.1.3.1 Laboratory Calibration 
Most organizations engaged in the acquisition of random data have a specific group or 
instrument laboratory that is responsible for providing the necessary instrumentation. 
Such groups commonly have a formal procedure and schedule for the routine 
maintenance and calibration of individual transducers and instruments. If such a 
group does not exist, it is recommended that it be created. The exact details of how the 
transducers and instruments are maintained and calibrated should be based upon the 
manufacturer's recommendations. For force, pressure, or motion transducers in 
particular, when they are newly purchased or recalibrated by a calibration service, 
a certificate should be provided that states the traceability to the National Institute of 
Standards and Technology (NIST), or an equivalent agency in countries other than the 
United States, through an identified transfer standard transducer. This certificate 
should clearly state which portion of the calibration is simply typical for the 
transducer type or model, and which is actually measured on the transducer being 
calibrated. Further details and recommendations on the laboratory calibration of 
random data acquisition instruments are provided in Refs 2 and 3. 

10.1.3.2 End-to-End Electrical Calibration 
An end-to-end electrical calibration means a full calibration of the data acquisition 
system from the electrical output of the transducer to the output of the data acquisition 
system where the data signal will be analyzed. It is recommended that an end-to-end 
electrical calibration be performed on all channels of the data acquisition system prior 
to each experiment for which the system is used. The calibration should be performed 
with the data acquisition system in its completed configuration, including all 
transducers mounted, cables installed, and all signal conditioner gains set as they 
will be for the actual measurements. If a different gain setting is used for the 
calibration, it should be recorded so that the calibration results can be later corrected 
for the gain used to make the actual measurements. In those cases where the acquired 
data are to be recorded and stored for later analysis, the calibration signals should be 
recorded and stored in exactly the same manner, and the calibration should be 
performed on the output signals from the storage device. 
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For most types of transducers (including piezoelectric transducers), a calibration 
signal can be applied across a resistor inserted in the circuit between the transducer 
and the signal conditioner; the transducer manufacturer usually provides such a 
voltage insertion circuit with the transducer. Various types of calibration signals might 
be used, but a broadband random signal with a nearly uniform autospectrum over a 
frequency range that exceeds the bandwidth of the data acquisition system is 
considered the most desirable calibration signal for random data acquisition systems. 
The recommended calibration procedure is as follows: 

1. For each channel of the data acquisition system, insert a random calibration 
signal at the transducer with an accurately defined autospectrum and measure 
the output at that point where the data will be analyzed. 

2. Compute the coherence function between the input calibration signal and the 
output (see Section 11.6.6). The coherence should be in excess of 0.99 at all 
frequencies of interest. If it is not, every effort should be made to identify the 
reasons for the lesser coherence and correct the problem. See Ref. 1 for details 
on the common sources of poor coherence in measurement systems. 

3. Compute the frequency response function between the input calibration signal 
and the output (see Section 11.6.4). This frequency response function estab-
lishes the voltage gain and phase of each channel of the data acquisition system. 
Deviations from a uniform gain and linear phase should be recorded for later 
corrections of the data. 

4. During the calibration of each channel, the cables in the data acquisition system 
for that channel should be moved about, and the output signal should be checked 
for noise spikes, power line pickup, and other evidence of faulty connectors, 
broken shields, multiple grounding points, and motion-induced problems (see 
Section 10.4.2). 

For those channels of the data acquisition system where dual-channel 
analyses of the transducer signals is anticipated, the following additional 
calibration steps are recommended: 

5. Insert a common random signal with an accurately defined autospectrum simulta-
neously into all channels of the data acquisition system and measure the simulta-
neous outputs of all channels at those points where the data will be analyzed. 

6. Compute the coherence and phase functions between the output of each channel 
and the output of every other channel. 

7. The coherence between the output of each channel and all other channels should 
be in excess of 0.99 at all frequencies of interest. If it is not, every effort should 
be made to identify the source of the inadequate coherence and correct the 
problem. See Ref. 1 for details on the common sources of poor coherence 
between channels in measurement systems. 

8. The phase between the output of each channel and all other channels 
would ideally be zero over the entire frequency range of interest. However, 
due to differences in the instrumentation for the various channels, this 
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may not occur. If not, the phase versus frequency measured between the 
various channels should be recorded and used to make appropriate correc-
tions to the phase data computed during later dual-channel analyses of the 
data signals. 

10.1.3.3 End-to-End Mechanical Calibration 
An end-to-end mechanical calibration means a full calibration of the data acquisition 
system from the actual physical input to the transducer to the output of the data 
acquisition system where the data signal will be analyzed. Mechanical calibrations are 
generally limited to data channels where the introduction of a known physical input is 
easily achieved. For example, calibration shakers are available that will apply a 
broadband random vibration with a known autospectrum to a motion transducer, such 
as an accelerometer, although this may require removing the accelerometer from its 
actual mounting location for calibration purposes. 

When the insertion of a mechanical excitation to the transducer is feasible, end-
to-end mechanical calibrations are recommended for all transducer channels in the 
data acquisition system prior to each test. An end-to-end mechanical calibration of 
a given transducer channel generally constitutes a final check on the calibration of 
that channel, and it may replace the end-to-end electrical calibration of that 
channel in most cases. The calibration procedure is essentially the same as 
described for end-to-end electrical calibration where the physical random excita-
tion into the transducer replaces the electrical random signal inserted at the output 
of the transducer. 

After completing the end-to-end electrical and/or mechanical calibration of the 
data acquisition system, it is desirable to compare the system calibration factor at all 
frequencies determined from the end-to-end calibration with the net system calibra-
tion factor computed from the laboratory calibrations of the individual instruments. If 
there is a significant discrepancy between these two sets of calibration factors, every 
effort should be made to identify the source of the discrepancy and correct the 
problem. If the source of the discrepancy cannot be identified, but no error can be 
found in the end-to-end calibration, then the results of the end-to-end calibration 
should be accepted and, after the measurements are complete, all instruments in the 
data acquisition system should be recalibrated in the laboratory. See Ref. 3 for further 
details on calibration procedures. 

10.1.4 Dynamic Range 

An important characteristic of any data acquisition system that should be determined 
during the calibration process is the dynamic range of the system, where dynamic 
range is generally defined as the ratio of the maximum to minimum data values the 
system can acquire without significant distortion. The dynamic range of a data 
acquisition system is commonly assessed in terms of a maximum allowable signal-to-
noise ratio (SNR) defined as 

SNR = tf/ifi (10.2a) 
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or in decibels (dB) as 

( S / ^ ) = lOlog l o (0 2 /0 2 ) (10.2b) 

where ips is the maximum rms value of the signal that can be acquired without 
significant distortion and ψη is the rms value of the data acquisition system noise floor, 
which is commonly assumed to have a zero mean value so that ψη = σ„. Note that a 
ratio of mean square values, rather than rms values, is used in Equation (10.2) because 
signal-to-noise ratios are traditionally defined as a ratio of power quantities. 

The standard deviation of the data acquisition system noise floor can be directly 
measured during the calibration process by simply measuring the output of the system 
with no excitation applied to the transducer. As for the end-to-end calibration proce-
dures, the noise floor measurement should be made with the data acquisition system in its 
completed configuration, including all transducers mounted, cables installed, and all 
signal conditioner gains set as they will be for the actual measurements. If a different gain 
setting is used for the noise floor measurement, it should be recorded so that the noise 
floor results can be later corrected for the gain used to make the actual measurements. 
The noise floor for data acquisition systems is due primarily to the electronic noise of 
analog instruments and/or the quantization noise (round-off error) of digital instruments 
discussed in Section 10.2.4. In either case, the noise commonly has a near-uniform 
autospectral density function. Nevertheless, the autospectral density function of the 
noise floor should be computed as part of the calibration process. 

The maximum rms value of the signal that can be acquired without significant 
distortion is a function of the signal characteristics. For example, assume the linear 
range of the data acquisition system extends symmetrically about zero from — L m a x 

to + L m a x . A static signal can be acquired without distortion up to = Lmax, because 
the rms value of a constant equals the absolute value of the constant. On the other hand, 
a sinusoidal signal with a zero mean value can be acquired without distortion up to 
only ψ5 = (1 / \ f2)L m & x because the peak value of a sine wave is \/2t/fs. For a Gaussian 
random signal, the peak value is theoretically undefined and, hence, some distortion 
must always be accepted. In practice, however, it is common to assume that a Gaussian 
random signal with a zero mean value can be clipped at ± 3 standard deviations 
without a significant error, meaning ips = (l/3)Lmm, to obtain a measure of the 
dynamic range of a data acquisition system that is not dependent on the detailed 
characteristics of the signal to be acquired. Ref. 3 suggests the determination of a peak 
signal-to-noise ratio (PSNR) given by 

PSNR = LlJifi (10.3a) 

or in decibels as 

( P 5 / ^ ) = 101og10(iLc/̂ ) (10-3b) 
where L m a x can be determined during the calibration of the data acquisition system by 

the following steps: 

1. With the data acquisition system in its completed configuration, including all 
transducers mounted, cables installed, and all signal conditioner gains set as 
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they were for the noise floor measurements, apply as an input to the system 
(either electrical or mechanical) a sine wave with a zero mean value. 

2. Slowly increase the rms value of the sine wave input until a distortion of the sine 
wave output of the system is detected. 

3. Compute = \ /2ψ 5 , where ips is the rms value of the sine wave output just 
before a distortion is detected. 

4. Although L m a x will usually be independent of frequency, it is wise to perform 
the measurement at several frequencies within the frequency range of the data 
acquisition system. 

Having determined the PSNR of the data acquisition system defined in Equa-
tion (10.3), the SNR defined in Equation (10.2) can be determined by reducing the 
value of PSNR as required to account for the anticipated peak-to-rms value of the data 
to be acquired. For example, 

a. For static data, SNR = PSNR or (S/N) = (PS/N). 

b. For sinusoidal data, SNR = ^PSNR or (S/N) = (PS/N) - 3 dB. 

c. For Gaussian random data, SAT?« ±PSNR or (S/N) as (PS/N) - 10 dB. 

10.2 DATA CONVERSION 

The conditioned signal from the transducer generally must be converted into a digital 
format for later data analysis operations. This digital conversion operation is 
accomplished by an analog-to-digital converter. The ADC may be incorporated into 
the front end of an applicable online data analysis instrument or be a separate item of 
equipment that delivers the digital data to storage for later analysis. 

10.2.1 Analog-to-Digital Converters 

An analog-to-digital converter is a device that translates a continuous analog signal, 
which represents an uncountable set, into a series of discrete values (often called a 
time series), which represents a countable set, There are numerous types of ADC 
designs (see Ref. 3), but due to the merits of very high sampling rates relative to the 
highest frequency of interest in the data (oversampling), perhaps the most common 
type of ADC in current use is that referred to as the sigma-delta (ΣΔ) converter, which 
is schematically illustrated in Figure 10.3. The key features of a ΣΔ converter are 

a. the input of the analog signal through an integrator to a clock-driven com-
parator, which essentially acts as a one binary digit (one-bit) ADC, 

b. the feedback of the one-bit comparator output through a one-bit digital-to-
analog converter (see Ref. 2), which is then subtracted from the input analog 
signal, and 

c. an averaging operation by a low-pass digital filter, which essentially increases 
the number of bits forming a digital value (the word size) in the digital output 
(digital filters are discussed in Chapter 11). 
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Figure 10.3 Schematic diagram of sigma-delta converter. 

Since the basic comparator and DAC operations are accomplished using a one-bit 
resolution, a very high initial sampling rate (>10 7 sps) can be achieved. The digital 
filter is then set to provide an output sampling rate after decimation that is 
substantially less than the initial one-bit sampling rate, commonly by a ratio of 
256: 1 [2]. The frequency range of the final digital data can be varied by one of the two 
procedures. The first is to lock the cutoff frequency of the digital filter to the initial 
one-bit sampling rate of the comparator so that the final sampling rate is controlled by 
simply varying the comparator sampling rate. The second is to fix the initial sampling 
rate of the comparator and then control the frequency limit and sampling rate of the 
final digital data be varying the cutoff frequency of the digital filter and the degree of 
decimation. In either case, this process of oversampling followed by low-pass digital 
filtering and decimation can be interpreted as increasing the effective resolution of the 
digital output by suppressing the spectral density of the digital noise in the output. 

Some of the important general considerations associated with the use of an ADC 

may be summarized as follows: 

1. Format. Many ADCs are integrated into more general signal processing 
equipment where the natural binary output of the converter is easily accepted. 
However, some ADCs operate as independent instruments. In this case, the 
output of the instrument is usually in the ASCII (American Standard Code 
Information Interchange) format, which allows the ADC output to be read 
directly by any computer program written in a common language, such as C or 
FORTRAN, or to drive terminal and register displays directly. 

2. Resolution. The output of an ADC is a series of digital words, each composed 
of w bits, which determine the number of discrete levels that can be used to 
define the magnitude of the input analog signal at discrete times. Hence, there is 
a round-off error introduced by the conversion, as detailed in Section 10.2.4. 

3. Sampling Interval. In most cases, an ADC samples the input analog signal with 
a fixed sampling interval At, as illustrated in Figure 10.4. However, there are 
sometimes situations where a variable sampling interval might be desired, for 
example, the sampling of an otherwise sinusoidal signal with a time-varying 
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*(0 

Figure 10.4 Sampling of analog signal. 

frequency. To accommodate such situations, most ADCs allow the sampling 
rate to be varied continuously with time as desired. 

4. Sampling Rate. At least two sample values per cycle are required to define the 
highest frequency in an analog signal. Hence, the sampling rate of the ADC, 
denoted by Rs, imposes an upper frequency limit on the digital data. More 
important, any frequency content in the analog signal above this upper 
frequency limit will fold back and sum with the digital data at frequencies 
below this limit to produce a serious error, called aliasing, to be discussed later. 

10.2.2 Sampling Theorems for Random Records 

Suppose a sample random time history record x(t) from a random process {xt(t)} 
exists only for the time interval from 0 to Γ seconds and is zero at all other times. Its 
Fourier transform is 

Assume that x(t) is continually repeated to obtain a periodic time function with a 
period of Γ seconds. The fundamental frequency increments i s / = l/T. By a Fourier 
series expansion, 

X(f) = x(t)e~'2%f,dt (10.4) 
Jo 

O O 

(10.5) 
— O O 

where 

(10.6) 

From Equation (10.4), 

(10.7) 
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Thus X(n/T) determines An and, therefore, x(t) at all t. In turn, this determines X(f) for 
al l / . This result is the sampling theorem in the frequency domain. The fundamental 
frequency increment l/T is called a Nyquist co-interval. 

Suppose that a Fourier transform Xif) of some sample random time history record 
x(t) exists only over a frequency interval from —B to Β Hz, and is zero at all other 
frequencies. The actual realizable frequency band ranges from 0 to β Hz. The inverse 
Fourier transform yields 

fB 
x(t) = x(fylKftdf (10.8) 

Assume that X(f) is continually repeated in frequency to obtain a periodic frequency 
function with a period of 2B Hz. The fundamental time increment is t — l/(2B). Now 

X(f) = J2c»e~J™f/B (10.9) 

where 

Cn~2B 
X(f)e>nnflBdf [10.10) 

From Equation (10.8), 

x(£§)=j[>
 X(f)e™'*df = 2BCn 

(10.11) 

Thus x[n/(2B)] determines C„ and, hence, Xif) at all/ . In turn, this determines x(t) for 
all t. Specifically, substituting Equations (10.9) and (10.10) into Equation (10.8) gives 

x(t) ^jc[n/(2B)]e-^B 

1 °° (B 

^ 5 > [ « / ( 2 B ) ] 2B'— I D 

—OO J ° 

(10.12) 

= 5>[n / (2B)] 
ux\n(2Bt—n) 

n(2Bt-n) 

which shows exactly how jc(r) should be reconstructed from the sample values taken 
l/(2B) seconds apart. Note that at each sample point, n/(2B), the function x[n/(2B)] is 
multiplied by a (sin t)/t curve, which is centered at the sample point and is zero at all 
other sample points. This result is the sampling theorem in the time domain. The 
fundamental time increment 1/(219) is called a Nyquist interval. 

Now assume that the sample record x(t) exists only for the time interval from 0 to Γ 
seconds and suppose also that its Fourier transform Xif) exists only in a frequency 
interval from —B to Β Hz. This dual assumption is not theoretically possible because 
of an uncertainty principle (see Section 5.2.9). In practice, however, it may be closely 
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approximated with finite time intervals and bandpass filters. Assuming x{t) and X(f) 
are so restricted in their time and frequency properties, only a finite number of discrete 
samples of x(t) or X(f) are required to describe x(t) completely for all i. By sampling 
X(f) at Nyquist co-interval points l/Tapart on the frequency scale from —B to B, the 
number of discrete samples required to describe x(t) is 

IB 
/V = — = 22JT (10.13a) 

By sampling x(t) at Nyquist interval points 1/2B apart on the timescale from 0 to Tit 
follows that 

N = T/2B = 2 B T ( 1 ° ' 1 3 b ) 

Thus, the same number of discrete samples are required when sampling the Nyquist 
co-intervals on the frequency scale, or when sampling the Nyquist intervals on the 
timescale. 

10.2.3 Sampling Rates and Aliasing Errors 

The sampling of analog signals for digital data analysis is usually performed at 
equally spaced time intervals, as shown in Figure 10.4. The problem then is to 
determine an appropriate sampling interval At. From Equation (10.13), the minimum 
number of discrete sample values required to describe a data record of length Γ and 
bandwidth Β is N=2BT. It follows that the maximum sampling interval for equally 
spaced samples is At — \I{2B). On the one hand, sampling at points that are more 
closely spaced than 1/(25) will yield correlated and highly redundant sample values 
and, thus, unnecessarily increase later computations. On the other hand, sampling at 
points that are further apart than \I(2B) will lead to confusion between the low- and 
high-frequency components in the original data. This latter problem is called aliasing. 
It constitutes a potential source of error that does not arise in direct analog data 
processing, but is inherent in all digital processing that is preceded by an analog-to-
digital conversion. Those who have viewed a motion picture of the classic western 
vintage have undoubtedly observed the apparent reversal in the direction of rotation of 
the stage coach wheels as the coach slows down or speeds up. That observation is a 
simple illustration of an aliasing error caused by the analog-to-digital conversion 
operation performed by a motion picture camera. 

To be more explicit on this matter of aliasing, consider a continuous analog record 
that is sampled such that the time interval between sample values is At seconds, as 
shown in Figure 10.4. The sampling rate is then 1/(Δί) sps. However, at least two 
samples per cycle are required to define a frequency component in the original data. 
This follows directly from the sampling theorems in Section 10.2.2. Hence, the 
highest frequency that can be defined by a sampling rate of \IAt sps is 1/(2Δί) Hz. 
Frequencies in the original data above 1/(2Δί) Hz will appear below 1/(2Δί) Hz and be 
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confused with the data in this lower frequency range, as illustrated in Figure 10.5. This 
aliasing frequency 

/ A = — (10.14) 
J A 2At K ' 

is called the Nyquist frequency, denoted b y / A . The folding of data frequencies into the 
frequency range from 0 tofA occurs in an accordion-pleated fashion, as indicated in 
Figure 10.6. Specifically, for any f requency/ in the range 0<f<fA, the higher 
frequencies that are aliased w i t h / a r e defined by 

(2/ A ± / ) , (4/ Λ ± / ) , · . . , (2nfA ± f ) , ( 1 0 . 1 5 ) 

To prove this fact, observe that for t= l/(2fA) we have 

cos 2nft = cos 2π(2η/Α ±f) ~ = cos [ 2πη ± ^ J = c o s ^ - η = 1 , 2 , 3 , . . . 
2/A \ JA) JA 

(10.16) 

Thus, all data at frequencies 2nfA ±f have the same cosine function as the data at 
frequency/when sampled at points \/{2fA) apart. For example, iffA = 100Hz, then 
data a t / = 30 Hz would be aliased with the data at the frequencies 170, 230, 370, 
430 Hz, and so forth. Similarly, the power at these higher confounding frequencies is 
aliased with the power in the lower frequencies. This occurs because for t = l/(2fA), 

I I I I I I 1 I 

ο fA % \ 4& % Hk VA 

Original frequencies 

fA % % % 

0 2fA \ 6fA 

Figure 10.6 Folding about the Nyquist frequency. 
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Figure 10.7 Illustration of aliasing error in the computation of an autospectral density function. 

the power quantities sin2(27i/r) and cos2(2nfi) do not distinguish between a frequency/ 
and the frequencies 2nfA ±/; η = 1,2,3,... It follows that if a random signal has 
significant power at frequencies above the Nyquist frequency fA, the true autospectral 
density function would be folded into an abased autospectral density function, as 
illustrated in Figure 10.7. 

The only sure way to avoid aliasing errors in digital data analysis is to remove that 
information in the original analog data that might exist at frequencies above the 
Nyquist frequency fA prior to the analog-to-digital conversion. This is done by 
restricting the frequency range of the original analog data with an analog low-pass 
filter prior to the analog-to-digital conversion. Such an analog filter on ADC 
equipment is commonly referred to as the anti-aliasing filter. Because no low-pass 
filter has an infinitely sharp rolloff, it is customary to set the anti-aliasing filter cutoff 
frequency, denoted b y / c , at 50-80% oifA, depending on the rolloff rate of the filter. It 
should be emphasized that there is no way to recover meaningful information from 
digital data when an aliasing error occurs. Furthermore, an aliasing error is usually not 
apparent in digital data, meaning aliased data might be accepted as correct. Hence, it is 
recommended that anti-aliasing filters always be used before analog-to-digital 
conversion, even when it is believed there is no power in the data above the Nyquist 
frequency. 

It should be mentioned that with the increasing use of very high sampling rate 
ADCs, such as the ΣΔ converter illustrated in Figure 10.3, it is often argued that an 
anti-aliasing filter on the original analog signal input to the ADC is not required. For 
example, assume that the vibration response of an aircraft structure during taketoff is 
to be analyzed to an upper frequency limit of 2 kHz. This requires a final sampling rate 
after decimation by a ΣΔ ADC of at least 5 ksps (a Nyquist frequency of 2.5 kHz) to 
allow the digital filter with a cutoff frequency at 2 kHz to effectively suppress the 
potential aliasing errors caused by the later decimation of the data. 

Assuming the ΣΔ ADC has an oversampling ratio of 256: 1, the original sampling 
rate for the input analog signal will be 1280 ksps, corresponding to a Nyquist 
frequency of 640 kHz. It indeed is very unlikely that the vibration response of the 
aircraft structure would have any significant motion at frequencies above this initial 
Nyquist frequency or that the vibration transducer could measure such high frequency 
motions. However, since the ratio of the initial to final Nyquist frequency is so large, 
any relatively simple low-pass filter (e.g., an RC filter) could be applied to the analog 
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input to the ADC for added protection. In other cases, it may not be known what the 
upper frequency limit for the random data of interest and/or the measurement 
transducer may be. In such cases, an initial anti-aliasing filter on the input analog 
signal to the ADC should definitely be used. 

10.2.4 Quantization and Other Errors 

In analog-to-digital conversion, because the magnitude of each data value must be 
expressed by a binary word of finite size (a finite number of bits), only a finite set of 
levels are available for approximating the infinite number of values in the analog data. 
No matter how fine the scale, a choice between two consecutive levels separated by an 
interval Ax will be required, as illustrated in Figure 10.8. If the quantization is done 
properly, the true value at each sampling instant will be approximated by the 
quantized level closest to it. This results in a round-off error, referred to as the 
quantization error. To define this error, let p(x) denote the probability density function 
of the error. For an ideal conversion, this probability density function will be uniform 
between the levels χ — 0.5 Ax and χ + 0.5Δχ, that is 

From Example 3.2, the mean value of the error is μχ = 0 and the variance is 

The quantization error defined in Equation (10.17) can be interpreted as the 
digital noise floor of the ADC. A peak signal-to-noise ratio for the ADC can then be 

Hence, the standard deviation of the error is given by 

(10.17) 

Scale units 

χ + Δχ 

χ 

χ-Δχ 

Sampling 
time 

Figure 10.8 Illustration of quantization error. 
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determined using Equation (10.3). Specifically, for any binary system, the 
number of levels is 2W, where w is the total word size (including a polarity bit). 
Letting the first level be zero and using one bit to define polarity, it follows that the 
maximum value, either positive or negative, that can be digitized by the ADC is 
[ 2 ^ _ 1 ' —l]Ax. Hence, using Equations (10.3) and (10.17), the peak signal-to-noise 
ratio is given by 

PSNR = {[2 ( m ' - i ) -1]AJC} 2 / (0 .289AJC) 2 « 2 2 ( * - I ) / ( 0 . 2 8 9 ) 2 = 12 χ 2 2 ( h , - ' ) 

(10.18a) 

or in decibels by 

(PS/N) = \0logl0(PSNR) « 6 ( w - l ) + 10.8dB (10.18b) 

For 8-, 12-, and 16-bit ADCs, the peak signal-to-noise ratios are PS/N— 53, 77, and 
101 dB, respectively. To arrive at the available signal-to-noise ratio S/N, the PS/N in 
Equation (10.18b) should be reduced by the squared ratio of the peak to rms value of 
the signal in decibels, as discussed in Section 10.1.4. 

In practice, if at least a 12-bit ADC is used, the quantization error is usually 
unimportant relative to other sources of error (noise) in the data acquisition and 
processing procedures. However, care must be exercised to ensure that the range of the 
continuous data is set to occupy as much of the available ADC range as possible. 
Otherwise, the resolution will be poor and the quantization error could become 
significant. 

Beyond the potential sampling and quantization errors already discussed, other 

possible ADC errors of importance include the following: 

1. Aperture error—arising from the fact that the data sample is taken over a finite 

period of time rather than instantaneously. 

2. Jitter—arising from the fact that the time interval between samples can vary 

slightly in some random manner. 

3. Nonlinearities—arising from many sources such as misalignment of parts, bit 

dropouts, quantization spacing, and zero discontinuity. 

These additional errors can reduce the effective word size of an ADC by perhaps one 
or two bits and, thus, reduce the actual peak signal-to-noise ratio to somewhat less 
than the value predicted by Equation (10.18). 

Example 10.2. Illustration of Digitization. The random vibration of a structure 
is measured with an accelerometer—that is, a transducer that produces an analog 
voltage signal proportional to acceleration. The measured vibration record is to be 
converted to a digital format for analysis over a frequency range from 0 to 2000 Hz 
with a peak signal-to-noise ratio of at least 60 dB, Determine the sampling rate and the 
word size required for the analog-to-digital conversion. 
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First, to obtain an accurate definition of the data up to 2000 Hz without aliasing, the 
data should be low-pass filtered with a cutoff frequency offc = 2000 Hz. Because the 
low-pass filter does not have an infinitely sharp rolloff, the Nyquist frequency should 
be set somewhat above 2000 Hz, say aXfN — 2500Hz. Then from Equation (10.14), the 
required sampling interval is At — l/(2/ c) = 0.2 ms, which gives a sampling rate of 
5000 sps. 

Second, to obtain a peak signal-to-noise ratio of 60 dB, it follows from Equa-
tion (10.18) that w > 1 + (60 - 10.8)/6, where w is the word size. Hence, w = 10 is 
the minimum word size required for the analog-to-digital conversion of the data. To 
allow for other errors that might reduce the effective word size, w = 12 would be 
recommended in this case. 

10.2.5 Data Storage 

For some applications, it is possible to perform all desired data analysis procedures 
directly on the measured data (conditioned transducer signals) in real time. For many 
applications, however, this may not be practical and some form of digital storage of 
the output of the analog-to-digital converter is required. For digital data that will 
be analyzed in the near future, the most common approaches are to input the data into 
the random access memory (RAM) or directly onto the hard disk (HD) of a digital 
computer. A direct input into RAM is generally the best approach if the number of data 
values is within the available RAM capacity. For those cases where the data analysis is 
to be performed at a later time, it is best to download the RAM into a HD, or record the 
data directly into a HD. The speed that a HD can accept data is steadily increasing with 
time, but is currently in excess of 40 MB/s. (for 16-bit sample values, 20 Msps). This is 
adequate to record the output of an ADC in real time for most digitized random 
signals. For long-term storage of digital data after the desired analyses have been 
performed, the data in RAM or HD can be downloaded into a removable storage 
medium such as a digital video disk (DVD) or a compact disk/read-only memory 
(CD/ROM). 

10.3 DATA QUALDJICATION 

Prior to detailed data analysis, it is important that all random data be qualified in three 
ways. First, those data with nonstationary characteristics, periodic components, and 
non-Gaussian properties should be identified because these various classifications of 
data may require different analysis procedures and/or interpretations from those 
appropriate for stationary Gaussian random data. Second, the data should be validated 
by a careful inspection of the data time history records for anomalies indicative of data 
acquisition errors. Third, if anomalies are identified during the validation, those data 
records should be edited to remove the identified anomalies when feasible. Of course, 
if the data are acquired and analyzed in real time, the recommended qualification steps 
may not be feasible. However, when data have been acquired and stored for later 
analysis, all data should be qualified prior to the data analysis, or as a preliminary step 
in the data analysis. 
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10.3.1 Data Classification 

The correct procedures for analyzing random data, as well as interpreting the analyzed 
results, are strongly influenced by certain basic characteristics that may or may not be 
exhibited by the data. The three most important of these stationarity basic character-
istics are (a) the stationary of the data, (b) the presence of periodic components in the 
data, and (c) the normality of the data. Stationarity is of concern because the analysis 
procedures for nonstationary and transient data (see Chapter 12) are generally more 
complicated than those that are appropriate for stationary data. Similarly, periodic 
data require different data analysis procedures and/or different interpretations than 
those appropriate for random data (see Refs 2-4). The validity of an assumption that 
the data (excluding periodicities) have a Gaussian probability density function should 
be investigated because the normality assumption is vital to many analytical 
applications for random data. 

10.3.1.1 Test for Stationarity 
Perhaps the simplest way to evaluate the stationary properties of sampled random data 
is to consider the physics of the phenomenon producing the data. If the basic physical 
factors that generate the phenomenon are time invariant, then stationarity of the 
resulting data generally can be accepted without further study. For example, consider 
the random data representing pressure fluctuations in the turbulent boundary layer 
generated by the flight of a high-speed aircraft. If the aircraft is flying at constant 
altitude and airspeed with a fixed configuration, it would be reasonable to assume that 
the resulting pressure data are stationary. On the other hand, if the aircraft is rapidly 
changing altitude, airspeed, and/or configuration, then nonstationarities in the 
resulting pressure data would be anticipated. 

In practice, data are often collected under circumstances that do not permit an 
assumption of stationarity based on simple physical considerations. In such cases, the 
stationarity of the data must be evaluated by studies of available sample time history 
records. This evaluation might range from a visual inspection of the time histories by a 
talented analyst to detailed statistical tests of appropriate data parameters. In any case, 
there are certain important assumptions that must be made if the stationarity of data is 
to be ascertained from individual sample records. First, it must be assumed that any 
given sample record will properly reflect the nonstationary character of the random 
process in question. This is a reasonable assumption for those nonstationary random 
processes that involve deterministic trends, as discussed in Chapter 12. Second, it 
must be assumed that any given sample record is very long compared to the lowest 
frequency component in the data, excluding a nonstationary mean. In other words, the 
sample record must be long enough to permit nonstationary trends to be differentiated 
from the random fluctuations of the time history. 

Beyond these basic assumptions, it is convenient (but not necessary) to assume 
further that any nonstationarity of interest will be revealed by time trends in the mean 
square value of the data. Of course, one can readily contrive a nonstationary random 
process with a stationary mean square value; for example, a process where each 
sample function is a constant amplitude oscillation with continuously increasing 
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frequency and random initial phase. Nevertheless, such cases are unusual in practice 
because it is highly unlikely for nonstationary data to have a time-varying auto-
correlation function at any time displacement τ without the value at τ = 0 varying. 
Because R(0) = ψ2, the mean square value will usually reveal a time-varying 
autocorrelation. A similar argument applies to higher order properties. 

With these assumptions in mind, the stationarity of random data can be tested by 
investigating a single time-history record x(t) as follows: 

1. Divide the sample record into Ν equal time intervals where the data in each 
interval may be considered independent. 

2. Compute a mean square value (or mean value and variance separately) for each 
interval and align these sample values in time sequence as follows: 

xl) x21 *2 ' · · · ' 

3. Test the sequence of mean square values for the presence of underlying trends or 
variations other than those due to expected sampling variations. 

The final test of the sample values for nonstationary trends may be accomplished in 
many ways. If the sampling distribution of the sample values is known, various 
statistical tests discussed in Chapter 4 could be applied. However, as noted in Section 
8.2.2, the sampling distribution of mean square value estimates requires a knowledge 
of the frequency composition of the data. Such information is generally not available 
at the time one wishes to establish whether or not the data are stationary. Hence, a 
nonparametric approach that does not require a knowledge of the sampling distribu-
tions of the data parameters is more desirable. One such nonparametric test that is 
applicable to this problem is the reverse arrangements test outlined in Section 4.5.2. 
The reverse arrangements test may be directly applied as a test for stationarity as 
follows. 

Let it be hypothesized that the sequence of sample mean square values 
(x\,xl,x\i • • ·,xj/) represents independent sample measurements of a stationary 
random variable with a mean square value of ι/r2. If this hypothesis is true, the 
variations in the sequence of sample values will be random and display no trends. 
Hence, the number of reverse arrangements will be as expected for a sequence of 
independent random observations of the random variable, as given by Equation 
(4.54). If the number of reverse arrangements is significantly different from this 
number, the hypothesis of stationarity would be rejected. Otherwise, the hypothesis 
would be accepted. Note that the above testing procedure does not require a knowl-
edge of either the frequency bandwidth of the data or the averaging time used to 
compute the sample mean square values. Nor is it limited to a sequence of mean square 
values. It will work equally well on mean values, rms values, standard deviations, 
mean absolute values, or any other parameter estimate. Furthermore, it is not 
necessary for the data under investigation to be free of periodicities. Valid conclusions 
are obtained, even when periodicities are present, as long as the fundamental period is 
short compared to the averaging time used to compute sample values. 
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Example 10.3. Test for Stationarity. To illustrate the application of the reverse 
arrangement test as a test for stationarity, consider the sequence of 20 mean square 
value measurements plotted in Figure 10.9. The measurements were made on the 
output of an analog random noise generator as the gain level was slowly increased by 
about 20% during the measurement sequence. From Section 4.5.2, the number of 
reverse arrangements in the sequence are found to be as follows: 

= 7 A 6 = 4 An = 7 A16 = 0 

A2 
= 2 ΑΊ = 0 An = 6 An = 2 

Ai = 6 A 8 = 8 An = 3 A is = 0 

A 4 = 2 A 9 = 0 Au 
= 0 A19 = 1 

A5 = 0 Aw = 2 Al5 = 2 

The total number of reverse arrangements is then A = 52. 
Now let it be hypothesized that the data are stationary. From Table A.6, this 

hypothesis would be accepted at the a — 0.05 level of significance if the sequence of 
N — 20 measurements produced between Α2ο;ο.975 = 64 and A2o;o.o25 = 125 reverse 
arrangements. Since the sequence actually produced only A =52 reverse arrange-
ments, the hypothesis of stationarity is rejected at the 5% level of significance, 
meaning the data are correctly identified as being nonstationary. This concludes 
Example 10.3. 

An assumption of stationarity can often be supported (or rejected) by a simple 
nonparametric test of sample mean square values (or related sample parameters) 
computed from the available data. However, if one is not prepared to accept time 
invariance of mean square values as sufficient evidence of time invariance of 
autocorrelation functions, then tests can still be performed by further segmenting 
of the data in the frequency domain. Specifically, the data can be segmented 
into several contiguous frequency ranges by bandpass filtering, and the sample mean 
square values in each frequency interval can then be individually tested for time 
invariance. Since spectral density functions and correlation functions are Fourier 
transform pairs, time invariance of one directly implies time invariance of the other. 
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Figure 10.9 Sequence of mean square value measurements. 
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10.3.1.2 Test for Periodicities 
Periodic and/or almost periodic components in otherwise random data will theore-
tically appear as delta functions in the autospectrum of the data. In practice, they will 
appear as sharp peaks in the autospectrum that might be confused with narrow 
bandwidth random contributions. Hence, it is desirable to identify the presence of 
periodic components so they will not be misinterpreted as narrow bandwidth random 
components with finite autospectral densities. If periodic components in the data are 
intense, their presence is usually obvious. However, less intense periodic components 
in random data may not be so obvious. The most effective procedures for detecting 
periodic components are those associated with the various analysis procedures that 
would be employed for random data analysis anyway. Hence, in practical terms, a test 
for periodicities usually evolves from analysis procedures that would be performed 
assuming the data are random. Specifically, the presence of periodic components in 
otherwise random data may often be detected by visual inspection of an amplitude 
probability density function, an autocorrelation function, and/or an autospectral 
density function measured from stationary data as illustrated in Figures 1.12-1.14. 
The autospectrum is the most commonly used analysis parameter for this application. 

To be more specific, a highly resolved autospectral density estimate will reveal 
periodic components as sharp peaks, even when the periodicities are of relatively small 
intensity. A sharp peak in the autospectrum of sample data, however, may also represent 
narrow bandwidth random data. These two cases can usually be distinguished from one 
another by repeating the autospectral density analysis with a narrower resolution 
bandwidth. If the measured spectral peak represents a sine wave, the indicated 
bandwidth of the peak will always be equal to the resolution bandwidth of the analysis, 
no matter how narrow the bandwidth. Furthermore, the indicated spectral density will 
always increase in direct proportion to the reduction in the resolution bandwidth. This 
method of detection will clearly not work unless the resolution bandwidth of the analysis 
is smaller than the actual bandwidth of possible narrow bandwidth random data. 

Example 10.4. Autospectrum of Sine Wave in Noise. To illustrate how an 
autospectrum can reveal the presence of a periodic component in otherwise random 
data, refer to Figure 10.10. In this example, the output of a Gaussian random number 
generator with a bandwidth of 400 Hz is mixed with a sinusoidal signal with a 
frequency of 200 Hz. The mean square value of the sine wave is one-twentieth that of 
the random signal. Figure 10.10(a), which shows the autospectrum computed with a 
relatively wide resolution bandwidth of Be = 50 Hz, gives little or no indication of the 
presence of the sine wave. Figure 10.10(b), which was computed using one-fifth the 
previous resolution bandwidth, indicates a possible sine wave quite clearly. Fig-
ure 10.10(c), which was computed with a resolution bandwidth reduced by another 
factor of 5, gives a strong indication of the sine wave. 

10.3.1.3 Test for Normality 
Perhaps the most obvious way to test samples of stationary random data for normality 
is to measure the probability density function of the data and compare it with the 
theoretical normal distribution. If the same record is sufficiently long to permit a 
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Figure 10.10 Measured autospectra of a sine wave in random noise. 

measurement with small error compared to the deviations from normality, the lack of 
normality will be obvious. If the sampling distribution of the probability density 
estimate is known, various statistical tests for normality can be performed even when 
the random error is large. However, as for stationarity testing discussed earlier, a 
knowledge of the sampling distribution of a probability density computation requires 
frequency information for the data that may be difficult to obtain in practical cases. 
Hence a nonparametric test is desirable. One of the most convenient nonparametric 
tests for normality is the chi-square goodness-of-fit test outlined in Section 4.5.1. The 
details of applying the chi-square goodness-of-fit test with a numerical illustration are 
presented in Example 4.3. 

10.3.2 Data Validation 

Every reasonable effort should be made to design a data acquisition system that will 
provide valid data, as detailed in Refs 2-4. Unfortunately, random data are sometimes 
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acquired with faults introduced by the data acquisition system, and then they are 
analyzed and interpreted as if they were valid. Such errors can be dramatically 
suppressed if the acquired data are validated by a careful inspection for anomalies 
before the data analysis is performed. As for the data classification procedures 
discussed in Section 10.3.1, adetailed validation of data is not feasible when the data 
are acquired and analyzed in real time. However, when data are stored for later 
analysis, all data signals should be validated prior to data analysis. 

Random data validation procedures can range from purely subjective techniques to 
sophisticated techniques using specialized computer programs. As an example of a 
subjective technique, experienced technicians and engineers can often detect subtle 
anomalies in random acoustic and/or vibration data in the audio frequency range by 
simply listening to the output of the data acquisition transducers with a headset; the 
human hearing system is a marvelous pattern recognition device for data in the audio 
frequency range. At the other extreme, knowledge-based digital data acquisition 
systems have been developed that detect anomalies in specific types of random data by 
automated procedures. In many cases, however, anomalies due to common data 
acquisition errors can be detected by a simple visual inspection of measured time 
history records, sometimes augmented by certain preliminary data analysis opera-
tions. From Ref 3, the most commonly occurring random data anomalies that can be 
detected in this manner are 

a. Excessive instrumentation noise 

b. Signal clipping 

c. Intermittent noise spikes 

d. Temporary signal dropouts 

e. Power line pickup 

f. Spurious trends 

10.3.2.1 Excessive Instrumentation Noise 
Excessive instrumentation noise occurs when the input sensitivity (gain) of one or 
more instruments in the data acquisition system is set too low, causing the measured 
data signals to have values that are not substantially greater than the noise floor of the 
data acquisition system; that is, the measurements are made with an inadequate 
signal-to-noise ratio, as discussed in Section 10.1.4. Because instrumentation noise 
(excluding power line pickup) is generally random in character with a wide band-
width, it is often difficult to distinguish from the actual random data being acquired. 
Hence, the only sure way to correctly identify excessive instrumentation noise is to 
measure the noise floor of the data acquisition system. This might be done as part of 
the calibration procedure, as suggested in Section 10.1.3, but can also be done by 
preceding and/or following all data measurements with a quiescent noise measure-
ment—that is, a measurement made by the data acquisition system with all sensitiv-
ities (instrument gains) set as they will be for the actual measurements—but before 
and/or after the physical phenomenon to be measured is applied. 



342 DATA ACQUISITION AND PROCESSING 

Excessive instramentation noise exaggerates the mean square value of the data and 
obscures the lower values of a computed autospectral density function. At the 
extreme, the instrumentation noise may dominate the measurement and cause the 
autospectrum of the data to appear to be near-white noise, as illustrated theoretically 
in Table 5.2. 

10.3.2.2 Signal Clipping 
Signal clipping occurs when the input sensitivity (gain) of an instrument in the data 
acquisition system (usually an amplifier or storage device) is set too high, causing the 
instrument to saturate (exceed its linear range) and produce an output time history 
record with a limited range of magnitudes. Clipping may limit either one or both sides 
of the data values, depending on the mean value of the data. An example of mild two-
sided clipping of a random time history record with a zero mean value is shown in 
Figure 10.11(b), where the undipped data record is shown in Figure 10.11(a). Even 
small amounts of clipping in measured random data can often be detected by an 
experienced analyst through a simple visual inspection of a time history record, 
although a stronger detection may be achieved by computing the probability density 
function of the measured data. Clipping will appear as small peaks on one or both tails 
of the probability density function at the clipping level, as illustrated for two-sided 
clipping in Figure 10.12(b), where the probability density function for the undipped 
signal is shown in Figure 10.12(a). 

Experience suggests that clipping at a level above ± 3 standard deviations of a 
Gaussian random signal has a negligible impact on the mean square value, auto-
correlation function, and autospectral density function of the data. However, severe 
clipping at a level below ±1.5 standard deviations significantly reduces the indicated 
mean square value and exaggerates the indicated autospectrum values of the data at 
the higher frequencies. 

10.3.2.3 Intermittent Noise Spikes 
Sometimes during the acquisition of random data, particularly dynamic load data 
where there is relative motion of the transducer cables, intermittent noise spikes ooeur. 
This problem is usually caused by a defective cable connector at the transducer or 
signal conditioner, which either open circuits or short circuits when the cable is moved. 
Intermittent noise spikes also sometimes appear in data transmitted by RF telemetry 
when the data signal level is too low at the receiver [3]. An example of intermittent 
noise spikes in a random data time history record is shown in Figure 10.11 (c), where the 
data record without noise spikes is shown in Figure 10.11(a). As for clipping, an 
experienced analyst can often detect intermittent noise spikes by a visual inspection of 
a measured time history record, but the problem is even more apparent in a probability 
density plot. Specifically, assuming the random data being acquired are approximately 
Gaussian, intermittent noise spikes will cause the tails of the probability density 
function to become too thick. This is illustrated in Figure 10.12(c), where the 
probability density function for the noise-free data record is shown in Figure 10.12(a). 

Because an intermittent noise spike approximates a delta function, and the Fourier 
transform of a delta function is white noise, it follows that intermittent noise spikes 
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Figure 10.11 Examples of random data with anomalies. 

will tend to flatten the autospectrum of the data. At the extreme, the intermittent noise 
spikes may dominate the measurement and, like excessive instrumentation noise, 
cause the autospectrum of the data to appear to be near-white noise. 

10.3.2.4 Temporary Dropouts 
Sometimes the output signal from a data acquisition system will diminish rapidly into 
the instrumentation noise floor for no apparent reason, and it may or may not return 
later in the measurement. Permanent dropouts usually indicate a major malfunction of 
the transducer or some other instrument in the data acquisition system, while 
temporary dropouts might occur because of a momentary saturation of a data 
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acquisition system instrument or a malfunction of a transmission link. In particular, 
data acquisition systems that use RF telemetry transmission (see Section 10.1.2) often 
reveal temporary dropouts on those occasions when the receiver antenna becomes 
physically shielded from the transmitting antenna. In any case, temporary dropouts 
are easily identified by a visual inspection of a measured time history record, as 
illustrated in Figure 10.11(d). Temporary dropouts are also clearly apparent in a 
computed probability density function for the measured data, where they appear as a 
spike at zero level, as shown in Figure 10.12(d). 

If random data with dropouts were analyzed ignoring the dropouts, it is obvious 
that the computed mean square value, as well as the maximum value of the 
autocorrelation function and the area under the autospectrum, would be too small. 
Also, because of the rapid termination and return of the data at each dropout, the 
shapes of the autocorrelation and autospectral density functions would be distorted. 

Normalized instantaneous value, (χ- μ)Ιβ 

Normalized instantaneous value, (x - ll)IO 

Normalized instantaneous value, (χ - μ)Ισ 

Normalized instantaneous value, (x - (l)l<r 

Figure 10.12 Probability density functions of random data with anomalies. 
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10.3.2.5 Power Line Pickup 
All advanced countries have extensive ac electric power distribution systems that 
radiate substantial electromagnetic energy at the power-line frequency (60 Hz in the 
United States, but 50 Hz in many other regions of the world). This power line generated 
energy is commonly picked up by data acquisition systems that are improperly shielded 
or are grounded at two or more physical locations with a slight potential difference so as 
to cause a current to flow through the shield (commonly referred to as a ground loop). 
Such power line pickup appears in measured random data as a sine wave at the power 
line frequency. In extreme cases, power line pickup may saturate one or more 
instruments in the data acquisition system and produce signal contamination at the 
power line frequency and many of its harmonics. If sufficient in magnitude, an 
experienced analyst can often detect power line pickup in random data by a visual 
inspection of a measured time history record, as illustrated in Figure 10.11 (e), where an 
uncontaminated record is shown in Figure 10.11(a). However, the most powerful way 
to detect power line pickup is through the computation of an autospectrum with a 
narrow bandwidth resolution, as previously demonstrated in Example 10.4. 

Unless the power line pickup is sufficiently extreme to saturate one or more 
instruments in the data acquisition system, its only effect is to introduce a sine wave 
component into the data at the power line frequency and perhaps some harmonics 
thereof. Hence, it usually does not distort the desired information in the measured 
random data at all other frequencies. 

10.3.2.6 Spurious Trends 
A spurious trend (a time-varying mean value) may occur in a data acquisition system 
for any one of several reasons, the most common being temperature-induced drift in 
one or more instruments or an integration operation, which often produces a low-
frequency trend due to the integration of low-frequency noise. Such spurious trends 
usually appear in a random time history record as illustrated in Figure 10.11 (/), where 
the untrended record is shown in Figure 10.11(a). Assuming it is known that the mean 
value of the data is zero, or at least a constant, spurious trends can often be detected by 
an experienced analyst through a simple visual inspection of a time history record. 
However, a more powerful detection procedure is provided by a statistical trend test on 
a sequence of short time-averaged mean value computations, as discussed in Section 
4.5.2 and illustrated for mean square value measurements in Example 10.4. 

Spurious trends tend to exaggerate the values of a computed autospectrum at those 
frequencies below about 10/Γ„ where Tr is the total length of the acquired data record. 
In many cases, this will be below the frequency range of interest in the data. However, 
spurious trends also distort the autocorrelation and probability density functions of the 
data in a manner that might cause a misinterpretation of the results. 

10.3.3 Data Editing 

Conventional wisdom suggests that all random data measurements that reveal 
anomalies during the data validation process discussed in Section 10.3.2 should be 
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discarded, or at least the results of any analysis of such data should be viewed as highly 
suspect. However, in those cases where repeating the experiment to acquire new data 
is costly or perhaps not even possible, an effort to correct the data for detected 
anomalies may be warranted. Specifically, there are editing operations that sometimes 
can be applied to the measured data in digital form that will allow the recovery of at 
least some acceptably reliable information from the data analysis. From Ref. 3, 
possible editing operations to recover useful information from measured random data 
with one or more of the six anomalies discussed in Section 10.3.2 are now outlined. It 
should be emphasized that most of these editing operations involve assumptions about 
the basic characteristics of the data. If any of the noted assumptions are invalid, the 
editing operation may still produce data that could lead to misleading data analysis 
results. Also, as for the data classification and validation operations discussed in 
Sections 10.3.1 and 10.3.2, these editing procedures may be integrated as a pre-
liminary step in the final data analysis. Finally, if editing operations are performed on 
any data, this fact should be noted on all plotted or tabulated data analysis results, and a 
report detailing the exact editing operations performed should be attached to the 
analysis results. 

10.3.3.1 Excessive Instrumentation Noise 
If the noise floor of the data acquisition system is measured during calibration, as 
suggested in Section 10.1.3, or a quiescent noise measurement is made before or after 
the actual measurement of the data, as discussed in Section 10.3.2, then the 
autospectrum computed from the measured random data can be corrected for 
excessive instrumentation noise by the following procedure: 

1. Compute the autospectrum of the measured quiescent noise, Gnn(f), as well as 
the autospectrum of the measured data, Gyy if). 

2. Assuming the actual random data are statistically independent of the data 
acquisition system noise, the autospectrum of the actual random data, G^if) can 
be estimated by computing Gxxif) = Gyy{f)—Gnn{f). 

3. The mean square value of the actual data can be estimated from the area under 
the computed G^if), and if desired, the autocorrelation function of the actual 
data can be estimated from the inverse Fourier transform of G^if), as detailed 
in Section 11.4.2. 

As the magnitude of the instrumentation noise increases relative to the magnitude of 
the actual random data, the estimate for the autospectrum becomes a difference 
between two large numbers with the associated inaccuracies. As a rule of thumb, 
Gyyif) > 2G„„(f) will provide acceptable results. 

10.3.3.2 Signal Clipping 
As noted in Section 10.3.2, although modest amounts of clipping of measured random 
data can often be tolerable, severe clipping (i.e., at a level within ±1.5 standard 
deviations of the mean value of the data) will in most cases seriously distort the mean 
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square value, autocorrelation function, and autospectral density function computed 
from those data. There is one special case, however, where useful autocorrelation and 
autospectrum results can be extracted from even the most severely clipped data. 
Specifically, if it can be assumed that the undistorted data being measured have a 
Gaussian probability density function, then the hard-clipping procedure detailed in 
Section 12.5.3 for the analysis of a certain class of nonstationary random data applies to 
clipped random data as well. However, this nonlinear procedure does not recover the 
correct mean square value of the data. Instead, the analyzed results will always have a 
mean square value of unity; hence, the computed autocorrelation function at zero time 
delay, as well as the area under the computed autospectrum, will also be unity. 

10.3.3.3 Intermittent Noise Spikes 
Intermittent noise spikes in digitized random data can easily be removed by an 
interpolation procedure as follows: 

1. Remove all digital time history values defining each noise spike. The number of 
digital values Ns defining each noise spike will be a function of the sampling rate 
Rs (in samples/second) and the upper cutoff frequency of the data acquisition 
system, which is usually the cutoff frequency fc of the anti-aliasing filters. As a 
rule of thumb, Ns « RJ(2fc). 

2. Replace the removed values for each spike with new values determined by an 
appropriate interpolation between the last value before and the first value after 
the noise spike. In most cases, a linear interpolation will suffice, particularly if 
oversampling procedures are used (see Section 10.3.3), because the final digital 
low-pass filtering and decimation prior to analysis will further smooth the 
interpolation. 

For those cases where the data have a substantial frequency content up to the cutoff 
frequency fc, it may be difficult to distinguish between a noise spike and a natural peak 
in the random data. A common rule of thumb to make this distinction is to assume that 
if any peak in the time history record has (a) approximately the number of data values 
given in Step 1 above and (b) a magnitude in excess of three standard deviations from 
the mean value of the data, then that peak should be considered a spurious noise spike. 

10.3.3.4 Temporary Signal Dropouts 
At first glance, it would seem reasonable that measured random data with temporary 
dropouts could be edited by simply removing the dropout regions from the time 
history record. This approach is often acceptable for those cases where the dropouts 
are known to be due to intermittent shielding between the transmitting and receiving 
antennas in an RF telemetry transmission link. Even in this case, however, if a 
continuous data record is reconstructed by splicing together the data segments with 
the dropout portions removed, a smooth interpolation must be made between the data 
values at the end of each segment and the beginning of the next segment to avoid 
introducing spurious high-frequency spectral components. For dropouts caused by 
other data acquisition problems, all the data must be considered suspect unless the 
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exact source of the dropouts can be established and determined to have no significant 
influence on the other portions of the data. 

10.3.3.5 Power Line Pickup 
Assuming power line pickup is not sufficiently severe to saturate any of the data 
acquisition system instruments, it may be removed from digital time history records 
by the following procedure: 

1. Compute the discrete Fourier transform of the time history record using the 
procedures detailed in Section 11.2. If the ultimate goal of the later data analysis 
is the computation of correlation and/or spectral density functions, this opera-
tion should be incorporated into the data analysis, and the Fourier transforms 
should be computed on the individual blocks of data used for the correlation 
and/or spectral computations, as detailed in Chapter 11. 

2. Remove the digital spectral values defining a peak at the power-line frequency 
and at all multiples of the power-line frequency where a peak in the Fourier 
transform is apparent. 

3 . Replace the removed spectral values at the power-line frequency and its 
harmonics with appropriately interpolated values. In most cases, a linear 
interpolation will suffice. 

4. If this editing operation is incorporated into the computation of correlation 
and/or spectral density functions, proceed with the correlation or spectral 
computations as detailed in Chapter 11. If an edited time history record of 
the data is desired, inverse Fourier transform the edited Fourier transform using 
the procedures in Section 11.2.5. 

10.3.3.6 Spurious Trends 
If the validation procedures detailed in Section 10.3.2 identify a spurious trend in 
measured random data, that spurious trend should be removed from the data by one of 
two procedures as follows: 

1. If it is desired to retain all information in the measured random data down to the 
minimum frequency of/i = 1/Γ„ where Tr is total record length, then the best 
way to remove a spurious trend is by the regression analysis procedure detailed 
in Section 11.1.2. 

2. If it is acceptable to lose the information in the measured random data at 
frequencies below about f2 « 1 0 / 7 ) , then a spurious trend can be removed by a 
high-pass digital filtering operation, as outlined in Section 11.1.3, This 
approach is most appropriate when the goal of the final data analysis is the 
computation of spectral density functions, because the creation of data blocks 
for ensemble-averaged spectral computations, as described in Section 11.5.1, 
generally introduces a low-frequency limit into the computed spectrum that is 
much higher than the frequency f2 defined above. 
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10.4 DATA ANALYSIS PROCEDURES 

The procedures for analyzing the properties of random data may be divided logically 
into two categories: the procedure for analyzing individual sample records and the 
procedure for analyzing multiple sample records given the properties of the individual 
records. Applicable data analysis procedures for these two categories are now 
outlined. 

10.4.1 Procedure for Analyzing Individual Records 

An overall procedure for analyzing the pertinent statistical properties of individual 
sample time history records is presented in Figure 10.13. Note that many of the 
suggested steps in the procedure might be omitted for some applications, while 
additional steps would be required for other applications. Further note that the data 
qualification steps discussed in Section 10.3 are incorporated into the procedure to 
help clarify how these two parts of the overall data processing problem interact. Each 
block in Figure 10.13 will now be discussed. 

10.4.1.1 Mean and Mean Square Value Analysis 
The first step indicated by Block A is a mean and mean square value (or variance) 
computation. This step is almost universally performed for one or both of two valid 
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Figure 10.13 General procedure for analyzing individual sample records. 



350 DATA ACQUISITION AND PROCESSING 

reasons. First, because the mean and mean square values are the basic measures of 
central tendency and dispersion, their calculation is generally required for even the 
most rudimentary applications. Second, the computation of short time-averaged mean 
and mean square value estimates provides a basis for evaluating the stationarity of the 
data, as indicated in Figure 10.13 and illustrated in Section 10.3.1. The computation of 
mean and mean square values is discussed in Section 11.1. The statistical accuracy of 
mean and mean square value estimates is developed in Section 8.2. 

10.4.1.2 Autocorrelation Analysis 
The autocorrelation function of stationary data is the inverse Fourier transform of the 
autospectral density function and thus produces no new information over the 
autospectrum. Because the autospectrum can be computed more efficiently and is 
generally easier to interpret for most applications, autocorrelation functions are often 
omitted. There may be special situations, however, where an autocorrelation estimate 
is desired. In such cases, the autocorrelation function is usually computed from a 
spectral density estimate, as detailed in Section 11.4.2. The statistical accuracy of 
autocorrelation estimates is discussed in Section 8.4. Engineering applications of 
correlation functions are discussed in Ref. 1. 

10.4.1.3 Autospectral Density Analysis 
Perhaps the most important single descriptive characteristic of stationary random data 
is the autospectral density function, which defines the frequency composition of the 
data. For ideal constant-parameter linear systems, the output autospectrum is equal to 
the input autospectrum multiplied by the square of the gain factor of the system. Thus 
autospectra measurements can yield information concerning the dynamic character-
istics of the system. The total area under an autospectrum is equal to the mean square 
value ψ2. To be more general, the mean square value of the data in any frequency range 
of concern is determined by the area under the autospectrum bounded by the limits of 
that frequency range. Obviously, the computation of autospectra, as indicated by 
Block C, will be valuable for many analysis objectives. 

The physical significance of the autospectral density function for input/output 
random data problems is shown clearly in Chapters 6 and 7. Other important 
engineering applications are discussed in Ref. 1. The computation of autospectra 
is detailed in Section 11.5, and the statistical accuracy of the computed estimates is 
developed in Section 8.5. 

10.4.1.4 Probability Density Analysis 
The last fundamental analysis included in the procedure is probability density 
analysis, as indicated by Block D. Probability density analysis is often omitted from 
a data analysis procedure because of the tendency to assume that all random 
phenomena are normally distributed. In some cases, however, random data may 
deviate substantially from the Gaussian form, particularly when the data in question 
are the result of a nonlinear operation (see Chapter 14). The computation of 
probability density function is presented in Section 11.3 and the statistical accuracy 
of the computed estimates is discussed in Section 8.3. 
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10.4.1.5 Nonstationary and Transient Data Analysis 
All of the analysis techniques discussed thus far apply only to sample records of 
stationary data. If the data are determined to be nonstationary during the qualification 
phase of the processing, then special analysis techniques will be required as indicated 
by Block E. The analysis of nonstationary and transient data is discussed in Chapter 
12. Note that certain classes of nonstationary data can sometimes be analyzed using 
the same equipment or computer programs as employed for stationary data analysis. 
However, the results of such analyses must be interpreted with caution as illustrated in 
Chapter 12. 

