PHYSICAL REVIEW

VOLUME 102, NUMBER 6

Thermionic Emission, Field Emission, and the Transition Region

E. L. Murpay* anp R. H. Goop, Jr.
Depariment of Physics, Pennsylvania State University, University Park, Pennsylvania

(Received January 16, 1956)

Although the theories of thermionic and field emission of electrons from metals are very well understood,
the two types of emission have usually been studied separately by first specifying the range of temperature
and field and then constructing the appropriate expression for the current. In this paper the emission is
treated from a unified point of view in order to establish the ranges of temperature and field for the two
types of emission and to investigate the current in the region intermediate between thermionic and field
emission. A general expression for the emitted current as a function of field, temperature, and work func-
tion is set up in the form of a definite integral. Each type of emission is then associated with a technique
for approximating the integral and with a characteristic dependence on the three parameters. An approxima-
tion for low fields and high temperatures leads to an extension of the Richardson-Schottky formula for
thermionic emission. The values of temperature and field for which it applies are established by considering
the validity of the approximation. An analogous treatment of the integral, for high fields and low tempera-
tures, gives an extension of the Fowler-Nordheim formula for field emission, and establishes the region of
temperature and field in which it applies. Also another approximate method for evaluating the integral is
given which leads to a new type of dependence of the emitted current on temperature and field and which
applies in a narrow region of temperature and field intermediate between the field and thermionic emission
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regions.

I. INTRODUCTION

HE current emitted from a metal increases with
the temperature of the metal and the applied
field strength. The thermionic and cold emission proc-
esses are very well understood on the basis of the
Fermi-Dirac distribution for a free electron gas in the
metal and the classical image force barrier at the sur-
face. The temperature dependence arises in the dis-
tribution function and the field dependence in the shape
of the surface barrier. For high temperature and low
field strength, emission over the barrier predominates
and the temperature dependence of the distribution
function is mainly responsible for variations in the
emitted current. This process is thermionic emission.
For high field strength and low temperature, emission
of electrons with energies below the Fermi level pre-
dominates; field dependence of the barrier shape is
mainly responsible for variations in the emitted current
and this process is called field emission.

The theoretical treatment of thermionic emission
leads to the Richardson equation,! modified by the
Schottky dependence? on the square root of the applied
field. The theoretical treatment of field emission leads
to the Fowler-Nordheim equation.?* Contributions to
the study of the emission in the transition region, based
on this model, have been made by Sommerfeld and
Bethe® and by Guth and Mullin® using series expansion
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methods and also have been made by Dolan and Dyke’
and by Dyke, Barbour, Martin, and Trolan® using
numerical methods.

In this paper the entire emission phenomenon is
studied from a unified point of view. Extensions of the
Richardson-Schottky and Fowler-Nordheim formulas
are developed. The regions of temperature and field for
which the extended formulas are valid are determined;
these are referred to below as the thermionic and field
emission regions. Also an expression for the current in
a narrow intermediate region is developed. The calcula-
tions are based on a general expression for the emitted
current as a function of temperature, field, and work
function, in the form of a definite integral. The ex-
pression is found from the established model: the
Fermi-Dirac distribution for the free electrons and the
classical image force barrier at the surface. The form
of the integrand suggests approximate evaluation tech-
niques; these correspond to the various types of emis-
sion. The well-known formulas for thermionic and field
emission currents come out as limiting cases. Roughly
fields from O to 108 volts/cm and temperatures from 0
to 3000°K are considered, although not all of this
range is at present experimentally accessible,

The basic equations, including the general expression
for the current, are given in Sec. II. Thermionic and
field emission are treated in Secs. IIT and IV and in
Sec. V formulas for the intermediate region are derived.
A general discussion of the results is given in Sec. VI.

II. BASIC EQUATIONS

The free-electron model gives the following for the
number of electrons per second per unit area having

7W. W. Dolan and W. P. Dyke, Phys. Rev. 95, 327 (1954).
(lsgglke, Barbour, Martin, and Trolan, Phys. Rev. 99, 1192
955).
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THERMIONIC AND FIELD EMISSION

energy within the range dW incident on the barrier®:

N(T,¢,W)dW = damkTh->
XIn{1+exp[— (W—¢)/kT1}dW, (1)

where N is called the supply function, # is the electron
mass, k is Boltzmann’s constant, T is the absolute
temperature, % is Planck’s constant, and { is the Fermi
energy. Energies are measured from zero for a free
electron outside the metal, so that the work function ¢
is simply —¢. Here W is only the part of the energy
for the motion normal to the surface:

W=[9*®)/2m]+V (), 2

where x is the coordinate normal to the surface and out
of the metal, p(x) is the electron momentum normal to
the surface, and V (x) is the effective electron potential
energy.

