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Pablo R. Muñoz,1,a) Joaquim J. Barroso,2 Abraham C.-L. Chian,2,3 and Erico L. Rempel1
1Institute of Aeronautical Technology (ITA) and World Institute for Space Environment Research (WISER),
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We study the chaotic dynamics of the Pierce diode, a simple spatially extended system for
collisionless bounded plasmas, focusing on the concept of edge of chaos, the boundary that separates
transient from asymptotic dynamics. We fully characterize an interior crisis at the end of a periodic
window, thereby showing direct evidence of the collision between a chaotic attractor, a chaotic saddle,
and the edge of chaos, formed by a period-3 unstable periodic orbit and its stable manifold. The edge
of chaos persists after the interior crisis, when the global attractor of the system increases its size in the
phase space. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4736860]

A chaotic plasma device, the Pierce diode, is studied using
a novel concept from the dynamical systems approach:
the edge of chaos. We focus on a periodic window in the
parameter space, where typical phenomena such as cha-
otic transients and interior crisis are observed. In gen-
eral, chaotic transients arise due to the presence of a
surrounding chaotic saddle, and the ensuing interior cri-
sis triggered by the collision between a chaotic attractor
and a mediating unstable periodic orbit (UPO). Our
results show that the mediating UPO coincides with the
edge state that lies in the boundary defined by the edge of
chaos. For the first time the interior crisis in the classical
Pierce diode is fully characterized. Our results and the
methodology developed herein can be used for the char-
acterization of chaotic transitions in other spatially
extended systems.

I. INTRODUCTION

In a dynamical system, the basin of attraction of a given
attractor is the set of initial conditions that converge to that
attractor. If the system has more than one attractor, we can
define a region that separates the basins: the basin boundary.
An extension of this concept was introduced by Skufca
et al.1 while studying transition to turbulence in shear flows
using a nine-dimensional truncation of the Navier-Stokes
equation. In that model, the system has one attractor, coexist-
ing with a chaotic saddle, the structure responsible for the
chaotic transients.2–4 Skufca et al.1 observed that even
though only one basin of attraction is present, the phase
space can be divided into two regions, depending on whether
an initial condition displays a chaotic transient behavior or
not. The boundary between these two regions is called the
edge of chaos. In the last years, the dynamical properties of
the edge of chaos have been studied in a wide variety of
applications, such as direct numerical simulations of pipe
flow,5 a numerical MHD simulation for two-dimensional

magnetic reconnection,6 and a generic two-dimensional
map.7 These works illustrate the rich dynamical behavior of
the edge of chaos and its important role in transitions to
chaos and turbulence.

II. PIERCE DIODE

In this work we apply ideas of Section I to the Pierce
diode, a one-dimensional spatially extended plasma model.
Constituting the simplest model for collisionless bounded
plasma systems, the classical Pierce diode8–11 is a one-
dimensional electrostatic parallel-plane diode with gap spac-
ing L into which a monoenergetic electron beam at constant
velocity v0 and charge density q0 is injected. An immobile
neutralizing ion background with density q0 is present
between the planar electrodes held at the same potential
(short-circuit condition). Figure 1 is a schematic representa-
tion of this system. In particular, the presence of a controlled
amount of background ions inside microwave tubes allows
plasma-filled devices to operate at currents much higher than
the maximum current for vacuum tubes, thereby increasing
significantly the power handling capabilities of microwave
tubes.8,12 In this context, plasma-assisted devices can be con-
figured as a slow-wave oscillator (PASATRON), backward-
wave oscillator (BWO), and a traveling wave amplifier
(TWT) operating without focusing magnetic fields.13–15

