Whittle : EXTRAGALACTIC ASTRONOMY

5. SPIRAL GALAXIES

(1) Introduction

(a) Spiral Galaxies are Complex Systems

Disk galaxies appear to be more complex than ellipticals

- Wide range in morphological appearance:
eg classification bins : simple E0-6 compared with all the spiral types
not just smooth, considerable fine-scale details
- Wide range in stellar populations:
old, intermediate, young and currently forming
\rightarrow ongoing chemical enrichment
- Wide range in stellar dynamics:
"cold" rotationally supported disk stars
"hot" mainly dispersion supported bulge and halo stars
- Significant cold ISM:
note : the cold and warm components are dissipative, and therefore :
\rightarrow influences dynamical evolution (eg helps spiral formation)
\rightarrow influences stellar density distribution (eg creates dense cores \& black holes)

(b) Review of Basic Components [image]

- Disks:

Metal rich stars and ISM
Nearly circular orbits with little ($\sim 5 \%$) random motion \& spiral patterns
Both thin and thick components

- Bulge :

Metal poor to super-rich stars
High stellar densities with steep profile
V (rot) $/ \sigma \sim 1$, so dispersion support important.

- Bar :

Flat, linear distribution of stars
Associated rings and spiral pattern

- Nucleus:

Central ($<10 \mathrm{pc}$) region of very high density $\left(\sim 10^{6} \mathrm{M}_{\odot} \mathrm{pc}^{-3}\right)$

Dense ISM \&/or starburst \&/or star cluster
Massive black hole

- Stellar Halo :

Very low SB; ~few \% total light; little/no rotation
Metal poor stars; GCs, dwarfs; low-density hot gas

- Dark Halo :

Dark matter dominates mass (and potential) outside $\sim 10 \mathrm{kpc}$
Mildly flattened \&/or triaxial

(2) 3-D Shapes

(a) Disks

- Distribution of (projected) b/a : [image]

Approximately flat over wide range, from 0.3 to 0.8
Rapid rise at $\mathrm{b} / \mathrm{a} \sim 0.1-0.3$; and rapid fall at $\mathrm{b} / \mathrm{a}>0.8$

- Interpretation :
- Randomly oriented thin circular disks give $\mathrm{N}(\mathrm{b} / \mathrm{a})=$ const
\rightarrow observed $\mathrm{N}(\mathrm{b} / \mathrm{a})$ consistent with mostly flat circular disks
- Drop at low b/a due to bulge. Note: slower rise for big bulge S0s, and faster rise for small bulge Scs.
- Minimum $\mathrm{b} / \mathrm{a} \sim 0.05-0.1$ for \sim bulgeless $\mathrm{Sdm} \rightarrow$ disks can be highly flattened
- drop at high b/a ~ 0.8 caused by non-circular disks
\rightarrow dark matter potentials slightly oblate/triaxial $(\langle\epsilon(\phi)\rangle \sim 0.045)$
- Warps: [image]
- starlight almost always flat (if undisturbed)
- however, HI is often warped, with warp starting beyond D_{25}
- 180 degree symmetry: "integral sign" when seen edge-on.
- 75% of warped galaxies have no significant companion
\rightarrow probably response to non-spherical halo potential misaligned with disk

(b) Bulges

Not as easy as ellipticals because of other components
Study edge-on spirals to minimise contamination
Results:

- oblate spheroids, flattened by rotation
\rightarrow probably similar to low-luminosity ellipticals
(c) Bars
- Axis ratios from 2.5 to 5 .
- Probably flat, since they aren't visible in edge-on spirals
- However, "peanut" bulges thought to be thickened (unstable) bars seen edge-on [image]

Next
Prev Top

(3) Surface Photometry

Model as two components: bulge and disk [image]

