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Shape oscillating bubbles: hydrodynamics
and mass transfer - a review

M. Martı́n1, M. A. Galán1, R. L. Cerro2 and F. J. Montes*1

The subject of bubble oscillations, the associated hydrodynamics and the effect of bubbles on

mass transfer in gas–liquid contact equipment, is reviewed. The emphasis is on rising and shape

oscillating bubbles (n.0 mode) with little or negligible apparent volume change, rather than on

volume oscillations (n50 mode). Bubbles, as they move in liquid media, are subjected to forces

that try to deform them as well as forces that try to keep them as individual entities, resulting in the

fact that bubble contact area changes in time and so do the velocity profiles surrounding them. As

a result, the concentration profiles are also affected, influencing the Sherwood number and the

mass transfer rates from the gas phase to the liquid phase. The physical properties of the phases

as well as bubble coalescence and breakup processes that occur within the equipment play an

important role in defining the oscillation amplitude and decay. Thus, we summarise the main

results and the theories behind bubble dynamics and mass transfer of oscillating bubbles, in

search of further understanding of a phenomenon that has been under study for the past

50 years, yet is still far from being well understood or widely applied in the design of gas–liquid

contact equipment.
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Introduction
The origin of the study of bubble oscillations is based on
the search for physical understanding of different
phenomena, such as jet stability and cavitation in ship
propellers and pumps,1–14 underwater explosions,15 gas–
liquid contact for mass transfer purposes16–20 and even
in the recent claim of cold fusion in sonoluminiscence.21,22

In this review, we focus on the study of oscillating bubbles
in gas–liquid contact equipment because of the high
impact that they have on the chemical industry, where it is
considered that 25% of all chemical reactions take place
in multiphase gas–liquid flow. A few significant examples
are processes, such as waste water treatment, aerobic
fermentations, CO2 capture or algae growing where there
is a large potential for efficiency improvement if we gain a
deeper understanding of this particular phenomenon.23

Mass transfer is often the limiting variable and the
design parameter of the above mentioned processes.
Thus, an accurate prediction of the volumetric mass
transfer coefficient is required for the proper design of
such equipment where bubbles are often not rigid but
oscillating.24 Bubble oscillations do determine not only
the bubble shape and contact area, but also the
hydrodynamics surrounding the bubbles, the rising

velocity (and hold-up), as well as the concentration
profiles which define the mass transfer from the gas
phase to the liquid phase. Several authors have found
that oscillations have a favourable effect on gas transfer
to the liquid phase16,25–27 by reducing the bubble rising
velocity and increasing the gas hold up.16,28–30 However,
so far, most of the design equations are empirical
correlations based on dimensionless numbers and
adjustable parameters, thus affected by the geometry
of the system, the range of the operating variables and
even the experimental methods used in the determina-
tion of the mass transfer coefficients.17,18,23,31–33 In order
to have a deeper understanding of the large number of
variables defining the mass transfer rate and, in
particular, the effect of bubble oscillation, theoretical
models are useful. Even though the idea of bubble
oscillations can be traced back into the literature to the
beginning of the last century due to Lord Rayleight,3 its
evaluation and implementation for predicting the mass
transfer rates has been postponed, and it has not been
till very recently that the effect of the oscillation of the
bubbles either as responsible for bubble shape18 or to
define the Sherwood number (Sh5kL/db/DAB, where kL

is the liquid film resistance, db the bubble diameter
and DAB the diffusion coefficient) and the contact
area a, has been used to predict mass transfer in bubble
columns.19,20,32,33

This review is organised as follows. We first describe
the hydrodynamic principles of bubble oscillation to
characterise this particular motion and the variables that
describe it, frequency, amplitude and decay, as well as
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the different approaches to model it. In the section on
‘Effect of bubble deformation and oscillation on mass
transfer’, we study the effect of bubble oscillations on
the mass transfer rates and the modelling efforts (either
analytical approximations or numerical solutions) to
compute the Sherwood number of the bubbles. In the
section on ‘Bubble coalescence: contact area versus
bubble oscillation’, we evaluate the trade-off that
coalescence presents on the mass transfer: contact area
versus mass transfer enhancement due to the oscilla-
tions. Finally, in the section on ‘Mass transfer in bubble
columns’, we describe the modelling of bubble columns
capturing the effect of bubble oscillations on the
Sherwood number and on the gas–liquid contact area.
It should be noted that the emphasis of the review is on
rising and shape oscillating bubbles (n.0 mode) with
little or negligible apparent volume change, rather than
on volume oscillations (n50 mode).

Hydrodynamics of bubble oscillations
In this section, we first discuss the phenomenon from the
physical stand point trying to gain background and to
identify the variables that characterise it. Next, we
comment on the theoretical basis proposed in the
literature to understand and model bubble oscillations.

Bubbles not affected by external forces assume a static
shape which, in the case of small bubbles, is close to a
sphere, since the interfacial tension effect dominates the
gravitational effect. If such a bubble gets deformed by
an external non-continuous force, the bubble will return
to its initial shape after a certain period of time.
Assuming the bubble is spherically symmetric at the
start, we can distinguish mainly two stages during the
bubble oscillation process (see Fig. 1). First, the expan-
sion phase, where the bubble still remains more or less
spherical, next the collapse phase when oscillation and
surface wave motion take place. Bubble oscillations are
also usually described as the result of wake shedding,
with the onset of oscillations coinciding with the onset of
vortex shedding from the wake.34,35

In Figs. 2 and 3, we present photographs of the onset
of the oscillations after different hydrodynamic pro-
cesses common in gas–liquid contact equipment. For
instance, Fig. 2 shows the photographs of the oscilla-
tions induced after bubble detachment from a sieve
plate. The orifice diameter Do is 2 mm and the gas flow
rate Qc used is 561026 m3 s21 for all cases, but the
liquid media is modified by the addition of carbox-
imethyl cellulose to water. It can be seen that the process
usually involves a series of oscillations whose amplitude
decreases. Furthermore, as the liquid viscosity increases
(with the increment in the concentration of carbox-
imethyl cellulose), bubble oscillations are attenuated and
the shape of the bubbles is smoother, since the surface
waves decay at an earlier stage. Therefore, the physical
properties also play an important role in determining the
decay of the oscillations.

