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1. I n t r o d u c t i o n  

The discovery of the remarkable interaction properties of solitary wave solutions 
to KdV by Zabusky and Kruskal [62] and the invention by Gardner, Greene, 
Kruskal and Miura [9] of the Inverse Spectral Transform for the solution of the 
Cauchy problem for KdV stand as two of the most far-reaching breakthroughs in 
the development of modern nonlinear mathematical science. Of all the completely 
integrable systems discovered since 1967, KdV certainly remains the most fully 
understood and arguably the most important for applications to macroscopic 
phenomena and processes. 

Here we shall survey some of these applications, with emphasis on several 
cases where there is extensive experimental confirmation of the predictions of 
KdV theory. Not surprisingly, many of these applications are in fluid mechanics 
- not surprisingly, because fluid mechanics continues to maintain its seminal 
role in physics as the discipline in which many key nonlinear structures were 
first discovered (shocks, bifurcations, solitons, deterministic chaos, hypercomplex 
systems . . . .  ) and in which the underlying theories receive their most convincing 
experimental validation. As the prototypical integrable nonlinear system, KdV 
has also had enormous indirect impact on many parts of theoretical physics, pure 
mathematics, and the areas in between. Vast areas of mathematics, including 
ordinary differential equations, algebraic geometry, Lie group theory, differential 
geometry and asymptotics have been opened up 'on the back', as it were, of 
the solving of KdV, and brought to bear on issues in quantum field theory, 
string and conformal field theory, quantum gravity and classical general relatively, 
to say nothing of the myriad applications in concrete settings of other famous 
integrable systems including nonlinear Schr6dinger (NLS) and sine-Gordon (SG). 
These latter applications range from condensed matter and semiconductor physics 
through nonlinear optics and laser physics, hydrodynamics, meteorology and 
plasma physics to protein systems and neurophysiology. Robin Bullough (private 
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communication) has devised a 'map' of considerable complexity, showing the 
astonishingly rich range of interconnections between mathematical and physical 
structures in integrable nonlinear systems, while the applications receive many 
treatments, though not in recent survey form, in the very many monographs and 
collections of reviews on soliton systems that now exist, and in the large number 
of volumes of Proceedings of Advanced Research Workshops and Advanced 
Study Institutes organized under the NATO Special Programme Chaos, Order 
and Patterns: Aspects of Nonlinearity, to say nothing of the large number of 
articles that have appeared not only in the long-established scientific journals, 
but also in the dozen or so journals devoted to nonlinear science that have sprung 
up in the early 1990's. 

It is tempting to include with KdV its one-dimensional modified form MKdV 
and its two-dimensional counterpart KP, but to do so would be to divert attention 
from the remarkable success of KdV theory, to which we turn in a moment. 
Amusingly, the first application of KdV theory was actually made some years or 
even decades before the publication of KdV in 1895, as pointed out by Bullough 
and Caudrey ([4, p. 374]). John Scott and Russell, in his book The Wave of 
Translation in the Oceans of Water, Air and Ether, published posthumously in 
1882, applied the KdV formula for the propagation speed of a soliton, discovered 
experimentally by Russell himself, to two problems. First, given the velocity 
of sound, the depth of the Earth's atmosphere was calculated to be five miles 
on the basis that sound is evidently carried by waves free of distortion and 
therefore by Scott Russell's solitary waves. Remarkably, this prediction is correct 
numerically, or would be if the matter in the atmosphere were distributed with 
uniform density. The same argument was used, second, with the velocity of light 
as the propagation speed for a distortion-free signal, to infer the radius of the 
universe as 5 x 1017 miles. Bullough and Caudrey point out that this estimate is 
wrong by at least five orders of magnitude, and in any event is incorrect not least 
in using a value of 9 which Russell arbitrary reduced by a factor 10 -5. Largely 
free of contention, however, are Russell's own experiments on solitary waves in 
water channels in which, as is now well known, he not only correctly extracted the 
propagation velocity from measurements, and convincingly showed that solitary 
waves of depression are impossible and that an arbitrary initial elevation would 
break up into a finite number of solitary waves, but also that the interaction 
between solitary waves had the particle-like property which was not picked up 
for more than a further century. 

It is appropriate to turn, for our first example, to modem careful experiments 
in the water-wave problem that started the whole subject off. 

2. Surface Gravity Waves 

Weakly nonlinear surface waves on uniform water of shallow depth provided the 
first recorded sighting of a soliton, the first formulation, by Boussinesq and by 
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Fig. 1. Emergence of KdV solitons of elevation in water-channel experiments. The plots 
correspond to measuring stations (a) x/h = 0, (b) x/h = 20, (c) x/h = 180, (d) x/h = 400. 
Plotted on the abscissa is retarded time, so that a soliton should, in the absence of dissipation, 
shift to the left as time increases. (From Hammack and Segur [13], with permission.) 

Korteweg and de Vries, of  model  equations to describe it, and the first example 
through KdV of  an integrable system solvable by IST. These waves also find, in 
the work o f  Hammack  and Segur  [12-14],  one of  the most  complete and convinc- 
ing confirmations of  IST theory for KdV. This work comprised experiments in a 
tank of  length 31.6 m and breadth 39.4 cm, with waves of  typical length-scale 
10h and amplitude 0 .05h generated in water of  depth h = 5 cm or 10 cm by 
the controlled and recorded action of  a rectangular wavemaker  at one end. Mea- 
surements were taken for h = 5 cm at x/h = 0,20,  180,400 and for h = 10 cm 
at x/h = 0, 50, 100, 150, 200; in each case the first two stations correspond to 
linear propagation, the last two to ranges equivalent to the long time-scale for 
separation out of  nonlinear KdV features. The initial wave profile was measured 
in each case and used to determine the number  of  solitons expected ( N  = 0, 3, 4 
typically). 
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First, the prediction of N was very satisfactorily checked, and then confir- 
mation that the emerging features (see Figure 1) were KdV solitons was made 
by measuring the amplitude of each feature and plotting points, as the dots in 
Figure 1, on the profile of an isolated KdV soliton with that amplitude. Sec- 
ond, an attempt was made to predict the amplitude of the leading soliton at 
the most remote measuring station. For this it was necessary to determine the 
largest Schrrdinger eigenvalue of the initial waveform, and then to use results 
due to Keulegan [26] for the viscous decay, mainly in side-wall and bottom 
boundary layers, of a solitary wave of the corresponding amplitude. The viscous 
corrections are large enough to prevent any of the soliton velocities exceed- 
ing (gh)U2, which they should all do in lossless theory (the corresponding 
excess over the linear speed was detected, and found to be in good agree- 
ment with theory, in the propagation of pressure pulses in a tube of bubbly 
liquid: see Section 4), but if they are taken into account, the decaying ampli- 
tude and speed of the surface wave solitons can be reasonably well predict- 
ed. 

But especially valuable in the work of Hammack and Segur is the study 
of the radiation corresponding to the continuous part of the spectral problem, 
particularly in the case of an initial wave of depression, which has no discrete 
eigenvalues and leads only to decaying oscillations. Although for realistic ini- 
tial wave profiles there are no exact solutions of KdV involving radiation, the 
asymptotic evolution as t ~ +c~z is well understood in overall structure (see [I, 
Section 1.7c]). 
(i) For x >> ~1/3 the solution ~/(x, t) is exponentially small. 

(ii) For Izl  1/3 the solution is self-similar, and given by the solution ~/ = 
(x + Xo)/6t of the nondispersive simple wave equation ~/t + 6~7~7z = 0. 

(iii) The transition away from (ii) takes place in a thin 'collisionless shock' at 
x ~ - t l / 3 ( l n  t)p+2/3 for some p, 0 ~< p << 1. 