- 1-D fits to elliptically-azimuthally averaged light profile
- 2-D fits to full image: better, since bulge \& disk have different ellipticities
(a) Radial Profiles
(i) Bulge
deVaucouleurs $\mathrm{R}^{1 / 4}$ Law, first in flux units:

$$
\begin{align*}
I(R) & =I(0) \exp \left(-7.67\left(R / R_{e}\right)^{1 / 4}\right) \tag{5.1a}\\
& =I\left(R_{e}\right) \exp \left(-7.67\left[\left(R / R_{e}\right)^{1 / 4}-1\right]\right) \tag{5.1b}
\end{align*}
$$

or in magnitudes per square arcsec:

$$
\begin{align*}
\mu(R) & =\mu(0)+8.325\left(R / R_{e}\right)^{1 / 4} \tag{5.2a}\\
& =\mu\left(R_{e}\right)+8.325\left[\left(R / R_{e}\right)^{1 / 4}-1\right] \tag{5.2b}
\end{align*}
$$

where

- Effective radius, R_{e}, contains half the light; [Note: $I\left(R_{e}\right) \equiv I_{e}$, etc]
- $\mathrm{R}_{\mathrm{e}} \sim 0.5-4 \mathrm{kpc}$ (larger for early Hubble types)
- $\mathrm{I}(0)=2140 \mathrm{I}\left(\mathrm{R}_{\mathrm{e}}\right)$
- Integrating to infinity: $\mathrm{L}_{\text {tot }}=7.22 \pi \mathrm{R}_{\mathrm{e}}{ }^{2} \mathrm{I}_{\mathrm{e}}$

(ii) Disk

Exponential fits well (first flux units, then mag/ss):

$$
\begin{align*}
& I(R)=I(0) \exp \left(-R / R_{d}\right) \tag{5.3a}\\
& \mu(R)=\mu(0)+1.086\left(R / R_{d}\right) \tag{5.3b}
\end{align*}
$$

where

- R_{d} is the disk scale length, ie $I\left(R_{d}\right)=1 / e I(0)$
- Typically, $\mathrm{R}_{\mathrm{d}} \sim 0.25 \mathrm{R}_{25} \sim 2-5 \mathrm{kpc}$ (R_{25} is $25^{\text {th }} \mathrm{mag} / \mathrm{ss}$ isophote)
- In practice, disk light falls sharply beyond 3-5 R_{d}
- $\mathrm{R}_{\mathrm{d}}>\mathrm{R}_{\mathrm{e}}$ always (eg MW : $\mathrm{R}_{\mathrm{d}} \sim 5 \mathrm{kpc}, \mathrm{R}_{\mathrm{e}} \sim 2.7 \mathrm{kpc}$)
- Integrating to infinity: $\mathrm{L}_{\text {tot }}=2 \pi \mathrm{R}_{\mathrm{d}}{ }^{2} \mathrm{I}(0)$
- $\mu_{\mathrm{B}}(0) \sim 21.65 \pm 0.3 \mathrm{mag} / \mathrm{ss}$ (Freeman 1970 "Law" of \sim const $\mu(0)$ for normal spirals)

However, a few Low Surface Brightness (LSB) galaxies have much fainter $\mu(0)$ [image]

(iii) Stellar Halos

- MW and M31 have resolved halos with metal poor stars, and globular clusters

Both of these systems contain significant substructure [image]
\rightarrow tidally stripped dwarf galaxies and globular clusters.
However, M33 does not have a significant stellar halo

- Extremely difficult to see as integrated light in other galaxies [image]

Stacking ~ 1000 SDSS edge on galaxies shows extended red light out to $\mu_{\mathrm{i}} \sim 29 \mathrm{mag} / \mathrm{ss}$:
Implied density: $\rho(\mathrm{r}) \propto \mathrm{r}^{-\alpha}$ with $\alpha \sim 3$.
Consistent with moderately flattened spheroid: $\mathrm{c} / \mathrm{a} \sim 0.6$

- Overall, still unclear yet:

How much of stellar halo is in form of tidal streams
How many galaxies have stellar halos .
(b) Vertical Disk Structure

Studies of edge on disks suggests exponential distribution: [image]

$$
\begin{equation*}
I(z)=I(0) \exp \left(-|z| / z_{o}\right) \tag{5.4}
\end{equation*}
$$

Where z_{o} is the scale height of the disk, ie $I\left(z_{0}\right)=I(0) / e$

At large z , excess light sometimes reveals a second "Thick Disk" of larger z_{0} (see 4 d (ii) below for further discussion of vertical disk structure)

Next
 Prev Top

(4) Disk Velocity Field

(a) Gas Rotation Curves

Typical rotation curve comprises [image]

- rise from zero at the nucleus
- $\mathrm{V}_{\text {max }}$ peak at $\mathrm{R}_{\text {max }}$
- extended region close to flat

Many rotation curves have now been measured
Some systematic trends are noticable :