Bubble detachment is not the most important process
for the onset of bubble oscillations in contact equip-
ment, but bubble interacts with other bubbles, such
as bubble collisions, coalescence and break.19,20,32,33

Figure 3 shows examples of these processes. Figure 3a
and b represents the collision of two bubbles generated
from two equal orifices of 2 mm separated from center
to centre (Sep) 4 and 6?5 mm respectively. Figure 3a
shows that the two bubbles collide resulting in bubble
deformation and surface waves, but they do not coalesce
while if the separation between the orifices is smaller,
Sep54 mm as seen in Fig. 3b, the contact time increases
and the collision results in coalescence, generating in a
bigger and more deformable bubble with smaller contact
area than the two original bubbles. Finally, Fig. 3c
represents bubble breakup under stirring. Breakup
occurs after bubble deformation until the critical point
is reached.36 Then, the bubble breaks down into two
daughter bubbles which oscillate until a shape in
accordance with their size is reached. The sequence of
collisions and breakup processes as a result of the fluid
flow are responsible for maintaining the bubble oscilla-
tions over time.20

As it can be seen in the photographs presented in
Figs. 2 and 3, the phenomenon of bubble oscillation is
the result of a complex dynamic process involving
viscous, surface tension, inertial and external forces. The
intrinsic nature of the phenomenon has made use of the
analogy with any other periodic phenomenon for its
study and characterisation. Thus, the analysis of the
oscillating phenomenon relies on energy and momentum
balances to characterise the bubble oscillation features
such as its amplitude, frequency and decay. If we now
describe this problem from the first principles of fluid
mechanics, at time 0, the initial stages correspond to
irrotational flow and the energy dissipation comes from
the surface pressure. As the time advances the vorticity
generated at the free surface affects the liquid surround-
ing the bubble. For low viscosity fluids, the vorticity is
negligible and the velocity field can be approximated by
the inviscid flow where the irrotational approximation
holds true. Otherwise, the dissipation of energy depends
on the distribution of vorticity and the irrotational
approximation is not valid.38–45

With this overview in mind, we are going to follow the
literature available to present the approaches to model
the oscillatory phenomenon of bubbles. The first studies
on free oscillations date back to 1833 when Savart1

1 Scheme of bubble oscillations
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a bubble deformation after collision Do52?5 mm, Sep56?5 mm, Qc50?661026 m3 s21 (Refs. 111 and 134); b bubble
deformation after coalescence Do52 mm, Sep54 mm, Qc51?461026 m3 s21 (Refs. 111 and 134); c bubble deformation
after breakup; Rushton turbine H55 cm, N5430 rev min21, Qc50?661026 m3 s21 (Ref. 36)

3 Bubble oscillation after collision, coalescence and breakup

2 Effect of liquid viscosity on bubble oscillation: viscous decayment of bubbles oscillations Do52 mm;

Qc5561026 m3 s21 (Ref. 37)
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analysed the pulsation potions of the breakup of a liquid
jet. The first theoretical contribution to that problem
was delayed around 60 years.2 In spite of these previous
studies, the first contribution to the theoretical study of
small amplitude oscillation of a particle whose stability
was given by the surface tension was reported by
Rayleigh in 18793 based on Plateau’s work. Lord
Rayleigh used dimensional analysis to determine the
frequency of shape oscillations and he was also capable
of identifying the modes of motion of bubbles using
Legendre polynomials to calculate the oscillation
frequencies using a linear approach. The analysis of
Rayleigh is based on potential flow of an inviscid liquid
neglecting the effect of the outside fluid. That paper
reports a decrease in frequency with the increase in
the amplitude of the oscillation which could not be
explained at that point. It was Lamb4 who in 1932
developed a model for the oscillation frequency when
both fluids are inviscid. He solved the linearised Navier–
Stokes (NS) equations based on a ‘normal mode’
approach. It was assumed that the effect of viscosity is
small compared to the surface tension, which holds if a
number of oscillations occur during the decay time. He
also assumed that the oscillation amplitude is small
compared to the bubble diameter and considered that
the flow is irrotational, which is valid for fluids such as
water. Under these conditions, the NS equation is
simplified to the Laplace equation that is solved to
calculate the frequency of oscillation given by equa-
tion (1)

$n~ n{1ð Þ nz1ð Þ nz2ð Þ s

nz1ð Þriznr½ �R3

� �1=2

(1)

where n is the mode of oscillation, R the radius of the
bubble, r the liquid density, ri the gas density and s the
surface tension.

Even considering these assumptions, the model can
provide an approximation of the frequency under
many common operating conditions.4,38,46 However,
the approximation does not give rise to a viscous
correction of the frequency.

With regard to the oscillation amplitude, A, the
definition based on experimental measurements pre-
sented by Schroeder and Kintner,40 given by equa-
tion (2) holds

A~
dmax{dmin

2deq

(2)

where dmax and dmin are the maximum and minimum
diameter of the bubble, while deq corresponds to the
diameter of a spherical bubble with the same volume as
the one under study.

Figure 2 shows an example of the effect of the
dissipation of energy on bubble oscillation. Even though
Lamb4 derived models for predicting the oscillation
decay, they were based on the assumption that only one
phase was viscous and dense. It was Valentine et al.38

who generalised the analysis and developed a simple
model for evaluating the amplitude decay when both
phases are viscous and dense. They solved an energy
balance accounting for the phase inside and outside of
the particle. The solution of the energy balance makes
use of surface harmonics to write the velocity potentials
for each of the phases and the kinetic energy. For an

incompressible system the first law of thermodynamics
yields

deo

dt
zF~0 (3)

where the total energy of oscillation eo, involving the
kinetic and potential energies (K and V respectively) of
the external and internal phases (subscripts e and i) is
given by equation (4)

eo~KizVizKezVe~

R3

2

X?
n~2

A2
ns2

n

ri

n
z

re

nz1

� � ð2p

0

ðp
0

S2
n(h,w) sin hdhdw (4)

And the energy of dissipation F is given by equation (5)

Fi~miR
2 L

Lr

2

rir
2

LKi

Lr

� �
r~R

(5)

where R is the bubble radius, r, h and w the radial and
angular coordinates in a spherical system, s the surface
tension, r the liquid density, n the mode of oscillation
and S the surface harmonics. The dissipation energy Fi

needs to be averaged over one cycle to determine F for
equation (3). The solution to the equation allows
including the effect of viscosity in the oscillation
amplitude as presented in equation (6) as long as the
viscosity is low38,46

A~Ao exp {t=tn½ � (6)

where Ao is the initial oscillation amplitude, t is time and
tn is the time decay constant which turns out to be

tn~
R2

n2{1ð Þnizn nz2ð Þn (7)

where R is the bubble radius, n the mode of oscillation
and n is the specific viscosity of the phases where the
subscript i refer to the phase within the particle. The
dominant mode of oscillation is given by n52, since n50
and 1 correspond to bubble compression and displace-
ment, whose terms have a small contribution in the
energy balance.38 This model underestimates the damp-
ing rate, because it is based on an inviscid solution.
Another limitation of this analysis is that it is derived for
small oscillations; however, it provides easy theoretical
based equations for the study of the oscillation
phenomena.