(iv) Beyond the collisionless shock, for ( - x )  >> tl/3(ln t) p+2/3, the solution 
breaks into a set of decaying wave packets, each packet having many oscil- 
lations at a fixed wavenumber and travelling at the (linearized) group velocity 
for that wavenumber. The nodes separating adjacent wave packets are defined 
by the zeros of the reflexion coefficient of the spectral problem for ~/(x, 0). 

Figure 2, from Hammack and Segur [13], shows that this structure is indeed 
borne out in experiment; and in the paper just quoted, the prediction of the 
leading wave (the simple wave ramp) is brought even more closely into agreement 
with experiment if account is taken of viscous effects. This leading wave is 
completely different, in form and strength, from that predicted by the solution of 
the linearized KdV with the same initial data (see Hammack and Segur [13]). 

An interesting and important issue also settled by Hammack and Segur [13] 
is as to whether the presence of extraneous fine-scale waves, often present in 
practice and not correctly described by KdV, might invalidate the KdV predic- 
tions. That it would not was shown by driving the wavemaker with the same 
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Fig. 2. Dispersive radiation produced by an initial depression of a water-channel surface. 
The plots correspond to measuring stations (a) z/h = 0, (b) :c/h = 50, (c) x/h. = 100, 
(d) z/h = 150, (e) z/h = 200. Plotted on the abscissa is retarded time. The arrows indicate 
wave packet trajectories based on the average wavenumber of each packet and the linear 
dispersion relation. Note the simple wave ramp at the left. (From Hammack and Segur [13], 
with permission.) 

mean motion in each of  three experiments, but with different types of high- 
frequency fluctuation superimposed. The fine-scale fluctuations were found to 
disperse rapidly, and at z /h  = 400 precisely the same (four) solitons were found, 
identical to within experimental accuracy. 

Segur and Hammack [55] used the same water channel to study internal waves 
at the interface between two layers of  fluid of  different densities. (The dispersion 
relation has two branches, in general distinct, one representing surface gravity 
waves, one internal waves localized at the density discontinuity.) f f  kH << 1 
where H is the total depth, then in terms of  a coordinate X translating with the 
nondispersive long-internal-wave speed and a long time variable 7- proportion- 
al to the square root of the (small) density difference, the interface elevation ~7 
satisfies, after scaling, KdV in the form 

V ~ + 6 ( h l  - h 2 ) ~ n x q - ~ x x x = O .  (2.1) 
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Solitons were generated by the operation of the wavemaker, and the interface 
displacement 71 measured. Close agreement was again found between measured 
wave profiles and those of individual KdV solitons, and agreement in other 
aspects was much improved by the inclusion of viscous effects at the interface, 
as well as in the side-wall and bottom boundary layers, through an extension of 
the Keulegan theory [27]. Very similar conclusions - resoundingly in favour of 
KdV - were reached by Koop and Butler [31], who also provided theoretical 
extensions of KdV to include higher-order nonlinearity. 

If hi = h2, the coefficient of the quadratic term in (2.1) vanishes, and then 
MKdV is the appropriate evolution equation, but for a still longer time-scale with 
-r now proportional to the density difference itself. The corresponding propagation 
length for the emergence of MKdV solitons may then be beyond the range of 
the Segur and Hammack facility. 

Returning to KdV internal solitons, the theory for these has proved crucial in 
understanding some extraordinary observations of very large amplitude waves in 
the Andaman Sea, and we now turn to Osborne's work on this topic. 

3. Internal Solitons in the Ocean 

The internal solitons studied in the laboratory by Segur and Hammack [55] have 
been seen at full scale in the seas in the Far East, with amplitudes dangerous- 
ly large in terms of human activities. In the Andaman Sea, between Sumatra 
and Thailand, severe sub-surface currents were experienced by oil drilling rigs, 
one of which, in a depth of 1100 m, was spun around through 90 degrees and 
translated more than 30 m as a large-amplitude internal soliton propagated along 
the thermocline beneath it. Satellite photographs confirmed, through surface wave 
activity of much lower amplitude, and generated by an internal-surface wave res- 
onance mechanism, the presence of these solitons in very distinctive groupings, 
and Osborne and Burch [49] made extensive in situ temperature and velocity 
measurements in the Andaman Sea over a four-day period in 1976. The anal- 
ysis of their work lends strong support to the KdV theory of internal solitons 
(rather than the competing weakly-nonlinear models, namely the intermediate 
long-wave equation for intermediate depth and the Benjamin-Ono equation for 
large depth). Similar observations of large-amplitude internal solitons were made 
in the Sulu Sea by Apel et al. [2]. The longevity of these waves is attested 
to by the fact that the research vessel followed an internal soliton, of wave- 
length 1700 m and amplitude 100 m, for more than two days as it propagat- 
ed at about 8 km/h. Since then many studies have shown the ubiquitous pres- 
ence of oceanic internal solitons where there are topographic features to excite 
them via tidal action, as, for example, in the Strait of Messina, the Strait of 
Gibraltar, and the Gulf of California, but not, for example, in the Gulf of Mex- 
ico. 
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The situation in the Andaman Sea is reviewed by Osborne [48]. The inter- 
nal waves can be thought of, in first approximation, as localized on the ther- 
mocline at a depth of several hundred metres, and at such depths the vertical 
excursions during the passage of an internal soliton are large, of the order of 
100 m, with much smaller surface waves of amplitude 1-2 m. Nevertheless, 
the surface waves are locked by the resonant coupling to the internal wave, 
are similarly one-dimensional, with coherent crests extending over 100 km or 
more, and for each soliton are confined to bands about 1 km wide normal 
to the crests. These surface wave 'rips' are very prominent in satellite pho- 
tographs, in which each band in a rather regularly spaced sequence of six or 
more appears as a dark striation separating bright bands of wave-free activi- 
ty between the rips. Successive sequences are separated by 12.4 h, the local 
tidal period. Topographical obstructions to the tidal flow in different locations 
generate such packets of solitons and rips travelling in different directions, but 
satellite photographs indicate that each packet is able to maintain its identity 
over hundreds of kilometres despite oblique interaction with other soliton pack- 
ets. 

All this, together with the shapes of the pulses measured in the displace- 
ments of isotherms (or isopycnals) and the fact that generally the pulses are 
rank-ordered by amplitude and correspond to a depression of the thermocline, 
suggests an underlying soliton mechanism, and Osborne [48] compares the merits 
of KdV, the intermediate depth equation of Kubota, Ko and Dobbs [32], and the 
Benjamin-Ono equation [3, 47]. The typical pulse widths are of order 1-3 km and 
the depth between 300 m and 1100 m, so the temptation is to assume the depth 
small compared with the pulse width and expect that (of these three models, all 
integrable) KdV will provide the best approximation. That is confirmed by the 
analysis of Osborne and his collaborators, with extensive measurements over the 
full water depth and analysis for a two-layer model and for continuous density 
profiles. The measurements show that throughout most of the depth, and certain- 
ly for a considerable range on either side of the thermocline, the wave-induced 
particle velocities are independent of depth, as required in the approximations 
leading to KdV. 

For the analysis the streamfunction is written as r  z, t) = r t), 
where the vertical mode shape r is determined by a differential eigenvalue 
problem and r/(x, t), which to the same approximation represents the displace- 
ment of an isopycnal, satisfies KdV 

fit + cOr]x + ozTPTx +/~rlxxx = 0 .  (3.1) 

With a two-layer model (upper and lower layer thicknesses and densities hi,  Pl, 
and h2, P2) the coefficients are simply 

c 0 =  + P l  \ h i + h 2  ' 
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o[-- 3c0(h2 - hi) cohlh2 
2hlh2 ' ~ -  ~ ,  (3.2) 

for P2 - Pl << Pl, P2. Since h2 > hi here, a soliton is, as observed, one in which 
the thermocline is depressed. In the detailed application of KdV theory, Osborne 
and his collaborators computed the coefficients in (3.1) by numerically solving 
the eigenvalue problem using measured mean density profiles and performing 
the necessary integrals involving the eigenfunction (only the lowest mode was 
considered, other measurements showing that more than 90% of the total energy 
was carried by this mode) and the mean state. 