(i) At Large Radius

- $\mathrm{V}_{\text {max }}$ increases as L increases (T-F relation, see below)
- Outer slope increases as L decreases [image]
for $\mathrm{V}(\mathrm{r}) \propto \mathrm{R}^{m}$ we find m in the range -0.2 to 0.2 ($m=0$, flat, for $\mathrm{M}_{\mathrm{B}} \sim-22.5$)
Drop in massive early types caused, in part, by high $\mathrm{V}_{\max }$ from bulge

(ii) At Small Radius

- For luminous early type spirals, V(r) rises very rapidly (often unresolved) \rightarrow dense bulge core(\&/or black hole?) [see Milky Way rotation curve: image]
- For low luminosity later type spirals, V(r) rises more slowly often $\mathrm{V}(\mathrm{r}) \propto \mathrm{r} \rightarrow$ "solid body"
However: sometimes, when $\mathrm{V}(\mathrm{r})$ drops, $\sigma(\mathrm{r})$ increases, so $\mathrm{V}(\mathrm{r})$ is not the full V_{c} i.e. rotation and dispersion both provide support

(b) Stellar Velocities in the Disk

Disks are faint \rightarrow stellar LOSVD (Line Of Sight Velocity Dispersion) is difficult to measure Also, brighter central regions are confused by bulge component Nevertheless, some results are emerging.

(i) Rotation

For disk stars, $\mathrm{V}_{\text {los }} \gg \sigma_{\text {los }}$ so stars are cold and have \sim circular orbits Usually, $\mathrm{V}_{\text {stars }}$ follows $\mathrm{V}_{\text {gas }}$ which is close to V_{c} [image]

- Sometimes, star orbital rotation velocity can be slower than the gas
 this is called asymmetric drift and indicates a higher stellar dispersion
\rightarrow support beginning to be shared with dispersion
\rightarrow stars at r likely to be at apogee, so have $\mathrm{V}<\mathrm{V}_{\mathrm{c}}$
- In S0s, $\sim 30 \%$ have counter-rotating gas disks [image] a few spirals even have two counter-rotating stellar disks
\rightarrow both indicate external origin postdating primary disk formation

(ii) Vertical Dispersion

Face-on galaxies yield σ_{z} : the vertical stellar dispersion

- As a function of radius, σ_{z} decreases exponentially, with scale length $2 \mathrm{R}_{\mathrm{d}}$

This agrees with simple stellar dynamics theory:
An isothermal disk gives $\sigma_{\mathrm{z}}^{2}=2 \pi \mathrm{Gz} \mathrm{z}_{\mathrm{o}} \mathrm{M}_{\mathrm{M}}$
where Σ_{M} is the surface mass density and z_{0} is the scale height
Hence $\sigma_{\mathrm{Z}} \propto \Sigma_{\mathrm{M}}^{1 / 2} \propto \mathrm{I}(\mathrm{r})^{1 / 2} \propto \exp \left(-\mathrm{R} / 2 \mathrm{R}_{\mathrm{d}}\right), \quad$ as found.

- Consider the Milky Way disk: observations near the solar neighborhood:

The inferred mass density within the disk suggests dark matter does not dominate the disk.
It turns out there are several components of different z_{o} and σ_{z} [image]

- gas and dust, $\mathrm{z}_{\mathrm{o}} \sim 50 \mathrm{pc} ; \sigma_{\mathrm{z}} \sim 10 \mathrm{~km} / \mathrm{s}$
- young thin disk, $\mathrm{z}_{\mathrm{o}} \sim 200 \mathrm{pc} ; \sigma_{\mathrm{z}} \sim 25 \mathrm{~km} / \mathrm{s}$
- old thick disk, $\mathrm{z}_{\mathrm{o}} \sim 1.5 \mathrm{kpc} ; \sigma_{\mathrm{z}} \sim 50 \mathrm{~km} / \mathrm{s}$

The astrophysical origin of this is thought to be σ_{z} increasing with age

- stars born "cold" from molecular clouds with $\sigma_{\mathrm{z}} \sim$ sound speed, and corresponding small z_{0}
- stars gradually "heated" by scattering off DMCs and spiral arms, and/or
- heating of the disk over time by satellite passage and/or minor mergers