10.4.1.6 Periodic and Almost-Periodic Data Analysis 
If sinusoidal components due to periodic or almost-periodic contributions are 
detected in the data during the classification phase discussed in Section 10.3.1, then 
analysis procedures appropriate for such data should be employed. The primary 
analysis procedure for periodic and almost-periodic data is the computation of Fourier 
series components (sometimes called a linear or line spectrum) using the techniques 
detailed in Section 11.2. More extensive analysis procedures for periodic and almost-
periodic data are presented in Ref. 3. 

10.4.1.7 Specialized Data Analysis 
Various other analyses of individual time history records are often required, depend-
ing on the specific goals of the data processing. For example, studies of fatigue 
damage in mechanical systems may involve the calculation of peak probability 
density functions of strain data, as discussed in Section 5.5 and Ref. 5. An 
investigation of zero crossings or arbitrary level crossings might be warranted for 
certain communication noise problems, as detailed in Section 5.5.1. The computation 
of Hilbert transforms may be desired for special problems discussed in Chapter 13. 
Such specialized analyses, as indicated by Block G, must be established in the context 
of the engineering problem of concern. 

10.4.2 Procedure for Analyzing Multiple Records 

The preceding section presented methods for analyzing each individual sample record 
from an experiment. A procedure for analyzing further pertinent statistical properties 
of multiple sample records is presented in Figure 10.14. As for the analysis of 
individual sample records outlined in Figure 10.13, many of the suggested steps in 
Figure 10.14 might be omitted for some applications while additional steps would be 
required for others. Furthermore, the suggested steps assume the individual records 
are stationary. Each block in Figure 10.14 will now be discussed. 

10.4.2.1 Analysis of Individual Records 
This first step in the procedure is to analyze the pertinent statistical properties of the 
individual sample records, as outlined in Figure 10.13. Hence the applicable portions 
of Figure 10.13 constitute Block A in Figure 10.14. 



ι- Ο 

,ο ' 3 

ο τ ι S -α 

> Β 
• ' 3 4S 

£ s *- a 

f- ο 

.5 ο 
ο 5 
ο 3 

a. 

O IS • £ 

° 13 
_</> ^ 

! 'ΐΛ Ό 

11 

u 
B S 1 

υ 

I s . 

Ο «3 

Ο 

J3 & 

I 1 

352 



DATA ANALYSIS PROCEDURES 353 

10.4.2.2 Test for Correlation 
The next step indicated by Block Β is to determine whether or not the individual sample 
records are correlated. In many cases, this decision involves little more than a cursory 
evaluation of pertinent physical considerations. For example, if the collection of sample 
records represents measurements of a physical phenomenon over widely separated time 
intervals, then usually the individual records can be accepted as uncorrelated without 
further study. On the other hand, if the collection represents simultaneous measurements 
of the excitation and response of a physical system, then correlation would be 
anticipated. For those cases where a lack of correlation is not obvious from basic 
considerations, a test for correlation among the sample records should be performed 
using cross-correlation functions or coherence functions, as indicated in Figure 10.14. 

10.4.2.3 Test for Equivalence of Uncorrelated Data 
It sample records are found to be uncorrelated in Block B, then these records should be 
tested for equivalent statistical properties as indicated by Block C. This is an important 
but often overlooked step in the analysis of random data. Far too often the analyzed 
results for a large number of sample records are presented as individual plots when in 
fact the results differ only by amounts that fall within the acceptable limits of random 
error. The formal presentation of such redundant data is usually of no value and can 
actually be detrimental in several ways. First, large quantities of analyzed data will 
sometimes tend to overwhelm the user and unnecessarily complicate the interpretation 
of the results. Second, the unsophisticated user might interpret the statistical scatter in 
individual results as physically meaningful differences. Third, more accurate results 
could be presented for the equivalent data if they were pooled prior to plotting, as will 
be discussed next. Note that for most applications, an equivalence of autospectra is a 
sufficient criterion for equivalence of sampled data. A procedure for testing the 
equivalence of autospectra is presented in Section 8.5.5. 

10.4.2.4 Pooling of Equivalent Uncorrelated Data 
The analyzed results for individual sample records that are found to represent 
equivalent data should be pooled, as indicated by Block D. This is done by computing 
appropriately weighted averages of the results for the individual records. For example, 
assume two autospectral density function estimates were computed from two un-
correlated sample records that now are found to represent equivalent data. If G\ if) and 
G2(f) were the original autospectra estimates computed with ndl and averages, 
respectively, a new pooled estimate of the autospectrum is given by 

where Gp(f) is essentially computed with ndp = ndl + nd2 averages. Equation (10.19) 
may be generalized for q estimates from uncorrelated but equivalent samples as 
follows: 

GP(f) = 
nd\G\{f) +nd2G2{f) 

(10.19) 
rtd\ +ndi 

GP(f) = (10.20) 
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where Gp(f) is now computed with an equivalent number of averages given by 

ι 

id = Σ > Λ · (10.21) 
(=1 

Noting from Section 8.5.4 that the random error in an autospectral density estimate 
is approximated by er — 1/'̂ /ηά, it follows from Equation (10.21) that the pooling 
operation produces an autospectrum estimate with a reduced random error. However, 
it also should be noted that the pooling operation generally will not suppress the 
systematic error (bias) in the autospectra estimates, as defined and discussed in 
Section 8.5.1. This fact often leads data analysts to reprocess sample records with 
equivalent statistical properties in a manner designed to reduce bias errors. For the 
case of autospectra estimates, the reprocessing might consist of a recomputation of 
autospectral density estimates from the original sample records using a greatly 
reduced resolution bandwidth to suppress the bias errors at the expense of increased 
random errors. The random errors in the individual estimates are then suppressed by 
the pooling operation. 

10.4.2.5 Cross-Correlation Analysis 
As for the case of autocorrelation and autospectral density functions, the cross-
correlation and cross-spectral density functions are Fourier transform pairs. Hence, 
the measurement of a cross-correlation function will technically not yield any new 
information over the cross-spectrum. However, it sometimes presents the desired 
information in a more convenient format. An example is the measurement of time 
delays between two measurement points. Such measurements are the basis for a wide 
range of applications summarized in Ref. 1. Therefore, cross-correlation analysis is 
included in the procedures as a separate step indicated by Block E. Note that a cross-
correlation estimate can be used as a test for correlation between two records. 

Cross-correlation functions are usually estimated by computing the inverse Fourier 
transform of a cross-spectral density estimate, as detailed in Section 11.6.2. The 
statistical accuracy of cross-correlation estimates is discussed in Section 8.4. 

10.4.2.6 Cross-Spectral Density Analysis 
The most important joint computation for a collection of correlated sample records is 
the cross-spectral density analysis indicated by Block F. Cross-spectral density 
functions provide information concerning the linear relationships that might exist 
among the collection of sample records. When interpreted into a physical context, 
such information often leads directly to problem solutions as developed in Chapters 6 
and 7, and illustrated extensively in Ref. 1. 

The computation of cross-spectral density functions is detailed in Section 11.6.3. 
The statistical accuracy of cross-spectra estimates is developed in Section 9.1. 

10.4.2.7 Coherence Function Analysis 
Block G indicates the calculation of coherence functions based on autospectral and 
cross-spectral density estimates. Coherence functions of various types (ordinary, 
multiple, and partial) are valuable in several ways. First, they can be used to test for 
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correlation among the collection of sample records. Second, they constitute a vital 
parameter in assessing the accuracy of frequency response function estimates. Third, 
they can provide a direct solution for certain types of problems. 

The computation of coherence functions is detailed in Sections 11.6.6 and 11.7. 
Illustrations of their applications to many engineering problems are presented in 
Ref. 1. The statistical accuracy of coherence function estimates is developed in 
Sections 9.2.3 and 9.3. 

10.4.2.8 Frequency Response Function Analysis 
The ultimate goal in the analysis of a collection of sample records is often to establish 
linear relationships among the data represented by the various records. The existence 
of such linear relationships can be detected from cross-correlation, cross-spectral 
density, or coherence function estimates. However, a meaningful description of the 
linear relationships is best provided by computing the frequency response functions of 
the relationships, as indicated by Block H. 

The computation of frequency response functions is developed in Sections 11.6.4 
and 11.7. The statistical accuracy of frequency response function estimates is 
discussed in Sections 9.2.4, 9.2.5, and 9.3. 

10.4.2.9 Other Desired Multiple Analysis 
Block I indicates other joint analyses of a collection of sample records needed to 
satisfy special data processing goals. Included might be advanced spectral calcula-
tions such as generalized spectra used in nonstationary data analysis discussed in 
Chapter 12, or Hubert transform techniques discussed in Chapter 13. 

PROBLEMS 

10.1 If an end-to-end electrical calibration and an end-to-end mechanical calibra-
tion are performed on a data acquisition system, and there is a significant 
difference in the results of the two calibrations, which is more likely to be 
correct and why? 

10.2 Assume the autospectral density function of a sample record of analog random 
data is to be computed by digital procedures. If it is known that the data exist 
only at frequencies below 1 kHz, 

(a) what is the minimum sampling rate that can be used to digitize the original 
analog record? 

(b) is this minimum sampling rate also required for the computation of an 
autocorrelation function? 

(c) is this minimum sampling rate also required for the computation of a 
probability density function? 

10.3 Suppose an analog random process represents band-limited white noise with a 
uniform autospectral density function of G = 0.1 V 2 /Hz over the frequency 
range of 0 < / < 500 Hz and zero for / > 500 Hz. If a sample record of the 
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random process is digitized for analysis with a sampling rate of 200 sps, and no 

anti-aliasing filter is used, 

(a) what will be the frequency range of autospectral density function com-

puted from the digital data? 

(b) what will be the value (on the average) of the autospectral density function 

computed from the digital data at 50 Hz? 

10.4 Suppose the probability density function p(x) computed from an acquired 
random data record reveals (a) a sharp peak at χ = 0 and (b) a second sharp peak 
at χ = μχ + 1.5σ χ and is zero beyond χ = μχ + 1.5σ χ. What type of data 
acquisition errors would be suspected? 

10.5 Suppose an otherwise random data record includes a sine wave with an rms 
value of 1 V. Assume the autospectral density function of the data is measured 
using a resolution filter bandwidth of Be — 10 Hz. If the spectral density of the 
random portion of the data in the vicinity of the sine wave frequency is 
G = 0.1 V 2/Hz, what will be the indicated spectral density (on the average) at 
the frequency of the sine wave? 

10.6 The input gain to an analog-to-digital converter is set to make IV full scale. If 
the ADC produces 8-bit words, what is the standard deviation of the digital 
noise floor (the quantization error) for the ADC? 

10.7 Referring to the general data analysis procedure for individual sample records 
presented in Figure 10.3, explain why a test for stationarity is suggested prior to 
a test for periodicities and/or normality. 

10.8 Referring to the general data analysis procedure for multiple sample records 
presented in Figure 10.14, explain why a coherence function estimate should 
always accompany a frequency response function estimate. 

10.9 Assume a random vibration is measured using a piezoelectric accelerometer, 
as illustrated in Figure 10.2, where the natural frequency and damping ratio of 
the accelerometer sensing element are/„ = 1 kHz and ζ = 0.01, respectively. If 
the autospectral density function of the vibration data is computed at fre-
quencies up to 500 Hz, determine the bias error in the resulting autospectral 
density estimate at 500 Hz due to the nonuniform gain factor of the accel-
erometer. 

10.10 In Problem 10.1, how will the nonuniform phase factor of the accelerometer 
influence the autospectral density estimate for the random vibration of400 Hz? 
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Data Analysis 

This chapter details the basic operations required to estimate various properties of 
random data. The computations to be presented assume that the data are in the form of 
discrete values representing sample records from stationary (ergodic) random pro-
cesses. Techniques for the analysis of nonstationary data are presented in Chapter 12, 
procedures for the computation of Hilbert transforms are developed in Chapter 13, 
and procedures for the analysis of data representing the response of nonlinear systems 
are summarized in Chapter 14. 

11.1 DATA PREPARATION 

As noted in Chapter 10, some random data occur naturally in digital form—for 
example, neutron emission data and some forms of economic data. In most cases, 
however, the data originate in analog form and must be converted to digital values with 
proper concern for (a) the aliasing and quantification problems detailed in Section 10.2 
and (b) the data qualification procedures discussed in Section 10.3. Also, the data may 
be a function of an independent variable other than time—for example, a spatial 
variable as discussed in Section 5.2.4, Nevertheless, in this chapter, all computations 
are presented with time as the independent variable (i.e., the data are processed as time-
series records) where it is assumed that the actual independent variable for the data 
record can be made proportional to time. The time parameter in the computed 
properties of the data can then be replaced by the actual independent variable for 
the data, as illustrated in Table 5.3. 

With the above assumptions, let a discrete-valued random process be given by 

{«„} n= 1 ,2,3, . ..,N (11.1) 

Random Data: Analysis and Measurement Procedures, Fourth Edition. By Julius S. Bendat 
and Allan G. Piersol 
Copyright © 2010 John Wiley & Sons, Inc. 
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where the data values are associated with the equally spaced times 

t„ = to + nAt η — 1 , 2 , 3 , . . . ,N 

It follows that a sample record of {«„} is given by 

un = u(to+nAt) η = 1 ,2 ,3 , . . .Ν 

(11.2) 

(11.3) 

where the initial time tQ is arbitrary and does not enter into later formulas so long 
as the data represent a stationary random process. It is clear in Equation (11.3) that 
the total record length represented by the sample data is Tr = Ν At. Also, from the 
developments in Section 10.2, the Nyquist frequency associated with the sample 
data is given by 

(11.4) 

Various preliminary operations might be applied to the data as noted previously in 
Sections 10.2 and 10.3. Special operations of common interest include (a) data 
standardization, (b) trend removal, and (c) digital filtering. 

11.1.1 Data Standardization 

The mean value of the sample record un, η — 1,2, . . . , Ν, is given by 

For stationary ergodic data, the quantity ΰ is an unbiased estimate of the mean value μ 
as demonstrated in Section 4.1. It is convenient for later calculations to transform the 
sample values un to a new set of values x„ that have a zero sample mean by computing 

All subsequent formulas will be stated in terms of the transformed data values xn, 
where χ = 0. 

The standard deviation of the transformed sample record xn is given by 

The quantities s and s2 are unbiased estimates of the standard deviation σχ and the 
variance σχ, respectively, as proved in Section 4.1. If later computer calculations are 
to be performed using fixed-point as opposed to floating-point arithmetic or if 
divisions are required, as in frequency response function computations, then it will 
be desirable to further standardize the data by transforming the values xn to a new set of 
values z„ by computing 

(11.5) 

x„ = x(to + nAt) = un—u n—1,2,... Ν (11.6) 

(11.7) 

η = 1,2 ΛΓ (11.8) 
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11.1.2 Trend Removal 

Situations sometimes occur where the sample data include spurious trends or low-
frequency components with a wavelength longer than the record length Tr = Ν At, as 
discussed in Section 10.3.2 and illustrated in Figure 10.11(f). The most common 
technique for trend removal is to fit a low-order polynomial to the data using the least 
squares procedures detailed in Section 4 .6.2. Specifically, let the original data values 
un be fit with a polynomial of degree Κ defined by 

un = bk(riAt)k η = 1 , 2 , . . . , Ν [11.9) 
k=0 

A "least squares" fit is obtained by minimizing the squared discrepancies between the 
data values and the polynomial given by 

n=l n = I 

Ί 2 

un-J2bk(nAl)k 

k=0 

(11 .10) 

Taking the partial derivatives of Q with respect to bk and setting them equal to zero 
yields Κ + 1 equations of the form 

Y^bk Y^{nAt)k+m =Y/un{nAt)m m = 0,1,2,... Κ (11.11) 

k=0 n=l n = l 

which can be solved for the desired regression coefficients {bk}. For example, when 
K=0, Equation (11.11) becomes 

£ ο ] Γ ( » Δ ί ) 0 = £ « „ ( « Δ / ) ° 
n=l n = l 

giving the result 

1 N 

n=l 

For K= 1, Equation (11.11) becomes 

n=\ n—\ 

Noting the identities 

A N{N+1) W(W-f- l ) (2 iV+l) 

«=ι 

(11.12) 

(11.13) 

Ν Ν Ν 

b0J2(n*t)m +bx^{nAt)l+m = ^un(nAt)m m = 0 , 1 (11 .14) 

(11.15) 
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Equation (11.14) yields the results 

2(2JV + l ) £ * = l M „ - 6 E * = i ^ 
N{N-l) 

(11.16a) 

AtN(N-l){N+l) 
(11.16b) 

Equation (11.16) defines a linear regression line with an intercept of b0 and a slope of 
b\, which should then be subtracted from the original data values un. Note that 
Equation (11.16) is equivalent to Equation (4.66), where un — y,-, «Δί = xt, b0 = A, and 
b\, = B. An example of linear trend removal is illustrated in Figure 11.1. More 
complex trends can be removed by higher order polynomial fits, but trend removal 
using an order of greater than 3 is generally not recommended because fits with 
Κ > 3 may remove actual low-frequency information in the data. 

Before detrending 

« ω - s o 

After detrending 

«(f) 

Linear trend 

u(r) = bo + fc,r 

Figure 11.1 Illustration of linear trend removal. 
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11.1.3 Digital Filtering 

The filtering of data prior to more detailed analyses may be desired for various 
reasons, including either the isolation or elimination of periodic components, as an 
integral step in "zoom" transform operations to be discussed in Section 11.5.4, or 
as an anti-aliasing step prior to data decimation. The last-mentioned application is 
of particular importance since decimation of sample data is often carried out to 
decrease the amount of data for later analysis. By definition, a dfh-order decima-
tion of sample data consists of keeping every dth data value and discarding all 
other data values. Hence, data that were originally sampled with a sampling 
interval of Δί are reduced to data with a new sampling interval of dAt. It follows 
that the new Nyquist frequency becomes f'N — 1/(2dAt) and all information above 
this frequency will be folded (aliased) back into the frequency interval from 0 to 
\l{2dAt). To avoid aliasing, the original sample data should be filtered prior to 
decimation to remove information in the frequency range above \l(2dAt) by using 
a low-pass digital filter. Note that this does not negate the requirement to 
remove all information in the original data above fN = 1/(2Δ/) by low-pass analog 
filtering. 

Digital filtering can be performed in either the time domain or the frequency 
domain. Frequency-domain filtering corresponds to multiplying the Fourier trans-
form of the data record x{t) by the frequency response function H(f) of the desired filter 
and then taking the inverse transform. Specifically, given a transformed data record 
x(t), the filtered record is given by 

where IFT denotes the inverse Fourier transform and X(f) is the Fourier transform of 
x(t). This type of filtering has certain advantages, the primary ones being that it is 
simple to understand and no analytic expression is required for the filter frequency 
response function. However, the implementation of frequency-domain filtering is 
generally more computationally intensive than time-domain filtering procedures. 

Time-domain filters can be divided into two types: 

1. Nonrecursive or finite impulse response (FIR) filters. 

2. Recursive or infinite impulse response (IIR) filters. 

Nonrecursive (FIR) digital filters take the form 

This is the digital equivalent of the convolution equation given in Equation (6.1), 
namely, 

y(t) = lYTWW)} (11.17) 

Μ 

(11.18) 

(11.19) 
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where h(x) is the unit impulse response function of the desired filter. In a similar 
manner, {hk} defines the unit impulse response of the digital filter. Classical 
smoothing, interpolation, extrapolation, differentiation, and integration techniques 
are all examples of FIR filters. 

A recursive (IIR) digital filter is that type of filter where the output time series is 
generated not only using a finite sum of input terms but also using previous outputs as 
input terms (a procedure engineers call feedback). A simple type of IIR filter is given by 

CXn + Σ hky"~ (11.20) 

k=l 

which uses Μ previous outputs and only one input. More general recursive filters 
involve Μ outputs and larger numbers of inputs. Equation (11.20) is illustrated in 
Figure 11.2. The triangles represent multiplication by the values shown within the 
triangles, the rectangles represent a delay of At from one point to another, and the 
circles represent summing operations. 

The Fourier transform of Equation (11.20) yields the result 

Y(f)=cX(f) + Y(f)Y^hke-^' (11.21) 

k=\ 

where the summation involves a polynomial in powers of the exponential exp 
(-j2nfAt). (Replacing this exponential by the letter ζ leads to a procedure for 
analyzing digital niters in terms of what is called z-transform theory.) From Equa-
tion (11.21), the frequency response function of the entire system is given by 

H(f) = 
x(f) i - Elihe-W' 

(11.22) 

Studies of the properties of H(f) are thus reduced to determining the location and 
nature of the poles in the denominator of this last result. 

>>-*0—s *{7) 

At 

A A A 
Ac Δί 

Figure 11.2 Schematic diagram of simple recursive filter. 
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As an example of this procedure, consider the IIR filter denned by 

y„ = (l-a)x„+ayn^i (11.23) 

where a = exp(-A///?C). This can behave like a low-pass filter as defined previously 
in Example 6.1. To verify this property, note that from Equation (11.22) we obtain 

H(f) = , A , (11.24) 

The square of the filter gain factor is then given by 

w i ' - i w F ^ i < " · 2 5 > 

Observe that if RC > At, then a = exp(-At/RQ « 1 - (At/RQ and (1 -a) ~ Ar//?C. 
Also, if 2π/Δ? < 1, then e~j27tfAt may be approximated by (1 -jlnfAt). For this 
situation 

H(f) 

and 

1 

1 + flnfRC 

| H ( f ) | 2 w , (11.26) 
' υ ; ' 1 + (2π/Κϋ) 2 

which are the usual low-pass RC filter results. 
Recursive digital niters that give good approximations to Butterworth filters have 

been synthesized with the aid of Equation (11.22) by finding a set of numerical 
weights {hk) and a coefficient c such that the resulting \H(f)\ has the form 

|2 ι c t n „ „ j \ ute\\2 

U(f)\2 = 577 0 < / < — (11.27) 
W ' ' 1 + (sin π/Δί/sin nf0At)2M " " 2At 

Note that |/V(/) Γ = 1 f o r / = 0 and \H(f)\z = 0.5 f o r / = / 0 . A t / = 1/(2Δί), the Nyquist 
frequency, the quantity H(f) approaches zero for large M. Thus, over the frequency 
range from 0 to 1/(2Δί), the filter described by Equation (11.27) acts like a low-pass 
Butterworth filter of the form 

| t f ( / ) | 2 = 1 - (11.28) 
1 υ η 1 + (///<>)* 

where f0 is the half-power point and Κ determines the rolloff rate. More complete 
mathematical details for the synthesis of digital filters appear in Refs 1-4. 

Example 11.1. Illustration of Recursive Digital Filter. Assume digital data 
have been collected with a sampling rate of 1000 sps. It is now desired to low-pass 
filter the data using a simple i?C-type filter with a half-power point cutoff frequency of 
/o = 10 Hz. Determine an appropriate recursive digital filter to accomplish this task. 
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From Equation (11.26), the half-power point cutoff frequency f0 occurs 
where \H(f0)\

2 = \ \H(f)\2

max = \ \H(W)\2 = 0.5. Because i ? C > At = 10~ 3 for this 
case, 

|H(10) | 2 « , = 0.5 
l + (20nRC)2 

It follows that RC = 0.016 and a = exp(-0.063) = 0.94. This result is checked by 
substituting a - 0.94 into Equation (11.25), which yields | # (10 ) | 2 = 0.5. Hence, the 
desired low-pass filter is given from Equation (11.23) as 

y „ = 0 . 0 6 * „ + 0 . 9 4 y ^ i 

11.2 FOURIER SERIES AND FAST FOURIER TRANSFORMS 

Fourier series and Fourier transforms of data differ in their theoretical properties but 
not, for most practical purposes, in their digital computational details. This is because 
only a finite-range Fourier transform can actually be computed with digitized data, 
and this finite range can always be considered as the period of an associated Fourier 
series. From the discussions in Section 5.2.2, one of the main reasons for the 
importance of fast Fourier transforms is that they can be used to provide estimates 
of desired spectral density and correlation functions. Before explaining the basis for 
the methods to compute fast Fourier transforms, it is instructive to review a standard 
Fourier series procedure. 

11.2.1 Standard Fourier Series Procedure 

If a stationary sample record x{t) is periodic with a period of Tp and a fundamental 
frequency f\ = l/Tp, then x(t) can be represented by the Fourier series 

x(t) = — + ^2(aqcos2nqfit + bqsin2nqfit) (11.29) 

where 

2 ( T p 

aq = — *(i)cos 2nqf\tdt q = 0 , 1 , 2 , . . . 
TpJO 

2 f" 
b i = ^r~\ Jc(r ) s i n 2nqfitdt q = 1 , 2 , 3 , . . . 

1P Jo 

Assume a sample record x(t) is of finite length Tr = Tp, the fundamental period of 
the data. Further assume that the record is sampled at an even number of Ν equally 
spaced points a distance Δί apart, where Δί has been selected to produce a sufficiently 
high Nyquist frequency fA = 1/2Δί. Consider the time of the initial data point to be Δί 
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and denote the transformed data values, as before, by 

χη=χ(ηΑή η = 1 , 2 , . . . , Ν (11.30) 

Proceed now to calculate the finite version of a Fourier series that will pass through 
these Ν data values. For any point t in the interval (0, Tp), the result is 

N/2 s~ \ (N/2)-\ ,~ \ 

* W = A 0 + £ a ? C O S ( ^ J + £ ^ s i n ^ j (11.31) 

(2nqn\ < W „ . (2nqn\ , „ 

& A (2nqt\ { N ^ 1 

At the particular points t = nAt, n=\,2,...,N, where Tp = NAt, 

N/2 / 0 \ (JV/2)-l 

Σ > ^ ν Σ 

9 =i V ' ν / 9 = ι 

The coefficients Aq and B 9 are given by 
l * 

n = l 

Χ = 0 

2 ^ 2ποη , „ Ν , 
A « = # Z > C 0 S _ ^ r 1 ,2 , . . . , — - I 

n = l 

1 
ΑΛΛ/2 = — y ^ x n c o s nn 

n = l 

(11.33) 

2JU . 2%qn , „ A7 

Β ? = # 2 ^ 8 ΐ Η ^ Γ ^ = 1 ,2 , . . . , — - 1 
n = l 

The computation of Aq and Z?e involves the following steps: 

1. Evaluate θ = 2nqnlN for fixed q and η 

2. Compute cos Θ, sin θ 

3. Compute x„ cos 0, x„ sin θ 

4. Accumulate both sums for η — 1,2,..., Ν 

5. Increment q and repeat operations 

This procedure requires a total of approximately N2 real multiply-add operations. 
For large N, these standard digital computation methods for determining the 

coefficients Aq and Bq can be time-consuming since the required number of computa-
tions is a function of A'2. To greatly reduce these standard computational times, 
alternative methods have been proposed and developed, known as fast Fourier 
transform (FFT) procedures. These methods will now be discussed in some detail 
because of their importance in digital processing of random data. 
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11.2.2 Fast Fourier Transforms 

An infinite-range Fourier transform of a real-valued or a complex-valued record x{t) is 
defined by the complex-valued quantity 

| *00 

X(f) = x(t)e-i2nftdt 
J — DO 

(11.34) 

Theoretically, as noted previously, this transform X(f) will not exist for an x(t) that is a 
representative member of a stationary random process when the infinite limits are 
used. However, by restricting the limits to a finite time interval of x(f), say in the range 
(0, T), the finite-range Fourier transform will exist, as defined by 

X(f,T) x{t)e-j27lftdt (11.35) 

Assume now that this x(t) is sampled at Ν equally spaced points a distance Δί apart, 
where Δί has been selected to produce a sufficiently high Nyquist frequency. As 
before, the sampling times are i„ = nAt. However, it is convenient here to start with 
n = 0. Hence, in place of Equation (11.30), let 

x„ = x(nAt) η = 0,1,2,... ,N—l 

Then, for arbitrary/, the discrete version of Equation (11.35) is 

N-l 

X(f, T) = At^2xnexp[-j2nfnAt] (11.36) 
n=0 

The usual selection of discrete frequency values for the computation of X(f, T) is 

(11.37) fk =- = -£- k = 0,1,2,...,N-l 
Τ NAt ' ' ' 

At these frequencies, the transformed values give the Fourier components defined by 

Xk = —^= 2^*«exp 
«=o 

At 

2%kn 
0,\,2,...N-\ (11.38) 

where Δί has been included with X(fk) to have a scale factor of unity before the 
summation. Note that results are unique only out to k = N/2 since the Nyquist 
frequency occurs at this point. The function defined in Equation (11.38) is often 
referred to as the discrete Fourier transform (DFT). 

To simplify the notation, let 

Γ 2nu\ 
W(u) = exp - ι - Ο 1.39) 
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Observe that W(N) = 1, and for all u and v, 

W{u + v) = W{u)W(v) 

Also, let 

X(k) = Xk and x(n) = x„ 

Then Equation (11.38) becomes 

N-l 

X(k) = Y^x{n)W(kn) k = 0,l,2,...,N-\ (11.40) 
n=0 

Equations (11.38) and (11.40) should be studied so as to be easily recognized as the 
Fourier transform of x(ri) when x(n) is expressed by a series of Ν terms. Such equations 
require a total of approximately N2complex multiply-add operations (where 1 com-
plex multiply-add = 4 real multiply-adds) to compute all of the X(k) terms involved. 

11.2.2.1 Basis for FFT Procedures 
The fast Fourier transform procedures are now based on decomposing Ν into its 
composite (nonunity) factors and carrying out Fourier transforms over the smaller 
number of terms in each of the composite factors. In particular, if Vis the product of ρ 
factors such that 

ρ 

N = J J r , = ΠΓ2 · · · rp (11.41) 
j = l 

where the r 's are all integers greater than unity, then as will be proved below, the X(k) 
in Equation (11.40) can be found by computing in an iterative fashion the sum of ρ 
terms, 

(iV/ri) Fourier transforms requiring 4r\ real operations each 

(N/r2) Fourier transforms requiring 4 r | real operations each 
(11.42) 

[N/rp) Fourier transforms requiring 4r^ real operations each 

Hence, the total number of real operations becomes 

ρ 

4(Nn + Nr2+Nr3 + ••• +Nrp)= 4 7 V ^ r, (11.43) 
i = l 

The resulting speed ratio of these FFT procedures to the standard method is then 
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11.2.2.2 Relation of Equation (11.33) to Equation (11.38) 
It is useful to show the relation between Aq and Bq in Equation (11.33) and Xk in 
Equation (11.38). To this end, let Xk be replaced by Xq where starting with n=\, 

Xq = yyrxnexp(—j2nqn/N) 

n=l 

q=l,2,...,(N/2)-l 
Ν 

XN-q = y^xnexp(j2nqn/N) Ν 

Xq — y~̂ xB 

«=1 

Ν 

XN/2 = ^^x„cos(nn) 
n=\ 

JV 

Real(XQ + XN-Q) = 2 ^ x „ cos(2nqn/N) 
« = i 

Ν 

Imag(XN-q—XN) = 2y^xn un(2nqn/N) 

A0 = (l/N)Xo 

AN β = (l/N)XN/2 

Aq = {\/N)Wtal{Xq+XN.q) 

q=l,2,...,{N/2)-l 

Bq=(l/N)lmag(XN.q-XN) 

Example 11.2. F F T Speed Ratio for Powers of Two. If N= 2P, then Σ? = 1 Γ; = 
2p — 2 log 2 N. In this case, the speed ratio by Equation (11.44) appears to be 

ο , • n 2 N 

Speed ratio = - — — — F Mp 8p 

However, a doubling of the speed can be achieved in practice by noting that the values 
for W(kn), when A7 is a power of 2, all turn out to be + 1 or - 1, so that multiplications 
are replaced by additions and subtractions. This yields a higher speed ratio of the order 

Ν 
Speed ratio = — (11.45) 

4p 

For example, if A / = 2 I 3 = 8192, Equation (11.45) gives a speed ratio of 
(8192/52) ss 158. This result is deemed to be a conservative estimate since a further 
speed improvement of at most two can be obtained by dividing a single record into two 
parts and computing as indicated later in Section 11.2.4. 
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11.2.2.3 Derivation of General Procedure 
To derive the result stated in Equation (11.42), express the indices k and η in 
Equation (11.40) in the following way: 

p - l ν 

v=0 i=0 

p - l ν 

n = Σ " v Π r " i + i - ' 

i>=0 (=0 

Note the indices k and η are replaced by new indices kv and ^ as defined above. 
Equation (11.46) has the following interpretation: 

k = k0 + klri+k2rlr2 + ••• + f c P - i ( n r 2 • • · />_.) (1147) 

η = n 0 + " i ' p + , l 2 ' > i > _ i + ·•· +ra p - i ( r i , r p _i · · · r2) 

where 

*o = 0 , 1 , 2 , . . . , η —1 n 0 = 0 , 1 , 2 , . . . ,rp-l 

k\ = 0 , 1 , 2 , . . . , r 2 - l πι = 0 , 1 , 2 , . . . , r p _ i - l 

fcp_i = 0 , 1 , 2 , . . . ,rp-l np-\ = 0 , 1 , 2 , . . . , r\-\ 

where kv = 0 , 1 , 2 , . . . , rv + \ - 1 

r o = l (11.46) 

where nv = 0 , 1 , 2 , . . . , r p _ v —1 

= 1 

By fixing the values of kv and nv in turn, it is a straightforward exercise to verify that k 
and η will each vary from 0 to Ν - 1, where Ν is the product of all the r 's as per 
Equation (11.41). Equation (11.40) can now be rewritten as 

X(k)= X(Ao, * ι , . . . - Λ _ ι ) 

r P - I >>-i — l ί-2-1 Γι — 1 

= Σ Σ " ' Σ ^ ; c ( " o ' n i ' - - - , " p - 2 ' M ' , - i ) w ( f e i ) 
«0=0 «ι=0 1^-2=0 η,,-1=0 

where 

W(£n) = W(fc[n0 + i i ' > + ·•· - f n p - v i r p / - , , - ! • • • / v + i ) + 
-r-np-i(rpr p_i · · · r 2)]) 

(11.48) 

(11.49) 

with £ given by Equation (11.46). 
An alternative way to write k is as follows: 

k = {ko + kiri + ••• +kv-inr2 • • • r v _i) 
+ (nr2 ••• rv)(kv + k v + l r v + l + •·· + kp^rv+irv + 2 • • • rp-\) 
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Hence, a representative term in Equation (11.49) is such that 

knp-v(rprp-i · · · r v + 1 ) = (£ 0 + &ι>Ί + · · • + kv-i^r2 •• 

xnp-v(rprp-i • • • rv+i) 

+ Nnp^v(kv + k v + l r v + l + ••• 

+ kp-irv+irv + 2 ••• Γρ_ι) 

rv-ij 

(11.50) 

Then, because W for any integer power of Ν is equal to unity, it follows for ν = 1,2,. 
ρ that 

p-l W [ ( * o + * i r i + • · • +kv-irir2 · · · r v _i) 

χ np-vrprp-i ••• r v + 1 ] 

Equation (11.51) will now be interpreted. For v = 1, observe that 

; n . 5 i ) 

W(knp-irprp-.i • • • r2) = W {k0np-\rprp.i 

wfkonp-iN^ 
exp 

. 2nkoiip- \ (11.52) 

This is the exponential required in a Fourier transform of x(n p _i) as expressed by a 
series of r, terms, instead of Ν terms as shown in Equations (11.36) and (11.40). Note 
also that the indices &0 and np_\ each vary over the values 0, 1, 2, . . . , r\ — 1, thus 
requiring a total of r\ multiply-add operations to compute each of the associated X(k0) 
that might be involved here. For v = 2, 3,...,p, Equation (11.51) with the aid of 
W(u + v) — W(u) W(v) becomes the product of two factors, namely, 

W[(ko + kiri+ ••• +kv-2rxr2 ••• rv-2)np-vrprp-\ ••• rv+l] 

multiplied by W{kv-Xr\r2 • • • rv-\np_vrprp_\ • • • rv + i) 

where only the second factor contains £ y _] . This second factor is the quantity 

11.53) 

W 
kv-\np-vN' 

exp -J-
.2nkv-\ti, 

(11.54) 

which is the exponent required in a Fourier transform of x(n p _ v ) as expressed by a 
series of rv terms. Furthermore, the indices &v_ ι and np^v each vary over the values 0, 
1, 2 , . . . , rv — 1. Hence, a total of r 2 multiply-add operations are needed to compute 
each of the associated X(kv_i) that might be involved here. 

11.2.2.4 The FFT Algorithm 
From the development in Equations (11.50) through (11.52), Equation (11.49) 
becomes 

ρ 

W{kn) = Y[T(ko,ku---,kv-2)W 
v=I 

kv-Xnp-vN 
(11.55) 
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where 

T{ko,ki,...,kv-2) = 1 for v = 1 

= W[(ko+kiri+ ••· +^-2ΓιΓ2 • · • rv_2) 
(11.56) 

χ (np-vrprp-X ••• rv+\)\ 

for ν = 2 , 3 , . . . ,p 

Quantities such as the Γ terms in Equation (11.56) are often called twiddle/actors. The 
result of Equation (11.55) should now be substituted into Equation (11.48). Regroup-
ing of terms then yields 

« 0 = 0 \ rP / 

«,=o V
 rP~x ' 

χ · · · (11.57) 

np-2=0 \ r2 J 

x 2^,x(no,n\,...,np-2,np-i)W\ 
n . ,=n \ r i 

Thus, the desired Fourier transform can be computed in ρ successive iterative steps as 
shown by Equation (11.57). The principal remaining question of concern here is the 
understanding of these steps. 

Consider the last innermost sum of terms in Equation (11.57). Let 

Ai(ko,no,nu...,np-2) = ^ x(n0, «ι, •. •, n p - 2 , « p -i)W Γorlp~lN J (11.58) 
« , - 1 = 0 V r i / 

Then, holding n0, nx,..., n p _ 2 fixed for each of their possible values, Equation (11.58) 
gives a total of {Nlr{) Fourier transforms of x(n p _i) requiring r\ operations each. At 
the next innermost sum of terms in Equation (11.57), let 

A2(&o,fci,«o,"i- · · · ,«p-3) 

Here, holding &0> «ο- «i> • · · > « P - 3 fixed for each of their possible values, Equa-
tion (11.59) gives a total of (N/r2) Fourier transforms of JC(« p_ 2) requiring 
r\ operations each. Continuing in this way, at the vth step, where ν = 2, 3 , . . . , 
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p-l, let 

Av(ko,k],... ,£ v _i ,n 0 >«i ! · · · ,rip-v-i) 
r,-i 

: Av-\{ko,ki,... ,fc v_ 2 ,no,ni, · · • ,np-v) 

xT(k0,ku...,k,.2)W<kv-[n"-vN^ 

(11.60) 

Here, holding k0, k\,..., fcv_2, «ο» "i>- · ·» " p - v - i fixed for each of their possible values 
gives a total of (N/rv) Fourier transforms of x(np_v) requiring r 2 operations each. At 
the last step, Equation (11.57) yields 

X(ko, fci,..., kp-ι) = Ap(ko, ku...,kp^i) 
rp-\ 

= y^^p-i( f co.^i. • · · ,kp-2,np) (1161) 
« 0 = 0 ^ ' ' 

ί T(ko, k\,..., kp-2) W \ 

Holding k0, k\,..., kp_2 fixed for each of their possible values produces a total of (N/rp) 
Fourier transforms of x(n0) requiring r 2 operations each. The sequence of steps in 
Equations (11.58)—(11.61) proves the result stated in Equation (11.42), making 
allowance for complex to real operations. 

The formula derived in Equation (11.60) is a general fast Fourier transform 
algorithm and is the basis for many Fourier transform computational procedures in 
use today. See Ref. 5 for further details. 

11.2.3 Cooley-Tukey Procedure 

The Cooley-Tukey procedure, first introduced in 1965 in Ref. 6, is a special case of 
the general algorithm of Equation (11.60) that is appropriate for binary digital 
computers. In particular, it applies to those situations where the number of data 
samples Ν is a power of 2, namely, 

N = 2P (11.62) 

If necessary, zeros are added to the data sequence to satisfy this requirment. Here, the 
iterative procedures of Equation (11.57) become the sum of ρ terms, where every term 
involves (N/2) Fourier transforms requiring four operations each. This gives a total of 
2Np complex multiply-add operations. 

It is desirable to write down the special equations that apply to this case because of 
their widespread importance. This will be done by substituting into previous results. 
Equation (11.47) becomes 

k = ko + 2kx + 2 2 £ 2 + · · · + 2 P - V ! 

η = n0 + 2m +22n2 + ••• +2p~lnp-\ 
(11.63) 
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where each fe and n, respectively, take on the values 0 and 1 only. Equation (11.54) 

becomes for all ν = 1,2, . . . , ρ, 

W ^ ν - ' " ρ ~ ν Λ ^ = e x p ( - M „ _ ,n-_ v ) (11.64) 

which takes on the values 1 and —1 only. Equation (11.56) becomes 

Γ ( * ο , * ι , . . . , * ν _ 2 ) = 1 f o r v = l 

= W[(k0 + 2ki+ ••• + 2"- 2 A : v -2 )2 p - v np -v] (11.65) 

for ν = 2 , 3 , . . . ,p 

The Fourier transform iteration of Equation (11.57) can be expressed in this special 

case by the formula 

X(ko,ku...,kp-i) 

= Σ Σ Y2x("o,"u---,np-2np-i)W{kn) (H-66) 
no=0 «i=0 n p_2=0 "p-i=0 

where 

ρ 

W(kn) = Yl T(k0, k u . . . , £ ν _ 2 ) εχρ ( - . / π£ ν _ ι "ρ - ν ) 
v=l 

The first step in this iteration is now from Equation (11.58) 

ι 
A i ( * o , n o , n i , . . . , n p - 2 ) = «i . • • · ,np^2,np-i)e\p(-jnk(,np-i) (11.67) 

The vth step, for ν = 2, 3 , . . . , ρ — 1, becomes from Equation (11.60) 

Av(ko,k\,... , / c v _i ,n 0 ,« i , • • · , « P - v - i ) 
ι 

= ^ A v _ i ( f c 0 , f c i , - - . , * v -2 , n o , n i , - - - , n P - v ) (11.68) 
nP-*=0 
χ T(ko, ki,... ,Α : ν _2)εχρ(-;πΛ ν _ι"ρ-ν) 

This result is called the Cooley-Tukey fast Fourier transform algorithm. The last step 

in the iteration, Equation (11.61), is 

X(fco,*i , . . . ,*p-i) = Ap(k0,kt,...,kp^i) 
ι 

= Σ A p_i(fco,fci,..., fep_2.no) (11.69) 
n0=0 

χ r(fe 0, fei,. - . , fe-_2)exp(-j'rtfep_i/io) 

and completes the procedure for this special case. A detailed discussion of these 

matters appears in Refs 2-6. 
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11.2.4 Procedures for Real-Valued Records 

Fourier transforms of two real-valued records may be computed simultaneously by 
inserting one record x{n) as the real part and one record y(n) as the imaginary part of a 
complex record z(n). In equation form, let 

z(n) =x(n)+jy(n) η = 0 , 1 , . . . ,vV-l 

The Fourier transform of z(ri) by Equation (11.38) is 

N-l 
Z W = Σ\χ(η) +^ (n ) ]exp 

n=0 

2nkn 

Ν 
fc = 0 , l , 2 , . . . , # - l 

(11.70) 

(11.71) 

This can be computed by the fast Fourier transform procedures described in 
Section 11.2.2. It is usually assumed in Equations (11.70) and (11.71) that Ν data 
points in x(n) and y(n) are transformed into Ν frequency points that are spaced 1/Γ 
apart. For these situations, the Nyquist frequency occurs when k = N/2 so that for Ν 
even, unique results occur only for k = 0, 1, 2,.. . , (ΛΓ/2). To obtain X(k) and Y(k), 
observe that 

exp 
,2nn{N-k) 

Ν 
= exp 

2%nk 

-J-N 

because εχρ[/'2πη] = 1 for any n. Hence, if Z* {k) is the complex conjugate of Z(k), then 

N-l z\N-k) = Σ W«)-;y(n)]exp 
n=0 

2%nk 

Ν 

It follows that 

J V - l 

Z(k) +Z*(N-k) = 2^2 x(n)exp 

N-l 
Z(k)-Z*(N-k)=2j^2 y(")exp 

2nnk 

n=0 

Ν 

2%nk 
-J-

Ν 

2X(k) 

= 2jY(k) 

Thus, the two real-valued records x(n) and y(n) have Fourier transforms X(k) and Y(k) 

given by 

X(k) 

Y(k) 

Z{k)+Z*(N-k) 

Z(k)-Z*{N-k) 

2j 

k = 0,l,...,N-\ (11.72) 

The same principle is used to calculate a double-length transform where a single, 
real-valued record v(n), n = 0, 1,. . . , 2N-1, is divided into two records, one 
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consisting of the values v(n) where η is even and the other where η is odd. 
Specifically, let 

x{n) 

y(n) 

v(2n) 
v ( 2 n + l ) 

0 , 1 , 2 , . . . , / V - 1 (11.73) 

Now compute the Fourier transforms of z(n) =x(n) + jy(n), n = 0,1,.. .,N— 1, using 
Equation (11.71), and then the individual transforms, X(k) and Y(k), using Equa-
tion (11.72). These transforms can now be combined to obtain the desired Fourier 
transform of v(n) by 

V(k) = X(k) + Y{k)exp 

V{N + k) = X(k)-Y(k)c\p 

Ν 

Ν 

0 , 1 , . ,Ν-1 (11.74) 

Note that the operation calculates the Fourier transform of 2N real data values using a 
single iV-point complex transform. See Ref. 3 for details on the practical implementa-
tion of the FFT algorithm on a digital computer. 

11.2.5 Further Related Formulas 

Referring to Equation (11.34), the inverse Fourier transform of X(f) is 

X{fylnftdf (11.75) 

This leads to the discrete inverse Fourier transform formula 

Inkn 
Xkexp |j 

k=0 

N-l 
0, l,2,...,N-\ (11.76) 

Ν 

where the Fourier components Xk of Equation (11.38) are computed by the FFT 
procedures. The constant (l/W) in Equation (11.76) is a scale factor only and is not 
otherwise important. This inverse Fourier transform can be computed by the same 
FFT procedures previously described by merely interchanging k and η and replacing 
xn by Xk and W(kn) by W(-kn). 

As a final topic here, it should be noted that the FFT computation always operates 
on a function with a nonnegative independent variable and produces a transformed 
function also with a nonnegative independent variable. Specifically, an input function 
of time is always defined as x(t) over 0 < t < T, not - 772 < t < TI2. Similarly, the 
transformed function X(f) is defined overO < / < 2fA, not -fA <f<fA- In digital terms, 
xn=x(nAt), n = 0, 1, . . . , Ν- 1, and X(k)=X(k/NAt)/At, k = 0, 1, . . . , Ν- 1, where 
k = N/2 corresponds to the Nyquist frequency fA defined in Equation (10.12). 
However, from Equation (11.72), 

X(k)=X*{N-k) k = 0,1,... N-l (11.77) 
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Real 

• • .. . · . • 
e · • 

• · • · 
1 

' 1 1 1 1 1 I Τ ' \ 1 1 1 1 1 1 1 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 

Imaginary 

J I L J L J_J L I I I 
9 10 11 12 13 14 15 

(a) 

Real 

J I L J L J__J l I I I L 
10 11 12 13 14 15 

Imaginary 

1 1 1 1 1 1 1 1 1 1 1 ! 1 1 
9 10 11 12 13 14 15 } \ 1 2 3 4 5 6 7 8 

• · · · υ 

• · • 
(b) 

Figure 11.3 Illustration of frequency components for Ν = 16-point FFT, (a) Components as produced by 
FFT. (b) Transposed components defining two-sided spectrum. 

where the values at frequencies above N/2 may be interpreted as the negative frequency 
values if desired to obtain a two-sided spectral function, as illustrated in Figure 11.3. 

11.2.6 Other Algorithms 

New procedures for computing Fourier transforms or equivalent transforms are 
continually being devised. Most are modifications of the standard FFT optimized 
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for a specific use or mechanization, but a few involve different concepts. Two such 
procedures that deserve mention are the Winograd Fourier transform and the Hartley 
transform. 

11.2.6.1 Winograd Fourier Transform 
A totally different procedure for computing fast Fourier transforms was introduced by 
Winograd in Ref. 7. Essentially, the procedure maps a one-dimensional time sequence 
of Ν values into a multidimensional array where each array dimension corresponds to 
one of the prime numbers of the N. The multidimensional array is then Fourier 
transformed and remapped back to the one-dimensional frequency sequence. The 
mapping is performed according to number-theoretic concepts using the so-called 
Chinese remainder theorem. The primary advantages of the Winograd algorithm are 
as follows: (a) It requires significantly less computational time than the FFT algorithm 
described in Section 11.2.2, and (b) it is easily generalized to radices other than two 
and, especially, to mixed radices. The primary disadvantage of the Winograd 
algorithm is that it is significantly more complex than the FFT algorithm described 
in Section 11.2.2. See Ref. 7 for details. 

11.2.6.2 Hartley Transform 
Given a sample time history record x(t), the Hartley transform, which was originally 
proposed in Ref. 8, is defined as 

f O O 

X„(f)= x(t) [COS(2TI/T) + sin(27i/r)] dt (11.78) 
J—OO 

The Fourier transform defined in Equation (11.34) can be written as 

x(t)[cos(2nfi)-jsm(2nfl)] dt (11.79) 

A comparison of Equations (11.78) and (11.79) clearly shows that the Hartley 
transform Xn(f) is closely related to the Fourier transform X(f); the result of either 
transformation can be derived from the other. The primary difference between the two 
is that XH(j) is always a real-valued function, while X(f) is generally a complex-valued 
function. This might make the Hartley transform more attractive to some engineers 
who prefer to work only with real-valued functions. Also, assuming that the time 
history function x(t) is real valued, it is argued in Ref. 9 that a fast Hartley transform 
can be computed with fewer computations than a fast Fourier transform. See Refs 8 
and 9 for details. 

11.3 PROBABILITY DENSITY FUNCTIONS 

Consider Ν data values {x n}, η — 1,2,..., Ν, sampled at equally spaced time intervals 
Δ/ from a data record x(t) = x(nAt) that is stationary with χ = 0. It follows from 
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Equations (3.4) and (8.69) that the probability density function of x(t) can be 
estimated by 

p(x)=— (11.80) 

where Wis a narrow interval centered at χ and Nx is the number of data values that fall 
within the range χ ± W/2. Hence, an estimate p(x) is obtained digitally by dividing the 
full range of χ into an appropriate number of equal-width class intervals, tabulating the 
number of data values in each class interval, and dividing by the product of the class 
interval width Wand the sample size N. Note that the estimate ρ (χ) is not unique, 
because it clearly is dependent on the number of class intervals and their width 
selected for the analysis. 

A formal statement of this procedure will now be given. Let Κ denote the number of 
constant-width class intervals selected to cover the entire range of the data values from 
a to b. Then the width of each interval is given by 

W = b-^ (11.81) 

and the end point of the ith interval is defined by 

di = a + iW i = 0 ,1 ,2 , ...,K (11.82) 

Note that do = a and dK=b. Now define a sequence of Κ + 2 numbers {Ν(}, i = 0 , 1 , 
2,..., Κ + 1, by the conditions 

No = [number of χ such that χ < d0} 
N\ = [number of χ such that do < χ < d\] 

Ni = [number of JC such thattf,_i < χ < di] 

Nk = [number of χ such thataV_i < χ < dx] 
Νκ + \ = [number of χ such that χ > dK\ 

This procedure will sort out the Ν data values of χ so that the number sequence {Ν{} 
satisfies 

Ν=ΣΝ> (1L83) 
(=0 

One method of doing this scoring on a digital computer is to examine each value xn, 
η = 1, 2 , . . . , Ν, in turn as follows: 

1. If x„ < a, add the integer 1 to N0. 

2. lfa<xn< b, compute I = (xn — a)AV. Then, select / as the largest integer less 
than or equal to 7, and add the integer 1 to N. 

3. If xn > b, add the integer 1 to NK+1. 

Four output forms of the sequence {Nj} can be used. The first output is the histogram, 
which is simply the sequence {TV*,} without changes. The second output is the sample 
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percentage of data in each class interval defined for i = 0, 1,2,..., Κ + 1, by 

Pi = Prob[rff_i < * < « / , ] = ^ (11.84) 

The third output is the sequence of sample probability density estimates {/?,·} defined 
at the midpoints of the Κ class intervals in [a, b] by 

* ( "' 8 5 ) 

The fourth output is the sequence of sample probability distribution estimates {P{i)} 
defined at the class interval end points where ί = 0, 1, 2,..Κ + 1, by 

i i 

P(i) = Prob[-oo < χ < φ] = J^Pj = W^Pj (11.86) 
;=o j=o 

11.4 AUTOCORRELATION FUNCTIONS 

There are two ways to compute autocorrelation estimates. The first is the direct 
method, involving the computation of average products among the sample data 
values. The second way is the indirect approach of first computing an autospectral 
density estimate using FFT procedures and then computing the inverse transform of 
the autospectrum. The direct method is the easier to program and represents the more 
logical approach from the viewpoint of basic definitions. The second approach takes 
advantage of the dramatic computational efficiency of FFT algorithms and hence 
requires fewer computations to execute. 

11.4.1 Autocorrelation Estimates via Direct Computations 

Consider Ν data values {x n}, η = 1,2,..., Ν, sampled at equally spaced time intervals 
Af from a data record x(f) =x(nAt) that is stationary with χ = 0. From the basic 
definition in Equation (8.95), the autocorrelation function of x(t) will be estimated 
from the sample values at the time delay rAt by 

j N-r 

Rxx(rAt)=—J2xnXn + r τ = 0 , 1 , 2 , . . . , m (11.87) 
n = l 

where r is called the lag number and m is the maximum lag number (m<N). Note that 
the number of possible products at each lag number r in Equation (11.87) is only N—r. 
Hence, the division by N—r is needed to obtain an unbiased estimate of the 
autocorrelation function. The number of real multiply-add operations required to 
compute the autocorrelation estimate is approximately Nm. 

11.4.2 Autocorrelation Estimates via FFT Computations 

The indirect method of computing autocorrelation estimates is based on the Weiner-
Khinchine relations defined in Equation (5.28). Specifically, the autocorrelation 
function is computed by taking the inverse Fourier transform of the autospectrum 
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Figure 11.4 Illustration of circular effect in correlation analysis via FFT calculations. 

estimate. However, due to the underlying periodic assumption of the finite Fourier 
transform, the autocorrelation function computed by this procedure is "circular" in 
character. This occurs because the FFT algorithm essentially treats a record of length 
T=NAt as one period of an ongoing periodic function. Hence, the resulting 
correlation function appears as if it were calculated from a periodic function, as 
illustrated in Figure 11.4. For a time t{ and delay x{ such that T— fj < t j , the product 
x(t{)x(ti + rl) = x(tl)x(tl - Τ + τι). It follows that the resulting correlation function 
at any delay τ will be a composite of terms involving R^ix) and R^T— τ). 

To evaluate this case, let the finite Fourier transform of a record x(t), 0<t<T, and 
its complex conjugate be given by 

x{a)e-j2*fxda X*(f) = χ(β)β'2πΙβάβ 

It follows that 

\x(f)\2 χ{α)χ{β)[ε-)2π/{β-χ)}άβάα 

With the transformation of variables χ = β — α, dx = άβ, and β = a 
tion (11.88) becomes 

W)\2 

ο J 

Τ-a 

x(a)x{a + τ)β~βπίτάτάα 

(11.88) 

τ, Equa-

(11.89) 

From Equation (5.67), the two-sided autospectral density function of x(t) is estimated 
by 

S„if) 
1 

\W\' 
ι 

ο J 

T - c t 

RxxWe-^dxda (11.90) 

By reversing the order of integration as shown in the sketch below, Equation (11.90) 
can be written as 

Sxx{f) = \.\ f RnWe-Wdadx+U [ 'R^e^dadx 

V τ \ fr 0 ( Π · 9 1 ) 
= ^ j (Γ + τ ) Λ „ ( τ ) β - ^ τ + - | ο ( Γ - τ ) Λ „ ( τ ) β - ^ Τ Λ 
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In the first term of Equation (11.91), let u = -x and du = -dx to obtain 

f {T + x)Rxx{x)e~p^'cdx = f {T-^R^e^du 
J-T Jo 

where Λ χ ι(—M) is replaced by Rxx(u). Next, change the variables again by letting 
x — T—u,dx = —du, to give 

f (T-u^iuy^du = f xRM-^e'^dx 
Jo Jo 

Here, use is made of the fact that e/2nfI'= 1 for any f=fk = kAf= (k/T) where k is an 
integer. Thus Equation (11.91) is the same as 

Sn(f) = τ ΐ xRM-^e-^dx+l- Γ ( Γ - τ ) Λ « ( τ ) β - ^ τ 
r J o 7 J o (11.92) 

where 

C ( T > - ^ V T 

(11.93) 

It follows that the inverse Fourier transform of S^(f) in Equation (11.92) will yield 
Λ^.(τ) as defined in Equation (11.93). For a digital sample {x„},n = 0 , 1 , . . .,N— l , the 
circular correlation function in Equation (11.93) becomes 

(11.94) 

The two parts of Equation (11.94) are illustrated in Figure 11.5. 
In practice, for correlation functions that decay rapidly, the circular effect is not of 

great concern for maximum lag values of, say, m < 0. IN. In any case, the problem can 
be avoided by adding zeros to the original data. The effect of adding zeros to the data is 
to spread the two portions of the circular correlation function. In particular, if Ν zeros 
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A 

Figure 11.5 Illustration of circular correlation function. 

are added to the original Ν data values, then the two portions will separate completely 
giving 

( (N-r) 

Ν 
(r-N) 

Ν 

R„(rAt) r = 0, l,...,N-l 

RnKlN-r)^] r = N,N+l,...,2N-l 

(11.95) 

The two parts of Equation (11.95) are shown in Figure 11.6. Note that the first half of 
the estimate where 0<r<N— 1 represents the autocorrelation function values for 
positive lags (0 < r < m), while the second half of the estimate where Ν < r < 2N — 1 
constitutes the autocorrelation function values for negative lags (—m < r < 0). How-
ever, because autocorrelation functions are always even functions of r, the second half 

Figure 11.6 Circular correlation function when Ν zeros are added. 
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of the estimate can be discarded, so the final unbiased autocorrelation estimate is 
computed from 

Rxx(rAt)=~RS

xx('-At) r = Q,l,...,N-l (11.96) 

The correlation estimate given by Equation (11.96) is statistically equivalent to the 
directly computed correlation estimate defined in Equation (11.87). However, 
depending on the maximum lag value m, the indirect FFT approach might require 
substantially less calculation. Specifically, the indirect method requires first the 
computation of a spectral density estimate, which involves FFT calculations over nd 

independent records, each with Ν data values augmented by Ν zeros for a total of 2N 
values for each FFT. This is followed by an inverse FFT over the 2N data points of the 
averaged spectral density estimate to give a total of (nd + 1) FFT calculations, each 
requiring (ANp) real operations as detailed in Section 11.2.2. For an equivalent total 
record length of nrfZVdata points, the direct method requires approximately mndN real 
operations. Hence for a similar maximum lag value, m = N, the speed ratio is 

Speed ratio = . « ^ (11.97) 
y {nd + l)4Np 4p v 

Forexample, if N= 1024 = 2 1 0 , the speed ratio is 1024/40 ~ 26. In practice, because 
only real number sequences are involved in autocorrelation and autospectra estimates, 
an additional speed increase of almost two can be achieved by using the FFT 
procedures detailed in Section 11.2.4. 

In summary, the following steps are recommended to compute the autocorrelation 
function via FFT procedures. The available sample size for the record x(nAt) is 
assumed to be Nnd, where Ν = 2P. 

1. Determine the maximum lag number m of interest and divide the available data 

record into nd blocks, each consisting of Ν > m data values. 

2. Augment each block of Ν data values, {xn}, η = 1, 2 , . . . , Ν, with Ν zeros to 

obtain a new sequence of 2N values. 

