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Abstract — Extremely compliant elastic materials, such as thin membranes or soft gels, can
be deformed when wetted by a liquid drop. It is commonly assumed that the solid capillarity
in “soft wetting” can be treated in the same manner as liquid surface tension. However, the
physical chemistry of a solid interface is itself affected by any distortion with respect to the elastic
reference state. This gives rise to phenomena that have no counterpart in liquids: the mechanical
surface stress is different from the excess free energy in surface. Here we point out some striking
consequences of this “Shuttleworth effect” in the context of wetting on deformable substrates,
such as the appearance of elastic singularities and unconventional capillary forces. We provide a
synthesis between different viewpoints on soft wetting (microscopic and macroscopic, mechanics
and thermodynamics), and point out key open issues in the field.

Copyright © EPLA, 2016

The canonical example of elasto-capillarity consists of
a liquid drop in contact with a highly deformable elastic
material [1]. The forces of surface tension of the liquid
can induce wrinkles on a thin membrane [2—4], bundling
of slender rods [5-7], capillary origami [8-11], and the
slowing-down of droplets moving over soft gels [12-16].
These phenomena play a role in a broad variety of ap-
plications, with many examples in the natural world
and in technology. The equilibrium shapes of the drop
and the elastic solid, and, therefore, also the contact
angles, emerge from a balance between capillarity and
elasticity [1,4,17-35].

Elastic interfaces exhibit an intriguing feature that is
not present for liquid interfaces: the excess mechanical
tension inside the interfacial region, referred to as the
surface stress Y, is in general different from the surface
free energy . This was pointed out already by Shuttle-
worth [36] and studied in detail in crystals [37], with con-
sequences in phenomena such as elastic instabilities [37],
surface segregation [38], surface adsorption [39,40], sur-
face reconstruction [41,42], nanostructuration [43] or
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Fig. 1: (Colour online) Perspectives on the Shuttleworth

effect. Thermodynamics involves free-energy minimisation,
while the language of mechanics is expressed in terms of force
balance. Macroscopically, these respectively involve the free
energy per unit area 7, and the interfacial force per unit
length Y. Microscopic equivalents, describing the molecular
scale are given by density functional theory (DFT) and molec-
ular dynamics (MD). Reprinted with permission from CaA0 Z.
and DOBRYNIN A. V., Macromolecules, 48 (2015) 443. Copy-
right (2015) American Chemical Society.
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Fig. 2: (Colour online) Elasto-wetting experiments. (a) X-ray visualisation of the deformation of a gel by a liquid below the
contact line. Reprinted from PARK S. et al., Nat. Commun., 5 (2014) 4369, Nature Publishing Group, licensed under a Creative
Commons Attribution 4.0 International Licence. (b) Radial wrinkles induced on a floating thin membrane by a drop. From
HuaNG J. et al., Science, 317 (2007) 650. Reprinted with permission from AAAS. (c) Elasto-capillary loop of a thin plate.
From RoMAN B. and Bico J., J. Phys.: Condens. Matter, 22 (2010) 493101. Reprinted with permission from IOPscience.
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Fig. 3: (Colour online) Scales of elasto-capillarity. (a) Drop of size R on a thin membrane of thickness h. The first zoom shows

that the sharp membrane bending is smooth on the scale (B/7)

/2 The second zoom shows the wetting ridge on the scale

~v/E. (b) Drops on a thick elastic layer upon varying «v/FE. The three panels reveal the double transition of contact angles
(microscopic vs. macroscopic). The length scales evolve from v/E < a (panel (i), to a < v/E < R (panel (ii)), to R < v/E

(panel (iii)).

self-assembly [44,45]. However, the consequences of T # v
in soft condensed matter are largely unknown [46].

In this Perspective article we analyse the Shuttleworth
effect from different viewpoints, and unify thermodynamic
and mechanical approaches (fig. 1). We discuss the con-
ditions under which it influences wetting of deformable
media (fig. 2), and point to open questions.