A time series of recorded data in the Andaman Sea was then used as the 
scattering potential for the Schrrdinger problem, and the number and magni- 
tudes of the discrete eigenvalues were calculated numerically, along with the 
reflexion coefficient as a function of scattering frequency (or wavenumber). In 
some cases, as many as 12 bound states were predicted, and the first seven 
of these gave soliton magnitudes in good agreement with observed maxima in 
the time series. Attention was also paid to the continuous spectrum, which was 
generally dominated by a single lobe in the frequency range for which KdV is 
applicable, corresponding to a single radiative wave packet in the time series (cf. 
Section 2). 

Some anomalies remain, for example, in the observation that in some sim- 
ilar experiments involving internal waves in the ocean, the solitons were not 
always ordered according to amplitude. This may simply reflect the fact that 
a sufficiently large time had not elapsed to quality for the asymptotic lim- 
it for the particular complicated evolution in question, or it may have to do 
with the fact that the infinite-line spectral problem is not strictly appropriate to 
these problems where there is periodic tidal excitation. This would be settled 
if, as promised by Osborne, the periodic-initial-value problem for KdV were 
solved by numerical implementation of the periodic spectral transform. What- 
ever the outcome, it is clear that these large-amplitude waves (large in relation 
to human marine activities) are actually sufficiently weakly nonlinear and of 
sufficiently long wavelength that they should be described by KdV, and that 
KdV theory does indeed give an excellent description of all their essential fea- 
tures. 

4. Nonlinear Acoustics of Bubbly Liquids 

No account of applications of KdV should omit reference to theoretical and 
experimental work on the propagation of nonlinear acoustic waves in liquids with 
small volume concentrations of gas bubbles. Such a suspension has remarkable 
acoustic properties, even for very small volume concentrations of gas bubbles. 
First, for example, for air bubbles in water at standard pressure and temperature, 
the low-frequency sound speed co is of the order of 40 m s-  1 for a concentration 
oz0 = 0.1, not simply well below the pure water sound speed q = 1500 m s -1 but 
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also well below that of the pure gas phase (340 m s - i ) .  This can be understood 
by noting that in the expression c 2 = (bulk modulus)/(density) the bubbles endow 
the suspension simultaneously with the low modulus of the gas phase and the 
high density of the liquid phase. These low values of co imply that nonlinear 
effects are much more important for bubbly liquids, even with very small bubble 
concentrations, than for monophase liquids. 

Second, the bubbly liquid exhibits strong dispersion. For a lossless suspension 
of identical-size bubbles, the acoustic phase speed Cp (co) is reduced, parabolically, 
below co for low frequencies, and reaches zero at the bubble monopole resonance 
frequency coo. There is then a forbidden band coo < co < col in which Cp(co) is 
purely imaginary and all motion is purely reactive, and then Cp (co) becomes real 
again, decreasing from +co  to essentially Cl as co increases from coi to oo. If 
losses are included, there is a small real part of Cp(co) in the forbidden band, 
and a high value of Im Cp (co) there, peaking at resonance. These features have 
been substantially confirmed by experiment. See, for example, the review by van 
Wijngaarden [58], in which, in his Figure 3, we see measured phase speeds as low 
as 500 ms -1 and as high as 2800 ms -1 in experiments at different frequencies 
on the s a m e  bubbly mixture with ao very small, ao = 2 x 10 -4. 

The parabolic form of Cp(co) for co/coo << 1 and the presence of the usual con- 
vective derivatives in the mass and momentum conservation equations indicate 
that low-frequency pressure pulses of moderate amplitude should satisfy KdV, 
or (Burgers) BKdV if dissipative effects are significant. Two groups have done 
impressive analytical and experimental studies for such cases. That led by van 
Wijngaarden was the first to carry out experiments to verify qualitatively the 
predictions of KdV theory for soliton formation and of BKdV theory for the for- 
mation of shocks with either monotonic or oscillatory structure depending upon 
the strength of dissipation relative to dispersion. Later, van Wijngaarden and 
his student Roelofsen carried out experiments in which a triangular compression 
pulse was delivered by a piston at one end of a tube of bubbly mixture. For such 
initial data the Schrrdinger spectral problem for KdV can be solved explicitly in 
terms of Airy functions, and the number of solitons expected can be predicted 
in closed form as a function of the duration and amplitude of the initial wave 
and the properties of the medium. Gratifying agreement was obtained between 
the experiment and theory, as is explained in more detail in van Wijngaarden's 
contribution to these Proceedings. This also amounts to an impressive confirma- 
tion of the theory of bubbly liquids, modelled as two co-existing continua. There 
is a spectacular difference between prediction or observation for a pure liquid 
or gas phase, where the triangular pulse simply lengthens as t 1/2, remaining tri- 
angular of constant area, and with a leading diffusion or relaxation-controlled 
shock with amplitude decreasing as t - i /2;  and the prediction or observation of 
the response of a liquid with a minute gas bubble concentration, where a finite 
number of rank-ordered solitons may be produced, with no shock-like features 
under appropriate circumstances. 
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Fig. 3. Experimental observations of oscillatory shock and soliton features in propagation 
of pressure pulses in liquid with CO2 bubbles. (From Kuznetsov et al. [33], with permission.) 

Similar theoretical and experimental studies were also conducted in Novosi-  
birsk (see Kuznetsov et al. [33] and Nakoryakov et al. [40]). A BKdV equation 
for the pressure p(~, r),  

019 019 1 02p 1 03p 
0---~ + p 0~ Re 0~ ~ + cr --2 0~ ---5 = 0 (4.1) 

was derived, in scaled variables, with Re a Reynolds number based on charac- 
teristic velocity and length-scales u0, g, respectively, of the initial signal and an 
effective viscosity coefficient incorporating viscothermal diffusion and acoustic 
radiation damping, and with o- a dispersion parameter, 

O- -~- e0U0/2~ -1/2,  ~ = R~CO/6c~0(1 - c~0), (4 .2)  

for a mixture of  bubbles all of  the same radius Ro, and with co the low-frequency 
sound speed in the mixture. Low-amplitude wave packets were studied, and 
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also larger-amplitude compression pulses produced by breaking a diaphragm 
separating a tube of bubbly liquid (CO2 or He bubbles with o~0 ,'~ 0.01) from a 
high-pressure chamber. Calculations were made for initial profiles of Gaussian 
form, and for triangular profiles corresponding to the diaphragm rupture. 

For sufficiently small a/Re,  solitons were produced whose number agreed 
with spectral theory prediction. Reasonable agreement was obtained for the soli- 
ton propagation velocity (and, incidentally, for the propagation speed co of low- 
amplitude wave packets) as a function of the medium parameters and soliton 
amplitude, for the dependence of soliton width on amplitude, and for the soli- 
ton shape, compared with KdV prediction. See Figure 3 above (Figure 10 of 
Kuznetsov et  al. [33]) for oscillograms showing the emergence of 5, 2, 1 or 0 
solitons in appropriate cases, together with dispersive radiation. The damping 
of solitons and wave packets was also studied, with agreement between theory 
and experiment which is astonishingly good given all the idealizations of the 
underlying model. 