(c) 2-D Velocity Fields: Spider Diagrams

A circular disk tilted by angle i $(0=$ pole on $)$ projects to an ellipse.
The photometric major axis (PMA) of this ellipse is called the line of nodes
Contours of projected velocity, $\mathrm{V}_{\text {los }}$, give a spider diagram [image]
Kinematic Major Axis (KMA): line through nucleus perpendicular to velocity contours
Kinematic Minor Axis (KMI): $\mathrm{V}_{\text {los }}$ contour at $\mathrm{V}_{\text {sys }}$ through the nucleus

These spider diagrams reveal much about the detailed form of the disk velocity field:

- Circular velocity in an inclined circular disk: [image]

KMA aligned with photometric major axis (PMA)
KMI aligned with photometric minor axis (PMI)

- Flat $\mathrm{V}(\mathrm{r})$ (beyond initial rise) gives:
$\mathrm{V}_{\text {los }}$ contours are approximately radial at large R
If $\mathrm{V}(\mathrm{r})$ declines past $\mathrm{V}_{\text {max }}$, then $\mathrm{V}_{\text {los }}$ contours close in a loop.
- Solid body i.e. $\mathrm{V}_{\mathrm{c}}(\mathrm{r}) \propto \mathrm{r}$ in near-nuclear regions, gives:
equally spaced contours across nuclear KMA, with spacing $\propto 1 /$ slope
- Warped disks have: [image]

Twisted $\mathrm{V}_{\text {los }}$ contours in outer parts
Note: model galaxies as a set of rings with different $\mathrm{V}(\mathrm{r}), \mathrm{PA}(\mathrm{r}), \mathrm{i}(\mathrm{r})$

- Bars often show:
evidence of radial motion over bar region
- Oval disks (e.g. arising from non-axisymmetric halo)

KMI and KMA not perpendicular KMA not aligned with PMA, and KMI not aligned with PMI

- Spiral arms yield: [image]
small perturbations to $\mathrm{V}_{\text {los }}$ contours near arm positions

Next

(5) Scaling Relations

There are a number of correlations between the global parameters of galaxies:
Luminosity; Size; Surface Brightness; Rotation Velocity;
Such relations are called "Scaling Relations".
They are important for several reasons:
They reveal the internal properties of galaxies
They must arise naturally in theories of galaxy formation.
In the case of disk galaxies, the most important is between $\mathrm{V}_{\text {rot }}$ and Luminosity:
(a) $\mathbf{V}_{\text {max }}$ and the Tully-Fisher Relation

- $\mathrm{V}_{\text {max }}=$ maximum rotation velocity (inclination corrected), derived from: [image]
- Major axis optical (often $\mathrm{H} \alpha$) rotation curves (half the full amplitude)
- HI 21 cm integrated (single dish) profile width, $\mathrm{W}_{20}: \mathrm{W}_{20} / \sin \mathrm{i}=2 \mathrm{~V}_{\max }$
- Tully \& Fisher (1977) recognised that $\mathrm{V}_{\text {max }}$ correlates with galaxy luminosity
- $\mathrm{L} \propto \mathrm{V}_{\max }{ }^{\alpha} \alpha \sim 3-4$
- As for the Faber-Jackson relation, the T-F relation stems from virial equilibrium:
$V_{c}{ }^{2} \propto M / R \quad$ and $L \propto I(0) R^{2}$
$\rightarrow \mathrm{L} \propto(\mathrm{M} / \mathrm{L})^{-2} \mathrm{I}(0)^{-1} \mathrm{~V}_{\mathrm{c}}{ }^{4}$
\rightarrow T-F relation holds if $(\mathrm{M} / \mathrm{L})^{-2} \mathrm{I}(0)^{-1} \sim$ const \quad (roughly true)
- Usually, choose longer wavelengths (eg I \& H bands rather than B \& V): [image]
- smaller scatter on the T-F relation, and slightly steeper gradient (α larger)

This is because, at $\sim 1-2 \mu \mathrm{~m}$:

