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Quantum analogue of a Kerr black hole and the Penrose effect in a Bose-Einstein condensate

D. D. Solnyshkov,1 C. Leblanc,1 S. V. Koniakhin,1,2 O. Bleu,1 and G. Malpuech1

1Institut Pascal, University Clermont Auvergne, CNRS, SIGMA Clermont, F-63000 Clermont-Ferrand, France
2St. Petersburg Academic University–Nanotechnology Research and Education Centre of the Russian Academy of Sciences,

194021 St. Petersburg, Russia

(Received 15 April 2019; revised manuscript received 13 May 2019; published 24 June 2019)

Analogue physics became very popular in recent decades. It allows simulating inaccessible physical phenom-
ena, such as black holes, in the laboratory. The first success of analogue physics is in fact much older being due
to Maxwell, who derived his equations for the electromagnetic field by analogy with fluid dynamics in presence
of vortices. Here we propose to use vortices for analogue gravity. We implement an acoustic Kerr black hole with
quantized angular momentum in a Bose-Einstein condensate. We show that the condensate’s metric is equivalent
to the Kerr’s one, exhibiting a horizon and an ergosphere. We confirm that this metric is obeyed not only by weak
density waves, but also by quantum vortices which behave as massive test particles. We use these topological
defects to demonstrate a quantum Penrose effect, extracting the rotation energy of the black hole by quanta of
angular momentum. The particle trajectories are well described by the timelike geodesics of the Kerr metric,
confirming the potential of analogue quantum gravity.
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I. INTRODUCTION

The field of analogue physics has been growing since
the 1980s, when the first proposals were published, linking
astrophysical phenomena such as the Hawking emission of
black holes [1] or the Kibble mechanism of topological defect
formation in the early Universe [2] with desktop systems
[3–5]. The long efforts [6,7] were very successful, allowing
the recent observation of Hawking emission [8,9] and the ob-
servation of the Kibble-Zurek mechanism in various systems
[10,11]. Of course, the full spectrum of analogue physics phe-
nomena extends far beyond these two most striking examples
[12–15].

Exciton-polariton (polariton) condensates are particularly
well suited for analogue physics because this quantum fluid
allows a versatile all-optical control of the wave function via
external potentials (both real and imaginary), together with
the optical means for the measurement of all wave-function
components both in real and reciprocal space. Polaritons are
light-matter quasiparticles existing in microcavities [16] in the
strong-coupling regime. They inherit a small effective mass
of photons and strong interparticle interactions from excitons,
the former ensuring a large coherence length even in reduced
dimensions [17], and the latter providing the means for opti-
cal potential engineering [18]. Many proposals for analogue
physics based on polaritons have appeared in recent years
[19–21], and some of them have already been implemented
experimentally [22,23].

A new frontier in analogue physics is the Penrose ef-
fect [24], which is the extraction of kinetic energy stored
in rotating black holes described by the Kerr metric [25].
The generalized Penrose process might be powering relativis-
tic jets of black holes [26] and influencing their accretion
disks, which start to become directly observable [27]. It
involves the creation of a pair of positive and negative energy

particles, when the particle with negative energy E < 0 falls
into the black hole, reducing its angular momentum, while the
particle with positive energy E > 0 escapes to infinity, with
the overall process resulting in energy extraction. The region
where such a process is possible is called an ergosphere.
As a first step, it requires the creation of a Kerr black hole
analogue in a fluid [28,29], either classical or quantum. So
far, acoustic black holes have been mostly one-dimensional
(1D) [9,23,30,31], and only recently 2D black holes with
closed horizons have been implemented, which has already
allowed to observe [32] the superradiance effect [33]. How-
ever, only the propagation of sound waves corresponding to
null geodesics has been studied so far. Little attention has
been paid in this respect to quantum vortices, which represent
an important direction of analogue physics since the 1970s
[34]. The story actually dates back to Maxwell, who derived
his equations for the electromagnetic field by analogy with
fluid dynamics in the presence of vortices [35]—the first
success of analogue physics, which now aims to reproduce
electrodynamics as an emergent theory in quantum fluids [36],
similar to analogue gravity. Described by a relativistic action
in a local Minkowski frame [34,37] determined by the speed
of sound c, quantum vortices behave as relativistic particles
with their dynamics governed by the fluid metric [5,38].
Contrary to high-wave-vector bogolons, which can propagate
faster than the speed of sound and thus violate the horizons
of the low-wave-vector metric, vortices cannot exceed c [39].
With their mass given by Einstein’s relation E = mc2 [34],
and their stability ensured by a topological quantum number
(winding), vortices therefore appear as excellent candidates
to study the timelike geodesics of massive particles in the
vicinity of black holes. The dynamics of vortices has been
extensively studied experimentally in atomic [40] and polari-
ton condensates [41], but not in the framework of analogue
physics.
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In this work, we propose to implement a Kerr black hole in
a polariton condensate by combining optical excitation with
a Gauss-Laguerre beam, providing the angular momentum,
and a region of reduced lifetime, creating an inward flow.
Similar configurations have already been implemented with
polaritons [42,43]. We show that the metric of the conden-
sate in this configuration is equivalent to the Kerr metric of
a rotating black hole. We demonstrate that the topological
defects of the condensate (quantum vortices) can be used as
test particles whose propagation close to the horizon follows
the timelike geodesics of the Kerr metric, opening the domain
of analogue gravity to the studies of massive particles. We
simulate a quantum analogue of the Penrose effect using a
vortex-antivortex pair, with an antivortex falling into the black
hole and reducing its quantized angular momentum, and a
vortex escaping from the black hole to infinity. This represents
a step toward self-consistent analogue gravity systems with
the metric naturally subject to quantum fluctuations. While we
have optimized our proposal for the cavity polariton system,
there are no fundamental obstacles for its implementation in
other types of quantum fluids, such as atomic condensates [44]
or superfluid light [45].