5. Voidage Slugs in Fluidized Beds 

Multiphase media with dynamical microstructure will evidently display frequency 
dispersion, as is to be expected in a bubbly liquid where each micro-element 
has its own internal resonance, often lightly damped. It is less obvious that 
dispersion with only small dissipation will arise in the relaxation processes that 
take place in a gas or liquid phase with an included rigid particulate phase, 
such as one finds in dusty gas flows, in particulate matter sedimenting under 
gravity, or in fluidized beds as widely used in chemical processing. In a fluidized 
bed, gas or liquid is forced upwards under pressure in a vertical tube containing 
a fine bed of particles. When the fluidizing velocity exceeds a threshold, the 
bed expands - homogeneously one hopes - the particles being held at rest, on 
average, against gravity through their interactions with the fluid and with each 
other. But the homogeneously-expanded state is almost invariably instable, the 
instability leading in wide tubes to the production of large bubbles of particle- 
free fluid rising through the bed and creating a state visually similar to the 
boiling of a liquid. In sufficiently narrow tubes, a one-dimensional state persists, 
the instability here leading to 'slugging', the production of horizontal bands or 
slugs of particle-lean fluid propagating upward, with a region below each slug 
of increased particle concentration. 

This instability is undesirable in technological applications, leading, for exam- 
ple, to highly uneven performance, excessive temperatures and fatigue damage. 
Much effort has been put into the modelling of fluidized beds (this is still a 
matter of considerable controversy) and into understanding the linear instability, 
although experimental study of the linearized stages is almost impossible. Weak- 
ly nonlinear analyses have been conducted by numerous authors, and Kluwick 
[28] was perhaps the first to show that in appropriate circumstances a fluidized 
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bed or a sedimenting suspension would support KdV solitons. (In fact there is a 
change of sign of the nonlinear coefficient for a particular value r = n/(n + 2) 
of the background voidage - the fraction of unit volume of mixture occupied 
by the gas phase - with n an empirically-determined constant in an assumed 
power law expression for the drag coefficient on a particle as a function of the 
local voidage r and Kluwick allowed for this, retaining quadratic and cubic non- 
linearities to give an equation of Gardner type (KdV-MKdV).) However, weak 
nonlinearity is not necessarily stabilizing, and if the particle-phase interaction 
pressure is not sufficiently large, the essential linear instability will cause growth 
of the KdV solitons through what looks, for long waves, like negative diffusion. 
The question then is "what role does KdV have in the overall evolution, and 
what is the ultimate fate of any solitons that may be produced at the KdV stage 
of events?" 

Harris and Crighton [15] sought to answer this question - and thereby in 
effect to show much more generally how the nongeneric integrable systems can 
be embedded, for limited ranges of time and space, in a much richer space- 
time evolution - by systematically analyzing one of several popular models for 
fluidized beds using asymptotic techniques model can, for a gas-fluidized bed, 
be reduced to the nondimensional system 

0r 0 
- 0-7 + 0-Tx [(1 - r  - -  0 ,  ( 5 . 1 )  

Or Or) 
( 1 - r  ~-~ + v ~x x 

(1-r162162 ~ v )  ( 1 - r  0r 1 02v 
- F--- -  w -  1 - 77o F 2  + 

(5.2) 

expressing conservation of the mass and momentum, respectively, of the particle 
phase which has voidage r t) and upward velocity v(x, t). Terms on the right 
of (5.2) correspond, in order, to the drag force between particles and gas, to 
gravitational forces, to the interparticle pressure field, and to viscous effects in 
the particulate phase (this being treated as a Newtonian fluid with an isotropic 
interparticle pressure field and a deviatoric stress with a particulate phase vis- 
cosity). The parameters in (5.2) are the uniform background voidage r the 
empirical Richardson-Zaki index n, a Froude number F and a particle-phase 
Reynolds number R. Laboratory experiments in narrow tubes suggest n = O(1), 
R = O(1), r = O(1), and F << 1, so Harris and Crighton seek asymptotics for 
F ~ 0 for fixed values of all other parameters. 

Bypassing the linear instability and going straight to the weakly nonlinear 
stage via 

V = F2Vl + F3v2 + ' ' ' ,  (5.3) 
q~ = q)0 q- F2q~l q- F3q~2 q- " ' ' ,  
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with X = x -  (n + 1)(1 - r T = F2t, we get 

0(~1 ,~. 0q)l 03q~l -FSo 02~1 
+ " '1-y2 b-k-x - + O(F2), (5.4) 

= (n + 1) r176 (5.5) 
R" 

The left side contains cubic dispersion from what in the momentum equation 
for v was a diffusive term and predicts, for r < n / ( n  + 2), the formation of 
KdV solitons of voidage greater than r rising vertically. The condition on r 
is usually satisfied, since typically 0.4 < r < 0.5 and 3 < n < 4. 

On the right of (5.4) the perturbing term is diffusive if 6o < 0, which cor- 
responds to a sufficiently strong particle-pressure p~s(0), and then perturbation 
theory [1, 24, 25, 29, 30] for nearly integrable systems shows that the KdV soli- 
tons simply decay adiabatically, with amplitude O(T-U2), T = FT. If 5O > 0 
the linear elements of (5.4) represent the essential instability of the fluidized bed, 
and the solitons grow. (The problem is then ill-posed, but the high-wavenumber 
growth is actually controlled by a fourth derivative term (cf. Appendix A of Har- 
ris and Crighton [15], and Hayakawa et al. [16]).) Then we seek an expansion 

r = r + F2r (X, T, T) + F3r T) + - - . ,  (5.6) 

in which T = F:t ,  T = F3t, and r is an adiabatically changing soliton, 

122/ha(T ) sech2 [~(T) (X _ Xo(T)  - ~)] (5.7) 
r  -5 -  

and where, as usual, it is important to uniformize the phase by writing 

4'7 / t~2(T) dT. (5.8) 

Inspection of the problem for r gives the growth law 

~T : 15 5~ ~(T) = -- T ' To -- 165o ' (5.9) 

so that the soliton amplitude has a finite-time singularity. One can then complete 
the solution for r and by examining its asymptotics below the soliton we deduce 
the existence of the now-familiar 'shelf', in this context an extensive region of 
negative voidage. As in the first successful application of perturbation theory 
to KdV solitons, the amplitude change mandated by (5.9) is actually what one 
gets by substituting the slowly-varying soliton expression in the 'energy' balance 
equation obtained by multiplying (5.4) by r and integrating over all X. But the 
resulting soliton variation cannot simultaneously satisfy conservation of particles, 
expressed by integrating (5.4) itself over all X. In fact, particles must continually 
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be lost from the soliton and they find their way into the shelf below, forming 
the particle-rich regions mentioned earlier. Although the amplitude of the shelf 
is formally small (as indeed is that of the soliton), it is proportional to ~(T) and 
has the finite-time singularity too. This singularity suggests that the KdV solitons 
will amplify beyond the weakly nonlinear limit (r - r = O(F2)), and possibly 
even to O(1). 

Before that happens, however, other perturbations become comparable with, 
and then dominate over,^the negative diffusion in (5.4), and the growth law 
changes. For T o -  T = FT,  T = O(1), various new quadratically nonlinear terms 
are comparable with diffusion, and the growth law - for the voidage fluctuation, 
which has now grown from O(F  2) to O(F), but is still given by a KdV soliton 
- is of the form 

t ~  = be; 3 + dt~ 5 , (5.1 O) 

and when the ~5 term dominates 

t~ ~ [4d(To - ~ ) ] - 1 / 4 ,  (5.11) 

so that the soliton continues to grow, but less rapidly. When To - T = O(F 2) all 
perturbations are comparable and we must leave the KdV soliton in favour of a 
solution of the fully nonlinear system. However, we are permitted, through the 
matching backward in time, to seek a slowly-varying travelling wave solution of 
the full system, the slow variation being determined, once again, by examination 
of corrections to the leading order (O(1)) voidage solitary wave. 

Analysis of the travelling solitary wave is given by Harris and Crighton [15] 
along with a determination of the amplitude variation, and a proof that in the 
long-time limit the amplitude and propagation speed tend to constant values, 
dependent on the background voidage and related to each other in a certain 
functional way. Going backward in time, the expressions for the amplitude and 
velocity and for the solitary wave shape match asymptotically those for the 
explosively growing KdV soliton. 