- $\mathrm{L}_{1 \mu}$ is less sensitive to star formation and dust
- $\mathrm{L}_{1 \mu}$ tracks older population which dominates mass and has a more homogeneous M/L ratio
- The T-F relation is one of the key methods of distance determination
- First calibrate on nearby galaxies with Cepheid distances [image] this yields the following relations:

$$
\begin{align*}
& M_{B}^{0, i}=-7.41\left(\log W_{R}^{i}-2.5\right)-20.04 \pm 0.04 \\
& M_{R}^{0, i}=-8.09\left(\log W_{R}^{i}-2.5\right)-21.05 \pm 0.04 \tag{5.5}\\
& M_{I}^{0, i}=-8.55\left(\log W_{R}^{i}-2.5\right)-21.51 \pm 0.04 \\
& M_{H}^{0, i}=-10.39\left(\log W_{R}^{i}-2.5\right)-22.22 \pm 0.08
\end{align*}
$$

- Then for more distant galaxies, measure V , inclination, and apparent magnitude:
$\mathrm{V}_{\text {max }}$ and TF relation gives M , which gives $\mathrm{m}-\mathrm{M}$, which gives distance.
- These greater distances can now be used with redshifts to derive H_{o} [image]

Next Prev Top

(6) Mass Estimates and Dark Matter Halos

(a) Deriving $M(r)$ from $V_{c}(r)$

For centrifugally supported circular motion, $\mathrm{V}_{\mathrm{c}}(\mathrm{r})$ yields the mass distributions.
In general (not assuming spherical symmetry):

$$
\begin{equation*}
M(<r)=\beta \frac{R V_{c}^{2}(r)}{G} \tag{5.6}
\end{equation*}
$$

where β is a geometry factor $0.7<\beta<1.2$
Sphere: $\beta=1.0, \quad$ Flattened $: \beta \sim 0.7$
For an exponential, thin disk, one can show that :

$$
\begin{array}{||ll||}
V_{c}^{2}(R) & =R \frac{\partial \Phi}{\partial R} \tag{5.7}\\
& =2 \frac{G M_{d}}{R_{d}} y^{2}\left[I_{0}(y) K_{0}(y)-I_{1}(y) K_{1}(y)\right] \quad\left(y=\frac{R}{2 R_{d}}\right) \\
& \simeq 0.767 \frac{G M_{d}}{R_{d}} \frac{0.44\left(R / R_{d}\right)^{1.3}}{1+0.235\left(R / R_{d}\right)^{2.3}} \\
& R<4 R_{d} \\
\hline
\end{array}
$$

Where I_{n} and K_{n} are modified Bessel functions of the first and second kind.
This rotation curve has peak: $\mathrm{V}_{\text {max }}$ at $\mathrm{R}_{\text {max }} \sim 2.2 \mathrm{R}_{\mathrm{d}}$ [image]
for $\mathrm{R}>3 \mathrm{R}_{\max } \mathrm{V}_{\mathrm{c}}(\mathrm{R})$ falls $\sim \mathrm{R}^{-1 / 2} \quad$ (Keplerian)

(b) Results from Optical Rotation Curves

- 1960s (Burbidge's) gathered $\mathrm{H} \alpha$ rotation curves and assumed Keplerian fall-off beyond their data. \rightarrow quote well defined galaxy "masses"
- 1970s \& 80s (Rubin et al) went deeper : \sim flat out to $\sim 2-3 R_{d}$ [image]
\rightarrow conclude dark matter (careful : exponential disk still \sim flat here)
- Kent (1986) images same galaxies and derives rotation curves directly from light profile they match the observed rotation curves !
\rightarrow dark matter not required; bulge + disk with normal M/L suffices

(c) Results from HI mapping

- Fortunately, HI extends well beyond the optical disk [image]
while $\mathrm{H} \alpha$ goes to $2-3 \mathrm{R}_{\mathrm{d}}\left(\sim 0.75 \mathrm{R}_{25}\right)$, HI often goes to $>5 \mathrm{R}_{\mathrm{d}}$
- $\mathrm{V}_{\text {rot }}$ rarely declines; still flat or rising well beyond the disk [image]

It is necessary to invoke an invisible halo

$$
\text { Since } \Phi=\Phi_{\mathrm{d}}+\Phi_{\mathrm{h}} \text { and } \mathrm{V}_{\mathrm{c}}^{2}=\mathrm{rd} \Phi / \mathrm{dr} \text {, then: }
$$

$$
\mathrm{V}_{\mathrm{c}}^{2}=\mathrm{V}_{\mathrm{d}}^{2}+\mathrm{V}_{\mathrm{h}}^{2}
$$

Use the observed rotation, V_{c}, and the (predicted) disk rotation, V_{d}, to
\rightarrow infer the halo contribution, V_{h}, and its potential.