The assumed potential energy of the electrons is (see
Fig. 1):

V(x)=—e*(4x)'—eFx, when x>0, (3)
=—Wa, when <0, 4)

where —e is the charge on the electron, —e*(4x)! is
the contribution from the image force, —eFx is the
contribution from the externally applied field F, and
— W, is the effective constant potential energy inside
the metal. In the region near x=0 it is assumed that
V (x) is regular and connects smoothly with the func-
tions in Egs. (3) and (4). The calculations below are
independent of the details of the shape of the potential
in that region. The maximum value of the potential
energy Vimax is — (&8F)3.

The following approximation for the probability
D(F,W) that an electron incident on the barrier
emerges from the metal will be used:

D(F,W)=[1+exp(—2m—1 f :gp(g)dg)r. )

Here x; and . are points where p?(x) becomes zero and
# is &/2w. The branches of p(x) to be used in the inte-
grand are specified below. This formula was first pro-
posed by Kemble and also can be understood in terms
of a parabolic WKB-type approximation.* It applies
to the case of a simple potential barrier for which p*(x)
has two zeros, possibly complex, and is not expected to
be valid if p(x) has any other zeros or singularities in
their vicinity. When the energy W is below the peak
of the barrier, the zero points are real and are to be
chosen so that x; <#,; the argument of () is to be 7/2.

9 See, for example, R. Fowler and E. A. Guggenheim, Statistical
Thermodynamics (Cambridge University Press, New York, 1952),
46

. 460.
P B E. C. Kemble, The Fundamental Principles of Quantum
Mechanics (McGraw-Hill Book Company, Inc., New York, 1937),
first edition, Sec. 21j. -
ug C. Miller, Jr., and R. H. Good, Jr., Phys. Rev. 91,174
(1953), Sec. IV. )
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F1c. 1. Potential energy of an electron near the metal
surface, Egs. (3) and (4).

In consequence the entire exponent is positive. When
the energy is-above the peak of the barrier, the zero
points are complex and are to be chosen so that the
imaginary part of ; is positive and the imaginary part
of x, is negative; the argument of p(x) is to be in the
neighborhood of zero. It develops, in consequence, that
the entire exponent is negative. There is no difficulty
in applying this transmission coefficient formula to the
potential of Egs. (3) and (4) as long as W<Vmex
= — (¢*F)%. The { integration is real and p(x) is given by

(@) ={2m[ W e (4x)+eFx ]}, (6)

with argument /2. When W> — (¢*F)3, the ¢-integra-
tion is along a path in the complex plane and V(x)
must be defined for complex #. It is assumed that V (x)
is given by Eq. (3) for a range of W near Vmax. Then
$(x) is given again by Eq. (6) but with argument in the
neighborhood of zero. In that case p(x) branches at
the points

x1=(—W/2eF)[1+i(FW2—1)¥], Q)

xo= (—W/2eF)[1—i(eFW2—1)¥], 8)
and also at the origin. Since, as far as the actual po-
tential V' (x) is concerned, the singularity at the origin
does not apply, Eq. (6) should no longer be used when
the origin is close to the other singularities relative to
the distance between them. Therefore one expects that

Eq. (6) may be no longer applicable for energies above
the value given by

(BFW—2—1)i=1.
The limiting value W, is
Wi=—32(¢F)3, ©)

and the conclusion is that when W is below this value
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the transmission coefficient is given by Egs. (5) and
(6). When W is above this value the transmission co-
efficient may be taken to be one in calculating the

current,
D=1 when W>W,; (10)

the justification is given following Eqs. (17) and (18).
P® The integral which arises when Egs. (5) and (6) are
combined can be evaluated in terms of complete
elliptic functions. Only negative values of W need be
considered. The integral is

2 f p(E)dE=— 207" f
x1 x1

X{2m[W+-¢*(46) "' +eF £ I} idg

= (4/3)V2(Fit/m*e®)ty~h(y), (11)
where
y=(eF)Y/| W], (12)
3i pia—yd? ] 13)
T — 2yt Tidp. (13
o(y) L Lo ¥t Jidp