Computed solitary wave profiles are not much different from those of sech 2 
solitons. Harris and Crighton [15] give estimates appropriate to typical small- 
scale laboratory experiments for the times and distances over which one may 
expect to see the full nonlinear development or merely the emergence of the 
weak solitons. For example, with glass beads of 50/~m diameter and a typical 
disturbance length-scale of 1 cm, the KdV soliton stage corresponds to upward 
propagation over about 0.5 m, and the fully developed with experiments has yet 
been made, but the theory provides a clear suggestion as to how the large-scale 
orderly structures initially form from general disturbances, and how they amplify 
to the large-amplitude state associated with voidage bands. It also provides the 
theory for the particle-rich shelf below each voidage band, and gives estimates for 
the length- and time-scales associated with solitons, solitary waves and shelves. 
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According to Harris and Crighton [15], other competing continuum models for 
fluidized beds lead to similar results; at some stage in the spatio-temporal devel- 
opment they all contain a KdV equation with unstable perturbation. This leads to 
the emergence of nascent voidage bands as solitons, though the details of their 
subsequent amplification and equilibration will differ with the model. 

We have discussed this topic at some length because it is perhaps the first in 
which all stages of development in a complicated nonintegrable system can be at 
least partially analyzed and asymptotically related to each other. As part of this, 
the integrable KdV enters at one stage, and its solitons are subject to different 
types of perturbation as they grow. There is no need - indeed no possibility short 
of writing the whole system, very artificially, as a perturbed KdV system - to 
try to represent the system uniformly as perturbed KdV. 

From this it is clear that although integrable, and indeed nearly-integrable, 
systems are a set of measure zero, a vast number of much more complicat- 
ed systems generally far from integrable may contain an integrable element at 
some stage. Asymptotic methods tell us how to handle the complicated scenario, 
as above. Soliton large-scale order will emerge at the integrable stage, though 
whether it will persist, as here, and grow to large amplitude and a change of 
form, depends on the nonintegrable ingredients. 

6. Magma Flow and Conduit Waves 

KdV theory comes into play in several areas of geophysics. In conduit flows, 
buoyant fluid introduced below a layer of fluid of greater viscosity rises through 
a conduit which it creates, with buoyancy and viscous shear stress in balance 
for steady flow in a conduit of uniform area. If the supply rate varies, axisym- 
metric bulges propagate upward as conduit waves. Helfrich and Whitehead [17] 
offer simple elegant theory and laboratory experiments on large-amplitude con- 
duit waves, and emphasize that they transport with them a substantial blob of 
recirculating fluid. It is thought that such essentially diffusion-free conduit-wave 
transport of magma from the Earth's interior to the surface could contribute to 
the formation of hot spots and of volcanic island chains. 

If the conduit has area A and carries a volume flux Q, then mass conservation 
gives 

OA OQ 
0---t + = 0, (6.1) 

while the momentum equation for a local Poiseuille flow and a small-slope 
approximation give 

Q = A  2  -0-2 ' (6.2) 
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where all quantities are dimensionless. In the weakly-nonlinear limit we replace 
Q by A 2 on the right of (6.2), substitute in (6.1) and drop certain derivatives on 
a long-waves basis. This immediately gives KdV for A(z ,  t). 

Olson and Christensen [46] studied solitary wave solutions of the full system 
(6.1), (6.2), showing, for instance, that the relation between propagation speed c 
and amplitude Am is 

c =  (2A2m In A m -  A 2 + 1 ) / ( A m -  1) 2, (6.3) 

which reduces to the KdV result for (Am - 1) small, and that for Am >> 1 the 
wave profile is Gaussian, 

A(~) = Am exp(-~2/2c) .  (6.4) 

Helfrich and Whitehead tested these predictions, and those of KdV theory, against 
experiments in which controlled excitation of solitary waves was possible, and 
in which provision was made for marking - with dye - the fluid particles in a 
given solitary wave. They found that the predictions of the full nonlinear theory 
were generally well borne out in the experiments, which involved waves with 
A (nondimensionalized on the uniform area of the conduit with steady flow) as 
large as 20. The overtaking of one solitary wave by another was observed to take 
place essentially elastically, although for reasons as yet unexplained, the larger 
wave increased in amplitude by about 5% on average, and its speed decreased 
by 4%, while the smaller wave was unchanged in amplitude and speed to within 
experimental accuracy. Numerical solutions of (6.1) and (6.2) gave an over- 
prediction, by as much as 40%, of the phase shifts experienced in interaction. 
Clearly mass is not conserved by the two solitary waves in such interactions, 
and the excess must presumably be supplied unsteadily from the reservoir at the 
foot of the conduit. 

As mentioned earlier, these conduit solitary waves transport matter with them, 
and for large amplitude waves the transported volume asymptotes to the whole 
volume excess 

f ~-~(A - A0)(~) d~ 
t o  

carried by a given solitary wave. This geologically significant transport property 
persists, though to a lesser degree, in the KdV limit. When a larger wave overtakes 
a smaller, matter from the smaller is retained in the larger afterward, while the 
smaller contains only fluid particles that were present in the original larger, as was 
shown very convincingly in the Helfrich and Whitehead [17] experiments. 

Most of these studies, and indeed of the interest, refer to amplitudes far beyond 
the reach of the KdV limit, but KdV properties dominate the experiments, the way 
they are conducted, and the inferences drawn from them. Another geophysical 
process within the same general category is referred to as 'compaction-driven 
flow', where buoyant interstitial melt (corresponding to the intrusive conduit 
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fluid) is forced through a deformable porous crystalline matrix representing the 
Earth's mantle, and corresponding to the viscous fluid exterior to a conduit. 
The functional relation corresponding to (6.2) is different for compaction-driven 
flows, but again KdV emerges in the weakly-nonlinear limit, with solitary wave 
solutions of the fully nonlinear system [51]. These solitary wave solutions have 
been called magmons, although numerical evidence is that the result of a collision 
between two magmons is not confined simply to phase shifts. The magmons 
are also quite different from the conduit waves in that they do not transport 
matter, the fluid particles simply experiencing a finite displacement in the passage 
of a magmon [54]. By contrast, conduit solitary waves are rather efficient in 
transporting matter right through the mantle with negligible diffusion; Whitehead 
and Helfrich [60] estimate that the occurrence of a single solitary wave (of the 
geologically plausible scales) every 500 million years would double the magma 
flux to the surface over what would be produced by steady flow in the same 
conduit! 

7. Jupiter 

Perhaps the boldest application of KdV to date has been to the understanding 
of the Great Red Spot (GRS) and other features in the Jovian atmosphere, seen 
in cloud patterns, such as the South Equatorial Disturbance, the Dark South 
Tropical Streak, the Hollow and the White Ovals and, in particular also, the 
South Tropical Disturbance (STD). The soliton theory is due to Maxworthy and 
Redekopp [38] and to Maxworthy, Redekopp and Weidman [39]. Although now 
seen to be inadequate quantitatively and even qualitatively, this work was highly 
influential ("a noticeable milestone in the history of contemporary ideas of the 
GRS nature" - Nezlin [43]) and contained many of the essential ingredients for 
current understanding in what has become, with the recent advent of high-quality 
spacecraft images, a topic of intense research interest. The reader is referred 
to Marcus [36], Nezlin [43], and a number of articles in the Focus Issue of 
Chaos (1994, Vol. 4, No. 2) coordinated by Nezlin, for accounts of the current 
position. 