3. Compute the 2iV-point FFT giving Xifk), k = 0, I,..., 2N-1, using Equa-
tion (11.36) with 2N replacing N. 

4. Compute the two-sided autospectral density estimate Sxx(fk) for £ = 0, 1 , . . . , 
2N—X using Equation (11.101), to follow. 

5. Compute the inverse FFT of S^ific) to obtain R^rAt) for r = 0, 1 , . . . , 2N- 1, 
using Equation (11.76) with Ν replaced by 2N,Xk = Sxx(fk), andx„ = R^rAt). 

6. Discard the last half of R^rAt) to obtain results for r = 0, I,..., Ν - 1. 

7. Multiply tf^(rAf), r — 1,2, . . . , Ν - 1, by the scale factorN/(N - r) to obtain the 

desired A^rAt). 

It should be noted that the inverse transform in Step 5 requires that all values of the 
spectral estimate be used; that is, Sxx(fk),k = 0,1,.. .,2N - 1, even though the Nyquist 
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frequency occurs at k = N. This matter is discussed further in Section 11.5.1. It should 
also be noted from Section 8.4 that the variance of an autocorrelation estimate is 
inversely proportional to 2BeTr = Nnd. Hence, an acceptably accurate autocorrelation 
estimate can often be obtained from a single FFT spectrum (nd = 1) if Ν is sufficiently 
large. Finally, the calculation of the autospectra estimate in Step 4 should be 
accomplished without tapering operations of the type discussed in Section 11.5.2. 

11.5 AUTOSPECTRAL DENSITY FUNCTIONS 

Prior to 1967, the digital computation of autospectral density functions were usually 
accomplished by procedures based on the definition in Equation (5.34). Specifically, 
an autocorrelation function was first computed using Equation (11.87) and then 
Fourier transformed over an appropriate range of lag values to obtain a spectral 
estimate. This approach, which was first detailed in Ref. 10, is commonly referred to 
as the Blackman-Tukey procedure. Following the introduction of the fast Fourier 
transform algorithm in 1965 (see Ref. 6), a direct FFT computational procedure based 
upon the definition in Equation (5.67) was proposed in Ref. 11. This direct FFT 
approach, referred to as the Welch procedure or the direct FFT procedure, requires 
substantially fewer computer computations than the Blackman-Tukey approach and, 
hence, rapidly came into wide use. The basic computations for the direct FFT 
approach are straightforward, but there are various "grooming" operations that are 
often added to the computations to improve the quality of the resulting estimates. 
These matters will now be discussed. 

11.5.1 Autospectra Estimates by Ensemble Averaging 

Consider a transformed data record x{f) of total length Tr that is stationary with χ = 0. 
Let the record be divided into nd contiguous segments, each of length T, as shown in 
Figure 11.7. It follows that each segment of x(f) is x,(f), (i-\)T<t< iT, i = 1,2,..., 
nd. Using Equation (8.157) and dividing by 2, an estimate Sxxif) of the two-sided 
autospectral density function S^if) for an arbitrary / i s given by 

0 Τ 2T 3Γ (nd-m ntT 

Figure 11.7 Subdivision of data into nd records of individual length T. 
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where 

XiifJ) Xi(t)e'j27lf'dt 

The ensemble-averaging operation over the nd records in Equation (11.98) approx-
imates the expected value operation in Equation (5.67). 

In digital terms, let each record segment JC,(/) be represented by Ν data values {*,·„}, 
n = 0, 1, . . . , Ν — 1, z' = 1, 2 , . . . , nd. The finite Fourier transform in Equation (11.98) 
will produce values at the discrete frequencies 

(11.99) 

The Fourier components for each segment are then given from Equation (11.38) by 

\-j2nkn] N-l 
Xiifk) = AtXik = A i ^ x , „ e x p 

n=0 
Ν 

(11.100) 

Two two-sided autospectral density function estimate of Equation (11.98) now 

becomes 

Sxxifk) — 
1 

n<]NAt 
k = 0,l,...,N-l (11.101) 

i=l 

As discussed in Section 11.2.4, when FFT procedures are used, the Nyquist frequency 
fA occurs where k = N/2. Hence, the first (N/2) + 1 spectral values at k = 0 , 1 , . . . , N/2 
define the autospectral density estimate in the frequency range 0 <fk <fA, while the 
last (N/2) - 1 spectral values at k = (N/2) + 1, (N/2) + 2 , . . . , Ν— 1, can be inter-
preted as the autospectral density estimate in the frequency range —fA <f< 0. 
Because autospectra functions are always real valued, it follows from Equa-
tion (11.77) that S„(fk) = S„(2fA-fk). 

The one-sided autospectral density function is estimated directly from Equa-
tion (11.101) by 

G„{fk) = { 

— $ > ( Λ ) | 2 1 , 2 , 3 , · . , [ W 2 ) - 1 ] 

1 
i=l (11.102) 

ndNAt4 
Σ ^ Μ 2 * = 0,(/V/2) 
i=l 

Note that the k = 0 and k = N/2 components theoretically do not double in value 
because there are no redundant components in the Fourier transforms at these 
frequencies, as illustrated in Figure 11.3. However, the k = 0 component, which 
represents the autospectral density estimate at zero frequency, is usually ignored 
because it is vulnerable to errors caused by the delta function representing a nonzero 
mean value; there will always be some round-off error in the standardization 
operations given by Equations (11.5) and (11.6). The N/2 component, which 
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represents the spectral density estimate at the Nyquist frequency, is also 
usually ignored because it generally will be well above the cutoff frequency of 
the anti-aliasing filter used for the data conversion operations discussed in 
Section 10.3.3. 

The number of data values Ν used for each FFT in Equations (11.101) and (11.102) 
is often called the block size for the calculation and is the key parameter in determining 
the frequency resolution bandwidth of the analysis given by 

On the other hand, the number of averages nd determines the random error of the 
estimate as detailed in Section 8.5.4. Note that for a Cooley-Tukey FFT algorithm, it is 
convenient to select an analysis block size that is a power of 2—that is, N=2P, as 
discussed in Section 11.2.3. 

11.5.2 Side-Lobe Leakage Suppression Procedures 

The finite Fourier transform of x(t) defined in Equation (11.98) can be viewed as the 
Fourier transform of an unlimited time history record v(f) multiplied by a rectangular 
time window u(t), where 

In other words, the sample time history record x(t) can be considered to be the product 

as illustrated in Figure 11.8. It follows that the Fourier transform of x{t) is the 
convolution of the Fourier transforms of u(t) and v(r), namely, 

Af = l/T = l/(NAt) (11.103) 

(11.104) 

x(t) = u(t)v(t) (11.105) 

(11.106) 

x(t) 

1.0 
u(t) 

t 

0 τ 
Figure 11.8 Illustration of inherent time window in special analysis. 
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u(t) 

01 
0 Τ 

(a) 

f - 3 / r -2/T - 1 / Γ 0 1/T 2/T 3/T 
<b> 

Figure 11.9 Rectangular analysis window, (a) Time window, (b) Spectral window. 

For the case where u(i) is the rectangular function defined by Equation (11.104), its 
Fourier transform is 

A plot of I £ / ( / " ) I is shown in Figure 11.9. Note that the first side lobe is about 13 dB 
down from the main lobe, and the side lobes fall off at a rate of 6 dB/octave thereafter. 
This function constitutes the basic "spectral window" of the analysis. The large side 
lobes of I U(f) I allow the leakage of power at frequencies well separated from the main 
lobe of the spectral window and may introduce significant distortions of the estimated 
spectra, particularly when the data have a narrow bandwidth. The leakage problem 
will not arise in the analysis of periodic data with a period Tp as long as the record 
length Tis an exact number of periods, that is, T= kTpk = 1 , 2 , 3 , — In this case, the 
Fourier components a t / = kfp = (k/Tp) cannot leak into the main lobe, because U(f) in 
Equation (11.107) is always zero at these frequencies. However, if ΤφνΤρ, then 
leakage will occur in the analysis of periodic data as well. 

11.5.2.1 Time History Tapering 
To suppress the leakage problem, it is common in practice to introduce a time window 
that tapers the time history data to eliminate the discontinuities at the beginning and 
end of the records to be analyzed. There are numerous such windows in current use, 
but one of the earliest and still commonly employed is a full cosine tapering window, 
called the cosine squared or Hanning window, which is given by 

(11.107) 

uh{t) = { 2 (11.108) 
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-3 /Γ -2 /T - 1 / T 0 Ι / Γ 2/T 3/T ' 
Φ) 

Figure 11.10 Hanning analysis window, (a) Time window, (b) Spectral window. 

as shown in Figure 11.10(a). The Fourier transform of Equation (11.108) is 

uh(f) =\u(f)-l-u(f-f)-\u(f+fl) 

where/ι = 1/T and U(f) is as defined in Equation (11.107). Note that 

(11.109) 

U(f-fi) = -T 

U(f+fi) = -T 

sin „( /•- / !) 7* 

« ( f - / i ) r 

L «V + f\)T 
(11.110) 

A plot of \Unif)\ is shown in Figure 11.10(b). The first side lobe of the Hanning 
spectral window is some 32 dB below the mainlobe, and the side lobes fall off at 
18 dB/octave thereafter. 

Consider now any function v(f) that is not periodic of periodic Γ and let 

x(t) = uh{t)v{t) (11.111) 

The Fourier transform of Equation (11.111) is 

x(f) = x(t)e 
•oo 

~i2nftdt = uh( 
« — oo 

«)V(f-<x)dx (11.112) 

At the discrete frequency values fk = (k/T) for k = 0, 1, 2 , . . . , (N/2), one obtains 

x(fk)=\v(fk)-
1-v(fk^yl-v(fk+1) (11.113) 
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where 

V(fk) = ( v{t)e-^'Tdt 
Jo 

To proceed further, assume that v(f) behaves similar to bandwidth-limited white noise 
over the frequency resolution bandwidth Δ / = (Ι/Γ). It then follows that for any two 
discrete frequencies / and g calculated at the points kAf= (k/T), expected value 
operations onV*(f) and V(g) will give 

£[V0M*)] = {? Tf/8
 (H-114) [I f o r / = g 

Applying these properties to Equation (11.113) yields 

2 / ι \ 2 / ι \ 2 ο 

\W)\2 = |iV +m + i i - i («•"») 
2 ; 

for any/* = (*/7), & = 0, 1, 2 , . . . , (N/2). This represents a loss factor due to using the 
Hanning window of Equation (11.108) to compute spectral density estimates by 
Fourier transform techniques. Hence, one should multiply Equation (11.100) by the 
scale factor γ / 8 / 3 to obtain the correct magnitudes in later spectral density estimates 
using Equations (11.101) and (11.102). Specifically, the autospectral density estimate 
with Hanning is computed by Equations (11.101) and (11.102) using 

Xiifk) = A i y ^ ^ j l - c o s ^ e x p 
n=0 

Ν 
(11.116) 

where fk = k/(NAt), k = 0, 1, . . . , (M2). It should be mentioned that the loss factor 
determined in Equations (11.109)—(11.115) can also be computed directly from 

•τ 
u\{t)dt 

I - = ! (H.117) 

I u2{t)dt 
Jo 

where u(t) and uh(t) are as defined in Equations (11.104) and (11.108), respectively. 
See Refs 12 and 13 for discussions of other tapering operations. 

Example 11.3. Spectral Errors Due to Side-Lobe Leakage. To illustrate the 
effect of side-lobe leakage on spectral density estimates, consider the two autospectra 
estimates shown in Figure 11.11. Both spectra were computed from the same record of 
particle velocities measured in a water basin by a laser velocimeter during a long 
sequence of stationary wave activity scaled to 10 times real-time rates. The 
spectra were computed using tta = 400 averages and a resolution of Δ / = 0.0488 Hz 
(T= 20.49 s) from digital data sampled at a rate of 50 sps (/ c = 25Hz). The only 
difference between the two spectral density estimates is that the solid line was 
computed with cosine squared tapering (Hanning) of the time history records and the 
dashed line was calculated with no tapering. 
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Figure 11.11 Autospectral density function of particle velocity in simulated ocean waves computed with 
and without tapering. These data resulted from studies funded by Shell Internationale Petroleum 
Maatschappij B.V., The Hague, Netherlands. 

The results in Figure 11.11 clearly demonstrate the errors in autospectral density 
estimates that can be caused by spectral side-lobe leakage. Specifically, the spectral 
estimates at frequencies off a spectral peak are increased in value by leakage of power 
through the side lobes positioned at the frequency of a spectral peak. Note that the 
frequency resolution in this example ( Δ / = 0.0488 Hz) complies with the requirement 
for a negligible bias error given in Example 8.6. Thus, the leakage error can be a 
problem even when the usual resolution bias error is controlled. This concludes 
Example 11.3. 

11.5.2.2 Overlapped Processing 
From Figures 11.9 and 11.10, it is seen that the time history tapering used to suppress 
side-lobe leakage also increases the width of the main lobe of the spectral window; 
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that is, it reduces the basic resolving power of the analysis. For Hanning, the increase 
in the half-power bandwidth of the main lobe is about 60%. This is generally an 
acceptable penalty to pay for the suppression of leakage from frequencies outside the 
region of the main lobe. However, there may be cases where maintaining a minimum 
main-lobe bandwidth is critical to the analysis. This can be achieved by simply 
increasing the record length Τ for each FFT to provide the same bandwidth with 
tapering that would have occurred without tapering. Of course, this would also 
increase the total data record length Tr required to obtain a given random error, 
assuming the analysis is performed on nd independent segments. If the data are limited 
such that the total record length cannot be increased, the result will be fewer 
independent segments (a smaller value of nd) and, hence, an increased variability 
in the spectral estimates. 

To counteract the increase in variability caused by time history tapering for side-
lobe suppression, overlapped processing techniques are sometimes used. Specifically, 
instead of dividing a record x{t) into nd independent segments, „,-(r), (i - 1)Γ < t < iT, 
i = l , 2 n_r, the record is divided into overlapped segments x{t) covering the time 
intervals 

[q(i-l)}T <t<[q(i-l) + l]T i= 1,2,..., (nd/q) <7 < 1 (11.118) 

A common selection in overlapped processing is q = 0.5, which produces 50% 
overlapping, as illustrated in Figure 11.12. This not only will retrieve about 90% 
of the stability lost due to the tapering operation but also will double the required 
number of FFT operations, See Ref. 11 for details. 

11.5.2.3 Correlation Function Tapering 
Another method for suppressing side-lobe leakage involves tapering the autocorrela-
tion function of the data rather than the original time history. This approach, 
sometimes called lag weighting, causes very little increase in the variance of the 
resulting spectral estimates, and hence eliminates the need for overlapped processing. 
It also requires fewer computations. The general procedure is as follows. 

1. Compute the two sided autospectral density function Sxxif) from long, un-
tapered time-history records using Equation (11.101). 

hit) 

Figure 11.12 Sequence of tapered time windows for 50% overlapped processing. 
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2. Compute the autocorrelation function Rxx(x) by taking the inverse FFT of the 

autospectrum estimate as described in Section 11.4.2 (use of the circular 

correlation function is acceptable for this application). 

3. Apply a taper κ(τ) to the autocorrelation estimate such that u(x) = 1 at τ = 0 and 

«(τ) = 0 at χ = r m a x < T. 
4. Based on Equation (5.34), recompute the smoothed, one-sided autospectral 

density function (_«(/) by taking the FFT of κ(τ)Λ_,(τ) over the interval 

0 < τ < r m a x and multiplying by 4. 

Because the mean square value of the data is determined by the value of the 
autocorrelation function at τ = 0, the tapering operation described above causes no 
change in the mean square value and hence no loss in the values of the calculated 
spectrum. 

In computing spectra with lag weighting, one should calculate the original 
autospectrum from Equation (11.101) with a longer block length than needed to 
obtain the desired resolution in the final autospectrum. This will yield spectral 
estimates with smaller values of Δ/and nd than desired in the final estimates. However, 
because the final spectral estimates are given by the FFT of u(x) R^x), the resolution 
of the final estimates will be 

_ / = _L = J _ (11.119) 
T m a x mAt 

where m < Ν is the maximum lag number. Furthermore, the normalized random error 
of the final estimates will be approximated by 

^ (11.120) 

Hence, the resulting spectral estimates will have essentially the same variance as if 
they were computed using time history tapering and overlapped processing proce-
dures with the same resolution. 

As for time history tapering, a full cosine tapering window (Hanning) is often used 
for correlation function tapering. In this case, 

uh{x) 

( 1 / nx \ 1 / πχ\ 
- 1 + cos = - 1 + cos — r = 0,1,2,... m 
2 \ w / 2 \ mj (11.121) 

\0 r > m 

Hanning of the correlation function yields less spectral side-lobe suppression than 
Hanning of the original time history data. Specifically, Hanning in the correlation 
domain corresponds to a spectral window where the first side lobe is 16 dB below the 
main lobe, and the side lobes fall off at 9dB/octave thereafter. However, lag weighting 
functions that provide substantially greater spectral side-lobe suppression are avail-
able, as detailed in Ref. 13. 
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11.5.3 Recommended Computational Steps for Ensemble-Averaged Estimates 

Given a digitized sample record u„, η = 0 , 1 , . . . , (ndN— 1), the following steps are 
recommended to compute ensemble-averaged autospectral density estimates. An 
alternative procedure based upon frequency averaging is presented in Section 11.5.5. 

1. Compute the mean value of the data record un, « = 0, 1, . . . , (ndN— 1), using 
Equation (4.3) and subtract the mean value U from all data values to obtain a new 
data record x„, η = 0, 1, . . . , {ndN — 1), with a mean value of zero. 

2. Divide the data record xn, n = 0, 1, . . . , (ndN - 1), into nd contiguous blocks, 

each consisting of Ν values, to obtain a collection of nd records given by xtn, 

ί = 1 , 2 , . . . , π * π = 0, l , . . . , ( i V - l ) . 

3. To suppress side-lobe leakage, taper the data values of each block xn, η = 0, 

1, . . . , (A/— 1), by the Hanning window described in Equation (11.108) or some 

other appropriate tapering function. The correlation function tapering proce-

dure described in Section 11.5.2 may be used as an alternative. 

4. Compute the N-point Fourier transform for each block of data using the FFT 

procedures detailed in Section 11.2.2 to obtain X(fk), k = 0, 1, . . . , ( /V- 1). If 

necessary to reduce the increase in resolution bandwidth caused by the tapering 

operation without increasing the random error in the estimates, compute the 

FFTs for overlapped records as described in Equation (11.118). 

5. Adjust the scale factor of X(fk) for the loss due to the tapering operation (for 

Hanning tapering, multiple by i / 8 / 3 ) . 

6. Compute the autospectral density estimate from the nd blocks of data using 

Equation (11.101) for a two-sided estimate, or Equation (11.102) for a one-

sided estimate. 

As a final point on the estimation of autospectra by the foregoing ensemble-
averaging technique, for those cases where the original data are acquired as a 
continuous analog signal, oversampling procedures are often used to prepare data 
for digital computations. For example, one may wish to estimate the autospectral 
density function of a random data record that is believed to contain no information of 
interest at frequencies above 1 kHz. From the discussions in Section 10.3.3, to avoid 
aliasing errors, the usual data conversion procedure would be as follows: 

1. Low-pass filter the original analog data record with a cutoff frequency of 

/ c = l k H z . 

2. Convert the low-pass filtered analog data to a digital format using a sampling 
rate of 3000 to 4000 samples per second (3 to 4 ksps), depending on the rolloff 
rate of the low-pass filter, to achieve a Nyquist frequency offN= 1.5-2 kHz. 

With the increasing availability of high-speed, inexpensive analog-to-digital con-
verters (see Section 10.3.1), an alternative procedure can be used. Specifically, one 
could oversample the data at, say, 1 Msps, which produces a Nyquist frequency of 
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/Jv=500kHz, and then low-pass digital filter and decimate the data as discussed in 
Section 11.1.3. The data conversion procedure would be as follows: 

1. Low-pass filter the original analog data record with a cutoff frequency that is 
conservative for a sampling rate of 1 Msps, say fc= 100 kHz. 

2. Convert the low-pass filtered analog data to a digital format using a sampling 

rate of 1 Msps. 

3. Low-pass filter the digital data using a digital filter (see Section 11.1.3) with a 

cutoff frequency of/ c = 1 kHz and a rapid rolloff above the cutoff frequency. 

4. Decimate the low-pass filtered digital data by retaining, say, one of every 333 
values to reduce the sampling rate to 3ksps, corresponding to a Nyquist 
frequency of fN= 1.5 kHz. 

In the above procedure, the low-pass filtering operation on the original analog record 
is sometimes omitted under the assumption that there is no spectral content at 
frequencies above the Nyquist frequency for data sampled at such a high rate. 
Nevertheless, because of the possibility of high-frequency noise in the data collection 
system and the severe consequences of aliasing, it is recommended that analog low-
pass filtering be performed on all data prior to analog-to-digital conversion, no matter 
how high the sampling rate. 

The primary advantages of the oversampling procedure are as follows: 

1. Although low-pass filtering of the original analog data is still recommended, a 
relatively simple, inexpensive filter can be used because the cutoff frequency 
can be set at a small fraction of the Nyquist frequency of the sampled data. 

2. The digital filter used for the final suppression of potential aliasing errors can be 
carefully designed with any desired characteristics and implemented in soft-
ware at a much lower cost than an equivalent analog filter. 

3. If editing operations are performed to remove anomalies from the data, as 
described in Section 10.4.3, the digital filter used for the final suppression of 
potential aliasing errors will also interpolate out any discontinuities in the data 
that might have been introduced by the editing operations. 

4. From Ref. 14, the oversampling procedure enhances the signal-to-noise ratio of 
the resulting digital computations. 

11.5.4 Zoom Transform Procedures 

A major problem in spectral analysis using FFT procedures is the computation of 
spectral values at relatively high frequencies with a very small resolution— that is, 
those cases where/VA/is very large. Of course, if there are no limits on the block size 
N that can be Fourier transformed, any desired resolution at higher frequencies can be 
obtained because 

(11.122) 
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However, there are practical limits on the block size Ν that can be Fourier transformed 
by a computer, and the required computations using a Cooley-Tukey FFT algorithm 
increase in proportion to Np when N=2P. Hence, it is desirable to use a computational 
technique that will permit the calculation of an autospectrum with a Nyquist 
frequency of fA and a resolution Δ / using fewer data points than suggested in 
Equation (11.122). Such techniques are commonly referred to as zoom transform 
procedures. 

There are several ways to achieve a zoom transform, but the most common 
approach is first to convert the original data into a collection of band-limited records, 
and then to apply the principles of complex demodulation to move the lower 
frequency limit of each band-limited record down to zero frequency. To be specific, 
let the original data record x(t) be bandpass filtered to produce a new record 

ί x(t) f0-(B/2) <f <f0 + (B/2) y(t) = < W Jo ν / j -j - J O y / j (H.123) 
I 0 otherwise 

Now multiply y(t) by an exponential function to obtain the modulated signal 

v(r) = y(t)ej2nf" (11.124) 

where f\ is the modulating frequency. The Fourier transform of v(t) yields 

V(f)- y(t)ej27lf"e~j2nftdt 

y't)e-W-M'a=Y(f-fi) 

(11.125) 

Jo 

so the autospectral density function of v(f) becomes 

Gw(f) = Hm lE\\V(f)\2} = Gyytf-fi) (11.126) 
/ —* oo J L J 

It follows from Equation (11.126) that if the modulating frequency f is set at 
fx = / 0 — B/2 then the autospectrum of the original band-limited data will be trans-
posed in frequency down to the frequency range, 0 < / < B, from the original 
frequency range,/ 0 — (B/2) < / < / n + (B/2), as indicated in Figure 11.13. The data 
can now be sampled at a minimum rate of 2B sps without aliasing, as opposed to a 
minimum rate of 2(f0 + B/2) for the original data. Hence, a much finer resolution can 
be obtained for a given block size N, namely, 

original data : Af > 2(f0 +B/2)/N 
(11.127) 

zoom data : Af > 2B/N 

Of course, the analysis must be repeated for individual zoom transforms of the data in 
all frequency ranges of interest. 

In earlier times, the bandpass filtering and demodulation operations required to 
perform a zoom transform were sometimes accomplished using analog devices prior 
to the digitization of the data. This permitted a relatively low-rate analog-to-digital 



398 DATA ANALYSIS 

Q„lh 

o <fo-V Β 
Ό 2 Ό 2 

Figure 11.13 Illustration of frequency shift due to complex demodulation. 

converter (ADC) to be used to analyze data at frequencies well above the ADC rate. 
With modern high-speed ADC equipment (see Section 10.3), it is now common to 
sample the data at a rate appropriate for the original data x(t), and then accomplish the 
zoom transform operations digitially. Specifically, the original record Jt(nAr), η = 1, 
2 , . . . , Ν, is first bandpass filtered by digital filtering procedures outlined in Sec-
tion 11.1.3 to obtain y(nAi), η = 1, 2 , . . . , Ν, in the frequency range fc-/(iVAi) < fk 

< k2/(NAt). The values of y(nAt) are next modulated to obtain 

ν(ηΔί) = y(nAt)exp[-j2nnki/N] η = 1 , 2 , . . ,A7 (11.128) 

The sample values v(nAt) can now be decimated by a ratio of 

d = k2/(k2-kl) (11.129) 

to obtain v(ndAt), η = 1,2,..., Ν. Note that the required record length for each block is 
now Τ = NdAt seconds. The Fourier transform of the decimated data then yields 

ί k \ A 
Y\MAt) =dAtYsV(ndAt')exVl-J2nkn/Nd] k = 0,l,...,N/2 (11.130) 

These operations are repeated over nd independent records of x(t), and the auto-
spectrum is computed using Equation (11.102). The resulting spectrum will have a 
resolution of Af = U{NdAt) over the frequency range ^/(/VAr) <fk< k2l(NAt), 
where fk = k/(NdAt) and k = dki to dk2. 

Example 11.4. Parameter Selections for Zoom Transform. Assume the 
autospectrum of a stationary random data record x(t) is to be computed with a 
normalized random error of ε = 0.10 and a resolution of Af = 1 Hz over the 
frequency range 0-5120 Hz. Further assume the calculations are to be accomplished 
using a fixed block size of Ν = 1024 data points. Determine the total amount of data 
needed for the analysis. 

To obtain a resolution of Af = 1 Hz with Ν = 1024 data points, it follows from 
Equation (11.102) that the sampling interval must be 

At = l/(NAf) = 0.000977 
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which provides a Nyquist frequency of 

= 512Hz 

Hence to analyze the data over the frequency range 0-5120 Hz, it will be necessary to 
zoom transform the data sequentially into 10 contiguous frequency bands of width 
Β — 512 Hz. From Equation (8.158), to achieve an error of ε = 0.10, a total of 
nd = 100 averages in each frequency band will be required. Hence, the total amount 
of data needed for the analysis in each frequency band is 

7V = ndNAt = 100 s 

If the original time history data are available in storage, then all 10 frequency bands 
can be analyzed with the 100 s of data. If the analysis is being performed on line, 
however, then a total of 1000 s of data would be needed to accomplish a sequential 
analysis in each of the 10 frequency bands. 

11.5.5 Autospectra Estimates by Frequency Averaging 

An alternative approach to the estimation of autospectral density functions is to 
average a single autospectral density estimate over frequency rather than averaging a 
collection of autospectral density estimates over an ensemble of records, as given in 
Equation (11.102). Specifically, consider a single sample record u(t) of total length 
Tr = ndT = ndNAt that is converted to a digital data record 

un = u{nAt), n = 0 , I , . . . ,{ndN-l) (11.131) 

where the total number of sample values Nr = ndNis a power of two. The procedure 
for computing a frequency-averaged autospectral density estimate is as follows: 

1. Compute the mean value w of the digital data record un using Equation (11.5) 
and subtract this mean value from all data values to obtain a new digital data 
record xn with zero mean value defined by 

xn = x(nAt) = un — ΰ η = 0 , 1 , . . . , (ndN— 1) (11.132) 

2. Compute the ^TV-point Fourier transform for the entire data record xn using the 
FFT procedures detailed in Section 11.2.2 with Af={VTr) = {\/ndT) at the 
frequencies 

fk = kAf k = 0,1,2,..., (n_-_V—1) (11.133) 

to obtain the Fourier transform values 

X(fk)=X(kAf) k = 0,\,2,...,(ndN-l) (11.134) 
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3. Compute the "raw" one-sided autospectra] density estimates defined by 

G„(fk) = (2/Tr)\X(fk)\
2 k=l,2,...,(N/2)nd (11.135) 

Note that the k = 0 component, which corresponds to the spectral component at 
/ = 0 , is omitted. This component is commonly spurious for the reasons 
discussed in Section 11.5.1. Also, omitting the k = 0 component provides an 
even number of Λ72 contiguous frequency bands, each containing nd "raw" 
spectral components. 

4. Compute the final "smooth" one-sided autospectral density estimates by 
averaging the "raw" estimates over the nd adjacent frequency components in 
each of the set of (N/2) contiguous frequency bands with center frequencies 
denoted by 

q, = iAf i = 0 , i . 2 , . . . , [ ( t f / 2 ) - l ] (H-136) 

where 

qi=h*+WW i = l , 2 , . . . . [ ( t f / 2 ) - l ] 

qo=f{\ + nd)/2 w h e n ; = 0 

Thus, qi =f(3/2)nj< 12 =f(5/2)n^ and so on up to <?[(/v/2)-i] =f[(N-\)/2\nd- The 
reason for changing the notation for these (N/2) center frequencies is to avoid 
confusion with the original (N/2)nd computed frequencies. Figure 11.14 illus-
trates how the new N/2 center frequencies qit i = 0, 1, 2„ .. , [(Λ72) - 1], are 
related to the original (N/2)nd computed frequencies/., k = 1,2,..., (N/2)nd, by 
showing the correspondence between the indices i and k. 

5. By this frequency-averaging procedure, the final "smooth" one-sided auto-
spectral density function estimate computed from each frequency band of nd 

adjacent frequency components is given at the N/2 center frequencies by 

, (< + iKf 

Ga{qt)=- Σ G e i / * ) , i = 0 , l , 2 , . . . , [ ( ^ / 2 ) - l ] (11.138) 
ndk=md + \ 

From Equation (11.114), the components of the Fourier transform X(f) at any two 
frequencies spaced (1/7) apart are statistically independent. Hence, Equation (11.138) 
shows that, by averaging over nd adjacent frequency components, the autospectral 
density estimates computed from a single record of total length Tr = ndT = ndNAt will 
produce results with the same random error as averaging over an ensemble of 

i-> 0 l 2 (M2)-l 
I I I I 

1 ! nd I 2nd j 3nd [ (TV-iy^ | (Ay2)/w 

— I — I — I — I — ! — K \ / \ H 1 1 
(l+nd)/Z (3/2K, (5/2H, [(JV-l)/2]nd 

Figure 11.14 Relation of center frequencies to original computed frequencies for frequency-averaged 
autospectral density estimates. 
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autospectral density estimates computed using Equation (11.102) from nd different 
records, each of length T=NAt. In addition, because the bandwidth resolution of the 
frequency-averaged estimates will be Be = ndTr = (\IT), the bias error in the 
frequency-averaged estimates will be essentially the same as the bias error in the 
ensemble-averaged estimates. However, the spectral window for frequency-averaged 
estimates will be quite different from the spectral window for ensemble-averaged 
estimates. Specifically, the square of the net spectral window for frequency-averaged 
estimates, | ί/,· | 2 , will be the sum of the squares of nd adjacent spectral windows, | Uk|2, 
each as defined in Equation (11.107), namely, 

( / + 

\Ui\2= Σ l ^ l 2 '" = 0 , 1 , 2 , . . . , [ ( Λ / / 2 ) - 1 ] (11.139) 

The window in Equation (11.139) approaches a rectangular shape as nd becomes large. 
It still has side lobes, but they become very small compared to the main lobe because 
the width of the side lobes is now (\ITr) = (\lndT) rather than (1/T) as shown in 
Figure 11.9. This fact is illustrated in Figure 11.15 for the case when nd= 16.Evenwith 
this relatively modest amount of averaging, the power of the leakage through the first 
side lobe, as measured by the area under the side lobe, is over 20 dB below the power 
passed by the main lobe. For nd = 100, the power passed by the first side lobe is over 
30 dB below the power passed by the main lobe, approximately equivalent to the side-
lobe leakage suppression provided by the Hanning window shown in Figure 11.10. 

The frequency-averaging approach offers three important advantages over the 
more common ensemble-averaging procedure in Section 11.5.3 as follows: 

1. Because the frequency-averaging approach provides autospectra estimates with 
low side-lobe leakage from untapered records, no tapering of the sample 
records and a resulting power loss correction of the autospectra estimates are 
required. 

2. The frequency-averaging approach allows the computation of autospectra 
estimates with a resolution bandwidth that is proportional to frequency, which 
is more desirable than a constant-resolution bandwidth for certain applications. 

Frequency components separated by IIT, 

Figure 11.15 Spectral window for frequency averaging over 16 contiguous autospectral density values. 
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Specifically, it is shown in Example 8.7 that a proportional resolution band-
width will provide autospectral density estimates with a near-minimum mean 
square error for data representing the resonant response of lightly damped 
mechanical and electrical systems. 

3. The frequency-averaging approach allows the first resolution bandwidth to be 
placed at a lower frequency than provided by the autospectral density estimates 
computed using Equation (11.102). Specifically, excluding the estimate at 
f—0, the first frequency-averaged spectral window will start atf=l/Tr = 
l/(ndT) and end at f=ndITr= 1/T, giving a center frequency of qa = [\ + 
(\lnd)]l(2T) for the first resolution bandwidth. For example, if nd = 100, the 
center frequency for the first resolution bandwidth is q0 = 0.505/7! For esti-
mates computed using Equation (11.102), the first resolution bandwidth, 
excluding the estimate a t / = 0, is always centered a t / ] = \IT. This feature of 
frequency averaging constitutes a significant advantage in those cases where 
the spectral content of the data below the frequency 1/T may be of interest. 

On the other hand, the frequency-averaging approach involves the computation of one 
FFT over a sequence of ndN data values, as opposed to nd FFTs, each over Ν data 
values, as for the ensemble-averaging approach in Section 11.2.3 with no overlapping. 
Hence, the frequency-averaging approach requires substantially greater computer 
memory and, in some cases, more basic computations, as illustrated in Example 11.5. 
However, with the growing capacity and speed of digital computers, these issues no 
longer constitute a significant drawback to the frequency-averaging approach. 

Example 11.5. Number of Computations for Frequency- versus Ensemble-
Averaged Autospectra Estimates. Assume a sample record of stationary random 
data has been digitized into a total of ndN— 65,536 data values, where it is desired to 
estimate the autospectral density function of the data with nd = 64 averages. Using the 
ensemble-averaging approach of Equation (11.102) without overlapping, the basic 
computations would require nd = 64 FFTs, each over Ν = 1024 = 2 1 0 data values. On 
the other hand, using the frequency-averaging approach of Equation (11.138), the 
basic computations would require a single FFT over ndN = 65,536 = 2 1 6 data values. 
From Section 11.2.3, using the Cooley-Tukey algorithm, the number of multiply-add 
opertions required for an FFT over NT data values is proportional to Njp, where ρ is 
that power of two such that NT= 2P. It follows that the ratio of the FFT computations 
required by the frequency-averaging (FA) versus the ensemble-averaging (EA) 
procedure is 

FA = (η„Ν)ρρ = P F = (16) = 

EA nd{N)pE pE (10) 

Here, for the sample data in this example, the frequency-averaging procedure would 
require about 60% more basic computations. 

Now assume that the ensemble-averaged analysis is performed with a 50% overlap. 
The number of required FFTs is (2nd- 1), and the ratio of the FFT computations 
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required by the frequency-averaging versus the ensemble-averaging procedure is 

FA = {ridN)pF _ PF _ 16 ^ Q 

EA~ (2nd-\){N)pE [2 - (l/nd)]pE ~ 2 (10) ~ 

Thus, the frequency-averaging procedure in this case would require about 20% fewer 
basic computations. 

11.5.6 Other Spectral Analysis Procedures 

This chapter summarizes only conventional spectral analysis techniques that involve 
Fourier transforms that inherently produce spectral estimates with a minimum 
resolution of A / = 1/7! Problems often arise in practice where it is difficult or 
impossible to acquire a sufficiently long record to ensure the resolution needed for 
a proper analysis. This is particularly true in the analysis of seismic, oceanographic, 
atmospheric turbulence, and some biomedical data. Over the years, a number of 
spectral estimation techniques based on modeling procedures have been developed in 
an effort to resolve this problem. Such techniques are often referred to as parametric 
spectral estimation procedures. 

Essentially, these techniques construct a model for the process generating the data 
from the data itself. The model assumes that white noise is played through a linear 
system with a frequency response function H(f) to produce the data. The frequency 
response function is of the form 

Σ*=ο**ζ* 

where ζ = exp(-j2nfAt) is the ζ transform mentioned in Section 11.1.3. The model is 
then described by the difference equation 

Ν Μ 

y> = Σ α ι Χ ί ~ ι + Σ bkyi~k ( n . 1 4 1 ) 

1=0 k=i 

If the bk are identically zero, the model is termed a moving average (MA). If all the a ; 

except «o are identically zero, then the model is called autoregressive (AR). If neither the 
a, nor the bk\s zero, the model is referred to as ARMA. Determination of the type of model 
selected (AR, MA, or ARMA) must be made by the data analyst prior to attempting a 
spectral estimation. This is usually done from some knowledge of the physical 
phenomenon being measured. If the wrong model is selected, the estimated spectra 
will be misleading and probably worse than those obtained by standard techniques. 

After model selection, the model coefficients are derived by least squares 
techniques. The AR least squares technique is termed maximum entropy spectral 
analysis (MESA) because it was derived from the principle that the spectral estimate 
obtained must be the most random (have maximum entropy, in communication theory 
terms) of any autospectrum consistent with the measured data. An MA model gives 
rise to what is known as maximum likelihood spectral analysis, while no special name 
is given to the technique used in developing the ARMA model coefficients. The most 
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difficult task in parametric spectral estimation is the order selection. This is a classic 
problem in least squares polynomial approximation. Tests have been devised to 
determine, in the statistical sense, an optimum model order. See Refs 15 and 16 for 
detailed discussions of these procedures. 

11.6 JOINT RECORD FUNCTIONS 

In the formulas to follow, it is assumed that two time history records w(r) and v(r) 
are from stationary (ergodic) random processes and exist only for t0 < t < tQ + T, 
where t0 is arbitrary and does not enter into later formulas because of the stationary 
assumption. Assume the sampling interval is Δί, which corresponds to a Nyquist 
frequency of fc = 1/(2Δί). Let the respective sample values of u(t) and v(r) be 
denoted by 

un = u(t0 + nAt) η =1,2,...,Ν (11142) 

v„ = v(r 0 + nAt) Τ = Ν At 

The first quantities to compute are the sample mean values given from Equation (11.5) 
by 

n=\ n=\ 

The transformed data values can then be calculated by 

x„ = u„-u y„ = v„-v η =1,2,...,Ν (11.144) 

where χ = 0 and y = 0. Various preliminary operations might also be performed, as 
summarized in Chapter 10 and Section 11.1. 

11.6.1 Joint Probability Density Functions 

It follows from Equations (3.26) and (8.92) that the joint probability density function 
of two stationary records x(t) and y(t) can be estimated from digitized data by 

*-«>-ss£4 ( 1 1 1 4 5 ) 

where Wx and Wy are narrow intervals centered on χ and y, respectively, and NXry is the 
number of pairs of data values that simultaneously fall within these intervals. Hence, 
an estimate p(x, y) is obtained by dividing the full ranges of χ and y into appropriate 
numbers of equal-width class intervals forming two-dimensional rectangular cells, 
tabulating the number of data values in each cell, and dividing by the product of the 
cell area WxWy and the sample size N. Computer procedures for sorting the data values 
into appropriate cells are similar to those outlined for probability density estimates in 
Section 11.3. 
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11.6.2 Cross-Correlation Functions 

As for autocorrelation functions, there are two basic approaches to the estimation of 
cross-correlation functions, namely, the direct approach and the roundabout FFT 
approach. Procedures for both cases will now be discussed. 

11.6.2.1 Direct Procedures 
Similar to the development presented in Section 11.4.1, unbiased estimates of the 
sample cross-correlation functions at lag numbers r = 0,1, 2 , . . . , m with m <N are 
defined by 

j N-r 

RxyirAt) = — J2x„y„ + r (11.146a) 

n=l 

j N-r 

Ry*(rAt) = — 53 ynxn+r (11.146b) 
n=l 

Note that the two cross-correlation functions R^rAt) and Ryx(rAt) differ by the 
interchange of the xn and y„ data values. 

The sample cross-correlation function R^rAt) may be normalized to have values 

between plus and minus one through a division by \JR^O)^Απ(0). This defines a 

sample cross-correlation coefficient function 

P j y(rAf)=^Ai r A!J r = 0 , 1 , 2 , . . . , m (11.147) 

which theoretically should satisfy —1 < p^rAt) < 1, as proved in Section 5.1.3. A 
similar formula exists for pyx(rAt). 

11.6.2.2 Via Fast Fourier Transforms 
Similar to the development outlined in Section 11.4.2, the cross-correlation function 
can also be computed via FFT procedures. The initial sample size for both x(t) and y(t) 
is assumed to be N=2P. For these computations, the cross-correlation function is 
obtained from the cross-spectral density function and involves two separate sets of 
FFTs, one for x(t) and the other for y{f). These two sets of FFTs may be computed 
simultaneously by using the method in Section 11.2.4. 

In summary, the following steps are recommended to compute the cross-correlation 
function via FFT procedures. The available sample size for the two records x(nAt) and y 
(nAt) is assumed to be ndN, where N= 2P. 

1. Determine the maximum lag number m of interest and divide the available data 
records into nd blocks, each consisting of Ν > m data values. 

2. Augment each block of Ν data values, {x„} and \y„}, η = 1, 2 , . . . , Ν, with Ν 
zeros to obtain a new sequence of 2N data values. 
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3. Compute the 2/V-point FFT giving Z(k) for k = 0,1,..., 2TV- 1, using the FFT 
procedure of Equation (11.71). 

4. Compute the X(k) and Y(k) values for k = 0, 1, . . . , 27V— 1, using 
Equation (11.72). 

5. Compute the two-sided cross-spectral density function estimate Sxyifk) for 
k = 0, 1, . . . , 27V— 1, using the procedure in Section 11.6.3. 

6. Compute the inverse FFT of _-,(/*) to obtain R^rAt) for r = 0, 1, . . . , 27V - 1, 
using Equation (11.76). 

7. Multiply R^rAt), r=0, 1, . . . , (TV- 1), by the scale factor 7V/(7V- r) to obtain 

the unbiased cross-correlation estimate Rxy(rAt) for positive lag values. 

8. Multiply 7?^ (rAt), r = Ν + 1, TV + 2 , . . . , 27V - 1, by the scale factor N/(r - TV) 

to obtain the unbiased cross-correlation estimate R^rAt) for negative lag 

values. 

The justifications for these various steps are similar to those discussed for auto-
correlation analysis in Section 11.4.2. 

11.6.3 Cross-Spectral Density Functions 

Similar to the ensemble-averaged computational procedure for autospectral density 
estimates in Section 5.5.3, the following steps are recommended to compute cross-
spectral density estimates. 

1. Compute the mean values of the two data records using Equation (4.5) and 
subtract the mean values from the data records to obtain new data records x„, 
n = 0,1,2,.. .,(ndN- l )andy„,n = 0 ,1 ,2 , . . .,(ndN - 1), both with mean values 
of zero. 

2. Divide the available data records for xn and y„ into nd pairs of blocks, each 
consisting of TV data values. 

3. If needed to suppress side-lobe leakage, taper the data values in each pair of 
blocks, x„ and y„, n = 0, 1, . . . , TV—1, by the Hanning taper described in 
Section 11.5.2 or some other appropriate tapering function (the correlation 
function tapering described in Section 11.5.2 may be used as an alternative). 

4. Store the tapered xn values in the real part and the tapered y„ values in the 
imaginary part of zn = x„ +jym « = 0, 1, . . . , TV— 1. 

5. Compute the TV-point FFT for each block of data by Equation (11.71) giving 
Z(k), k = 0 , 1 , . . . , TV - 1. If necessary to reduce the variance increase caused by 
tapering, compute the FFTs for overlapping records as described in 
Section 11.5.2. 

6. Compute X(k) and Y(k), k = 0,\,..., TV— 1, for each block of data using 
Equation (11.72). 

7. Adjust the scale factor of X{k) and Y(k) for the loss due to tapering (for Hanning 
tapering, multiply by ^ 8 / 3 ) . 
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8. Compute the raw cross-spectral density estimate for each pair of blocks of data 
from X*(fk) = AtT{k) and Y(fk) = AtY(k) by 

Sv(fk)=N^[X*(fk)Y(fk)] k = 0,1,...,N-l (11.148) 

for a two-sided estimate, or 

Gx,(fk) = N^[X*(fk)Y(fk)] k = 0 , 1 , . . . , N/2 (11.149) 

for a one-sided estimate. 

9. Average the raw cross-spectral density estimates from the nd blocks of data to 
obtain the final smooth estimate of Sxyifk), k = 0,1,.. .,N — 1, orGxy(fk),k = 0, 
I,..., N/2. The smooth estimate 

Gxyifk) = CM -jQvifk) = \GM^~iK(fk) (H-150) 

As an alternative to the above procedure, cross-spectral density functions can be 
estimated using the frequency-averaging procedures discussed for autospectral 
density functions in Section 11.5.5. 

11.6.4 Frequency Response Functions 

For either single-input/single-output linear systems where extraneous noise is present 
only at the output or multiple-input/single-output linear systems where the inputs are 
uncorrelated, the recommended method for estimating the system frequency response 
function (including both gain and phase factors) is given by Equation (9.53), namely, 

H(f)=^=\H(f)\e-M) (H.151) 

It follows that 

Ι » ( 0 Ι = τΗ£τ a n d < ^ ) = M 0 ( n - 1 5 2 ) 

Hence, in terms of the digital computation at the discrete frequencies fk = k/(NAt), 
k = 0, I,..., N/2, the gain factor the and phase factor can be estimated by 

Gxx (Jk) 

4>(fk) = t a n - 1 ^ ^ ) / ^ ) ] (11.154) 

where Gxxifk) is the autospectrum estimate computed from xn, η = 0 , 1 , . . . , Ν — 1, as 
detailed in Section 11.5, and Cxyifk) and Qxyifk) are the real and imaginary parts, 
respectively, of the cross-spectrum estimate Gxyifk) computed from xn and y„, η = 0, 
1,. . . , Ν — 1, as outlined in Section 11.6.3. 
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11.6.5 Unit Impulse Response (Weighting) Functions 

The inverse Fourier transform of H(f) yields a circular biased estimate of the unit 
impulse response (weighting) function h(x) similar to the way the inverse Fourier 
transforms of S^if) and Sxyif) yield circular biased estimates of Rxx(x) and Λ-,(τ), 
respectively. If one desires to obtain h(x) from Η if), the two quantities Gxxif) and 

if) in Equations (11.102) and (11.149) should be replaced by two-sided quantities 
obtained by padding the original data with Ν zeros as described in Sections 11.4.2 
and 11.6.2. The inverse Fourier transform of this new ratio will then yield h (rAt) for 
values of r = 0, 1, 2 , . . . , 2N- 1, where the last half should be discarded. Multi-
plication by the scale factor N/(N—r) gives the desired h(rAt) for r = 0, 1, 2 , . . . , 
N-l. 

11.6.6 Ordinary Coherence Functions 

From Equation (9.54), the ordinary coherence function γ^(/") between two stationary 
records x(t) and y(r) is estimated by 

yl(f)= )°M (11.155) 

where Gxxif) and Gyyif) are the estimated autospectral density functions of x(t) and 
y(t) respectively, and <-%,(/") is the estimated cross-spectral density function between 
x(t) and y(t). Hence, in terms of digital calculations at the discrete frequencies fk = 
k/(NAt), k = 0, I,..., N/2, the ordinary coherence function is estimated by 

Gxxifk)Gyyifk 

where G^(/\) and Gyy(fk) are the autospectra estimates computed from xn and yn, 
n = 0, 1, . . . , Ν— 1, as detailed in Section 11.5, and Gxyifk) is the cross-spectrum 
estimate computed from xn and y„, η = 0, 1, . . . , Ν — 1, as outlined in Section 11.6.3. 

11.7 MULTIPLE-INPUT/OUTPUT FUNCTIONS 

Iterative algebraic procedures will now be listed to solve multiple-input/single-output 
problems using the formulas derived in Section 7.3. These results are based on the 
algorithm in Section 7.3.4 that computes conditioned spectral density functions from 
the original spectral density functions. Multiple-input/multiple-output problems 
should be treated as combinations of these multiple-input/single-output problems 
by merely repeating the same procedures on each different desired output record. 

Multiple-input/single-output models for arbitrary inputs and for an ordered set of 
conditioned inputs are shown in Figures 7.11 and 7.12, respectively. Wherever 
possible, the original collected arbitrary input records should be ordered so as to 
agree with physical cause-and-effect conditions. Otherwise, as noted in Section 7.3, a 



M U L T I P L E - I N P U T / O U T P U T F U N C T I O N S 409 

general rule is to order the input records based on their ordinary coherence functions 
between each input record and the output record. It is sufficient to do this ordering at 
selected frequencies of interest, usually corresponding to peaks in the output 
autospectrum. 

11.7.1 Fourier Transforms and Spectral Functions 

For every stationary random input record Xj(t),(= 1> 2 , . . . , q, and for the stationary 
random output record y(t)=xq + l(t), divide their total record lengths Tr into nd 

disjoint parts, each of length T, so that Tr = ndT. Finite Fourier transforms should be 
computed for every subrecord of length Τ from all of the {q + 1) input and output 
records at the discrete frequencies/* = kAf, k = 1, 2 , . . . , (N/2), where Af= \l(NAt) is 
the frequency resolution of the analysis. Hence, one will obtain a grand total of 
(q + l)nd different finite Fourier transforms, each of which is computed at (N/2) 
different frequencies. This provides the basic information to compute estimates of 
autospectral and cross-spectral density functions based on nd averages of similar 
quantities calculated at each of the (N/2) different frequencies. One-sided spectral 
density functions will be denoted by 

Gij(fk) = Gxixj(fk) ij = 1 ,2 , . . . , q, q + 1 

Giy(fk) = Gxiy(fk) „ = 1 , 2 , . . . , ( / V y 2 ) 

The Giy(fk) terms can be obtained by setting / = q + 1 = y. This gives the augmented 
(q - 1) χ (q + 1) input/output measured spectral density matrix [Gy] that can be 
stored, as shown in Figure 11.16, at the successive frequencies/, where £ = 1 , 2 , . . . , 
(N/2). Note that this is a Hermitian matrix, where terms on the main diagonal are real 
valued and terms off the main diagonal are complex conjugate of each other. This 
Hermitian property is also true for all of the conditioned spectral density matrices in 
the next section. 

11.7.2 Conditioned Spectral Density Functions 

The general algorithm derived of Equation (7.94) in Section 7.3.4 to obtain condi-
tioned spectral density functions by algebraic operations only is as follows. For any 
j>i and any r<j, where i,j= 1, 2,. ..,q,q+ 1 and r = 1, 2 , . . . , q, and at any fixed 
frequency f k , 

Gij.r\(fk) = Gy.(r-{yfjk)-Lrj(jk)Gir.(r-\)\(fk) 

j ,fs _ < V ( r - l ) l ( f t ) ( U - 1 5 8 ) 
Wjljk) — r ( f s 

Grr-(r-i)]\Jk) 

This algorithm yields results for the output y(t) by letting y(t) =xg+ i(t). To simplify 
the notation, the dependence on frequency will now be omitted. 

Starting from r = 1, results are computed for successive terms from previous terms. 
For r= 1, the algorithm in Equation (11.158) gives at any frequency f k the q χ q 
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G 1 2 
G 1 3 G l i « - 1 ) ° 1 . G l > 

G 2 1 G22 G 2 3 G2(<J-1) 
G 2 , G 2 y 

G 3 1 
G 3 2 G 3 3 ° 3 ( β - 1 ) ° 3 β 

G 3 , 

G(q-W G < « - 1 ) 2 G ( e - D 3 ° ( β - ι κ · 7 - υ G < « - 1 > 9 G < « - Dy 

G<1 
G , 3 G<?<« - 1 ) G i q 

G „ 

G , l 
G > 2 G v 3 G y ( e - 1 ) G y , 

G y y 

Figure 11.16 Augmented spectral matrix {Gy}. 

conditional spectral matrix as shown in Figure 11.17. For r = 2, the algorithm gives 
at any frequency fk the (q — 1) χ (q - 1) conditioned spectral matrix shown in 
Figure 11.18. This procedure continues until, after (q - 2) steps, one obtains from 
Equation (11.158) the 3 χ 3 conditioned spectral matrix in Figure 11.19. The ( q - l ) t h 
step from Equation (11.158) yields the 2 x 2 conditioned spectral matrix in 
Figure 11.20. The final qth step from Equation (11.158) yields at each frequency 
fk the single term in Figure 11.21, namely, 

Gyy · φ GY 

G, 
11 •(«-!) 

C 2 2 1 C23 1 C 2 ( « - l ) 1 C 2 i 1 G 2 v 1 

C 3 2 1 G33 1 C 3 ( « - l ) l c 3 , . . G 3 . r l 

G ( « - I I 2 L 
G < « - 1 1 3 - 1 G ( » - I M « - 1 ) - 1 

G ( « - l l » - l G ( « - l ) v 1 

G « 2 - l • V . 1 G « 1 
G i . v l 

C,2 , G,l 1 C v « 1 G,yl 

Figure 11.17 Conditioned spectral matrix {G„.|}. 
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6 3 3 . 2 ! Ι C 3<«-1> 2! C 3 i 2! C 3 j 2! 

^tq- l>3 2? G<»-IK»-l>-2! ' Λ ϊ - Ι ) » 2! 

Gq) 2' 
G « ( i - D V. C W 2! <V2! 

Cj.3 2! Gy(q-\) 2< Gyg 2- <V2! 

Figure 11.18 Conditioned spectral matrix {Gy.2\). 

^ ( ϊ - Ι ) ϊ ( ΐ - 2 ) ! ^ < ϊ - 1 ) 3 " ( ί - 2 ) ! 

^ « ( « - ! ) < < ( - 2 ) ! G«« <<j-2>! C«y-<*-!)! 

^ ( ϊ - Ι ) · ( ϊ - 2 ) ! ^3"7 ( i - 2 ) ! 
Gyy(q~2Y. 

Figure 11.19 Conditioned spectral matrix {Gy 

Gqq (q-l)\ C » («-!>' 

Gyq <»-!)! 

Figure 11.20 Conditioned spectral matrix {GiHq-iy}. 

'yy • t' 

Figure 11.21 Conditioned term Gyrq\. 

Note that Gyy.q\ is the output noise spectrum Gnn in the g-input/single-output 
models of Figures 7.11 and 7.12. Thus, Gnn can be computed from the original 
measured data by following all of the steps outlined above, even though Gn„ cannot be 
measured directly. 

The information contained in Figures 11.16-11.21 represents the basis for 
identifying and interpreting various useful system properties and other relations 
from the measured multiple-input/output data. These matters are treated in Sections 
7.3 and 7.4, as well as in Chapter 10 of Ref. 2 of Chapter 7. 

11.7.3 Three-Input/Single-Output Models 

Consider the special case of a three-input/single-output linear model as illustrated in 
Figures 7.18 and 7.19. The first three inputs in Figure 7.16 lead to the first three 



412 DATA ANALYSIS 

(bj 

G n Gu G13 Gly 

G2\ G22 G23 G 2 y G22 1 G 2 3 1 G 2 y l 

G31 G32 
G 3 3 G 3 , G 3 2 1 G 3 3 1 G 3 y l 

G>1 
G y 3 Gyy Gy2 1 G y 3 1 G y y l 

(d) (0 1 

G 3 3 - 2 ! G 3 y 2 ! 

G y y - 3 ! G 3 y 2 ! G y y 2 ! 

Figure 11.22 Conditioned results For three-input/one-output system. 

modified SI/SO spectral models shown in Figure 7.17. Formulas will now be listed to 
compute various functions that apply to Figure 7.17. 

Start with the augmented spectral matrix corresponding to Figure 11.16 when 
q = 3 and apply the algorithm of Equation (11.158) three times to obtain the 
successive conditioned spectral results shown in Figure 11.22 at each frequency fk 

of interest. 

The {{?,;,·. 1} terms are computed by the formulas 

where 

G22 — G22 —L12G21 

G23 = G23 -L13G21 

G2y 1 — G2y ~L\yG2\ 

G33 = G33 -L13G31 

G-iy.\ = G3y —LiyGii 

Gyyl = Gyy ~L\yGy\ 

G32 = G 2 3 1 Gy2. = G 2yl 

L\2 = ( G 1 2 / G 1 1 ) 

£-13 = (G13/G11) 

Liy = (Giy/Gn) 

Gy3 1 — G-3 y l 

(11.160) 

(11.161) 

(11.162) 

(11.163) 

(a) 
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The {Gij.2\} terms are computed by the formulas 

^ 3 3 · 2! = G33.1—L23G32.I 

G3y2! = G3y.i-L2yG3 2.l 

Gyy . 2! = Gyy . [ ~ L^yGyQ . 1 
(11.164) 

Gy3-2! - G3y.2, 

where 

_23 = ( G 2 3 . i / G 2 2 . i ) (11.165) 

Lz, = (G2y.i/G22-i) (11.166) 

Finally, the output noise spectrum Gyy.3i term is computed from the formula 

Gyy . 3! = Gyy . 2\ —L^yGy^ . 2\ ( 1 1 . 1 67) 

where 

L,y = p ^ ( 1 1 . 1 6 8 ) 

" 3 3 · 2! 

The following ordinary and partial coherence functions can now be computed at 

each frequency fk of interest. 

Hy=^4- ( 1 L 1 6 9 ) 

yiy,-p^- (n-170) 

"22-lGyy 
l f 2 _ l G 3 y . 2 ! l 

Gw.y.Gyy 

The multiple coherence function is given by 

Y ; 3 ! - l (11-172) 
Gyy 

Various coherent output spectral density functions of interest are computed by the 
formulas 

GyA = J2\yGyy = (11.173) 
Gn 

G,:2.1=Y22y.,G.yy = iG|̂ L ( 1 L 1 7 4 ) 
0-22- 1 

G y : 3 . 2 ! = 7 l y . 2 ! G w = i § - - - L (11.175) 
G 3 3 . 2 ! 
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The total output spectrum Gyy = Gyy(fk) is decomposed here into the sum of four terms 
as follows. 

Gyy = Gr.i + Gy:2.\ +Gy;i.2\+Gyy.i\ (11.176) 

The systems {Aiy}, i= 1, 2, 3, in Figure 7.18 can be computed using Equation 
(7.108) because {Aiy} is the same as {Hiy}. 

11.7.4 Functions in Modified Procedure 

With the modified procedure in Section 7.4, the three inputs in Figure 7.19 are 
denoted by the simpler notation Ui(f) = Xl(f), U2(f) = X2A(f), U3(f) = X3.2l(f). 
This leads to easier interpretations of the analyzed results. Formulas to compute 
the various functions in Figure 7.19 with this modified notation are listed in 
Section 7.4.2. Formulas with the more complicated notation are given in 
Section 11.7.3. 

1. Equations (7.122)-(7.124) for the three L-systems in Figure 7.19 give the same 

results as Equations (11.163)-(11.166) and (11.168). 

2. Equation (7.133) for the first ordinary coherence function is exactly the same as 

Equation (11.169). 

3. Equations (7.134) and (7.135) for the second and third ordinary coherence 

functions give the same results as Equations (11.170) and (11.171). 

4. Equation (7.136) for the multiple coherence function gives the same result as 

Equation (11.172). 