When |W| < (¢F)? so that y>1, the argument of the
integrand is in the neighborhood of zero and the argu-
ment of (1—4?)%is —x/2. When y<1, the argument of
the integrand is 7/2 and the argument of (1—4?)%is 0.
The integral in Eq. (13) is well known.’>"* The usual
evaluation is

o(y) =27 1+a){ E[(20)}/ (1+-a)*]
—(1-9K[(20)¥/ (1+0)]}, (14)

where

/2
K[k]= f (1— B2 sin%)~4d5,
0

/2
E[k]= f (1— 12 sin%) do,
0

and ¢ is defined by

a=(1—9%3%
[The argument of & is either 0 or —=/2 and the argu-
ments of (14¢)* and (1—%? sin%)? are in the neighbor-
hood of zero.] The following equivalent expressions,
which considerably simplify discussions of this function,
have been discovered:

o(y)=— (y/2){—2EL(y—1)¥/(29)}]
+O+HDELG—DY 24} (15)

when y>1,

v(y)= (1+NHEL(1—y)}/(1+y)%]
—yK[(1—»)i/(1+y)¥]} (16)

when y<1,
12 See reference 3, Sec. 5.
13 Burgess, Kroemer, and Houston, Phys. Rev. 90, 515 (1953).
u S, C. Miller, Jr.,, and R. H. Good, Jr., Phys. Rev. 92, 1367
(1953).
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where the positive roots are to be used. Although Eq.
(14) applies for all y, the modulus for the elliptic func-
tions is complex when y>1 and this makes it awkward
to evaluate »(y) numerically in that region with this
equation. In Eq. (15) the modulus for the elliptic func-
tions is real and less than one; for this case the functions
are well tabulated and numerical results are easily
found. Equations (14) and (16) are equally convenient
as far as the modulus range is concerned but Eq. (16)
is usually preferable because of the simpler dependence
on y. Burgess, Kroemer, and Houston have given a
convenient table of »(y) for y<1.13

When Egs. (5), (10), (11) are combined, the result
for the transmission coefficient is

D(F,W)={1+exp[ (4/3)VZ(F#*/m*e®)*y~(y) ]}
W <W,, (17)
D(F,W;)=1 when W>W, (18)

In order to justify setting D=1 in Eq. (18), one evalu-
ates D by Eq. (17) at the limiting value of W. Evi-
dently v is just V2 and Eq. (15) is to be used for v(y).
The result is

D[F,W]={1+exp[ —0.868 (FA*/m2e%)—+ ]},

It develops that the energy range W>W, is significant
only in the discussion of thermionic emission, Sec. III,
and that there only fields smaller than 5X107 volts/cm
are to be considered. At this extreme value D[F,W;]
is already 0.94. Since also the actual transmission co-
efficient must approach one with increasing energy, one
is justified in setting it equal to one over the whole
range W>W,. Any error in Egs. (17) and (18) must be
in the neighborhood of W=W, because below that
value the approximation is dependable and above it
the transmission coefficient is one. At the worst this
will be only a minor part of the range of energies of the
emitted electrons.

The total electric current per unit area j(F,T) is
found by integrating, over all accessible energies, the
product of the charge on an electron, the number per
second per unit area incident on the barrier Eq. (1),
and the penetration probability Eqgs. (17) and (18):

when

0

JE,T)=e| DFW)N(T,W)AW

—Wg
41rkaele In{1+4exp[— (W—{)/kT}dW
B o 1 expL (4/3VI (B me)tyta()]

drmkTe

In{1+exp[— (W—¢)/kTT}dW. (19)

wi

Hartree units are used in the following sections. That
is, j is redefined to mean the current per unit area
divided by m3%~"=2.37X10" amp/cm?; F to mean the
electric field strength divided by m2et%4=35.15X10°
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volts/cm; and ¢, kT, W, W,, W, to mean the corre-
sponding energies divided by me*a2=27.2 ev. In these
terms,

kT p% In{l4-exp[— (W—{)/kT }aWw
JET=— P
1+-exp[ (4/3)V2F 1y~ (y) ]

27

—Wgq
o

kT
+— 1 In{l4exp[— (W—{)’/kT]}dW (20)

2m2Jwy

is the complete expression for the current.

III. THERMIONIC EMISSION

One technique for evaluating the integrals in Eq.
(20) applies when the conditions on the temperature
and field given in Eqgs. (34) and (35) below are satisfied.
When these conditions hold, the emission will be called
thermionic. The reason for this definition is that, as it
develops, limiting values of the current in this region
of temperature and field are given by the Richardson
and Schottky formulas and the emission is strongly
temperature-dependent. Within this thermionic emis-
sion region the integrals in Eq. (20) are similar to those
evaluated by Miller and Good!® and their procedure is
also used here.