Hierarchy of length scales. — Before discussing the
Shuttleworth effect, it is important to assess the various
regimes of elasto-capillarity. Such a classification can be
made in terms of the relevant length scales [1,4]. Consider
slender elastic bodies, whose thickness h is much smaller
than both their radius of curvature x~! and their length
L, such as that shown in fig. 3(a), depicting a drop of
size R supported by a membrane of thickness h < R.
Viewed at the scale of the drop, the thin membrane de-
forms sharply near the edge of the drop, forming well-
defined contact angles. Zooming in near the contact line,
however, the membrane angle varies gradually. Owing to
the membrane’s finite bending rigidity B ~ Eh?, where E
is the Young’s modulus, the bending occurs over a typical
distance k="' ~ (B/v)/2. This length is referred to as the
bending-elasto-capillary length. It provides, for instance,
the characteristic size of the loop shown in fig. 2(c). How-
ever, the subsequent zoom in fig. 3(a) reveals a second
length: the stretching-elasto-capillary length ~v/E. This

is the scale over which the elastic solid deforms into a
“wetting ridge” in the direct vicinity of the contact line.

The importance of the stretching-elasto-capillary length
~v/E becomes apparent when the elastic body is not slen-
der. This is further highlighted for drops on very soft
elastomers or gels (fig. 3(b)). Here one needs to introduce
the range of molecular interactions a as yet another length
scale, setting the microscopic width of the interface. The
three sequences of fig. 3(b) show a double transition of
the contact angles [32,34]. First, the microscopic contact
angles change when v/F ~ a (from panel (i) to (ii)), with-
out affecting the apparent angle on the scale of the drop.
The macroscopic angles only change when v/E ~ R (from
panel (ii) to (iii)). These two transitions can be viewed as
changes from Young’s law to Neumann’s law, respectively
for the microscopic and macroscopic angles [27-29,32,34].
It should be noted, however, that there still is no macro-
scopic derivation of Neumann’s law for elastic substrates
that includes the Shuttleworth effect.

The Shuttleworth equation. — The surface energy ~
is the excess free energy per unit area of an interface. An
area A is therefore associated with an energy vA. Apply-
ing the virtual work principle to an increase in interfacial
area 0 A, one deduces the excess force per unit length T.
For a liquid interface, this leads to an increase vdA of
the surface free energy. Equating this change in energy
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to the mechanical work done by Y, one obtains the iden-
tity T = . For liquids there is thus no need to distin-
guish between Y and v and one simply refers to surface
tension. For elastic interfaces, however, the situation is
fundamentally altered: expansion-induced strain changes
the molecular structure of the interface. Hence, the inter-
facial excess free energy v is not constant any longer, and
we find a change in free energy

dy dy
0(vA) = A— | 0A = — | 0A. 1
oA = (vrafy)oa= (14 L)oa @
where € is the strain parallel to the interface. Equating
this to the work done by the surface stress, we find the
Shuttleworth relation [36,37]:

dy

:7+a~ (2)

In the context of soft matter, the derivative is understood
as taken at constant chemical potential and temperature.
The Shuttleworth effect gives rise to new phenomena that
have no counterpart in liquids, whenever the surface free
energy exhibits an explicit dependence on the strain.

Thermodynamics: measuring the Shuttleworth
effect. — The first illustration of the Shuttleworth effect
is provided in a macroscopic thermodynamic framework.
A suitable geometry to measure experimentally the strain
derivative 7/ = dvy/de consists of a slender, elastic plate
or rod partially immersed in a liquid reservoir (fig. 4(a)).
This setup forms an elastic realisation of the classical Wil-
helmy plate [47], normally used to measure liquid surface
tension. As mentioned, the slender theory is derived under
the assumption of a hierarchy of lengthscales,

(3)

In this asymptotic limit, the spatial extent of the wetting
ridge v/FE is confined to a small region near the contact
line, and its effect on the global energy of the plate is
negligible. Hence, we are in the same hierarchy of scales
as for intermediate zoom of the membrane in fig. 3(a):
the conclusions thus equally apply to the membrane, even
though we consider the plate in fig. 4(a) under conditions
where it remains straight [48].