5. Equations (7.128)-(7.130) for the three coherent output spectral density 
functions give the same results as Equations (11.173)—(11.175). 

PROBLEMS 

11.1 Consider a sequence of N= 16,384 data points that are complex numbers. 
How many real operations would be required to Fourier transform the data 
values 

(a) using conventional calculations. 

(b) using Cooley-Tukey FFT procedures. 

11.2 Determine the equation for a first-order IIR (recursive) filter that will behave 
like a high-pass RC filter. 

11.3 A set of sample values [un},n = 1, 2 , . . . , N, have a standard deviation of su. 
Determine the standard deviation of the transformed data values 
{xn} = { « „ - « } , n=\, 2 , . . . , N. 

11.4 Assume a set of sample values {«„},«= 1,2,.. .,N, aretobedetrendedusinga 
polynomial of degree K= 2. Determine the coefficients (b0, b\, b2) required 
for a least squares fit of the polynomial to the sample data. 
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11.5 In computing an autospectral density function estimate by FFT procedures, 
suppose a record of total length Tr = 4 s is digitized at a sampling rate of4096 
sps. If a resolution of A / = 16 Hz is desired, determine 

(a) the approximate number of real operations required to perform the 
calculations. 

(b) the normalized random error of the resulting estimate. 

11.6 Assume an autocorrelation function is estimated from a sample record x(t) of 
stationary random data where the autocorrelation function can be approxi-
mated by 

RM) = e~2]T] cos 18.85τ 

If the sample record is T= 1 s long, what is the equation for the circular 
correlation function that would be obtained by computing the inverse Fourier 
transform of an autospectrum estimate without zero padding? 

11.7 A sequence of Nr= 8192 sample values of a stationary random signal are 
available to compute an autocorrelation function estimate. It is desired to 
compute the autocorrelation estimate by the indirect FFT approach to a 
maximum lag value of m = 256. This could be accomplished by using a single 
block of N= 8192 data points versus nd= 32 blocks of Ν = 256 data points. 
Which approach would require fewer calculations? 

11.8 Assume a cross-correlation function is to be estimated from two sample 
records, each digitized into a sequence of Nr = 4096 data points. Further 
assume the estimate is desired for lag values out to m = 256. Determine the 
speed ratio between the direct computational approach and the indirect FFT 
approach. 

11.9 The noise bandwidth of a spectral window is defined as the bandwidth of an 
ideal rectangular bandpass filter that would produce the same output mean 
square value as the spectral window when analyzing white noise. Determine 
the noise bandwidth of the spectral window produced by a rectangular 
(untapered) time window of length T. 

11.10 The Fourier coefficients of a record x(t) = A sin 100π/ are calculated from a 
simple record of length T= 1.015 s. Assuming a very high sampling rate, 
determine the magnitude of the Fourier coefficient with the largest value that 
would be calculated using 

(a) a rectangular time window. 

(b) a Hanning time window. 
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C H A P T E R 12 

Nonstationary Data Analysis 

The material presented in previous chapters has been restricted largely to the 
measurement and analysis of stationary random data, that is, data with statistical 
properties that are invariant with translations in time (or any other independent 
variable of the data). The theoretical ideas, error formulas, and processing techniques 
do not generally apply when the data are nonstationary. Special considerations are 
required in these cases. Such considerations are the subject of this chapter. 

12.1 CLASSES OF NONSTATIONARY DATA 

Much of the random data of interest in practice is nonstationary when viewed as a 
whole. Nevertheless, it is often possible to force the data to be at least piecewise 
stationary for measurement and analysis purposes. To repeat the example from 
Section 10.4.1, the pressure fluctuations in the turbulent boundary layer generated 
by a high-speed aircraft during a typical mission will generally be nonstationary 
because they depend on the airspeed and altitude, which vary during the mission. 
However, one can easily fly the aircraft under a specific set of fixed flight conditions 
so as to produce stationary boundary layer pressures for measurement purposes. The 
flight conditions can then be changed sequentially to other specific sets of fixed 
conditions, producing stationary data for measurement purposes until the entire 
mission environment has been represented in adequate detail by piecewise stationary 
segments. Such procedures for generating stationary data to represent a generally 
nonstationary phenomenon are commonly used and are strongly recommended to 
avoid the need for nonstationary data analysis procedures. 

There are a number of situations where the approach to data collection and analysis 
described above is not feasible, and individual sample records of data must be 
analyzed as nonstationary data. From a purely computational viewpoint, the most 
desirable situation is that in which an experiment producing the nonstationary data of 

Random Data: Analysis and Measurement Procedures, Fourth Edition. By Julius S. Bendat 
and Allan G. Piersol 
Copyright © 2010 John Wiley & Sons, Inc. 

417 
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Figure 12.1 Sample records of nonstationary random process. 

interest can be repeated under statistically similar conditions. This allows an 
ensemble of sample records to be measured on a common time base, as illustrated 
in Figure 12.1. A more common situation, however, is that in which the nonstationary 
phenomenon of interest is unique and cannot be reproduced under statistically similar 
conditions. Examples include nonstationary ocean waves, atmospheric turbulence, 
and economic time-series data. The basic factors producing such data are too complex 
to allow the performance of repeated experiments under similar conditions. The 
analysis of data in these cases must be accomplished by computations on single 
sample records. 

An appropriate general methodology does not exist for analyzing the properties of 
all types of nonstationary random data from individual sample records. This is due 
partly to the fact that a nonstationary conclusion is a negative statement specifying 
only a lack of stationary properties, rather than a positive statement defining the 
precise nature of the nonstationarity. It follows that special techniques must 
be developed for nonstationary data that apply only to limited classes of these data. 
The usual approach is to hypothesize a specific model for each class of nonstationary 
data of interest that consists of deterministic factors operating on an otherwise 
stationary random process. Three examples are shown in Figure 12.2. These non-
stationary time history records are constructed from 
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Figure 12.2 Examples of nonstationary data, (a) Time-varying mean value, (b) Time-varying mean 
square value, (c) Time-varying frequency structure. 

(a)x(r) = a(t)+u(t) 

( b ) j e ( f ) = a(t)u{t) (12.1) 

(c)x(i) = «(/») 

where u(t) is a sample record of a stationary random process {w(r)} and a(t) is a 
deterministic function that is repeated exactly on each record. Such elementary 
nonstationary models can be combined or extended to generate more complex models 
as required to fit various physical situations. 

12.2 PROBABILITY STRUCTURE OF NONSTATIONARY DATA 

For a nonstationary random process (x(r)} as illustrated in Figure 12.1, statistical 
properties over the ensemble at any time t are not invariant with respect to translations 
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in t. Hence at any value of t = ίχ, the probability structure of the random variable χ(ίχ) 
would be a function of ij . To be precise, the nonstationary probability density function 
p(x, t{) of Mfi)} is defined by 

ProbU < x(tx) < χ + Δχ] . 
= tano—1 L L = 1 ( 1 2 . 2 ) 

and has the following basic properties for any t: 

i-OO 

1 = p(x,t)dx 
J — O O 

POO 

μχ(ΐ) = £[*(f)] = xp(x,t)dx 
J — o o 

io o 

x2p(x, t)dx 

(12.3) 

al(t)=E[{x(typx(t)}
2}=tf(typx(t) 

These Formulas also apply to stationary cases where p(x, t) = p(x), independent of t. 
The nonstationary probability distribution function P(x, ij) is defined by 

P{x,h) = Prob[-oo < x(ti) < x] (12.4) 

Similar relationships exist for P(x, ίχ) as for the probability distribution function P(x) 
discussed in Chapter 3. 

If the nonstationary random process {x(t)} is Gaussian at t = t\, then p(x, ίχ) takes 
the special form 

p(x,tx) = K ( r 0 v ^ ] - ' e x p | ~ [ ^ j ) ] 2 | (12.5) 

which is completely determined by the nonstationary mean and mean square values of 
x(t) at t = ii. This result indicates that the measurement of these two quantities may be 
quite significant in many nonstationary applications just as in previous stationary 
applications. 

12.2.1 Higher Order Probability Functions 

For a pair of times ίχ and t2, the second-order nonstationary probability density 
function of χ(ίχ) and x(t2) is defined by 

. Probixj < x(fi) <χχ+Δχχ and* 2 < x(t2) <x2 + Ax2] 
p{xi,t\;xi,t2) = hm — — r — — r 

Δ Ι , - Ο ( Δ χ ι ) ( Δ τ 2 ) 

and has the following basic properties for any ίχ, t2: 

(12.6) 
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1 = | | p{x\,t\\x2,t2)dx\dx2 

p(xi,ti;x2,t2)dx2 

—oo (12.7) 

poo 
p(x2,h) = p(xi,t\\x2,h)dx\ 

J — OO 

Rxx{t\,h) = E[x(ti)x(t2)] = [[ xlX2p(x\,ti;x2,t2)dxidx2 
JJ— C O 

For stationary cases, p(x\, t\; x2, h) = p(x\ , 0; x 2 , t2—t\). Second-order nonstationary 
probability distribution functions may be defined analogous to Equation (12.4) by the 
quantity 

Ρ ( χ ι , ί ι ; χ 2 , ί 2 ) = Prob[-co < x(t\) < x\ and—oo < x(i 2 ) < x 2] (12.8) 

Continuing in this way, higher order nonstationary probability distribution and 
density functions may be defined that describe the nonstationary random process 
{x(t)} in more detail. This procedure supplies a rigorous characterization of the 
nonstationary random process {x(i)}-

Consider next two different nonstationary random processes {x(t)} and {y(t)}. For 
x(ti) and y(f2)» the joint (second-order) nonstationary probability density function is 
defined by 

Prob[x < x(ti) < χ + Ax and y < y(t2) < y + Ay] 
p(xuti;y,t2)= hm^ (12.9) 

Ay^O 

and has basic properties similar to Equation (12.7). In particular, the nonstationary 
cross-correlation function, which is discussed in Section 12.5, satisfies the relation 

Rxy{h,t2) = £[x(ii)y(i 2)] = | | xyp{x,h;y,t2)dxdy (12.10) 

For stationary cases, p(x, t\;y, t2) = p(x, 0;y, t2-t\). 
The measurement of nonstationary probability density functions can be a formid-

able task. Even for the first-order density function defined in Equation (12.2), all 
possible combinations of χ and t • must be considered. This will require the analysis of a 
large collection of sample records. If a Gaussian assumption can be made, Equa-
tion (12.5) reduces the problem of measuring p(x, ί-J to measuring μχ(ίχ) and σχ(ί\), 
which is a much simpler undertaking. Nevertheless, ensemble averaging of a collection 
of sample records is still generally required, as discussed in Sections 12.3 and 12.4. 

12.2.2 Time-Averaged Probability Functions 

It often occurs in practice that only one or a very few sample records of data are 
available for a nonstationary random process of interest. There may be a strong 
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temptation in such cases to analyze the data by time-averaging procedures as would be 
appropriate if the data were a sample record from a stationary (ergodic) random 
process. For some nonstationary data parameters, time-averaging analysis procedures 
can produce meaningful results in certain special cases, as will be discussed later. For 
the case of probability density functions, however, time-averaging procedures will 
generally produce severely distorted results. In particular, the probability density 
function computed by time-averaging data with a nonstationary mean square value 
will tend to exaggerate the probability density of low- and high-amplitude values at 
the expense of intermediate values, as demonstrated in the illustration to follow. 

Example 12.1. Illustration of Time-Averaged Probability Density Function. 
Assume a sample record of data consists of a normally distributed stationary time 
history with a zero mean and a variance σ\ over the first half of the record, and a 
second normally distributed stationary time history with a zero mean and a variance 
<r\ > σ\ over the second half of the record. Then the time history x(t) is given by 

x{t) 
' x\ (?) 0 < t < T/2 

x2{t) T/2<t<T 

and the probability density function of x(t) is given by 

P{*,t) = { 

[ - ^ — e - ^ l 2 * \ o < r < Γ/2 

a\\J2% 

1

 e-Jl2o\ T/2<t<T 
y σ 2 \ / 2 π 

Now, if this lack of stationarity is ignored in the computation of a probability density 
function for x(t), 0 < t < T, the resulting density calculated at any level χ will simply be 
the average of the densities for the two halves of the record at level x. That is, 

p{x) = 
1 

2 ν 2 π 

1 

σι σ2 

For example, let σ\ = l a n d o - | = 16. The nonstationary resultant probability density 
function that would be obtained for this case is computed and illustrated graphically in 
Figure 12.3. Observe that σ = 2.9 in p(x) because σ 2 = \{σ\ +aj) = 8.5. The 
equivalent Gaussian probability density function for σ = 2.9 is also shown in 
Figure 12.3. 

12.3 NONSTATIONARY MEAN VALUES 

Consider the problem of estimating the time-varying mean value of nonstationary 
data. Given a collection of sample records x,(t),0 < t < T,i = 1,2,... ,N, from a 
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nonstationary process {x(t)}, the mean value at any time t is estimated by the ensemble 
average 

1 N 

Μ)=ΰΣ*{ί) (12.11) 
1=1 

The estimate μχ{ί) will differ over different choices of the Ν samples (xfo)}. 
Consequently, one must investigate for every t how closely an arbitrary estimate 
will approximate the true mean value. The expected value of μχ(ή is given by 

1 N 

Ε\μχ(ή) = Ν-Σ
ΕΙχΜ]= Ι**® ( 1 2 · 1 2 ) 
i=l 

where 
μχ(ή = E[Xi(t)] (12.13) 

is the true mean value of the nonstationary process at time t. Hence, μχ(ί) is an 
unbiased estimate of μχ(ί) for all t, independent of N. The variance of the estimate 
μχ(ή is given by 

Var[&(i)] = Ε[{μχ(ί)-μχ(ή}2} (12.14) 

Mean values of nonstationary random processes can be estimated using a special-
purpose instrument or a digital computer, as illustrated in Figure 12.4. Two main steps 
are involved in the measurement. The first step is to obtain and store each record x((f) 
as a function of t. This may be done continuously for all t in the range 0 < t < Tor 
discretely by some digitizing procedure. After this has been done for Ν records, the 
next step is to perform an ensemble average by adding the records together and 
dividing by N. If each x,(r) is digitized in, say, Μ steps, then the total number of stored 
values would be MN. 

12.3.1 Independent Samples 

In most practical applications, the Ν sample functions used to compute μχ(ή will be 
statistically independent. Hence independence will be assumed here. Upon expanding 
Equation (12.14), as in the derivation of Equation (4.9), it is seen that the sample 
variance at time t is given by 

V a r f e ( / ) ] = ^ ( 1 2 . 1 5 ) 

where σ2{β) is the variance associated with the underlying nonstationary process 
{χ(ί)}· Thus the sample variance approaches zero as Ν approaches infinity, so that 
μχ(ή is a consistent estimate of μχ(ί) for all t. 

«2 (0 -
Multiple 

store 
memory 

Ensemble-
averaging circuit 

( add and \ 
divide by N) 

Figure 12.4 Procedure for nonstationary mean value measurement. 
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Confidence intervals for the nonstationary mean value μχ(ή can be constructed 
based on the estimate μχ(ί) using the procedures detailed in Section 4.4. Specifically, 
the (1 - a) confidence interval at any time t is 

- (Λ σχ({){η;χ/2 , / Α Λ , , , σχ(ήίη.Α/2 (12.16) 

where &x(t) is an unbiased estimate of the standard deviation of [x(t)} at time t given 
by Equation (4.12) as 

1 / 2 

(12.17) 

and r n ; a / 2 is the a/2 percentage point of Student's t variable with n = N' — 1 degrees of 
freedom defined in Section 4.2.3. Note that Equation (12.16) applies even when {x(t)} 
is not normally distributed, assuming the sample size is greater than, say, Ν = 10. This 
follows from the central limit theorem in Section 3.3.1, which applies to the 
nonstationary mean value computation in Equation (12.11). 

12.3.2 Correlated Samples 

Consider a general situation where sample functions *;(/), 0 < t < T, i = 
1,2, . . . , N, from a nonstationary random process are correlated such that, for every r, 

E[xi(t)xj(t)] = R^k, ή where k = j-i (12.18) 

The quantity RxAk, t) is called a nonstationary spatial cross-correlation function at 
time t between all pairs of records x,{t) and Xj{t) satisfying k=j — i. It follows from the 
definition of Equation (12.18) that, by interchanging i and j , 

Rxx(-k,t)=Rxx(k,t) (12.19) 

When the sample functions x,(f) and Xj(t) are independent, for i φ j corresponding 
to kφ0, 

R„{k, t) = E[Xi{t)xj{t)} = £fo(r)]Eto(0] = μ2

χ(ή fork φ 0 (12.20) 

At k = 0, Equation (12.18) becomes 

Ρχχ(0,ή=Ε[χ2(ή}=σ2

χ(ή + μ2

χ(ή (12.21) 

These relations yield the independent sample case in the preceding section. 
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For correlated samples, Equation (12.15) now takes the general form 

Var&(0] + Ε{{Χί(ή-μχ(ή}[^)-μΛΦ 

= "ψ + N2 Σ [ « - ί / - * , r)-^(0] (12.22) 

The next problem is to simplify the double sum appearing in Equation (12.22). The 
index k=j -i takes on values k = 1 ,2 , .., Ν — 1. Altogether, there are N2-N terms. 
Because R^-k, t) = Rxx(k, t), the Ν2 -N terms in this double sum can be arranged 
so that there are two terms where k = Ν - 1 of the form RxxiN — 1, r), four terms where 
k = N— 2 of the form RjiN - 2, r),..., and 20V - 1) terms where k = 1 of the form 
Λ«(1, 0- Thus, one derives the simplified expression 

Σ *«CH.O = 2 X > - f c ) / U M (12.23) 

¥ 7 

As a check, note that the sum 
N-l 

2^(N~k) =N2-N (12.24) 
k=l 

Substitution of Equation (12.23) into Equation (12.22) now yields 

Jfc=I 

Equation (12.20) shows that Equation (12.25) reduces to Equation (12.15) when the 
records are independent, providing another check on the validity of Equation (12.25). 
The result of Equation (12.25) is an important extension of Equation (12.15) and 
should be used in place of Equation (12.15) for correlated samples. 

A special situation of complete dependence between all samples is worthy of 
mention. For this case, 

Rxx(k,t)=Rxx(0,t)=o:i

x(t) + u(t) for all* (12.26) 

Equation (12.25) now becomes 

Var^i ) ] = ^ + ±(Ν2-Ν)ο>χ(ή = σ2

χ(ή (12.27) 

Thus, no reduction in variance occurs when the samples are completely dependent. 
For physical situations where a partial correlation may exist between the 

different samples, the following example may be helpful in giving quantitative results. 
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Example 12.2. Variance of Mean Value Estimate for Exponential Correlation 
Between Samples. An exponential form for the nonstationary cross-correlation 
function Rxxik, t) will now be assumed so as to obtain some quantitative results to 
characterize different degrees of correlation. To be specific, assume that 

Rxx{k,t)=fi{t)+<rl{t)e -kc 

where k and c are positive constants. Determine the corresponding sample variance for 
nonstationary mean value estimates. 

From Equation (12.25), the sample variance is given by 

V a * , W ] = # + ^ f > - * ) , -kc 

Ν 
*=1 

To evaluate the sum above, let 

N-l 

/ ( c ) = 5 > - * = 
4=1 

l - g - ( " - i ) c 

Then 

Now 

N-l 

/ ( c ) = - J > - f c = 
k=l 

N-l 

F(c) = £ ( / V - * ) * - f c = Nf(c) +f'(c) = 

Ne-N(N-2)c_^N_^e-(N-l)c__ec 

(N-iy-N + e-W-1* 

k=l 

Substitution into the variance expression gives 

V a r ^ ( f ) ] = 
Ν Ν2 

{N-\)ec-N + e- -(N-l)c 

The result given above can be used to generate a set of curves for different values of 
crj(i), N, and c. Experimental results would enable one to estimate the constant c for 
the application of these curves. 

12.3.3 Analysis Procedures for Single Records 

As noted in Section 12.1, it often occurs in practice that only one sample record of data 
is available for a nonstationary process of interest. In such cases, nonstationary mean 
values are often estimated from a single sample record by one of several operations 
equivalent to low-pass filtering. This technique can be employed profitably for certain 
classes of nonstationary data. To be more specific, consider a nonstationary random 
process of the sum form 

{*(*)} = c ( f ) - r {«(*)} (12 .28) 
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where a(t) is a deterministic function and {u(t)} is a random process with a stationary 
mean value of zero, as illustrated in Figure 12.2(a). Note that the variance and 
autocorrelation function of {u(t)} need not be stationary. The mean value of the 
nonstationary random process {*(/)} at any time t is given by 

E[x{t)} = E[a(t)+u(t)] = E[a(t)]+E[u(t)} = α(ί) (12.29) 

It follows that a(t) can be interpreted as the instantaneous mean value of {x(t)}. If it is 
assumed that the variations of a(r) are very slow compared to the lowest frequency in 
[u(t)}, then a(t) can be separated from {u(t)} by low-pass filtering operations on a 
single sample record x(t). Such filtering operations may be physically accomplished 
in several ways, including the following: 

a. Digital low-pass filtering with either recursive or nonrecursive filters as 
discussed in Section 11.1.3 

b. Polynomial curve fitting (regression analysis) as introduced in Section 4.6.2 
and discussed for trend removal applications in Section 11.1.2 

c. Segmented mean value estimates (short time-averaging operations) 

In any case, the resulting mean value estimates will involve a bias error that is a 
function of the low-pass filter cutoff frequency (the number of terms in the polynomial 
fit or the short averaging time) relative to the rate of variation of α(ί). 

For example, consider the short time-averaged estimate of the mean value μχ(ί) 
given by 

hi*) = 
•t + T/2 

t-T/2 
x(t)dt = 

•t + T/2 

r - r / 2 

\a(t) +u(t)}dt (12.30) 

where Γ is a short averaging time. It is readily shown that 

(t + T/2 (' + T/2 
{E[a(t)}+E[u(t)]}dt 

J r - r / 2 (12.31) 

Ε[μΜ =E [a(t) + u(t)]dt\ 
J t-T/2 

rt + T/2 
= a(t)dt^a(t) 

J r - r / 2 

Hence this estimate μχ(ή will generally be biased. A development similar to that 
presented in Section 8.3.1 yields a first-order approximation for the bias error at any 
time t as 

b[Kit) 24 
ait) (12.32) 

where a"(t) is the second derivative of α(ί) with respect to t. It is clear from 
Equation (12.32) that the bias error in the mean value estimate diminishes as the 
averaging time Tbecomes small. However, the random error in the estimate increases 
as Tbecomes small in a manner similar to that developed for stationary data in Section 
8.2.1. Thus, the selection of an appropriate averaging time Γ involves a compromise 
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between random and bias errors. In most cases, this compromise is best achieved by 
trial-and-error procedures. See Ref. 1 for further discussion of the estimation of 
nonstationary mean values from single records of random data. 

12.4 NONSTATIONARY MEAN SQUARE VALUES 

A similar analysis to the one given in Section 12.3 will now be carried out to determine 
how the nonstationary mean square values change with time. This can be estimated by 
using a special-purpose instrument or a computer that performs the following operation 
to calculate a sample mean square value from a sample of size N. Specifically, for Ν 
sample functions x,(f), 0 < t < Τ, i = 1 , 2 , 3 , . .,N, from a nonstationary process 
(jt(r)}, fix t and compute the ensemble average estimate 

(=1 

(12.33) 

Independent of N, the quantity ψχ(ί) is an unbiased estimate of the true mean square 
value of the nonstationary process {x(t)} at any time t because the expected value is 
given by 

V 1=1 

(12.34) 

The quantity 

ψχ(ή=Ε[χ*{ή]=μ2

χ(ή+οΙ(ή (12.35) 

is the true mean square value of the nonstationary process at time t. Figure 12.4 
indicates how to measure ψχ(ί) by merely replacing jc,(r) by xf(t). 

12.4.1 Independent Samples 

It will now be assumed that the Ν sample functions x,{t) are independent so that for all i 
and j , 

E[Xi(t)Xj(t)} = E[Xi(t)]E[xj(t)} = μ2

χ(ή (12.36) 

The sample variance associated with the estimates φχ(ή are calculated as follows. By 
definition, 

Var {4>l(t)-4>2

x(t)}
21 (12.37) 

-2 
where φχ(ί) is given by Equation (12.33) and 
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\fa)} 

1 

N2 
YE[x1(t)]+J2E[x2(t)xj(t)} 

(12.38) 

Thus, the problem reduces to an evaluation of the expected values appearing in 
Equation (12.38). 

In order to obtain reasonable closed-form answers, it will be assumed now that the 
random process {jc,(i)} at any time t follows a Gaussian distribution with mean value 
μχ(ί) and variance σ2

χ{ί). One can then derive 

Ε[χ*(ή] = 3ψ4

χ(ί)-2μχ(ή (12.39) 

E[x2(t)x2(t)} = φχ(ή fori φ] (12.40) 

The derivation of Equations (12.39) and (12.40) is based on a nonstationary form of 
the fourth-order Gaussian relation of Equation (3.78), namely, 

E[xi(t)xj(t)xm(t)xn(t)} = E{xi(t)xj(t)]E{xm(t)xn(t)} 

+ E[Xi(t)xm(t)}E[xj(t)xn(t)} 

+ Ε[χί(ήχη(ή}Ε[χ](ήχηι(ή}-2μχ(ή 

Substitution into Equations (12.37) and (12.38) yields the result 

2 

Ν 

(12.41) 

Var fa) (12.42) 

Thus the sample variance approaches zero as Ν approaches infinity, so that ψχ (r) is a 
consistent estimate of ψχ(ή for all t. 

To arrive at confidence intervals for ψχ(ή, it is more convenient to work with the 
nonstationary variance estimate given from Equation (12.35) by 

di(t) = φχ(ή-μ2

χ(ή (12.43) 

Assuming jc,(r), i= 1, 2 , . . . , TV, is normally distributed, cr2

x{t) will have a sampling 
distribution for each value of t given from Section 4.3.2 as 

(12.44) 

where is the chi-square variable with n = N—l degrees of freedom defined in 
Section 4.2.2. Hence, the (1 - a) confidence interval at any time t is 

n=N-l (12.45) 
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12.4.2 Correlated Samples 

For situations involving correlated samples, it is assumed as in Section 12.3.2 that the 
sample records satisfy the relation 

E[xi(t)xj(t)] = ') w h e r e * = Μ 

Equation (12.40) where i φ j is now replaced by 

E[x2{t)x](t)\ = φχ(ή + 2 [ / 4 ( Μ ) - μ * Μ ] 

where k =j — i φ 0. When i = j , Equation (12.46) becomes 

E[x}(t)]=R„(0,t) = tf(t) 

[12.46) 

(12.47) 

(12.48) 

Proper steps for including Rxx(k, ή in the analysis are developed in Section 12.3.2. A 
similar procedure here yields the result 

Var 
Ν 

N-l 

ψ4

χ(ί)-μ*Λ*) + ^ £ ( V - * ) / 4 ( M ) - / 4 M (12.49) 

which is a useful generalization of Equation (12.42). 

Example 12.3. Variance of Mean Square Value Estimate for Exponential 
Correlation Between Samples. In order to obtain some quantitative expressions 
corresponding to Equation (12.42) that will characterize different degrees of correla-
tion, assume that R^ik, f) has an exponential form such that 

Rxc(k,t)=pl(t)+ax(t)e-kc 

where k and c are positive constants. Determine the corresponding sample variance for 
mean square value estimates. 

The sample variance is given by Equation (12.49). To carry out this evaluation, l e t / 
(c) and F(c) be defined as in Example 12.2. It then follows that 

Rl{k,t)^x(t)=ox(t)\2A(t)e-* + <rx(t)e -2kc 

Hence, the second term in Equation (12.49) is 

4oj(0 
N2 

k=l 

Y^(N-k) 2p2

x{t)e-^ + oi{t)e-

N2 

2kc 

2p2

x(t)F(c)+oj(t)F(2c) 

The desired variance is now given by the above result and the first term in 
Equation (12.49). 
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12.4.3 Analysis Procedures for Single Records 

There is one important class of nonstationary random data where the time-varying 
mean square value can be estimated from a single sample record. Specifically, assume 
a nonstationary random process {x(t)} can be represented by 

{*(*)} =«('){«(')} (12.50) 

where α(ί) is a deterministic function and {w(f)} is a random process with a stationary 
mean value and variance of zero and unity, respectively, as illustrated in 
Figure 12.2(6). Note that the autocorrelation function of {«(/)} need not be stationary 
for this application. The mean square value of the nonstationary random process {χ(ή} 
is given by 

Ε\έ{ή] = ψ2

χ(ή = E[a2(t)u2(t)} = a2{t)E[u2{t)) = a2{t) (12.51) 

It follows that a2(t) can be interpreted as the instantaneous mean square value of 

WO}. 
Similar to the time-varying mean value estimation procedures discussed in 

Section 12.3.3, if the variations of a(t) in Equation (12.50) are slow compared to 
the lowest frequency of {u(t)}, then a2{t) can be separated from{[u2{t)} by a low-pass 
filtering operation on the squared values of a single record x(t). The most 
common approach here is to use a short time-averaging procedure where, from 
Equation (12.51), a moving mean square value estimate averaged over a short interval 
Τ is computed by 

ft') 
•t •t + T/2 

-T/2 
a2(t)dt (12.52) 

Of course, the resulting mean square value estimate versus time will generally be 
biased, specifically, 

= E 
-T/2 

t-T/2 
a2{t)dt ί 

•t + T/2 

-T/2 
E[a2{t)]dt •• ί 

•I + T/2 

-T/2 
a2[t)dt φ α2 {ή 

(12.53) 

A development similar to that presented in Section 8.3.1 yields a first-order 
approximation for the normalized time interval bias error at any time t as 

(12.54) 

where [a2(t)]" is the second derivative of a2(t) with respect to t. It is clear from 
Equation (12.54) that the time interval bias error diminishes as the averaging time Γ 
becomes small. However, from Equation (8.51), assuming the record x(t) is approxi-
mately stationary over each short time interval T, the normalized random error is 
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approximated by 

ΓΒ7Τ 
(12.55) 

where Bs is defined in Equation (8.52). It follows from Equation (8.5) that the total 
mean square error for the estimated mean square value at any time r can be 
approximated by 

1 • " ~ " (12.56) 

where 

CT(t) a?{t) 
(J2.57) 

It is clear from Equation (12.56) that the selection of an appropriate averaging time 
Γ is a compromise between a time interval bias error and a random error. A common 
approach is to select this compromise averaging time by a trial-and-error procedure as 
follows: 

a. Compute a moving average for the mean square value of the nonstationary data 
using Equation (12.52) with an averaging time Γ that is too short to smooth out 
variations in the mean square value versus time. 

b. Continuously recompute the moving average with an increasing averaging time 
until it is clear that the averaging time is smoothing out variations in the mean 
square value versus time. 

Example 12.4. Illustration of Nonstationary Mean Square Value Estimates 
using a Moving Average. The trial-and-error approach to selecting an appropriate 
averaging time for mean square value estimates computed from a sample record of 
nonstationary data using a moving average is illustrated in Figure 12.5, which is taken 
directly from Ref. 1. Figure 12.5(c) shows the moving average computed with three 
different averaging times for the mean square value of the acoustical pressure 
measured inside the payload fairing of a Titan IV launch vehicle during liftoff. 
Figure \2.5{b) presents the average autospectrum of the acoustical pressures during 
the liftoff event. It is clear from these results that the variation of the mean square value 
with time is slow compared to the lowest frequency of the data, as required for 
the application of Equation (12.52). Referring to Figure 12.5(a), the first moving 
average computed with an averaging time of Τ = 0.1 s reveals substantial variations 
from one averaging interval to the next that are typical of random sampling errors. 
When the averaging time is increased to Τ = 1.0 s, the random errors are suppressed, 
but there is no evidence that the underlying nonstationary trend in the mean square 
value has been significantly altered. When the averaging time is further increased to 
Τ = 4.0 s, it is clear that the nonstationary trend in the mean square value is 
substantially distorted. It follows that an averaging time of about Τ = Is is appropriate 
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10* Γ 

Frequency, Hz 
(b) 

Figure 12.5 Running mean square value and average autospectrum estimates for nonstationary acoustic 
data, (a) Running mean square values, (b) Average autospectrum. 

for the computation of a moving average of the nonstationary mean square value for 
these data. This concludes Example 12.4. 

Beyond trial-and-error procedures, an optimum averaging time that minimizes the 
total mean square error given by Equation (12.56) can be estimated given sufficient 
information. Specifically, taking the derivative of Equation (12.56) with respect to Τ 
and equating to zero yields an optimum averaging time given by 

144 1 1 / 5 

1 (12.58) 7b 
BsCT{t) 

where Bs and CT(t) are defined in Equations (8.52) and (12.57), respectively. The 
value for Bs in Equation (12.58) can be approximated using the average autospectrum 
of the nonstationary data to solve Equation (8.52). The maximum value for CT(t) in 
Equation (12.58) can be approximated from a preliminary moving average computa-
tion of the mean square value of the data. Noting that the optimum averaging time T0 in 
Equation (12.58) is a function of the one-fifth power of both Bs and CT(t), it follows 



NONSTATIONARY MEAN SQUARE VALUES 435 

that the approximations for these two parameters can be relatively coarse without 
major errors in the resulting optimum averaging time. 

Example 12.5. Illustration of Time Interval Bias Error Determination. The 
determination of a maximum value for the time interval bias error term CT(t) in 
Equation (12.58), as defined in Equation (12.57), can often be accomplished by a 
simple approximation for the nonstationary character of the data. For example, 
consider a common class of nonstationary data where the mean square value of a 
sample record x(t) increases with time through a maximum value and then decreases, 
as illustrated by the nonstationary acoustical data in Figure 12.5(a). The time-varying 
mean square value for such data can be at least coarsely approximated by half-sine 
function given by 

</^(r) = a2(t) = A sin(27tr/P) 0<t<P/2 (12.59) 

~d2ifi(t)/dt2] (2π/Ρ)2Α sin(2nt/P) 

ί tf(0 J A sin{2nt/P) 

-i 2 
'2π" 

Τ 

where Ρ is the period of the sine wave. It follows that the maximum mean square value 
occurs at the time tm = P/4, as illustrated in Figure 12.6. Substituting Equation (12.59) 
into Equation (12.57) yields 

CT(t) = 

Now let the effective duration of the nonstationary event be defined as the half-power 
point duration TD = t2 —1\, where 

ti{tx)=&h)=\fx(tm) 

as illustrated in Figure 12.6. It follows from Equation (12.59) that t1=P/l2 and 
t2 = 5/712. Hence TD = P/3 and the value of Equation (12.57) at tm is given by 

CT{tm) = 
2π 

3TD 
(12.60) 

0.5A 

o tM = PI A pa 

Figure 12.6 Half-sine approximation for time-varying mean square value. 
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where TD can be estimated from a preliminary computation of ψχ(ή or from past 
experience with similar nonstationary data. For example, given the moving average 
for the data in Figure 12.5(a) computed with Τ < 1 s, the half-power point duration for 
the nonstationary event is r D w 3 s . Solving Equation (8.52) using the average 
autospectrum in Figure 12.5(6) yields a statistical bandwidth of 73 i w320Hz. Sub-
stituting these values into Equation (12.58) gives an optimum averaging time of 
T0 ss 1.1 s, which is very close to the optimum averaging time determined by trial-and-
error procedures in Example 12.4. 

12.5 CORRELATION STRUCTURE OF NONSTATIONARY DATA 

Consider any pair of real-valued nonstationary random processes [x(t)} and {y(0}-
The mean values at arbitrary fixed times t are defined by the expected values 

μΛ:\=mi (12.61) 

Original data can always be transformed to have zero mean values by replacing x{t) by 
x(t) - μχ{ϊ) and y(r) by γ(ή-μγ(ί). This will be assumed henceforth. 

12.5.1 Double-Time Correlation Functions 

The correlation functions at any pair of fixed times t\ and t2 are defined by the 

expected values 

Rxxitu h) = E[x(h)x{h)\ 
(12.02) 

Ryyituh) = E\y{u)y{h)} 

Rxy(h,t2)=E[x(tl)y(t2)} (12.63) 

The quantities Rxx(th t2) and Ryy(t\, t2) are called nonstationary autocorrelation 
functions, whereas Rxy(t\, t2) is called a nonstationary cross-correlation function. For 
stationary random data, these results would not be functions of tλ and t2 but only of 
their difference (r2 — ii), as developed in Section 5.1.1. 

A proof similar to that used for stationary data in Section 5.1.3 shows that for any 
values of t\ and t2, an upper bound for the nonstationary cross-correlation function 
Rjcyih, h) is given by the cross-correlation inequality 

| / Μ ί ι , ί 2 ) | 2 <Rxx(h,ti)Ryy{t2,h) (12.64) 

From the basic definitions, it is clear that 

Rx*(t2,h) = Rxxituti) ^ i 2 6 g ^ 

Ryj{h,h) = Ryy(h,t2) 

Rxy{t2,h) = Ryx{t1,t2) (12.66) 
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Consider the problem of measuring R^iti, t2) using a set of Ν sample functions 
Xi(t), i=l, 2, . . . , N, from the nonstationary random process. In place of 
Equation (12.62), one would compute the ensemble average estimate 

1 N 

Rxx{t\,h)=-y£J

xAn)xi{t2) (12.67) 
i = l 

A recommended procedure to perform this computation is as follows. Let t\ = t, and 
t2 = t — x, where τ is a fixed time-delay value. This yields 

1 N 

Rxx{t,t-x) = -^xMxiit-x) (12.68) 
i = l 

which for stationary processes would be a function of τ only, but for nonstationary 
processes would be a function of both t and x. For each fixed delay value τ and each 
record x,(r), calculate and store the product Xi(t)Xi(t - x) for all t. Repeat for all Ν 
records, and then perform an ensemble average to yield the estimate of 
Equation (12.68). This whole operation must be repeated for every different τ of 
concern. Figure 12.7 illustrates this procedure for measuring nonstationary auto-
correlation functions. A similar procedure may be followed for nonstationary cross-
correlation function measurements. 

12.5.2 Alternative Double-Time Correlation Functions 

A different double-time correlation function can be defined by making the following 
transformations. Let 

" = f - 2 (12.69) 

Then 

τ = t2-t\ t = 
h+h 

(12.70) 

*i(t) 

Time delay, r 

-M Multiplier 

*i(t-r) 

Rxx(t,t-r) + 

Multiple store 
memory 

Ensemble 
averaging 

Figure 12.7 Procedure for nonstationary autocorrelation measurement. 
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Here τ is the time difference between t\ and t2> and t is the midtime between t\ and t2. 

Now 

(12.71) 

= Ε 
τ\ / τ 

Also, 

la{x,t)=E 

? v y ( l , i ) = £ 

(12.72) 

The above functions of τ and t are often referred to as instantaneous correlation 
functions. A script 3t is used in place of R to distinguish the (τ, i) plane from the (tu t2) 
plane. Note that at the point τ = 0, assuming μχ(ί) = μ ν(ί) = 0, 

« „ ( 0 , f ) = £[χ2( ί ) ] = o-2(0 

£ „ ( 0 , / ) = £ [ y 2 « ] = o^(0 

1^(0, ί) =E[x(t)y{t)} =av{t) 

(12.73) 

(12.74) 

where cr^(r) and o^(r) are the variances of x(t) and y(r) at time t, and σ^(ί) is the 
covariance between x(t) and y(f) at time /. For any ^ ( τ , ί), one has the relations 

(12.75) 

Also, 

* « ( - V ) = « x r ( t , i ) 

« , , ( - τ , ί ) = Λ „ ( τ , 0 
(12.76) 

(12.77) 

Equation (12.76) shows that ^ ( τ , t) is an even function of τ. 
The time-averaged cross-correlation function R~xy{x) is defined from ^ ( τ , r) by 

computing 

Rxyix) = lim 1 Γ ^ ( τ , ί ) Λ (12.78) 
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The time-averaged autocorrelation function Rxx(x) is defined from ^a(x, f) by 

1 fr 

Λ„(τ) = lim - Λ „ ( τ , 0 Λ (12.79) 
r ^ ° ° 7 J o 

Because ^ „ ( - τ , t) = @xx(x, t), it follows that 

Λ „ ( - τ ) = Λ„(τ) (12.80) 

Thus Λ„(τ) is a real-valued even function of τ, representing the usual autocorrelation 

function of stationary random data. From Equation (12.77), since 

$xy{-x, ή = 3%yx{x, t), one obtains 

R^-x) = Ryx{x) (12.81) 

so that Riyix) represents the usual cross-correlation function of stationary random 
data. 

Example 12.6. Instantaneous Autocorrelation Function of Modulated 
Random Data. Consider a cosine-modulated random process defined by 

{x(t)} = [cos 2π/ 0ί] {«(/)} 

where/ο is a constant and {«(?)} is a zero mean value stationary random process. 
From Equations (12.62) and (12.72), 

Rxx{t\,h) = E[x{ti)x(t2)] = [cos2nfoticos2nf0t2\Rm{t2-h) 

= i [cos 2π/ 0 τ + cos 4nf0t}Ruu (τ) 

For this example, the nonstationary component in ^^(χ, t) separates into a function of 
t and τ multiplied by a function of τ alone. Note that, for all t, 

a „ ( 0 , f ) = E[j?{f)] = ^[1 +cos4nf0t]Ruu(0) > 0 

In general, however, for τ / O , the instantaneous autocorrelation function Μ^χ,ί) 
may be positive or negative. 

12.5.3 Analysis Procedures for Single Records 

Given a single sample record x(t) of length Γ from an arbitrary nonstationary process 
{x(t)}, one might compute the instantaneous autocorrelation function defined in 
Equation (12.72) with no averaging, that is, 

Λ „ ( τ , Γ ) = * ( / - 0 < ί < Γ (12.82) 

If the data are at least partially deterministic in character, Equation (12.82) 
is sometimes used to compute a frequency-time spectral function discussed in 

(xj)=E '-IH'-l 
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Section 12.6.4. However, if the data are from a nonstationary random process, the 
statistical sampling (random) errors in the estimate given by Equation (12.82) will be 
comparable to those for unaveraged estimates of stationary correlation functions in 
Section 8.4. The random errors might be somewhat suppressed by using a short time-
averaging operation similar to that employed to estimate nonstationary mean square 
values in Section 12.3.3, but the short time-averaging approach is best accomplished 
in the frequency domain, as detailed in Section 12.6.4. 

There is a special class of nonstationary random data where at least a normalized 
version of the autocorrelation function can be accurately estimated from a single 
sample record. Specifically, assume that a nonstationary random process {jc(f)} can be 
represented by 

where a(t) is a deterministic function and [u{t)\ is a stationary random process with a 
mean and a variance of zero and unity, respectively. Moreover, unlike the [u(t)} in 
Equation (12.50), the {u(t)} in Equation (12.83) must have a stationary autocorrela-
tion function, as well as a stationary mean and variance. Equation (12.83) is 
commonly referred to as the product model for a nonstationary random process 
and is simply a generalization of the modulated random process evaluated in 
Example 12.6. Now let the product model in Equation (12.83) be further restricted 
by the following assumptions: 

a. The deterministic function a(t) is nonnegative; that is, a(t) > 0. 

b. The stationary random function u(t) is a sample record from a stationary 

Gaussian random process {«(ί)}. 

With the first assumption, from Equation (12.51), a(t) can be interpreted as the 
instantaneous rms value of {x(t)}. Because the rms value is nonnegative, it is clear that 
a sample record x(t) will produce zero crossings identical to u(t), as illustrated in 
Figure 12.8. With the second assumption, from Ref. 2, the autocorrelation function of 
(«(r)} can be computed from a single nonstationary sample record jc(i) by the 
following procedure: 

1. Given a nonstationary sample record x(t), compute a new stationary sample 
record y(t) using the nonlinear operation 

{x(t)}=a(t){u(t)} (12.83) 

1 if x(t) nonnegative 

— 1 if x{t) negative 
(12.84) 

The operation in Equation (12.84) is often referred to as hard clipping and 
essentially retains only the zero crossing information from the original non-
stationary record x(t). 
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Zero 
crossings 

* { ί ) = α ( ί ) « ( ί > 

• 

Zero 
crossings 

Figure 12.8 Zero crossings of product model nonstationary data. 

2. Estimate the autocorrelation function of the hard clipped record y(r) over the 
entire available record length Τ using 

Τ-τ 

y(t)y(t + x)dt (12.85) 

3. It is shown in Ref. 2 that the autocorrelation function of any Gaussian random 
process {«(ί)} can be computed from the hard clipped random process {y{t)\ 
using the formula known as the arc-sine law, which states that 

(12.86) 

Hence, an estimate for the autocorrelation function of {#(/)} is obtained by 
solving Equation (12.86) using the estimate Ryy{t) computed in 
Equation (12.85). 

Ruu(z) = sin -Ryy{x) 
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It should be emphasized that Equation (12.86) is rigorously correct only for random 
data with a normal (Gaussian) probability density function. However, experience 
suggests that Equation (12.86) is quite robust and provides acceptably accurate results 
for most random data, even when their probability density functions deviate some-
what from the Gaussian form. It should also be mentioned that the foregoing analysis 
procedure can be applied to recover meaningful correlation and spectral information 
from Gaussian random data that were distorted by clipping during data acquisition, as 
discussed in Section 10.4.3. 

The analysis procedure detailed in Equations (12.84)-(12.86) is valid no matter 
how rapidly the nonstationary rms value a(t) varies with time. On the other hand, 
the procedure produces only a normalized autocorrelation; that is, Ruu(0) = 1. 
However, if the nonstationary rms value a(t) varies slowly compared to the lowest 
frequency in {«(t)}, then for reasons that are clarified in Section 12.6.4, the 
instantaneous autocorrelation function defined in Equation (12.72) can be appro-
ximated by the product of two separate functions of time t and time delay τ, 
respectively, as follows: 

^ ( τ , t) « « β ( 0 , t)Ruu{x) = ^ ( / ) Λ β Β ( τ ) (12.87) 

where MXX{Q, t) = i/^(r) = a?{t) is the instantaneous mean square value of (x(r)}, 
and Ruu(x) is the stationary autocorrelation function of (w(r)}. Nonstationary 
random processes with instantaneous autocorrelation functions that fit 
Equation (12.87) are referred to as locally stationary Ref. 3 or uniformly modulated 
random processes. For such processes, the instantaneous mean square value ι/^(ί) 
and the stationary autocorrelation function Ruu(x) can be independently estimated 
from a single sample record x(t) with a relatively small combination of bias and 
random errors. Specifically, ψ\{ί) can be estimated using the running average 
procedure detailed in Section 12.4.3, while Ruu{x) can be estimated by averaging 
over the entire sample record length T'm one of two ways. The first way is to estimate 
Ruui*) by the hard clipping procedure given in Equations (12.84)-(12.86). The 
second way is to approximate Ruu(x) by computing the time-averaged autocorrela-
tion function Rxx(x) over the nonstationary record x(t) using Equation (12.79) and 
normalizing to make R^O) = 1. Substituting Equation (12.87) into Equa-
tion (12.79) shows that the normalized R^x) « Λ„«(τ). Because the normalized 
Rxx(x) is easier to compute and does not require a Gaussian assumption, it is more 
commonly used than an estimate ofRuu(x) via Equation (12.86) for the autocorrela-
tion analysis of locally stationary random processes. On the other hand, the 
normalized Rxx(x) deviates from Ruu(x) as the rate of change of a(t) with time 
increases, as will be clarified in Section 12.6.4. 

12.6 SPECTRAL STRUCTURE OF NONSTATIONARY DATA 

Two distinct theoretical methods will be studied that define the spectral structure of 
nonstationary data, namely, double frequency (generalized) spectra and frequency-
time (instantaneous) spectra. Two types of double frequency spectra are detailed in 
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Sections 12.6.1 and 12.6.2. Frequency-time spectra are discussed in Section 12.6.3. 
Practical procedures for estimating frequency-time spectra from single sample 
records of nonstationary random processes are covered in Section 12.6.4. 

12.6.1 Double-Frequency Spectral Functions 

Assume that any x(t) and any y(i) from real-valued nonstationary random processes {χ 
(ί)} and {y(t)} have finite Fourier transforms given by 

X(f,T) = fx{t)e-Wdt 

T (12.88) 

Y(f,T) = f y(t)e~^dt 
Jo 

where x(t) and y(i) are assumed to be zero outside of the range (0,7). For simplicity in 
notation, the dependence on Twill be omitted by letting 

X(f)=X(f,T) Y(f) = Y(f,T) (12.89) 

Also, the limits in Equation (12.88) and in following formulas will be omitted. 
Spectral density functions at any pair of fixed frequencies fi and f2 are defined by the 
expected values 

Snifufi) =E[X*(f{)X(f2)} 
12.90 

Syy(fuf2) =E[Y*{fX)Y(f2)] 

SXy(fuf2) = E[X*(fl)Y(f2)} (12.91) 

where X* and Y* are complex conjugates of X and Y. The quantities S^f/i,/^) and 
Syy(f\,f2) are called double-frequency {generalized) autospectral density functions, 
whereas Sry(/i,/ 2) is called a double-frequency (generalized) cross-spectral density 
function. Note that these functions are complex valued where/j. and / 2 can take on any 
positive or negative values in the range (—oo, oo). 

For any values oif and/ 2 , a proof similar to the one detailed for stationary data in 
Section 5.2.5 shows that an upper bound for this double-frequency cross-spectral 
density function is given by the cross-spectrum inequality 

\SMti)\2 < SMufi)Sy,{fufi) (12.92) 

From the basic definitions, it is clear that 

sMiJ\) = &(Λ,/2) 
(12-93) 

Syy(fl,fl) = Syy(fi,f2) 

^ ( / 2 , / i ) = S*( f i , / 2 ) (12.94) 
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Equations (12.90) and (12.93) show that S^if,/) is a real-valued positive even function 
of/. 

From Equation (12.88), one may write 

* * ( / l W / 2 ) = x{h)ej2nf^dtx y{h)e-jlllhhdh 

Taking expected values of both sides of Equation (12.95) shows that 

(12.95) 

(12.96) 

Hence, Sxy(Ji,f2) does not equal the double Fourier transform of Rxy(ti, t2), which is 
given by 

D F T [ ^ ( i i , t2) = | | ^ ( r , , t2)e-jln^h +hh)dhdt2 (12.97) 

Instead, it is the inverse Fourier transform o//f^(fi, t2) over t\ followed by the direct 
Fourier transform over t2. Equation (12.96) when y(r) =x(t) shows how 5^(fi , / 2 ) can 
be obtained from R^fa, t2). 

The inverse single Fourier transform pairs to Equation (12.88) are 

x(t) = ^X(f)e^dt 

y(t) = ^Y(f)e>2nftdt 
(12.98) 

where the limits of integration may be from - oo to oo. Because x(t) is real valued, one 
can also write 

jc(f) = ^X*(f)e-j2nftdt 

Now, from Equations (12.98) and (12.99), it follows that 

X* {fl)e-
J2*f',>dfi j Y(Siyl7lhhdf2 

(12.99) 

(12.100) 

Taking expected values of both sides of Equation (12.100) yields 

Rxy(h, h) = Jjs^i/, 4i)e-i2^-^dfxdh (12.101) 

This is not the inverse double Fourier transform of Sxy(f\,f2), which is given by 

D F T p ^ . / i . / a ) = | | ^ ^ , / 2 ) ^ " +^dfidf2 (12.102) 

Instead, it is the direct Fourier transform of SxyC/i,/"2) over/i followed by the inverse 
Fourier transform over/ 2 . Equation (12.101) wheny(r) = x(t) shows how R^t\, r 2) can 
be obtained from S x x ( / i , / 2 ) . 
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12.6.2 Alternative Double-Frequency Spectral Functions 

A different double-frequency spectral function can be defined by making the 
following transformations of variables. Let 

fi = f~2 ~f+ 2 

Then 

g = / 2 - / i / = 
fl+fl 

(12.103) 

(12.104) 

Now the double-frequency cross-spectrum can be written as 

W 1 . / 2 ) = ^ ( / - | , / + | ) =£[x*( / - f ) l r ( / - | ) ] g) (12.105) 

where script £f° is used in place of S to distinguish the (f, g) plane from the 0Λ , / 2 ) plane. 
For the double-frequency autospectra, 

y j 2 Υ 2 
(12.106) 

Note that at the point g = 0, the functions 

sr„(f,o) =e[\x(/)2 

£>>„(/,0) = e[\Y(/)2 

yxy<f,0)=EVC'(f)Y(f)] 

;i2.107) 

(12.108) 

represent the energy autospectral density functions of x(t) and y(t) at frequency / , and 
the energy cross-spectral density function between x{t) and y(t) at frequency / . 
Observe that 

- f - 8 2 ) X { - f + 2 

x * { f ~ x ( f + 2 

[ 12.109) 

^(f,g) 

Hence •S/'xxif^g) is an even function off. Also, 

se'^g) = e[x* (/+ §)*(/-§)] = srjf,-i) (12.110) 
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shows that S^xxif, —g) is the complex conjugate of ifxxif, g). Similarly, it follows for 
arbitrary x(t) and y(t) that 

y*y(-f,g) = yy*<f,g) 

^(f,g) = yyx(f,-g) 
(12.111) 

Equation (12.111) gives Equations (12.109) and (12.110) when x(t) =y(t). 
Referring back to Equation (12.88) and letting f, = t - (τ/2) and dtx = - (dz/2), it 

follows that 

Similarly, from Equation (12.98), by letting u =f + (g/2) and du = (dg/2) 

y ( t + I) = j Y{u)^' + ^udu = j r ( / + |ĵ +̂̂ )(' + V 2 ) ^ 

Now, because 

K ) ( ' + I H / - I ) K ) ^ 
it follows that 

Multiplication of both sides by x(t — τ/2) and integration over τ yields 

Taking expected values of both sides proves that 

| ^ ( τ , / > - ^ ν τ = jsfxy{f,g)el2^dg (12.112) 

Special cases occur when y(r)=x(t) to show how ^ ^ ( τ , t) relates to £fxx(f, g). 
The left-hand side of Equation (12.112) is the Fourier transform of Μ^{τ, t) with 

respect to τ, holding/and t fixed. The right-hand side of Equation (12.112) is the 
inverse Fourier transform of 5 ^ , (f, g) with respect to g, holding/and t fixed. Either of 
these operations defines the frequency-time function. 

irxy(f,t) = ^mxy(T,t)e-WdT (12.113) 
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which will be studied in the next section. This quantity "W^if, t) should never be 
confused with £^xy{f,g). It also follows from Equation (12.112) that 

^if,g) = ^ ( τ , ή ε - ^ + ̂ άτώ (12.114) 

In words, 5*%,(/, g) is the double Fourier transform of ^ ( τ , ί) with respect to τ and t. 
For the special case of stationary random data, the previous nonstationary relations 

simplify because the two-parameter correlation results of Equations (12.63) 
and (12.71) become one-parameter results, namely, 

Rxy(h,t2) =Rxx{h-h) (12.115) 

aX){z,t)=Rxy{x) (12.116) 

with corresponding special results when x(t)=y{t). From Equation (12.101), in 
general, 

Rv(t,t) = l\sxy(fuf2)e-J2j"^dfl df2 (12.117) 

where the dependence on t appears in the exponent. For stationary data, one obtains 

Rxy(t,t) = Rv(0) = ^Sxy(fufi)df1 df2 = I S3V(fl)dfl (12.118) 

where 

S*v(/i) = 

Hence, for stationary data 

Sxy(fuf2)df2 (12.119) 

Sxytfi, fi) = Sxyft )δ, ( / 2 - / i ) (12.120) 

where δι(/) is a finite delta function defined by 

(Τ ( - 1 / 2 Γ ) < / < (1/2Γ) 

^ 0 otherwise 

It follows that 5 ^ ( / i , / 2 ) exists only on the l i n e / 2 = / ] in the (fi,f2) plane, assuming 
frequencies/] a n d / 2 are spaced (1/T) apart. Thus, 

E[X'(fl)Y(f2)] = 0 for/2 ?έ/ι 

E[X* (fi)Y(fi)} = TSv(fi) for/ 2 = / , 

(12.122) 
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which shows that 

Sxy(fi)=YE[X*(fl)Y(fl)] (12.123) 

This development proves that, for consistency, one must define the cross-spectral 
density functions for stationary random data by Equation (12.123), as done previously 
in Equation (5.67). Also, letting x(t) = y(t), Equation (12.122) proves that there is no 
correlation between the Fourier components of stationary random data at the two 
different frequencies. 

Now considering the double-frequency result of Equation (12.105), it is clear 
that 

srxy(f,g)=sxy(f)Si{g) (12.124) 

with δ] (g) satisfying Equation (12.121). This means that £fxy (f, g) exists only on the 
line g = 0 in the (/, g) plane, assuming frequencies of g are spaced (1/7) apart. Thus, 
for stationary random data, 

^ ( Λ * ) = ψ·(/-|]ΐγ+§ 
srxy(f,o)-=E[x'(f)Y(f)] = TSxy(f) 

= 0 f o r g ^ O 

forg = 0 

(12.125) 

Again 

Sv(f) = lE[X'(f)Y(f)} (12.126) 

in agreement with Equation (12.123). The definition of autospectral density functions 
for stationary random data is merely a special case, namely, 

Sxx(f)=±E[X*(f)X(f)]=iFE[\X(f)\2 (12.127) 

Example 12.7. Double-Frequency Autospectrum of Modulated Random 
Data. Consider a cosine-modulated random process defined by 

{x(t)} = [cos2n/ 0i]{«(f)} 

where/o is a constant and {u(t)} is a zero mean value stationary random process. From 
Example 12.6, 

^ « ( τ , t)=\ [cos 2π/ 0 τ + cos 4π/ 0ί]Λ Β Ι ί(τ) 
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Then from Equation (12.114) 

= ^8{g) ^{cos2nf0T)Ruu(T)dt 

+ 2 
(cos4nf0t)e-j2ng'dt dx 

= ^(g)[Suu(f-fo)+Suu(f+fo)} 

+ \{8(g-2f0) + S(g + 2f0)]Suu(f) 

This shows that the function exists only along the three lines g = 0 and 
g = ± 2 / 0 in the (/, g) plane. The autospectrum Suu(f) is shifted by ± 2 / 0 along the line 
g = 0 and is unchanged along the lines g = ± 2/ 0 . See Figure 12.9 for a plot of 
Zfxxifig) for posit ive/when Suu(f) is narrow bandwidth noise. 

12.6.3 Frequency Time Spectral Functions 

Consider any pair of nonstationary random processes {x(t)} and {y(t)} with zero mean 
values. As defined in Sections 12.5.2 and 12.6.2, assume that one can compute the 
nonstationary correlation functions Μχχ(τ,ή, 0tyy{z,t), and ^ , ( τ , ί ) , where 

τ - ί ) = 4 Η > ( ί + 2 - ) [12.128) 

> 

Figure 12.9 Illustration of double-frequency autospectrum for cosine-modulated narrow bandwidth 
noise. 
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and the nonstationary spectral density functions ^ « ( / Ί g), &"yy(f, g), and i^xyif, g), 
where 

^ ( f l g ) = E [ x * ( / - ! ) r ( / + ! ) (12.129) 

The fourier transform of the nonstationary cross-correlation function ^ , ( τ , i) with 
respect to τ while holding t constant is given by 

txy{x,t)e-i2nf*dx (12.130) 

This defines a frequency-time spectral density function, which is often called the 
instantaneous spectrum. The previous derivation of Equation (12.112) proves that 

irx,V,t) = \yx,(f,g)eP**dg (12.131) 

Thus, H^xyif, t) is also the inverse Fourier transform of £fxy(f, g) with respect to g 
while holding/constant. 