II. THEORETICAL DESCRIPTION

A Bose-Einstein condensate is a quantum fluid that can
be described in the mean-field approximation by the Gross-
Pitaevskii equation [39]:

ih̄
∂ψ

∂t
= − h̄2

2m
�ψ + α|ψ |2ψ + Uψ − μψ, (1)

where ψ (r, t ) is the condensate wave function, m is the
particle mass, α is the interaction constant, U is the external
potential (with a possible imaginary part describing particle
decay), and μ is the chemical potential. The analogy between
the condensate and the general relativity spacetime is based
on the fact that the propagation of the weak excitations of
a homogeneous stationary condensate can be described by a
relativistic wave equation for their phase [46]:

∂μ(
√−ggμν∂νϕ) = 0 (2)

with g = det (gμν ), and the metric gμν totally determined [3]
by the background stationary velocity v = (h̄/m)∇ arg ψ and
the local speed of sound c =

√
α|ψ |2/m:

gμν = mn

c

⎛
⎜⎜⎝

−(c2 − v2)
... −v

· · · · · · · · ·
−v

... δi j

⎞
⎟⎟⎠. (3)

This metric generalizes the local Minkowski frame to the case
of spatially varying speed of the flow and speed of sound,
and as such is obeyed both by weak density waves with a
wavelength λ � ξ (ξ = h̄/

√
2αmn is the healing length) and

by vortices.

A. Vortices as massive relativistic particles

The link between the fluid equations with vortices and the
Maxwell equations of electrodynamics is deeply rooted in
history: Maxwell himself first derived his equations in 1861

assuming that the magnetic field was caused by “molecu-
lar vortices” in a fluidlike medium (aether) [35]. A simi-
lar derivation was rediscovered by Feynman in 1948 [47].
Dirac suggested in 1951 [48] that the vector potential of the
electromagnetic field actually corresponds to the velocity of
the aether (and thus the magnetic field is the measure of
its vorticity). Since the 1970s [34], the vortices have again
moved into the focus of analogue physics with the goal of the
formulation of emergent electrodynamics [36].

While the vortex interaction, closely resembling the elec-
tromagnetism, is an extremely interesting topic by itself and
occupies an important place in the outlook of our work, we are
actually interested so far in the regimes where it is negligible
with respect to the “free-fall” dynamics in a curved metric.
The relativistic action for vortices was first derived in [34]
using the Feynman path integral (also called the continual
integration) approach [37,49,50] with a separation of variables
for a vortex in a stationary condensate:

S0 = −mV c
∑

i

∫
dsi − iq

∫
A · jd3x − 1

2c

∫
(∇ × A)2d3x,

(4)
where mV = EV /c2 is the vortex mass [with EV =
πnh̄2 ln(R/ξ )/m], q = 2π/

√
α is an effective charge (cou-

pling constant), and the summation i is carried out over indi-
vidual vortices. This result was obtained by mapping the 2 +
1D vortex interaction problem to a 3D magnetostatic problem
with an effective vector potential A, where the time-dependent
trajectory of each vortex becomes a stationary current j in
3D space interacting with the other currents via magnetic
field defined by A (using Maxwell’s analogy in the opposite
sense). The first term of the action is the length of this world
line, accounting for the vortex self-energy. This expression is
similar to the covariant form of the action for a relativistic
electron in an external electromagnetic field defined by a
4-potential A:

S = −m0c
∫

ds +
∫

e

c

dxα

ds
Aαds, (5)

where m0 is the electron’s rest mass. Using the Euler-
Lagrange equation allows us to write the following equation
of motion for a vortex in a reference frame where the homo-
geneous condensate is at rest:

d2xμ

ds2
= q

mV
Fμβ dxα

ds
ηαβ, (6)

where Fμν = ∇μAν − ∇νAμ is the tensor of the electromag-
netic field, ηαβ is the Minkowski tensor, and

ηαβ

dxα

ds

dxβ

ds
= −1, (7)

meaning that the evolution is timelike. The Minkowski metric
obeyed by the vortex reads

ds2 = c2dt2 − dx2
i . (8)

Passing into a moving reference frame with respect to the
condensate requires a Galilean transform x′

i = xi − vit , which
modifies the metric by mixing the time with the spatial
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coordinates,

ds2 = c2dt2 − (
dx2

i − 2vidxidt + v2
i dt2

)
= (c2 − v2)dt2 + 2vidxidt − dx2

i . (9)

Allowing the condensate density (and thus the speed of sound
c) and the condensate velocity �v to vary smoothly in space,
one obtains an equation of motion involving a metric tensor,

d2xμ

ds2
= −�

μ

αβ

dxα

ds

dxβ

ds
+ q

mV
Fμβ dxα

ds
gαβ, (10)

where �
μ
αβ = 0.5gμν (∂gνα/∂xβ + ∂gνβ/∂xα − ∂gαβ/∂xν ) are

the Christoffel symbols, which appear because the metric,
while remaining locally flat and of Minkowski type [with
a Galilean transform of (9)], is allowed to vary. Here, g is
the same metric tensor (3) as the one obtained for the weak
density waves in a fluid [3] (the so-called “acoustic metric”).
Physically, Eq. (3) means that the speed of the sound waves c
arises as a maximal velocity limit for a vortex (as in special
relativity), and all the terms containing v appear due to the
Galilean transformations if the condensate is propagating in
the laboratory frame.