- Typically, bulge + disk accounts for inner rotation curve with reasonable $M / L_{B} \sim 3-5$

If this is forced to fit the inner rotation, it is a called "maximum disk" model
Dark matter halo needed at larger radii, giving total $M / L_{B} \sim 30$
$\rightarrow \sim 5$ times more dark matter than normal matter in stars + gas
This is a lower limit since $V_{\text {rot }}$ still constant/rising!

- Historically important paper: van Albada et al (1985) analysis of NGC 3198 : [image]
- It is now generally accepted that galaxies reside within large halos of dark matter. [image]

(d) Dark Matter Halo Structure

- At largest measured radii $V_{\text {rot }}$ is \sim flat, so $\&(r) \sim r^{-2}$ in this region Unknown beyond this, but must drop faster to keep total mass finite.
- Difficult to constrain the inner parts

Bulge + "maximum disk" fits yield plausible M/L (~3-5), suggesting DM not important here Halo contribution clearly drops at small radii, but functional form not well constrained.

- N-body codes which follow hierarchical assembly of DM halos yield a particular form: The Navarro-Frenk-White (NFW) 2-parameter broken power-law profile:

$$
\begin{equation*}
\rho(r)=\frac{\rho_{0}}{(r / a)(1+r / a)^{2}} \tag{5.8}
\end{equation*}
$$

This has $\rho(\mathrm{r}) \sim \mathrm{r}^{-1}$ in the center and $\rho(\mathrm{r}) \sim \mathrm{r}^{-3}$ at $\mathrm{r} \gg \mathrm{a}$.
Or a slightly better 3-parameter fit is the "Einasto Profile": [image]

$$
\begin{align*}
\rho(r) & =\rho_{0} \exp \left[-d_{n}\left(r / r_{e}\right)^{1 / n}\right] \\
& =\rho_{e} \exp \left[-d_{n}\left[\left(r / r_{e}\right)^{1 / n}-1\right]\right] \tag{5.9}
\end{align*}
$$

In this case, $\mathrm{d}_{\mathrm{n}} \approx 3 n-1 / 3+0.0079 / n$, ensures that r_{e} contains half the total mass.
$\mathrm{n} \sim 7 \rightarrow 4$, decreasing systematically with halo mass (cluster \rightarrow galaxy halos).
[See Merritt et al (2006 o-link) for a detailed discussion of halo fitting functions]
Both these give rotation curves that rise to a peak and slowly decline [image]
They are approximately flat in the regions measured by optical or HI rotation curves.

(e) Disk-Halo Conspiracy

There is an intriguing property of these rotation curves:

- After a rapid rise, most rotation curves are \sim flat at all radii :
\rightarrow in regions where V_{c} is determined by disk matter, and
\rightarrow in regions where V_{c} is determined by dark matter
- How do these two different regions know they should have the same rotation amplitude ??
- This is not currently understood, but indicates something important about galaxy formation
- Notice that a related puzzle also underlies the Tully-Fisher relation
$\mathrm{V}_{\text {max }}$ is set by the halo, while
M_{I} is set by the luminous matter
- Indeed, the theoretical origin of the TF relation is not yet fully understood.

(7) Spiral and Bar Structures

(a) Spirals
(i) Spiral Classes

- recall, two types (extremes) of spiral structure [image]
- Grand Design (AC 12), two strong arms ($\sim 10 \%$)
- Flocculent (AC 1), more chaotic ($\sim 90 \%$)
- Multiple Arm (intermediate), strong inner arms, outer ratty

(ii) Arm Prominence
- Arm / Inter-arm contrast is useful [image]
- for contrast $\Delta \mathrm{m}$ magnitudes (typically 1-2 in B), define $A=\operatorname{dex}(0.4 \Delta \mathrm{~m})$
- A depends on color:

- Grand Design: $A_{B} \sim A_{I} \sim$ large (1.5-8)
- Flocculent: $A_{B}>A_{I} \sim 1.0$
\rightarrow a plot of A_{B} / A_{I} vs A_{I} separates the classes well. [image]
- Clearly:
- spiral arms are bluer than the underlying (red) disk

- sprial arms are younger than the disk
- the old disk in Grand design has spiral pattern
- the old disk in flocculents is uniform
- Interpretation:
- Grand design is a density wave: it involves a spiral in the underlying mass distribution global coherence implies global process generates structure
- Flocculent spirals are not density waves
lack of coherence implies local process generates structure

(iii) Leading or Trailing ?