Corresponding to Equations (12.130) and (12.131), the inverse relations can be 
written 

y*y(f,g) 

iTxy(f,t)e
i2^df 

Wtyif^e-^'dt 

(12.132) 

(12.133) 

Substitution of Equation (12.130) into Equation (12.133) and Equation (12.131) into 
Equation (12.132) yields 

y*y(f,g) = j J ^ V ) * - ^ " ^ * (12.134) 

ίΧ^τ,ή = ^xy(f,g)^+^dfdg (12.135) 

Hence, £fxy(f,g)is the double Fourier transform of ^^(τ,ί), and !Mxy(x,t)is the 
inverse double Fourier transform of Sfxy (f,g). These results should be compared with 
the previous relations of Equations (12.96) and (12.101). 

Special results occur for nonstationary autocorrelation functions SH^fx, ί). For 
these situations, Wxx(f,t) is defined by 

1Τχχ(/,ή = ^^{χ,ήε'^άχ = ^mxx(x,t)cos2nfxdx (12.136) 

since @χχ(χ, t) is an even function of x. This result proves that 

'12.137) 
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In words, Wxx(f,t) is a real-valued even function off. The inverse relation of 
Equation (12.136) gives 

0 = | ^xx(f, ty1%S%df = j Hrjf, Ocos 2π/τ df (12.138) 

because if^if, t) is an even function off. 

From Equation (12.131), for nonstationary autospectral density functions 
^xxif,g), the associated relation with the aid of Equations (12.109) and (12.110) 
becomes 

r O O 

1T„(f,t) = i?„(f,g)el-*#dg 

J—oo 
i*OC 

= [Sr'„(f,g) + Sr'Zt{f,g)]cas2ngtdg (12.139) 
Jo 

POO 

+j i^(f,g)-^^(f^)} slnlngtdg 
Jo 

12.140) 

The inverse relation of Equation (12.139) gives 

^(f,g) = \ Wxx(f,t)e-^'dt 

ITxxtf, Ocos Ingt dt-j j ir„{f, Osin 2ngt dt 

where t may vary over (-oo, oo). From Equation (12.137), it follows that 

^Xx{~fjg) = ^Xxiflg) l-in. ΛΛΛ\ 

?*jf,g) = ?Js,-g) ( ' 

in agreement with Equations (12.109) and (12.110). 

It is worth noting that one can change nonstationary formulas from two-
dimensional correlation time spaces to two-dimensional spectral frequency spaces 
by using the frequency-time spectra and appropriate changes of variables. The order 
can go in both directions, as shown in Table 12.1. 

Table 12.1 Nonstationary Correlation and Spectral Functions 

Function Space 

Rxy(t\Jl) (time, time) 

1 I 
(time, time) 

I I 
* ^ ( Λ 0 (frequency, time) 

I I 
^xy(f,g) (frequency, frequency) 

I I 
SxyiflJl) (frequency, frequency) 
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Now consider special properties of the frequency-time (instantaneous) spectrum 
Wxxif, ή- At the special point τ = 0, it follows from Equations (12.73) and (12.138) 
that 

a * r ( 0 , 0 = JV**(/V)4f - Etfit)] (12.142) 

Thus, integration of i^xxif, i)over all f gives the nonstationary mean square value 
(instantaneous power) of [x(t)} at time t. Also, at g = 0, from Equations (12.107) 
and (12.140), 

&Jf,V) = \*r

xx(f,t)dt = E{\X(f)\2} (12.143) 

Thus, integration ofW-^if, t)overall t gives the energy autospectral density function 
of {x(t)} at frequency f. 

Let t vary over (-co, oo) and/vary over (—oo, oo). Then the energy contained in {x 
(t)} in the time interval from ta to tb is given by 

ih t'b Γ f oo 

E[x2(t)]dt=\ ^xx(f,t)df 

dt (12.144) 

On the other hand, the energy contained in [x(t)} in the frequency interval from/ a t o / 6 

is given by 

f E[\X(f)\2]dt = f [Γ 1 Τ „ ( Λ 0 Α 

Jfa Jfa U - o o 

The total energy in {x(t)} over the whole (f, t) plane is given by 

df (12.145) 

/•OO Ρ ΓΟΟ |» 

\irxx{f,t)dfdt= \irxx(f,t)dtdf (12.146) 
J — o o J J — o o J 

These relations show the physical importance of the instantaneous autospectrum 
^χχ(/, ή to describe the properties of {x(t)}. 

Now consider the instantaneous cross-spectrum iV^ (f,t). From Equations (12.74) 
and (12.132), 

αν(ο, t) = | isr^i/, t)df = Vxy[t) (12.147) 

In words, integration ofWxyif, t)over allf gives the covariance between [x(t)} and {y 
(t)} at time t. Also, from Equations (12.108) and (12.133), 

5 % { f , 0 ) = ^xy(f,t)dt = E[X*(f)Y{f)} (12.148) 

In words, integration ofiVxy{f, f) over all t gives the energy cross-spectral density 
function between {x(t)} and {y(t)} at frequency f. 
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Returning to Equation (12.131), taking the complex conjugate of both sides yields, 
with the aid of Equation (12.111), 

= \^yxif,-g)e-i2xg,dg 

= \^yx{f,g)eP"g,dg=iryx(f,t) 

Also, from Equations (12.111) and (12.131), one obtains 

(12.149) 

ifrxy(-f,t) = yxy(-f,gy2*s<dg= yyx(f,g)ei2ngtdg = iTyx(f,t) (12.150) 

When x{t) = y(t), these equations become 

(12.151) 

to give another proof of Equation (12.137) that #"«(/,/*) is a real-valued even 
function off. Note that there is no restriction that Wxxif, t) must be nonnegative. In 
fact, Wxx(f,t)can take on negative values, as shown in later examples. Also, 
Equations (12.150) and (12.151) allow one-sided instantaneous spectral density 
functions to be defined as follows: 

2ifr

xy(f) f>0 

W*,lf) = { TxyV) f = 0 
0 / < 0 

2iT„(f) f>0 
Wxx(f) = { nrjf) f = 0 

o / < o 

(12.152) 

(12.153) 

The time-averaged cross-spectral density function (f) is defined from ifxyif, t) 
by computing 

tT 

Szyif) 
ν
 1 f bm — ir„(f,t)dt (12.154) 

The time-averaged autospectral density function S^if) is defined from 'Wxxif, t) by 

i^xx(f,t)dt (12.155) 
1 <·Γ 

S„(f) = lim -
Γ - > ο ο / 

Because iV^if, t) is the Fourier transform (3F) of ut^(τ, ί) assuming that various 
limiting operations may be interchanged, 

S^if) = &[&ν(τ)] 

Sx*(f) = rfixxix)] 
(12.156) 
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where the time-averaged correlation functions are defined in Equations (12.78) 
and (12.79). 

Equation (12.143) indicates that the quantity S^if) will be nonnegative for all 
values off because, for large T, 

S~(f)=YE[\X(f)\2 > 0 (12.157) 

This is the usual definition for the autospectral density function of stationary random 
data. Similarly, from Equations (12.148) and (12.154), one obtains, for large T, 

S*y(f) =\Ε[Χ·(f)Y(f)} (12.158) 

This is the usual definition for cross-spectral density functions of stationary random 
data. One-sided time-averaged spectral density functions are given as before by 

'iSxyif) / > 0 

G*y(f) = { Sxy(f) f = 0 (12.159) 

0 / < 0 

Gxx(f) 

2S«(/) / > 0 
S„(f) / = 0 
0 / < 0 

(12.160) 

For the special case of stationary random data, the nonstationary correlation 
function becomes 

0txy(T,t) = Rxy(T) 

Hence, 

lxy [T,t)e-^dT = Sv(f) 

(12.161) 

(12.162) 

This shows that the frequency-time cross-spectrum ifxyif, t) is now independent of t 
and is the usual stationary cross-spectral density function S^if), Similarly, for 
stationary random data, the nonstationary spectral density function is given by 

*'xy(f,8) = Sxy(f)S(g) 

It follows again that 

ifrxy(f,t) = yxy(f,g)ei2^'dg = Sxy(f) 

(12.163) 

(12.164) 

Thus, iVxyif^t) includes S^if) as a special case when data are stationary. 

Example 12.8. Instantaneous Autospectrum of Modulated Random Data. 
Consider a cosine-modulated random process defined by 

{*(*)} = [cos27r/or]{«(i)} 
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where/o is a constant and {u(t)} is a zero mean value stationary random process. From 
Example 12.6, 

®χχ{?, i c o s 2 π / « τ + c o s 4π/οί]Λ„„(τ) 

Then from Equation (12.136) 

Observe the following; 

a(x,t)e-fl*rdz 

\ [Suuif-h) + Suu(f+fo)} + \ (cos 4nf0t)Suu(f) 

a. The stationary component Suu(f) is shifted by ± / 0 . 

b. The nonstationary component is periodic with a frequency 2/ 0 . 

c ^xxif, t) can take on negative values. 

The instantaneous power in these data is given by Equation (12.73) as 

« „ ( 0 , / ) = £[χ2(ί)] = « „ „ ( 0 ) ο ο 5 2 2 π / 0 ί 

This agrees with integrating Wxx(f,t) over all / . The energy autospectral density 
function in these data is given by Equation (12.143) as 

^ ( f , 0 ) = £ [ | X ( / ) | 2 ] 

where 

X(f) = \[U(f-fo) + U(f+fQ)} 

Hence, for finite Ύ, where Ε | t / ( / ) | 2 = TSuu(f), one obtains 

?JS, 0) = \ \Suuif-h) + Suu(f+f0)} 

This agrees with integrating W^if, i) over t for the record length T. A plot of the one-
sided instantaneous autospectrum Wxif / , t) when the one-sided Guu(f) is narrow 
bandwidth noise centered a t / = / i is shown in Figure 12.10. The time-averaged results 
for this example are 

1 ( T 1 

R*x{x) = j J ®χχ(τ, t)dt = - (cos 2π/ 0τ)/?„„(τ) 

1 [ T 

W„(f, t)dt = \ [Guu{fi-fo) + Guu(fi + / o ) ] 

Note that the time-averaged spectrum includes only the two stationary spectral 
components centered at f=f±fQ; the time-varying component centered a t / = / i is 
removed by the averaging operation. These two stationary components are commonly 
referred to as the sidebands produced by the modulation process. 
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Wxx(f,t) 
A 

G««/4 

-Gu„/4 

-Gma 

frfo f, I f,+fo 

Figure 12.10 Illustration of instantaneous autospectrum for cosine-modulated narrow bandwidth noise. 

12.6.4 Analysis Procedures for Single Records 

Given a sample record x(t) of length Γ from an arbitrary nonstationary random process 
(x(t)}, the procedures for estimating spectral functions are similar to those discussed 
for correlation functions in Section 12.5.3. Specifically, assume that the nonstationary 
random data can be represented by the product model in Equation (12.83). To repeat, 

{x{t)} = a{t){u(t)} (12.165) 

where a(t) is a deterministic function and {u(t)} is a stationary random process with a 
mean and a variance of zero and unity, respectively. Further assume a(t) > 0 and {u(t)} 
is a Gaussian random process. With these assumptions, an estimate for the auto-
correlation function of {u(t)}, denoted by Ruu(x) can be computed from a single 
sample record x(t) by the hard clipping procedure detailed in Equations 
(12.84)—(12.86), and the autospectrum of (w(r)} can then be estimated by taking 
the Fourier transform of Rm{x)\ that is, 

Gm(f) Ruu(x)cos(2nfx)dx (12.166) 

where the frequency resolution of the resulting spectral estimate is given by 
Δ/ = 1 / r m a x . Of course, the autospectrum given by Equation (12.166) is normalized; 
that is, the area under the spectrum is unity independent of the instantaneous mean 
square value of the data. However, for some applications, the relative spectral content 
of nonstationary random data may be the only data property of interest. An example is 
atmospheric turbulence data, where measured sample records are commonly non-
stationary, but important characteristics of the turbulence phenomenon can be 
obtained from only the relative spectral content of the data. Because such data are 
known to be approximately Gaussian and fit the product model, the analysis 
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procedure leading to Equation (12.166) provides valuable information, as detailed 
with an illustration in Ref. 4. 

Again referring to Equation (12.165), if it is further assumed that a(t) varies slowly 
relative to the lowest frequency of {«(ί)}, then the instantaneous autocorrelation 
function of {x(t)} reduces to the locally stationary form given in Equation (12.87). 
Taking the Fourier transform of Equation (12.87) over τ yields the one-sided 
instantaneous autospectrum 

Wxx(f,t)=^x(t)Guu(f) (12.167) 

where Guu(f) is estimated by Equation (12.166). It follows from Equation (12.167) 
that the instantaneous autospectrum for locally stationary data is always nonne-
gative and separates into a time-dependent function, which is the instantaneous 
mean square value of {χ(ί)}> and a frequency-dependent function, which is the 
autospectrum of {u(t)}. The instantaneous mean square value ψχ(ή can be estimated 
by the running average procedure detailed in Section 12.3.3, while the stationary 
autospectrum Guu(f) can be estimated by averaging over the entire sample record 
length Τ in one of two ways. The first way is to estimate Guu(f) using Equa-
tion (12.166), where Ruu{x) is computed by the hard clipped procedure in Equa-
tions (12.84)-(12.86). The second way is to approximate Guu(f) by computing a 
time-averaged autospectral density function Guu(f) over the nonstationary record* 
(r) find normalizing to make \Gxxif)df=\. The fact that the normalized 
Gxxif) ~ Guu(f) when the variations of a(t) with time are slow compared to the 
lowest frequency of {«(ί)} is demonstrated by the instantaneous autospectrum for 
the modulation process in Figure 12.10. Specifically, as the modulating frequency/o 
becomes small compared to the center frequency/!, the two stationary spectral 
components at f ± / 0 collapse into a single stationary autospectrum approximated 
by \Guu{f). This net stationary autospectrum then sums with the time-varying 
spectral component centered at / ] to produce an instantaneous autospectrum with a 
time-averaged value of Gxx{f) « \Guu{f). Replacing Guu(f) in Equation (12.167) 
with the normalized Gxx(f) eliminates the need for assuming that {u(t)} has a normal 
(Gaussian) probability density function and is easier to compute, but it is clear from 
Figure 12.10 that the bandwidth of Gxxif) will increase relative to Guu(f) as the rate 
of change of a(t) with time increases. 

Finally, consider the more general case where the autospectrum of {w(f)} in 
Equation (12.163) is not stationary; that is, the mean and variance of {«(?)} are still 
stationary with values of zero and unity, respectively, but the autospectrum of {u(t)} 
varies with time. In many cases, an instantaneous autospectrum for {x(t)} can still be 
estimated with acceptable bias and random errors using short time-averaging opera-
tions. Specifically, based on the definition of the autospectrum in Section 5.2.3, let the 
time-varying autospectrum of a nonstationary random process {x(t)} be estimated by 
the filtering-squaring-averaging operation illustrated in Figure 12.11, where a 
running average of the output of each bandpass filter with a bandwidth β, is computed 
using a short averaging time 7}. Such an analysis procedure is easily implemented 
using digital filters (see Section 11.1.3). From Equation (5.68), the running average 
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Bandpass filter 
Bandwidth = B(-
Center frequency 

Square and 
average over 
duration = 

Divide by 
bandwidth B, >G„1fl9t) 

Figure 12.11 Procedure for estimating instantaneous autospectrum by filtering, squaring, and averaging, 

autospectrum estimate at the center frequency of the ith bandpass filter is given by 

•t + Ti/2 

i-T,/2 
x2(fi,Bj,u)du i=\,2,...,M (12.168) 

where Μ is the total number of bandpass filters required to cover the frequency range 
of the analysis. The estimation procedure is then similar to that presented for 
nonstationary mean square values in Section 12.4.3, except the running average is 
now computed for the output of each of a collection of Μ bandpass filters. As for time-
varying mean square value estimates, there will be (a) a time resolution bias error 
that can be approximated by Equation (12.54) and (b) a random error given by 
Equation (12.55) where Bs = Bi. However, there is now a third error, namely, a 
frequency resolution bias error that can be approximated by Equation (8.139). It 
follows that the total normalized mean square error of the running average auto-
spectrum estimate in Equation (12.168) at each frequency f=f is given by 

e2[Ga(f,t)]= — + -^CTl(f,t\ 
BiTi 576 

where 

CB,if,t) = 
Gxxff, t) 

(12.169) 

(12.170) 

From Section 12.3.4 in Ref. 1, an optimum estimate of a time-varying autospec-
trum can be accomplished by solving for those values of 7)- and B ; that minimize the 
total mean square error of the estimate. This is done by taking the partial derivative of 
Equation (12.169), first with respect to T ; and then with respect to β„ setting these two 
partial derivatives equal to zero, and solving the resulting simultaneous equations. 
The partial derivatives of Equation (12.169) equated to zero are 

d{s2[Gxxif,t)}} 

dTi 
ο^ιόχχϋ,ή]} 

dBi 

Β^ 
l-a+7hCTl(f,t) = 0 

144 

BfTt 144 
0 

The solution of the above two simultaneous equations for the optimum values To and 
B0 in the ith frequency band yields 

7« = 2.29 
-,5/24 

(f,t) 
and Boi = 2.29-

,1/24 
'Ti 
.5/24 

(Λ0 
(Λ0 

(12.171) 



SPECTRAL STRUCTURE OF NONSTATIONARY DATA 459 

Note that the Cj{f, t) and CB(f, t) terms appear in Equation (12.171) raised to the 1/24 
or 5/24 power, meaning that the estimation of values for these terms can be coarse 
without introducing major errors in the resulting optimum parameters. Also, note that 
the Ci{f, t) and CB(f, t) terms are both functions of frequency and time. However, the 
maximum value of Cj{f, f) for the time-varying mean square value of the data can 
often be used in all frequency bands with acceptable results. One possible procedure 
for estimating this value is detailed in Example 12.4. An appropriate value for CB(f, t) 
as a function of frequency might be estimated from a preliminary analysis of the data, 
past experience, or theoretical considerations. 

Example 12.9. Selection of Optimum Analysis Parameters for Nonstationary 
Data. Assume that a sample record x(t) from a nonstationary random process [x(t)} is 
to be analyzed by the running average procedure in Equation (12.168). Further assume 
that the time-varying mean square value of the data is similar to that shown in 
Figure 12.5(a), where TD&3s. It follows from Equation (12.60) that 

CT(tm) « 0 .24s- 4 

which will be used as an approximation for CB(f, t) in all frequency bands. Finally, 
assume the nonstationary data represent the vibration response of a resonant structure 
where each resonance can be described by the frequency response function illustrated 
in Figure 2.3. From Section 12.3.4 in Ref. 1, the maximum value of CB(f, t) at each 
resonance frequency is given by CB(f, t) « 4(ζi/i)_4Hz_4. Let the estimated damping 
ratio for the response at all resonant frequencies be ζ « 0.05 so that 

Q j O V ) « 6 4 0 , 0 0 0 / r 4 H z - 4 

Because it is not known in advance of the analysis which frequency bands will include 
a resonance frequency, the above value for CB(f, t) will be used for the analysis in all 
frequency bands. Substituting these values into Equation (12.171) gives 

T0(f) « 5 . 3 9 / - | / 6 s and B0(f) « 0 .134/ 5 / 6 Hz 

The above optimum analysis parameters are plotted in Figure 12.12 for the frequency 
range from 10 to 1000 Hz. Note from this figure that the optimum averaging time T0(f) 

0.1 I 1 1 1 I I I I I I 1 I I • ι ι . ι I 
10 100 1000 

Frequency, Hz 

Figure 12.12 Optimum averaging time and resolution bandwidth for nonstationary structural vibration 
data. 
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is closely approximated by a constant T0, while the optimum frequency resolution 
bandwidth B0(f) is almost proportional to frequency. This explains why spectra for 
structural vibration and acoustical data, both stationary and nonstationary, are often 
estimated using a fixed averaging time and a proportional bandwidth. This concludes 
Example 12.9. 

There are other procedures for estimating the spectral properties of nonstationary 
data from a single sample record that are most effective when the data are determi-
nistic, but are sometimes applied to the analysis of nonstationary data that are at least 
partially random in character. Three widely used procedures are the Wigner dis-
tribution, spectrograms, and wavelet analysis. 

12.6.4.1 Wigner Distribution 
Given a sample record x{t) from a nonstationary process {x(f)}, the Wigner distribu-
tion (sometimes called the Wigner-Ville distribution) is usually defined as the 
Fourier transform of the unaveraged instantaneous autocorrelation function in 
Equation (12.82) over τ, that is, 

Comparing Equations (12.172) and (12.136), it is clear that the Wigner distribution is 
essentially an instantaneous autospectrum computed with no averaging. Hence, the 
Wigner distribution at certain times can take on negative values. For example, an 
average Wigner distribution for the cosine-modulated narrow bandwidth noise 
studied in Example 12.8 would be the same as pictured in Figure 12.10. However, 
given a sample record x(t) of length T, the computation in Equation (12.172) can be 
performed only over a finite range of time delay values τ < Τ, which produces an 
estimate of WD^if, f) with a frequency resolution of Be = l / r m a x . The maximum 
frequency resolution is obtained with r m a x = T, meaning BeT= 1. For this case, the 
estimate of WD^if, t) would have a normalized random error of about 100% 
(srlWDxxif, ή] fn 1). It follows that the Wigner distribution is most applicable to 
data that are primarily deterministic in character so that the statistical sampling 
(random) errors in the resulting estimates will be small—for example, speech signals. 
See Refs. 5 and 6 for details and illustrations. 

12.6.4.2 Spectrogram 
One of the simplest ways to determine a time-varying spectrum for a sample record 
x(t) from a nonstationary process (x(t)} is simply to compute time-averaged Fourier 
transforms over contiguous time segments of the record and display the magnitudes of 
the time averaged Fourier transforms in a three-dimensional plot are commonly called 
a spectrogram. Specifically, assume that the record x(t) is sampled for a discrete 
Fourier transform analysis, as detailed in Section 11.2, with a sampling interval of 
At s. Further assume that the number of data values (block size) for each Fourier 
transform computation is N. It follows that each Fourier transform will cover a time 
segment of TB = NAt s so that the available record length Twill be divided into (TITB) 

(12.172) 
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SGxx(f, ti) 

f 

(a) Waterfall display 

(b) Two-dimensional display 

Figure 12.13 Spectrograms for sine wave with linearly increasing instantaneous frequency. 

segments. The collection of time-averaged Fourier transform magnitudes for these 
segments is then given by 

The spectrogram for a sine wave with a linearly increasing instantaneous 
frequency is illustrated in Figure 12.13(a), where the lowest instantaneous frequency 
i s / > {1/TB). When presented in this manner, spectrograms are often called waterfall 
displays. A less quantitative way to present a spectrogram is as data points in a two-
dimensional display of time versus frequency where the magnitude of the spectral 
components is proportional to the darkness of the data points, as illustrated in 
Figure 12.13(6). In either format, the computation of a spectrogram involves a 
compromise between the time resolution given by TB and the frequency resolution 
given by \ITB, which must be decided based upon the specific characteristics of the 
data being analyzed. Note that, unlike the Wigner distribution, spectrograms can 
never have negative values. On the other hand, like the Wigner distribution, the 
computation involves a BT product of unity and, hence, the results will include large 
random errors if the data being analyzed are random in character. Specifically, if x(t) is 
a sample record from a random process {x(t)}, then Equation (12.173) produces only 
an estimate SGxx(f, t). From Sections 8.5.4 and 4.2.2, assuming the estimates at each 
time t are computed from an approximately stationary segment, the ratio 
[SG^if, t)/SGxx(f, /)] has a probability distribution equivalent to the square root of 
chi-square with two degrees of freedom, which is the Rayleigh distribution detailed in 
Section 3.4.2. Thus, from Equations (3.99) and (3.100), the normalized random error 
for the estimate is ε^ό^,ή] = V5/1.25 = 1.13 (113%). See Ref. 5 for detailed 
discussions of spectrograms. 

(T/TB) (12.173) 
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12.6.4.3 Wavelet Analysis 
The analysis procedures for single records of nonstationary data discussed thus far 
involve the use of Fourier transforms that decompose either a time history or a 
correlation function into a series of harmonically related sine and cosine functions, 
which are theoretically unbounded in time. In all cases, however, because ensemble 
averages cannot be performed and the available data are bounded by a record length T, 
the analysis involves a compromise between the time and frequency resolutions of the 
resulting time-varying spectral descriptions of the data. This resolution problem can 
be suppressed by decomposing the available sample record into a set of orthogonal 
functions that are bounded in time—for example, a collection of step functions with 
integer-related durations that can be positioned at any location along the time axis. 
Such a set of functions are called wavelets, and they provide a basis for analyzing 
certain types of nonstationary data—in particular, transient data that are near-
deterministic and have a finite duration that is covered by the available record length 
T, for example, the shock wave caused by an explosion. Wavelets are also used to 
decompose speech signals, which can be viewed as a series of transients. See Refs 6 
and 7 for details. 

12.7 INPUT/OUTPUT RELATIONS FOR NONSTATIONARY DATA 

Consider sample functions from a nonstationary random process (x(t)} acting as the 
input to a time-varying linear system with a weighting function Ιι(τ, t) and a frequency 
response function H(f, t), where 

For an arbitrary input x(t) belonging to {x(r)}, the output y(f) belonging to (y(/)} is 

It is clear that, in general, {y(t}} will be a nonstationary random process because its 
statistical properties will be a function of t when either {x(t)} is nonstationary or h{%, t) 
is a function of t. For constant-parameter linear systems, Ιι(τ, t) = h(τ) and H(f, f) = H 
(j), independent of /. Input/output relations in both the double-time correlation 
domain and the double-frequency spectral domain will now be derived for four cases: 

1. Nonstationary input and time-varying linear system 

2. Nonstationary input and constant-parameter linear system 

3. Stationary input and time-varying linear system 

4. Stationary input and constant-parameter linear system 

(12.174) 

y(t) = h{x,t)x{t-x)dx (12.175) 

The last case reduces to the familiar single time correlation domain and the single 
frequency spectral domain, as covered in Chapter 6. 
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12.7.1 Nonstationary Input and Time-Varying Linear System 

For a pair of times t u t2, the product of y(fi) with y(r 2) is given by 

y(h)y(ti) A(a, Η)η(β, t2)x(h-<x)x{t2-S)da άβ 

Taking expected values produces the nonstationary input/output autocorrelation 
relation 

Ryy{h,t2) = | |Α(α,ίι)Α(/8,ί 2 )Λ„(ίι-α , ί2- |3)<ί«<ί]8 

Similarly, the product of x(t,) with y(t2) is given by 

(12.176) 

Again taking expected values yields 

Rxy{h,h) = 

Ιι(β,ί2)χ{Η)χ{ι2-β)άβ 

h(fi,t2)R„(ti,t2-fi)dfi (12.177) 

Equations (12.176) and (12.177) are general results where all operations take place in 
a real-valued time domain. 

To transform to a complex-valued frequency domain, let 

J(f,g)=\H(f,t)e-^'dt 

Then from Equation (12.174) 

j{f)g) = ^Η(τ,ήβ-^τ+^άτΛ 

In words, J(f, g) is the double Fourier transform of Α(τ, r). Also, 

h(x,t) = ^J(f,gy
2^+^dfdg 

Equation (12.175) is thus the same as 

y(0 = \\\j(f,8y
2^+^x(t-x)dTdfdg 

Now let g =/] —/, dg = dfiia = t-x, and da = — dx. It follows that 

(12.178) 

(12.179) 

(12.180) 

(12.181) 

y(t) e-i2nf0lx(oi)dixdfdfi ]j(f,A-f)^' 

J{f,fi-f)Xif)eplfi,dfdfl 

Yif^'dfi 

(12.182) 
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where 

x(f) x{a)e-j27lfctda (12.183) 

Y(fi) = j J(f,f\ -f)*(f)df (12.184) 

Equation (12.184) is the key to obtaining the desired nonstationary input/output 
spectral density relations. Specifically, for a pair of frequencies/) and/ 2 , the product 
r(fx)Y(f2) is given by 

J* (A,/i - A ) / ( T » , / 2 - T J ) X * (A)X(TJ) «/A«/T» 

Taking expected values of both sides yields the result 

Syy(fi,f2) = §Γ(λ,Α-λΜη,/2-η)ε„(λ,ν)άλάη (12.185) 

Similarly, the product of X*(fi) with Y(f2) yields 

X* (fi)Y(f2) = \j(v,f2-v)X* (fi)X(v) dv 

Taking expected values, one obtains 

Sxyifuh) = ( % / 2 - Λ ( ί ι , ΐ ) ^ (12-186) 

Equations (12.185) and (12.186) are general results where all operations take place in 
a complex-valued frequency domain. These general results are henceforth referred to 
as the Case 1 results. 

12.7.2 Results for Special Cases 

Further results will now be stated for special cases that follow from the general 
formulas for in Section 12.7.1. 

C A S E 1. Nonstationary Input and Constant-Parameter Linear System 

For the case where the linear system has constant parameters, it follows that 

h(x,t)=h(r) J(f,g)=H(f)8(g) 
H(f,t)=H(f) Y(fi)=H{fl)X(fl) 

(12.187) 

Then Equations (12.176) and (12.177) become 

Ryy{h,ti) = J j M « W ) M ' i - M 2 - | 8 ) d a < / j 8 (12.188) 

M ' t . f e ) = \Κβ)Κχχ{Η,ί2-β)άβ (12.189) 
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and Equations (12.185) and (12.186) become 

Syy-ifufi) = H* {fl)H(f2)Sxx(JiJ2) (12.190) 

Sxytfufi) = H(f2)S„(fuf2) (12.191) 

Note that this last equation involves H(f2) and not H(f{). 

C A S E 2. Stationary Input and Time-Varying Linear System 

For the case where the input is stationary, it follows that 

Rxx{h,h) = Rxx{t2-h) , . 

SMxJi) = 5 « ( Λ ) δ ( / 2 - / ι ) 1 ] 

Hence, Equations (12.176) and (12.177) become 

Ryy(tnt2) = JJ*(a, ί ι )Λ08, ί 2 ) Λ „ ( ί 2 - / ι + a - j3) rfa (12.193) 

Rxy(ti,t2) = jh(fi,t2)R„(t2-ti-fi)dfi (12.194) 

and Equations (12.185) and (12.186) become 

Syy(fi Ji) =\j' (f,fi -fW,fi-f)Satf) df (12.195) 

SXi{fuh)=J{fuh-fi)Sxx{fi) (12.196) 

Note that this last result involves S^ifi) and not Sjjif2). 

C A S E 3. Stationary Input and Constant-Parameter Linear System 

For the case where the input is stationary and the linear system has constant 
parameters, all the special relations in Equations (12.187) and (12.192) apply, giving 
the following well-known results as the simplest form of Equations (12.176), 
(12.177), (12.185), and (12.186). 

Ryy(x) η(α)η(β)Ρχχ{τ + Ά-β)άαάβ (12.197) 

*<ν(τ) = Η{β)Ρχχ{τ-β) άβ (12.198) 

Syy{f) = | / / ( / ) | X ( / ) (12.199) 

Sxy(f)=mf)S„(f) (12.200) 

The results from all four cases are summarized in Table 12.2. 

12.7.3 Frequency-Time Spectral Input/Output Relations 

Consider Case from the previous section, where nonstationary data pass through a 
constant-parameter linear system. Frequency-time spectral input/output relations are 
now derived, starting from the double-frequency spectral relations of Equa-
tions (12.190) and (12.191). 
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Let the following transformations be made: 

1 h = 

2 J ' 2 
/ 2 = / + f (12.201) 

It then follows that 

S „ ( f ] , / 2 ) = ^ « ( / ? , « ) 

Syyifuf2)=^yy(f,g) 

SxytfiA) = g) (12.203) 

(12.202) 

This gives in place of Equations (12.190) and (12.191) the spectral input/output 
results 

Py,(f,8) = H* § )^~(Λ* ) ( 1 2 - 2 0 4 ) 

S r x , ( f , g ) = H ( f + ( 1 2 . 2 0 5 ) 

The frequency-time (instantaneous) spectra are now calculated from Equa-

tions (12.131) and (12.139) by 

Wyy(f,t) 

^xx(f,g)ef2ng,dg 

^yy{f,gy2ng,dg 
(12.206) 

ΐΤ^(Λί ) - ^xy(f,g)^'dg (12.207) 

Let the following functions be defined: 

^HHif,gy2ns'dg (12.209) 

Then Equation (12.204) becomes 

yyy(f,g) = yHfi(f,g)^(f,g) (12.210) 

and the frequency-time spectral input/output relation is now 

iTyy(f,t) = jiTHHtf,t-a)d« (12.211) 

showing that Wyy(f, t) is the convolution of WHH(f, t) with W^if, t). This result in 
Equation (12.211) can be negative for some values off and t. 

12.7.4 Energy Spectral Input/Output Relations 

A special class of nonstationary data are those that physically exist only within a finite, 
measurable time interval, that is, where the input process [x(t)} and the output process 
{y(i)} have nonzero values only for 0 < t < 7! Such data are commonly referred to as 
transients and allow a greatly simplified analysis because for a pair of sample records 
x(t) and y(r) with zero mean values, 
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x(f) = 

Yif) = 

x(t)e-J2rcftdt = x{t)e-i2«f'dt 
J - ° ° (12.212) 

y(t)e-j2nftdt= y(t)e-j2nftdt 
ο 

From Equation (12.148), the expected value of the product of X* (/) and Y(f) yields the 
energy cross-spectral density function defined by 

<?xy{f)=E[X*(f)Y(f)] 
τ 

Ψ~νΰ,ί)& (12.213) 
Jo 

Similarly, the energy autospectral density functions are defined by 

£fjf) = E[X*(f)X(f)} = ( t)dt 
J o (12.214) 

&>„(/) =E[Y'(f)Y(f)]=\ ifyy(f,i)dt 
Jo 

It then follows from the input/output relations in Equations (12.204) and (12.205) for 
g = 0 that 

<?yy(f)=H(f)2<?xx(f) (12.215) 

^(f) = Hif^if) (12.216) 

In terms of one-sided energy spectral density functions that exist only for f> 0, 

<#yy(f) = H(f)29„(f) (12.217) 

<gyy(f)=H(f)yxx(f) (12.218) 

Note that the input/output relations given above for transients are identical to those 
developed for stationary random data in Equations (6,7,8,9), except "energy" spectra 
replace "power" spectra. For transient data, the averaging operation needed to 
compute the energy spectral estimates ^xy(f) and ^xx(f) theoretically requires that 
the experiment producing the data be repeated many times. In practice, however, the 
frequency averaging procedures detailed in Section 11.5.5 for stationary random data 
can be applied to transient data as well. Also, transient input/output data often involve 
sufficiently high signal-to-noise ratios to allow the computation of a meaningful 
frequency response function magnitude from a single experiment using Equa-
tion (12.217) with unaveraged energy spectra, as illustrated in Example 12.10. 

Example 12.10. Illustration of Energy Spectrum Estimate. Consider an auto-
mobile traveling at a speed of 30 mph that collides head-on with a second automobile 
traveling at the same speed in the opposite direction. The automobile is carrying a 
simulated passenger restrained by a conventional seat belt and shoulder harness in the 
front passenger seat (right side). Figure 12.14 shows the acceleration time histories 
measured (a) on the vehicle frame just right of the passenger seat and (b) in the chest 
of the simulated passenger. The energy autospectra for these time histories are 
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Figure 12.14 Acceleration time histones during automobile collision, (a) Automobile frame, (b) Chest of 
simulated front seat passenger, (c) These data resulted from studies funded by the FHWA National Highway 
Safety Bureau, Washington, D.C., under Contract FH-11-7218. 

presented in Figure 12.15(a). These spectra were calculated from single records with a 
frequency resolution of Af= 1.16 Hz. 

From Equation (12.217), an acceleration gain factor between the vehicle frame and 
the simulated passenger's chest is given by \H(f)\ = ['&yy(f)/'&xx(f)}^2, whe re^ y v ( f ) 
is the energy autospectrum of the passenger acceleration and ^^(f) is the energy 
autospectrum of the vehicle acceleration. The results of this calculation are presented 
in Figure \2.\5{b). A comparison of these results with the transmissibility function 
illustrated in Figure 2.5 shows that the restrained simulated passenger responds to the 
vehicle impact much like a heavily damped spring supported mass with a natural 
frequency of about 10 Hz. 

PROBLEMS 

12.1 Consider a nonstationary random process defined by 

Tit 
{x{t)} = A sin— +{«(»)} 0 < i < T r 

* r 

where A is a constant and {u(t)} is a stationary random process with zero mean 
and unity variance. Assume the mean value of [x(t)} is estimated by short time-
averaging procedures with an averaging time of Τ = 0.1 Tr Determine the bias 
error in the mean value estimate at t = 0.5Tn 

(a) exactly. 

(b) using the approximation in Equation (12.32). 
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Figure 12.15 Energy autospectra and gain factor for simulated passenger response to automotive 
collision, (a) Energy spectra, (b) Gain factor. These data resulted from studies funded by the FHWA 
National Highway Safety Bureau, Washington, D.C., under Contract FH-11-7218. 

12.2 Assume a nonstationary random process is defined by 

{*(/)} = f l ( r ) + *('){«(')} 

where a(t) and b(t) are deterministic functions and {u(t)} is a stationary 
random process with zero mean and unity variance. Determine for {*(/)} at 
any time t 

(a) the mean value. 

(b) the variance 

(c) the mean square value. 

12.3 For the nonstationary random process in Problem 12.2, write the equation for 
probability density function of {;c(i)} at any time t assuming {u(t)} is Gaussian. 



PROBLEMS 471 

12.4 Assume a nonstationary random process has a double-frequency autospectrum 
given by 

where A and a are positive constants. Determine 

(a) the frequency-time autospectrum ifjuif, t) for the process. 

(b) the energy autospectral density function for the process. 

12.5 For the nonstationary random process in Problem 12.7, determine the double-
time autocorrelation function ^^(τ,ή. 

12.6 Assume a nonstationary random process has the form 

{x(t)}=Ae-a'{u(t)} 

where A and a are positive constants and {u(t)} is a stationary random process 
with zero mean and unity variance. Determine the double-time autocorrelation 
function of {x(t)} in terms of 

(a) RxxUi, t2) defined in Equation (12.62). 

(b) @χχ{τ,ή defined in Equation (12.72). 

12.7 For the nonstationary random process in Problem 12.6 if ^ « ( τ , t) is an even 
function of t, determine the double-frequency autospectrum in terms of 

(a) Ξχχί/χ, f2) defined in Equation (12.77). 

(b) yxx(f,g) defined in Equation (12.93). 

ffinr.-Equations (12.96) and (12.114) will be helpful. 

12.8 For the nonstationary random process in Problem 12.6, determine the fre-
quency-time autospectrum i^xxif^) defined in Equation (12.136). 

12.9 Consider a time-varying linear system with a frequency response function 
defined by 

Assume that a stationary random input to the system is white noise with an 
autospectrum of G x c(/) = G. Determine the autospectrum of the output of the 
system in terms of a double-frequency spectrum. 

12.10 Assume that a single degree-of-freedom system with a natural frequency of 
/„ = 100 Hz and a damping ratio of £ = 0.05 is excited by a nonstationary 
white noise input x(t) with a time-varying mean square value given by 

i^(r) = l - c o s { 7 r r / 1 5 ) 0 < r < 3 0 s 

If the instantaneous autospectral density function of the output of the system is 
to be estimated by short time-averaging procedures, determine the optimum 
averaging time and frequency resolution bandwidth that will minimize the 
total mean square error of the spectral estimate at 100 Hz. 
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C H A P T E R 13 

The Hilbert Transform 

The Hilbert transform of a real-valued time-domain signal x(t) is another real-valued 
time-domain signal, denoted by x(t), such that z(t) = x{t) + jx(t) is an analytic signal. 
The Fourier transform of x(t) is a complex-valued frequency domain signal X(f), 
which is clearly quite different from the Hilbert transform x(t) or the quantity z(t). 
From z(t), one can define a magnitude function A(t) and a phase function #(/), where 
A{t) describes the envelope of the original function x{t) versus time, and 0(r) describes 
the instantaneous phase of x{t) versus time. Section 13.1 gives three equivalent 
mathematical definitions for the Hilbert transform, followed by examples and basic 
properties. The intrinsic nature of the Hilbert transform to causal functions and 
physically realizable systems is also shown. Section 13.2 derives special formulas for 
the Hilbert transform of correlation functions and their envelopes. Applications are 
outlined for both nondispersive and dispersive propagation problems. Section 13.3 
discusses the computation of two envelope signals followed by correlation of the 
envelope signals. Further material on the Hilbert transform and its applications 
appears in Refs 1-5. 

13.1 HILBERT TRANSFORMS FOR GENERAL RECORDS 

The Hilbert transform for general records can be defined in three ways as follows, 
where all integrals shown will exist in practice: 

1. Definition as Convolution Integral. The Hilbert transform of a real-valued 
function x(t) extending over the range — oo < t < oo is a real-valued function 
x(t) defined by 

Random Data: Analysis and Measurement Procedures, Fourth Edition. By Julius S. Bendat 
and Allan G. Piersol 
Copyright © 2010 John Wiley & Sons, Inc. 
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JE(f) = Jt[x(t)] 
X [ U ) -du (13.1) 

»"('-") 
Thus x(t) is the convolution integral of x(t) and (l/πί), written as 

χ(ή=χ(ή*(1/πή (13.2) 

Like Fourier transforms, Hilbert transforms are linear operators where 

3tf[alx\{t)+a2x2{t)]=altf[xl{t)}+a2je{x2{t)} (13.3) 

for any constants a.\, a2 and any functions X](r), x2(f). 

2. Definition as (π/2) Phase Shift System. Let X(f) be the Fourier transform of 
x(r), namely, 

x(f) = &[Ht)\ = x(t)e-j2nftdt (13.4) 

Then, from Equation (13.2), it follows that X[f) is the Fourier transform X(f) of x(t), 
multiplied by the Fourier transform of (l /πί). The Fourier transform of (l/πί) is given 
by 

J ^ / n / ] = - y s g n / = j " / ^ f

f> °0 (13.5) 

A t / = 0 , the function s g n / = 0 . Hence, Equation (13.2) is equivalent to the passage 
of x(t) through a system defined by (—j sgn/) to yield 

X(f) = (-jsgnf)X(f) (13.6) 

This complex-valued quantity X(f) is not the Hilbert transform of the complex-valued 
quantity X(f). Its relation to x(t) is 

ΛΟΟ 

x(t) = Xify^df (13.7) 
J — o o 

In words, x(r) is the inverse Fourier transform of X(f). 
The Fourier transform of (— j sgn f) can be represented by 

fi(f) = - 7 S g n / = | e , W 2 ) ^ < Q (13.8) 

with 5(0) = 0. Also, 

Bif) = \B{f)\e-*M (13.9) 

Hence, B(f) is a (π/2) phase shift system where 

\B(f)\ = 1 fox all f φ 0 (13.10) 

Γ π / 2 f o r / > 0 

l - π / 2 f o r / < 0 v ; 
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If one lets 

Xif) = \X(f)\e~»M (13.12) 

π/2 π/2 

0 * 

-it/2 

0 * 

-it/2 

It follows that 

X(f)=X(f)e -]Φχ(ί) \X(f)\e -ΛΦ,(/)+ΦΜ)\ (13.13) 

Thus, the Hubert transform consists of passing x(t) through a system which leaves the 
magnitude of X(f) unchanged, but changes the phase from <px(f) to <bx{f) + <{>b(f) 
using the <£«,(/) of Equation (13.11), that is, 

« k ( f ) - & ( f ) + («/2) f o r / > 0 

<t>x(f)^cpx(f) -(π/2) f o r / < 0 
(13.14) 

In words, shift (π/2) for positive frequencies and shift ( -π /2) for negative frequencies 
as sketched above. 

3. Definition as Imaginary Part of Analytic Signal. A third useful way to under-
stand and to compute the Hubert transform x(t) of x(t) is via the analytic signal ζ 
(?) associated with x(t), defined by 

z(r) = x{t) +jx(t) (13.15) 

One can also write 

Z(t) = A(tye^ (13.16) 

where A(t) is called the envelope signal of x(t) and θ(ή is called the instantaneous 
phase signal of x(t). In terms of x(t) and x(t), it is clear that 

A(t) = [x2(t)+x2(t)f2 

θ(ή = tan" 2π/ 0 ί 

(13.17) 

(13.18) 
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The "instantaneous frequency" /n is given by 

, ι 1 \ de(t) 

/o=Ur (13-19) K2nJ dt 

Let Z(/) be the Fourier transform of z(t), namely, 

Z(f) = 3F\z(t)\ = P[x(t) +jx(t)} 

= ^[x(t)]+j^[x(t)}=X(f) +jX(f) 
(13.20) 

The inverse Fourier transform of Z(f) yields 

z(t) = [Z(f)] = x(t) +jx(t) (13.21) 

where 

x(t) = Jf[x(t)} = lm[z(t)} (13.22) 

13.1.1 Computation of Hubert Transforms 

To compute Z(f), note from Equation (13.6) that 

X(f) = (-jsgnf)X(f) 

Hence, Equation (13.20) becomes 

Z{f) = [1 + sgn/]X(f) = fl, (f)X(f) (13.23) 

where, as shown in the sketch, B](0) = 1 and 

*Ή» "3'24» 

This is a very simple transformation to obtain Z(f) from X(f). One should compute 
X(f) for all/and then define Z(/) by Z(0) =X(0) and 

z ( f ) = { 0 ^ > rj/Λ v*> 

The inverse Fourier transform of Z(/) then gives z(f) with x(t) = Im[z(r)]. This is the 
recommended way to compute the Hilbert transform. From Equation (13.25), 
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x(t) = Re^2 ζ X(fy2"fidf 

jc(i) = Im^2 J X(f)e>2nftdf 

(13.26) 

Example 13.1. Digital Formulas for xit) and xit). For digital computations, 
from Equations (11.76) and (11.77), one obtains for « = 0, 1, 2 , . . . , (Ν— 1), 

'N/2 

x{nAt) = 2A/Re 

x(nAt) = 2A/Im 

Here, the factor Af= (l/NAt) with 

*=1 

'N/2 

-X0Af 

G X ( W ) e x p ( ^ ) 

N-l 

X(kAf) = At y^x(wAf)exp( -j 
n=0 

2nkn 

~N~ 

Note that values of X(kAf) are needed only from k = 0 up to k = (N/2), where the 
Nyquist frequency occurs, to obtain the digitized values of x(nAt) and its Hilbert 
transform x(nAt). The envelope signal of x(t) is given by 

Α(ηΔί) = [χ2 (nAt) + ί 2 ( η Δ ί ) ] 1/2 

13.1.2 Examples of Hilbert Transforms 

Table 13.1 gives several x(t) with their associated x(t) and envelopes A(t). Proofs of 
these results follow directly from previous definitions. These examples are plotted in 
Figure 13.1. The last result in Table 13.1 is a special case of a general theorem that 

Jt[u(t) cos 2π/ 0ί] = u(t) sin 2nf0t (13.27) 

for any function u(t) which is an even function of t. 

Table 13.1 Examples of Hilbert Transforms 

x(t) x(t) AW 

cos 2π/0ί sin 2π/ 0ί 1 

sin 2π/ 0 — cos 2π/0ί 1 
sinr 1—cos t sin(r/2) 

t t it/2) 
1 t 1 1/2 

1 + i 2 1+f 2 

e"cl'lcos 2nf0t <rcl'lsin27t/0f <r c | , i 
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*(<) 

COS(2ir/ 0t) 

s in (2 ir / 0 i ) 

a i l 
ι 

1 + t 2 

*-«ΙΊ cos (2n/ 0t) 

s in (2 ir / 0 i ) 

- c o s (2«/ 0 t ) 

1 -cost 

β-ΊΊ5ίπ(2π/ 0 ί) 

Λ(0 

ί 

tin ft/2) 
Ί«/5> 

-Α, 
1/2 

Figure 13.1 Examples of Hilbert transforms. 

13.1.3 Properties of Hilbert Transforms 

A number of properties will now be stated for Hilbert transforms, which follow readily 
from the basic definitions or are proved in the references. Let x(t) = J^[x(t)] and 
y(t) = Jf\y(t)] be Hilbert transforms of x{t) and y(r), with corresponding Fourier 
transforms X(f) and Y(f). 

a. Linear Property 

Jt[ax(t) + by(t)] = ax{t) + by(t) 

for any functions x(t), y(t) and any constants a, b. 

(13.28) 
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b. Shift Property 

3/e \x{t-a)] = Jt(f-fl) (13.29) 

c. Hilbert Transform of Hilbert Transform 

J f [jc(f)] = -x{t) (13.30) 

In words, the application of two successive Hilbert transforms gives the 
negative of the original function. 

d. Inverse Hilbert Transform ofx(t) 

f 0 0 xiu) 
x(t) = Je-\x(t)\ = - ^ - r d u (13.31) 

Thus x(t) is the convolution of x(t) with ( - l / π ί ) . Alternatively, x(t) can be 
defined by 

x(t) = &-l[(jsgnf)X(f)] (13.32) 

where 

X{f) = P[x(t)] (13.33) 

e. Even and Odd Function Properties 
If x(t) is an even (odd) function of t, then x(t) is an odd (even) function of t: 

x(t) even <-> i(f) odd 

x(t) odd <-> x(t) even 
(13.34) 

f. Similarity Property 

g. Energy Property 

je\x(at)\ = x(at) (13.35) 

POO POO 

x2(t)dt = x2(t)dt (13.36) 
J — o o J — o o 

This follows from Parseval's theorem because 

POO POO 

x\t)dt= \X(f)\2df 
J — o o J— 0 0 

l % ) l 2 # 

(13.37) 

and the fact that 

\x(f)\2 = W)\2 (13.38) 
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h. Orthogonal Property 

1*00 

x(t)x{t)dt = 0 (13.39) 
J—oo 

This follows from Parseval's theorem because 

x(t)x(t) dt X*(f)X(f)df (13.40) 

and the fact that 

X* (f)X(f) = (-j sgn f)\X(f)\2 (13.41) 

is an odd function of / s o that the right-hand side of Equation (13.40) is zero, 

i. Modulation Property 

JV[x{t) cos 2π/ 0ι] = x(t) sin 2π/ 0 ί (13.42) 

if x(t) is a signal whose Fourier transform X(f) is bandwidth limited; that is, 

X(,) = {X(f) M £ F (.3.43) 
[ 0 otherwise 

provided t ha t / 0 is such t ha t / 0 > F. Also, 

Xf[x(t) sin 2π/ 0ί] = -x(t) cos 2π/ 0 ί (13.44) 

j . Convolution Property 

jr\x(tyy(t)]=x(tyy(t) =x(tym (13.45) 

This follows from the fact that 

&[x(tyy(t)]=X(f)Y(f) (13.46) 

and 

[(-jSgnf)X(f)}Y(f)=X(f)Y(f) 

= x(f)[(-Jwf)Y(f)]=x(f)Y(f) 
(13.47) 

k. Lack of Commutation Property 

^{J#>[x(t)}} φ 3f{&-[x{t)}} (13.48) 

In words, Fourier transforms and Hilbert transforms do not commute. 

13.1.4 Relation to Physically Realizable Systems 

A physically realizable constant-parameter linear system is defined by a weighting 
function h(x) satisfying Equation (2.3), that is, 

Α ( τ ) = 0 f o r r < 0 (13.49) 
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The corresponding frequency response function H(f) of Equation (2.13) is given by 

f O O 

H(f) = &\h(x)\ = h(x)e-j2nftdx 
Jo (13.50) 

= HR(f)-jH,(f) 

Here, HR(f) equals the real part of H(f) and Hj(f) equals the imaginary part of H(f) 

as defined by 

HR(f) = 

H,(f) = 

h(x)cos Infxdx 

(13.51) 

h (τ) sin Infxdx 

It will now be proved that for a system to be physically realizable, it is necessary and 
sufficient that / / / / ) be the Hilbert transform of HR(f). 

This result is a special case of a more general theorem that applies to all causal 
functions. By definition, a real-valued function y ( f ) is a causal function if 

y ( / ) = 0 f o r i < 0 (13.52) 

Any function y(t) can always be broken down into the sum of an even function ye{t) 
plus an odd function ya{t) by writing 

y(t)=ye(t)+y0(t) (13.53) 

where 

ye{t)=\[y{t)+y{-t)] 

yo(t)=\\y{t)-y(-t)\ 

This gives ye(-t) = ye(t) and ya(-t) — - y0(t). The resolution of any causal function 
into its even and odd components is illustrated in Figure 13.2. 

Assume now that y(t) is a causal function. Then, from Equations (13.52) 
and (13.54), f o r / > 0 , 

(13.55) 
yo(t) = \y{t)=ye{t) 

For t < 0, however, 

* < " - * * - " (,3.56) 
yo(t) = -h{-t) = -ye{t) 
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Figure 13.2 Even and odd components of a causal function. 

Hence, for a causal function, 

where 

y 0 { t ) = (sgnr)y e(?) 

sgnf: 
1 t > 0 

-1 t < 0 

For any causal function y(r), its Fourier transform Y(f) must satisfy 

Y(f) = P\y(t)\ = P\ye(t) +y0(t)] = YR(f)-jY,(f) 

where 

&\yo{t)] = -jYiif) 

From Equation (13.57), 

&\yo(t)] = &[(sgnt)ye{t)] = ^{sgn t}*aF\ye(t)} 

where 

JHsgnil = - 4 

Hence, 

J - o o π ( / - « ( f - l l ) 

(13.57) 

(13.58) 

(13.59) 

(13.60) 
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This proves that 

Yiif) = Γ ^TT^du = X[YR[f)\ (13.61) 

In words, Y^f) is the Hilbert transform of YR(f) when y(f) is a causal function. This 
completes the proof. 

A direct way to determine whether or not a computed H(f) can represent a 
physically realized (causal) system is now available. It will be physically realizable if 
/ / / ( / ) is the Hilbert transform of HR(f) since Equation (13.61) is equivalent to 
Equation (13.57). Thus, Equation (13.61) is both a necessary and a sufficient 
condition for a system to be physically realizable. In equation form, 

H(f) = HR(f)-jH,(f) with H,(f) = HR(f) (13.62) 

It follows that 

H,(f) = HR(f) = -HR(f) (13.63) 

and 

H(f) = HR(f)-jH,(f) = Η[(f) +jHR(f) =jH(f) (13.64) 

Deviations from these results can be used to study nonlinear systems. 

Example 13.2. Exponential Causal Function. Consider the causal function 

y(r) = πβ~2π' t > 0 (otherwise zero) 

Here, 

and 

y e ( f ) = J e - 2 » l ' l a l l , 

y0(t) = 

Taking Fourier transforms yields 

Yeif) = YHif) 
2(1 +p 

and 
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Thus, YR(f) is an even function of / a n d Y/if) is an odd function off with 

Ylif) = X[YR(f)] 

The total Fourier transform of y(r) is then 

Y(f) = Y«(f)-JYI(f)=w^) 

Example 13.3. Exponential-Cosine Causal Function. Consider the causal 
function 

y(r) = e~ a 'cos 2nbt a > 0, t > 0 (otherwise zero) 

For this case, the Fourier transform of y(r) is given by 

(a+j2%f) + (2nb) 

where the separate formulas for YR(f) and Y]if) are quite complicated. Because y(i) is 
a causal function, however, one will have 

Yiif) = *W)] 

with Yg(f) an even function of / and Yiif) an odd function of/. 

13.2 HILBERT TRANSFORMS FOR CORRELATION FUNCTIONS 

One of the more important applications for Hilbert transforms involves the calculation 
of correlation function envelopes to estimate time delays in energy propagation 
problems. The principles behind such applications are now developed for both 
nondispersive and dispersive propagations. 

13.2.1 Correlation and Envelope Definitions 

Let x(t) and y(i) represent zero mean value stationary random data with autocorrela-
tion functions R^ix) and Ryy(x) and a cross-correlation function R^x). Let the 
associated two-sided autospectral density functions be S^if) and 5 y y ( / ) and the 
associated two-sided cross-spectral density function be S^if). As defined in Section 
5.2.1, such associated functions are Fourier transform pairs. For each stationary 
random record x(t) or y{t), let x(t) = 3^\x{t)\ and y(t) = 3V\y{t)\ be their Hilbert 
transforms. Because Hilbert transforms are linear operations, it follows that x(t) and 
y(t) will also be stationary random data. Various correlation and spectral density 
functions for jc(i) and y(r) can be defined the same as for x(t) and y(i) to yield R^(τ), 
Ryy(x), Rxy{x) and Sjaif), Syy(f), S^tf), where the associated functions are Fourier 
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txansform pairs. To be specific, the definitions are 

Λ*(τ) = E[x(t)x(t + x)} 

R99(r)=E\y(t)y(t + x)] (13.65) 

Rxy(x)=E[x(t)y(t + x)\ 

Then their Fourier transforms give 

S s ( t ) = &[R&(z)] 

Syy{f) = ^[Ryyir)} (13.66) 

Except for a scale factor (which is unimportant for theoretical derivations, since it will 
appear on both sides of equations and therefore cancel out), one can also use the 
definitions 

Six(f)=E\r(f)X(f)\=E[\X(f)\2] 

Syy(f)=E[Y*(f)Y(f)]=E[\Y(f)\2} (13.67) 

Sxy(f)=ElX*(f)Y(f)} 

Mixing functions and their Hilbert transforms leads to /?^(τ), Rxy(x) and the 
associated S^f/), S^if) defined by 

Rxy(x)=E[x(t)y(t + x)} 

Rxy(x)=E[x(t)y(t + x)} 1 " ' 

Sxy(f)=F[Rxy{z)] 

Special cases are R^x), Λ«(τ) , 5 ^ (/), and S^if). Except for a scale factor, as noted 
previously, one can also define Sxy(f) and Sayif) directly by 

Sxy(f)=E[X'(f)Y(f)] 

Sty(f)=EiX*(f)Y(f)} 

Envelope functions for R^x), Ryy(x), and Rxy(x) are defined in terms of Hilbert 
transforms Rxx(x), Ryy(x), and R^x) as follows. The envelope function for Rxx(x) is 

4 W = ( 4 W + 4 ) ] ' / 2 (13-71) 

The envelope function for Ryy(x) is 

A W ( T ) = [ ^ ( T ) + ^ ( T ) ] 1 / 2 (13.72) 

The envelope function for /?^(τ) is 

Axy{x) = [Rxy{x)+R2

xy{x)]1'2 (13.73) 

Various relationships and properties for all of the above quantities will now be stated. 
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13.2.2 Hilbert Transform Relations 

Table 13.2 gives a number of useful relationships for autocorrelation (auto-spectral 
density) and cross-correlation (cross-spectral density) functions. Proofs of these 
results represent straightforward exercises. 

Some results in Table 13.2 are worthy of attention. Specifically, 

Λ«(τ) = X[Rxx(x)\ = -Mr) (13.74) 

In words, the Hilbert transform of Λ ^ τ ) is the cross-correlation function between x(t) 
and its Hilbert transform x(t). Also, note that Λχ , (τ) is an odd function of r because 
Rxx(x)lS an even function of τ. This gives 

Rxx(0) = Ra(0) = 0 (13.75) 

Thus, a zero crossing of R ^ T ) occurs at τ = 0, corresponding to a maximum value of 
Λ«(τ) at τ = 0. This crossing of zero by R^x) will be with positive slope, that is, 

Λ „ ( 0 - ) < 0 and Rxx(0 + )>0 (13.76) 

as can be verified for any of the examples in Table 13.1. This property is just the 
reverse of the zero crossings by derivative functions ifc(-r) stated in Equation (5.146). 