These devices constitute unique sources of microwave radia-
tion, in which the beam propagation in the absence of exter-
nal magnetic fields is provided by the ion focusing and the
electron interaction with the electromagnetic fields. Also,
Pierce-type plasma diodes with a background of mobile ions
can generate microwaves in a sequence of chaotic pulses
whose duration is controlled by the retarding potential and
the kind of ionized gas.16 From the emitter (at x¼ 0), the
monoenergetic electron beam, after crossing the gap spacing
between the plates, is completely absorbed by the collector
at x¼ L. Although rather simple, this distributed model
exhibits many features of the electron beam dynamics in a
variety of microwave electronic devices such as the klystron
and the virtual cathode oscillator.12 In addition, this model isa)Electronic mail: pablocus@gmail.com.
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used for studying the stability of electron flows in plasma-
filled diodes and charge neutralized ion beam transport for
inertial confinement fusion17 and also space physics applica-
tions such as double layers in the magnetospheric cusp.18

The system is characterized by the single control param-
eter a ¼ xpL=v0, often referred to as the Pierce parameter,
where xp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0e=!0me

p
denotes the plasma frequency of

the electron beam, with !0 the vacuum permittivity and e and
me the electronic charge and the electron mass, respectively.
The electron flow in this system can be described by the cold
fluid equations, namely, continuity, momentum, and the
Poisson’s equations

@q
@t
þ @ðqvÞ

@x
¼ 0; (1)

@v

@t
þ v

@v
@x
¼ @/
@x

; (2)

@2/
@x2
¼ a2ðq% 1Þ; (3)

where q is the mass density, v is the electron flow velocity,
and / is the electric potential. In Eqs. (1)–(3) non-
dimensional variables (density q, velocity v, electric potential
/, space coordinate x, and time t) are used.19 They are related
to the corresponding dimensional variables as follows:

q0 ¼ q0q; v0 ¼ v0v; /0 ¼ ðv2
0=eÞ/;

x0 ¼ Lx; t0 ¼ ðL=v0Þt; (4)

where the primed variables denote the dimensional values.
Then, the boundary conditions are qð0; tÞ ¼ 1, vð0; tÞ ¼ 1,
and /ð0; tÞ ¼ /ð1; tÞ ¼ 0.

A linear approximation analysis8,10 can be performed on
the assumption of solutions of the form qðx; tÞ ¼ q0 þ q1ðx; tÞ
and vðx; tÞ ¼ v0 þ v1ðx; tÞ, where time and spatial dependence
of q1ðx; tÞ and v1ðx; tÞ are, respectively, of the form e%ixt and
eikx. Substituting these ansatz solutions in Eqs. (1)–(3) and
taking just leading terms, we obtain the a linear dispersion
relation given by

2X2ðX2 % a2Þ þ iafðXþ aÞ2½eiðX%aÞ % 1'
%ðX% aÞ2½eiðXþaÞ % 1'g ¼ 0; (5)

where we define X as a scaled complex frequency

X ¼ Lx
v0
¼ r þ is: (6)

The dispersion relation (5) provides time growing (unsta-
ble) non-oscillatory solutions for ð2n% 1Þp ( a ( 2pn,
ðn ¼ 1; 2; 3;…Þ, growing (unstable) oscillatory solutions
for 2pn ( a ( ð2nþ 1% !nÞp, and damped (stable) oscilla-
tory solutions for ð2n% 1% !nÞp ( a ( ð2n% 1Þp, where
0 < !n ) 1 varies slightly with n. Thus the stability character
of linear oscillatory solutions alternates as the parameter a is
increased by p, as illustrated in Barroso et al.17 Then an other-
wise single damped mode starts growing at a ¼ p and remains
unstable until a ¼ 2p, a situation in which a virtual cathode is
formed with electrons being reflected back to the emitter.
Moreover, the transition from instability to stability just below
each odd multiple of p is described by a Hopf bifurcation.10

III. BIFURCATION DIAGRAM

We solve the continuity and momentum equations
(1)–(3) using a first-order backward difference scheme in
space and a second-order implicit scheme in time, over a spa-
tial grid with N¼ 512 points, using a time step Dt ¼ 0:001
which guarantees the Courant condition is satisfied all the
time. In order to satisfy the zero-potential conditions, the Pois-
son’s equation is solved by means of the sine fast Fourier
transform method.20 The state of the system at each discrete
time tk is given by qk