In 1968, Miller and Scriven39 extended the analysis of
oscillation in viscous media in a more rigorous way by
solving the NS equations assuming that the fluids are
isothermal, incompressible and Newtonian and the fact
that gravitational forces are negligible

L~vv
Lt

~{
1

r
+pzn+2~vv (8)

where p is the pressure, r is the density, n the specific
viscosity and vv the velocity. The solution of the NS
equation uses spherical harmonics for approximating
the velocity and vorticity terms. The solution informs
about the decay factor and the angular frequency of
oscillation. For the sake of the length of the paper, we
are not going to present the solution procedure by Miller
and Scriven, nor all the cases whether the fluids are
liquids or gases. On the other hand, we will discuss on

Martı́n et al. A review of shape oscillating bubbles

Bubble Science, Engineering and Technology 2011 VOL 3 NO 2 51



the results for gas bubbles in a liquid. The solution to the
NS equations can be obtained analytically only for the
two asymptotic approximations, either for a low
viscosity fluid or a high viscosity one. The low viscosity
case agrees with lamb’s studies,4 since NS equation is
simplified to Laplace equation. For the high viscosity
case, a point is reached which oscillations no longer
occur and the deformed bubble returns slowly to the
spherical shape aperiodically. The frequency of oscilla-
tion and the decay factor are given by equations (9) in
Table 1, while for other cases numerical solution of the
NS is needed.

A few years later, Prosperetti11,12,46 found that even
though previous work based on a normal mode
approach was useful for forced oscillations, free oscilla-
tions about the spherical shape could not be represented
in terms of a single value of the frequency v and the
damping parameter b, but in terms of modulated
oscillations (equation (10)). The solution proposed was
based on the linearisation of the equations of motion
subject to the boundary conditions and the irrotational
approximation which enabled them to obtain analytical
solutions for the asymptotic limits, for small times and
large times

An(t)! exp½{b(t)+i$(t)�t (10)

The asymptotic values for v and b for tR‘ are those
given by the normal mode analysis and for tR0 are only
available for the two cases in which only one fluid has
significant dynamical effects, such as free drop in air or a
gas bubble. The calculus of v and b turns out to be a
hard problem. In between the extreme cases, the model
only predicts when the viscosity is small.

In parallel to the mathematical study, the oscillating
regimes of gas bubbles and their shape in different
regimes have been characterised on the basis of
dimensionless numbers such as Weber, Reynolds,
Morton and Eötvos (equation (11)), to capture the
effect of the physical properties of the liquid

We~
dbU2

BrL

s
, Re ~

rLUBdb

m
,

Mo ~
gm4

rs3
, Eo~

(rL{rG)gd2
eq

s

(11)

where db is the bubble diameter, UB the bubble velocity,
rL the liquid density, m the liquid viscosity and s the
surface tension.47,48 As Figs. 3 and 4 show, bubble shape
changes with its size, and thus, the drag coefficient is
affected.49 As a result, the terminal velocity of the
bubble not only depends on its size but also on the
oscillation of the bubbles.

Modelling rising and oscillating bubbles lie within the
inherently difficult free boundary problems which
consists on having to prescribe boundary conditions at
places where the position of the boundary is not known.
Joseph50 proposed a solution framework to free

boundary problems by formulating the problem in a
slightly perturbed domain and defining the change in
characteristic size of the domain as the small perturba-
tion parameter. This approach is also known as a
domain perturbation technique. The solution in the
perturbed domain is presumed known in some ref-
erence domain and is obtained in a power series in
the perturbation parameter where the coefficients
are the substantial derivatives of the variables evaluated,
the velocity potential, the frequency of oscillation and
the bubble shape function. Tsamopoulos and Brown42

combined the domain perturbation technique proposed
by Joseph50 with the Poincare–Linstedt expansion
method,51 to analyse the modes of oscillation of inviscid
bubbles and drops using a sphere as starting bubble
shape. The problem related to the viscous boundary
layer at both sides of the interphase is not tackled, since
one of the phases is gas, whose hydrodynamic effects can
be neglected. However, for bubbles and drops, the study
makes perfect sense. Thus, the problem is formulated as
the motion of a bubble assuming time periodicity, and
irrotational and incompressible flow involving:

Table 1 Oscillation decay and frequency for limiting cases

Decay Oscillation frequency

Low viscosity (2nz1)(nz2)nL

R2
(9a)

Equation (1)

High viscosity
½equation (1)�2 (2nz1)R2

2(nz2)(2n2z1)nL
(9b)

N/A

4 Oscillation regime of bubbles (based on Ref. 34)
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(i) the Laplace equation

(ii) the far field boundary condition

(iii) the Bernoulli equation for the pressure

(iv) the kinematic condition that relates the shape of
the surface and the velocity field

(v) the balance of dynamics and capillarity pressure
across the interface

(vi) the time periodic conditions

(vii) the constant volume condition

(viii) the definitions for the amplitude

(ix) the phase of the oscillatory motion.

The variable domain is mapped so that the bubble
surface is immobilised, introducing a change in the
radial coordinate as given by equation (12) (see also
Fig. 1)

r~gF(h,t) (12)

where F(h,t) is the function describing the radial
coordinate of the bubble surface as a function of the
angular coordinate and time and g the initial radius. In
order to approximate the solution of the nonlinear
partial differential equations defined in a perturbed
domain, the variables are expanded using the Poincare–
Linstedt method,51 taking A, the amplitude of the
oscillation, as the expansion parameter. Thus, the shape
function is expanded as a series of Legendre polynomials
(equations (13) and (14)) where only the term Pn(h)cos t
contributes to the amplitude

F(h,t,A)~
X?
k~0

A

k!
Fk(h,t) (13)

with

F½k�(h,t):
dkF(h,t; 0)

dAk
?F½1�(h,t)~Pn(h) cos t (14)

where Pn is the polynomial of Legendre of orden n. The
expansion for velocity potential w, using this approach,
is of the form presented in equations (15) and (16)

Q(g,h,t; A)~
X?
k~0

Ak

k!
Q½k�(g,h,t) (15)

where

Q½k�(g,h,t):
dkQ(g,h,t; 0)

dAk
(16)

where t is time and h is the angular coordinate in two
dimensions. Similarly, the oscillation frequency is also
expanded. Montes et al.24 used this method to model
bubble shape and oscillation for inviscid fluids as the
first stage to predict mass transfer rates. In Fig. 5, we
present an example of a rising bubble in water and a
picture of the bubble using high speed video techniques.
The model is capable of predicting the bubble shape
rather accurately.