If the vortex interaction forces and the Magnus force can be
neglected, the test vortex is in the “free-fall” situation (Fμν =
0), described by the geodesic equation:

d2xμ

ds2
= −�

μ

αβ

dxα

ds

dxβ

ds
. (11)

The conditions required to neglect the forces acting on
the vortex are discussed below in Sec. III C (see also
Appendix C). The configurations with a non-negligible ef-
fective electromagnetic field tensor F could enable the study
of electrodynamics in strongly curved spacetimes in future
works.

B. Kerr black hole

The Kerr metric of a rotating black hole (in the equatorial
plane only, since a 2D condensate can reproduce only a single
plane) can be written in Boyer-Lindquist coordinates as

gKerr
μν =

⎛
⎝−(

1 − 2M
r

)
0 − 4aM

r

0 r2

r2−2Mr+a2 0

− 4aM
r 0

(
r2 + a2 + 2a2M

r

)
⎞
⎠,

(12)

where a is the black hole angular momentum.
To reproduce such a metric, we consider a cylindrically

symmetric configuration with radial and azimuthal flows
(vr, vφ), with an appropriate change of coordinates [51],
which allows us to write the metric of the condensate as

gμν = mn

c

⎛
⎝−(c2 − v2) 0 −2rvφ

0
(
1 − v2

r
c2

)−1
0

−2rvφ 0 r2

⎞
⎠. (13)

Here, the flow velocity v(r) and the speed of sound c(r) are
both functions of coordinates, determined by the unperturbed
condensate wave function ψ . To obtain an analogue of a
Kerr black hole, we need to generate a configuration where
these functions would have a proper behavior. Quantum fluids
are irrotational, and their azimuthal flow is controlled by the
number ν of quantum vortices that are topological defects,

characterized by the quantized circulation of angular velocity.
On the other hand, a radial flow requires a sink (drain, particle
decay) in the central region. Both can be combined using
existing techniques [42] in polariton condensates: a macro-
scopically occupied state can be created or seeded by a Gauss-
Laguerre beam carrying required angular momentum [52] (in
the presence of a cw nonresonant or quasiresonant pumping),
and a shorter lifetime can be provided by a localized defect in
the cavity mirrors (or a μm-sized metal deposit) on which the
beam should be centered.

Since even for a single vortex a complete analytical solu-
tion of the Gross-Pitaevskii equation has not been found yet,
we use an asymptotic series expansion at r � ξ in order to
find ψ , where ξ is the size of a vortex core (the healing length).
In this approximation, both the sink and the vorticity concen-
trated in the central region (r � ξ ) can be approximated as δ

functions:

∇ × v = 2πν
h̄

m
δ2D(r),

∇ · v = −2πζ
h̄

m
δ2D(r), (14)

where ν is an integer determining vorticity and ζ > 0 is
obtained a posteriori from particle decay in the center. This
allows us to find the components of the velocity: vφ =
h̄ν/mr, vr = h̄ζ/mr, and the approximate solution for the
wave function of the condensate:

ψ (r, φ) = √
n∞

(
1 − ξ 2 ν2 + ζ 2

r2

)
exp

[
i

(
ζ ln

r

ξ
+ νφ

)]
.

(15)

The scale of density variation is increased by
√

ν2 + ξ 2,
ensuring a relatively slow metric variation for test waves and
particles. Then, we find the analytical expressions for the
radius of the event horizon rh and the radius of the ergosphere
(the static limit) rs. Indeed, the event horizon is determined
[53] by the change of sign of the metric component grr (vr =
c), which gives

rH = ξ√
2

(ζ +
√

3ζ 2 + 2ν2), (16)

while the static limit is determined by the change of sign of
gtt (v = c), which gives

rE = 1 + √
3√

2
ξ
√

ζ 2 + ν2. (17)

As with the condensate wave function (15), both expressions
are only valid if rH,E � ξ .

First, we check that the proposed configuration is realistic
and that the analytical solution is correct. To find the sta-
tionary solution for the condensate wave function contain-
ing ν = 16 vortices in the short-lifetime region, we solve
the Gross-Pitaevskii equation numerically with a relaxation
term, using the typical parameters for GaAs cavities (α =
5 μeV μm2, m = 5 × 10−5m0 [54]; see Appendix A for de-
tails). The results are shown in Fig. 1. As expected, the initial
single-vortex state with high angular momentum splits [39]
into ν single-charged vortices kept inside the horizon by the
convergent flow. Panel (a) shows the density profiles: the
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FIG. 1. Kerr black hole in a condensate. (a) Numerical solution
of the Gross-Pitaevskii equation (black solid line) and the analytical
density profile (red dash-dotted line). Black dashed line, horizon;
blue dashed line, static limit. (b) Velocities determining the metric
(from the numerical solution): c (black solid), vr (blue dashed), and
v (red dash-dotted).

analytical approximation with ζ ≈ 7 (red dash-dotted) gives
a good fit to numerics (black solid) for r > 16 μm, and the
calculated positions of the event horizon (black dashed) and
the static limit (blue dashed) are within the region of validity
of the approximation. Their correctness is confirmed by the
numerical velocities [panel (b)], their position given by the
crossing of the speed of sound c (red) with the radial velocity
vr for the horizon (black) and total velocity v for the static
limit (blue), with the ergoregion contained between the two.