- Consider orientation of spiral w.r.t. direction of disk rotation: [image]
- arm ends point forward \rightarrow leading spiral
- arm ends point backwards \rightarrow trailing spiral
- To decide: need to know which side is nearest:
- Difficult, but try to identify the least obscured by dust (near side)
\rightarrow arms are almost always trailing
- Many arms have dust lanes \& HII regions on inside (concave) edge
\rightarrow gas runs into arms on concave side; compressed; star formation
$\rightarrow \mathrm{HI}$ and CO distribution is narrow and focussed on inner edge [image]
(iv) Pitch Angle
- ψ Defined as the angle between the tangents of arm and circle [image]
e.g. tight spiral has small ψ
clearly: $\tan \psi=\mathrm{dr} / \mathrm{rd} \phi$ (where ϕ is azimuth)
- Most spirals have $\psi \sim$ const throughout disk
\rightarrow logarithmic spiral: $\mathrm{r}(\phi)=\mathrm{r}_{\mathrm{o}} \exp \left[\left(\phi-\phi_{\mathrm{o}}\right) \tan \psi\right]$
with $\mathrm{r}=\mathrm{r}_{\mathrm{o}}$ at ϕ_{o}
- This is, in fact, predicted by density wave theory.

(v) The Winding Problem

- If arms were "fixed" w.r.t. the disk (e.g. like leaves on water)

With flat rotation ($\mathrm{V} \sim$ const), inner parts rotate many times compared to outer parts
E.g. for one rotation at R , two rotations at $\mathrm{R} / 2$, four at $\mathrm{R} / 4,8$ at $\mathrm{R} / 8$.

This leads to very tightly wound arms.
More precisely: with $\Omega=V_{c} / \mathrm{R}$ and $\mathrm{V}_{\mathrm{c}}=$ constant we find [image]
$\tan \psi=\mathrm{R} / \mathrm{Vt}=1 / \Omega \mathrm{t}=1 / \phi$

so after 1 rotation: $\tan \psi=1 / 2 \pi$ or $\psi=9^{\circ}$; after 2 rotations: $\psi \sim 4.5^{\circ}$.
This quickly becomes a very tight spiral in which ψ decreases with radius

- In reality: for Sa: $\langle\psi\rangle \sim 5^{\circ}$; for $\mathrm{Sc}:\langle\psi\rangle \sim 10^{\circ}-30^{\circ}$

This suggests we might have two types of condition

- Long lived spiral arms are not material features in the disk
they are a pattern, through which stars and gas move
these might be the grand design spirals
- Short lived spiral arms can arise from temporary patches pulled out by differential rotation the patches might arise from local disk instabilities, leading to star formation these might be the flocculent spirals

(b) Bars

- Barred galaxies are common ($\sim 50 \%$): [image]
- Isophotes not fit by ellipses; more rectangular

Probably flat in disk plane
$\mathrm{K}(2.2 \mu \mathrm{~m})$ images can show bars within bars (inner bar ~independent)

- Bars are straight, and stars stay in the bar \rightarrow rigid rotation of pattern with well defined Ω_{b} Bars are not density waves:

Stars move along the bar on closed orbits in frame rotating at Ω_{b}

Such orbits only occur for $\Omega_{\mathrm{b}}<\Omega_{\text {stars }} \rightarrow$ bars occur inside co-rotation (CR)
Bars can drive a density wave in disk \rightarrow helps maintain spiral structure.

- Gas motions important and interesting :

Observations:
Star formation occurs at bar ends
Dust lanes seen down leading edge of bar
Velocity fields suggest strong non-circular motion, including radial inflow.
Simulations:
Orbits mildly self-intersecting \rightarrow weak shocks \rightarrow compression where dust lanes seen
Inner gas loses angular momentum and moves inwards
May collect in disk/ring near ILR, or continue to fuel AGN \& build black hole mass.
Outer gas stored in ring near bar ends (CR)
Gas beyond the bar can be stored in an outer ring at OLR
\rightarrow may explain inner and outer rings seen in many barred galaxies [image]

Prev Top

Home	Main	Index