i ¼ qðxi; tkÞ and vk
i ¼ vðxi; tkÞ, where

xi is a grid point. We define a Poincaré map as qðx ¼ 0:25; tÞ
¼ 1 and @tqðx ¼ 0:25; tÞ < 0 to construct a bifurcation dia-
gram by varying the parameter a. For every value of a, we dis-
card the initial transient (100 iterations) and plot the next 200
iterations of the map. We are interested in a periodic window
of period-3 (p-3) near a ¼ 3p. Figure 2(a) shows the bifurca-
tion diagram of this periodic window, and Fig. 2(b) the first
and second Lyapunov exponents of the attractor using the
method by Benettin et al.21 In this method, two trajectories
yðtÞ and yðtÞ þ dðtÞ are integrated from time t to tþ Dt, and
the local separation (or contraction) rate is obtained as

kt ¼
1

Dt
ln
jdðtþ DtÞj
jdðtÞj

: (7)

Performing the normalization

dðtþ DtÞ 7!dðtþ DtÞ jdð0Þj
jdðtþ DtÞj

(8)

and repeating the integration M times, the maximum Lyapu-
nov exponent is given by the average

k1 ¼
1

M

XM

k¼1

ktk : (9)

The second Lyapunov exponent can be obtained straightfor-
wardly by integrating a third initial condition forming an or-
thogonal base with y and yþ d.

FIG. 1. Schematic diagram of the Pierce diode.
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Three types of bifurcation that characterize the periodic
window are noteworthy: a saddle-node bifurcation (SNB) at
a * 2:85584 p, where a splitting pair of p-3 stable and unsta-
ble periodic orbits arises; a period-doubling cascade leading
to a banded chaotic attractor (BCA); and an interior crisis (IC)
at a ¼ ac * 2:8552792 p, where the banded chaotic attractor
is converted into a banded chaotic saddle (BCS), and the size
of the chaotic attractor is increased. Coexisting with a banded
attractor inside the periodic window, a surrounding chaotic
saddle (SCS), given by red dots in Fig. 2(a), is responsible for
chaotic transients that mimic the dynamics of the larger cha-
otic attractor outside the periodic window.

IV. LIFETIME FUNCTION AND BISECTION METHOD

To study how the surrounding chaotic saddle SCS
shapes the phase space within the periodic window of Fig. 2,
we introduce the lifetime function1 of an initial condition

y0 ¼ fq
0
i ; v

0
i g; i ¼ 1;…;N; (10)

where q0
i and v0

i are the initial density and velocity profiles
in the spatial grid. The lifetime is defined as the time initial
condition y0 takes to converge to the attractor inside the peri-
odic window. We use a two-dimensional projection of the
Poincaré map zk ¼ fqðx ¼ 0:5; tkÞ; qðx ¼ 0:75; tkg to facili-
tate the definition of convergence. First, we collect a set of
M Poincaré points S ¼ fzj

A; j ¼ 1;…;Mg in the attractor.
Then, we integrate the initial condition y0 generating the dis-
crete two-dimensional Poincaré map zk. For each discrete
time step k, we define the distance between zk and S as

Dðzk; SÞ ¼ min ðjjzk % zj
Ajj; j ¼ 1;… ;MÞ; (11)

where jjzk % zj
Ajj is the Euclidean distance. When the dis-

tance to the attractor is less than some suitable threshold
Dðyk; SÞ < d, we consider yk has converged to the attractor.
In this case we use d ¼ 10%4. A two-dimensional density
plot of the lifetime in the phase-space at a ¼ 2:85529p is
shown in Fig. 3(a). Blue areas denote initial conditions that
converge quickly to the banded chaotic attractor. Areas of
longer lifetime, in red tones, exhibit an apparent fractal
structure, which indicates the proximity of the correspond-
ing initial conditions to the stable manifold of the surround-
ing chaotic saddle. Thus, there exist two possible
trajectories for a given initial condition in the phase space:
(i) the trajectory may converge directly to the attractor or
(ii) the trajectory may visit the vicinity of the surrounding

FIG. 2. (a) Bifurcation diagram: a p-3 periodic window of the Pierce diode.
Within the window the attractor (blue dots) coexists with the surrounding
chaotic saddle (red dots) and a p-3 UPO (black lines). SNB (IC) denotes
saddle-node bifurcation (interior crisis). (b) First (black) and second (red)
Lyapunov exponents.