The basic idea of the approximation is to simplify
the integrand in Eq. (20) by using the first term in an
expansion of the logarithm above the Fermi energy and
the first term in an expansion of the exponent in the
denominator about the peak of the barrier. This leads
to an integral which can be evaluated in terms of ele-
mentary functions. The expansions are

In{1-+exp[ — (W—1)/kT ]} = exp[— (W —£)/kT]

—zexp[—2(W—{)/kT]---, (21)
(4/3)V2F Yy % (y)= —wF tetSsnF - - -, (22)
where
e=1+WF-
2
= (=1/y. ®)

The parameter e is appropriate because it is zero at the
peak of the barrier and linear in W. Equation (22) is
easily found by expanding the elliptic functions in
Egs. (15) and (16) for small moduli. The small modulus
expansions can be found, for example, in Byrd and
Friedman’s handbook,'® Egs. (900.00) and (900.07).
When the first terms in Egs. (21) and (22) are sub-
stituted into Eq. (20) the result is

ET p7t  exp[— (W—{)/kT 1AW

"o _wo 1t expl—aP-t(1+WEF-Y ]
kT p=
+— | exp[—(W—¢)/kTJaw. (24)
2m2Jw,

15 See reference 14, Sec. V.

16 Paul F. Byrd and Morris D. Friedman, Handbook of Elliptic
Integrals for Engineers and Physicists (Springer-Verlag, Berlin,
1954).
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The conditions under which these substitutions are
applicable yield the boundaries of the thermionic re-
gion. Before discussing these boundaries in detail, it is
convenient to combine the two integrals by putting the
extra factor

{14+exp[ —aFt(1+WF-¥)]}!

into the second integrand. At the lower limit this has
the value

{1+exp[—0.92F 1}~

and it rapidly approaches unity with increasing W.
Again anticipating that thermionic fields will be less
than 5X 107 volts/cm (F<0.01), one sees that even in
the extreme case the value at the lower limit is 0.95
and so, as far as the entire integration is concerned, one
is justified in inserting this factor. The expression for
the current, Eq. (24), then becomes

. kT = expl— (W—)/kT JaW
T owd . trexpl—aF 4 WE Y]

25)

The boundaries of the thermionic region are estab-
lished by the requirement that the approximations
made to obtain the integrand in Eq. (25) should be
valid in the range of W for which the integrand in
Eq. (25) is appreciable. In terms of the abbreviation

d=F/xkT, (26)

the energy %, defined to be the energy at which the
integrand has its maximum value, is given by

n=—Fi—7rFt1n[d/(1—d)]. (27)
For larger W the integrand behaves roughly like
expl — (W—{)/kT)=exp{ —nFi[dW—dg]}, (28)

and for smaller W the integrand decreases certainly as
fast as

exp{—rF{(1—d)(—W)—d;y—F*¥]}. (29)

The requirement is then that the approximations hold
at least over the range

Fi/xd>W—n>—Fi/r(1—4d). (30)

The approximation of using the first term in Eq. (21)
for the logarithm begins to apply when W becomes
greater than ({+%7). Comparing with Eq. (30), one
sees that a condition that Eq. (25) applies for the
current is

n—[Fi/r(1—d)]>¢+kT. 31

One finds that the approximation of using the first
term in Eq. (22) for the exponent in Eq. (20) applies
when > — FY8, In terms of W, this condition becomes
W> —Fi—F®%8 and comparing with Eq. (30) one
obtains

n—[F/r(1—d)]>—F*—F*s (32)
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Fic. 2. Boundaries of the thermionic emission region as given
by Eq. (34), the broken lines, and by Eq. (35), the solid line. For
a work function of 3 ev, the region extends from the temperature
axis out to the first line encountered as indicated by the shading.
For work functions of 4.5 ev and higher, the corresponding broken
line lies below the solid line at these temperatures and the region
extends from the temperature axis out to the solid line.

for the second condition that Eq. (25) applies for the
current.

Next the integral in Eq. (25) will be discussed. For
metals the energy — W, is below the Fermi energy and
so, according to Egs. (30) and (31), is below the range
where the integrand is appreciable; one can replace it
by — . By introducing the new integration variable

p=exp[ —aF(1+WF¥)],

one brings the integral to a standard form'":

(kD) Fitg © ya-1dy
]= 2 (CX ) f 14+u

=1r2(kT)*(nd/sinnd) exp[ — (¢— F*)/kT].

Here ¢ has been replaced by —¢. From Egs. (27),
(31), and (32) one can write

In[ (1—d)/d]—d(1—d) > —aF-i(p—F1), (34)
[ (1—d)/d]— (1—d)> —xF-18, (35)

as the conditions for the applicability of Eq. (33) for
the current. Both these conditions also imply that d is
bounded below one, the requirement for the conver-
gence of the integral in Eq. (33). When d is so small
that wd/sinwd can be replaced by one, Eq. (33) for the
current becomes the Richardson-Schottky formula.
The thermionic emission boundaries as given by Egs.
(34) and (35) are shown in Fig. 2 for representative
values of the parameters. These boundaries are only to
be taken as indications of where Eq. (33) for the cur-
rent begins to apply. The thermionic region is always
bounded by the d=1 line and is limited by the melting
temperature of the metal. An upper limit on thermionic

(33)

17 See, for example, Herbert Bristol Dwight, Tables of Integrals
(The Macmillan Company, New York, 1947), revised edition,
formula 856.2.
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fields is provided by the conditions d=1 and £T=0.011
corresponding to the melting point of tungsten at
3600°K. This limiting field is roughly F=0.01 as was
used in the earlier arguments.