In rapidly rotating planetary atmospheres, the dominant linear wave modes 
are highly dispersive westward-propagating Rossby waves. The long waves have 
highest velocity and are weakly dispersive, with KdV-type cubic dispersion. Now 
in the 'shallow-water equations' for a thin atmosphere with a free upper surface, 
and with the fl-plane approximation f = f0 + /3g  (y northward) for the local 
Coriolis parameter, a KdV nonlinearity /3hhx arises (see [43, Equation (16)]) 
which has the effect of changing the phase velocity of long Rossby waves from 
VR = /3r~ in the linear regime (rR is the Rossby deformation radius, rR = 
(g Ho ) 1/2/ f  o in obvious symbols) to V = VR(1 + h ), h = 6 H / Ho, for a nonlinear 
solitary Rossby wave. Such a solitary wave can preserve itself over long times 
only if it is free of resonance (phase velocity matching) with any linear waves, so 
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we must have h > 0, which means that the vortical structures producing the free 
surface elevation must be anticyclonic. By contrast, disturbances with cyclonic 
vorticity disperse by linear Rossby wave radiation. This anticyclonic circulation 
is completely in accord with almost all observations of large-scale organized 
structures in giant planets (Jupiter, Saturn, Neptune). 

This further suggests that in a weakly nonlinear approximation, the vorti- 
cal structure should be described by KdV, as first suggested in [38]. There the 
streamfunction for the quasi-geostrophic equations was expanded in the form of 
a mean horizontally-sheared east-west zonal shear flow plus a perturbation 

= U ( y ) d y + e ~ ( x , y , z , t )  (7.1) 

and ~b taken as a single mode 

= An(~, "r)r cos nlrz + integral harmonics, (7.2) 

with scaled variables ~ = e(x - C(~ r = e3t and with rigid top and bottom 
walls (z = :t:l). Then An was found to satisfy MKdV for n 7 ~ 0 (i.e. for 
baroclinic waves), 

2 AnT + o~nAnAnx + f l n A n z ~  = 0, (7.3) 

with coefficients defined through integrals of the basic state and the mode function 
r (itself the solution of an eigenvalue problem). The scalings ~ = el/2(x - 

C~~ r = e3/2t are needed for barotropic disturbances (n = 0), and A0 satisfies 
standard KdV. 

Maxworthy and Redekopp [38] calculated the coefficients for the simple shear 
flow U(y) = Stanh y (S = +1 for anticyclonic and cyclonic basic shear) and 
displayed contours of constant ~b in a horizontal plane z = const in coordinates 
travelling (westward) with a soliton solution of KdV or MKdV. They noted that 
such solitons have the forms, respectively, 

A0 = sgn(o~0fl0) sech2X, An = + sech X, (7.4) 

and so, at z = 0 say, one can have both an E-soliton of elevation and a D- 
soliton of depression for MKdV, corresponding to -4- for An, but, for the same 
propagation speed only either an E-soliton or a D-soliton for KdV. 

Of course, the features of a baroclinic D-soliton where cos nlrz > 0 become 
those of an E-soliton where cos nTrz < 0, and vice-versa. Typical streamline 
patterns for E-  and D-solitons are shown in Figures 4a and 4b, together with, 
in Figure 4c, a suggested combination of D- and E-solitons on a jet profile 
modelling one of the east-west zones or belts on giant planets. This suggested 
structure was later confirmed by Maxworthy, Redekopp and Weidman ([39, Fig- 
ure 16]), where analysis was carried out for a Bickley jet profile U(y) = sech2y 
and the MKdV equation. The morphology of Figure 4c is strongly reminiscent of 
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Fig. 4. (a) An E-soliton on an anticyclonic shear in the southern hemisphere; (b) A 
D-soliton on a cyclonic shear in the southern hemisphere; (c) A combined D - E  soliton on 
an asymmetric jetlike profile. (Figure 4 from [38], with permission.) 
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the structure of the GRS and the Hollow immediately northward of it. Numerous 
other isolated Jovian features also have the typical structure of an isolated E-  
or D-soliton, the White Oval, for example, and the Dark South Tropical Streak, 
respectively. 

A particularly striking aspect of these large-scale structures lies in their inter- 
action properties, the most famous and well-documented of which [50] concerns 
that which occurred nine times between the GRS-plus-Hollow combination and 
the South Tropical Disturbance between 1901 and 1938. Peek's description of 
this has to be set alongside Scott Russell's vivid account of his first sighting of 
an individual soliton: 

"During the six weeks which would have been required for the p end of the 
Disturbance to pass from one end of the Hollow to the other. . ,  there was no 
sign whatever of any encroachment upon the region; instead, within a few 
days of its arrival at the f end of the Hollow, a facsimile of the p end of the 
Disturbance was seen.. ,  to be forming at the other end of the Hollow . . . .  
The new development. . ,  proved to be a true p end of the Disturbance which 
drew away from the Red Spot at approximately the same rate (at which it had 
approached) . . . .  Thus its passage through..,  the Red Spot, which would have 
taken 3 months at its normal rate of progress, must have been accomplished 
in a matter of fourteen days." 

Armed with KdV theory, it is impossible to refrain from speculating that 
Peek was describing the identity preservation of solitons and their generation of 
an abrupt phase shift on interaction. The phase shift in this case is equivalent 
to increasing the propagation speed of the STD from 7 m s -1 to 42 m s -1 as 
it traverses the GRS. Maxworthy, Redekopp and Weidman [39] analyzed the 
observations of this repeated interaction at length, modelling the GRS as an E- 
soliton and the STD as a double-D-soliton (while mentioning other possibilities 
for modelling the STD, namely a breather solution of MKdV, or a dispersive wave 
packet associated with the continuous spectrum). They calculated phase shifts 
not for their favoured MKdV system, but for Rossby waves in a homogeneous 
atmosphere. If the basic perturbation is the sum of two isolated solitary waves, 

r = A1 (x, t)r (V) + A2(x ,  t)r 

then the mode shapes r satisfy a barotropic Rayleigh equation, and the ampli- 
tudes satisfy coupled KdV equations, 

A l t +  C1Alx  - 2 r l A 1 A l x  - slAlx.~ = A1AIA2x + u lA2AI~ ,  (7.5) 

A2t 4- C2A2z - 2r2A2A2x - s2A2zzx = A2A2Alx + u2A1A2. .  (7.6) 

The coefficients were evaluated for the periodic shear flow U(y) = Ssr:(2" m), 
and the interactions calculated by the asymptotic method of Oikawa and Yajima 
[45]. Direct comparison with the observations was not possible, however, because 
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with the barotropic KdV solitons a D-soliton modelling the STD can approach 
an E-soliton modelling the GRS only from the east, and not from the west as on 
Jupiter. Nevertheless, the similarities between the various possible D-D, D-F_, 
and E - E  interaction flow patterns and the observations are highly suggestive 
of the notion that although a realistic description cannot be attained at the level 
originally proposed by Maxworthy and Redekopp [38] (indeed, their rigid lid 
boundary condition precludes precisely the free surface variations that lead to 
the asymmetry between the anticyclonic and cyclonic solitary waves and thereby 
the exclusion, in agreement with observations, of the latter), there is nevertheless 
the crucial ingredient, within the more complete description, of an underlying 
integrable KdV model. 

Finally, one might ask how large solitary Rossby waves are generated and 
maintained against dissipation. After all, the GRS has been observed now for 
more than 300 years, which exceeds by three orders of magnitude the lifetime 
of a Rossby wave packet of the same scale under linear dispersion mechanisms. 
Although it is possible that such waves are fed from some lower-atmosphere 
convective energy flux, it is more likely that they are formed from large-scale 
instability of the shear across the edges of the planetary belts and zones. Under 
the influence of linear amplification mechanisms, waves amplify to a weakly 
nonlinear stage, at which dispersion and nonlinearity enter in KdV or MKdV 
fashion. Integrability at this stage for the anticyclonic case implies the emer- 
gence of localized orderly soliton structures which may (cf. [38, p. 266]) be 
able to extract further energy from the shear and grow to larger amplitudes in 
which we have quasi-steady large-amplitude solitary Rossby waves with shear 
amplification and dissipation in balance. (Compare the corresponding evolution 
of large-amplitude solitary waves of voidage in fluidized beds, described in Sec- 
tion 5 above.) This would be consistent with the observations by Nezlin [43] 
of a laboratory model of Jovian flows where, in particular, he showed also how 
the number of such large features is a decreasing function of the velocity shear, 
only one feature, akin to GRS, being produced - and then maintained apparently 
indefinitely - for sufficiently strong shear. 