13.2.3 Analytic Signals for Correlation Functions 

The analytic signal zx(t) corresponding to a stationary random record x(t) is defined as 
in Equation (13.15) by 

Zx{t) = x(t) +jx(t) 

Table 13.2 Hilbert Transform Relationships 

Λ « ( τ ) = Λ „ Μ fef/) = S„(f) 

Κχϊ(-ΐ) = Κχχ(τ), an even function of τ 

σ / = Λ α ( 0 ) = Μ 0 ) = ^ 

Λ«(τ) = «aW = -Λ«(τ) S„(/) = fei/) = 

τ) = — Rxxit), an odd function of τ 

*»(0) = Λχϊ{0) = / W O ) = 0 

% ( τ ) = R„(z) Sxy(f) = Siyif) 

o-xy = Rxy(0) = Rxy(0) = axy 

Rxy{x) = Rxyit) = -Riyii) Sxy(f) = Sxytf) = -Ssty(f) 

^ ( - τ ) = Λ ^ ( τ ) S^(f)=Syjc{f) 
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where x(t) = 3tt°[*(/)]. The complex-valued autocorrelation function R^zXi) is 
defined by 

= E[zl (ήζχ(ί + τ)} = Ε[{χ(ή-μ(ή}{χ(ί + τ) +jx(t + τ)}] 

= Λ„(τ) + ^ ( τ ) +;[Λ ώ (τ)-Λ&(τ)] 

But, from Table 13.2, 

= i?„(r) and Λ*(τ) = - Λ ώ ( τ ) 

Hence, 

/ ^ ( τ ) = 2[Λ„(τ) + ^ ( τ ) ] = 2[Λ„(τ) +;Λ„(τ)] 

This proves that 

Λ & * ( τ ) - Λ « Μ + 7 * ~ ( τ ) (13-77) 

is the analytic signal for R ^ T ) . 
The Fourier transform of / ? ε Λ ( τ ) is SZxZx{f), where 

^ ( f ) = nKd*)] =2[Sxx(f)+jSxx{f)} 

= 2 [ l + s g n / ] S i r l / ) 

Hence, the autospectrum relation is 

f 4 « ) f o r / > 0 
5 " . ^ - \ 0 f o r / < 0 ( 1 3 · 7 8 ) 

From Equation (13.77), one obtains 

[SzA(f)/2) = R„(x) +jRxx(x) (13.79) 

Theoretical formulas are now 

Κχχ(τ) = 2 Sxx(f )cos 2nzndf 
Jo 

f O O 

Rxx{r)=2\ S„(f>ίη2π/τ # 
Jo 

(13.80) 

The analytic signal for / ^ ( τ ) corresponding to stationary random records x(t) and 
y(r) is defined from 

zx{t) = x(t) +jx{t) z y ( t ) = y{t) +jy(t) 

The complex-valued cross-correlation function RZxZx (τ) is defined by 

RZxZx(z) = E[Zx* (t)zy(t + τ)} = E[{x(t)-jx(t)}{y(t + τ) +jy(t + τ)}] 

= RxyW+Riyiz) +j[RXy{x)-RXy(x)} 
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But, from Table 13.2, 

ϋχρ(τ) = Rxylr) and Λ ^ τ ) = - Λ „ - ( τ ) 

Hence, 

RZxZy{x) = 2[Rxy{x) +jRxy{x)} = 2[Λ^(τ) + ^ ( τ ) ] 

This proves that 

^ | ^ = ^ ( τ ) + ^ ( τ ) 

is the analytic signal for Rxy(x). 
The Fourier transform of RZxZy{x) is SZxZy(f), where 

SZxZy(f) = ^ [ Λ ^ ( τ ) ] = 2 [ ^ ( / ) + / ^ ( / · ) ] 

= 2 [ l + s g n / ] ^ 0 P ) 

Hence, the cross-spectrum relation is 

From Equation (13.81), one obtains 

\SZxZ>(f) jr- i 

45^( / ) f o r / > 0 

0 for / < 0 

*xy(t) +JRxy(t) 

This yields the theoretical formulas 

Rxy(T)=Rc^2^Sxy(f)^df 

Rxyix) = Im 
/ • O O 

. Jo 
df 

(13.81) 

(13.82) 

(13.83) 

(13.84) 

Example 13.4. Digital Formulas for R^ (τ) and (τ). For digital computa-
tions, as discussed in Sections 11.4.2 and 11.6.2, augment each of the Ν data values in 
[xinAt)} and {y{nAt)} wifhNzeros so as to obtain new data sequences with 2Nterms. 
With Af= (Ι/2/νΔί), for * = 0, 1, 2 , . . . , N, compute 

N-l 
X(kAf) = A / ^ j c ( n A i ) e x p ( -j 

n=0 
N-l 

. nkn 

~N~ 

.nkn 
Y(kAf)=AtJ2y(nAt)cxp(-j~ 

G*yiW)=1^Kt{X*{kAf)Y{kAf)} 
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For r = 0, 1, 2 , . . . , (TV — 1), one then obtains 

RxyirAt) = 

Rxy(rAt) 

NAf 

N-r 

NAf 

N-r 

Re 

Im 

g G ^ ( W ) e x p ( ^ ) 

k=0 

nkr 

The squared envelope signal of Λτν(τ) is given by 

A2

xy(rAt)=R2

xy(rAt)+Rxy(rAt) 

Autocorrelation functions are special cases where 

Rxx{rAt) 
NAf 

N-r 

Ν 

Y^G^ikAf^osinkr/N) 

k=0 

Ν 

Y^GxxikAfjsininkr/N) 
k=0 

~2 
A2

xx(r*)=Rll(rAl)+Rxt(rAt) 

13.2.4 Nondispersive Propagation Problems 

Consider the basic nondispersive propagation case previously defined in Equation 
(5.19), For simplicity, assume that n(t) is essentially zero, so that 

with 

y{t) = ax(t-z0) 

Ryy{z) = a2Ra{z) 

Rxyir) = aR^iz-xo) 

(13.85) 

(13.86) 

^ « ( 0 ) ^ ( 0 ) 

Consider the case where x(t) is bandwidth-limited white noise as defined by Equation 
(5.48), namely, 

„ . , /βϊηπβτΛ „ „ 
Λ«(τ) = αΒ\ Icos 2π/ 0 τ 

Now 

R„(0) = aB 
\yy Ryy(Q) = a2{aB) 

(13.87) 

(13.88) 
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P j t y O ) 

COS 2n/ 0 (r - T0) 

ο) 

Figure 13.3 Typical cross-correlation coefficient function for nondispersive propagation through a single 
path. 

τ = 
sin πδ(τ—TQ) 

πΒ(τ—TQ) 
cos 2π /ο ( τ - τ 0 ) (13.89) 

Here, f0 is the center of an ideal rectangular filter of bandwidth 5 , where the 
autospectral density function G^if) is a constant within this band and zero outside. 
The time delay r 0 is a constant. Equation (13.89) is plotted in Figure 13.3. 

A number of properties of Equation (13.89) for nondispersive propagation are 

worthy of note. 

1. The cosine function cos 2π/ 0 τ at the center frequency f0 is modulated by the 
envelope function [(sin πΒτ)/πΒτ] that is defined by the bandwidth B. 

2. The peak value of the envelope function occurs at the time delay τ 0 = (d/c), a 
fixed value independent of frequency. 

3. Peak values of the cosine function occur at time delays τ„ = τ 0 ± (n/f0), where η 
is any integer. In particular, a peak value of the cosine function coincides with 
the peak value of the envelope function. 

4. Themainlobeoftheenvelopefunctionextendsfrom[r 0 -( l /5)] to[T 0 + (1/5)], 
a width of (2/5) s. The number of oscillations of the cosine function contained in 
the main lobe of the envelope function is (2/Q/5). 

Three important types of nondispersive propagation problems where one desires to 
measure the envelope of cross-correlation functions are illustrated in the following 
examples. As in all engineering problems, it is necessary to derive statistical error 
analysis criteria to help design experiments and to evaluate the estimates of the 
computed results. In particular, formulas are required to determine the statistical 
errors in (a) magnitude estimates of the envelope peak values and (b) location 
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estimates of the time delays where the envelope peak values occur. These matters are 
covered in Ref. 1 based upon material in Section 8.4. 

Example 13.5. Low-Pass White Noise. Consider the case of low-pass white 
noisex(t) with bandwidth Β from 0 < / < B . From Equation (5.50), the autocorrelation 
function Λ^(τ) of x(t) is 

, , / s in 2πΒτ\ 

This is plotted in Figure 13.4. The maximum value of ^ ( τ ) occurs at τ = 0 where 
R ^ T ) = Λ«(0). The first positive value of τ where R^z) = 0 is at τ = (1/2B). The first 
negative value of τ where R^x) = 0 is at τ = (— l/2fl). Thus, the width of the main lobe 
around R^O) is (IIB). 

From Table 13.1, the Hilbert transform R^z) is given by 

Λ , s n ,n\ Λ _ c o s 2 π β τ \ 
= M O ) 

This is plotted in Figure 13.5. Note that the Hilbert transform Λ„(τ) = 0 at τ = 0 
where the maximum value of R^z) occurs. It is easier to locate this zero-crossing 
point where Λ«(τ) = 0 than to locate the value of τ where Λ^(τ) has its maximum 
value. 

Figure 13.4 Autocorrelation function of low-pass white noise. 
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Figure 13.5 Hilbert transform of autocorrelation function. 

The envelope function for i ^ i j ) from Equation (13.71) is given by 

I sin πΒτ I 
Α„(τ) = Λ„(τ) 

πΒτ 

This is plotted in Figure 13.6. Note that Α ^ τ ) has its maximum value at τ = 0 where 
Axx(0)=Rxx(0). Note also the width of the main lobe around Axx(0) is (2/B) and 
extends here from (- \ IB) to ( l /β) . This is twice as wide as the width of the main lobe 
around R^iO). It is easier to see the value of τ where the envelope function Α ^ τ ) has 
its maximum value than to see the value of τ where / ^ ( τ ) has its maximum value. 

Example 13.6. Nondispersive Propagation Through Multiple Paths. Figure 
13.7 shows a single input passing through multiple paths to produce a single output. 
For simplicity, only three paths are shown, but the number is arbitrary. The governing 
equation for this model is 

y(t) = aix(t-X\) + a2x{t-T2) + a3x(t-Ti) +n(t) 

where a, are constant attenuation factors for each path and τ, are the respective time 
delays for each path. The noise n(t) is assumed to be uncorrelated with x{t). 
Simultaneous measurements are made only of x(t) and y{f). It is required to determine 
the proportion of the output power in y(t) that goes via each path and the respective 
time delays for passage of x(t) through each path. A cross-correlation measurement is 
made between x(t) and y(t), followed by Hilbert transform computations for its 
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Figure 13.6 Envelope of autocorrelation function. 

envelope. Here, 

Κ*ν(τ) = α ι / ? « ( τ - Τ ι ) + α2ϋχχ{τ-τ2) + α 3 ^ ( τ - τ 3 ) 

Example 13.7. Nondispersive Propagation from Multiple Uncorrelated 
Sources. Figure 13.8 shows separate inputs with different paths to produce a single 
output. Simultaneous measurements are made of all inputs and the output. For 
simplicity, only three sources and associated paths are shown, but the number of 
uncorrelated sources can be arbitrary. It is required to determine the proportion of the 
output power in y(t) that comes from each source and the respective time delays for 
passage of each source through its particular path. The output noise n(t) is assumed to 
be uncorrelated with the inputs Xj(t), and the three sources are also assumed to be 

Figure 13.7 Nondispersive propagation through multiple paths. 
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* 3 <» • 

Path No. 1 Path No. 1 

Path No. 2 Path No. 2 

/ / Path No. 3 Path No. 3 
M O 

Figure 13.8 Nondispersive propagation from multiple uncorrelated sources. 

uncorrelated with each other. The governing equation for this model is 

y(r) = aLxi(t-x\) + a2x2(t-x2) + aix^t-x-s) +n(t) 

where a, are constant attenuation factors for each path and τ,· are the respective time 
delays for each path. Cross-correlation measurements are made between each x,(r) 
and y(r), followed by Hilbert transform computations to obtain their envelopes. Here 

RXiy(x) = α/Λ„(τ-τ, ·) 

Example 13.8. Nondispersive Propagation from an Unmeasured Single 
Source to Measured Multiple Outputs. Figure 13.9 shows separate outputs due 
to an unmeasured single output. Simultaneous measurements are made of all output 
signals. For simplicity, only three outputs are shown, but the number of different 
outputs can be arbitrary. It is required to determine the relative time delay between all 
pairs of output signals without knowing the actual time delays from the input x(t) to 
any of the outputs, assuming x(t) is not or cannot be measured. The extraneous noise 
terms «,·(?) are all assumed to be uncorrelated with each other and with x(t). The 

n,(0 

*(0-

Path No. 1 Path No. 1 

Path No. 2 , ( Path No. 2 

Path No. 3 y ( Path No. 3 

y 2W 

« 3 <t) 

Figure 13.9 Nondispersive propagation from an unmeasured single source to measured multiple outputs. 



HILBERT TRANSFORMS FOR CORRELATION FUNCTIONS 495 

governing equations for this model are that each output for i= 1, 2, 3 is of the form 

y,{t) = \i(t) + n,(f) = αμ^ί-τ, ·) + η,·(ί) 

Cross-correlation measurements are made between pairs of output records, followed 
by Hilbert transform computations of their envelopes. Here 

Λ ν , ν ; ( τ ) = aiCtjRxxix + Tj-Xj) 

13.2.5 Dispersive Propagation Problems 

The material in Section 13.2.4 applies to nondispersive propagation problems where 
the velocity of propagation is a constant independent of frequency. Consider other 
situations where the propagation paths are frequency dispersive as discussed in Refs 6 
and 7. In particular for flexural waves in structures, the "apparent" propagation speed 
of the waves at a given frequency is called the group velocity cg. This cg is related but 
not equal to the phase velocity cp. It is known that the group velocity of flexural waves 
in thin beams satisfies 

(13.90) 

In words, cg is twice cp and both are proportional to the square root of frequency. 
For dispersive propagation problems governed by Equation (13.90), as a first order 

of approximation, Ref. 7 proves that the cross-correlation coefficient function for 
narrow bandwidth data corresponding to Equation (13.89) now takes the form 

sin πΒο(τ—τ2) 

πΒ0(τ~τ2) 
cos 2π/ο(τ—τι) 

where 

τ, = (d/cp) ~/0

 1 / 2 

x2 = (d/cg) ~/0~
1/2 

(13.91) 

(13.92) 

(13.93) 

with Τ\ = 2τ2 because cg = 2cp. Equation (13.91) is plotted in Figure 13.10. 
Observe that Equation (13.91) is similar in nature to Equation (13.89), but has two 

important differences. 

1. The peak value of the envelope function occurs at the time delay x2 = (d/cg), 

which is now a function of frequency because cg ~ y/%. 

2. Peak values of the cosine function occur at the time delays x„ = X{ ±(n/f0), 
where η is any integer. In general, a peak value of the cosine function does not 
coincide with the peak value of the envelope function. 

Equation (13.91) shows that the "apparent" propagation speed given by the envelope 
function at a given frequency is determined by the group velocity cg rather than by the 
phase velocity cp. For such dispersive propagation problems, the peak value of Pxy(x) 
from its fine structure due to the cosine function in Equation (13.91) may not coincide 
with the envelope peak value that occurs at the time delay τ 2 . To find z2, one must 
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Pxyb) 

COS 2 « / 0 ( r - r 1 ) 

Figure 13.10 Typical narrow bandwidth cross-correlation coefficient function for dispersive propagation 
through a single path. 

compute the envelope function of ρ^(τ), as can be done using Hilbert transform 
techniques. 

The derivation of Equation (13.91) is based on the following ideas. Start with the 
general relation 

Sxy(f)e^ 
J —OO 

df ; 13.94) 

For dispersive cases leading to Equation (13.91), the corresponding S^if) is 

Sxy(f)=aSxx(f)e-^ (13.95) 

where the delay xp = {d/cp) is a function of frequency since the phase velocity 
cp ~ \Jf. Here, τρ = τρ(/) can be expressed at frequency/as 

d a 

/2rtf 
(13.96) 

with α as a suitable proportionality constant. Substitution of Equation (13.95) into 
Equation (13.94) gives 

r O O 

Λ^χ(τ) = a S^yW^df 
J —OO 

G„i / ) cos27t / ( t -T p )4r -

(13.97) 

where the one-sided autospectrum Gxx(f) = 2Sxx(f) f o r / > 0 and is otherwise zero. 
For bandwidth-limited white noise, 

G r f ) = i K 0 < / o - ( £ o / 2 ) < / < / o + (5o/2) 

\ 0 otherwise 
(13.98) 
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Thus, 

Also, 

j/o + (So/2) 
/fxy (τ) = aK cos 2nf(x-xp)df 

J/o-(Bo/2) 

f/o + (V2) 

RAO) = * 4T = « B o 
J /o-(Bo/2) 

i ? w (0) = α 2 Λ Λ ( 0 ) = α 2 £ β 0 

Hence, the cross-correlation coefficient function becomes 

1 f/o + (Bo/2) 

P*y(*) = cos 2nf(x-xp)df 
ΰ 0 Jfn-IBn/2) 

Consider situations where the frequency bandwidth B0 is less than 
that for any ε < 1, /can be replaced by 

/ = / ο ( 1 + ε ) df=fods 

This change of variable gives 

f (·βο/2/ο 
P ^ W = c o s 2 π / ο ( 1 + ε ) ( τ - τ ρ ) ί ί ε 

° o J B 0 / 2 / O 

and the τ ρ of Equation (13.96) becomes 

a 

For small ε, neglecting terms of order ε 2 , 

2π/ 0 (1 + ε ) ( τ - τ / ) ) = 2π/ 0 (1 + e)x-a^2nf0(\ + e ) 

« 2π/ 0 (1 -|-ε)τ-αν/2π/ο(Ί 

« 2π/ 0 f τ + 2π/ 0 τ -
/2nf0J V 2 ^ π / ϊ ; 

Then, neglecting sine terms compared to cosine terms, 

cos2π/ 0 (1 + ε ) ( τ - τ ι ) « οοβ[2π/ 0 (τ-τ ι ) + 2 π / 0 ( τ - τ 2 ) ε ] 

« [cos 2n / 0 ( r - r i ) ] [cos 2 π / 0 ( τ - τ 2 ) ε ] 

where 

τι 
/Wo 
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τ 2 = 
2s/2nfo cg 

(13.108) 

Here, cp and cg represent the phase velocity at frequency/ 0 and the group velocity at 
frequency / 0 with cg = 2cp. Finally, one should substitute Equation (13.106) into 
Equation (13.103) and integrate to obtain 

fo 
cos 2π/ο(τ—ti) 

fSo/2/o 

Bo 

sin7ri?o(r—τ 2 cos 2π/ο(τ—τι) 

cos 2π/ο(τ-τ 2 )εί ίε 

(13.109) 

|_ πΒ0(τ-τ2) 

which is the stated result of Equation (13.91). 

13.3 ENVELOPE DETECTION FOLLOWED BY CORRELATION 

Consider Figure 13.11 where 

u(t) = x2^) + x2(t) = squared envelope ofx(f) 
v ( l ) = y 2 (i) + y 2 ( r ) = squared envelope ofy(r) 

(13.110) 

The cross-correlation function RUV(T) of these squared envelope signals is given by 

Rm{x) =E[u(t)v(t + r)} =E[{x2(t)+x2(t)}{y2(t + T)+y2(t + T)}} 

= E[x2(t)y2(t + T)]+E[x2(t)f(t + T)} (13.111) 

+ E[x2(t)y2(t + T)]+E[x2(t)f(t + x)} 

x(t)-

y(0-

Square-law 
envelope 
detector 

Square-law 
envelope 
detector 

u(t) DC 
remover 

v(t) 
DC 

remover 

Correlator •Cu u(r) 

Figure 13.11 Square-law envelope detection followed by correlation. 
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Assume that x(t), x(t), y{t), and y(r) are jointly normally distributed with zero mean 
values. Then 

E[*W(' + *)]=<^ + 2 ^ ( T ) 

E[x2(t)f(t + x)]=(r
2

xaj + 2R^(x) 

E[x2(t)y^t + z))=ayy+2R2

J(r) 

E[x*(t)?(t + z)]=a*oj+2R%(z) (13.112) 

Substituting Equation (13.112) into (13.111) and using results from Table 13.2 
yields 

Ruv{x) = 4 σ > 2 + 4 [ * 2 ( τ ) + ^ ( τ ) ] (13.113) 
χ y L xy\ / 1 xy 

Also, 

Hence, 

ΰ = E[u(t)\ = 2σ\ 

ν = £ [ ν ( ί ) ] = 2 σ 2 
(13.114) 

Rm(z)-{U)(v) = 4\R%(x)+Rxy{x)) = 4Α^(τ) (13.115) 

where, as shown in Equation (13.73), the quantity Α^,(τ) is the squared envelope of 
Λ„(τ). Now 

Ruu(0)=E[u2(t)}=E[{x2(t)+x2(t)}2} 

= E[x4(t)}+2E[x2(t)x2(t)}+E[x4(t)} (13.116) 

= 3σΐ + 2σ\σ\ + 3σ~ = Sat 

Thus, 

Similarly, 

Ruu(0)-(u)2 =4σχ (13.117) 

Rvv(0)-(v)2 = 4σ* (13.118) 

The preceding relations prove that the correlation coefficient function p u v ( r ) for the 
squared envelope signals u(t) and v(r) is given by 

P„M= , = ^ (13.119) 

[« . . (0 ) - (« ) 2 ] [« , . (0 ) -{v) 2 ] ' ' 

This particular result in Equation (13.119) should be compared with the usual 
correlation coefficient function Pxy(x) for the original signals x(t) and y(t) as given by 
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Equation ( 5 . 1 6 ) , namely, 

P » = , ^ M z ) ( 1 3 . 1 2 0 ) 

[ « „ ( 0 ) - ( x ) 2 ] [ J ? w ( 0 ) - i j ) 2 ] σ * σ ' 

Upon taking Hilbert transforms 

ρ » = = ^ = ^ = ρ^(τ) ( 1 3 . 1 2 1 ) 

It follows now using Equation ( 1 3 . 7 3 ) that 

Ρ Η ν ( τ ) = Ρ ^ ( τ ) + ρ ^ ( τ ) ( 1 3 . 1 2 2 ) 

Thus, the function ρ„„(τ), with mean values removed prior to correlation, measures the 
squared envelope value of ρ ^ τ ) . The quantity ρ„ ν(τ) is the correlation coefficient 
function for 

C „ ( T ) = S „ ( T ) - ( H ) ( V ) = £ [ { « ( / ) - « } { v ( i + i ) - v } ] ( 1 3 . 1 2 3 ) 

where w(f), v(r), U, and ν satisfy Equations ( 1 3 . 1 1 0 ) and ( 1 3 . 1 1 4 ) . The computation of 
C«V(O is sketched in Figure 1 3 . 1 1 . 

Three special points should be noted from Equation ( 1 3 . 1 2 2 ) regarding the nature 
of the envelope correlation coefficient ρ„ ν(τ) compared to its underlying Rxy{i) and its 
envelope Α^(τ). 

1. The quantity ρ„ ν(τ), like Α^(τ), will be independent of the fine structure in 

2. The quantity ρ„ ν(τ) will sharpen the correlation function of /?^(r) and of ρ„(τ) 

in the vicinity of τ where the peak value occurs. 

3. The quantity ρ„ ν(τ) will also sharpen the correlation function of Α^(τ) in the 

vicinity of τ where the peak value occurs. 

Thus, the result ρ„ ν(τ) is superior to both ρ ^ τ ) and Α^(τ) in locating where peak 
values occur. 

Example 13.9. Exponential-Cosine Cross-Correlation Function. Consider a 
cross-correlation coefficient function of the form 

p {T)=

R^l = e^\cos2nfoT 
σχσγ 

The Hilbert transform is then 

ρ ( τ ) = ^ = , - % Ι 8 ί η 2 π / 0 τ 

It follows that 
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and 

P u A ) σ2σ2 

χ y 

Observe that ρ„ ν(τ) and Α^(τ) are both independent of the modulating frequency/ 0 . 
Also, near τ = 0, where the peak value of ρ^(τ) occurs, both p ^ r ) and A^(r) behave 
like e"fciTl but the associated ρ Μ υ (τ) behaves like e~2h^. Clearly, ρ„ ν(τ) will have a 
shaφer peak at τ = 0 than Α^(τ). This concludes the example. 

Consider next the cross-spectral density functions and the autospectral density 
functions for the squared envelope signals u(t) and v(r) given in Equation (13.110). 
From Equation (13.115), the envelope cross-spectral density function 

SUv(f) = 3F\Rm(x)-uv\ = 4^[A2M) 

The squared envelope of Rxy{i), namely, 

^2 
Α ^ ( τ ) = ^ ( τ ) + Λ ; ( τ ) 

can be computed by the procedure outlined in Example 13.4. Now 

' O O 

J — O O 

Sxy(a)Sxy(f-ot)da 

B(a)B(f-a)Sxy(a)Sxy(f-a) da 

where B(f) = (—j sgn j) as in Equation (13.8). Hence, 

Suv(f) = 4 [1 + B{a)B(f-a)}Sxy(a)Sxy(f-a) da 

For a n y / > 0, the quantity 

Γ 1 a < 0 

B{a)B(f-a) = < - 1 0 < a <f 

{ 1 a>f 

It follows by straightforward steps that for a n y / > 0, 

Suu(f) = 16 

Sm{f) = 16 

•oo 

Sxx{a 
Jo 

)Sxx(f + a)da 

S;j!(a)Sxy(f + a)da 

(13.124) 

(13.125) 

(13.126) 

(13.127) 

(13.128) 

(13.129) 

(13.130) 

Thus, knowledge of the basic spectral density functions for the signals x{t) and y(f) 
enables one to compute the associated spectral density functions for the squared 
envelope signals u(t) and v(f). 
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PROBLEMS 

13.1 Consider a function x(t) with a Fourier transform given by 

Determine the Fourier transform of the Hilbert transform x(t). 

13.2 Determine the Hilbert transform of the function 

t-a 

\ + {t-ay 
13.3 Determine the Hilbert transform of the function 

x(t) = ae~m wherefc > 0 

13.4 Which of the following statements are correct? 

(a) The Hilbert transform is a linear operator. 

(b) The Hilbert transform of a time-dependent function is also a 

time-dependent function. 

(c) Given x(t) and its Hilbert transform x[t) with Fourier transforms X(f) and 

X(f), respectively, X(f) equals the Hilbert transform of X(f). 

(d) Given x(i) and its Hilbert transform x(t), the magnitude of the Fourier 

transforms of x(i) and x(t) is equal. 

(e) If the Fourier transform of x(t) is real valued, the Fourier transform of x(t) 

will also be real valued. 

13.5 The real part of the frequency response function for a physically realizable 
constant-parameter linear system is given by 

HK(f)=- 1 

(\-pf + (aff 

Determine the imaginary part of the frequency response function. 

13.6 Given a complex-valued function z(t)=x(t) + jy(t), under what circum-
stances will the Hilbert transform of z(i), denoted by z(t), be equal to jz(t)7 

13.7 Consider an analytic function z(r) = x(t) + jx(t) where the two-sided auto-
spectrum of x(t) is given by 

sa{f) = - 2 a 

α2+4πψ 

Determine the autospectra of (a) x(t) and (b) zit). 
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13.8 Given a modulated signal y(t) — x(t) cos 2π/ο? where the spectrum of x(f) 
includes no frequency components above F < / 0 , determine the following: 

(a) The Hilbert transform of y(t), denoted by y(t). 

(b) The correlation function of y(i), denoted by Ryy(x), in terms of Κχχ(τ). 

(c) The Hilbert transform of the correlation function Ryy(x), denoted by Ryy (τ). 

(d) The envelope of the correlation function Ryy{x). 

13.9 Assume that the cross-correlation function between the excitation and re-
sponse of a physical system has the form 

where Β < / 0 . If x\ = x2, what is the propagation time through the system at 
f r e q u e n c y / = / 0 -I- B? 

13.10 In Problem 13.9, if X\ φ x2, what is the propagating time through the system at 
frequency / = / n + Β assuming the group velocity of propagating waves is 
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Nonlinear System Analysis 

This chapter reviews some recommended techniques to identify the frequency 
domain properties of nonlinear systems from measured input/output random data. 
Procedures are discussed for the following five types of nonlinear systems and 
models. 

1. Zero-memory and finite-memory nonlinear systems 

2. Square-law and cubic nonlinear models 

3. Volterra nonlinear models 

4. Single-Input/Single-Output (SI/SO) models with parallel linear and nonlinear 
systems 

5. SI/SO models with nonlinear feedback 

Where appropriate, square-law and cubic nonlinear models are basic systems to apply. 
Formulas for Volterrra models involve multidimensional functions for Gaussian 
random data that are difficult to compute and interpret. Formulas for the SI/SO 
nonlinear models are valid for arbitrary random data and apply to broad classes of 
nonlinear operations. Direct multiple-input/single-output (MI/SO) linear techniques 
from Chapters 7 and 9 can be used to solve the SI/SO nonlinear models with parallel 
linear and nonlinear systems. Reverse MI/SO linear techniques, where input data and 
output data are interchanged, can be used to solve the SI/SO models with nonlinear 
feedback. Many examples and applications of these SI/SO models and techniques to 
solve nonlinear system problems are in Ref. 1 and Chapter 13 of Ref. 2. 

14.1 ZERO-MEMORY AND FINITE-MEMORY NONLINEAR SYSTEMS 

Two main properties distinguish nonlinear systems from linear systems. First, non-
linear systems do not satisfy the additive and homogeneous requirements of linear 

Random Data: Analysis and Measurement Procedures, Fourth Edition. By Julius S. Bendat 
and Allan G. Piersol 
Copyright © 2010 John Wiley & Sons, Inc. 
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X(i) 

Zero-memory 
nonlinear 

system, g(x) 

Figure 14.1 Zero-memory nonlinear system. 

systems. Second, the passage of Gaussian input data through any nonlinear system 
produces non-Gaussian output data. A general spectral analysis technique exists as 
detailed in Chapters 6 and 7 to identify the frequency response properties in SI/SO and 
MI/SO linear systems. No general spectral analysis technique exists that applies to all 
nonlinear systems. Instead, special techniques are required for particular types of 
nonlinear systems that can occur in different fields. This chapter reviews analysis and 
identification techniques for nonlinear system models found to be important and 
practical. 

A zero-memory nonlinear system, shown in Figure 14.1, is a system where the 
output y(t) at any time t is a single-valued nonlinear function g(x) of the input x(t) at the 
same instant of time, namely, 

Note that g(x) is a function of x. It is not a function of f. For any constants a\, a2 and any 
inputs xlt x2 the nonlinear function g{x) is neither additive or homogeneous, namely, 

The nonlinear system g(x) is a constant-parameter nonlinear system if the output 
y(f) becomes y(t + τ) when the input x(t) becomes x{t + τ). For stationary random 
input data passing through a constant-parameter nonlinear system g(x), the output 
data will also be stationary random data. Examples of zero-memory nonlinear 
systems are illustrated in Chapter 2 of Ref. 1. 

Chapter 2 of Ref. 1 also derives four useful theorems to predict input/output 
relations when stationary random data pass through specified zero-memory nonlinear 
systems. Theorem 1 applies to arbitrary input data and predicts the output probability 
density function from knowledge of the input probability density function. Theorem 2 
shows how to identify a possible zero-memory nonlinear system g(x) that is single 
valued and one-to-one from simultaneous measurements of input/output probability 
density functions. Theorems 3 and 4 apply only to Gaussian input data. Theorem 3 
predicts the output autocorrelation function from knowledge of the input autocorrela-
tion function. Theorem 4 predicts the input/output cross-correlation function from 
knowledge of the input autocorrelation function. 

When memory operations are desired along with the zero-memory nonlinear 
operations, they can often be modeled by inserting a linear system either "after" or 
"before" the zero-memory nonlinear system. The finite-memory nonlinear system in 
Figure 14.2 shows a linear system A(f) that is "after" the zero-memory nonlinear 
system. The finite-memory nonlinear system in Figure 14.3 shows a linear system B(f) 
that is "before" the zero-memory nonlinear system. 

y{t) = g[x(t)} (14.1) 

g{axXl +axx2) φ axg[xx) +a2g(x2) (14.2) 
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Zero-memory 
nonlinear 
system 

Linear 
system 

A(f) 

Zero-memory 
nonlinear 
system *1W 

Linear 
system 

A(f) 
Xi(0 

Figure 14.2 Finite-memory nonlinear system with a linear system after zero-memory linear system. 

x(f)-

Linear 
system 

B(f) 

Zero-memory 
nonlinear 

system 
y,(t) 

Figure 14.3 Finite-memory 
system. 

nonlinear system with a linear system before the zero-memory nonlinear 

14.2 SQUARE-LAW AND CUBIC NONLINEAR MODELS 

Two nonlinear models of physical interest are Case 1 and Case 2 square-law and cubic 
nonlinear models because they represent finite-memory nonlinear extensions of 
optimum third-order polynomial approximations to zero-memory nonlinear 
operations. 

The Case 1 square-law and cubic nonlinear model is pictured in Figure 14.4, where 
the squarer and cuber that produce the outputs x 2(r) and x3(t) from the input x(t) are 
followed by linear systems A2(f) and A 3 ( / ) . The terms in Figure 14.4 are 

X(f) = X , ( / ) = Fourier transform of measured input x(t) 

Y(f) = Fourier transform of measured total output y(i) 

N(f) = Fourier transform of unmeasured noise output n(t) 

X2(f) = Fourier transform of squarer output x2(t) 

X 3 ( / ) = Fourier transform of cuber output x 3(r) 

W ) = A i ( / )X , ( / ) 

Yi(f)=A2(f)X2(f) 

Y3(f)=A3(f)X3(f) 

Y(f) = Yi(f) + Yi(f) + Y3(f) + N(f) 

Figure 14.4 Case 1 square-law and cubic nonlinear model. 
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The objective in solving this Case 1 nonlinear model is to identify from knowledge of 
x(t) and y(r) the three optimum linear systems A A 2 ( / ) , and A 3 ( / ) that give the 
minimum mean square value of the output noise. 

The solution of this Case 1 nonlinear model is easy to perform because Figure 14.4 
can be replaced by a three-input/single-output linear model like Figure 7.18, 
where the three known inputs are x(t), x2(t), and x3(t). Note that x2(t) and x3(t) will 
always be non-Gaussian and their frequency ranges will be greater than the frequency 
range for x(t). The required steps to obtain the desired optimum frequency response 
functions Α ι (/), A2(f), and A 3 ( / ) follow as developed in Sections 7.4 and 11.7. These 
formulas apply to measured random data with arbitrary probability and spectral 
properties. For the special case of Gaussian input data, simple closed-form spectral 
results are derived in Section 13.3.3 of Ref. 2 that solve this Case 1 nonlinear model. 

The Case 2 square-law and cubic nonlinear model is pictured in Figure 14.5 where 
the squarer and cuber are preceded by linear systems B2(f) and B3(f). The terms in 
Figure 14.5 are 

X(f) — Fourier transform of measured input x(t) 

Y(f) = Fourier transform of measured total output y(f) 

M / ) = Fourier transform of unmeasured noise output n(f) 

U2(f) = B2(f)X(f) — Fourier transform of output u2(t) 

U3(f) = B3(f)X(f) = Fourier transform of output u3(t) 

Y\{f) = B,{f)X{f) = Fourier transform of output yi(r) 

Y2(f) = Fourier transform of output y2(f) = u2

2(t) 

Yj,(f) = Fourier transform of output y 3(i) = u2(t) 

Y(f) = Yi(f) + Yiif) + Y3(f) + N(f) 

The objective in solving this Case 2 nonlinear model is to identify from knowledge of 
x(t) and y(t) the three optimum linear systems B±{f), B2(f), and B3(f) that give the 
minimum mean square value of the output noise. 

This Case 2 nonlinear model cannot be replaced by an equivalent three-input/ 
single-output linear model as done for the Case 1 nonlinear model because the records 
u2(t) and M 3 ( i ) cannot be determined for arbitrary input data x(t) without the knowl-

X(f> 

Si(0 

Squarer Squarer 

Cuber Cuber 

Σ ) — • n o 

Figure 14.5 Case 2 square-law and cubic nonlinear model. 
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edge of B2(f)andB3(f). No practical procedures are known to solve Case 2 models for 
arbitrary input data. For the special case of Gaussian input data, complicated spectral 
formulas are derived in Section 9.4.4 of Ref. 1 that solve this Case 2 nonlinear model. 

14.3 VOLTERRA NONLINEAR MODELS 

Volterra nonlinear models consist of a sum of Volterra functionals where the total 
output y(t) to an arbitrary input x(t) is the sum of a linear system output, a bilinear 
system output, a trilinear system output, and so on to as many terms as desired. A 
third-order Volterra nonlinear model is pictured in Figure 14.6. Computations beyond 
the trilinear system are extremely complicated and rarely carried out in practice. 
Linear systems are described by first-order frequency response functions, Hy(f), 
bilinear systems are described by second-order frequency functions, H2(f,g), third-
order trilinear systems are described by third-order frequency functions, H3(f,g,h), 
and so on. Past work on Volterra models is in Refs 1, 3, and 4. 

In Figure 14.6, the terms are 

x{t) = measured input 

y(t) = measured total output 

n(t) = unmeasured noise output 

yi(r) = linear system output 

y2(t) = bilinear system output 

y 3(r) = trilinear system output 

H\(f) = linear system frequency response function 

H2(f,g) = bilinear system frequency response function 

H3(f,g,h) = trilinear system frequency response function 

The objective in solving this Volterra nonlinear model is to identify from knowledge 
of x(i) and y(t) the optimum linear, bilinear, and trilinear frequency response functions 
that give the minimum mean square value of the output noise. 

x(f)-

Linear H(f) 

Bilinear H(f.g) 

Trilinear H(f,g,h) 

Σ ) •y(r) 

Figure 14.6 Third-order Volterra nonlinear model. 
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General solutions to solve the third-order Volterra nonlinear model of Figure 14.6 
for arbitrary input data are not known. For zero mean value Gaussian input data, the 
desired optimum frequency response functions can be obtained by computing 
appropriate first-order spectral density functions, second-order bispectral density 
functions, and third-order trispectral density functions. The second-order and third-
order functions are complicated to compute and difficult to interpret. Clear and 
complete derivations of the data processing formulas required to identify the desired 
optimum linear, bilinear, and trilinear systems from Gaussian input data are carried out 
in Chapters 8 and 9 of Ref. 1. These Volterra models and techniques should not be used 
except as a last resort because they can often be replaced by the simpler practical SI/SO 
nonlinear models and techniques recommended here in Sections 14.4 and 14.5. 

14.4 SI/SO MODELS WITH PARALLEL LINEAR AND 
NONLINEAR SYSTEMS 

A general SI/SO nonlinear model of wide interest is shown in Figure 14.7 where a 
linear system A i ( / ) is in parallel with two nonlinear systems. The nonlinear systems 
consist of two known or assumed zero-memory nonlinear systems g2(x) and g3(x) that 
are followed by linear systems A 2 ( / ) and A 3 ( / ) . The case of only one parallel 
nonlinear system occurs when g3(x) = 0. More parallel nonlinear systems can be 
included as needed for cases of three or more parallel nonlinear systems. This class of 
SI/SO models with parallel linear and nonlinear systems represents appropriate 
nonlinear models to use for many engineering and scientific applications that are 
discussed in the references. 

In Figure 14.7, the terms are 

x(t) =X\(f) = measured input 

y(r) = measured total output 

n(t) = unmeasured noise output 

*2(0 = g2[x{t)] = input to linear system A2(f) 

x3(t) = gi[x(t)] = input to linear system A 3 ( / ) 

Y,(f)=Al(f)Xl(f) 

Y2(f)=A2(f)X2(f) 

W ) = A 3 ( / ) X 3 ( / ) 

Y(f) = Yi(f) + Y2(f) + Y3(f) + N(f) 

The objective in solving this SI/SO nonlinear model is to identify from measurements 
of x(t) and y(f) (a) the known or assumed zero-memory nonlinear functions, g2(x) and 
gi(x), and (b) the three optimum linear system frequency response functions, A\{f), 
A2(f), and A 3 ( / ) that give the minimum mean square value of the output noise. 

The frequency range for the outputs of the zero-memory nonlinear systems can 
be greater or smaller than the frequency range for the input data x(t). For example, 
in a nonlinear wave force model (discussed in Ref. 1), where x2(t) is proportional to 
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Figure 14.7 SI/SO model with parallel linear and nonlinear systems. 

x(f)bc(f)l (a squarer with sign), the output frequency range will be greater. In a 
nonlinear drift force model (discussed in Section 14.8), where x2(t) is proportional to 
the squared envelope of x(t), the output frequency range will be smaller. 

For some problems, the properties of the two zero-memory nonlinear functions will 
be known from previous theoretical or experimental work, such as by computation of 
input/output probability density functions. For other problems, trial properties of these 
two zero-memory nonlinear functions should be assumed based on engineering 
judgment and justified later by coherence analysis. In either situation, one will be 
able to compute the two non-Gaussian records, x2(t) and x3(t), that are the inputs to the 
systems A2(f) and A 3 ( / ) . One can then obtain their Fourier transforms, X2(f) and 
X 3 ( / ) , as well as their spectral density functions for the later analysis of Figure 14.7. 

The key to solving this SI/SO nonlinear model is to recognize that Figure 14.7, like 
Figure 14.4, can be replaced by the three-input/single-output MI/SO linear model of 
Figure 7.18 where the three input records and the total output record are known. The 
three desired optimum linear system frequency response functions, A1 ( / ) , A2(f), and 
A 3 ( / ) in Figure 14.7, are the same functions that are desired in Figure 7.18. They can 
be identified by the following procedure: 

1. The first step is to compute from the correlated input records [X,{f)},i= 1,2,3, 
a new set of mutually uncorrelated input records { t / , ( / )} , / = 1, 2, 3, using 
ordered conditioned spectral density functions. 

2. The second step is to replace Figure 7.18 by Figure 7.19 where the mutually 
uncorrelated input records {<7;(/)} now pass through new linear systems 
{L,(/)},i = l , 2 , 3. 

3. Simple SI/SO spectral analysis formulas should next be used to identify the 
optimum linear systems {£,·(/)} in Figure 7.19 from each uncorrelated input 
{(/,(/)} to the total output record Y(f). 

4. The percentage of the output spectrum of Y(f) due to each of the uncorrelated 
inputs and the multiple coherence function can be computed to determine the 
validity of this nonlinear model. 

5. The optimum linear systems {A,(/)} in Figure 7.18 from the original correlated 
input records (X,(/)} to the total output record Y(f) can be computed by 
Equations (7.125), (7.126), and (7.127). 
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Figure 14.8 SI/SO model with nonlinear feedback. 

6. This is the basis of the direct MI/SO technique to solve general SI/SO nonlinear 
models with parallel linear and nonlinear systems. 

14.5 SI/SO MODELS WITH NONLINEAR FEEDBACK 

A general SI/SO model with nonlinear feedback is shown in Figure 14.8 where a linear 
system is in parallel with a known or unknown nonlinear feedback system. In the past, 
from knowledge of measured input/output random data, it was usually very difficult, if 
not impossible, to identify the linear and nonlinear system frequency response 
properties in this model except for very special cases. In Figure 14.8, the terms are 

x(t) = measured input 

y(r) = measured output 

H{f) = linear system frequency response function 

z(y) = nonlinear feedback function of y(r) = nonlinear system output 

The objective in solving this SI/SO model with nonlinear feedback is to identify from 
measurements of x(t) and y(r) the linear system frequency response function H(f) and 
the frequency properties of the known or unknown nonlinear feedback system that 
will produce the output y(r) from the input x(t). 

The key to solving this nonlinear feedback model is to define a mathematical 
reverse SI/SO nonlinear model without feedback as pictured in Figure 14.9 where the 
measured physical input and the measured physical output are reversed. The physical 
input x(t) now becomes a mathematical output, and the physical output y(t) now 
becomes a mathematical input. The linear system / / ( / ) is replaced by its reciprocal 
system Aj ( / ) = The nonlinear function z(y) remains the same as before. 
The mathematical total output x(t) is now the sum of z(y) and the output of the linear 
system A, ( / ) . 

In Figure 14.9, the terms are 

x(t) = mathematical total output = measured input 

y(r) = mathematical input = measured output 

A\{f) = [H(f)]~l = linear system frequency response function 

z(y) = nonlinear feedback function of y(r) = nonlinear system output 
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Figure 14.9 Reverse SI/SO nonlinear model without feedback. 

Further work to identify the frequency properties in Figure 14.9 can now be 
carried out for problems where the nonlinear system output z(y) can be modeled by 
a collection of known or assumed zero-memory nonlinear systems that are 
followed by linear systems. For example, with two parallel nonlinear paths as shown 
in Figure 14.10, one would have the two nonlinear systems g2(y) and g 3(y) whose 
computed outputs are y2(t) and y 3(r). These two mathematical output records are 
the mathematical input records to the linear systems A2(f) and A 3 ( / ) to be deter-
mined. The mathematical input record y(f) goes through the linear system A i(f) to be 
determined. 

In Figure 14.10, the terms are 

x(t) — mathematical total output = measured input 

y(t) =y\{t) = mathematical input = measured output 

n(t) — mathematical output noise 

yi(t) = g2\y(t)] = input to linear system A2(f) 

Λ ( 0 = £3LV(0] = input to linear system A3(f) 

Xi(f)=Ai(f)Yl(f) 

Xiif)=A2(f)Y2{f) 

W ) = A 3 ( / ) K 3 ( / ) 

X(f) = Xiif) + Xi(f) + X 3 ( / ) + N(f) 

The objective in solving this mathematical reverse SI/SO nonlinear model with 
parallel linear and nonlinear systems of Figure 14.10 is to identify from measurements 
of x(t) and y(r) (a) the known or assumed zero-memory nonlinear functions, g2(y) and 
g 3(y), and (b) the three optimum linear system frequency response functions, A( / ) , 

Figure 14.10 Reverse SI/SO model with parallel linear and nonlinear systems. 
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A 2 ( / ) , and A( / ) , that give the minimum mean square value of the mathematical output 
noise. 

The same procedure as used previously to solve for desired terms in the general 
SI/SO nonlinear model with parallel linear and nonlinear systems of Figure 14.7 
should now be followed to solve for similar terms in the mathematical reverse SI/SO 
nonlinear model of Figure 14.10. This is the basis of the reverse MI/SO technique to 
solve SI/SO models with nonlinear feedback. 

14.6 RECOMMENDED NONLINEAR MODELS AND TECHNIQUES 

Whenever appropriate for engineering and scientific applications, one should try to 
establish desired SI/SO nonlinear models to be either 

a. SI/SO models with parallel linear and nonlinear systems, or 

b. SI/SO models with nonlinear feedback. 

These two types of SI/SO nonlinear models are recommended for the following 
reasons: 

1. Frequency-domain results can be obtained using established data processing 
procedures and computer programs by changing the SI/SO nonlinear models 
into equivalent MI/SO linear models. 

2. The recommended direct and reverse MI/SO techniques to solve these two 
types of SI/SO nonlinear models are valid for input/output random data with 
arbitrary probability and spectral properties. 

3. There are no restrictions on the forms of the zero-memory nonlinear operations 
in these SI/SO nonlinear models. 

4. Nonlinear system amplitude properties can be determined from the zero-
memory nonlinear operations, as well as the frequency properties of coeffi-
cients for physical parameters of linear and nonlinear system. 

5. The percentage of the output spectrum due to each linear and nonlinear system 
operation can be evaluated using appropriate coherence functions to show the 
particular frequencies where each linear and nonlinear system operation is 
important. 

6. Cumulative coherence functions and the multiple coherence function can be 
computed to validate the SI/SO nonlinear model. 

7. Direct and reverse MI/SO techniques can be used with simulated or measured 
data to identify each linear and nonlinear term in proposed nonlinear integro-
differential equations of motion. 

References 5-12 contain further useful materials and examples from extensive 
computer simulation studies and from experimental test programs with real data. 
Two engineering applications will be discussed from this work to complete this 
chapter: 
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a. Duffing SDOF nonlinear system. 

b. Nonlinear drift force problem. 

14.7 DUFFING SDOF NONLINEAR SYSTEM 

A Duffing SDOF nonlinear system is a nonlinear feedback system described by the 
constant-parameter differential equation 

mu{t) +cu{t) +ku{t) + k3u
3(t) = F(t) (14.3) 

where 

F(r) = applied input force 

u(t) = displacement output response 

m = system mass 

c = linear viscous damping coefficient 

k = linear elastic stiffness coefficient 

k3 = nonlinear feedback cubic stiffness coefficient 

The basic SDOF linear case without feedback occurs when k3 = 0. 
This Duffing SDGF nonlinear system and the basic SDOF linear case were studied 

by computer simulations in Ref. 9. In these studies, the applied input force F{t) was 
broadband random data with unit variance that followed a Gaussian distribution, This 
was achieved using a random number generator provided in the 386-MATLAB 
computer code. The digital data processing parameters for the later analysis are listed 
in Table 14.1. Note that the spectral and frequency response function estimates are 
based on 16 averages with a bandwidth resolution of 0.977 Hz. A Hanning window 
was used to reduce the effects of leakage. Also, a 256-point overlap was employed to 
recover information lost by the windowing operation. 

The linear frequency response function H(f) in Equation (14.3) for the physical 
input and output records is 

Table 14.1 Digital Data Processing Parameters 

fs = sampling frequency = 50 Hz 

Δί = l// s = discretization time = 0.02 s 

fc = l// s = Nyquist cutoff frequency = 25 Hz 

N= number of sample values per subrecord = 512 

T=N A t = time of each subrecord = 1.24 s 

nd = number of distinct subrecords = 16 

/V t o t a l = ndN=total number of sample values = 8192 

Tiotai = ndT= total time for all subrecords = 163.84 s 

Δ/= 1/Γ= bandwidth resolution = 0.0977 Hz 
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H{f) = [k-{2nffm +j{2nf)c}-x (14.4) 

with undamped natural frequency and damping ratio given by 

(14.5) 
2\/ίοη 4%fnm 

For a reverse dynamic linear system as described in Section 14.5 where 

u(t) = mathematical displacement input 

F(t) = mathematical force output 

the linear system frequency response function Ai(f) is the reciprocal of the H(f) of 
Equation (14.4), namely, 

A, ( / ) = k-(2nf)2m +j(2nf)c (14.6) 

With the terms in Equation (14.5), this A T ( / ) can also be expressed as 

Mf) = k[l-(f/fn)
2 +mifn)\ (14-7) 

The connection between a measured A i(f) and the physical parameters m, c, and k 
of the SDOF linear system can be found by noting that the minimum value of IAi(/)l 
occurs at / = / „ where |Ai(/„)| = 2££. These parameters are 

k = A j ( 0 ) 

m = kl(2nfn)
2=M{0)/{2nfn)

2 

, , (14.8) 
c =2C-Jk^=\Al(fn)\/{2nfn)

2 

ζ = \Ai(fn)\2k 

Table 14.2 shows the simulated system parameters that were used in Ref. 9 to study 
the basic SDOF linear system and the Duffing SDOF nonlinear system. 

14.7.1 Analysis for SDOF Linear System 

The applied excitation source is illustrated in Figure 14.11. This shows a time history 
segment from 0 to 10 s and the force autospectrum using a bandwidth resolution of 
0.098 Hz. This force autospectrum has the appearance of bandwidth-limited white 
noise from 0 to 10Hz. In Figure 14.12, the associated force histogram using 8192 
sample values has a Gaussian shape. 

Table 14.2 Simulated System Parameters 

System Type k c fn ζ 

Linear 355.3 3.77 3.0 Hz 0.10 0 
Duffing 355.3 3.77 3.0 Hz 0.10 2 x 107 
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Figure 14.11 Force history segment and autospectrum. 

Figure 14. 13(A) and(fc) shows the analyzed results for the magnitude and phase of 
the frequency response function A\(f) of Equation (14.7) for the simulated reverse 
dynamic SDOF linear system where/„ = 3.0 Hz and fe3 = 0. Note that the magnitude 
of Ai(f) has a dip at this resonance frequency instead of the usual peak value. The 

Figure 14.12 Force historgram. 
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Figure 14.13 (a) SDOF linear system magnitude, (b) SDOF linear system phase. 

cumulative coherence function in Figure 14.14(a) is the ordinary coherence function 
between the mathematical input record and the mathematical output record and is near 
unity at all frequencies. This confirms the fact that the simulated system is linear with 
no significant noise corruption. The slight dip in coherence near the resonance 
frequency is due to the well-known effect of leakage. Figure 14.14(b) shows the 
displacement histogram from 8192 sample values. This exhibits a Gaussian shape like 
the force histogram that further confirms the system is linear. 

14.7.2 Analysis for Duffing SDOF Nonlinear System 

Figures 14.15-14.17 show the analyzed results for the computer-simulated Duffing 
SDOF nonlinear system where/„ = 3.0 Hz and k3 = 2 χ 107. For this MI/SO reverse 
dynamic analysis, two mathematical inputs are required: the displacement u(t) and the 
correlated cubic displacement w3(i). The mathematical output record is the force F(t). 
Estimates of the magnitude and phase of the Duffing system linear frequency response 

Figure 14.14 (a) SDOF linear system coherence function, (b) SDOF linear system displacement 
histogram. 
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function A\(f) are the solid curves in Figures 14.15(a) and (b). These solid curves 
correctly identify Ax{f) since they agree with the SDOF linear system results in 
Figures 14.13(a) and (b). 
The analyzed results for a conventional SI/SO analysis with one mathematical input u 
(i) to the mathematical output F(t) produce the wrong dashed curves in Figure 14.15 
(a) and (b). These SI/SO results provide a best linear fit" that is corrupted by the 
correlated second input u 3(r). Inspection of these dashed curves shows that it estimates 
k = 500 instead of the correct simulated value k — 355 and that it estimates/„ = 3.6 Hz 
instead of the correct simulated value of/„ = 3.0Hz. This SI/SO analysis fails to 
identify the nonlinear stiffness coefficient k3 and gives different results for different 
excitation levels. 

The MI/SO reverse dynamic analysis for the Duffing SDOF nonlinear system 
identifies the frequency response function A2(f) for the nonlinear path. The real part 
of A2(f), shown in Figure 14.16(a), gives the value of k3 = 2 χ 10 7 as used in the 
simulation. The imaginary part of A2(f), shown in Figure 14.6(b), is essentially zero. 
Thus, the reverse MI/SO technique correctly identifies the two parts of this simulated 
system as a Duffing SDOF nonlinear system. 

The validity of this conclusion is further confirmed by inspection of the cumulative 
coherence functions in Figure 14.17(a) that is nearly unity over the entire frequency 
range from 0 to 10 Hz. The lower curve shows that approximately 90% of the output 
passes through the linear path given by Lx(f). This result is the same for different 
excitation levels. The displacement histogram for the Duffing SDOF nonlinear system 
is shown in Figure 14.17(&). The distortion from a Gaussian shape is very slight here 
so it would not serve as a useful preliminary analysis way to identify this type of 
nonlinearity. 

14.8 NONLINEAR DRIFT FORCE MODEL 

The general problem to be analyzed is shown in Figure 14.18 where the wave elevation 
input record is x(t) and the resulting ship motion output record is y(t). This input 
produces a force acting on the ship that is assumed to consist of two components: 

1. a linear term proportional to x(t). 

2. a nonlinear term proportional to the squared envelope u(t) of x(t). 

Wave elevation input — + ~ 
xit) 

Ship motion output 
—- y(t) 

Figure 14.18 Illustration of drift force problem. 
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Figure 14.19 Nonlinear drift force model with parallel linear and square-law envelope detector systems. 

The nonlinear term u(t), called the slowly varying drift force, has output frequencies 
that are lower than the input frequencies. 

The ship motion output y(t) thus takes the form 

y(t) = kxx(t)+k2u{t) (14.9) 

where the coefficients kL and k2 are usually assumed to be constants, independent of 
frequency. This nonlinear operation is poorly represented by a third-order polynomial 
approximation like the nonlinear model of Figure 14.4, where the output frequencies 
are higher than the input frequencies. 

A generalization of Equation (14.9) is drawn in Figure 14.19 where the coefficients 
k] and k2 are replaced by linear frequency response functions Hx(f) and H2{f). For 
Gaussian input data, the records x(t) and u(t) will be uncorrelated. This makes 
Figure 14.9 equivalent to a simple two-input/single-output linear problem with 
uncorrelated inputs x(t) and u(t) passing through Hx(f) and H2(f) to give the outputs 
yx(t) and y2{f). 

14.8.1 Basic Formulas for Proposed Model 

The following basic formulas apply to the proposed nonlinear drift force model of 
Figure 14.19. From Section 13.3, the square-taw envelope detector output u(t) is 
given by 

u(t)=x2(t)+x2(t) (14.10) 

where 

x(t) = Hilbert transform of x(t) (14.11) 

This Hilbert transform can be computed as per Section 13.1.1. The symbol ~ used 
here should not be confused with "raw" estimates. When x{t) has a zero mean value, 
x(f) will also have a zero mean value. However, the mean value of u(f), denoted by 
E[u(t)], is not zero. Instead, 

E[u(t)} = Ε[χ2(ή] +E[x2(t)} = Icrl (14.12) 

where σ2

χ is the variance of x(t). 
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In the frequency-domain, with mean values removed prior to taking Fourier 
transforms, the Fourier transform Y(f) of the total output y(t) is 

Y(f) = Yi(f) + Y2(f)+N(f) (14.13) 

where N(f) is the Fourier transform of n(i) and 

Yi(f) = Ht(f)X(f) (14.14) 

Yi(f) = H2(f)U(f) (14.15) 

Here, X( / ) is the Fourier transform of x(t) and U(f) is the Fourier transform of the 
square-law envelope detector output u(t). 

From-Equation (14.10), 

+ oo 

U(f)= I [X(a)X(f-a)+X(a)X(f-a)]da (14.16) 
—oo 

where the quantity X( / ) is defined by 

X(f) = B(f)X(f) (14.17) 

using the same B(f) as in Equation (13.8), namely, 

-j />° 

B(f) = -jsgnf={ 0 f = Q (14.18) 

+j f<0 

Hence, 
+ oo 

u(f) = [ l + B ( a ) f l f / - a ) ] X ( a ) X ( / - a ) d a (14.19) 

For any / > 0, the product quantity 

( 1 α < 0 
B(a)B(f-u) = I - 1 0 < α < / (14.20) 

I 1 «>f 

Substitutions then prove after several steps that 

oo 

U(f)=4^X*(a)X(f + a)da (14.21) 

ο 

This shows how to compute U(f) from X( / ) for a n y / > 0. 
Two problems will now be treated for this nonlinear drift force model of 

Figure 14.19. 
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1. Spectral Decomposition Problem. Given H\{f) and H2if) plus measurement 
only of x(t), determine the spectral properties of the two outputs y i(r) and y2(t). 
If y(r) is also measured, determine the spectral properties of the noise n(t). 

2. System Identification Problem. From simultaneous measurements of both x(t) 
and y(t), identify the optimum frequency response properties Ht(f) and H2(f) 
to minimize the autospectrum of nit). 

14.8.2 Spectral Decomposition Problem 

In Figure 14.19, for Gaussian input data, the linear output term y \ (r) and the nonlinear 
output term y2(t) will be uncorrelated. This is because yi(r) is uncorrelated with both 
x2(t) and x2(t), the two parts of u(t). Hence, the total output spectral density function 
Gyy(f) is given by the simple sum 

Gyyif) = Gy,y, (f) + Gy^ if) + Gm(f) (14.22) 

where 

Gylyltf) = \Hy(f)\1Gxx(f) (14.23) 

Gy2y2(f) = \H2(f)\
2Guu(f) (14.24) 

The spectral quantity G^(f) can be computed directly from X(f) for an ensemble of 
stationary random records of length Γ by the expected value operation 

G„(f)=j.E\X'(f)X(f)\ (14.25) 

Similarly, the spectral quantity Guuif) can be computed directly from U{f) 
for an ensemble of stationary random records of length Τ by the expected value 
operation 

Gm(f)=~E[U*{f)U(f)} (14.26) 

where U{f) is obtained from Xif) by Equation (14.21). 
Another formula to compute Guu{f) from knowledge of G^if) is derived in 

Equation (13.130). For a n y / > 0 , this formula is 

o o 

Guuif) = 8 I G„{*)Gxx{f-*)daL (14.27) 

ο 

With knowledge of G^if) and G„„(/), Equations (14.23) and (14.24) can now be used 
to compute the spectral properties of y\(t) and y2(f) from H\(f) and H2{f). To further 
obtain the spectral properties of n(r), the total output record y(t) must be measured to 
give Gyyif). One can then compute Gnn{f) from Equation (14.22). These formulas 
solve the spectral decomposition problem. 
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14.8.3 System Identification Problem 

Assume that the properties of the linear systems H\(f) and H2(f) are not known in the 
nonlinear drift force model of Figure 14.19. Optimum properties are to be determined 
from simultaneous measurements of the input x(t) and the total output y(t), based upon 
minimizing the autospectrum Gnn(f) of n(t) over all possible choices of linear systems 
to predict y(f) from Jt(r). It is assumed that the input data follow a Gaussian distribution 
with zero mean value. 