FIG. 3. (a) Density plot of the lifetime, given in units of Poincaré points, in
a two-dimensional phase-space projection at a ¼ 2:85529p. Blue areas indi-
cate initial conditions that converge quickly to the attractor. Initial condi-
tions leading to longer lifetimes are represented by red tones. The edge of
chaos is given by the boundary between the blue and red areas. (b) Sche-
matic representation of the edge of chaos (SM) indicated by a solid line and
its associated saddle object (the edge state). Any initial condition lying on
the edge of chaos will converge to the edge state.
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chaotic saddle before converging to the attractor. Under
this circumstance, we can define two regions or pseudo-
basins of attraction in the phase space: the laminar basin
(blue region) related to (i) and the chaotic basin (red region)
related to (ii). The basin boundary separating laminar and
chaotic basins is the edge of chaos.1 The asymptotic trajec-
tory on this boundary is called the edge state (ES). In order
to determine the ES, we apply the bisection method.1 From
Fig. 3(a) we note that any path connecting the two basins
must intersect the edge of chaos (dashed line in Fig. 3(b)).
First we select two initial conditions, yL and yC, in the lami-
nar and chaotic basins, respectively. A condition yC is in
the chaotic basin if it has a long lifetime. Such a condition
can be obtained as a small perturbation of the unstable
steady state qðx; 0Þ ¼ 1þ dqðxÞ and vðx; 0Þ ¼ 1þ dvðxÞ,
with dqð0Þ ¼ dvð0Þ ¼ 0 to satisfy the boundary conditions.
The laminar condition yL can be any point in the attractor.
We integrate the initial condition yM ¼ ðyL þ yCÞ=2 and
decide which side the initial condition is on. By successive
bisections, we reduce the distance d ¼ jjyL % yCjj and bring
yL and yC close to the edge of chaos. By integrating the sys-
tem using the final yL and yC as initial conditions we gener-
ate trajectories that follow the edge of chaos, spend some
time near the ES, and then diverge either to the attractor or
to the chaotic saddle.

As an example, we apply the bisection method for
a ¼ 2:85564 p, in the middle of the periodic window, where
the attractor is a p-3 stable periodic orbit. Figure 4 shows the
Poincaré points of every three iterations of laminar (blue
circles) and chaotic (red triangles) initial conditions. Both
trajectories follow the edge of chaos in the beginning, pass-
ing near the edge state, after which they separate. The lami-
nar trajectory converges quickly and smoothly to the
attractor, whereas the chaotic one spends some time near the
surrounding chaotic saddle before converging to the attrac-
tor. We compute the ES for several values of the control pa-
rameter a in the periodic window and conclude that the
saddle object that separates the laminar and chaotic basins is
the p-3 UPO that arises jointly with the p-3 periodic attractor
at the SNB (black line in Fig. 2(a)). Hence, the edge state is
the p-3 UPO and its stable manifold (SM) is the edge of
chaos.

V. INTERIOR CRISIS

In the following, we examine the role of the edge state
in the interior crisis which occurs at the end of the periodic
window (Fig. 2). In chaotic systems with one positive
Lyapunov exponent, an interior crisis is a sudden transition
triggered by a collision between a chaotic attractor, a medi-
ating unstable periodic orbit UPO and its stable manifold.22