IV. FIELD EMISSION

In parallel with the treatment of thermionic emis-
sion, one can base a discussion of field emission on a
certain type of approximate evaluation of the current
integral, Eq. (20). The approximation is to use the
first term in an expansion of the denominator-factor
below the peak of the potential barrier and the first
two terms in an expansion of the denominator-exponent
about the Fermi energy:

{1-+exp[ (4/3)V2Fy—in(y) ]}
=exp[ — (4/3)V2ZFtyHo(y)]

X{1—exp[— (4/3V2Fy~h(y)]---}, (36)
— (4/3)V2Fy~H(y)
=—btc(W—)—f(W—0)2--, (37)
where
b= (4/3)V2F ¢} (F/¢), (38)
c=2V2F 19} (F¥/¢), (39)
[=3V2F ¢} (¢*— F) 0 (F}/¢), (40)
and the function #(y) is defined by
1(y)=2(y)—3ydv(y)/dy. (41)

One can express /(y) directly in terms of elliptic func-
tions by using properties of the derivatives of the
elliptic functions with respect to the modulus.’® The
results, corresponding to Egs. (14) and (16), are as
follows:

t(y)=2"1(14+0a) E[ (20)}/ (1+0a)¥], (42)
1(y)= 1431+ ELQA—»)¥/ (1+9)t]
—yK[(1=9)/ (141}, (43)

Numerical values of #(y) for y<1 can be easily found
from Burgess, Kroemer, and Houston’s tables®; in
terms of the functions v(y) and s(y) which they tabu-
late, £(y) is given by

3t(y)=4s(y)—2(y).

One finds Eqs. (37)-(40) by making a straightforward
Taylor’s series expansion of the left hand side of
Eq. (37) about W={=—¢ and using the derivative-
properties of the elliptic functions to simplify the
third term. When the first terms in Eqs. (36) and (37)
are substituted into Eq. (20), the result is

kT

e W= In (14~ WD)
27r
kT p>
+— In(14-¢= =0Ty,
272

wi

(44)

18 See, for example, reference 16, Egs. (710.00) and (710.02).
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The region of temperature and field in which these
approximations apply (discussed below) is here called
the field emission region because in it the current is
strongly field-dependent and the zero-temperature limit
is the Fowler-Nordheim formula.

The second integral in Eq. (44) makes a negligible
contribution to the current in the field emission region
and so the conditions on the region are found from the
first integrand. The energy n at which the integrand is
a maximum is given by

kT (14-eCmDT) In(14e~rDAT) =1, (45)

The dependence of 7 on ¢kT is illustrated by Fig. 3. By
writing Eq. (45) in the limits of (n—¢)/kT far below
zero and far above zero, one finds that

=¢—c¢1! when ckT<1, (46)
n=¢+kT In[ckT/(2—2ckT)] when 1—ckT<1. (47)

Above the Fermi energy the first integrand in Eq. (44)
has the energy dependence ¢~ (—¢*T)/ET and below the
Fermi energy it has the energy dependence ({—W)e"”.
In consequence of this and Eqgs. (45) to (47) for the
peak location, one writes

¢+HET(A—ckT) 1> W> ¢ — 26140 (48)

for an estimate of the energy range in which the con-
tribution to the current is appreciable. Here Q is a
positive quantity whose exact value does not influence
the later calculations. The next question to be con-
sidered is the relation of the approximations made in
obtaining the integrand to the energy range in Eq.
(48). The approximation of disregarding the higher
order terms in Eq. (36) applies roughly when

exp[— (4/3)V2F Y yH(y) ]<e™L.

The extreme energy satisfying this condition can be
adequately discussed in the small ¢ approximation of
Eq. (22) which gives, for the extreme value,

exp[rFte]=¢", (49)
or, equivalently,
W < —Fi—q1F%, (50)
1 ]
3 4

0 [
(- )/ KT

F16. 3. Determination of peak energy 7 in the field emission region
from the field, temperature, and work function, Eq. (45).
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A condition on the field emission region is found by
comparing this with Eq. (48):

¢+HET(1—ckT) 1< — Fi— 7P, (51)

The approximation of retaining only the linear terms
in Eq. (37) must also be discussed. It will be assumed
that the rest of the series is dominated by the quad-
ratic term. Then the approximation applies when

JW—=)<3,

since then the factor that it contributes to the inte-
grand, exp[—f(W—{)%], is near unity. The require-
ment that this approximation be valid over the whole
range given in Eq. (48) leads to two conditions:

§=@2NH<g—2140, (52)
§HET(1—ckT) ' <¢+(2f) 1 (53)

One finds that, as long as Q is positive Eq. (52) does
not need to be con51dered because it is satisfied as long
as Eq. (51) is satisfied.

