The Microwave Background

Notes based on Teaching Company lectures, and associated
undergraduate text — with some additional material added.
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Discovery of the CMB

In 1964 Penzias and Wilson found an excess of
microwave emission coming from the sky. They

could not account for its origin
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COBE: 1990

Resolution: 7°
Sensitivity: x1
Cost: 600 M$

WMAP: 2003
Resolution: 0.13°
Sensitivity: x5

| Planck: 2012

| Resolution: 0.08°
Sensitivity: x15
o Cost: 1000 M$
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Recall: redshift preserves Blackbody form with T = T/a
(see Topic 16.4g)
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Temperature of recombination

Naively, recombination might happen when kT ~ 13.6 eV (typical
photon energy ~ H binding energy). i.e. T ~ 150,000K.

However, photons more abundant than protons, so even at lower
temperature, there are many more photons with E > 13.6 eV.

Photon/baryon ratio is large and preserved during expansion:

n,_Q,/<E> 50x10°/7x10" eV
n, Q,/<E,>  004/938 MeV

~1.7x10°

At 5700K, the tail of the black body contains as many photons with
E > 13.6 eV as there are protons.

Temperature of recombination
More exactly, we use the Saha equation (for pure hydrogen):

3/2
1)-(2)( §3_8&( kyT ) exp(13'6 eV)
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n,\mc k,T

Where X is the fractional ionization: ni/n, = n,/(n,ny,)

Setting X ~ 0.5 we find T ~ 3740K, or z ~ 1370, or 240 kyr.
Transition is quick: X = 0.9 — 0.1 from z = 1475 — 1255 (At~70kyr)

Several complicating factors delay this time:

1) Most recombination photons are reabsorbed/reionize.

2) Reaction rates become longer than expansion rate — reactions fall
out of equilibrium.

Ultimately, 2S = 1S via 2-photon decay secures recombination.
Growing m.f.p. allows Ly-o photons to redshift out of resonance.

Non-equilibrium effects delay recombination and also leave a small
residual electron population (X ~ 1073).

This keeps the baryon temperature tied to the photon temperature
until about z~ 150 (T~ 400 K)  [recall T, oc a2 while T, o a!]
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Fig. 3.8. The ionization fraction as a function of redshift, =. The curve marked Xe cq shows the redshift evo-
lution of the equilibrium onization fraction. while the one marked X. shows the actual ionization fraction
for a cosmology with Q042 = 1 and Qy gh* =0.01.




Note: same physics sets ionization degree in stellar atmospheres.
G stars quite neutral; O stars: highly ionized.
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Figure 3. Plot of log ionization fraction n,.+1/n, for various fixed total densities, n = n, +
Ryt (6., n = g + ny) as a function of temperature.

Time of decoupling & last scattering
Photons Thomson scatter off free electrons, at a rate:
I, =n0.c=Xn,0,c

When I'(z) > H(z) then the photons no longer interact (decouple).
This happens around z ~ 1100 or ~3000K or 380,000 years.

This is very similar to the time of “last scattering”, which is also the
surface of optical depth, T = 1, as viewed from z = 0 (here).

r d 14.25
(2) - f r,< f r(2) dz .37(L)
H(z) 1+z 1000
This also happens around z ~ 1100. There is a width Az ~ 80 from
which most of the photons last scattered.

This is the “surface” we see as the Microwave Background.

All-sky CMB image

Since today’s universe is lumpy on small scales, one
expects to see variations in the brightness of the CMB.

After many years of searching, these were finally seen in
the 1990 COBE data.

Since then, mapping these fluctuations has proved to be
extremely valuable.

The CMB fluctuations provides our point of entry into
the major topic of the origin and growth of structure.
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The Doppler velocity matches (approximately) an analysis of the local
velocity field: ~300 km/s to Virgo + ~500km/s to Great Attractor.
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Removing the MW foreground

Final WMAP 9-year data

Statistical description of anisotropies

Fourer approach to functions on a sphere uses spherical harmonics:

AT(0,0) = E a,,%,,0.9) Example of / =
" 16, summed
1 2 over m
=57

Normally plot C(7) I(I+1)/2n pK? against / = 180/A6°.
This shows relative power per log /.

Note: this function on a surface arises (in part) from a 3-D density
field, 8(r) = dp(r)/<p>, which is described by P(k), with k = 2n/A:
oF= Y 5

Kok ok
i Note: primordial P(k) ~ k' has
P =(|5) () (1) = const.

Note: P(k) is primordial outside horizon size & modified inside.