From Equations (14.13) and (14.14), the cross-spectral density function G^if) 
between x(t) and y(r) is given by 

Gtyif) = G^ (f) = ffif/)G„(/) (14.28) 

because 

G,„(f) = 0 (14.29) 

and 

Gin(f) = 0 (14.30) 

Equation (14.29) occurs because x(t) and w(r) are uncorrelated for Gaussian x{t). 
Equation (14.30) occurs because Hi(f) is the same as the optimum linear system 
Ha(f) and the optimum linear system makes n(t) uncorrelated with x{t). The optimum 
linear system is given by 

H0(f)=^ = H,(f) (14·31) 

Thus, Hi(f) can be Identified using x(t) and y(t). 
From Equations (14.13) and (14.15), the cross-spectral density function Guy(f) 

between u(t) and y(t) is given by 

Guy(f) = H2(f)Guu(f) (14.32) 

The autospectral density function Guu(f) can be computed by Equation (14.26). 
Similarly, the cross-spectral density function Guy(f) can be computed for an ensemble 
of stationary random records of length Τ by the expected value operation 

Guy(f)=~E\U*(f)Y(f)\ (14.33) 

Thus, H2(f) can also be identified from Equation (14.32) using x(f) and y(t) since 
u(t) is a function of x(t). These formulas solve the system identification problem. 

PROBLEMS 

14.1 A nonlinear square-law system with sign is defined by the relation y(t) = 
gl*(t)] = x(t)\x(f)L Prove that y(t) is a constant-parameter nonlinear system 
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14.2 Determine the output probability density function p2(y) as a function of y 
when zero mean value Gaussian input data χ = x{t) passes through a square-
law system y(r) = g[x(t)] = x2^). 

14.3 In Figures 14.2 and 14.3, assume that the two linear systems A(f) = B(f). 
Assume also that the same zero-memory nonlinear system transformation g[] 
is involved where z\(t) = g[x(t)] and Y2(f) = g[z2(t)]. Prove that the same input 
data x{f) to Figures 14.2 and 14.3 produce two different output data y^r) and 

yi(t). 

14.4 Assume that zero mean value Gaussian input data x(t) passes through a 
nonlinear cubic system y(r) = g[x(t)] = x3(t). Determine the optimum linear 
system H0(f) = [ G ^ / V G ^ C / ) ] . 

14.5 Assume that zero mean value Gaussian input data x{t) passes through a fourth-
order system y{t) = gMr)] = xA{i). Prove that the optimum linear system 
HQ{f) is now zero. How can one determine the part of the output due to Χ 4 ( Γ ) ? 

14.6 Consider the general SI/SO nonlinear model of Figure 14.7. Show that 
computation of the optimum linear system H0(f) is not the same as the 
computation of the linear system Ai(f) in Figure 14.7. Also, show 
that computation of Ha(f) does not determine the nonlinear terms in 
Figure 14.7. 

14.7 Assume in Figure 14.7 that the linear record x\{t) and the two nonlinear 
records x2(t) and x3{t) are mutually uncorrelated. Determine the percentage of 
the output spectrum of y(r) that is due to these three linear and nonlinear 
records. 

14.8 Show that Figure 14.9 gives the same result as Figure 14.8 when the input data 
and the output data are reversed. 

14.9 A Duffing nonlinear system is defined by the equation 

my(t) + cy{t) + ky(t) + k3y
3(t) = x(t) 

where x{t) = measured input, y(r) = measured output, and the coefficients are 
physical parameters to be determined. Show how the mathematical reverse 
SI/SO nonlinear model of Figure 14.10 can be used to solve for the physical 
parameters. 

14.10 Show that conventional SI/SO linear analysis of the Duffing nonlinear system 
in Problem 14.9 gives the wrong physical parameters. 
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A P P E N D I X A 

Statistical Tables 

Table A.l Ordinates of the Standardized Normal Density Function 

ζ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0. ,3989 0.3989 0. ,3989 0.3988 0. ,3986 0. ,3986 0. .3982 0.3980 0.3977 0. ,3973 
0.1 0. .3970 0.3966 0. .3961 0.3956 0. ,3951 0, .3945 0. .3939 0.3932 0.3925 0. ,3918 
0.2 0. 3910 0.3902 0. ,3894 0.3884 0. 3876 0. ,3867 0. .3857 0.3847 0.3836 0. ,3825 
0.3 0. .3814 0.3802 0. .3790 0.3778 0. ,3765 0, .3752 0. ,3739 0.3725 0.3712 0. ,3697 
0.4 0. ,3683 0.3668 0, ,3653 0.3637 0, ,3621 0, .3605 0. .3589 0.3572 0.3555 0, .3538 

0.5 0. ,3521 0.3503 0, ,3485 0.3467 0, .3448 0, .3429 0. .3410 0.3391 0.3372 0, .3352 
0.6 0. ,3332 0.3312 0. ,3292 0.3271 0. ,3251 0. ,3230 0. .3209 0.3187 0.3166 0. .3144 
0.7 0. ,3123 0.3101 0. ,3079 0.3056 0. .3034 0, .3011 0. ,2989 0.2966 0.2943 0, ,2920 
0.8 0. .2897 0.2874 0, .2850 0.2827 0. ,2803 0, .2780 0. .2756 0.2732 0.2709 0, ,2685 
0.9 0. .2661 0.2637 0, .2613 0.2589 0. ,2565 0, .2541 0. .2516 0.2492 0.2468 0, .2444 

1.0 0. .2420 0.2396 0. ,2371 0.2347 0. ,2323 0, ,2299 0 .2275 0.2251 0.2227 0, .2203 
1.1 0. .2179 0.2155 0, .2131 0.2107 0. ,2083 0, ,2059 0, ,2036 0.2012 0.1989 0. .1965 
1.2 0. ,1942 0.1919 0, ,1895 0.1872 0. ,1849 0, .1826 0, .1804 0.1781 0.1758 0, .1736 
1.3 0. .1714 0.1691 0. .1669 0.1647 0, ,1626 0 .1605 0, .1582 0.1561 0.1539 0. .1518 
1.4 0. ,1497 0.1476 0. .1456 0.1435 0. ,1415 0, ,1394 0, ,1374 0.1354 0.1334 0. .1315 

1.5 0. ,1295 0.1276 0. .1257 0.1238 0. ,1219 0, ,1200 0. ,1282 0.1163 0.1145 0. ,1127 
1.6 0. ,1109 0.1092 0, ,1074 0.1057 0. ,1040 0, .1023 0, ,1006 0.0989 0.0973 0. ,0957 
1.7 0. .0940 0.0925 0, .0909 0.0893 0, ,0878 0, .0863 0. .0848 0.0833 0.0818 0, .0804 
1.8 0. .0790 0.0775 0. ,0761 0.0748 0. ,0734 0, .0721 0, .0707 0.0694 0.0681 0 .0669 
1.9 0. ,0656 0.0644 0, ,0632 0.0620 0. ,0608 0. .0596 0. .0584 0.0573 0.0562 0, .0051 
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Table A.l (Continued) 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

2.0 0. .0540 0.0529 0. .0519 0.0508 0. .0498 0.0488 0.0478 0.0468 0. .0459 0.0449 
2.1 0. .0440 0.0431 0. .0422 0.0413 0. .0404 0.0396 0.0387 0.0379 0, .0371 0.0363 
2.2 0. .0355 0.0347 0. .0339 0.0332 0. .0325 0.0317 0.0310 0.0303 0. .0297 0.0290 
2.3 0. .0283 0.0277 0. .0270 0.0264 0. .0258 0.0252 0.0246 0.0241 0. .0235 0.0229 
2.4 0. .0224 0.0219 0, ,0213 0.0208 0 .0203 0.0198 0.0194 0.0189 0. .0184 0.0180 

2.5 0 .0175 0.0171 0. .0167 0.0163 0, .0158 0.0154 0.0151 0.0147 0 .0143 0.0139 
2.6 0, .0136 0.0132 0, .0129 0.0126 0, .0122 0.0119 0.0116 0.0113 0, .0110 0.0107 
2.7 0 .0104 0.0101 0. .0099 0.0096 0. .0093 0.0091 0.0088 0.0086 0. .0084 0.0081 
2.8 0. .0079 0.0077 0, .0075 0.0073 0 .0071 0.0069 0.0067 0.0065 0 .0063 0.0061 
2.9 0. .0060 0.0058 0. .0056 0.0055 0 .0053 0.0051 0.0050 0.0048 0. .0047 0.0046 

3.0 0. .0044 0.0043 0. .0042 0.0040 0. .0039 0.0038 0.0037 0.0036 0. .0035 0.0034 
3.1 0. .0033 0.0032 0. .0031 0.0030 0, .0029 0.0028 0.0027 0.0026 0. .0025 0.0025 
3.2 0 .0024 0.0023 0. .0022 0.0022 0 .0021 0.0020 0.0020 0.0019 0, .0018 0.0018 
3.3 0. .0017 0.0017 0, .0016 0.0016 0. .0015 0.0015 0.0014 0.0014 0, .0013 0.0013 
3.4 0, .0012 0.0012 0, .0012 0.0011 0, .0011 0.0010 0.0010 0.0010 0. .0009 0.0009 

3.5 0. ,0009 0.0008 0. .0008 0.0008 0, .0008 0.0007 0.0007 0.0007 0, ,0007 0.0006 
3.6 0 .0006 0.0006 0 .0006 0.0005 0 .0005 0.0005 0.0005 0.0005 0 .0005 0.0004 
3.7 0, .0004 0.0004 0 .0004 0.0004 0. .0004 0.0004 0.0003 0.0003 0, .0003 0.0003 
3.8 0. .0003 0.0003 0, .0003 0.0003 0. .0003 0.0002 0.0002 0.0002 0, .0002 0.0002 
3.9 0. .0002 0.0002 0, .0002 0.0002 0 .0002 0.0002 0.0002 0.0002 0 .0001 0.0001 
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Table A.2 Areas under Standardized Normal Density Function 

Value of a = —==e~*l2dz = Prob[z > Za\ 
. ζ . Λ/2π 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 
0.1 
0.2 
0.3 
0.4 

0.5 
0.6 
0.7 
0.8 
0.9 

1.0 
1.1 
1.2 
1.3 
1.4 

1.5 
1.6 
1.7 
1.8 
1.9 

2.0 
2.1 
2.2 
2.3 
2.4 

2.5 
2.6 
2.7 
2.8 
2.9 

0.5000 0.4960 
0.4602 0.4562 
0.4207 0.4168 
0.3821 0.3783 
0.3446 0.3409 

0.3085 
0.2743 
0.2420 
0.2119 
0.1841 

0.1587 
0.1357 
0.1151 
0.0968 
0.0808 

0.0668 
0.0548 
0.0446 
0.0359 
0.0287 

0.3050 
0.2709 
0.2389 
0.2090 
0.1814 

0.1562 
0.1335 
0.1131 
0.0951 
0.0793 

0.0655 
0.0537 
0.0436 
0.0351 
0.0281 

0.0228 0.0222 
0.0179 0.0174 
0.0139 0.0136 
0.0107 0.0104 
0.00820 0.00798 

0.00621 0.09604 
0.00466 0.00453 
0.00347 0.00336 
0.00256 0.00248 
0.00187 0.00181 

0.4920 
0.4522 
0.4129 
0.3745 
0.3372 

0.3015 
0.2676 
0.2358 
0.2061 
0.1788 

0.1539 
0.1314 
0.1112 
0.0934 
0.0778 

0.0643 
0.0526 
0.0427 
0.0344 
0.0274 

0.0217 
0.0170 
0.0132 
0.0102 
0.00776 

0.00587 
0.00440 
0.00326 
0.00240 
0.00175 

0.4880 
0.4483 
0.4090 
0.3707 
0.3336 

0.2981 
0.2643 
0.2327 
0.2033 
0.1762 

0.1515 
0.1292 
0.1093 
0.0918 
0.0764 

0.0630 
0.0516 
0.0418 
0.0336 
0.0268 

0.0212 
0.0166 
0.0129 
0.00990 
0.00755 

0.00570 
0.00427 
0.00317 
0.00233 
0.00169 

0.4840 
0.4443 
0.4052 
0.3669 
0.3300 

0.2946 
0.2611 
0.2296 
0.2005 
0.1736 

0.1492 
0.1271 
0.1075 
0.0901 
0.0749 

0.0618 
0.0505 
0.0409 
0.0329 
0.0262 

0.0207 
0.0162 
0.0125 
0.00964 
0.00734 

0.00554 
0.00415 
0.00307 
0.00226 
0.00164 

0.4801 
0.4404 
0.4013 
0.3632 
0.3264 

0.2912 
0.2578 
0.2266 
0.1977 
0.1711 

0.1469 
0.1251 
0.1056 
0.0885 
0.0735 

0.0606 
0.0495 
0.0401 
0.0322 
0.0256 

0.0202 
0.0158 
0.0122 
0.00939 
0.00714 

0.00539 
0.00402 
0.00298 
0.00219 
0.00159 

0.4761 
0.4364 
0.3974 
0.3594 
0.3228 

0.2877 
0.2546 
0.2236 
0.1949 
0.1685 

0.1446 
0.1230 
0.1038 
0.0869 
0.0721 

0.0594 
0.0485 
0.0392 
0.0314 
0.0250 

0.0197 
0.0154 
0.0119 
0.00914 
0.00695 

0.00523 
0.00391 
0.00289 
0.00212 
0.00154 

0.4721 
0.4325 
0.3936 
0.3557 
0.3192 

0.2843 
0.2514 
0.2206 
0.1922 
0.1660 

0.1423 
0.1210 
0.1020 
0.0853 
0.0708 

0.0582 
0.0475 
0.0384 
0.0307 
0.0244 

0.0192 
0.0150 
0.0116 
0.00889 
0.00676 

0.00508 
0.00379 
0.00280 
0.00205 
0.00149 

0.4681 
0.4286 
0.3897 
0.3520 
0.3156 

0.2810 
0.2483 
0.2177 
0.1894 
0.1635 

0.1401 
0.1190 
0.1003 
0.0838 
0.0694 

0.0571 
0.0465 
0.0375 
0.0301 
0.0239 

0.0188 
0.0146 
0.0113 
0.00866 
0.00657 

0.00494 
0.00368 
0.00272 
0.00199 
0.00144 

0.4641 
0.4247 
0.3859 
0.3483 
0.3121 

0.2776 
0.2451 
0.2148 
0.1867 
0.1611 

0.1379 
0.1170 
0.0985 
0.0823 
0.0681 

0.0539 
0.0455 
0.0367 
0.0294 
0.0233 

0.0183 
0.0143 
0.0110 
0.00842 
0.00639 

0.00480 
0.00357 
0.00264 
0.00193 
0.00139 
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Table A.3 Percentage Points of Chi-Square Distribution 

Value of χ2

η.α such that Prob [χ2, > χ2

η.α) = a 

η 0.995 0.990 0.975 0.950 0.900 0.10 0.05 0.025 0.010 0.005 

1 0.000039 0.00016 0.00098 0.0039 0.0158 2.71 3.84 5.02 6.63 7.88 
2 0.0100 0.0201 0.0506 0.103 0.211 4.61 5.99 7.38 9.21 10.60 
3 0.0717 0.115 0.216 0.352 0.584 6.25 7.81 9.35 11.34 12.84 
4 0.207 0.297 0.484 0.711 1.06 7.78 9.49 11.14 13.28 14.86 
5 0.412 0.554 0.831 1.15 1.61 9.24 11.07 12.83 15.09 16.75 

6 0.676 0.872 1.24 1.64 2.20 10.64 12.59 14.45 16.81 18.55 
7 0.989 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48 20.28 
8 1.34 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09 21.96 
9 1.73 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67 23.59 

10 2.16 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21 25.19 

11 2.60 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.73 26.76 
12 3.07 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22 28.30 
13 3.57 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 29.82 
14 4.07 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14 31.32 
15 4.60 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58 32.80 

16 5.14 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00 34.27 
17 5.70 6.41 7.56 8.67 10.08 24.77 27.59 30.19 33.41 35.72 
18 6.26 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81 37.16 
19 6.84 7.63 8.91 10.12 11.65 27.20 30.14 32.85 36.19 38.58 
20 7.43 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57 40.00 

21 8.03 8.90 10.28 11.59 13.24 29.62 32.67 35.48 38.93 41.40 
22 8.64 9.54 10.98 12.34 14.04 30.81 33.92 36.78 40.29 42.80 
23 9.26 10.20 11.69 13.09 14.85 32.01 35.17 38.08 41.64 44.18 
24 9.89 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98 45.56 
25 10.52 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31 46.93 

26 11.16 12.20 13.84 13.38 17.29 35.56 38.88 41.92 45.64 48.29 
27 11.81 12.88 14.57 16.15 18.11 36.74 40.11 43.19 46.96 49.64 
28 12.46 13.56 15.31 16.93 18.94 37.92 41.34 44.46 48.28 50.99 
29 13.12 14.26 16.05 17.71 19.77 39.09 42.56 45.72 49.59 52.34 
30 13.79 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 53.67 

40 20.71 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 66.77 
60 35.53 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38 91.95 
120 83.85 86.92 91.58 95.70 100.62 140.23 146.57 152.21 158.95 163.65 

For η > 120, χ\.α ηγ — ^ + z a y where za is the desired percentage point for a standardized normal 
distribution. 
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Value of t„.a such that Prob[f„ > t„-a] = a 

tn, α 

a 

a 

η 0.10 0.050 0.025 0.010 0.005 

1 3.078 6.314 12.706 31.821 63.657 
2 1.886 2.920 4.303 6.965 9.925 
3 1.638 2.353 3.182 4.541 5.841 
4 1.533 2.132 2.776 3.747 4.604 
5 1.476 2.015 2.571 3.365 4.032 

6 1.440 1.943 2.447 3.143 3.707 
7 1.415 1.895 2.365 2.998 3.499 
8 1.397 1.860 2.306 2.896 3.355 
9 1.383 1.833 2.262 2.821 3.250 

10 1.372 1.812 2.228 2.764 3.169 

11 1.363 1.796 2.201 2.718 3.106 
12 1.356 1.782 2.179 2.681 3.055 
13 1.350 1.771 2.160 2.650 3.012 
14 1.345 1.761 2.145 2.624 2.977 
15 1.341 1.753 2.131 2.602 2.947 

16 1.337 1.746 2.120 2.583 2.921 
17 1.333 1.740 2.110 2.567 2.898 
18 1.330 1.734 2.101 2.552 2.878 
19 1.328 1.729 2.093 2.539 2.861 
20 1.325 1.725 2.086 2.528 2.845 

21 1.323 1.721 2.080 2.518 2.831 
22 1.321 1.717 2.074 2.508 2.819 
23 1.319 1.714 2.069 2.500 2.807 
24 1.318 1.711 2.064 2.492 2.797 
25 1.316 1.708 2.060 2.485 2.787 

26 1.315 1.706 2.056 2.479 2.779 
27 1.314 1.703 2.052 2.473 2.771 
28 3.313 1.701 2.048 2.467 2.763 
29 1.311 1.699 2.045 2.462 2.756 
30 1.310 1.697 2.042 2.457 2.750 

40 1.303 1.684 2.021 2.423 2.704 
60 1.296 1.671 2.000 2.390 2.660 
120 1.289 1.658 1.980 2.358 2.617 

α = 0.995, 0.990, 0.975, 0.950, and 0.900 follow from tn^a = -t„,a 

Table A.4 Percentage Points of t Distribution 
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Table A.5(a) Percentage Points of F Distribution 

Area = 0.05 

"ni, nz; 0.D5 

n 2 \ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 

1 161 200 216 225 230 234 237 239 241 242 243 244 245 245 246 
2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 
3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.76 8.74 8.73 8.71 8.69 
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.94 5.91 5.89 5.87 5.84 
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.73 4.70 4.68 4.66 4.64 4.60 

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 3.98 3.96 3.92 
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.60 3.57 3.55 3.53 3.49 
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.31 3.28 3.26 3.24 3.20 
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.10 3.07 3.05 3.03 2.99 

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.94 2.91 2.89 2.86 2.83 

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.82 2.79 2.76 2.74 2.70 
12 4.75 3.89 3.49 3.25 3.11 3.00 2.91 2.85 2.80 2.75 2.72 2.69 2.66 2.64 2.60 
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.63 2.60 2.58 2.55 2.51 
14 4.60 3.74 3.35 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.57 2.53 2.51 2.48 2.44 
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.46 2.42 2.40 2.37 2.33 
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34 2.31 2.29 2.25 
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.31 2.28 2.25 2.22 2.18 

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.26 2.23 2.20 2.17 2.13 
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.21 2.18 2.15 2.13 2.09 
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15 2.12 2.09 2.05 
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.15 2.12 2.09 2.06 2.02 
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.13 2.09 2.06 2.04 1.99 

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.04 2.00 1.97 1.95 1.90 
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.99 1.95 1.92 1.89 1.85 
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92 1.89 1.86 1.82 
80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 1.95 1.91 1.88 1.84 1.82 1.77 

100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.89 1.85 1.82 1.79 1.75 
200 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.84 1.80 1.77 1.74 1.69 
500 3.86 3.01 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.81 1.77 1.74 1.71 1.66 
oo 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.79 1.75 1.72 1.69 1.64 

Values of F„,,„2;o.o5 such that Prob[F„,,„2 > F„,„ ! ; 0.o5] = 0.05 
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Table A.5(a) (Continued) 

18 20 22 24 26 28 30 40 50 60 80 100 200 500 oc 7 
247 248 249 249 249 250 250 251 252 252 252 253 254 254 254 1 
19.4 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 2 
8.67 8.66 8.65 8.64 8.63 8.62 8.62 8.59 8.59 8.57 8.56 8.55 8.54 8.53 8.53 3 
5.82 5.80 5.79 5.77 5.76 5.75 5.75 5.72 5.70 5.69 5.67 5.66 5.65 5.64 5.63 4 
4.58 3.56 4.54 4.53 4.52 4.50 4.50 4.46 4.44 4.43 4.41 4.41 4.39 4.37 4.37 5 

3.90 3.87 3.86 3.84 3.83 3.82 3.81 3.77 3.75 3.74 3.72 3.71 3.69 3.68 3.67 6 
3.47 3.44 3.43 3.41 3.40 3.39 3.38 3.34 3.32 3.30 3.29 3.27 3.25 3.24 3.23 7 
3.17 3.15 3.13 3.12 3.10 3.09 3.08 3.04 3.02 3.01 2.99 2.97 2.95 2.94 2.93 8 
2.96 2.94 2.92 2.90 2.89 2.87 2.86 2.83 2.80 2.79 2.77 2.76 2.73 2.72 2.71 9 
2.80 2.77 2.75 2.74 2.72 2.71 2.70 2.66 2.64 2.62 2.60 2.59 2.56 2.55 2.54 10 

2.67 2.65 2.63 2.61 2.59 2.58 2.57 2.53 2.51 2.49 2.47 2.46 2.43 2.42 2.40 11 
2.57 2.54 2.52 2.51 2.49 2.48 2.47 2.43 2.40 2.38 2.36 2.35 2.32 2.31 2.30 12 
2.48 2.46 2.44 2.42 2.41 2.39 2.38 2.34 2.31 2.30 2.27 2.26 2.23 2.22 2.21 13 
2.41 2.38 2.37 2.35 2.33 2.32 2.31 2.27 2.24 2.22 2.20 2.19 2.16 2.14 2.13 14 
2.30 2.28 2.25 2.24 2.22 2.21 2.19 2.15 2.12 2.11 2.08 2.07 2.04 2.02 2.01 16 
2.22 2.19 2.17 2.15 2.13 2.12 2.11 2.06 2.04 2.02 1.99 1.98 1.95 1.93 1.92 18 
2.15 2.12 2.10 2.08 2.07 2.05 2.04 1.99 1.97 1.95 1.92 1.91 1.88 1.86 1.84 20 

2.10 2.07 2.05 2.03 2.01 2.00 1.98 1.94 1.91 1.89 1.86 1.85 1.82 1.80 1.78 22 
2.05 2.03 2.00 1.98 1.97 1.95 1.94 1.89 1.86 1.84 1.82 1.80 1.77 1.75 1.73 24 
2.02 1.99 1.97 1.95 1.93 1.91 1.90 1.84 1.82 1.80 1.78 1.76 1.73 1.71 1.69 26 
1.99 1.96 1.93 1.91 1.90 1.88 1.87 1.82 1.79 1.77 1.74 1.73 1.69 1.67 1.65 28 
1.96 1.93 1.91 1.89 1.87 1.85 1.84 1.79 1.76 1.74 1.71 1.70 1.66 1.64 1.62 30 

1.87 1.84 1.81 1.79 1.77 1.76 1.74 1.69 1.66 1.64 1.61 1.59 1.55 1.53 1.51 40 
1.81 1.78 1.76 1.74 1.72 1.70 1.69 1.63 1.60 1.58 1.54 1.52 1.48 1.46 1.44 50 
1.78 1.75 1.72 1.70 1.68 1.66 1.65 1.59 1.56 1.53 1.50 1.48 1.44 1.41 1.39 60 
1.73 1.70 1.68 1.65 1.63 1.62 1.60 1.54 1.51 1.48 1.45 1.43 1.38 1.35 1.32 80 

1.71 1.68 1.65 1.63 1.61 1.59 1.57 1.52 1.48 1.45 1.41 1.39 1.34 1.31 1.28 100 
1.66 1.62 1.60 1.57 1.55 1.53 1.52 1.46 1.41 1.39 1.35 1.32 1.26 1.22 1.19 200 
1.62 1.59 1.56 1.54 1.52 1.50 1.48 1.42 1.38 1.34 1.30 1.28 1.21 1.16 1.11 500 
1.60 1.57 1.54 1.52 1.50 1.48 1.46 1.39 1.35 1.32 1.27 1.24 1.17 1.11 1.00 oo 
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Table A.5 (b) Percentage Points of F Distribution 

Area = 0.025 

~rr\, nz\ 0.025 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 
1 648 800 864 900 922 937 948 957 963 969 973 977 980 983 987 

2 38.5 39.0 39.2 39.2 39.3 39.3 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4 
3 17.4 16.0 15.4 15.1 14.9 14.7 14.6 14.5 14.5 14.4 14.4 14.3 14.3 14.3 14.2 
4 12.2 10.6 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.79 8.75 8.72 8.69 8.64 
5 10.0 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.37 6.52 6.49 6.46 6.41 

6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.41 5.37 5.33 5.30 5.25 
7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.71 4.67 4.63 4.60 4.54 
8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.24 4.20 4.16 4.13 4.08 
9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.91 3.87 3.83 3.60 3.74 

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.66 3.62 3.58 3.55 3.50 

11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.47 3.43 3.39 3.36 3.30 
12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.32 3.28 3.24 3.21 3.15 
13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.20 3.15 3.12 3.08 3.03 
14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 3.09 3.05 3.01 2.98 2.92 
16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.93 2.89 2.85 2.82 2.76 
18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.81 2.77 2.73 2.70 2.64 
20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.72 2.68 2.64 2.60 2.55 

22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.65 2.60 2.56 2.53 2.47 
24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.59 2.54 2.50 2.47 2.41 
26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59 2.54 2.49 2.45 2.42 2.36 
28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55 2.49 2.45 2.41 2.37 2.32 
30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.46 2.41 2.37 2.34 2.28 

40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.33 2.29 2.25 2.21 2.15 
50 5.34 3.98 3.39 3.06 2.83 2.67 2.55 2.46 2.38 2.32 2.26 2.22 2.18 2.14 2.08 
60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.22 2.17 2.13 2.09 2.03 
80 5.22 3.86 3.28 2.95 2.73 2.57 2.45 2.36 2.38 2.21 2.16 2.11 2.07 2.03 1.97 

100 5.18 3.83 3.25 2.92 2.70 2.54 2.42 2.32 2.24 2.18 2.12 2.08 2.04 2.00 1.94 
200 5.10 3.76 3.18 2.85 2.63 2.47 2.35 2.26 2.18 2.11 2.06 2.01 1.97 1.93 1.87 
500 5.05 3.72 3.14 2.81 2.59 2.43 2.31 2.22 2.14 2.07 2.02 1.97 1.93 1.89 1.83 
oo 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.99 1.94 1.90 1.87 1.80 

Values of F„,,„2;o.o25 such that Prob[F„,,„2 > F„,„2;o.o25] = 0.025 
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Table A.5(b) (Continued) 

18 20 22 24 26 28 30 40 50 60 80 100 200 500 oo 7 
990 993 995 997 999 1000 1001 1006 1008 1010 1012 1013 1016 1017 1018 1 
39.4 39.4 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 2 
14.2 14.2 14.1 14.1 14.1 14.1 14.1 14.0 14.0 14.0 14.0 14.0 13.9 13.9 13.9 3 
8.60 8.56 8.53 8.51 8.49 8.48 8.46 8.41 8.38 8.36 8.33 8.32 8.29 8.27 8.26 4 
6.37 6.33 6.30 6.28 6.26 6.24 6.23 6.18 6.14 6.12 6.10 6.08 6.05 6.03 6.01 5 

5.21 5.17 5.14 5.12 5.10 5.08 5.07 5.01 4.98 4.96 4.93 4.92 4.88 4.86 4.85 6 
4.50 4.47 4.44 4.42 4.39 4.38 4.36 4.31 4.28 4.25 4.23 4.21 4.18 4.16 4.14 7 
4.03 4.00 3.97. 3.95 3.93 3.91 3.89 3.84 3.81 3.78 3.76 3.74 3.70 3.68 3.67 8 
3.70 3.67 3.64 3.61 3.59 3.58 3.56 3.51 3.47 3.45 3.42 3.40 3.37 3.35 3.33 9 
3.45 3.42 3.39 3.37 3.34 3.33 3.31 3.26 3.22 3.20 3.17 3.15 3.12 3.09 3.08 10 

3.26 3.23 3.20 3.17 3.15 3.13 3.12 3.06 3.03 3.00 2.97 2.96 2.92 2.90 2.88 11 
3.11 3.07 3.04 3.02 3.00 2.98 2.96 2.91 2.87 2.85 2.82 2.80 2.76 2.74 2.72 12 
2.98 2.95 2.92 2.89 2.87 2.85 2.84 2.78 2.74 2.72 2.69 2.67 2.63 2.61 2.60 13 
2.88 2.84 2.81 2.79 2.77 2.75 2.73 2.67 2.64 2.61 2.58 2.56 2.53 2.50 2.49 14 
2.72 2.68 2.65 2.63 2.60 2.58 2.57 2.51 2.47 2.45 2.42 2.40 2.36 2.33 2.32 16 
2.60 2.56 2.53 2.50 2.48 2.46 2.44 2.38 2.35 2.32 2.29 2.27 2.23 2.20 2.19 18 
2.50 2.46 2.43 2.41 2.39 2.37 2.35 2.29 2.25 2.22 2.19 2.17 2.13 2.10 2.09 20 

2.43 2.39 2.36 2.33 2.31 2.29 2.27 2.21 2.17 2.14 2.11 2.09 2.05 2.02 2.00 22 
2.36 2.33 2.30 2.27 2.25 2.23 2.21 2.15 2.11 2.08 2.05 2.02 1.98 1.95 1.94 24 
2.31 2.28 2.24 2.22 2.19 2.17 2.16 2.09 2.05 2.03 1.99 1.97 1.92 1.90 1.88 26 
2.27 2.23 2.20 2.17 2.15 2.13 2.11 2.05 2.01 1.98 1.94 1.92 1.88 1.85 1.83 28 
2.23 2.20 2.16 2.14 2.11 2.09 2.07 2.01 1.97 1.94 1.90 1.88 1.84 1.81 1.79 30 

2.11 2.07 2.03 2.01 1.98 1.96 1.94 1.88 1.83 1.80 1.76 1.74 1.69 1.66 1.64 40 
2.03 1.99 1.96 1.93 1.91 1.88 1.87 1.80 1.75 1.72 1.68 1.66 1.60 1.57 1.55 50 
1.98 1.94 1.91 1.88 1.86 1.83 1.82 1.74 1.70 1.67 1.62 1.60 1.54 1.51 1.48 60 
1.93 1.88 1.85 1.82 1.79 1.77 1.75 1.68 1.63 1.60 1.55 1.53 1.47 1.43 1.40 80 

1.89 1.85 1.81 1.78 1.76 1.74 1.71 1.64 1.59 1.56 1.51 1.48 1.42 1.38 1.35 100 
1.82 1.78 1.74 1.71 1.68 1.66 1.64 1.56 1.51 1.47 1.42 1.39 1.32 1.27 1.23 200 
1.78 1.74 1.70 1.67 1.64 1.62 1.60 1.51 1.46 1.42 1.37 1.34 1.25 1.19 1.14 500 
1.75 1.71 1.67 1.64 1.61 1.59 1.57 1.48 1.43 1.39 1.33 1.30 1.21 1.13 1.00 0 0 
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Table A.5(c) Percentage Points of F Distribution 

Area = 0.01 

'η·\, nz', 0.01 

\ " 1 

n 2 \ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 

*1 405 500 540 563 576 586 593 598 602 606 608 611 613 614 617 

2 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4 
3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1 27.1 27.0 26.9 26.8 
4 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.4 14.4 14.3 14.2 14.2 
5 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.96 9.89 9.82 9.77 9.68 

6 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79 7.72 7.66 7.60 7.52 
7 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.54 6.47 6.41 6.36 6.27 
8 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.73 5.67 5.61 5.56 5.48 
9 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.18 5.11 5.05 5.00 4.92 

10 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.77 4.71 4.65 4.60 4.52 

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.46 4.40 4.34 4.29 4.21 
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.22 4.16 4.10 4.05 3.97 
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96 3.91 3.86 3.78 
14 8.86 6.51 5.56 5.04 4.70 4.46 4.28 4.14 4.03 3.94 3.86 3.80 3.75 3.70 3.62 
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.62 3.55 3.50 3.45 3.37 
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.43 3.37 3.32 3.27 3.19 
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.29 3.23 3.18 3.13 3.05 

22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18 3.12 3.07 3.02 2.94 
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.09 3.03 2.98 2.93 2.85 
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 3.02 2.96 2.90 2.86 2.78 
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.96 2.90 2.84 2.79 2.72 
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.91 2.84 2.79 2.74 7.66 

40 7.31 5.18 4.11 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.73 2.66 2.61 2.56 2.48 
50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.79 2.70 2.63 2.56 2.51 2.46 2.38 
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50 2.44 2.39 2.31 
80 6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74 2.64 2.55 2.48 2.42 2.36 2.31 2.23 

100 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.43 2.37 2.31 2.26 2.19 
200 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41 2.34 2.27 2.22 2.17 2.09 
500 6.69 4.65 3.82 3.36 3.05 2.84 2.68 2.55 2.44 2.36 2.28 2.22 2.17 2.12 2.04 
oo 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.25 2.18 2.13 2.08 2.00 

Values of F„,,„2;o.oi such that Prob[Fn i i„2 > F„,„2;o.oi] = 0.01 
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Table A.5(c) (Continued) 

18 20 22 24 26 28 30 40 50 60 80 100 200 500 0 0 A, 
619 621 622 623 624 625 626 629 630 631 633 633 635 636 637 1 

99.4 99.4 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 2 
26.8 26.7 26.6 26.6 26.6 26.5 26.5 26.4 26.4 26.3 26.3 26.2 26.2 26.1 26.1 3 
14.1 14.0 14.0 13.9 13.9 13.9 13.8 13.7 13.7 13.7 13.6 13.6 13.5 13.5 13.5 4 
9.61 9.55 9.51 9.47 9.43 9.40 9.38 9.29 9.24 9.20 9.16 9.13 9.08 9.04 9.02 5 

7.45 7.40 7.35 7.31 7.28 7.25 7.23 7.14 7.09 7.06 7.01 6.99 6.93 6.90 6.88 6 
6.21 6.16 6.11 6.07 6.04 6.02 5.99 5.91 5.86 5.82 5.78 5.75 5.70 5.67 5.65 7 
5.41 5.36 5.32 5.28 5.25 5.22 5.20 5.12 5.07 5.03 4.99 4.96 4.91 4.88 4.85 8 
4.86 4.81 4.77 4.73 4.70 4.67 4.65 4.57 4.52 4.48 4.44 4.42 4.36 4.33 4.31 9 
4.46 4.41 4.36 4.33 4.30 4.27 4.25 4.17 4.12 4.08 4.04 4.01 3.96 3.93 3.91 10 

4.15 4.10 4.06 4.02 3.99 3.96 3.94 3.86 3.81 3.78 3.73 3.71 3.66 3.62 3.60 11 
3.91 3.86 3.82 3.78 3.75 3.72 3.70 3.62 3.57 3.54 3.49 3.47 3.41 3.38 3.36 12 
3.72 3.66 3.62 3.59 3.56 3.53 3.51 3.43 3.38 3.34 3.30 3.27 3.22 3.19 3.16 13 
3.56 3.51 3.46 3.43 3.40 3.37 3.35 3.27 3.22 3.18 3.14 3.11 3.06 3.03 3.00 14 
3.31 3.26 3.22 3.18 3.15 3.12 3.10 3.02 2.97 2.93 2.89 2.86 2.81 2.78 2.75 16 
3.13 3.08 3.03 3.00 2.97 2.94 2.92 2.84 2.78 2.75 2.70 2.68 2.62 2.59 2.57 18 
2.99 2.94 2.90 2.86 2.83 2.80 2.78 2.69 2.64 2.61 2.56 2.54 2.48 2.44 2.42 20 

2.88 2.83 2.78 2.75 2.72 2.69 2.67 2.58 2.53 2.50 2.45 2.42 2.36 2.33 2.31 22 
2.79 2.74 2.70 2.66 2.63 2.60 2.58 2.49 2.44 2.40 2.36 2.33 2.27 2.24 2.21 24 
2.72 2.66 2.62 2.58 2.55 2.53 2.50 2.42 2.36 2.33 2.28 2.25 2.19 2.16 2.13 26 
2.65 2.60 2.56 2.32 2.49 2.46 2.44 2.35 2.30 2.26 2.22 2.19 2.13 2.09 2.06 28 
2.60 2.55 2.51 2.47 2.44 2.41 2.39 2.30 2.25 2.21 2.16 2.13 2.07 2.03 2.01 30 

2.42 2.37 2.33 2.29 2.26 2.23 2.20 2.11 2.06 2.02 1.97 1.94 1.87 1.83 1.80 40 
2.32 2.27 2.22 2.18 2.15 2.12 2.10 2.01 1.95 1.91 1.86 1.82 1.76 1.71 1.68 50 
2.25 2.20 2.15 2.12 2.08 2.05 2.03 1.94 1.88 1.84 1.78 1.75 1.68 1.63 1.60 60 
2.17 2.12 2.07 2.03 2.00 1.97 1.94 1.85 1.79 1.75 1.69 1.66 1.58 1.53 1.49 80 

2.12 2.07 2.02 1.98 1.94 1.92 1.89 1.80 1.73 1.69 1.63 1.60 1.52 1.47 1.43 100 
2.02 1.97 1.93 1.89 1.85 1.82 1.79 1.69 1.63 1.58 1.52 1.48 1.39 1.33 1.28 200 
1.97 1.92 1.87 1.83 1.79 1.76 1.74 1.63 1.56 1.52 1.45 1.41 1.31 1.23 1.16 500 
1.93 1.88 1.83 1.79 1.76 1.72 1.70 1.59 1.52 1.47 1.40 1.36 1.25 1.15 1.00 oo 

* Multiply the number of the first row (n2 = 1) by 10. 
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Table A.6 Percentage Points of Reverse Arrangement Distribution 

Ν 0.99 0.975 0.95 0.05 0.025 0.01 

10 9 11 13 31 33 35 
12 16 18 21 44 47 49 
14 24 27 30 60 63 66 
16 34 38 41 78 81 85 
18 45 50 54 98 102 107 
20 59 64 69 120 125 130 
30 152 162 171 263 272 282 
40 290 305 319 460 474 489 
50 473 495 514 710 729 751 
60 702 731 756 1013 1038 1067 
70 977 1014 1045 1369 1400 1437 
80 1299 1344 1382 1777 1815 1860 
90 1668 1721 1766 2238 2283 2336 
100 2083 2145 2198 2751 2804 2866 

Values of An-a such that Prob[Ajv > A^-a] = <*, where Ν = total number of measurements 

α 
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Definitions for Random Data Analysis 

Autocorrelation Function 
The autocorrelation function R^ir) of a quantity x(t) is the average of the product of 
the quantity at time t with the quantity at time (ί + τ) for an appropriate averaging 
time T: 

The delay τ can be either positive or negative. For an ergodic process, Τ should 
approach infinity, but, in practice, Γ must be finite. The total mean square value x2 can 
be estimated by 

Autospectral Density Function 
By finite Fourier transform techniques, the autospectral (also called power spectral) 
density function G^(/) is defined for 0 < / < oo by 

where E[] is an ensemble average, for fixed /, over nd available sample records of 
\X(f, T)\2. The quantity Xif, T) is a finite Fourier transform of x(t) of length T. The 
quantity G«(/) = 0 for/< 0. 

Random Data: Analysis and Measurement Procedures, Fourth Edition. By Julius S. Bendat 
and Allan G. Piersol 
Copyright © 2010 John Wiley & Sons, Inc. 

x2=R„{0)=-\{x2{f)dt 
Jo 

ΟΜ)=ψΕ[\Χ/,Τ)\2 

545 
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For theoretical studies, a two-sided autospectral density function Sxx(f) can be 
defined for — oo < / < oo by setting 

$ * ( / ) = 5 G « ( / ) w h e n / > 0 

= S„(f) 

For stationary random data, the autospectral density function Gxxif) is twice the 
Fourier transform of the autocorrelation function R^it). The total mean square value 
x2 can be obtained by integrating G^if) or S^if) as follows: 

• o o 

G„(f)df = Sa{f)df 
J — o o 

Coherence Function 
The coherence function γ 2

5 , ( / ) of two quantities xit) and y(r) is the ratio of the square 
of the absolute value of the cross-spectral density function to the product of the 
autospectral density functions of the two quantities: 

| c ^ ( / ) r 
lXyX/J G^Gyyif) ii(f) 

For all/, the quantity Hyif) satisfies 0 < Hyif) < 1. This ordinary coherence function 
measures the extent to which y{t) may be predicted from x{t) by an optimum linear 
least squares relationship. 

Coherent Output Spectrum 
The coherent output spectrum Gvvif) for a single-input/single-output problem is 
the product of the coherence function between the input signal xit) and the output 
signal y(f), multiplied by the output autospectral density function: 

The associated noise output spectrum Gn„if) is given by 

Gnn(f) = {l-ll(f)}Gyy(f) 

Cross-Correlation Coefficient Function 
The cross-correlation coefficient function ρ^(τ) of two quantities x(t) and y{t) is the 
ratio of the cross-correlation function /?^,(τ) to the square root of the product of the 
autocorrelation functions of the two quantities at τ = 0: 

P x y { v*»(o)Mo) 

For all τ, the quantity ρ^(τ) satisfies - 1 < p ^ (τ) < 1. This cross-correlation coeffi-
cient function and the ordinary coherence function are not Fourier transforms of each 
other. 
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Cross-Correlation Function 

The cross-correlation function R^x) of two quantities x(t) and y(t) is the average of the 
product of x(t) at time t with y(r) at time (f + τ) for an appropriate averaging time T: 

x(t)y(t + x)dt 

For a pair of ergodic processes, Γ should approach infinity, but, in practice, Γ must be 
finite. The autocorrelation function R-Jf) is a special case of R ^ T ) when xif) =y(r) . 

Cross-Spectral Density Function 

By finite Fourier transform techniques, the cross-spectral density function is defined 
for 0 < / < oo by 

Gxy(f)=^E[X*(f,T)Y(f,T)\ 

where £[] is an ensemble average, for fixed/, over nd available associated pairs of 
X*(f,T) and Y(f, T) computed from sample records of x(t) and y(r), each of length T. 
The quantity X* if, T) is the complex conjugate of the finite Fourier transform X(f, T) of 
x(t), while Y(f, T) is the finite Fourier transform of y(r). The quantity Gxy(f) = 0 for 
/ < 0 . 

For theoretical studies, a two-sided cross-spectral density function Sxy(f) can be 
defined for — oo < / < oo by setting 

S*y(f) = ±Gv(f) w h e n / > 0 

Sv(-f)= S^(f) 

For stationary random data, the cross-spectral density function G ^ ( / ) is twice the 
Fourier transform of the cross-correlation function ^ ( τ ) . 

Deterministic Data 

Deterministic data are data that can be described by an explicit mathematical 
relationship. 

Energy Autospectral Density Function 

By finite Fourier transform techniques, the energy autospectral density function is 
defined for 0 < / < oo by 

^ ( f ) = 2 £ [ | X ( f , T ) | 2 ] 

where E[] is an ensemble average, for fixed / , over nd available sample (transient) 
records of x(t), each of finite length T. This quantity ^xx(f) = 0 f o r / < 0. The energy 
autospectral density function for transient random data is related to the "power" 
autospectral density function for the same transient data by 

9*x{f) = TG^if) 
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where Γ is the length of the transient records. Observe that G^f) for transient data 
must approach zero as Τ approaches infinity. For theoretical studies, a two-sided 
energy autospectral density function can be defined for - oo < / < oo by setting 

Energy Cross-Spectral Density Function 
By finite Fourier transform techniques, the energy cross-spectral density function is 
defined for 0 < / < oo by 

where E[] is an ensemble average, for fixed/, over nd available associated pairs of 
sample (transient) records of x(t) and y(t) each of finite length T. This quantity 
&xyif) = 0 f o r / < 0. The energy cross-spectral density function for transient random 
data is related to the usual cross-spectral density function for the same transient data by 

where Τ is the length of the transient records. For theoretical studies, a two-sided 
energy cross-spectral density function can be defined for - oo < / < oo by setting 

Ergodic Process 

An ergodic process is a stationary random process involving a collection of time 
history records where time-averaged results are the same for every record. It follows 
that these time-averaged results from any single record will then be equal to 
corresponding ensemble-averaged results over the collection of records. To 
help explain this definition, consider a stationary random process {xk(t)} where 
k = 1,2,3, . . . represents the different records. For any particular record xk(t), a time-
averaged result such as the mean square value is given theoretically by 

This result must be independent of k and the same for all records if the process is 
ergodic. The corresponding ensemble-averaged result over the collection of records is 
given theoretically by 

=\*xx{f) w h e n / > 0 

9xy(f) = 2E[X'(f,T)Y(f,T)] 

Vxylf) = TG^) 

Pxyif) = ^ ( f ) w h e n / > 0 
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and is independent of t for stationary processes. For an ergodic process, the two types 
of averages given above will be equal. 

Ergodic Random Data 
See ergodic process. 

Fourier Series 
A Fourier series expresses a periodic quantity x(t) in terms of its individual frequency 
components. If x(t) is periodic of period Γ where x(t) =x(t + 7), then 

^ o o o o 

x(t) = — + ^ a„cos Innft + ^ t?„sin Innft 
n—\ n=\ 

The frequency / = (1/7) is the fundamental frequency. The coefficients 

2 fr 
2 f ( 

an = - x{u 
1 Jo 
2 f 

)cos Innfu du 

T η = 0 , 1 , 2 , . 

)sm2nnftidu 

where u is a dummy variable of integration. 

Fourier Transform 

The Fourier transform, also called the Fourier spectrum, X(f) of a quantity x(t), is a 
complex-valued function of frequency / defined by 

r O O 

X(f)=\ x{t)e'j2nftdt - o o < / < c o 

assuming x(t) is such that X(f) exists. The time function x(t) is obtained from X{f) by 

x(t) = X(fy2%s'df - c o < t < 
J—OO 

oo 

X(/ ) and jc(r) are known as the direct and inverse Fourier transforms, respectively. In 
terms of real and imaginary parts, 

X(f) = Rc[X(f)]-jlm[X(f)} 

where 

Re[X( / ) ]= x{t)cos2nftdt 

Im[X(/)] x(/)sin 2π//ώ 
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In actual practice, x(t) will be of finite length T, so thatX(/) is estimated by computing 
the finite Fourier transform 

x(f,T) = 

Such finite integrals always exist. 

x(t)e-J2*ftdt 

Frequency Response Function 
The frequency response function H(f) for a constant-parameter linear system is the 
Fourier transform of the unit impulse response function h{x) that describes this 
system. In equation form, 

ί Ό Ο 

H(f) = h(r)e~J2«fxdx 
J —oo 

The quantity H(f) is often called the transfer function by engineers, although the term 
transfer function should be reserved for the Laplace transform of the unit impulse 
response function. In complex polar notation, 

/7(f ) = \H(f)\e-^ 

where 

\H(f)\ = gain factor of system 

</>(/") = phase factor of system 

For linear systems, H(f) can be estimated using deterministic data, transient data, or 
stationary random data because its properties are independent of the nature of data 
passing through the system. 

Gain Factor 
See frequency response function. 

Gaussian Process 
A Gaussian process is a stationary random process x(t) whose instantaneous values at 
any time t have the following probability density function: 

p(x) 
1 

exp -(χ-μχ)
2/2σ2

χ -oo < X < 0 0 

where μχ is the true mean value of x(t) and σ 2 is the true variance of x(t). This 
probability density function defines the Gaussian distribution. 

Gaussian Random Data 
See Gaussian process. 
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Histogram 
A histogram is a plot of the number of observed values of a quantity x(t) that falls 
within various specified magnitude ranges, called class intervals. 

Hilbert Transform 
The Hilbert transform of a real-valued function x(t) extending over the range 
—oo < t < oo is a real-valued function x(t) defined by 

Thus, the Hilbert transform x(t) is the original function x(t) convolved with (1/πί). 

Line Spectrum 

A line spectrum is a spectrum whose components occur at a number of discrete 
frequencies, as in a Fourier series representation. 

Linear System 
A linear system is one that is additive and homogeneous. Given two inputs xx and x2 

that individually produce outputs yy and y2, the system is additive if the input xx + x2 

produces the output yx + y2, and homogeneous if the input cxt produces the output 
cy\ where c is an arbitrary constant. 

Mean Value 
The mean value χ of a quantity x{t) is the time average of the quantity for an 
appropriate averaging time T: 

For an ergodic process, the true mean value μχ can be obtained by letting Γ approach 
infinity. 

Mean Square Value 
The mean square value x2 of a quantity x(t) is the time average of the square of the 
quantity for an appropriate averaging time T: 

For an ergodic process, the true mean square value t^(f ) can be obtained by letting Τ 
approach infinity. See also notes under autocorrelation and autospectral density 
functions. 

— 1 Ρ 
x 2 = - x2{t)dt 

Jo 
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Multiple Coherence Function 
The multiple coherence function yy.x(f) between a quantity y(f) and a set of other 
quantitiesjt;(r),i= 1,2,..., q, measures the extent to which y{t) may be predicted from 
these various x,{f) by optimum linear least squares relationships. For all/ , the multiple 

I1 

eludes the ordinary coherence function as a special case. 
coherence function satisfies 0 < Ty.x{f) < 1. The multiple coherence function in-

Narrow Bandwidth Random Data 
Narrow bandwidth random data are those data whose spectral values are significant 
only within a narrow frequency range relative to the center of the frequency range. If 
such data have instantaneous values that follow a Gaussian distribution, then their 
peak values approximate a Rayleigh distribution. 

Noise Correlation Duration 
The noise correlation duration Tn for a zero mean value stationary random process 
{x(t)} with an autocorrelation function Λ«(τ) is defined by 

\Rxx(r)\dr 

Rxx(0) 

It is a measure of the time interval over which the values of a sample record from this 
random process are correlated. 

Noise Spectral Bandwidth 
The noise spectral bandwidth Bn for a zero mean value stationary random process with 
autospectral density function G^f) is defined by 

π _ JO 
On — 

Ga(f)df 

G«(/)lmax 

It is the bandwidth for this stationary random process that has the same mean square 
value as for bandwidth-limited white noise with a bandwidth of Β = Bn. 

Nonlinear System 
A nonlinear system is one that is either not additive or not homogeneous, as defined 
under linear system. 

Nonstationary Process 
A nonstationary random process is any process that is not a stationary process (refer to 
definition of stationary process). Statistical averages computed over an ensemble of 
time history records are not invariant with respect to translations in time but are a 
function of the times being analyzed. In general, time-averaged results from any 
single record do not represent this record or any other record, because information 
about essential time-varying properties are lost by the averaging operation. 
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Nonstationary Random Data 
See nonstationary process. 

Partial Coherence Function 
The partial coherence function between a quantity y(t) and any subset of a larger set of 
known quantities x,{i), i= 1, 2 , . . . , q, measures the extent to which y(t) may be 
predicted from this subset by optimum linear least squares relationships. Such partial 
coherence functions will be bounded between zero and unity. 

Peak Probability Density Function 
The peak probability density function of a stationary random record describes the 
statistical properties of positive peaks for this record. 

Peak Value 
A peak value of a quantity x(t) is the value of x(t) at a maximum or minimum value. 
Peak counts per unit time can indicate the number of maxima only, the number of 
minima only, or both. 

Phase Factor 
See frequency response function. 

Power Spectral Density Function 
See autospectral density function. 

Probability Density Function 
The probability density function p(x) of a quantity x{t) is the probability that x(t) at any 
value of t will assume the value χ per unit magnitude window for an appropriate 
magnitude window W: 

P(x,W) 
p{x)=-w 

where P(x, W) is the probability tha t ; t ( i ) falls in the magnitude window W centered at 
x. In words, p(x) is an estimate of the rate of change of probability with magnitude. For 
stationary random data, W should approach zero, but, in practice, W must be greater 
than zero. For all values of x, p(x) > 0, with the area under the probability density 
curve equal to unity. 

Probability Distribution Function 
The probability distribution function P(x) defines the probability that x(t) < χ at any 
value of t. In terms of the probability density function p(x), 

P(x) = p(u) du 

where u is a dummy variable of integration. Observe that />(—oo) = 0 and P(oo) = 1. 
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Random Data 
See random process 

Random Process 
A random process is a collection of time history records that can be described by 
appropriate statistical parameters, such as averaged properties of these records at a 
number of fixed times. 

Rayleigh Probability Density Function 
The Rayleigh probability density function qx(R) is defined for R > 0 by 

This function describes the statistical properties of the envelope R(t) of a narrow 
bandwidth Gaussian random record r(i) with zero mean value and variance σ 2 . It also 
represents the peak probability density function for this record. 

Root Mean Square Value 
The root mean square (rms) value is the positive square root of the mean square value. 
The rms value is equal to the standard deviation if the mean value is zero. 

Spectral Density 

See autospectral and cross-spectral density functions. 

Spectrum 

A spectrum is a description of a quantity in terms of any function of frequency. The 
spectrum may be either a line spectrum or a continuous spectrum. 

Standard Deviation 
The standard deviation is the positive square root of the variance. The standard 
deviation is equal to the rms value if the mean value is zero. 

Stationary Process 
A stationary random process is a collection of time history records having statistical 
properties that are invariant with respect to translations in time. Stationary processes 
may be either ergodic or nonergodic. 

Stationary Random Data 
See stationary process. 
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Statistical Bandwidth 
The statistical bandwidth Bs for a zero mean value Gaussian random process with an 
autospectral density function G^if) is defined by 

It is the bandwidth for this Gaussian random process whose mean square value 
estimates have the same random error as for bandwidth-limited white noise with a 
bandwidth of Β = Bs. 

Time History Record 
A time history record is the waveform of any quantity expressed as a function of time, 
where the data may be either deterministic or random. The reciprocal of the period for 
a record that is periodic in time is the frequency of the record. Any other independent 
variable may replace time in time history records, provided a corresponding change is 
made in the interpretation of frequency. 

Transfer Function 
The transfer function for a constant-parameter linear system is the Laplace transform 
of the unit impulse response function that describes this system. Along the imaginary 
axis, this quantity becomes the frequency response function of the system. See 
frequency response function. 

Transient Data 
Transient data are data of limited duration, which may be either deterministic or 
random. 

Unit Impulse Response (Weighting) Function 
The unit impulse response function, also called the weighting function, h(x) of a 
constant-parameter linear system describes the response of this system to a unit 
impulse (delta) function. It is the inverse Fourier transform of the frequency response 
function of the system. 

Variance 
The variance s2 of a quantity x(t) is the time average of the square of the deviation from 
the mean value χ for an appropriate averaging time T: 

For an ergodic process, thejrue variance σ2 can be obtained by letting Γ approach 
infinity. The quantity s2 = x2 if χ = 0 . 
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Wavenumber Autospectral Density Function 
The wavenumber autospectral density function G ^ K ) is the autospectra density 
function of a random process where each sample record x(8) is a function of distance δ 
in meters rather than time t in seconds. The spectra density is a function of wave 
number κ in cycles/m rather than frequency/in cycles/s (Hz). 

Wavenumber Cross-Spectral Density Function 
The wavenumber cross-spectral density function G^K) is the cross-spectra density 
function between two random processes where the sample records χ(δ) andy(5) are a 
function of distance 5 in meters rather than time t in seconds. 

Wide Bandwidth Random Data 
Wide bandwidth random data are data whose spectral values are significant over a 
wide frequency range relative to the center of the frequency range. ; 
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Answers to Problems in Random Data 

C H A P T E R 1 

1.1 Period = 2π 

1.2 (a) and (c) are periodic; (b) and (d) are nonperiodic 

1.3 The autocorrelation function ΛΧΤ(τ) —> μ\ as τ —> oo 

1.4 Variance = 0.09 

!.s ε = Φ-*)Τ =AJA = 0.io 

1.6 (d) is always true 

1.7 (c), (d), and (e) are always true 

1.8 (a) or (b) 

1.9 (b) and (c) 

1.10 Only (b) now applies 

C H A P T E R 2 

2 .1 f(x)=x\x\ 

f(xi +x2) = (χι +χ2)\χι+χι\ φχι\χι\+Χ2\χι\; 
f(cx) = cx\cx\ φ cx\x\ 

2.2 / ( C , X ! + C2X2) = C]f{xi ) + crffa) 

2.3 (a) and (b) 
O O O O 

2.4 H(f) = J h{x)e-Μτάτ =] Ae~^a + ^ d i = ^ 
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The maximum response occurs where 

dH(f) = A(f)(0)-(\/k)(dA(f)/df) 

df A2 if) 

This requires 

dA{f) 

= 0 

df 
1 - (f/fnf\ ( - 2 / / / „ ) ( l / / „ ) + 2[2ς/7/„]2ς//„ = 0. 