C. Maximal angular momentum of the analogue Kerr black hole

As in general relativity, we find that the maximal angular
momentum of the black hole analogue is limited by its mass.
In general relativity, the maximal allowed value is amax/M =
1. One can rewrite this condition using the irreducible black
hole mass (that of a nonrotating black hole), which we mark
M0: amax = √

2M0. To find the effective mass of the analogue
black hole in a condensate, we begin by comparing the
dominant term of the metric for a nonrotating BH in general
relativity and in a condensate. In general relativity,

grr = 2M0

r − rH
, (18)

while in the condensate

grr =
(

1 − v2
r

c2

)−1

= 1

2

rH

r − rH
, (19)

which gives

M0 = 1

4
rH = 1 + √

3

4
√

2
ξζ ≈ 0.5ξζ . (20)

Therefore, the radius of the horizon is a good estimate for the
analogue black hole mass:

M ∼ rH . (21)

The maximal number of vortices νmax and thus the maximal
angular momentum of a Kerr black hole analogue can be
estimated as follows. When ν is increased, the centrifugal
force expels vortices toward the horizon. This behavior is
different from that of trapped rotating condensates, where
vortices are usually forming a lattice [55]. Here, it is rather
a chain of vortices that is formed [42] because of the effective

(a) (b)

FIG. 2. Simulation of an acoustic Kerr black hole with a density
wave. Images show the difference between the stationary solution
ψ0 and the perturbed solution ψ (r, t ): (a) t = 0 (white dashed line
marks the reference node of the density wave), (b) t = 2 ps (the node
of the wave moves down inside the ergosphere and up outside). The
dashed circle shows the static limit, and the dash-dotted circle shows
the horizon. Green arrows mark the rotation direction.

energy profile. If νmax vortices are located along the horizon,
the localization length for each of them can be estimated as

ξ ′ = 2πrH

νmax
. (22)

The energy barrier that prevents vortices from escaping the
black hole is given by the interaction energy μ = αn. This
sets the condition for ξ ′:

h̄2

2m

(
2π

ξ ′

)2

= αn, (23)

which allows us to express ξ ′ using the healing length ξ : ξ ′ =
2πξ . We can then find νmax:

νmax = rH

ξ
. (24)

Expressing the angular momentum a in the same natural units
as the black hole mass M: amax = νmaxξ = rH , we obtain the
maximal angular momentum of the analogue Kerr black hole:

amax

M
∼ 1. (25)

This is confirmed by the numerics. For the same parameters
of localized decay as in Fig. 1, the numerical result for the
maximal possible number of vortices is ν = 16, which is
indeed very close to the estimate νmax = rH/ξ = 18.

III. SIMULATIONS OF THE QUANTUM KERR
BLACK HOLE ANALOG

A. Frame dragging

Next, we show that the behavior of the weak excitations
of the condensate indeed corresponds to the metric (13). We
solve the Gross-Pitaevskii equation (1) numerically over time,
taking the condensate wave function ψ0 found previously as
an initial condition, maintaining constant particle density at a
large distance. Weak density waves are created by a shallow,
localized, and short potential pulse with a Gaussian shape.
In practice, such a potential can be created by a laser pulse.
Figure 2 shows two snapshots of the spatial images of the ab-
solute value of the deviation from the stationary configuration
||ψ |2 − |ψ0|2|. Panel (a) shows a perturbation stretched along
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(a) (b)

(c) (d)

FIG. 3. Snapshots of the condensate density during the Penrose
process. (a) Creation of a density dip; (b) formation of a vortex-
antivortex pair; (c) annihilation of one of the vortices of the black
hole; and (d) escape of the vortex. Green arrows mark the rotation
direction.

the x axis, giving rise to two waves with radial velocities ±c
with respect to the fluid. A node in this density wave used as
a reference is marked by a dashed white line. Panel (b) shows
the evolution of this image after 2 ps. As expected, inside the
ergosphere (marked by a white dashed circle) both density
waves propagate downward (in the direction of rotation of
the black hole) due to frame dragging, whereas outside both
propagation directions are possible.

B. Penrose process

Now that we have confirmed that our configuration pro-
vides a good analogy with a Kerr black hole for density waves
(corresponding to null geodesics), we make the ultimate step,
simulating a quantum analogue of the Penrose process with
particles (vortices). In the Penrose process, a particle p en-
tering the ergosphere separates into two particles p′ and p′′,
with Ep′′ < 0, which allows the particle p′ to have an energy
higher than the initial one: Ep′ > Ep in spite of the energy
conservation Ep = Ep′ + Ep′′ .

The snapshots of the process for the analogue Kerr black
hole are shown in Fig. 3 (see [56] for movies). We first
discuss the process itself, and then analyze its microscopic
details. We now use a strong localized potential pulse to create
a strong density perturbation [Fig. 3(a)]. In a homogeneous
condensate, this localized density dip corresponds to the final
stage of a vortex-antivortex pair annihilation [39], propagating
with a speed of sound c and disappearing with time. However,
if such a density dip is created inside the ergosphere, the
opposite effect is observed: the density dip becomes elongated
because of the spaghettification [57], and a vortex-antivortex
pair appears [Fig. 3(b)]. The antivortex, being closer to the
horizon and corresponding to a negative-energy state E < 0,
is rapidly absorbed by the black hole and annihilates a single
vortex inside it [Fig. 3(c)], reducing its angular momentum.

(a) (b)

FIG. 4. (a) Scheme of the vortex formation from a density min-
imum due to a velocity gradient. (b) Vortex interaction bringing AV
into a negative energy state and increasing the positive energy of V.