Next the integrals in Eq. (44) for the current will be
evaluated. For ordinary metals — W, is far below the
lower boundary of Eq. (48); it will be assumed that it
can be replaced by — «. From Eqs. (48) and (51) one
sees that the important range of the first integral in
Eq. (44) lies below the peak of the potential barrier at
— F*; the energy W, lies above this value. Accordingly
one assumes that only the first integral is significant in
calculating the main contribution to the current and
that further its upper limit may be extended to infinity :

kT *
j=———e*”f e T=) In(14-e~ P=DTVGW,  (54)

2x? -
The expression for the current now becomes
kTe—b o VckT-——l
= 2w2c j; 14v
e wckT

m=— (55)
2n%c? sin(wckT)

dv

where the integration variable y=e™—9/*T ig intro-
duced and an integration by parts is made in order to
bring the integral to the same standard form!” as arose
in the thermionic emission discussion. The integral
converges only if ¢k7'<1; however this is guaranteed
by Eq. (53). In summary, the current in the field emis-
sion region is given by the equation above and the
region itself is defined by Egs. (51) and (53). Using
Eqgs. (38) and (39) and simplifying, one can write the
results as follows: The current is

. F? ( wckT ) (
= 167%p* \sinmwck T

na
s ) (56)



1470

008 _ 9l o 0. %2418
x
oo \
z P

X -40i0
3000 a3 (gr2m)
g W~ [
gzooo— 2 LETY IXG ) \ Joos
-
\ \
L A&
1000 3evifein) \ \
o 1 1 1 L AR W

o 12x10'

4 6 8 10
ELECTRIC FIELD IN voLrs/ow

F16. 4. Boundaries of the field emission region as given by Eq.
(57), the broken lines, and by Eq. (58), the solid lines, for various
values of the work function. The region lies under the two curves
as indicated by the shading.
and the field emission region is defined by
¢—F¥> g 1P ET (1—ckT) L,

1—ckT> (2f)T,

(7
(58)

where the arguments of v, ¢ are F4/¢; ¢ and f are de-
fined by Egs. (39) and (40). When ckT is so small that
wckT/sin(wckT) can be replaced by one, Eq. (56)
becomes the Fowler-Nordheim formula. The field
emission boundaries as given by Egs. (57) and (58)
are shown in Fig. 4 for representative values of the
parameters.

V. EMISSION IN THE INTERMEDIATE REGION

From Figs. 2 and 4 one can see that there is an
appreciable region of temperature and field which is
not covered by either of the above treatments. Another
treatment of the integrals in Eq. (20) can be based on
approximations suggested by Eq. (21) in Sec. IIT and
Eq. (36) in Sec. IV. If only the first terms in these
expansions are used, the expression for the current
becomes

kT p71 W—¢ 4v2y(
s e,
22—, ET  3Fiy

kT p~

+— ] In (14 W=D GW, (59)

w1

The reason for studying these particular approxima-
tions is that the resulting expression for the current
can be conveniently evaluated using the saddle-point
method. The saddle point method is valid to a higher
degree of accuracy than the approximations used to
arrive at Eq. (59). Therefore, the conditions under
which these approximations apply can be used to
establish the boundaries of the temperature and field
region for this type of emission. It turns out, as one
would expect from the approximations used, that the
range of temperature and field for this type of emission
is intermediate between the thermionic and field emis-
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sion regions. It develops that the second integral in
Eq. (59) can be disregarded, and so the conditions on
the region are found from the first integrand.

The condition on W so that only the first term in
Eq. (36) can be used for the transmission coefficient is
given by Eq. (50):

W< — Ft—g-1Ft,

The e approximation can be used to study the behavior
of the first integrand in Eq. (59) for W in the
neighborhood of (—F*—7~1F%). Consequently the en-
ergy dependence of the integrand is represented by
exp{— W[ (kT)*—xF-%]} for such W. So one condition
on the temperature and field region for this type of
emission is

1+ (RT) 1 —wF ] < — Fi—g—1FY, (60)

where 7 is the energy at the peak of the integrand and
the term [ (RT)—nF-1]! takes account of the upper
exponential tail. Differentiation of the exponent in
Eq. (59) gives

n=—F/8(kT)**(F}/—n). (61)

Here ¢ can be put equal to unity for a first approxima-
tion and for numerical calculations an iteration start-
ing with /=1 will converge rapidly. It is convenient
to rewrite Eqs. (60) and (61) in terms of d=F¥/xkT
as follows:

(FY/—n)"> 14+7Fid (d— 1), (62)
d=2V2r " (Fi/—n) 4 (F}/—n). (63)

The first condition on T and F for this type of emission
is found by eliminating F*/(—7) from these equations.