The use of a single perturbation parameter, the
oscillation amplitude, may not be enough to account
for different sources of perturbation, such as those
caused by the uniform motion of the bubble and those as
a result of the interaction with other bubbles. Thus,
Feng43 included a second perturbation parameter in the
formulation to account for these interactions or, in
general, to take into account any other physical factors
affecting bubble deformation. In the formulation we

refer to e1 and e2 as the two perturbation parameters,
with the first one to measure the effect of the uniform
flow filed and the second one to scale the magnitude of
the oscillatory motions that are supposed to result from
other physical factors different from the flow field. The
governing set of equations is similar as before, while the
velocity potential W and the shape function of the bubble
F were expanded as function of these two parameters
(equations (17) and (18))

W r,h,w,t,e1,e2ð Þ~
X?
j~0

X?
k~0

e
j
1ek

2

j!k!
W½j,k�(g,h,w,t) (17)

F h,w,t,e1,e2ð Þ~
X?
j~0

X?
k~0

e
j
1ek

2

j!k!
F½j,k�(h,w,t) (18)

where r, h and w are the spherical coordinates.
Feng43 applied the method to model three dimen-

sional oscillatory motion of a bubble moving in an
inviscid fluid at constant velocity, but no comparison
between predicted and experimental shapes was pro-
vided. Montes et al.52 used this method to model bubble
shape and oscillation for inviscid fluids and Fig. 6
presents an example for a bubble rising in water and the
modelled shape using the multiparameter method. The
model reproduces the bubbles with good agreement.

More recently, different numerical methods have been
used to determine the shape of bubbles53 which are
capable of capturing the feature of bubble oscillations
characteristics up to a certain point without explicitly
involving the above mention variables (A,v). One way
to simulate bubbles is via the boundary integral
method.44–59 The boundary integral equation method
was developed by Dr Dunn and Dr Tweed from Old
Dominion University and by Dr Farassat of NASA
Langley Research Center.60,61 This method consists of
formulating the problem in terms of a distribution of
fundamental singularities at the boundaries, and the
problem is reduced to solving integral equations by
means of the Green’s theorem, given by equation (19)

{aW(xi,yi,zi)~

þ
V

w
Lg

Ln
{g

Lw

Ln

� �
dA (19)

where w is the velocity potential and g is the green
function that for a three-dimensional space is given by

5 Comparison between modelled and recorded oscillating

bubble in water24
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equation (20)

g~
1

R
, R~ (x{xi)

2z(y{yi)
2z(z{zi)

2
� �1=2

(20)

where n is the normal vector to the surface A, the area of
the figure and a is 4p for all the points not belonging to
the domain, while for the points of the domain, it is
defined as equation (21)

a~ lim
Ro?0

As=R2
o

� 	
(21)

Following this approach, we reduce the dimensionality
of the problem by one. The velocity of the points at the
boundary is obtained directly, and it is thus possible to
determine the evolution of the interface in time without
having to explicitly evaluate the velocity field elsewhere
in the domain. It has the advantage that it does not
require the discretisation of the computational domain
while its main limitation is that it requires the velocity
field to be expressed in terms of a potential, preventing
the explicit inclusion of viscous effects. It is possible,
however, to include weak viscous effects, if the vorticity
is constrained to a thin region near the interface.

Different computational fluid dynamic (CFD) meth-
ods have also been used, such as front tracking,62 as well
as different solution frameworks.63–65 Here, we briefly
present the basics for some of these methods.

Front tracking methods62 make use of markers,
connected to a set of points, to track the interface,
whereas a fixed or Eulerian grid is used to solve the NS
equations. This method is extremely accurate but also
rather complex to implement, because dynamic remesh-
ing of the Lagrangian interface mesh is required and
mapping of the Lagrangian data onto the Eulerian mesh
has to be carried out. The problem becomes more
complicated when multiple interfaces interact with each
other, such as in coalescence and breakup processes in
which case a proper subgrid model is required. Since a

separate mesh is used to track the interface, there is no
automatic merging of interfaces. This property is an
advantage when swarm effects in dispersed flows need to
be studied. The method offers considerable flexibility to
assign different properties (such as the surface tension
coefficient) to separate dispersed elements due to its
Lagrangian basis.

Volume of fluid (VOF) techniques66,67 use a colour
function F(x,y,z,t) that indicates the fractional amount
of fluid present at a certain position (x,y,z) at time t. The
evolution equation for F is usually solved using
advection schemes (such as geometrical advection, a
pseudo-Lagrangian technique), to minimise numerical
diffusion. Not only needs the value of the colour
function to be determined, but also the interface
orientation, which follows from the gradient of the
colour function. We can point out two kinds of VOF
methods depending on how the interface is represented:
simple line interface calculation66,68 and piecewise linear
interface calculation.69 Volume of fluid shows the so
called artificial (or numerical) merging of interfaces
which is required for modelling bubble coalescence
which is limited by the size of the grid. Thus, if our
system is dominated by coalescence, the VOF methods
do not require specific algorithms for the merging (or
breakage) of the interface such as Front tracking
methods require.

The lattice Boltzmann method is due to Hardy et al.70

and Broadwell.71 This method originated from lattice
gas automata, a discrete particle kinetics utilising a
discrete lattice and discrete time. The lattice Boltzmann
method can also be viewed as a special finite difference
scheme for the kinetic equation of the discrete velocity
distribution function. It has been widely used in case of a
number of moving objects such as bubbles since avoids
the dynamic remeshing of classical finite difference and
finite element methods which becomes computationally
very expensive. We can define it as a special, particle

6 Axisymmetric theoretical and experimental shapes of bubbles rising and oscillating in water and with oscillation ampli-

tude equal to 0?1 using two parameter model
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based discretisation method to solve the Boltzmann
equation. However, in this method problems may arise
as a result of the artificial coalescence of the bubbles.

Effect of bubble deformation and
oscillation on mass transfer
So far, we have only considered the hydrodynamic part
of the problem, an effort to model the bubble shape.
However, there is a link between the bubble motion and
the mass transfer rates, since the motion of the bubble
determines the concentration profiles surrounding it and
thus, the Sherwood number.

Most of the theoretical models to predict mass
transfer rates from rising drops or bubbles consider
their shape as a sphere. With this simplification, it is
possible to solve the continuity equation including
species diffusion analytically as in Ref. 72 (see equa-
tion (22) for the liquid film resistance obtained by this
approach, in Table 2). Spherical shape has also been
assumed to determine mass transfer rates by others for
inviscid fluids,73–75 non-Newtonian fluids76–81 (see equa-
tion (23) in Table 2) including the effect of particle
viscosity,82,83 for slurries,84 for oscillating flows28,85 and
for different flow regimes defined by their Reynolds
number, low,76,77,86,87 intermediate88–93 and high
Reynolds numbers94–96 respectively. Owing to the
number of parameters involved in the measurement of
the mass transfer rates and the experimental error
involved in measuring,23,31 the predictions have been
reasonable while providing theoretical basis.