We stress the quantum nature of the analogue of the Penrose
effect: in a quantum fluid, all rotation is concentrated in
vortices, and can therefore change only in discrete steps. The
remaining vortex, depending on the position of its creation,
can either escape from the black hole to infinity [the edge of
the cavity, Fig. 3(d)] or fall into the black hole.

To understand the quantum analogue of the Penrose pro-
cess, we need to understand the formation of a pair of vortices.
The density minimum created by a potential pulse could just
disappear if the condensate were stationary. It is the gradient
of the velocity of the flow close to the black hole that leads
to the separation of this minimum into a vortex-antivortex
pair. Indeed, the density minimum created in the condensate is
deep enough to contain a zero-density line with undetermined
phase. This line can spawn a pair of vortices if the conditions
are favorable, which is indeed the case thanks to the velocity
gradient [Fig. 4(a)]. We consider first the extreme point of
the zero-density line (red line in the figure), closest to the
center of the black hole (marked by a cross). The velocity
circulation around this point (along the dashed circle) would
have a tendency to become nonzero, if possible, and this
can be realized by the formation of a vortex rotating in the
direction opposite to that of the black hole (which we call
an antivortex). Since the circulation around the dash-dotted
line must remain zero (as it was initially), a vortex appears at
the other end of the line, where the velocity gradient is much
lower. In the end, it is this velocity gradient that breaks the
symmetry and makes an antivortex appear closer to the black
hole than the vortex.

Once the vortices are formed, it is the vortex-vortex “elec-
tromagnetic” interaction that brings the antivortex into the
negative energy state [Fig. 4(b)]. Indeed, the vortices with
opposite rotation are exhibiting a mutual attraction, as shown
by the blue arrows along the white dashed line connecting
their centers. In a stationary condensate, such attraction leads
to the mutual annihilation of the vortex and the antivortex in
the pair, but here it is not sufficient to overcome completely
the attraction of the black hole. This interaction, as can be seen
from the scheme, slows down the antivortex (AV) with respect
to the flow while at the same time accelerating the vortex (V).
This is the essential element of the analogue Penrose process
in our system. Indeed, close to the horizon, any state rotating
slower than the local zero-angular-momentum observer has
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FIG. 5. Phase patterns for (a) stationary analogue Kerr black hole
solution with ν = 16; (b) ν = 15 Kerr black hole after the Penrose
process. The 16th vortex is visible on the right.

a negative energy [58] (which simply means that an energy
higher than mc2 is necessary to get the object to infinity).
Therefore, the antivortex, being slowed down, gets into the
state EAV < 0, and the vortex, being sped up, increases its
energy (conserving the total). We have checked the velocity
of the vortices from our numerical simulations and found
that at the antivortex position the azimuthal velocity of the
flow is vφ = 1.6 μm/ps, whereas the antivortex velocity is
vAV = 1.4 μm/ps < vφ . So, the velocity of the antivortex is
smaller than that of the flow, meaning that it is indeed in the
negative energy state. We stress that this “electromagnetic”
interaction is not, and is not supposed to be, described by the
metric, exactly like the mechanism that separates the particle
p into p′ and p′′ in the original Penrose process. It strongly
depends on the V-AV distance and only plays a role at the first
moments, whereas after the separation the free propagation of
the vortex becomes well described by the metric.

The negative energy of the antivortex is confirmed by its
velocity [58] and by the energy conservation (it allows the
vortex to gain enough energy to escape). Indeed, a single
vortex created at the same distance at t = 0 without the extra
kinetic energy (that is, in a zero angular momentum state)
always falls into the black hole. To confirm that the angular
momentum of the black hole analogue is indeed decreasing,
we show the phase of the condensate wave function before and
after the Penrose process takes place. In Fig. 5 we see that the
number of vortices in the black hole is reduced from ν = 16
[panel (a)] to ν = 15 [panel (b)] as a result of the Penrose
process. We note that the ringdown effect of the perturbed
black hole is also visible [59].

C. Timelike geodesics in analogue and general relativity metrics

Interestingly, the trajectory of the remaining vortex can be
well described by the timelike geodesics of the Kerr metric.
We use the Hamiltonian formulation of the Kerr geodesic
motion, providing a better numerical stability [60], where the
equations of motion, relevant for the equatorial plane, read

ṙ = �

�
pr, (26)

ṗr = −
(

�

2�

)′
p2

r +
(

R

2��

)′
, (27)

φ̇ = − 1

2��

∂

∂L
R, (28)

FIG. 6. Timelike geodesics. Trajectories of a quantum vortex
(solid lines) and a massive particle (dashed/dash-dotted lines), in the
vicinity of a Kerr black hole, exhibiting escaping (black, red) and
infalling (blue, cyan) behavior. Dotted lines: horizon (black), static
limit (green).

where a prime denotes a partial derivative over r, with � =
r2, � = r2 − 2Mr + a2, R = P2 − �[r2 + (L − aE )2], and
P = E (r2 + a2) − aL. The integrals of motion for the test
particle are its energy E and angular momentum L (fitting
parameter). The comparison of the numerical simulations of
the vortex propagation with the Gross-Pitaevskii equation
(1) (solid lines) with the timelike geodesic trajectories (26)
(dashed/dash-dotted lines) is shown in Fig. 6 (the system size
is larger than in Fig. 3). A good agreement is obtained for both
escaping and infalling trajectories, differing by their initial
positions r.