The approximation of using the first term in Eq.
(21) for the logarithm is used in Eq. (59). This begins
to apply when W becomes greater than {+£7. First it
will be shown that the condition imposed on the inter-
mediate region by this approximation can be ade-
quately discussed using only the linear terms in the
expansion for — (4/3)V2ZF—y~ly(y) about W=¢, as
given by Eq. (37). As argued following Eq. (51), this
linear approximation applies when W< ¢+ (2f)~%, and
therefore holds in the region of W=¢+4ET as long as
(2f)*>kT. In terms of F, kT, and ¢, the condition

TaBLE I. Values of the function ©(y), as given by Eq. (76).

¥ e y e

0 1. 0.55 1.6234
0.05 1.0104 0.6 1.7095
0.1 1.0362 0.65 1.7969
0.15 1.0739 0.7 1.8858
0.2 1.1215 0.75 1.9755
0.25 1.1772 0.8 2.0663
0.3 1.2398 0.85 2.1576
0.35 1.3084 0.9 2.2489
0.4 1.3816 0.95 2.3408
0.45 1.4590 1. 2.4318
0.5 1.5333
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(2f)~*> kT becomes
[V2F'¢}(¢*— F)~'0(F}/¢) 1> kT, (64)

where Eq. (40) has been used for f. A useful numerical
property of the functions v and £ is that

1=y e(y=1. (65)

The left-hand side is exactly unity when y=0; it de-
parts from this value slightly as y increases, reaching a
value of 1.03 when y=1. One can apply this in Eq.
(64) and also put =1 to obtain the simpler condition

1> (ET)*. (66)
However Egs. (62) and (63) imply that
d=F/nkT>1

for the region under study; also the condition $F%
> F3/7* is satisfied for all practical work functions and
all attainable fields. The combination of these two
gives Eq. (66) and this justifies the use of the linear
approximation. Consequently the energy dependence of
the integrand of Eq. (59) in‘the neighborhood of
W=¢+kT is exp{W[c— (kT)']} and the correspond-
ing condition on the intermediate region is

n—[c— (RT) >+ kT. (67)
Equation (67) can be rewritten as
7>+ kT[1— (ckT) ] (68)

and then, substituting from Eq. (61) for 5, from Eq.
(39) for ¢, and —¢ for {, one finds

F2
(kT

1
> ¢+kT ) (69)
1— F(2V2¢tkTty) ™

where t3=1(F*/¢) and t,={(F*/—1n). Equation (69) is the
second condition for emission in the intermediate region.

The conditions on the intermediate region, as given
in the preceding paragraphs, require that the energy
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F1c. 5. Boundaries of the intermediate region as determined
from Eqs. (62) and (63), the broken line, and from Eq. (69), the

solid lines, for various values of the work function. The region
lies between the two curves as indicated by the shading.
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F1G6. 6. The three emission regions for a 4.5 ev work function
(¢#=0.17). The letters 4 to F indicate boundary points for which
the approximate and exact energy distributions are given in Fig. 8.
The points 4 to D are at 1700°K and E and F are at 1000°K. The
values of the fields in volts/cm are as follows: 4, 1.50; B, 2.50;
C, 3.82; D, 10.26; E, 1.35; F, 1.74; all times 107,

range for which the integrand in Eq. (59) is appreciable
lie between the Fermi energy and the peak of the po-
tential barrier. This range lies between the limits of
the first integral in Eq. (59) and so the second will be
discarded. In addition it will be assumed that the saddle
point method is adequate for evaluating the first
integral. This requires an expansion of the second term
in the exponent to three terms about the peak of the
integrand 5. The expansion is parallel to the one given
in Egs. (37) to (40); the result for the integrand is

exp[ — (W =) (RT) ' — g+I(W —n) —n(W —n)*],

where

g= (4/3V2F(—n)ko(F/—n), (70)

1=2V2F(—n)}(F/ —), (71)
and

n=3V2F(— )} (P — F)0(F}/—n). (72)

When the current integration is performed, the result is

=3 (T /2 (x/n)* exp[—g— (n—0) RT) 1],  (73)

Equation (72) for #» can be considerably simplified
using Eq. (65), which applies very well in this region:

ne[VIF (— )T (74)

Equations (70) and (74) are to be substituted into Eq.
(73) for the current. Then to show the primary de-
pendence of the current on the temperature and the
field one may substitute for # from Eq. (61) except
where it appears in the argument of the relatively
slowly varying functions v, ¢. The result is