The strain away from the contact line (distances > h)
is homogeneous, though we need to distinguish the strain
in the dry part of the plate (ey) and in the immersed
part (e—) —cf. fig. 4(a). The macroscopic free energy
reads [49,50]

B\ /2
max (y/F,a) < h < <,y) .

& = yvArLy —i—/

wet

1
dA [mﬂ(e) + 2Eh€2:|

1
_ FeXtZtOp + ‘/d dA |:2’YSV(€+) + 2Eh€ij| . (4)
ry

Here Apy is the liquid-vapor area, while the solid-liquid
and solid-vapor areas are represented by integrals over the
“wet” and “dry” part of the surface —factors 2 reflect
the two sides of the plate. Importantly, we allow for a

Fig. 4: (Colour online) The elastic Wilhelmy plate: a tool to
measure the Shuttleworth effect [49,51]. (a) Schematic of an
extensible plate or rod partially immersed in a liquid bath,
held by an external force. The Shuttleworth effect induces
a discontinuity of strain across the contact line (e; # e_).
The small circle around the contact line is used in the free
body diagram of fig. 5. (b) Experimental measurement of the
vertical displacement u(z) along an elastic rod (v/F ~ 1pum,
radius = 150 um). The discontinuity of strain e = du/dz is
clearly visible: the top part of the rod is stretched, the bottom
part is compressed. Data from [51].

dependence of the solid surface tensions on the strain e:
this will give rise to the Shuttleworth effect. Other terms
represent the bulk elasticity, as well as the work done by
the external force Foy. We neglect bulk swelling so that
the reference state is well defined.

The elasto-capillary equilibrium of the wire is obtained
by minimisation of the free energy [49,50]. In the
“Methods” section, we briefly summarise the key steps
of the derivation which can be performed for small strain,
given the hierarchy of length scales. Variations of the con-
tact line position and of zip, respectively, give two clas-
sical relations: Young’s law for the contact angle 6, and
the force on the Wilhelmy plate, Fext ~ vsv — Y5 =
yrv cosf. Variations with respect to €4 and e_ involve
the derivative of the surface energy 7/ and lead to a new
elasto-capillary coupling (see “Methods”):

2(vsv — YsrL) _ 2vpy cos
Eh Eh ’
2(Ysy — Ysr)

€L = ———————=|

Eh

where the reference state is the plate surrounded by air.

Remarkably, the upper part of the plate probes the sur-
face energies, while the immersed part probes the surface
stresses. As a consequence, there is an elastic singular-
ity in the form of a strain discontinuity when crossing the
contact line region [49,50],

€4 =

2(vsr, = Ysv)
Eh '
which directly quantifies the Shuttleworth effect.

Ae=¢€y —e_ =

(7)
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The discontinuity in strain has indeed been measured
experimentally on a thin elastomeric rod. Figure 4(b)
shows the vertical displacement field measured on a wire of
polyvinylsiloxane partially immersed in ethanol [51]. With
respect to the reference state —the rod surrounded by
air— the upper part of the rod is stretched (e > 0), and
the measured strain is in perfect agreement with the ax-
isymmetric analogue of (5). The lower part, however, is
compressed (e_ < 0). The discontinuity in strain can thus
be used to quantify the strength of the Shuttleworth effect,
which in the experiment gives [51]

Yer — sy =43+ 10mNm™*. (8)
The magnitude of these terms is even larger than the
relevant surface energies, vy = 22.8 + 0.2mNm~' and
vsv — vsr. = 16 2 4mNm~'. Hence, for this material,
the influence of the Shuttleworth effect in elasto-capillarity
cannot be considered a small correction.