However, as we have presented in Figs. 2 and 3,
bubble shapes in gas–liquid contactors are far from
spherical. Some authors have approximated them by
either using regular shapes like an ellipsoid,97–99 a
spheroid96,100 and a spherical cap101 or considering the
bubble, as if it consisted of two spherical caps.96,97 By
means of these simplifications, it was also possible to
solve the continuity equation analytically to calculate
the concentration profile around the bubble determining
the mass transfer rates. Table 2 shows the Sherwood
number for some representative bubble shapes. As a
result, the authors claimed better agreement of the
models with the experimental results. It is clear that

these bubble shapes are closer to the real ones. Even
though, researches acknowledge that the differences
between the assumed shapes of the bubbles and
the actual ones are behind the mismatch between the
predicted and the experimental results. However, the
effort of solving for different bubble shapes provides a
useful insight to the effect of the bubble shape and,
eventually, the effect of the modification of the bubble
shape on the Sherwood number leading to the effect of
bubble oscillations on it.

Together with the theoretical effort, Calderbank in
1958102 used dimensional analysis to develop several
correlations for the Sherwood number as function of the
Schmidt number (Sc5m/rDAB) and the Grashof number
(Gr~d3

brDrg= mDABð Þ, where m is the liquid viscosity, r
the liquid density, db the bubble diameter, g gravity, DAB

the diffusion coefficient and Dr the difference in
densities between the gas and the liquid phase). In this
work, two regimes are differentiated, one for large
bubbles, .2?5 mm, whose Sherwood number can be
predicted using equation (28)

Sh~0:42(Sc)0:5(Gr)0:33 (28)

And the other for small bubbles, ,2?5 mm, in which
case, the Sherwood number is given by equation (29)

Sh~2:0z0:31(ScGr)0:33 (29)

In between those values, the liquid film resistance increases
linearly with the bubble size. These correlations can be
regarded as the first result that considers the effect of bubble
deformation on the volumetric mass transfer coefficient by
assuming that large and small bubbles behave differently.
Actually, the critical diameter limiting both classes,
deformable and rigid, may not be 2?5 mm as Calderbank
proposed.102 The idea of a critical diameter for a bubble was
theoretically presented by Barabash et al.103 who defined the
critical diameter of a stable bubble in a fluid based on a
balance of forces as equation (30) in accordance with the
surface stability theory

2s

dcr
~

rLU2
B

2
(30)

Table 2 Sherwood and liquid film resistance kL for representative bubble shapes*

Shape Ref.

Spherical (Newtonian)
kL~2

DAB

pt

� �1=2

(22)
72

Spherical (non-Newtonian)
kL~2

DAB

t

� �1=2 e

K=r

� �1=2(1zn)

(23)
77, 112

Oblate spheroid Shos

Shsphere

~
2

3
(1zk)


 �1=2
2E1=3(E2{1)1=2

E(E2{1)1=2z ln½Ez(E2{1)1=2�
(24)

96

Prolate spheroid Shos

Shsphere
~

2

3
(1zk)


 �1=2 2E1=3(E2{1)1=2

E(E2{1)1=2z sin{1 (1{E2)1=2
(25)

96

Spherical cap
Shsc~1:79

(3E2z4)2=3

E2z4
Pe1=2, Pe~

UBdb

DAB

(26)
96

Ellipsoidal

Sh~0:564 Pe

ðp
0

1z2Z 3(h) sin3 hdh

Z 3(h)

0
@

1
A1=2

Z (h)~1{
3

64

� �
We2 1z3 cos (2h)½ � (27)

101

*kL: liquid film resistance; DAB: diffusivity; t: bubble contact time; K, n: power law coefficients; e: specific energy; E: aspect ratio of the
bubble; Pe: Peclet number; We: Weber number.
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where UB is either the rising velocity of the bubbles when the
dispersed elements are affected by gravitation, or the
velocity of pulsations of the order of magnitude of the
dispersed element, defined according to Kolmogorov’s ‘two-
thirds’ law, rL is the liquid density, s the surface tension and
dcr the critical diameter. In a gas–liquid system, dcr is
1?5 mm so that bigger bubbles oscillate, according to
Barabash et al.103 Since it is common that the bubble mean
diameter in process equipment is between 4 and 5 mm,23

bubbles are always deformable.

As we can see in Figs. 2 and 3, bubbles deform as they
rise48,59 and their shape is not constant. In order to
provide a theoretical basis for the effect of bubble
deformation in time on the mass transfer rates, Angelo
et al.104 proposed in 1964 the superficial stretching
theory. They suggests that the mass transfer coefficient
can be characterised as a function of the stretching of the
bubbles’ surface and their oscillatory movement with
respect to a reference state98,105

kLa~
Ar=Arefð Þ DAB=ptð Þ1=2

Ðt=tr

0

Ar=Arefð Þ2dt

" #1=2
(31)

where kLa is the volumetric mass transfer coefficient (a is
the contact area per unit of volume and kL is the liquid
film resistance), DAB is the diffusivity, t is time, Aref is
the area of the bubble in stable shape and Ar is the actual
bubble area. Since bubble oscillation is a periodic
phenomenon, a time average is required to determine
the mean Sherwood number.

At this point, the aim is to develop a theoretical
equation for the Sherwood number that includes the
contribution of bubble deformation. When a bubble
moves through a liquid, it exchanges gas from the
bubble to the liquid phase. It is possible to assume that
the oxygen concentration is constant at the water/air
interface, but the position of the interface is not known.
The oscillating movement of the bubble generates
convective motions that greatly enhance the overall
mass transfer rate defined by the derivative of concen-
tration with respect to the normal to the bubble surface.
The main assumption in the formulation of the mass
transfer problem is that the momentum and mass
transfer equations are only coupled through the velocity
field.42,43 Thus, the computation of theoretical velocity
profiles surrounding an oscillating bubble is the first and
crucial step in the development of accurate mass transfer
correlations50 so that the velocity profile, as a result of
the oscillations, will be responsible for the mass transfer
rates.