Where k = k| due to isotropy
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The Measured CMB Power Spectrum
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Sky Maps = Sound Spectra
Simple depiction of how the
power spectrum is
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Understanding C(0)

e What are all those bumps and wiggles ??

e Many processes affect C(£), not all are sound waves !!
Usually divided: Primary / Secondary / (Tertiary)

R :(1) W (Z)W o)

1. more/less dense (valley/hill) = hot/cold = blue/red
2. valley/hill = gravitational red/blue shift

these partly cancel: AT _® . 1Ap _ AT 2@
(sub & super horizon) T &> 3 p T 3¢ | Wolfe
3. gas falls in / rebounds out = Doppler red/blue shift

(sub-horizon only, ie £ > 50)

Formation of fundamental & harmonics =
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Origin of Anisotropies.

Two main constituents:
i) dark matter: almost smooth + slight density uneveness
ii) photon-baryon gas, coupled by Thomson scattering.

Dark matter regions create
gravitational valleys.

Gas falls in and bounces out,
and falls in again, etc. This is
a ~spherical sound wave.

Frequency of sound wave
depends on size of region.

Gravitational Redshift: Sachs-Wolfe Effect
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Understanding C({)

* Secondary
: A<AR,. wash out; kills high {
: photon diffusion, kills high (
- : s cross varying ©
Early ISW : @ near z,. (adds power @ {~100)

Late ISW Z/\‘*‘) Dz<1) (adds power @ £<10)

: @ z~20 lowers power for A < Ay(Z,..ion)

effects : add power @ high € >3000

* Tertiary (contamination):
1. Galactic: dust, free-free, synchrotron
2. Point sources: radio galaxies; high-z IR gals
3. Dipole (10 x T_,, ; 10? x other anisotropies)

cmb
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Diagnostics: Measuring Cosmic Parameters

Several key datasets are sensitive to the cosmological parameters.
These include:

1) The CMB temperature, and power spectrum C(/)

2) The near-field redshift-distance data, giving H,,.

3) The far-field SNIa redshift-magnitude data.

4) The galaxy power spectrum, including BAOs.

5) The galaxy cluster number vs redshift relation.

6) The abundances of the light elements.

While each dataset primarily measures one or two parameters, they
are normally combined to introduce redundancy, and reduce
uncertainties in the parameter values.

For some of these — e.g. C(/), P(k) — one needs a detailed working
model to compare to data.

Modeling C(£) and P(k)
Highly sophisticated; long history:

Early work: Peebles; Silk; Bond; Efstathiou.....
Developments: Seljak; Sugiyama; Zaldarriaga; Hu........
- Improved numerical methods & physical understanding
- Public code : CMBFAST (Seljak & Zaldarriaga 96)

In theory:

4 fluids: CDM & vs (collisionless); baryons & s (collisional)
Evolve fluid DFs using Boltzmann Eqn + perturbations

- P(k,z) & Transfer functions — C({)

- Physics “known” — accurate to < few %

In practice:

Input global: Q, Q_Q, Q T
Letrip = P(k,z) for baryons, y, cdm, v; + C(0)

h; & perturbations: n, A, type.




CMBFAST: Inputs and Output
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Supernova data give S(¢)

Galaxy redshift maps
compare with large N-
body simulations.

Galaxy power spectrum

used to make comparison e Millennium
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Representative parameter values

Best-fit cosmological parameters from WMAP nine-year results'®!
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Age of Universe: T, (Gyr)
S

.8 1.0
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Total density: €,

Parameter Symbol  Bestfit (WMAP only) Best fit (WMAP +eCMB + BAO + Hg)
Age of the universe (Ga) to 13.74 £0.11 13.772 +0.059
Hubble's constant (“Mypc.s ) H, 700 +22 69.32 +0.80
Baryon density Q 0.0463 £0.0024 0.04628 +0.00093
Physical baryon density k2 0.02264 +0.00050 0.02223 +0.00033
Cold Dark matter density Q. 0.233 +0.023 02402 *5- 0022
Physical cold dark matter density Q.h? 0.1138 £0.0045 0.1153 £0.0019
Dark energy density Qa 0.721 £0.025 07135 f:j g:gg
Density fluctuations at 8h™~" Mpc o3 0.821 £0.023 08200812
Scalar spectral index ng 0972 £0.013 0.9608 £0.0080
Reionization optical depth T 0,089 £0.014 0.081£0.012
Curvature 1-Qpot 00375 pan -0.0027 9 00oa
Tensor-to-scalar ratio (kg = 0.002 Mpc™") r <0.38 (95% CL) <0.13 (95% CL)
Running scalar spectral index dn s/dlnk -0.019 £0.025 -0.023 +0.011