We start the calculation of the geodesic trajectories of
the Kerr metric by estimating the parameters of the black
hole. To increase the size of the ergosphere and facilitate the
observation of the Penrose process, we usually put the max-
imal possible number of vortices into the black hole, which
corresponds to a/M = 1 in general relativity (see above). The
value of M is chosen to correspond to the position of the
horizon and of the static limit, known from the analytical wave
function and numerical simulations. The fitting parameters
are the angular momentum of the particle L and its initial
radial momentum pr |t=0. The energy of the particle can be
considered as fixed, because for any physically allowed values
of the initial momentum determined by L and pr |t=0, one can
choose a particle rest mass m0 to keep the energy constant.
The values of the fitting parameters change in agreement with
the observed behavior of the vortex, as a function of the
initial position of the density minimum. When the vortex is
created closer to the black hole, it feels a higher attraction and
higher azimuthal dragging, and therefore acquires a higher
radial momentum pr |t=0 and higher angular momentum L
during the Penrose process. The values used to fit Fig. 6
are pr = −0.01, L = 3.19 for the escaping trajectory and
pr = −0.4, L = 4.0 for the infalling trajectory. The angular
momentum of the black hole a changes during the Penrose
process, but we consider the vortex trajectory only for its free
propagation part, after the end of the Penrose process, when
the antivortex has already been annihilated. During this free
propagation part, the angular momentum of the black hole
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(a)

(b)

FIG. 7. (a) Comparison of the acceleration along the geodesic
trajectory (black) with the acceleration due to the Magnus force
(red). (b) Comparison of the vortex trajectory and the Kerr timelike
geodesic at large distances.

does not change, and considering it as constant is a good
approximation. Moreover, since ν � 1, ν − 1 ≈ ν, and it is
still reasonable to take a/M = 1 even after the annihilation of
one of the vortices of the black hole.

The agreement of analogue and real geodesic trajectories
in the vicinity of the black hole requires two conditions to
be fulfilled. First, the test vortex has to be in a “free-fall”
situation, when “nongravitational” forces acting on it can be
neglected. Second, the differences between the two metrics
have to be negligible as well.

The nongravitational forces that can be included in the
effective electromagnetic field tensor F in Eq. (10) are the in-
teraction of vortices and the Magnus force. The part of the
vortex-vortex interaction that is not captured by the metric
is negligible for the test vortex for distances larger than ξ ,
which requires a sufficiently large horizon:

√
ν2 + ζ 2 � 1.

The acceleration due to the Magnus force acting on the
test vortex can be neglected with respect to the “free-fall”
acceleration along a geodesic trajectory if the whole system
is sufficiently large: R � rH , because the momentum flux
across the system boundary, responsible for this force, tends
to zero (see Appendix C). Figure 7(a) shows the total accel-
eration along the vortex trajectory extracted from numerical
simulations (black line) together with the acceleration due to

the Magnus force (red line), for the calculation of which v′
was obtained from the difference of the vortex velocity and
the local velocity of the flow (both extracted from numerical
simulations). This comparison confirms that the effect of the
Magnus force is negligible for the part of the trajectory close
to the horizon. The noise on both curves is due to the fact that
the vortex position can only be determined up to the grid step,
and the acceleration is its second derivative, which amplifies
the quantization noise.

The differences between the original Kerr metric Eq. (12)
in general relativity and the condensate Kerr metric Eq. (13)
become negligible close to the horizon thanks to the fact that
the motion is mostly determined by the divergent metric term
grr , behaving as grr ∼ (r − rH )−1 for both of them. We stress
that at large distances, the condensate metric gives an effective
potential Ucond ∼ −1/r2 different from that of the Kerr metric
UKerr ∼ −1/r, leading to the deviation of the trajectory from
the predictions of general relativity. Moreover, the vortex
interaction with the wall becomes dominant at R − r ≈ ξ . To
illustrate the differences between the true and the analogue
Kerr metrics, we made a larger-scale calculation, which shows
that while the Kerr geodesic fits the vortex trajectory very
well at short distances, the two diverge at larger r. A faster
decay of the effective gravitational potential in the condensate
means that the characteristic distances are reduced: for the
same kinetic energy, the vortex goes less far away than a
particle in the true Kerr metric. This is what is observed in
Fig. 7(b): the Kerr geodesic (red line) fits the vortex trajectory
(black line) very well at short distances, while at larger scales
the vortex starts to lose the kinetic energy faster.

That said, the most important fact is that the condensate
metric correctly reproduces the behavior in the immediate
vicinity of the horizon, confirming that an analogue metric
can be sufficiently close to the Kerr metric at least in the most
important region for the simulation of Kerr black holes.

IV. DISCUSSION AND CONCLUSIONS

Although we dealt with a quantum fluid, similar phenom-
ena could also be observable to some extent in classical
fluids [31,32]. We stress that our simulations in the mean-
field approximation neglect the quantum fluctuations. How-
ever, these fluctuations represent one of the most interesting
features of the analogue systems, which make the scales of
quantum mechanics and general relativity comparable. The
natural outlook of the present work is therefore the study of
the effect of quantum fluctuations (controlled via the conden-
sate density, see Appendix B) and the elucidation of quan-
tum effects in analogue gravity experiments by comparison
with mean-field predictions for the development of quantum
gravity [6]. Another important direction could be the study
of effective electrodynamics in strongly curved spacetimes,
with vortices and bogolons playing the role of charges and
photons. Finally, our work marks an important step toward
self-consistent analogue gravity: the metric in our case is not
completely fixed externally, but depends on the matter and
energy (vortex) distribution in the system.