Following Tsamopoulos and Brown’s work,42 the
momentum transfer problem can be solved first and the
resulting velocity field is used to formulate the mass
transfer problem in equation (32). The solution to the
hydrodynamic problem was obtained assuming that
oscillations occur inside an inviscid fluid.42 On the other
hand, mass transfer rates from oscillating bubbles are
affected by the mode and amplitude of the oscillations.
Since the velocity field is described by a velocity
potential, the equations are linear and it is possible to
solve them separately for each mode of oscillation. Thus,
the mass transfer problem is thus formulated indepen-
dently for each of the oscillating modes and the

contribution of each mode of oscillation can be
combined to represent the overall mass transfer rates
using a weighted contribution for each mode. The
contribution of each mode of oscillation to the overall
mass transfer problem, however, it cannot be evaluated
experimentally, because it is not possible to deter-
mine local mass transfer rates. Based on these
assumptions,42,43,106 Montes et al.24 developed a theore-
tical equation for the Sherwood number of bubbles in
the oscillatory regime given by equation (32)

Sh~
2

p1=2
Pe1=2 In1zIn2

A

v2
n

We1=2

� �
(32)

where

In1~
3

4p21=2

ðp

0

ðp

0

N hð Þ Lr

Ln
F2

nz
LFn

Lh

� �2
" #1=2

sin hdhdt (33)

In2~
3

8p

ðp

0

ðp

0

N hð Þ Lr

Ln
F2

nz
LFn

Lh

� �2
" #1=2

sin hdhdt (34)

N(h)~
sin2 (h)

1{3 cos h=2z cos3 h=2ð Þ1=2
(35)

where We is the Weber number, Pe the Peclet number,
both defined above, F the shape function, h the angular
coordinate and t time. In Fig. 7, we present the local
Sherwood number at different positions along the
bubble surface resulting from an oscillating bubble for
the dominant mode of oscillation n52 for a gas bubble
of 4 mm with an initial oscillation amplitude of 0?4. On
the figure, we show the dimensionless time t, with respect
to a period of bubble oscillation 2 pi. The maximum
values for the Sherwood number are found close to the
top of the bubble.

A few years later, Martı́n et al.37 introduced the effect
of liquid viscosity on the mass transfer of oscillation
bubbles by coupling approximate solutions for the
velocity potential at high, intermediate and low
Reynolds numbers,90,95 with Calderbank and Lochiel’s
work96 where the Sherwood number was given as

7 Local Sherwood number as function of angular posi-

tion: db54 mm, Ao50?4, n52 (Ref. 24)
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function of the velocity profile as given by equation (36)

Sh~
2

p

� �1=2

Pe1=2

ðp
0

Vh
�jr�~1sinhsinhdh

2
4

3
51=2

(36)

where Vh is the angular velocity at the bubble surface.
The oscillation decay was included in Tsamopoulos and
Brown’s formulation42 as proposed by Valentine et al.38

(see equation (6)). For low viscosity fluids, the solution
agrees with that provided by Montes et al.,24 while for
high viscosity, the oscillations are absorbed as viscous
dissipation and the bubbles behave as rigid.

Recently, numerical approaches107 and CFD simula-
tions have also been carried out, namely Refs. 108 and
109, to calculate the velocity profile of the rising bubble
and the Sherwood number. The studies for individual
bubbles are accurate and are useful to develop
dimensionless correlations for the Sherwood number
of the bubbles. However, these simulations cannot be
directly used for modelling a complete bubble column
since the computational burden increases with the
number of bubbles inside the gas–liquid contact equip-
ment and makes infeasible the solution of a complete
bubble column.

Bubble coalescence: contact area versus
bubble oscillation.
The formation of bigger bubbles, due to coalescence (see
Fig. 3), has two main effects on the hydrodynamics with
an important result in the mass transfer rates. On the
one hand, there is a reduction in the contact area
available, which for a long time was considered as a
drawback for mass transfer operations in bubble
columns.23 On the other hand, bigger bubbles are more
deformable.20 The relationship between the oscillation
amplitude and the bubble size is difficult to determine
since bubble oscillation amplitude depends on the liquid
turbulence but increases greatly from zero as soon as the
bubble oscillation behaviour changes from a rigid
bubble to an oscillating bubble.24 However, these
oscillations increase the mass transfer rate due to the
modification of the contact times and the concentration
profiles surrounding the bubbles.24,37 Furthermore,
there is another effect of bubble coalescence on the
velocity and concentration profiles. As two bubbles get
closer, like those about to coalesce, there is a reduction
in the concentration gradient in the vicinity of the

bubble surfaces (see Fig. 8). Sherwood number drops
from 2, due to molecular diffusion, to 1?98, when the
distance between centres is 100 times the sphere bubble
radius, to 1?6, if the former distance is four times the
bubble radius, and in the case bubbles touch each other,
the Sherwood number reaches a minimum value of
1?386.73

In the case of drops, Defrawi and Heideger110

reported that there is an increment in the mass transfer
rates immediately after coalescence, followed by a rapid
fall to zero, rebound to an intermediate value and finally
decay to the level expected for an undisturbed drop, with
the result of a net decrease in the mass transfer rate. In
the case of bubbles, the contribution of bubble
coalescence to mass transfer was studied by Martı́n
et al.111 In that paper, the authors proved experimentally
for different liquid fluids that although coalescence
decreases mass transfer rate from bubbles, deformable
bubbles can, in certain cases, balance the decrease in
mass transfer rate due to the reduction in superficial
area. This trade-off can then be used to avoid the
harmful effect of coalescence on the mass transfer rate in
the operation of bubble column reactors.

Mass transfer in bubble columns
Many research groups only focus on the hydrodynamics
as we saw in the section on ‘Hydrodynamics of bubble
oscillations’, and thus, there is a need for integrating
hydrodynamic and mass transfer studies. We focus on
the study of bubble columns since the bubble deforma-
tions are due to the fluid flow generated inside when
injecting the gas with no other mechanical energy input
such in the case of stirred tank reactors. As we have
commented in the section on ‘Effect of bubble deforma-
tion and oscillation on mass transfer’, the volumetric
mass transfer coefficient kLa is function of the contact
area a, and the liquid film resistance kL calculated
through the Sherwood number. kLa actually depends on
bubble shape, deformation and oscillations in both
variables.24,111 In short, on the one hand, the shape of
the bubbles plays an important role in the total contact
area. On the other hand, bubble deformation determines
the velocity profile and concentration gradients sur-
rounding the bubble.

For quite some time, modelling of bubble column
reactors was made on the assumption that the bubbles
were spherical.112 The first model available in the
literature combines the liquid film resistance, which is

8 Effect of distance between two bubbles on flow lines surrounding them
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calculated through Higbie’s theory72 (equation (22)),
with the specific area of the dispersion a, computed
using the correlation determined in Calderbank’s
studies113 (equation (37))77,112

a~1:44
e0:4r0:2

s0:6

� �
uG

UB

� �0:5

(37)

where e is the energy input to the system, the product
between the superficial gas velocity uG and the gravity g,
UB the rising velocity of the bubbles, r the liquid density
and s the surface tension. This model can be modified to
simulate non-Newtonian liquids by using equation (23)
for predicting kL as proposed by Kawase’s group.77,112

An evolution of this model was presented by Shimizu
et al.114 who combined the above mentioned Higbie’s
theory with a population balance, based on the models
proposed by Prince et al.115 and Pohorecki et al, 116 to
determine the gas–liquid contact area. This model also
assumes that the bubbles are spherical for determining
kL and a. The subsequent evolution of this idea was the
use of CFD simulation to calculate the hydrodynamics
of the bubble column.117 This approach allowed the
calculus of the energy dissipation across the tank (e in
equation (37)), responsible for the breakup and coales-
cence processes across the tank, which is used in a
population balance to compute the bubble size distribu-
tion. Higbie’s theory is used again to determine the kL.
CFD simulations still consider spherical particles118–121

mainly due to the computational burden related to the
use of a different geometry. Another limitation of the
CFD codes in terms of prediction is the large number of
adjustable parameters involved in the breakup and
coalescence closures, which helps simulate the experi-
mental results but makes really complex the prediction
of non validated gas–liquid systems. Recently,18 a
correction factor has been implemented to account for
the effect of the bubble shape on Higbies’ theory,72 with
good predicting capabilities over a wide range of
experimental results. This result is interesting to drive
the research towards the implementation of the effect of
bubble oscillation into the prediction of the mass
transfer rates in bubble column reactors.