Moreover, at the onset of crisis, the SCS also collides with
the attractor.23 One has to find all these structures to charac-
terize the crisis. When the crisis takes place, at a ¼ ac, we
numerically find the chaotic attractor, the chaotic saddle
SCS using the sprinkler method,24 and the edge state ES
with the bisection method.1 We use the fact observed by
Rempel et al.2 that the boundary of the stable manifold of
SCS approximates the stable manifold of the mediating
UPO. We compute the stable manifold of the SCS with the
projection technique developed by Rempel et al.2 to study
chaotic transitions in high-dimensional systems. A suitable
grid of chosen initial conditions is constructed using one
point A from BCA and three points B, C, and D from SCS
at the vicinity of the collision. Figure 5 shows a three-
dimensional projection of this grid (grey points) jointly
with the attractor BCA (blue) and the chaotic saddle SCS
(red) at the moment of the interior crisis. Figure 6(a) shows
the attractor BCA (blue), the surrounding chaotic saddle
SCS (red dot), and the p-3 edge state ES (black crosses) in
a two-dimensional projection of the phase space. The grid
of initial conditions near the collision corresponds to the
dashed rectangle of Fig. 6(a). Figure 6(b) shows an enlarge-
ment of this region to elucidate the collision that character-
izes the interior crisis. At the onset of crisis, the chaotic
saddle (red) and the boundary of its stable manifold (grey)
collide with the banded chaotic attractor (blue). The edge
state (black cross) and its stable manifold (dashed lines)
form the boundary between the attractor and the chaotic
saddle pseudo-basins (blue and red regions, respectively, in

FIG. 4. Poincaré time series of two trajectories on the laminar side (blue
circles) and chaotic side (red triangles) of the edge of chaos before converg-
ing to the p-3 periodic attractor for a ¼ 2:85564p. Poincaré points are plot-
ted for each three iterations, m ¼ 1; 4; 7;….

FIG. 5. Three-dimensional projection of the grid of initial conditions gener-
ated from four points A, B, C and D, containing part of the banded chaotic
attractor BCA (blue) and the chaotic saddle SCS (red).
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Fig. 3(a)), and when they collide, the edge of chaos also
collides simultaneously with them.

VI. CRISIS-INDUCED INTERMITTENCY

At the collision the chaotic attractor loses its stability and
is converted into a BCS. The SCS is robust and persists after
the crisis. Figure 6(c) shows these two non-attracting chaotic
sets at a ¼ 2:85523 p, after the interior crisis. Both the BCS
and the SCS display the characteristic gaps that reflect the
fractal structure of chaotic saddles along their unstable direc-
tion.2 After the onset of the interior crisis, an infinite number
of coupling UPOs are created, filling the gap regions via an
event called explosion.25,26 These newly created unstable peri-
odic orbits have components in both surrounding and banded
regions and are responsible for the coupling of the two
regions. In general, the coupling UPOs are difficult to find
numerically, due to their long periods. This is a particularly
complex task in a spatially extended system. To this end we
adapted the method of Lathrop and Kostelich,27 originally
used to search for UPOs in experimental chaotic time series.
First, we get a time series containing 250 000 points zk of
the two-dimensional Poincaré map projection described in
Sec. IV. Then, the following distance function is defined

dðk; pÞ ¼ jjzk % zkþpjj; (12)

where p is the specified period of the UPO to be found. When
dðk; pÞ < !, zk is called a recurrent point. We set ! ¼ 10%6

which defines the accuracy level of the UPO detection. A
recurrent point is not necessarily a component of a periodic
orbit of period p. However, if a recurrent period p appears fre-
quently, it is likely that the corresponding recurrent points are
close to periodic orbits of period p. The idea is to construct a
histogram of the recurrent points for each period and identify
peaks in the histogram. Figure 7 shows the histogram for the
Poincaré time series at a ¼ 2:85523p. It clearly shows the
peaks corresponding to the different UPOs of period multiple
of 3 created within the periodic window at each period dou-
bling bifurcation. The first peak at a period not being a multi-
ple of 3 is p¼ 14. By inspecting the recurrence points for
p¼ 14 we see that they occupy almost exactly the same place
in the phase space. We identify the set of recurrent points as a
p-14 coupling UPO, which is plotted as green crosses in Fig.
6(c). The spatio-temporal dynamics of electron density associ-
ated to this coupling UPO is shown in Figs. 8(a) and 8(b)
shows the corresponding time series for x ¼ 0:5. We see that
the first temporal minimum at x ¼ 0:5, appearing at t * 3:2
(left arrow in Fig. 8(b)) after having passed through other thir-
teen local minima, reappears at t * 61:6, marked by the right
arrow in Fig. 8(b). The relation of the UPO dynamics with the
chaotic dynamics of the Pierce diode for the control parameter