Macroscopic force balance near the contact line.
— We now turn to a mechanical view on the Shuttleworth
effect. In the “slender body” description of the exten-
sible rod, the strain discontinuity (7) implies a perfectly
localised line force of magnitude 74, — 4y, near each of
the two contact lines. However, this slender formulation
does not reveal the mechanics on the scale of the thick-
ness h, let alone on the scales a and v/E. To gain insight
into the force balance near the contact line, we now define
a control volume of “mesoscopic” size w around the con-
tact line. This control volume is indicated as the circle in
fig. 4(a) and further detailed in fig. 5. Its size w is taken
according to hierarchy of scales,

max (v/E,a) < w < h. 9)
The first inequality ensures that the substrate remains es-
sentially flat when viewed on the scale w: this is impor-
tant since in this limit the macroscopic contact angle 6
still obeys Young’s law.

The forces acting on the mesoscopic control volume are
indicated in fig. 5. The normal component ysin# of the
liquid-vapor surface tension must be balanced by the elas-
tic stress integrated over the bottom contour of the control
volume. Contrarily to the common assumption found in
the literature, however, the mechanical equilibrium also
requires a tangential elastic stress. Namely, owing to
Young’s law we can write the tangential liquid-vapor con-
tribution as vy cos @ = vy —7ysr. Importantly, the inter-
facial contribution along the elastic solid are expressed in
YTsy and Ygr, which in general differ from gy and g,
Therefore, the horizontal surface stresses do not balance
and a tangential elastic contribution is needed [49]:

Fly=vsv —vse+YsL — Tsv =vsr —vsv-  (10)
Just like the normal force, !} must be balanced by the
integral of elastic stress exerted on the contour delin-
eating the bottom of the control volume. We thus find

Tsv

Fig. 5: (Colour online) Macroscopic force balance near the con-
tact line. We consider a mesoscopic region around the contact
line of size w > v/E. On the scale w, the solid interface re-
mains flat and Young’s law for the contact angle applies. The
imbalance of surface stresses must be compensated by elastic
stress on the lower boundary of the control volume (dashed
line). The resultant elastic forces are F} = vy sinf (normal)
and FY, = v5, — 75y (tangential). Adapted from [49].

that the mechanical equilibrium near the contact line is
truly elasto-capillary in nature: it requires both interfa-
cial and bulk elastic contributions in normal and tangen-
tial directions.

Thermodynamics vs. mechanics. — We wish to em-
phasise that the “mechanical” result (10) is fully consis-
tent with the “thermodynamic” strain discontinuity (7).
The strain discontinuity that appears on the scale of the
elastic rod (> h, fig. 4(a)) can be attributed to a tan-
gential force F| generated near the contact line (< h,
fig. 5). Only when there is no Shuttleworth effect, one
finds F; = 0 and a continuous strain across the contact
line. The very same conclusion was recently drawn for a
drop on a membrane [52]: the Shuttleworth-induced dis-
continuity of strain implies a jump in the membrane ten-
sion across the contact line, altering the contact angles on
the scale of the drop (fig. 3(a)).

Microscopic origin of the Shuttleworth effect. —
The experimental evidence of a significant Shuttleworth
effect in a cross-linked polymer network (fig. 4(b)) comes
as a surprise. Namely, one would have expected the struc-
ture of the surface at atomic scale to be close to that of
an incompressible liquid, for which T = ~. By contrast,
for hard crystalline materials, the microscopic physics of
the Shuttleworth effect is more easily understood [37],
e.g. from a toy model consisting of a network of masses
and springs. Due to redistribution of electronic charge in
the vicinity of the surface, the effective properties of the
springs (rest length, spring constant) are different in the
surface from the bulk. Then, the interfacial zone naturally
exhibits an excess elastic stress Y # .

How can we understand the Shuttleworth effect for
the liquid-like molecular structure of a cross-linked poly-
mer network? In the continuum framework of Density
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Fig. 6: (Colour online) Microscopic view of the Shuttleworth
effect, based on an approximate DFT model [53]. (a) A liquid
and solid phase are initially separated by a large vacuum.
The surface stress is computed as the excess force due to the
missing molecular interactions, exerted on the shaded region
to the left of the dashed line. (b) Joining the liquid and
solid phases releases (per unit area) the work of adhesion
W =~rv +7vsv —ysr. The vertical attraction leads to a com-
pression of the interfacial zone: the Shuttleworth effect arises
whenever a fraction o < 1 is transmitted horizontally.