So far, the contribution of the oscillation bubbles
has been neglected mainly due to the computational

complexity of implementing all the contributions within
the same framework. In order to evaluate the effect of
bubble oscillations to the mass transfer rates in bubble
columns, Martı́n et al.19,20 went a step back from the
CFD so as to be able to couple the theoretical equations
for the Sherwood number of that include the effect of
bubble oscillation21,92,99 with a population balance
based on those proposed to compute the bubble size
distribution.114–121 The actual area of each bubble class
is calculated depending on the shape of the bubble based
on its size.

The implementation of the population balance needs
to account for the trade-off related to coalescence
presented in the section on ‘Bubble coalescence: contact
area versus bubble oscillation’. To include it in the
prediction of the mass transfer rates, the bubble
dispersion evaluated in the model needs to take into
account both bubble sizes, the initial bubbles that collide
and the resulting coalesced bubble. Therefore, a new
scheme of the bubbles present in the dispersion was
suggested which allows that the bubbles involved in
breakup and coalescences processes be defined so as to
evaluate whether the area lost by coalescence of two
bubbles is balanced with the enhancement in the liquid
film resistance, as a result of the deformability of the
bigger bubble resulting from the process.37 Figure 9
shows the bubble scheme proposed by Martı́n et al.19 It
represents the relative volumes of the bubbles that are
present at the column if the initial class generated at the
orifice has a volume of 8 units. Most of the common
coalescence and breakup processes are allowed, such as
those involving bubble coalescence between two bubbles
of similar sizes and bubble breakup into identical
bubbles. Thus, in Fig. 9, ‘2X’ implies coalescence of
two bubbles of the previous size resulting in a bubble of
the next class. ‘/2’ represents that a bubble of that class
can be obtained by bisection of a bubble of the previous
size and ‘z’ indicates that those bubble classes are
allowed to coalesce.

In order to model bubble coalescence we analyze the
collisions between bubbles. Prince and Blanch115 pro-
posed a model for bubble coalescence in bubble columns
where the coalescence for two bubbles, i and j, is given
by the product between the collision frequency and the
efficiency by which those collisions derive in coalescence

9 Scheme of relative size of bubbles present in bubble columns reactor and coalescence and breakup processes

allowed19
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(equation (38))

Cij~
X

m

hm
ij

 !
l (38)

The total collision frequency Cij is reported to be the
sum of different mechanisms hm

ij , such as turbulent,

buoyancy and laminar stress collisions115,116 and the
collision efficiency l.

Among the collision mechanisms in Fig. 10, turbu-
lence collision rate hT

ij corresponds to the collision
frequency between two bubbles in turbulent regime
due to the relative motion of the bubbles. It is based on
the collision theory for ideal gases. Buoyancy collision
rate hB

ij occurs when a bubble reaches another bubble.
The wake of the previous bubble speeds up the second
one into collision. Finally, the laminar stress collision
rate hLS

ij occurs when a bubble overtakes another bubble.
Table 3 presents the equations for the different mechan-
isms where ni is the concentration of bubbles of class i,
Sij the collision cross sectional area, between bubbles is
defined as equation (39), and ut the turbulent velocity
for bubbles of diameter db in the inertial subrange of
isotropic turbulence (equation (40)), uri the rising
velocity (equation (42)), s the surface tension, rL the
liquid density and dbi the diameter of the bubble of size i.
Laminar stress collision rate, occurs when a bubble
overtakes another bubble, where Ul is the liquid velocity,
rc the radial coordinate, Dc is the bubble column
diameter and uG the superficial gas velocity.

Coalescence probability depends on the intrinsic
contact between bubbles. After bubble collision, a
drainage channel is developed and the liquid film
between the bubbles is partially or totally drained.
Coulaloglou and Tavlarides122 defined the collision
efficiency l between bubbles as a probability function
which depends on the relationship between the time
required for film drainage and the contact time of the
bubbles. The coalescence is thus controlled by the
drainage of the liquid film between two bubbles and
the effect of the physical properties of the liquid plays an
important role. Marucci123 proposed a model for the

drainage of the liquid film based on drainage velocity
which was the origin for later studies by Ghosh and
Chesters124,125 who developed models for determining
the efficiency of bubble collisions depending on the
dominant regime, the presence of surfactants on the
bubble surface, the effect of liquid viscosity, etc. These
models are really useful in an attempt to avoid
adjustable parameters for predicting the effect of the
physical properties of liquid phase on the coalescence
rates.20,126 Table 4 shows the equations for computing
the coalescence efficiency, where tij, is the contact time
of two bubbles i and j, tij, their drainage time, and h the
film thickness either initial or final for low viscous fluids.
In case of viscous ones or in case of the presence of
surfactants eq. (48) will be modified and we refer to the
literature20,124,125 for different models.

The energy dissipated in the flow deforms and
eventually breaks the bubbles. Different bubble break-
age rates are proposed in the literature to model the
bubble size distribution (see Fig. 9). For bubble breakup
due to the effect of turbulent eddies, Prince and
Blanch115 modelled bubble breakage of a bubble i
assuming that the bubble collides with turbulent eddies,
as equation (50)

Bi~ hT
i,eddy

� 

k (50)

Therefore, the breakup rate is written as the product
between the turbulent collision rate of bubbles and

turbulent eddies hT
i,eddy and the efficiency of those

collisions k. The collision rate is given as that between
two bubbles115,116

hie~nineSie uti
2zu2

te

� 	0:5
(51)

The turbulent velocity of the eddies can be written as
equation (52)115,116

ute~1:4e1=3d1=3
e (52)

The efficiency of the breakage is calculated as the ratio
between the critical energy to break a bubble and the
one available as equation (53)115,116

ki~ exp {
u2

ci

ute
2

� �
(53)

where the critical vortex velocity capable of breaking a
bubble of diameter dbi,

115 is given as equation (54)
follows and ute as before

uci~
Wecs

dbirL

� �0:5

(54)

The key parameter here is the critical Weber
number.115,116 Martı́n et al.19,20,126 used it as an
adjustable parameter and related it to the physical

Table 3 Basic model for collision frequency in bubble column115,19

Collision mechanism Contact area Collision velocity

hT
ij ~ninjS ij(u

2
tizu2

tj)
0:5 (39) Sij~

p

16
(dbizdbj )

2 (40) ut~1:4e1=2d
1=3
b (41)

hB
ij ~ninjS ij(uri{urj) (42) uri~ 2:14 s

rLdbi
z0:505gdbi

� 
0:5

(43)

hLS
ij ~ninj

4
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2
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dbj
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� �3
dU1
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(44)

dU1

drC

&
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~

0:787 gDCuGð Þ1=3

DC=2
(45)

10 Breakup and coalescence mechanisms in bubble

column
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properties of the liquid phase with good results in predicting
the bubble mean size for water and viscous liquids.