FIG. 6. Two-dimensional Poincaré plots at the onset of ((a) and (b)) and after
((c) and (d)) the interior crisis. (a) Three structures involved at the onset of cri-
sis: the banded chaotic attractor (BCA, blue), the surrounding chaotic saddle
(SCS, red) and the p-3 edge state (black crosses). (b) An enlargement of the
dashed rectangle region indicated in (a). The p-3 mediating UPO (the edge
state) and its stable manifold (the edge of chaos, dashed line) collide with
BCA and SCS. The stable (grey) and unstable (green) manifolds of SCS are
also shown. (c) Post-crisis banded chaotic saddle (BCS, blue), SCS, and a
p-14 coupling UPO (green crosses) with its branches in the gaps of both
banded and surrounding regions. (d) An enlargement of (c). The edge state
(black cross) and the edge of chaos (dashed lines) are also shown.

FIG. 7. Histogram of recurrent points for a Poincaré time series at
a ¼ 2:85523p. UPOs with period multiple of 3 are clearly detected. The first
peak not being a multiple of 3 corresponds to a p% 14 UPO, marked by an
arrow.

FIG. 8. (a) Spatio-temporal evolution of the electron density of the p-14
UPO. (b) Temporal evolution of the electron density at x ¼ 0:5 in the same
time interval as (a). The time interval between two red arrows corresponds
to one period of the UPO.
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a ¼ 2:85523 is illustrated in Fig. 9, showing the continuous
time evolution of the electron density at x ¼ 0:5 and x ¼ 0:75
for the p-14 UPO (green curve) and the chaotic attractor of
the system (orange area). We see that the coupling UPO tra-
jectory is nicely embedded in the orange area, thus appearing
as a subset of the attractor.

An enlargement of the same region of phase space as in
Fig. 6(b) is shown in Fig. 6(d), including the edge state
(black cross) and its stable manifold (dashed lines). After the
crisis the edge of chaos separates the two regions occupied
by SCS and BCS.

The link between both regions provided by the coupling
UPOs has, as a direct consequence, the formation of a larger
chaotic attractor characterized by an intermittent behavior.
Figure 10 shows the time series of crisis-induced intermit-
tency28 corresponding to the post-crisis chaotic attractor. The
laminar and bursty periods of the crisis-induced intermittency
correspond to the trajectory visiting the vicinity of the BCS
and SCS chaotic saddles, respectively. Grebogi et al.28

showed that the characteristic intermittency time s, obtained
as the average over a long time series of the time between
bursty periods, follows the scaling law

s ¼ ðaC % aÞ%c; a . aC; (13)

where c is the critical exponent. In Fig. 11 we plot s as a
function of aC % a in log-log scale. The linear behavior is
consistent with the power law Eq. (13), which critical expo-
nent c ¼ 0:56 6 0:02 is obtained from the slope of the linear
fit represented by the red line.

VII. CONCLUSION

In this work the edge of chaos, a structure that separates
the transient behavior from the attracting one is examined in
the Pierce diode for the first time. We showed that in a peri-
odic window of that system, the edge state is the p-3 unstable
periodic orbit that emerges from a saddle-node bifurcation at
the start of the periodic window. In addition, we obtained the
direct evidence of the crucial role of the edge of chaos in an
interior crisis, a ubiquitous chaotic transition at the end of per-
iodic windows. From this direct evidence, it is expected that
the dynamical properties of chaotic transitions are defined by
the edge of chaos and the edge state. This is a significant find-
ing since it can be used to understand more complex transi-
tions in high-dimensional dynamical systems.3,29,30
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033120-6 Muñoz et al. Chaos 22, 033120 (2012)

Downloaded 26 Jun 2013 to 161.24.16.104. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissions



5T. M. Schneider, B. Eckhardt, and J. A. Yorke, “Turbulence transition and
the edge of chaos in pipe flow,” Phys. Rev. Lett. 99, 034502 (2007).

6P. A. Cassak, J. F. Drake, M. A. Shay, and B. Eckhardt, “Onset of fast
magnetic reconnection,” Phys. Rev. Lett. 98, 215001 (2007).