Functional Theory (DFT), in the sharp interface ap-
proximation, it has been been possible to relate the
Shuttleworth effect to a compressibility of the interfacial
layer [53]. The corresponding physics is summarised in
fig. 6. Panel (a) shows a liquid phase (top) and an elastic
phase (bottom) that are separated by a large vapour layer
that can effectively be treated as a vacuum. The respective
surface stresses are Yoy = vy and YTsy = ysv + Yy -
Panel (b) shows that bringing the two interfaces together
leads to a vertical attractive interaction, with a strength
given by the work of adhesion:

(11)

After joining the solid-liquid phases, this attraction leads
to an extra compressive stress in the interfacial zone in the
normal direction. For an incompressible layer this extra
normal compression is equally transmitted in the tangen-
tial direction. However, this is not the case when the in-
terfacial layer is compressible: only a fraction aW of this
extra stress is retransmitted in the tangential direction
(fig. 6(b), red arrows). One can express this fraction a =
vs/(1—vs) in terms of an interfacial Poisson ratio vg. Sum-
ming the various contributions depicted in fig. 6(b) gives
the solid-liquid surface stress Tsr, = YTsy + vy — aW.
Hence, using (2) and (11), the microscopic model predicts

’YéL - ’Yfgv ={1-a)W. (12)

While the DFT model represents a highly simplified
description of the molecular structure at the interface,
eq. (12) provides two important predictions [53]:

W =qrv +7vsv — sz = vov (1 + cosd).

— the departure from liquid-like behaviour relates to the
compressibility of the interfacial zone,

— the work of adhesion gives an upper bound on the
Shuttleworth effect (o = 0):

FY =751 —vsy < W =70y (1 4+ cosh). (13)

Fig. 7: (Colour online) The Shuttleworth effect in molecular
dynamics. (a) A rigid probe partially immersed in a Lennard-
Jones liquid. The simulations measure a large tangential force
~ W on the solid near the contact line. Adapted with per-
mission from SEVENO D. et al., Phys. Rev. Lett., 111 (2013)
096101. Copyright 2013 by the American Physical Society.
(b) A gas bubble in a Lennard-Jones liquid on a deformable
elastic solid, in the case where vs;, = vsy. The black arrows
show the displacement field inside the solid: despite the sym-
metry in surface energies, the displacements are biased towards
the liquid side due to Ty, # Ysv. Data from [49].

The importance of the work of adhesion has been con-
firmed quantitatively in molecular-dynamics (MD) simu-
lations. Figure 7(a) shows a simulation of a rigid Wilhelmy
plate, intended as a model for an AFM tip [54]. The simu-
lations measured the total force that the liquid molecules
exert on the solid near the contact line: a large tangen-
tial force component was found, with a strength consistent
with the work of adhesion 1y (1+cos @) [54], as predicted
in [55]. The often claimed v cos is clearly not observed.
A similar MD simulation of a deformable Wilhelmy plate
showed a strain discontinuity, which using (7) gave a Shut-
tleworth effect close to the upper bound set by the work
of adhesion (13) [49]. Finally, also the experimental value
for the elastomeric wire, quoted in (8), is very close to the
upper bound.

A final striking demonstration of the Shuttleworth ef-
fect is given in fig. 7(b). The picture represents a snapshot
of a bubble on a weakly deformable wall, with the hierar-
chy of length scales v/E < a < R. The contact angle is
close to 90°, which implies g7, =~ vygy. Despite this sym-
metry in surface energies, the elastic deformation is very
asymmetric [49]: the black arrows in fig. 7(b) represent
the displacement field inside the solid, clearly showing a
strong tangential displacement towards the exterior of the
bubble. The breaking of symmetry is due to Tgr # YTgv,
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even though vsy, =~ ysy. The bias towards the liquid side
is perfectly in line with FY, = ~%, — v, ~ W.