Whatever the final theoretical framework might involve, it is clear that the 
astonishingly beautiful and well-ordered features of planetary atmospheres, and 
the attendant smaller-scale Lee waves, Kfirmfin vortex streets, and hydraulic 
jumps - have been illuminated in an equally astonishingly beautiful way by 
KdV theory. 

8. Plasma Physics 

No catalogue of applications of KdV should fail to mention plasma physics. It 
was indeed in the context of hydromagnetic plasma waves [10] that the KdV 
equation was again encountered for the first time since 1895, and again in 1966 
in the work of Washimi and Taniuti [59] on ion-acoustic waves in a cold plasma. 
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Ion-acoustic waves provided an early confirmation of the soliton aspects of KdV 
theory in the experiments of Hershkowitz, Romesser and Montgomery [18], the 
generation and interaction of ion-acoustic solitons having been demonstrated 
already by Ikezi, Taylor and Baker [23]; and Hershkowitz and Romesser [19] 
made observations of cylindrical ion-acoustic solitons before the cylindrical KdV 
has either been derived [37] or shown to be integrable [5]. 

Confining attention to one-dimensional ion-acoustic waves in a plasma with 
cold ions, negligible ion pressure and an isothermal perfect gas law for the 
electron field, one has, in the absence of any current, the set of four equations 

0ni 0 
a---~'- -'}- ~XX (niVi) -~ 0, (8.1) 

OVi OVi 
Ot -1- vi ~ = E ,  (8.2) 

One 
n e e  + 0~-- = 0, (8.3) 

O E  
Ox = ni -- he, (8.4) 

for the ion velocity vi and number density ni, the electric field E and the electron 
number density he. All quantities are nondimensional, the ambient state has 
ni = ne -= l, vi = E = 0, and ions and electrons are assumed to carry the same 
magnitude of charge. Equations (8.1)-(8.4) are, respectively, the expressions of 
mass and momentum conservation for the ions, a force balance equation for the 
electrons, whose inertia in a low-frequency wave is negligible, and Poisson's 
equation for the electric field given the charges. 

The long-wave dispersion relation from (8.1)-(8.4) is 

022/k 2 : 1 -- k 2 -~- O(k4) ,  (8.5) 

and therefore when this dispersion (valid for w << ftpi where f~pt is the ion- 
plasma frequency, and closely analogous to the dispersion in a bubbly liquid for 
w << w0 (cf. Section 4)) is coupled with the convective derivatives in (8.1) and 
(8.2) in an appropriate weakly-nonlinear weakly-dispersive limit it is evident that 
fluctuations n it in the ion density must satisfy KdV (there being no symmetry 
under which the quadratic term would vanish). 

Hershkowitz, Romesser and Montgomery [18] generated solitons from vari- 
ous square-wave input voltages in a narrow column of cold plasma, and were 
able to predict accurately the number of solitons produced in any given case from 
the well-known solutions to the SchrSdinger equation for square-well potentials. 
The calculation also gave the soliton amplitudes in reasonable agreement with 
experiment, and the experiment further gave good agreement with theory on the 
speed-amplitude-width relation for KdV solitons. Ikezi [21] reported on similar 
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experiments with one half-cycle of a cosine-squared wave parameters were rea- 
sonably predicted, the number of solitons observed was systematically greater 
than predicted, for reasons which seem not to have been explained. Ikezi [21] 
also showed the results of interaction between unequal solitons travelling in the 
same direction, and between equal solitons travelling in opposite directions. In 
the former case identity preservation was observed, though with very strong 
amplitude loss in both waves because of large damping experienced in the long 
interaction period; in the latter case, modelled by a Boussinesq equation, interac- 
tion was rapid and close to that expected theoretically. A further interesting point 
of these experiments was an observation of FPU recurrence. A sinusoidal input 
signal was transformed to one dominated by two solitons per period at 5 cm 
from input and back effectively to the original sinusoidal at 9 cm (excitation 
frequency 0.35 MHz, ion-plasma resonance frequency f~pi = 47c MHz). Theory 
of the recurrence for the two-solitons-per-period case was developed by Ikezi, 
Taylor and Baker [23] and Tappert and Judice [57]. 

For the plane wave case, experimental observations of KdV solitons were also 
made in the context of the Trivelpiece-Gould plasma wave by Ikezi et al. [22] and 
Saeki [52]. Ion-acoustic plasma waves provided the first experimental evidence 
of cylindrical KdV solitons [19]. The plasma was contained within a circular 
cylinder, excitation being provided by the application of a bias voltage across a 
surrounding cylindrical plasma sheath. Break-up of the input signal was observed, 
with soliton-like pulses emerging in both the ingoing and outgoing (from the 
axis) waves for compression input, the soliton velocities exceeding the linear ion- 
acoustic low-frequency speed. The solitons had a pronounced asymmetry, trailing 
a wake generally familiar for two-dimensional linear waves, and a scaling law 
asserting constancy of the product of soliton width and square root of amplitude, 
and following from an adiabatically varying KdV soliton approximate solution 
to the cylindrical KdV, was found to be tolerably well satisfied. Application of 
rarefaction excitation produced no evidence of soliton-like structures. 

Since the time of these early experiments, Cylindrical KdV has been proved 
integrable [5] and much of the apparatus of integrable systems has been at least 
partially established for it (e.g., B~icklund transformations, together with a proof 
that BTs exist only for Cylindrical KdV out of the whole class of Generalized 
KdV equations [44]). Consequently it should be possible now to produce key 
relations for experimental test, though to the author's knowledge this has not 
been attempted. The experiments in plasma are difficult and costly at the scales 
that would allow detailed confirmation of CKdV theory. The two-wave non- 
linear equation for weakly-nonlinear cylindrical waves (the counterpart to the 
Boussinesq equation for plane waves) is probably not integrable, so observa- 
tion should be restricted to one-way waves in the period prior to any reflexion, 
and a preferable configuration maintaining the assumptions underlying CKdV 
for longer would involve excitation of a large annulus of plasma at some small 
inner radius with initially purely diverging waves. Experiments to test CKdV 
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for cylindrically diverging waves on the surface of shallow water seem just as 
difficult to execute. 

9. Electrical Transmission Lines 

In the early days of soliton mathematics and physics, there were numerous simu- 
lations of physical systems through experiments on long transmission lines, and 
analytical and numerical solutions of discrete and continuum models for them. 
Such lines are relatively cheap and easy to construct, and versatile, in that they 
often lead to equations of the form 

ut + oeumux +/3uxx~ = (Suzer (9.1) 

where the relative importance of dissipation and dispersion is controllable, where 
the nonlinearity index m can be controlled by suitable choice of nonlinear ele- 
ments, and where there is also the possibility of spatial variation of the coeffi- 
cients. The nonlinear elements are typically variable-capacitance diodes, or sat- 
urating ferromagnetic inductances. 

Lonngren [35] gives a review of numerous physical experiments on lines 
which may be as long as 20 m with as many as 1000 nominally identical sections. 
The typical nonlinear wave equation for the line voltage V, in the continuum 
limit and nondimensional variables, is 

04V 1 O2V 1 02Q(V) 
OX20t ---------~ -]- L C  Ox 2 C Ot 2 - O, (9.2) 

where L, C are linear inductance capacitance, and the charge Q ( V )  held by a 
nonlinear capacitance is assumed to have the form Q ( V )  = CoV - C N V  2 as 
V ---+ 0. The linear dispersion relation is 

c 0 2 / k  2 ---- (LCk 2 -I- LCo) -1 (9.3) 

and we readily find KdV, 

OU CN OU C 03u 
07 + ~ 0  u~--~ + 2~0 0~ ~ -- 0 (9.4) 

in appropriate variables for right-running waves. In principle it would be possi- 
ble to go to higher nonlinearity and a higher leading-order dispersive term by 
appropriate choice of linear and nonlinear circuit elements. 