Hence, 1 - (///„) 2 = 2£ 2 a n d / =/„^1-2ς* =fr 

2.8 From Equation (2.24), assuming light damping, the half-power points of 
\H(f)\ occur approximately at those frequencies where 

l - ( / / / B ) 2 ~ ± 2 t f / / B « ± 2 f 

For the lower half-power point frequency, / =fr - BJ2, it follows that 

(fl/fr)=l-Br/(2fr) 

Ignoring higher order terms, 

(f/fr)
2*\-2Br/(2fr) and 1 - (f,lfr)

2 « (Br/fr) 

S i n c e / . « / „ , 

l-(fi/frf~2C*(Br/fr) 

A similar result is obtained for the upper half-power point frequency. 
Hence, for light damping, Br« 2[fr 

" («)A = £ v £ = £ v ^ = 3 - 1 8 H z 

(b) g = - £ _ = 1 0 = 0.05 
2v& 2y'(2000)(5) 

(c) / , = / B > / l - 2 f f 2 = 0.9975/„ = 3.17Hz 

(d) W ) I = 5 ^ ? = M « 0 . 0 0 5 

2.6 For τ < 0, ή(τ) = 0; for τ > 0, 

O O O O 

A(T) = j H(fy2^df = j [* - (2π/) 2™ +727T/C]" V 2 ^ / 

— oo — oo 

= - ^ = = e - 2 ^ s i n ( 2 ^ n X A ^ ? ) T 

2.7 From Equation (2.24), 

Hif) = ^ whereA(f) = [1 - f / / / „ ) 2 ] 2 + {2cf/fn}
2 
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2.9 From Problem 2.6, 

^τ)=-^^β-2π^η(2π/η^/τ^)τ 
ky/1 

Hence, (lnfn\/l - g 2 ) r = π when τ = \ / « γ 7 ! - ς- = Τ 

2.10 

ii(t) = x(t) 

R=c 

C=\/k 

L = m 

i0(t)=m 

Letting the current i{t) = q{t) where q(t) is charge, the loop equation is 

i4o+RMt) - ?/(01 + ^ b«(0 - ?/(')] = ο 

Hence, 

Lq0(t)+Rq0(t) + ~q0(t) = ^9i(t) + *$,-(/) 

in agreement with Equation (2.29) for the mechanical system using 
analogies. 

CHAPTER 3 

3.1 A shaft will not fit in a bearing if Δ = b — s < 0, where 

HA — ~ P-s = 0-01 C M > °"Δ = yo'l + °~2 = 0.005 cm 

Assuming the diameters are normally distributed, 

_ Δ - 0 . 0 1 
Z ~ 0.005 

Then for Δ = 0, ζ = - 2 and the probability of Δ < 0 is given from Table A.2 
as Prob[A < 0] = Probfz < - 2] = 0.0228 
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3.2 Since the mean values and variances sum, it follows that 

μΝ = Νμά = 25 cm 

σ2

Ν = Νσ2 = 25(0.1) 2 = 0.25 mm 2 

σΝ = 5(0.1) = 0.5 mm 

The desired interval is then 

μΝ ± 2σΝ = 25± 1.0 = 2 4 - 2 6 mm 

(a) From Table A.2, assuming d is Gaussian, 

Prob[|jc(Jfc) — A*̂ | < 2σχ] « 0 . 9 5 

(b) Even if d is not Gaussian, Nd can be assumed Gaussian due to the central 
limit theorem and the result in (a) still applies. 

3.3 (a) P(x) p(a)da =x4 0 < χ < 1 

0; χ < 0 

1; x> 1 

χ dx = -0») μχ = ^xp(x)dx = 4 

0 0 

1 1 

σ2 

ο ο 

75 

dP(x) I 0 * - 0 

3.4 (a) p{x) = —Μ = < nxP-1 0 < * < 1 
d x 1 0 J C > 0 

ο 
1 

[JE2/j(;C)<±C = 
n + 2 

σ2 = ^ - μ 2 - " 
( n + l ) > + 2) 
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3.5 The probability density function for the random numbers is 

p(x) = 0Λδ(χ — χη) for xn = 0 , 1 , 2 , . . . , 9 

It follows that 

μχ = ^xp(x)dx = 4.5 

ο 
9 

φ] = jx2p(x)dx = 28.5 

σ* = ώ ? - μ 2 = 8.25 >x — vx y-χ 

Since the sum of the numbers is 

Ν 

n = l 

then 
μ(Τ) =Νμ{χ)=4.5Ν 
σ2{Τ) = Νσ2(χ) = 8.25Ν 

3.6 From Equation (3.12), 

p(y)=wk where y = 2x+l 

It follows that 

dy 

dx 

so that 

2 and χ = i ( y - 1) 

P i y ) = ^ Q i y - D ) 

corresponding to 1 < y < 3. Hence, 

P(y) = \ for 1 < y < 3 

= 0 for y < 1 or ν > 3 

' dx 

2 dy 
3.7 For y=x ,x — ± y/y, and — = 2x. Then from Equation (3.13), 

where 

P { y ) \dy/dx\ ^y 

p(x) = l_exp( —x2/2) for all χ 
ν 2 π 
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and 

Hence, 

p ( v ^ ) = - / = e x p ( - y / 2 ) f o r y > 0 

M > ' ) = ^ e x p ( - y / 2 ) f o r y > 0 

= 0 o therwise 

3.8 From Equation (3.99), μ Λ = 2.50 = 1.25σΓ; hence ar = 2. From Equation (3.96), 
Probf/? > 5] = 1 - Q,(R) = εχρ[-/? 2 / (2σ 2 )] = exp{ -5 2 /[2(2) 2 ]} = exp[-25/8] 
= 0.0439 

3.9 The moment-generating function of Equation (3.17) becomes 

x=0 x=0 

It follows that 

Setting s = 0 yields 

m'(s) = μ ^ - ' ) + ί 

m"{s) =p{(pes + l)e^-V + s} 

μ = m'(0) = μ 

ψ2 =m"{0) =μ2 + μ 

σ2 = ψ2 - μ2 = μ 

Hence, the mean and variance of the Poisson distribution are both equal to the 
parameter μ. 

10 From the stated probability density functions, 

μχ = 1, σ 2 = 2 and μγ = - 1, (ή = 2 

It follows that for u = χ — y, 

M« = ("x-My = 2 and σ 2 = σ 2 + ο - ^ = 4 

while for ν — χ + y, 

μν = μχ + μy = 0 and σ2, = σ 2 + σ2 = 4 

Hence, the probability density functions for u and ν are 

(a) = ^ 5 = e x p [ - ( M - 2 ) 7 8 

( b > P ( v ) - ^ e x p [ - v 2 / 8 ] 
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CHAPTER 4 

4.1 (a) μ y = E[cx] = cE[x] = εμχ 

(b) ^ = E[(cx)2} = c^Eix2} = αψχ 

(C) <ή = ψ } = Jo2, 

4.2 The mean value and variance are μχ = 1 and σ 2 = 4. 

4.3 (a) For v = xy, μν = μχμν 

(b) For u-x-y, σ 2 = σ\ +σ2 

4.4 When the variance estimate is computed as in Equation (4.12), then 

- 2 
ns l\ where η = Ν — 1 

It follows that 

Var [χ 2] = 2n = ^ V a r [ i 2 ] 

Hence, 

Var[ i 2 ' = 
2σ? 

/ V - 1 

and 

{Var [s 2 ]} 1 / 2 

Els2} 

V2 
0.10 

4.5 (a) Chi-square distribution with η = 4 dof 
(b) Normal distribution with a mean value and variance of μ = 0 and σ 2 = 4 
(c) Student t distribution with η = 3 dof 
(d) F distribution with nt = 3 and n 2 = 1 dof 

4.6 (a) Normal distribution 
(b) F distribution 
(c) Chi-square distribution 
(d) Student t distribution 

4.7 From Equation (4.58), for r = 0.77, 

w = \-\n 
2 

*y 

l - r x 

= 2 l n 

1.77 

0.23 
1.02 

At the 1 % level of significance, from Table A.2, zaa = Zo.oos = 2.57. Hence, 
the acceptance region for the hypothesis that /Vy = 0 is given by 
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Equation (4.61) with Ν =7 as 

- 2 . 5 7 1 

IVf^i 2 < 
- 2.57' 

4.8 

Since 1.02 falls inside this interval, the hypothesis is accepted, meaning there 
is insufficient evidence to assert that correlation exists between the two 
variables. 

Given y = 1 + x, it follows that a = 1 and b = 1. 

(a) From Equation (4.70), 
- r w i 1 / 2 

l x y _ [bb'Y11 = 0 . 5 , s o b ' = 1/4 

(b) From Equation (4.68), 

χ — x + b'(y~y) 1 + 4 ( 7 - 2 ) 
1 1 

2 + 4 * 

4.9 (a) , 1 N 

1=1 

•21 -

(c) Var[j 2] = 

t=l 

where η -

Var[x2]o-' 

1 N ι N 

i = I (=1 

: - ( / Ν Σ 2 ) 

T Y D O F 

_2ΝσΑ 2 σ ^ 

4.10 (a) The reverse arrangements for the sequence of N= 20 measurements are 

Λ , = 4 A 5 = 1 A 9 = 2 A 1 3 = 2 A n = 0 
A 2 = 9 A 6 = 6 A , 0 = 6 A , 4 = 2 A 1 8 

A 3 = l A 7 = l l A u = 0 A , 5 = 2 A 1 9 

A 4 = 1 
11 

= 0 M2 

= 0 
11 M6 

= 1 
= 0 
62 

From Table A.6, for N= 20 and a = 0.05, A 2 0 ;o.975 = 64 and A 2 0 ; 0 0 2 5 = 
125. Since A = 62 falls outside this acceptance region, the hypothesis of 
stationarity is rejected at the 5% level of significance; that is, there is 
reason to doubt that the sequence of N= 20 measurements was acquired 
from a stationary random process, 

(b) From Equation (4.66), the slope of the linear regression line for the 
sequence of Ν =20 measurements is 

20 

;=1 

-Nxy 

20 

i=l 
-Νχ2 

2238.9 -20(10.5)(10.53) _ 27.6 

2 8 7 0 - 2 0 ( 1 0 . 5 ) 2 ~~ 665 
0.042 

From Equation (4.57), the correlation coefficient for the sequence of mea-
surements is 
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20 

^ / , y , - Nxy 

' 2 0 \ / 20 

25.7 

1/2 

= 0.46 
[(665)(2223.1 - 20(10 .53) 2 ) ] 1 / 2 

From Equation (4.74), the standard error about the regression line is 

Ty/x 
N-l 

Ν-2Π 

1/2 

(0.28)(1 - 0 . 2 1 ) 
1/2 

= 0.48 

From Equation (4.72) the acceptance region for the hypothesis that Β = 0 is 

1*1 < ±Sy/xtN-2 ±0.48(2.101) 

(665) 1/2 
= ±0 .039 

Since b = 0.042 falls outside this acceptance region, the hypothesis that Β = 0 is 
again rejected at the 5% level of significance. 
The measurements in this problem were actual acquired from a random process 
with a mean value that increased linearly by about 10% from the first to the last 
measurement. Thus, both the nonparametric reverse arrangements test and the 
parametric test using the slope of the regression line correctly detected this 
modest linear trend at the 5% level of significance. 

CHAPTER 5 

5.1 (a), (c), (d), and (e) are always true 

5.2 None 

5.3 (a) For autospectra, (a), (b), (d), and (e) are always true 
(b) For cross-spectra, none are always true 

5.4 (a) and (g) are always true 

5.5 (a) Hx = VRA°°) = 4 

Ίξ= -M0) = 41 

°x= 0 5 - ^ = 25 

(b) G„(f) = 200 + 
16 + 4π 2(/· + 2) 2 16 + 4TI 2(/'-2) 2J 

+ 168(f) 
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5.6 (a) = 4 

o o 

Ψΐ= I S^df = 216 
- o o 

0^ = ^ - / 4 = 2 0 0 

(b) 

10 

* „ ( τ ) = 16 + 40 J ( l - Qjcos{2nfx)df = 1 6 + 
[1 - C O S ( 2 0 O T ) ] 

2 

5.7 From Equations (5.195), (5.188), and (5.189), 

N0 =-
π 

'25 Ί 1/2 

J" (2nfYGxx(f)df 
0 

= 16.24 

This follows from the fact that 

25 

and 

| 2 5 + ^ ^ 4 t a n " ( 5 ) = ° - 2 7 5 

25 2 

= ( 2 π ) 2 [ 2 5 - 5 t a n - ^ S ) ] = (2π) 2 (18.133) 

5.8 From Equations (5.211), (5.215), and (5.216), 

2π \ σ ν / 2π 

This follows from the fact that 

25 

(2π) 268.96 

(2π)4.26 
16.19 

σ 2 = | | ^ 4 f = ( 2 π ) 2 [ 2 5 - 5 t an" ' (5 ) ] = (2π) 218.133 

and 

25 

Μ 
2 5 + / 2 

4f = (2π) - 6 2 5 + - ^ + 1 2 5 tan " ' ( 5 ) = (2π) 44755 

Note that Μ is the number of positive peaks per second. The total number of 
positive and negative peaks (maxima and minima) per second is 2M= 32.38. 
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5.9 (a) SAfl = (3 / / ) + 7(4//) . Using the convention S(f) = SRe(f) -j SIm(f), 

RealS^r/) = ( 3 / / 2 ) and Imag S^if) = - (4/f) 

(b) |5^f/)l = [ ( S / / 2 ) ^ ( 4 / / 3 ) 2 ] 1 / 2 , and 

5.10 From Equation (5.155), 

Λϋ(τ) = - Λ " „ ( τ ) 

= [(2π/ 0 )
2 - a 2 ] e - f l l I l co s (2^ 0 r ) - 4πα / 0 £- α Ι τ ΐ8ίη(2π/ο|τ |) 

CHAPTER 6 

6.1 (a) The magnitude of G^,(/) is given by 

It follows that 

= = ( ^ + 1) 
1/2 

(b) (M/) = tan (/) 

from Equation (5.97). 

6.2 Each output spectrum is given by 

GVlVl(f) = \H(f)\2Gx^(f); ι = 1,2,3 

Hence, 

GV l l,,(f) = 1 0 0 ; G V 2 V 2 ( f ) = 2 0 0 ; G , (/) = 300 

It follows that 

Gyy(f) = G„ V 1 (/) + G V 2 V 2 (/) + G V 3 V 3 (f) + Gm(f) = 700 

and 

6.3 From Example 6.3, for a white noise input, 

Φ2

γ=~2«25π and ψν = 5 ν π = 8.86 
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6.4 From Example 6.3, for a sine wave input, 

X2 

6.5 Gyy(f) = G v v (f) + Gm(f) = Gvv(f) + 0.1 

max $ = — = 5000 and max φ)Ι = 70.71 

G„(f) 

° V v ( f ) [l-(f/fn)2}2 + [2g(f/fn)}
2 

G w ( 0 ) = 0 . 1 G w ( 0 ) = 0 . 2 5 
G v v (10) = 250 Gyy(l0) = 250.1 

G v v (100) = 0.00001 G w (100) = 0.10001 

Hence, using y^f) = [Gvv(f)/Gyy(f)}, 

(a) ^,(Ο) = (0.1/0.2) = 0.5000 

(b) 7^(10) = (250/250.1) = 0.9996 

(c) 7^(100) = (0.00001/0.10001) = 0.0001 

6.6 Letting the input measurement be x(t) = u(i) + m(i), it follows that Gxy(f) = 
Guy(f) and Gxx{f) = Guu(f) + Gmm(f) = 0.1 + 0 . 1 . Hence, 

(a) «((/)- Gxx{f) - 2 G m i f ) - 2 

where H(f) is as defined in Problem 6.1. Thus, the magnitude of the 

computed frequency response function Hi(f) is only one-half the correct 

value. 

where H(f) is as defined in Problem 6.1. Thus, the computed frequency 
response function H2(f) is correct. 

6.7 The squared magnitude of the frequency response functions is given by 

I W ) | 2 = 7 T ^ and \H2(f)\
2=- 1 

1 + 16 / 2 1 1 + 6 4 / 2 

A t / = l H z , 

G V 1 V 1 = (10/17) « 0.588, Gym « 0.688 
GV2V2 = (10/65) » 0.154, Gyiy2 ss 0.254 

It follows that 

| G ^ , | 2 = \H,G„\2 = G V l V , G „ = (100/17) « 5.88 

| G ^ 2 |
2 = | # 2 σ „ | 2 = G V 2 V 2 G« = (100/65) « 1.54 

| G V „ 2 |
2 = \H*H2G„\2 = GvmGVlVl « 0.0906 

» 0.588 , 0.154 
(a) 7 2 » 7 ^ 7 ; « 0.855 and y2 « — — « 0.606 

' ^ ' 0.688 ^ 0.254 
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ΨΪ = - ^ : : 3 / = — 3 . 3 2 ^ = 1.82 
Gn/„(1 +4ς2) (0.01)π(100)[1 +4(0 .7) 

ry 4ς 4(0.7) 

6.10 From Table 2.1, the magnitude of the frequency response function for this 
case is 

Hx(y-x)(f) ~ 

( 2 π / „ ) 2 , / l-(f/fn)
2]2 + {2cf/fn)

2 

which is the frequency response function for the force input-displacement 
output system divided by (2π/„) 2. Hence, from Example 6.3, 

Κ , ) = G f = ( 0 · 0 1 )

4

π ( 1 ° 0 ) = 7 . 2 0 x 1 0 - » ; ^ , = 2 . 6 8 x 1 0 " 
Ψ ( * - χ ) (2π/„) 4(4ς) (200π) 4(4)(0.7) χ ) 

CHAPTER 7 

7.1 (a) No change in Equation (7.13). 

, 0.0906 
( b ) ?»» » (0.688)(0.254) W ° - 5 1 8 

6.8 The squared magnitudes of the frequency response functions are 

A t / = l H z 

G V l V l = G y i „ = (10/17) = 0.588; GVlVl = Gy2y2 = (10/65) = 0.154 

Since G^ = Guu + Gmm = 10 + 10 = 20, it follows that 

\Gm(f)\
2 = \HiGuu(f)\

2 = GVlVl(f)Guu(f) = 5.88 

\Gm\
2 = \H2GUU\

2 = GvmGuu = (100/65) = 1.54 

\Gyiy2\
 = \H*H2GUU\ = G V , V ,G V 2 V 2 = 0.0906 

f = J9sL = 5.88 
^ G „ G y i „ 20(0.588) 

y 2 = J g ^ = 1.54 
^ G „ G W 2 20(0.154) 

( b ) 7

2 = l G y „ | 2

 = 0.0906 = 

W Yy'y2 GyiyiGny2 (0.588)(0.154) 

6.9 As long as the input and output motions have the same units, the result in 
Example 6.4 applies. Hence, 
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(b) Equation (7.14) becomes 

Gyy(f) + p2

yS(f) = ^2\Hl(f)\
2Gxx(f) + Gnn(f) + 

where 

i = l 

2 

8(f) 

μγ = ΣΗί(0)μΧί 

ί=1 

7.2 From Equations (7.52)-(7.54), 

(a) G22., = | = 1.333 

(b) Gly.x = | = 1.333 

(c) Gyy.x = ^ = 0.567 

(d)H2y=^ = 1.000 

7-3 ^ = ^ = ( 4 / 3 ) + 7 · ( 1 / 3 ) ; | ^ | 2 = ^ 
On y 

L 2 y = tf2>, = 1.000; \Lly\
2 = 1.000 

Then, 
2 17 2 4 

Gy:i = Gn = — \Gya.\ = |L2 y | G22-i = - ; 

17 4 
G j ; 2 ! = y + - = 7 ; G W = 10.0 

Hence, 

72r,= | ^ = 0.70 

7.4 From Equation (7.26), if G , 2 = 0.4A, then G y y = 1.15A. If / / ! 2 = 0, then 
Gyy = 0.95 A. 

7.5 Using Equations (7.20) and (7.21), G, 2 = 0.4A, G l y = 1.2A, and G 2 y = 0.7A. 
It follows that 

7 , 1 . 4 4 , 0.49 
y]2 = 0.080, y\y = — = 0.626, y 2 , = — = 0.426 

7.6 Using Equation (7.35), }>2.2! = (0.95A)/(1.15A) = 0.826 

7.7 G\y 1.2A 

Gu ~ 2A 

Gly. 1 0.46A 

G 2 2 . i 0.92A 

0.60 
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7.8 G 3 2 = 1 — j2 means power flow is from 3 to 2 

G12 = 2 + jl means power flow is from 2 to 1 

G 1 3 = 3 + β means power flow is from 3 to 1 

Hence, the order should be x3 to x2 to xx. 

7.9 If Λ„(τ) = 3θ(/), then £„( / ) = 3 a n d G n ( / ) = 6. 

(a) y2

2(f) = | = 0.889 

(b) Gyy{f) = 
228 

and Λ^(τ) = 22 .8πβ - 1 0 π | τ Ι 
2 5 + / 2 

(c) Rly(T) = 36ne-l0m for τ > 0 

= 0 for τ < 0 
36 

Gly(f) = 
5+if 

W y?,(/) = jf = 0.947 

7.10 Equations (7.125)-(7.127) follow directly from Equation (7.108) since 
Aiy(f) = Hiy(f), i = 1,2, 3. The physical reason why Liy(f) is not the same as 
Aly(f) is because Lly(f) represents the three possible ways that Ui(f)= Xi(f) 
can reach Y(f), but Aly(f) represents only one of the possible ways that 
Ul(f)=Xl(f) can reach Y(f). 

CHAPTER 8 

8.1 σ[μχ] = 0.10 = ^ L . gives BT= 50. 

(a) For μχ = 0,ψχ= σ 2 , and ε 

(c) For any sr[&x] = —!== = 0.0707. 

BT 

2VBT 

8.2 0 0 i w - ^ . ^ 

(b) For μχ φ 0, 

Ο", 

1 

/2βΓ 

— = 0.0707 

2

 + 

BT \ ψ. 

8.3 (c) and (e) involve a bias error. 

8.4 From Sections 8.4.1 and 8.4.2, 

BT 

1= = 0.1414. 
50 

0.040 + 0.0063 = 0.046 

(a) e[R„(0)] =s[Ryy(0)] = ~ 
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( b ) * [ ^ ( 0 ) ] = - J = 

(c) = 

1 + 
(S + Ni){S + N2) 

S2 

1/2 

V2BT 

1/2 

(d) e[Rxy(0)]=-7L 
V2BT 

8.5 From Equation (8.129), 

1/2 

*»M«^f{«&r(o ) ]} 
1/2 

The maximum value of ^ ( τ ) occurs at τ = 0 since R^x) = Rss(x). Hence, 

Ρτοο[-2σ-ι(τ) < x < 2 σ , ( τ ) ] = 0 . 9 5 

8.6 The probability distribution function is given by 

/>(*) = Prob[.r(/) <x}=^ = ^ 

Hence, P(x) is an unbiased estimate. 

:[P{x)] 
σ[Ρ(χ)} = y 7 ! ^ ) 

At χ = μΛ, P(JC) = Ρ(μ) = (1/2) and 

1 
ε[Ρ(μ)} =~= = 0.\0 

8.7 (a) At χ = μ Λ + 2.5 σχ, a window of width W = 0.25 σχ will cover 

μχ~23Ί5σχ < χ < μχ + 2625σχ 

From Table A.2, the probability of being in this window is 0.0045, so the 
estimated probability density function is 

, % 0.0045 
P(x) = - Q ^ j - = 0.0180 

From Table A. 1, the exact probability density function Άίχ = μχ + 2.5 σχ 

is p(x) — 0.0175, so the exact bias error is 

b\p(x)\ = 0.0175 - 0.0180 = - 0.0005 
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(b) From Equation (8.82) and Example 8.4, at χ = 2.5, 

pn{x)= ~^K-^2= - 0 . 1 2 7 
ν 2 π 

For W=0.25ax, the estimated bias error is 

W2 

b\p(x)] = 24P»(x)= - 0 . 0 0 0 3 

8.8 The spectral density corresponds to a system with a resonance frequency of 
fr « 100 Hz and damping ratio of ζ = 0.05. The half-power point bandwidth 
of the spectral peak is then Br « 2£fr = 10 Hz. 

(a) From Equation (8.141), 

Φ«)]=-1(f)2
 =-0-05 

Hence, Be < ν / ΟΪ5(10) = 3.87 Hz. From equation (8.147), 

1 = 0 . 1 0 

Hence, Tr> 1/[(0.10)2(3.87)] = 25.8 s. 
(b) From Equation (8.150), 

(^ = 21(θ̂ κιοοΤ = 3 2 0 Η ζ 

(Tr)
l/5 ( 6 0 ) 1 / 5 

8.9 Let km = maximum value of Xif). Then, 

, 2 m _
 G™(f) 

λ m ' ^ i f ) 

From Equations (8.139) and (8.148), 

Bb[Gxxif)] > ~ I < 0-05 

It follows that 

BeT > 400 Γ > (400/fi e) 
B2 < 1.2/li β , > 1.095Am 

8.10 For nd = 12, the degrees-of-freedom are η = 2n r f = 24 and from Table A.3, 
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the values of the χ2 variable are 

#24;0.025
 = 39.36; X24;0.975 = 12-40 

The 95% confidence interval from Equation (8.159) is then 

[0.18 < Gif) < 0.58] 

while the normalized random error is given by 

£ r = - | L = - L = 0.29 
y/nd V12 

CHAPTER 9 

( l - y 2 ) 1 / 2 , 400 
9.1 Set ε = v , , Y ' = 0.05 with y2 = 0.75. Then nd = — = 67. 

\y\\/2nd 6 

( l - 7 2 ) ' / 2 _ 1 _ 
f2~nd y/ϊΰ 

9.2 S e t 1 , , y J _ = — . Then y2 = \ = 0.333. 

9.3 From Table 9.1, 

(a) ε[0ΧΧ]=ε[0„]=0Λ0 

(b) 8[Ον]= 0.1414 

9.4 From Table 9.1, 

e[Cxy]=e{QXY]= 0.1414 

9.5 \Gxyl2 = C2 + Q2 = 0.50; y 2 = 0.50; G v v = 0.5 

From Table 9.6, 

ε[γ%] =0 .100 ; ε[Ονν] = 0 . 1 7 3 

Hence, 

Prob[0.30 < yly < 0.70] « 0.95 

Prob[0.154 < G v v < 0.846] « 0 . 9 5 

9.6 θ*, = t an" ' ( l ) = (π/4) = 0.7865 rad. From Equation (9.52), σ ^ ] = 0.0707 
rad. Hence, Prob[0.645 < < 0.928] « 0.95. 

9.7 From Equation (9.65), 

G^ = G , y ( l - y ) = 0 . 8 0 G ^ 

Hence, / / ^ = 0.80 gives a biased estimate of due to a time delay. 
The true G^ = 10GUU εχρ(-]2π/τχ) and the true = ^ = 
10 exp( - j2nfT\ ) . The measured = §^ = ^ = 5exp( -β,π/τι), 
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where GXX = GUU + Gmm=2Guu. Hence, — 0.50//^, gives a biased 
estimate ofH^ due to input noise. The total biased estimate Hxyif) = 0.47/^. 

9.8 (a) G v v = 0.50 is the true value because y2^ = 0.50. 

(b) f = 0 . 6 4 ^ = 0.32; Gm = 0.64G W = 0.32 
b[Gvv] = - 0.18 due to the time-delay bias error. 

(c) Using yly = 0.32 in Equation (9.73), s[Gm] = 0.115. 

9.9 G2rl = 4 - / 3 ; G 2 2 . , = f = 13.75; G ^ = 20; y\y.x = ^ = 0.0909. This 

gives e [ | # 2 y | ] = "4= = 0.224; σ[0 2 ] = 0.224 rad = 12.8°. 
ν 20 

9.10 y),x = A = 0.545; β 7 2 
5 = 0.087 

33V3" 

CHAPTER 10 

10.1 The mechanical calibration is more likely to be correct because it includes the 
sensitivity of the transducer while the electrical calibration does not. 

10.2 (a) The minimum sampling rate ioxfA = 1000 Hz is 2fA — 2000 sps. 
(b) Yes. 
(c) No since the probability density function does not involve frequency 

information. 

10.3 (a) For 200 sps , / A = 100 Hz so the frequency range for the sampled data is 
0 < / < 100Hz. 

(b) The data in the four 100 Hz bands between 100 and 500 Hz will fold down 
into the frequency range below 100 Hz. Hence, for a white noise input of 
G = 0.1 V 2/Hz, the computed value of the autospectral density function 
at any frequency below 100 Hz, including 50 Hz, will be 5G = 5 
(0.1) = 0.5 V 2/Hz. 

10.4 (a) From Figure 10.13(J), a sharp peak at x = 0 suggests that one or more 
signal dropouts were present in the measured data, 

(b) From Figure 10.13(b), a sharp peak at χ = μχ + 1.5sx followed by zero 

values above this level suggests that one-sided clipping of the measured 

data occurred at this level. 

10.5 The mean square value of the random data passed by the resolution filter in 
the vicinity of the sine wave is 

il>in=BeG= 10(0.1) = I V 2 

Hence, the total mean square value passed by the resolution filter in the 
vicinity of the sine wave is (/r2^ + i/A r = 1 + 1 = 2V 2 and the computed 
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autospectral density will be 

Gcom = Ψ2/Ββ = 2 /10 = 0 .2V 2 /Hz 

10.6 An 8-bit converter provides 2 8 = 256 discrete levels over the full minimum 
to maximum range of 2 V. Hence, Ax = 2/256 = 0.00781 Vand the standard 
deviation for the background noise is given by Equation (10.17) as 

σχ = 0.289Δχ = 0.00226 V 

10.7 Tests for periodic components and a normal distribution are generally valid 
only for stationary data, but the nonparametric test for stationary illustrated 
in Example 10.3 is valid for data that have periodic components and/or are 
not normally distributed. 

10.8 The coherence function is a key parameter required to establish the accuracy 
of a frequency response function measurement, both gain and phase. 

10.9 From Equation (10.1), for/„ = 1000 Hz and ζ = 0.01, the magnitude of the 
frequency response function for a piezoelectric accelerometer is given by 

\H(f)\=-
(2nfn)

2^[(l~f/fn)
2]2 + [2cf/fn}

2 

A t / = 500 Hz, 

=

 C

 =

 L 3 3 3 c 

( 2 π / „ ) 2 ^ / [ ( 1 - 0 . 5 ) 2 ] 2 + [2(0.01)(0.5)] 2 ( 2 π / « ) ' 

while the correct value at 0 Hz is 

(2π/„) 

Hence, the bias error in an autospectral density estimate, which is propor-
tional to \H(f)\2, is (1.33) 2 = 1.78 times the correct value, or about 78% to 
high. 

10.10 Since the autospectral density function does not involve phase information, 
the nonuniform phase factor will have no influence on the measured 
autospectral density value at 500 Hz. 

CHAPTER 11 

11.1 (a) V 2 = 2 2 8 « 2.7 χ 10 8 

(b) 4/V> = 4(2 1 4)(14) « 9.2 χ ΙΟ5 

11.2 Low-pass filter : H\ if) = ^ ° 

High-pass filter : H2(f) = 1 - Hi(f) = 

1 - a exp( - /2π/Δί) 

a [ l - e x p ( -j2nfAt)} _ Y(f) 

l - e e x p ( - j 2 n / A r ) ] X(f) 
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Y[f) - α β χρ ( - / 2π /Δ ι )Γ ( / ) = aX(f) - a exp{-jlnf At)X{J) 

y(n)-ay„-i = axn-axn-X 

Hence, y(n) = axn—ax„-\+ayn-L 

11.3 Since standard deviations are not dependent on the mean value of the data, 

sx su. 

11.4 μη = bo + b\(nAt) + b2(nAt)2. Solve for b0, b\, and b2 from 

Ν Ν Ν 

b0N + bx At^\ + b2 ( Δ ί ) 2 ^ η 2 = ]Pu„ 

Ν Ν Ν Ν 

bo^n + friAr^y + fr2(Ar)2^TV = y^nu„ 
Ν Ν Ν Ν 

boy^n2
 + bjAty^n3

 + £ 2 ( Δ Γ ) 2 ^ « 4 = ^n2un 

Use . v> N(N +1) 

«=i 

Β = γ - ; ι 2 = ^ + 1 ) ( 2 / ν + 1 ) 

έί 6 

I 4 

D = V ^ n 4 = ^ + l)(2iV + 1)(37V2 + 3/V - 1) 
30 

«=i 

11.5 (a) For Be= 16 Hz, T= 0.0625 sand n r f = 64. Hence, N = 2 5 6 and ρ = 8, 

Assuming 4/Vp real operations for each FFT, the total nd operations 

equal 64(4Np) = 5.24 χ 105. 

(b) sr= l / v ^ = 0.125 

11.6 From Equation (11.93), 

C W = ( 1 - τ ) Λ „ ( τ ) + τ Λ „ ( 1 - τ ) 
= (1 - τ > " 2 Ι τ Ι cos(18.85r) + r e " 2 " " τ Ι cos[18.85(l - τ)] 

11.7 Assuming 4Np real operations for an FFT, and if zero padding is used, 
(a) Single block of Ν = 8 1 9 2 points plus 8192 zeros requires approxi-

mately 1.84 χ 106 operations. 
(b) Thirty two blocks of N= 256 points plus 256 zeros requires approxi-

mately 1.18 χ 106 operations. 



592 ANSWERS TO PROBLEMS ΓΝ RANDOM DATA 

11.8 

11.9 

To perform an analysis out to m = 256 lag values, the FFT analysis could be 
accomplished by averaging over 32 records from the original Nj = 4096 
data values. From Equation (11.97) where m = N, p = 12 and the speed 
ratio = 16/3. 

The rectangular window is defined by 

h(t) = 1 
= 0 

0 < t < τ 
otherwise 

It follows that 

H(f) = T 
'sin(jijT)' 

π/Τ 
e~2nft and \H(f)\2df = 

Hence, the noise bandwidth is 

S W)\2df 
2 
max 

(772) 

T2 

J _ 

2T 

11.10 The signal is a sine wave with a frequency of/ 0 = 50 Hz, Since T= 1.015 s, 
the frequency resolution of the computed Fourier spectrum is Δ / = ( 1 / 
1.015) Hz. The largest spectral component will be the one closest to 50 Hz, 
which is the k = 5l component at / 5 1 =50.2463Hz. From Equation 
(11.107), the magnitude of this component without tapering a t / = / 5 ) - / 5 0 

0.2463 Hz is 

0.2463πΓ 

With the Hanning window, the magnitude of the largest spectral component 
is given by Equations (11.109) and (11.110) as 

' .Asin(-0.7389π7 , Α 8ΐΗ(0.2463πΓ A sin(1.2315reT 

-0.7389(4^7- 0.2463(2π)Γ 1.2315(4π)Γ J 
0.960A 

The multiplication by two is required to correct for the power loss cause by 
the Hanning window operating on a sine wave. 

CHAPTER 12 

12.1 At t = 0.5Tn the actual mean value is 

μχ = A s in(7i /2) = A 
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(a) The estimated value is given by 

0.557y 

0.45Γ, 

so the actual bias error is 

b[fix(t)} = 0.996A - A = - 0 . 0 0 4 4 

(b) The bias error approximated by Equation (12.32) is 

i r j c W J 24 dt2 V 2 4 0 0 / 

12.2 (a) μχ(ϊ) = α(ί) 

(b) σ2

χ = b2{t) 

(c) <fx{t) = a2{t)+b2{t) 

12.3 p(x,t) = ~ 7 = = e x p { - \x-a(t)]2/2b2(t)) 

12.4 (a) By Equation (12.139), 

2a \ 
W>xt(f,t)=Ae-M 

\a2 + (2nt)2

/ 

(b) By Equation (12.143), 

&'xx(f,0)=Ae-W 

12.5 By Equation (12.138), 

AAa2 

&χχ(τ,ή = 
[α2 + (2πί)2][α2 + (2πτ)2} 

12.6 (a) RUh,h) = Ah-^+'^Ruuitz-h) 

(b) iexx{x,t)=A2e-2atRuu{x) 

12.7 Solving Part (b) first, from Equation (12.114), 

Q>)&>«(f,g)= 2

ΑΛ 25»»0r) 

Then from Equation (12.104), 

(a) , / 2 ) = ^ j S . . ( * ± £ ) 

V J ' « 2 + π 2 ( / 2 - / ι ) 2 V 2 J 

12.8 ^ ( / , i ) = A 2

e - 2 a H 5 „ u ( y ) 
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12.9 From Equation (12.178), 

J(f,g)=7e~ g>0 

otherwise 

From Equation (12.195), 

L 

— o o 

L 

= i ^txp[{2f-A-f2)/ASxx(f)df 

— O O 

where the upper limit L i s / i o r / 2 satisfying / < f\, and / < f2. 

12.10 The maximum spectral value will occur at t — 15 s a n d / « 100 Hz. Also, 
since the time-varying autospectral density of the output at all frequencies is 
proportional to the time-varying mean square value i/^(r) of the input, 
Gyyif ,t) ~ c(/)i/r^(i), where c(f) is a frequency-dependent coefficient of 
proportionality. From Equation (12.170), 

It follows that 

CT(f,t) = ( π / 1 5 ) 4 / 4 = 0.000481 s " 4 at t= 15 s 

From Example 12.9, for a single degree-of-freedom system wi th / , = 100 
and £ = 0.05, 

Then, from Equation (12.171), the averaging time and frequency resolution 
bandwidth that will minimize the mean square error of the estimate for the 
maximum spectral value are 

\d2[c(f)^MIdt2Y = M 2 [ l - cos (7 r i /T5 ) ]M : 

I W)<?x{t)] J I [ l - c o s ( ^ / 1 5 ) ] 

f(n/l5)2cos{nt/\5)\ 

y [ l - cos (wi /15) ] ) 

CB(f, ή = 4 0 / „ ) - 44[0.05(100)] " 4 = 0.00640Hz - 4 

To = 2 .29(0 .0064) 1 / 2 4 / (0 .000481) 5 / 2 4 = 9.11 s 

and 

B 0 = 2 .29(0 .000481) 1 / 2 4 / (0 .0064) 5 / 1 2 = 4.77 Hz 
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13.2 x(t) = 
- 1 

\+{t~af 

This follows from 

and 

x{t -a) = x(t - a) 

1 

1+t2 l+t2 -3 gives 
- 1 

T+72 

13.3 From Eq. (13.27) by set t ing/ 0 = 0, x{t) = 0 

13.4 (a), (b), and (d) are correct 

13.5 « ( f \ _ ( l ~ / 2 ) 

Him(f) = W R e ( f ) = ( - / s g n / ) / / R e ( f ) 

13.6 Given z(f) = *( r )+/y(f ) , then z(r) = x(t) + jy(t) = jz(t) = /r(f) -
when x(t) = —y(t) and y(r) = x{t). 

13.7 Given z(i) = x(t) + jx(t) where S^if) = 2a/{a2 + 4 π 2 / 2 ) , 

2a 
(a) s f i f / ) = 

~ α 2 + 4 π 2 / 2 

(b) Szz(f) = 
8a 

f o r / > 0 
α 2 + 4 π 2 / 2 

= 0 f o r / < 0 

Part (b) comes from Equation (13.78). 

13.8 y(t)=x(t)cos(2nf0t) 

(a) y(t) = χ ( φ ϊ η ( 2 π / 0 ί ) 

( b ) * w W = ^ # c o s ( 2 7 t f o T ) 

CHAPTER 13 

13.1 
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(c) R w ( T ) = ^ ^ a n ( 2 7 t / 0 T ) 

( ά ) Λ ^ ( τ ) = [ ^ ( τ ) + ^ ( τ ) ] 1 / 2 = Μ 

13.9 Nondispersive propagation has constant propagation velocity ν independent 
of frequency. The propagation time is τ χ =dlv. 

13.10 Dispersive propagation is now involved. At the frequency / = / 0 + B, the 
propagation velocity is 

d 1 
T o — — ~ — . 

CHAPTER 14 

14.1 Let the output be y^r) when the input is x,(t) = x(t + τ). Then 
y,(r) = χι(ή\χι(ή\ = x(t + z)\x(t + τ)\ = y ( i + r).This proves thaty(r) is 
a constant-parameter nonlinear system. 

14.2 The passage of x(t) to the square-law system output y(t) represents a simple 
change of variable from χ to y where y = x2. One obtains here χ = ± y/y and 
\dy/dx\ = 2\x\ = 2y/y. The zero mean value Gaussian probability density 
function for χ is 

p{x)=—^=txp(-x2/2a2

x). 

From Equation (3.13), since χ is a double-valued function of y, the output 
probability density function p2(y) for y > 0 is given by 

p2(y) = [2p(x)/\dy/dx\] = [ Ρ ν ^ / ν Ή 

where 

p(v^)=-As=exp(-y/2o*) 

Hence for y > 0 

ftW=—75=exp(-y/2o^) 

This function is plotted as Figure 2.19 in Reference 14.2. 

14.3 In Figure 14.2 where n(t) = g[x(t)], Fourier transforms of both sides give 
Zx(j) = g[X(f)]. The Fourier transform of the output y^r) is Y1(j)=A(f) 
Zi(f)=A(f)g[X(f)]. Note here that the linear system A(f) is not inside the 
nonlinear operation. In Figure 14.3, the output y 2(r) = g[z2(t)] with the 
Fourier transform relation Y2(f) = gfctf)], where Z2(f) = B(f)X(f). Here, 
Y2(J) = g[B(f)X(f)] with the linear system B(f) inside the nonlinear opera-
tion. For Αφ = B(f) φ 1, it follows thatTit/) φ Υ2φ and γχφ φ y 2(r). 
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14.4 The cross-correlation function R^ix) between the zero mean value Gaus-
sian input x(t) and the nonlinear cubic output y(t)=x3(t) is 

/?„(τ) = E[x(t)y{t + τ)] = E[x(t)x(t + τ)χ(ί + τ)χ(ί + τ)]. 

By Equation (3.73), this fourth-order moment is given by 

Rxy(x) = E[XIX2]E[X3XA\+ Ε[χ{Χ3\Ε[χ2ΧΑ\ + E[x\Xi,\E[x2X3] 

where χλ =x(t) and x2 = x3 — χ A — x(t + τ).The second-order moments 

Ε[χιχ2] = Ε[χιχ3] = Ε[χιχ4] - Λ„(τ) 

£[.X3*4J = E[x2X4] = £ [ ^ 2 X 3 ] = σ2. 

Hence, Λ^,(τ) = 3σ 2 /? Χ Ϊ (τ ) . It follows that 

Gxy(f) = 3a2

xG„(f) and Η0(/)=3σ2

χ 

14.5 The cross-correlation function κ^,(τ) between the zero mean value Gaussian 
input x(t) and the nonlinear output y(t) =x4(t) is zero by Equation (3.56) 
since this / ^ ( τ ) is a fifth-order moment, and all odd-order moments of 
Gaussian data are zero. It follows that G^if) — 0 and H0(f) = 0. 
To determine that the nonlinear output y(t) includes x\t), one should 
consider a two-input/single-output model where the first input xl(t) = x(t) 
and the second input x2(t) = x\t). 

14.6 The solution of Figure 14.7 requires changing the model of Figure 7.18 into 
the model of Figure 7.19. 
The computation of H0(f) is the same as the computation of Liy(f) in 
Equation (7.122), namely, H0(f) = Lly(f) = [Giy/Gu(f)]. The computation 
of A\{j) is the same as the computation of Aly(f) in Equation (7.117), namely, 

A,(f) = H0(f) - [Gu(f)/Gu(f)}A2(f) - [Gu(f)/Gu(f)]A3(f) 

Thus, in general, Ax{f) and H0(f) give different results, and H0(f) does not 
determine the nonlinear terms. 

14.7 For the three mutually uncorrelated records x,(t), x2(t), and x3(t) in 
Figure 14.7, the percentage of the output spectrum of y(t) due to each 
record x,{t) for i= 1, 2, 3, is given by the coherence functions 

yi(f) = Gii(f)G: yy 

14.8 In Figure 14.8, let the Fourier tranforms of x(t), y(t), and z(r) be denoted by 
X(f), Yif), and Z(f), respectively. Then 

Yif) = H(f)[X(f) - Z(f)} = H(f)X(f) - H(f)Z(f) 

Hence 

H{f)X(f) = Y(f) + H(f)Z(f) 
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and 

X(f) = [H(f)]-iY(f)+Z(f). 

In Figure 14.9, one obtains 

Xif)=Atif)Yif)+Z(f) 

where 

Al{f) = [H(f)}-1 

14.9 The reverse SI/SO nonlinear model of Figure 14.10 considers the measured 
input x(t) to be a mathematical output and the measured output y(i) to be a 
mathematical input. Fourier transforms of both sides of the Duffing non-
linear equation give the two-input/single-output relation 

Al(f)Yl(f)+A3(f)Y3(f)=X(f) 

where 

Y\(f) = Y(f) = Fourier transform ofy(f) 
Y${f) = Fourier transform of y 3(r) = y 3 ( r ) 
Xif) = Fourier transform of x(t) 
Alif)=k+j(2nf)c-(2nf)2m 
A3(f)=k3 

The identification of Ax(f) and A3(j) from knowledge οΐΥιφ, Y3if), smaXif) 
is straightforward to carry out and leads directly to determining the desired 
physical parameters by Equation (14.8). 

14.10 From the Fourier transform relation for the Duffing nonlinear system in 
Problem 14.9, the associated spectral density relation is given by 

Ai(f)Gxy(f) +Ai(f)Gxv(f) = G„(f) 

where 

Gxyif) = cross-spectral density function betweenx{t) andy(i) 
Gxvif) = cross-spectral density function betweenx(t) and v(t) 
Gxxif) = autospectral density function ofx(t) 

Conventional SI/SO modal analysis for the Duffing nonlinear system 
computes the optimum linear system frequency response function 

»o(f) = [Gxyif)/Gxxif)} = [Λ, (Ζ ) ] - 1 -A3if)[Gxvif)/'G„(f)] 

The gain and phase factors of this H0(f) give the wrong physical parameters 
for the Duffing nonlinear system. The correct results are contained in the 
computation of Ax(f) and A3(f). 
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Accelerometer, 319 
Acceptance region, 91 
Airplane test data, 181 
Algorithm, for conditioned spectra, 225 

for conditioned Fourier transform, 224 
for fast Fourier transform, 372 

Aliasing error, 330, 332 
Aliasing frequency, see Nyquist frequency 
Amplitude window, 261, 265 
Analog-to-digital converter, 326 
Analytic signal, 475, 486 
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Of correlation functions, 18 
of probability functions, 16 
Of spectral functions, 19 

Arc-sine law, 441 
Autocorrelation function, 111, 113, 
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from hard clipping, 441 

Automobile test data, 468 
Autoregressive model, 403 
Autospectral density function, 118, 123, 

125 
computation of, 386, 395, 399 
equivalence test for, 282 
estimate of, 273, 275, 277, 280, 293 

from autocorrelation function, 118 
from filtering-squaring-averaging, 

129 
from Fourier transform, 126 

Autospectrum, see Autospectral density 
function 

Average value, see Mean value 

Bandwidth-limited white noise, 123, 254, 
257, 260, 269, 271, 489 

Bias error, 250,251 
for autospectral density function, 274 
for coherence function, 305 
for correlation function, 267 
for frequency response function, 300 
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for mean value, 253 
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Bilinear system, 509 
Blackman-Tukey procedure, 386 
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Case 1 nonlinear model, 507 
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Chi-square distribution, 83, 87 
equivalence test from, 282 
goodness-of-fit test from, 94 
table for, 536 

Circular correlation function, 382, 384 
Coefficient of variation, 251 
Coherence function, 135, 180, 299, 305 

computation of, 408 
linear transformation of, 183 

Coherent output spectrum. 185, 303 
random error for, 304 

Complex correlation function, 487 
Complex demodulation, 397 
Computer simulation study, 515-520 
Conditioned record, 213, 216, 220 
Conditioned spectra, 213, 217, 224, 409 
Conditioned Fourier transform, 223 
Confidence interval, 88, 90, 252, 425, 430 
Consistent estimate, 80 
Constant-parameter system, 25, 28, 173, 

201 
Convolution integral, 27 

for Hilbert transform, 473 
Cooley-Tukey procedure, 374 
Correlation coefficient, 56, 99, 116 
Correlation function tapering, 393 
Cosine-modulated random data, 439, 448, 

454 
Co-spectrum, 121 
Covariance, 56, 110 
Cross-correlation coefficient, 490 
Cross-correlation function, 111 

computation of, 405 
from cross-spectral density function, 

119 
Cross-correlation inequality, 115 
Cross-spectral density function, 

119, 289 
computation of, 406 
from cross-correlation function, 118 

Cross-spectrum, see Cross-spectral 
density function 

Cross-spectrum inequality, 134 
Cross-spectrum magnitude, 121 
Cross-spectrum phase angle, 121 
Cutoff frequency, see Nyquist frequency 

Damping ratio, 32 
Data acquisition, 318 

Data analysis procedure: 
for individual sample records, 349 
for multiple sample records, 352 

Data anomalies, 342 
Data editing, 345 
Data standardization, 360 
Decimation of data, 398 
Degrees-of-freedom, 83, 
Delta function, 48, 122, 447 
Derivative random data, 151 
Detection of sine wave, 339 
Deterministic data, 1, 3 
Digital filters, 363 
Direct MI/SO technique, 512 
Discrete distribution, 46 
Discrete Fourier transform, 368 
Dispersive propagation, 495 
Displacement-input system, 35, 179 
Double-frequency spectra, 443,445 
Double-time correlation function, 436,437 
Duffing SDOF nonlinear system, 515 

computer simulation of, 515-520 
Dynamic range, 324 

Efficient estimate, 80 
Electrical system, 39 
Energy spectra, 177, 445 
Ensemble of records, 10 
Envelope function, see Envelope signal 
Envelope signal, 475 

for correlation functions, 485 
from Hilbert transform, 477 
for narrow bandwidth data, 68 

Equivalence test for spectra, 282 
Ergodic random data, 11, 142, 145 
Erroneous high coherence, 214 
Error analysis criteria, 21 
Expected value, see Mean value 
Exponential autocorrelation function, 140 
Exponential causal function, 483 
Exponential-cosine cross-correlation 

function, 500 

Fast Fourier transform, 368, 371, 372 
computation of, 369 

F distribution, 84, 87 
table for, 538 

FFT, see Fast Fourier transform 
Finite delta function, 447 



INDEX 601 

Finite Fourier transform, see Fast Fourier 
transform 

Finite-memory nonlinear system, 507 
Force-input system, 30, 178 
Foundation-input system, 35, 179 
Fourier series, 4, 366 
Fourier transform, 7, 368 
Fourth-order moment, 66 
Frequency response function, 28, 30, 33, 

37 
computation of 407 

Frequency-time spectra, 450, 452 

Gain factor, 29, 38, 300, 308 
Gaussian data, 147 
Gaussian distribution, 59, 62, 82 

tables for, 533, 535 
Gaussian random process, 147 
Gaussian spectrum noise, 139 
Goodness-of-fit test, 94, 97 
Group velocity, 495 
Gun test, 22 

Half-power point bandwidth, 34 
Hanning window, 389, 394 
Hard clipping of data, 440 
Hartley transform, 379 
Hilbert transform, 473 

computation of, 476 
envelope signal from, 477 
properties of, 478 

Histogram, 380 
Homogeneous data, 132 
Hypothesis test, 91, 93 

Ideal system, 25, 197 
Impedance function, 40 
Impulse response function, 26, 408 
Independent variables, 55, 65 
Input/output relations: 

for correlation functions, 174 
for linear systems, 173 
for nonstationary data, 462, 466 
for spectral functions, 174 
for stationary data, 173, 201 
for transient data, 177, 467 

Instantaneous correlation function, 438 
Instantaneous phase signal, 475 
Instantaneous spectra, 450, 458 

Inverse Fourier transform, 377 
Inverse Hilbert transform, 479 

Jacobian, 72 
Joint Gaussian distribution, 62 
Joint probability functions, 55 

Lag number, 381 
Lag weighting, 393 
Laplace transform, 28 
Least squares estimate, 188 
Least squares fit, 102, 361 
Level crossing, 155 
Level of significance, 92 
Linear correlation analysis, 99 
Linear regression analysis, 102 
Linear system, 27 
Linear transformation, 149, 183 
Linear trend, 361 
Line spectra, 4 
Locally stationary data, 442 
Location of peak value, 137 
Loss factor, 35 
Low-pass filter, 177 
Low-pass white noise, 123, 139, 491 

Magnification function, 32 
Magnitude window, 261 
Markov process, 145 
Matrix input/output formulas, 237 
Maximum entropy analysis, 403 
Maximum likelihood analysis, 403, 
Mean square convergence, 150 
Mean square error, 149 
Mean square value, 50, 256 

computation of, 429 
Mean value, 49, 80, 85, 110, 252 

computation of, 360, 424 
Mechanical system, 30, 33, 37 
Modified analysis procedure, 232 

for three-input system, 235, 313 
Moment, 53 
Moment generating function, 52, 57, 63 
Moving average model, 403 
Multidimensional central limit theorem, 

65 
Multiple coherence function, 212, 231, 

237 
Multiple coherent output spectra, 212 
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Multiple-input/multiple-output MI/MO 
system, 201, 312 

matrix formulas for, 238 
Multiple-input/single-output MI/SO 

system, 21, 201, 202 
for arbitrary inputs, 205, 221, 229 
for conditioned inputs, 222, 225 
for uncorrelated inputs, 206 
modified procedure for, 232 

Narrow bandwidth data, 67, 71, 159 
Natural frequency, 35 
N-dimensional Gaussian distribution, 69 
Noise bandwidth, 259 
Noise correlation duration, 138 
Noise output spectrum, 185, 237 
Noise spectral bandwidth, 138 
Nondispersive propagation, 489, 493 
Nonergodic stationary data, 74,144, 184 
Nonlinear drift force model, 520, 523, 

524 
Nonlinear feedback model, 512 

for Duffing nonlinear system, 515 
Nonlinear system, 26, 505 

recommended model for, 514 
Nonparametric trend test, 96 
Nonrecursive digital filter, 363 
Nonstationary cross-correlation 

inequality, 436 
Nonstationary cross-spectrum inequality, 

433 
Nonstationary data, 12, 417, 419 

analysis for single records, 456 
correlation structure of, 436, 451 
input/output relations for, 462, 466 
mean square value of, 429, 432 
mean value of. 422, 427 
probability structure of, 419 
spectral structure of, 442, 451 

Nonstationary random process, see 
Nonstationary data 

Nonstationary spatial cross-correlation 
function, 425 

Normal distribution, see Gaussian 
distribution 

Normality test, 96 
Normalized error, 251 
Number of averages, 281, 285 
Nyquist frequency, 331 

One-sided spectra, 120, 387, 407 
One-sided test, 92 
Optimum frequency response function, 

187, 211 
for MI/SO conditioned inputs, 225 
for MI/SO original inputs, 229 

Optimum resolution bandwidth, 279 
Ordinary coherence function, see 

Coherence function 
Output noise spectrum, see Noise output 

spectrum 
Overlapped processing, 392 
Oversampling procedure, 395 

Parametric spectral procedure, 403 
Parseval theorem, 131 
Partial coherence function, 219, 231 
Peak correlation value, 115, 117 

location of, 137, 271 
Peak gain factor, 34 
Peak probability functions, 159, 162, 164 
Peak signal-to-noise ratio, 325 
Percentage point, 83, 84, 85 
Periodic data, 3, 4, 6 

Fourier series for, 4, 366 
Phase angle, 121 

estimate of, 297 
for time-delay problem, 136 
relation to cross-spectra, 122 

Phase factor, 29, 300 
estimate of, 310 

Phase shift system, 474 
Phase velocity, 495 
Physically realizable system, 27 

Hilbert transform for, 483 
Poisson distribution, 123 
Pooling of data, 353 
Probability density function, 46, 420 

estimate of, 261 
computation of, 379, 404 
for sine wave, 52 

Probability distribution function, 46, 
420 

computation of, 381 
for sine wave, 52 

Probability statement, 54, 86, 88, 251 
Product model, 440, 456 
Propagation problems, 489, 495 
Propagation time delay error, 301 



INDEX 603 

Quad-spectrum, 121 
Quality factor, 35 
Quantization error, 333 

Random data, 2, 8, 13, 109, 417 
Random error, 250, 251 

for autocorrelation function, 270 
for autospectral density function, 

278, 281 
for coherence function, 306 
for coherent output spectrum, 303 
for gain factor, 309 
for mean square value, 257 
for mean value, 254 
for MI/SO problems, 313 
for probability density function, 265 
for SI/SO problems, 312 
for spectral estimates, 293 
for variance, 261 

Random process, see Random data 
Random variable, see Sample record 
Raw estimate of spectra, 280, 290 
Rayleigh distribution, 67, 70, 163 
Record length requirements, 284 
Rectangular distribution, 48 
Rectangular wave process, 113, 126 
Rectangular window, 388 
Recursive digital filter, 364 
Regression analysis, 102 
Rejection region, 91 
Removal, of extraneous noise, 194 

of linear trend, 361 
Residual record, see Conditioned record 
Residual spectra, see Conditioned spectra 
Resolution bandwidth, 279 
Resonance frequency, 34 
Reverse arrangement test, 97, 337 

table for, 544 
Reverse MI/SO technique, 514 
Reverse SI/SO nonlinear model, 513 

for Duffing system, 518 
Root mean square (rms) error, 250, 251, 

see also Bias error, Random error 

Sample function, see Sample record 
Sample record, 8, 12, 45, 54, 79, 109 
Sample size, 80 
Sample value, see Sample record 
Sampling distribution, 85 

Sampling theorem, 328 
Short time-averaging procedure, 428, 432 
Schwartz inequality, 142 
Side-lobe leakage, 388, 391 
Signal-to-noise ratio, 324, 325 
Sine wave, 3 
Sine wave distribution, 51, 73 
Sine wave process, 113, 124, 144, 145 
Single degree-of-freedom (SDOF) system, 

30, 515 
Single-input/multiple-output SI/MO 

system, 20, 192 
Single-input/single-output SI/SO system, 

19, 173, 298 
SI/SO nonlinear model, 510, 511, 512 
Single-input/two-output system, 191 
Smooth estimate of spectra, 281, 290 
Spectral bandwidth, 34, 138, 258 
Spectra, see Autospectral density 

function, 
Cross-spectral density function 

Spectral matrix, 410 
Spectrogram, 460 
Squared envelope signal, 498 
Squared estimate, 251 
Square-law envelope detector, 498, 521 
Square-law and cubic nonlinear model, 

507, 508 
Standard deviation, 50, 360 

for phase estimate, 298, 310 
Stationary random data, 9, 109, 111, 113 
Stationary random process, see 

Stationary random data 
Statistical bandwidth, 258 
Statistical error, see Bias error, Random 

error 
Statistical independence, 55, 65 
Stochastic process, see Random data 
Strongly stationary data, 11, 111 

Tapering of data, 389, 393 
t distribution, 84. 87 

table for, 537 
Test, for normality, 96, 339 

for periodicities, 339 
for stationary data, 336 
for trend, 96 

Three-input/single-output system, 234, 
236, 412 



604 INDEX 

Time-averaged correlation, 438 
Time-averaged spectra, 453 
Time-delay problem, 116, 136 
Time history records, 15, 16, 17, 18 
Time history tapering, 389 
Time-invariant operator, 149 
Time series, see Random data 
Time-varying linear system, 462 
Time window, 388 
Transmissibility function, 36 
Transducer, 318 
Transfer function, 28. See also Frequency 

response function 
Transient data, 7, 468 
Trend removal, 361 
Trilinear system, 509 
Twiddle factor, 373 
Two-input/single-output system, 207, 209, 

211 
Two-sided spectra 118, 386, 407 
Two-sided test, 92 
Type I, II error, 92 

Unbiased estimate, 80, 82 
Uncertainty principle, 141 
Uncertainty relation, 138 

Uncorrelated variable, 56, 114 
Undamped natural frequency, 32 
Uniform distribution, 48 
Uniformly modulated data, 442 
Unit impulse response function, 26, 408 
Unstable system, 27 

Variance, 50, 79, 110, 250, 260, 
Volterra nonlinear model, 509 

Waterfall display, 461 
Wavelet analysis, 462 
Wavelength, 132 
Wave-number spectra, 133 
Weakly stationary data, 11, 111 
Weighting function, 26, 408 
Welch procedure, 386 
White noise, 123 
Wide bandwidth data, 162 
Wiener-Khinchine relation, 119, 381 
Wigner distribution, 460 
Winograd Fourier transform, 379 

Zero crossing, 156, 157, 158 
Zero-memory nonlinear system, 506 
Zoom transform procedure, 396 
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