7J. Vollmer, T. M. Schneider, and B. Eckhardt, “Basin boundary, edge of
chaos and edge state in a two-dimensional model,” New J. Phys. 11,
013040 (2009).

8J. R. Pierce, “Limiting stable current in electron beams in the presence of
ions,” J. Appl. Phys. 15, 721 (1944).

9B. B. Godfrey, “Oscillatory nonlinear electron flow in a Pierce diode,”
Phys. Fluids 30, 1553–1560 (1987).

10W. S. Lawson, “The Pierce diode with an external circuit. I. Oscillations
about nonuniform equilibria,” Phys. Fluids 1, 1483–1492 (1989).

11M. Hörhager and S. Kuhn, “Weakly nonlinear steady-state oscillations in
the Pierce diode,” Phys. Fluids B 2, 2741–2763 (1990).

12D. I. Trubetskov, E. S. McHedlova, V. G. Anfinogentov, V. I. Ponomar-
enko, and N. M. Ryskin, “Nonlinear waves, chaos and patterns in micro-
wave electronic devices,” Chaos 6, 358–367 (1996).

13G. S. Nusinovich, Y. Carmel, T. M. Antonsen, D. M. Goebel, and
J. Santoru, “Recent progress in the development of plasma-filled
traveling-wave tubes and backward-wave oscillators,” IEEE Trans.
Plasma Sci. 26, 628–645 (1998).

14D. M. Goebel, E. S. Ponti, R. L. Eisenhart, and R. W. Lemke, “Frequency
and power response of high-power plasma-filled backward-wave oscil-
lators,” Phys. Plasmas 6, 2319–2322 (1999).

15Y. P. Bliokh and G. S. Nusinovich, “Nonlinear theory of beam-wave inter-
action in the pasotron with a phase-mixed electron beam,” Phys. Plasmas
13, 023102 (2006).

16R. A. Filatov, A. E. Hramov, Y. P. Bliokh, A. A. Koronovskii, and J.
Felsteiner, “Influence of background gas ionization on oscillations in a vir-
tual cathode with a retarding potential,” Phys. Plasmas 16, 033106 (2009).

17J. J. Barroso, M. O. Terra, and E. E. N. Macau, “Bifurcation and chaos in
the second oscillatory window of the classical Pierce diode,” Int. J.
Bifurcation Chaos Appl. Sci. Eng. 11, 2579–2586 (2001).

18R. A. Treumann and W. Baumjohann, Advanced Space Plasma Physics
(Imperial College Press, London, 1997).

19A. E. Hramov, A. A. Koronovskii, and I. S. Rempen, “Controlling chaos
in spatially extended beam-plasma system by the continuous delayed
feedback,” Chaos 16, 013123 (2006).

20H. Matsumoto, H. Yokoyama, and D. Summers, “Computer simulations of
the chaotic dynamics of the Pierce beam-plasma system,” Phys. Plasmas
3, 177–191 (1996).

21G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, “Lyapunov char-
acteristic exponents for smooth dynamical systems and for Hamiltonian
systems - A method for computing all of them. I - Theory. II - Numerical
application,” Meccanica 15, 9–30 (1980).

22C. Grebogi, E. Ott, and J. A. Yorke, “Crises, sudden changes in chaotic
attractors, and transient chaos,” Physica D 7, 181–200 (1983).

23A. C.-L. Chian, W. M. Santana, E. L. Rempel, F. A. Borotto, T. Hada,
and Y. Kamide, “Chaos in driven Alfvén systems: Unstable periodic
orbits and chaotic saddles,” Nonlinear Processes Geophys. 14, 17–29
(2007).

24G.-H. Hsu, E. Ott, and C. Grebogi, “Strange saddles and the dimensions of
their invariant manifolds,” Phys. Lett. A 127, 199–204 (1988).

25C. Robert, K. T. Alligood, E. Ott, and J. A. Yorke, “Explosions of chaotic
sets,” Physica D 144, 44–61 (2000).
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033120-7 Muñoz et al. Chaos 22, 033120 (2012)

Downloaded 26 Jun 2013 to 161.24.16.104. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissionsView publication statsView publication stats