F th)a- ( ¢ O
j=—(—) exp( ——+ , (s
T\ ) P\ 24(kT)3) 73)

(76)

where
O=3/2—2u3,
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F16. 7. Logarithm of the emitted current as a function of the
applied field at various temperatures and for a work function of
4.5 ev (¢=0.17). The curves are drawn according to Eqgs. (33),
(56), and (75). Solid lines are used for them in the regions where
they apply (Fig. 6) and broken lines otherwise. The broken lines
give a quantitative indication of the way the formulas depart from
the correct values for the current outside the specified regions.
The letters 4 to F indicate points for which the approximate and
exact energy distributions are given in Fig. 8.

and the arguments of v, ¢ are F*/(—n); 7 itself is to be
found from Eq. (61). The function ®(y) varies from 1
to 2.4 as y ranges from 0 to 1; some numerical values
are given in Table I. This gives the final expression for
the current in the intermediate region, where the
boundaries of the region are given by Egs. (62) and
(63), and (69). Figure 5 shows the boundaries of the
intermediate region for some representative values of
the work function.

VI. DISCUSSION

The boundaries for the three types of emission are
shown in Fig. 6 for a work function of 4.5 ev, a repre-
sentative value for tungsten. One of the qualitative
results of the above calculation is that there is an upper
limit on the field for the applicability of the usual
Fowler-Nordheim formula. These boundaries are only
to be taken as an indication of the regions where the
corresponding formulas for the current can be used.
To illustrate their significance, the dependence of the
logarithm of the emitted current on the applied field
at several constant temperatures is given in Fig. 7.
It is seen that for purposes of estimation the formulas
can be applied somewhat outside the proper regions.
One can see quantitatively how the approximate dis-
tributions of the current in energy correspond to the
exact distributions from Fig. 8 in which the approxi-
mate and exact distributions are compared for several
values of temperature and field on region boundaries.
For points on the boundaries the error in the total
current ranges between 15 and 409, and in the
logarithm of the current between 0.1 and 1.0%,.

The results obtained here have been compared with
those of Dyke, Barbour, Martin, and Trolan® and of
Dolan and Dyke,” found by numerical integration.
Their results are mainly in the field emission region and

E. L. MURPHY AND R. H. GOOD, JR.

extend occasionally into the intermediate and ther-
mionic regions. In the field emission region a comparison
is very easily made, for they give values of the current
ratio j(F,T,)/j(F,0,¢) and this, according to Eq.
(56), is simply wckT/sin(wckT). The numerical agree-
ment is satisfactory in the field and intermediate
regions.

The criterion for the validity of the Richardson-
Schottky emission formula within the thermionic
emission region can easily be found by expanding the
new factor in Eq. (33) for small =d as follows:

wd/sinrd= 143 (xd)>+- - -
=14+F/6(RT)+---.

Accordingly the fractional error involved in using the
Richardson-Schottky formula is of the order of F3/
6(ET)2. This is in complete agreement with Eq. (3) of
Guth and Mullin® (to see the agreement one must
expand for large values of their parameter p=d! to
order u~2 and sum the resulting series). The factor
wd/sinrd may also be expanded about d=1, giving in
first approximation (1—d)7%, so that Eq. (33) becomes

j=3r2(kT)*(1—d)~ exp[— (¢6— F¥)/kT], (78)

in agreement with Sommerfeld and Bethe® and Eq. (4)
of Guth and Mullin.® Since, as seen from Egs. (34) and
(35), the value d=1 lies completely outside the ther-
mionic region, the expansion of Eq. (78) has a smaller
domain of applicability than that of Eq. (77).

The criterion for the validity of the Fowler-Nordheim
emission formula within the field emission region can
easily be found by expanding the new factor in Eq.
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F1c. 8. Energy distributions of the emitted current density for
the six special values of temperature and field indicated in Fig. 6
and a work function of 4.5 ev (¢=0.17). The solid lines are the
exact distributions according to Eq. (20). The broken lines are the
approximate distributions according to Egs. (25), (54), and (59).
The dotted lines are the approximate distributions after further-
more applying the saddle-point method. The energy increases to
the left. The energy at the peak of the potential —F% and the
Fermi energy ¢ are indicated by solid vertical lines. The curves
are normalized to unit peak value and the actual peak values in
Hartree units are given on the diagrams.
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(56) for small wckT as follows: fractional error involved in using the Fowler-Nordheim
wckT/sin(mckT) =143 (wckT)*+ - - - formula is of the order of 4n%p(kT)?/3F2. This is irlli
— 1 +-4a (RT)2/3F 4 -, (19) agreement with the results of Sommerfeld and Bethe
? and Guth and Mullin, their Eq. (12)%; only the nu-
where here the argument of ¢ is F#/¢. Accordingly the merical factors differ slightly.