To conclude, we have shown that a Kerr black hole with
quantized angular momentum can be created in a condensate
in the presence of a localized particle decay, and that the

214511-7



D. D. SOLNYSHKOV et al. PHYSICAL REVIEW B 99, 214511 (2019)

quantum vortices as test particles close to such an analogue
black hole follow the timelike geodesics given by the general
relativity for the Kerr metric. This configuration, therefore,
represents a unique possibility to observe experimentally
the propagation of massive particles along strongly non-
Newtonian geodesics, far beyond the small relativistic cor-
rections of the Mercury orbit. Finally, we have demonstrated
a quantum analogue of the Penrose effect, extracting the
rotation energy of a Kerr black hole in discrete steps.
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APPENDIX A: NUMERICAL SIMULATIONS

We have performed the simulations using mesh sizes be-
tween N × N = 28 × 28 and N × N = 210 × 210, with h =
0.5 μm step size. The time step was dt = 2 × 10−15 s. We
used the third-order Adams-Bashforth method for the time in-
tegration of the Gross-Pitaevskii equation, both with and with-
out the relaxation term (see below). The Laplacian term was
calculated via a double Fourier transform in order to obtain an
efficient parallelization on the graphics processing unit.

The polariton density and the interaction constant were
chosen to have the interaction energy μ = αn∞ = 1 meV. The
potential U has both real and imaginary parts: U = Uc(r) −
i�(r), where the real part describes an etched cylindrical
mesa of a large diameter R = 100 μm (or larger for some
calculations) providing the confinement of the condensate:
Uc(r) = U0�(r − R), where � is the Heaviside function.
The imaginary part ensures the convergent polariton flow
toward the center. It describes a localized defect increasing
the particle annihilation rate (e.g., defect in the cavity mir-
rors or a micrometric size metallic droplet on their surface):

�(r) = h̄
2τ

e− r2

2σ2 , where σ = 6 μm is the size of the defect.
The effective decay rate for the analytical approximation ζ

discussed in the main text can be approximated as the average
value 〈ψ |�(r)|ψ〉. It plays a role of a fitting parameter for
Figs. 1(a) and 1(b) of the main text. We stress that contrary
to the vorticity ν, the decay parameter ζ is not quantized and
does not have to be an integer.

To find the stationary solution of the Gross-Pitaevskii
equation numerically, we introduce the phenomenological
damping term proposed by Pitaevskii in 1958 to describe the
energy relaxation [61]. The damped Gross-Pitaevskii equation
reads

ih̄
∂ψ

∂t
= (1 − i�)

(
− h̄2

2m
�ψ + α|ψ |2ψ + Uψ − μψ

)
,

(A1)

where � is a dimensionless damping coefficient, which for
reasonable calculation time and precision can range from 10−3

to 10−1.
A stationary solution ψ0 of the nondamped Gross-

Pitaevskii equation with an energy μ is also a solution of
the damped equation: the right part of the equation simply
vanishes and the presence of � does not change anything.
Moreover, any perturbations to the stationary solution ψ0

increasing its energy tend to decay, and their decay rate is
proportional to their energy deviation from μ. This procedure
conserves zeros of the wave function, and therefore allows us
to find stationary solutions different from the ground state,
starting from an appropriate initial wave function. To improve
convergence, we start with the initial wave function

ψ (r, φ) = √
n∞ tanh

r

ξ
�(R − r) exp iνφ. (A2)

The initial state with a single high-winding vortex is split
into ν single-winding vortices, which remain inside the hori-
zon. The wave function ψ0 found by the above numerical
procedure is then used as a stationary solution on which the
perturbations are created by time-dependent potential pulses.

To implement a stationary convergent flow, we maintain a
constant particle density far from the central region. This is
equivalent to the experimentally realistic situation of nonres-
onant pumping with a ringlike profile, which maintains the
condensate at a constant level. To perturb the condensate,
we use an extra term in the real part of the potential profile
δU (r, t ) with a different shape:

(i) For Fig. 2, we used a Gaussian-shaped potential pulse
strongly elongated along the x axis. The pulse is also Gaussian
in time:

δU (r, t ) = δU0e
− (x−x0 )2

2σ2
x e

− (y−y0 )2

2σ2
y e

− (t−t0 )2

2σ2
t , (A3)

where σx = 30 μm, σy = 3 μm, and σt = 0.5 ps. The size of
the perturbation along the y axis has to be large enough (σy �
ξ ) in order not to involve large wave-vector bogolons, which
propagate faster than the speed of sound c. At the same time,
it has to remain small enough in order to remain along a single
azimuthal direction. The amplitude here was δU0 = 0.1 meV,
much smaller than the interaction energy αn∞.

(ii) For Fig. 3, the size of the pulse has to be comparable
with the size of a vortex pair 2ξ :

δU (r, t ) = δU0e
− (x−x0 )2

2σ2
x e

− (y−y0 )2

2σ2
y e

− (t−t0 )2

2σ2
t (A4)

with σx = 3 μm, σy = 1 μm, and σt = 0.5 ps. The orientation
of this slightly elongated density minimum influences the
splitting and the trajectories of the vortex and antivortex. We
have kept this orientation along the y axis in order to have a
limited number of variable parameters in the system.