Experiments on a line for which (9.4) should hold confirm quite reasonably 
the main predictions, namely the propagation of linear dispersive waves of either 
polarity in the linear limit; the emergence in strong waves of a definite number of 
compression solitons (V > 0) and a decaying oscillatory tail together conserving 
f-+2 v ( t ) a t  along the line, with merely decaying radiation for rarefaction input 
signals; the amplitude-speed-width relation for KdV solitons; and identity preser- 
vation in both overtaking and head-on collisions. The generation of shocks with 



APPLICATIONS OF KDV 63 

oscillations on the high-V side was also found for input signals corresponding 
to shock-type boundary conditions u(~ = - o ~ )  = Ul, u(~ = +c~) = u2 > ul, 
also in accord with KdV theory. Fissioning of a KdV soliton into two solitons 
was demonstrated by Stewart and Corones [56] on a line comprising three seg- 
ments, the first and third of uniform but different linear properties, with a spatial 
variation of dispersion coefficient in the middle section. FPU recurrence of an 
initial sinusoid, again for the two-solitons-per-period case as in Section 8, was 
observed by Hirota and Suzuki [20]. 

In all these cases dissipation is weak compared with dispersion. Gorshkov et 
al. [11] report similar experiments where MKdV is the basic equation and, in one 
limit, where the modified Burgers equation is appropriate. Among the distinctive 
features of solutions of that equation is the production of sonic shocks in finite 
time and their maintenance as sonic shocks thereafter, with an unusual shock 
profile; this is in agreement with asymptotic theory, for small diffusivity, for the 
(nonintegrable) modified Burgers equation. 

Concluding his review, Lonngren [35] suggested that 

"With the rapid development of microcircuit technology, it is not incon- 
ceivable that 'pocket size' soliton (transmission line) experiments could be 
eventually built and sold to serious soliton students." 

That this suggestion has not been taken up is perhaps simply a reflexion of 
the fact soliton theory has rapidly acquired an accepted place in so many areas 
of science and that numerical simulation of soliton processes has becomes so 
easy. 

10. Epilogue 

There are countless other contexts in which KdV arises, of which just a few can 
receive a brief note here. 

First, although in the water wave context the first application was to the profile 
of long waves, KdV also turns up in modulation problems where one immediately 
thinks instead of NLS (see, e.g., [42, pp. 40-48]). For the modulation on long 
scales of a carrier wave we do have NLS, 

iaT + 1 Wtola~ +/3a[a]2 = 0, (10.1) 

for the amplitude a(~, T), where w~ ~ refers to the dispersion relation at the carrier 
wavenumber k0 and /3 is defined in terms of k0 and the medium properties. 
However, if/3w~ ~ > 0 the monochromatic wave given by la[ = A = A0, ~ = 
arg a = /3AZT is unstable to long-wave perturbations (the celebrated Benjamin- 

Feir instability), but if/3w~ < 0 the perturbation .4, where [a] = A = A0 + A, 
evolves under KdV, with solitons and radiation. The solitons have A < 0 and 
represent a local reduction in intensity of the otherwise uniform intensity, and 
are called dark solitons. 
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Second, although the issue of energy transport over long ranges in the protein 
o~-helix is dominated by Davydov solitons (see [6] and [34] for a recent review) 
on a discrete lattice, with the Zakharov equations of plasma physics and NLS in 
the continuum limit, KdV nevertheless arises in this field too. In the Yomosa [61] 
model, the emphasis is different, and is on the large-amplitude dynamics of the 
peptide groups in the nonlinear hydrogen-bonded spines of the o~-helix, rather 
than on the interaction, as in Davydov theory, between a molecular mode and 
a low-frequency intermolecular acoustic mode. In the Yomosa lattice model we 
have a polypeptide chain with the nth peptide group undergoing a displacement 
Un, with r n  = Un+l - Un the extension of the nth peptide bond, and with an 
assumed potential V n ( r n )  = A r  2 - B r  3 for the nth hydrogen bond. The equation 
of motion of the nth group is 

2 - -  2r2), m ~ n  = 2A(rn+l  + r n - 1  - 2 r n )  - 3B(r2+l  + r n _  1 (10.2) 

and in the continuum limit n g  -+ x ,  rn  ~ r ( x ,  ~) with right-propagating waves 
we get KdV, 

u r  - 6 u u ~  + u ( ~  = 0 

with 

( l O . 3 )  

= x / g -  ( 2 A / m ) l / 2 t ,  -c = ( 2 A / m ) l / 2 t / 2 4 ,  u = ( 6 B / A ) r .  (10.4) 

The KdV solitons are supersonic, relative to the sound velocity V0 = ( 2 A / m ) 1 / 2 g .  

In his review Lomdahl [34] says that such supersonic lattice KdV solitons repre- 
sent a 'reasonable alternative' to the Davydov and Takeno models for long-range 
coherent transport of biological energy. 

In the field of solid mechanics, a number of authors, beginning with Nariboli 
and Sedov [41], have given analysis leading to KdV for the propagation of longi- 
tudinal waves in a nonlinearly elastic medium, but no successful confirmation of 
the KdV predictions has come from experiments. Indeed, Samsonov and Sokurin- 
skaya [53] showed that for a thin circular rod of radius R, the weakly-nonlinear 
wave equation is not Boussinesq, 

v t t  --  C2Vxx = ~ -t- u 2 R 2 v t t  , (10.5) 
A X X  

which leads to KdV under the one-wave restriction, but rather, through coupling 
of longitudinal and transverse waves, a double-dispersion equation 

�9  10.6, v .  - c % =  = + - 
.1 x x  

In these, v is the longitudinal strain, p and u the density and Poisson's ratio,/3 
a nonlinearity parameter and co, Cl the speeds of linear P and S waves. Equa- 
tion (10.6) has sech z solitary wave solutions, which coincide with those of KdV 
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in the appropriate limit, though (10.6) appears generally nonintegrable. Experi- 
ments were carried out by Dreiden et al. [8] on the excitation of intense longitudi- 
nal waves in a polystyrene rod, for which all the numerous restrictions leading to 
(10.6) were reasonably well satisfied. These were the first in which such solitary 
waves had successfully been identified in solid matter, and confirmed the solitary 
wave features predicted by (10.6) to the exclusion of the earlier predictions of 
KdV. 

In many of these applications, the initial stimulus came from the recognition 
that some complicated partial differential or difference system would reduce 
to KdV in an appropriate limit, suggesting an association between observed 
long-lived large-scale orderly structures and KdV solitons. Currently, the focus 
is much more on large-amplitude phenomena, well beyond the range of KdV 
theory and exemplified by the magmons of compaction-driven or conduit flows 
in geophysics (cf. Section 6), the planetons (large-amplitude Rossby waves (cf. 
Section 7)) introduced by Dewar [7], and perhaps, to coin a new term, the voidons 
(large-amplitude voidage slugs (cf. Section 5)) in fluidized beds. This shift of 
focus is reflected in the early dates, in the history of soliton systems, associated 
with the many discoveries of the application of KdV theory to diverse physical 
phenomena. It must be seen as a tribute to Korteweg and de Vries that their 
celebrated equation has had such profound effects, not simply on its own terms 
as a rich differential equation, nor simply for the great range of phenomena that it 
describes in some limited part of parameter space, but also for the impetus it has 
given to the analysis of more complex and general fully nonlinear systems. 

The material for a review such as this is now to be found in literally thousands 
of papers in journals covering many disparate branches of science. I apologize 
to all those many researchers whose work has inevitably been overlooked, or 
omitted, or inadequately described in the above, and I hope that at least some 
feel has been given for the importance - impossible to exaggerate - of KdV in 
applications. 
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