Perspective. — Interfacial effects of soft solids provide
an opening playground in soft condensed matter [46]. We
have presented here some fundamental aspects of the cou-
pling between elasticity and capillarity —focusing on the
so-called Shuttleworth effect that arises when the surface
free-energy depends explicitly on the elastic strain. While
we focussed on the prototypical “liquid drop on elastic
solid”, the same issues and subtleties arise for adhesion of
very soft solids [56-60].

Figure 4 exemplifies a system (polyvinylsiloxane in con-
tact with ethanol) that presents a strong strain depen-
dence dvy/de. By contrast, no Shuttleworth effect was
needed to accurately describe the wetting behaviour of
water on polydimethylsiloxane [30,31]. A key open issue is
therefore to understand the physicochemical conditions for
the appearance of the Shuttleworth effect. Is it important
that the liquid is a good rather than a bad solvent, as sug-
gested by the interpretation in terms of surface compress-
ibility? A more detailed understanding of the interface of
a reticulated polymer with a liquid, and its consequences
for elasto-capillary mechanics, is necessary. For example,
we have ignored here the distance between crosslinks or
entanglement points, which determines the scale at which
entropy dominated elasticity and reference state are de-
fined in the continuum. There is yet another length scale,
associated with distinction between bulk swelling [61,62]
and interfacial effects associated with polymer free ends
at the free surface of the sample. There is an urgent need
for a systematic, quantitative characterisation of polymers
and liquids, using a reliable set-up to measure the Shut-
tleworth effect. Can one design an alternative method
to the experiment shown in fig. 4, which required a very
high resolution? The task is obviously difficult, as it di-
rectly involves stretching [63,64]: bending and buckling
effects, which nicely lead to amplified elastic effects, are
completely decoupled from the Shuttleworth effect.

We have highlighted here several intriguing conse-
quences of the Shuttleworth effect. However, the detailed
examples given in this paper relied on the stretching-
elasto-capillary length v/F being relatively small. A sys-
tematic, fully consistent analysis still remains to be done
for the more interesting cases of highly deformed inter-
faces. To give a striking example, even the selection of
the contact angle for a droplet on a soft gel in the pres-
ence of the Shuttleworth effect is still an open problem on
which contradictory statements can be found in the liter-
ature. Undoubtedly, soft elastic interfaces will continue to
stretch our intuition for capillarity.

Methods. — The derivation of the strain discontinu-
ity (7) involves some subtle kinematics: the contact line
position 2z, and the top of the plate z,, are not indepen-
dent of the strains e. Here we briefly sketch the essential
steps, which are properly developed in [49,50]. First, we
remind that the external force (per unit plate width) is

Fext = 2(ysv —vs1), which can be derived from a vertical
displacement dzyop at constant ei. The factor 2 is due to
the two sides of the plate. Next, we consider variations
de4 while keeping the contact line position fixed. The
lengths of the dry/wet parts can be written as Ly (1+e€4),
where Ly are lengths in the reference state. Expressing
Ztop = Zal + Ly (1 + €4), the energy per unit width (4)
becomes

1
E = L+(1 + 6+) |:2’)/Sv(€+) + §Eh€3_ - Fext:|

—I—L,(l + 6,) |:2’YSL(€) + ;Eh62j| s (14)

where we omitted redundant constants. Minimisation now
reduces to 9€/0ex = 0, which gives the equilibrium con-
ditions (for |ex| < 1):

2(vsv + vsv) + Ehey = Foxe = 2(vsv — VsL),

2(vsL +Vsy) + Ehe— = 0. (15)
The combination v + +' emerges in the same manner as
in (1), where we derived the Shuttleworth equation for the
surface stress. Combining the two equilibrium conditions
yields the strain discontinuity (7). Equations (5), (6) are
obtained after subtracting the reference strain in air ¢y =

—(vsv +vsy) = —Ysv.
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