APPENDIX B: MEAN-FIELD THEORY
AND FLUCTUATIONS

In the present work, we neglect the quantum and thermal
fluctuations of the condensate, limiting the consideration to
the mean-field approach. In 2D systems at 0 K, quantum
fluctuations lead to a depletion of the condensate determined
by the interactions [39]. In 2D, the quantum depletion can be
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estimated from the one-body density matrix, as the relative
difference between its value at zero distance (local corre-
lations determined by both the condensed and the excited
fractions) and at infinity (determined only by the condensate,
by the definition of the long-range order):

n(1)(0) − n(1)(∞)

n(1)(0)
∼ 1

nξ 2
∼ αm

h̄2 . (B1)

We see that the relative importance of quantum depletion can
be controlled via the interactions or the particle mass, which
can be tuned by using the Feshbach resonance (in atomic
condensates) and the detuning (in polariton condensates). On
the one hand, this should allow to reproduce the mean-field re-
sults obtained in the present paper by reducing the interactions
and the mass. On the other hand, increasing the effect of the
quantum fluctuations paves the way toward analogue quantum
gravity. Comparing the results obtained in the two regimes
could allow us to make clear the effects of a fluctuating metric.

At nonzero temperatures, thermal fluctuations induce a
power-law decay of the coherence:

n(1)(s) ∼
( sT

s

)ν

(B2)

with

ν = kBT m

2π h̄2ns
, (B3)

where ns is the superfluid density. For polaritons at 10 K
(typical for GaAs cavities providing the best quality), sT ≈
1.3 μm and ν ≈ 5 × 10−4, which gives a very slow decay of
the condensate coherence with respect to all other possible
sources. We therefore expect that thermal fluctuations should
not cause too many problems for the observation of the effects
discussed in the main text.

APPENDIX C: MAGNUS FORCE EFFECT
FOR THE TEST VORTEX

While the derivation of the Magnus force has become
textbook material, its presence or absence in particular con-
ditions is a highly controversial subject, especially in super-
conductors [62]. In uncharged quantum fluids, its presence is
established better [63].

We begin with the derivation of the Magnus force in a
general case [64]. A vortex in a fluid creates a velocity field

v = h̄

m

1

η
eφ, (C1)

where eφ is a unit vector in the azimuthal direction and η is
the radial coordinate. At the same time, there is a background
flow with velocity v′. The momentum-flux tensor is given by

�i j = Pδi j + ρ(vi − v′
i )(v j − v′

j ), (C2)

where the relevant terms for the pressure P appearing due to
Bernoulli’s law are

Pδi j = − 1
2ρ(vi − v′

i )
2 − 1

2ρ(v j − v′
j )

2. (C3)

The force acting on the vortex line is equal to the total
momentum flux through a boundary surrounding this vortex

line:

Fi =
∮

dS j�i j . (C4)

Let us consider a circular boundary with a radius r0, assuming
v′ = v′

xex. The relevant terms of the elementary momentum
flux at the two points located at (r0, 0) and (−r0, 0) are

dFy = �yxdSx = +
(

−1

2
ρv2

y − 1

2
ρv′2

x + ρvyv
′
x

)
r0dφ

(C5)
and

dFy = �yxdSx = −
(

−1

2
ρv2

y − 1

2
ρv′2

x − ρvyv
′
x

)
r0dφ,

(C6)

which give a net elementary momentum flux of

dFy = ρv′
x

h̄

m

1

r0
r0dφ, (C7)

which does not depend on the radius of the integration contour
r0. These terms do not cancel because while the fluid velocity
v′

x has the same sign at both boundaries, the vortex field
velocity vy changes sign, and the vector of the normal to the
surface dSx changes sign as well.

Integrating (C7), one obtains the expression for the Mag-
nus force

F = 2π h̄nv′ (C8)

similar to the Kutta-Joukowski theorem.
However, it is important to understand that while the vortex

itself is a single zero-density point, its motion implies the
modification of the whole velocity field. This is why the
system size appears in the expression for the vortex mass,
and in an infinite system this mass would be infinite. The
conservation of momentum allows us to consider a contour
of any radius in Eq. (C4), and the result does not depend
on this choice. This is not true in a system with a sink that
we consider. To find the total force acting on the vortex
as a part of a global velocity field, we need to calculate
the momentum flux over a surface surrounding the whole
system. At this scale, one cannot assume the fluid flow to
have a constant velocity v′. The momentum flux is associated
with the flow crossing the integration contour, that is, mostly
with the convergent flow given by vr = −h̄ζ/mR (R is the
system size), which gives the main contribution to the relative
velocity of the vortex with respect to the fluid. The momentum
flux in two opposite points will therefore be proportional to

dFy ∼ R
h̄ζ

m

(
1

R − r
− 1

R + r

)
∼ r

R
. (C9)

The Magnus force is therefore reduced by a factor r/R, where
r is the displacement of the vortex with respect to the center
of the black hole. This occurs because the fluid flow is not
homogeneous at the system’s scale.

It allows us to neglect the Magnus force when the system
size is sufficiently large with respect to the scale of the
“free-fall” trajectories that are supposed to correspond to
the geodesics of the Kerr metric. It means R � rH , because
the two metrics are similar only close to the horizon.
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To check that the effects of the Magnus force are indeed
small, we compare the acceleration due to the Magnus force
with the total acceleration of the vortex with respect to a
remote observer (given by the motion along the “free-fall”
trajectory).

Taking into account the vortex mass, the acceleration due
to the Magnus force is given by

aM = 2αnv′

h̄ ln R/ξ

r

R
(C10)

while the acceleration along the geodesic trajectory can be
estimated as

ag = h̄2ν2

m2r3
. (C11)

With the parameters used in the simulations, the ratio of the
two accelerations close to the horizon is about 2.5%.

The results of corresponding numerical simulations are
shown in the main text (Fig. 7).
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