There are other models for bubble breakup. Here, we
only mention three more:

(i) Luo and Svendsen127 proposed another model
for the breakup frequency which accounts for the
total gas phase in the bubble column reactor
(equation (55)). This is one of the most common
breakup closures implemented in CFD packages.

Bi~0:923 1{eg

� 	 e

db

� �1=3

1zde=dbð Þ2

d2
b de=dbð Þ11=3

e
{

psd2
b

j fv
2=3z(1{fv )2=3{1½ �

prLb=12ð Þ de=dbð Þ11=3
dbeð Þ2=3


 �
(55)

where de is the diameter of the eddies, db the
bubble diameter, eg the gas hold-up, fv the
fraction in which a bubble is broken down, e
the turbulent energy in the column and b a
coefficient of the model.

(ii) Martinez-Bazán et al.128,129 developed another
model for bubble breakup efficiency based on
the stability of a jet (equation (56)). The forces
under consideration are those which maintain
bubble size, surface tension, and those which
attempt to deform it, the turbulent energy. The
model proposed considers that the highest
probability for a bubble is to break into two
equal daughter bubbles and relies on a couple of
parameters that are calculated for the specific
working system.24,30,128,129

Bi~ni0:25
8:2(edb,i)

2=3{ 12s=rLdb,ið Þ
h i1=2

db,i

(56)

(iii) Alternatively, bubbles can also break due to
instability as presented by Wang and Wang.119

As presented in Fig. 3, bubble oscillations are caused
because of the bubble interactions. For example, when
two bubbles collide they get deformed and oscillate
towards a stable shape in accordance with its size. Also
after coalescence when the new bubble has an initial
shape, according to the individual bubbles which
generated it and it oscillates to an equilibrium shape,
or after breakup, because the elongation previous to
bubble breakage deforms the bubble and the two
bubbles resulting for the process oscillate to reach a
stable shape according to their new size after.34,39 In
order to compute the oscillation amplitude of the
bubbles in the swam and to calculate the surface area
provided by each bubble, Kulkarni et al.130 proposed a
useful correlation that determines the aspect ratio of the
bubble E, as function of the Eötvos dimensionless

number (equation (57)). The amplitude of oscillation
can be related to the deformation as expressed in
equation (58)

E~
1

1z0:163Eo0:707
(57)

A~
1{E

2E
(58)

Martı́n et al.19,20 coupled a population balance with the
Sherwood number for oscillating bubbles developed by
Montes et al.24 and Martı́n et al.111 to predict the
volumetric mass transfer coefficient including the effect
of bubble oscillations. Experimental results for the
volumetric mass transfer coefficient23,131,132 and the
bubble mean size23,131 in bubble columns were used to
validate the model.

For air–water systems, it was found that the predic-
tion of the volumetric mass transfer coefficient revealed
higher values than the empirical ones based on the
correlations in the literature.23,131,132 The authors
realised that the presence of other bubbles may modify
the velocity and concentration profiles surrounding the

Table 4 Coalescence efficiency in pure liquids

Breakup efficiency Contact time115 Drainage time115,123

lij~ exp {
t ij

tij

� �
(46) tij~

0:5dbð Þ2=3

e1=3
(47) t ij~

0:5d ij

� 	3
rL

16s

 !0:5

ln
h0

hf

� �
(48)

d ij~
2

dbi

z
2

dbj

� �{1

(49)

a inviscid fluids; b viscous fluids
11 Prediction capacity of mass transfer rates using mod-

els accounting for bubble oscillation
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bubbles since the presence of bubbles does not allow a
complete development of the profiles and thus the actual
Sherwood number should be smaller than the one
predicted by the theoretical equations.23,111 This phe-
nomenon had already been discussed by Lamont and
Scott.133 Thus, Martı́n et al.19 used the corrections
proposed by Lamont and Scott133 in which case, as
shown in Fig. 11a, it is possible to predict the mass
transfer rates.

There are an increasing number of processes involving
mass transfer to viscous fluids such as biochemical
processes, which demands further effort to understand
the effect of liquid viscosity on bubble oscillations and
its effect on the mass transfer rates. Liquid viscosity
decreases the mass transfer rate due to a decrease in the
molecular movement on the surface of the bubble,
reducing the diffusivity and the surface removal.
Moreover, the velocity gradients around bubbles are
also reduced since liquid viscosity attenuates bubble
oscillations by absorbing the oscillation energy.42–46 The
hydrodynamics is controlled by the viscosity of the
liquid, defining the breakup and coalescence rates.
Bubbles in viscous fluids are more stable in the flow
and, as a result, Wec increases with viscosity. A
correlation between Wec and liquid viscosity was found
that allowed bubble mean size prediction in bubble
columns operating with viscous fluids. Furthermore,
bubble collision, breakup and coalescence processes
provides an initial oscillation amplitude which enhances
mass transfer with respect to rigid bubbles. An
important feature to point out is that bubble oscillations
are only partially absorbed by viscous dissipation
because the processes the bubbles experience (collisions,
coalescence and breakup) provide them with an initial
oscillation amplitude. The characteristic bubble oscilla-
tion time turned out to be that corresponding to 1?5
bubble oscillations20 (see Fig. 11b)

Conclusions
Bubble oscillation is a complex phenomenon whose
properties have been under study over the last decades.
Its effects on a large number of fields from cavitation of
flows, to gas liquid contact equipment have attracted an
increasing number of researchers from different fields. In
particular, from the chemical engineering perspective,
bubble oscillations need to be understood to decrease
the harmful effect on mass transfer rates. In general,
there are two main contributions of the bubble oscilla-
tions to the mass transfer rates, their effect on the
velocity profiles increasing the mass transfer and the
effect on the contact area itself. By controlling or better
understanding the bubble oscillations, it is also possible
to mitigate the effect of bubble coalescence. Further
studies are still required to take advantage of the
phenomenon while minimising its drawbacks
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