
Cosmology Lite 
A brief treatment of some basic topics in cosmology  

1) Overall framework: expansion and three differential relations 
 
2) The Friedman equation and its solutions 
 
3) The angular relations: curved space 
 
4) Space time diagrams 
 
5) Real time cosmology 



Cosmic Expansion & the Scale Factor 

Today Time 

Space (shown by the grid) expands and galaxies are “fixed” on it. 
Note: The galaxies themselves do not expand!  
Grid size specified by scale factor: S    S=1 today, S=0 at BB (often “a” in literature) 
Pick galaxy for us. Today: others galaxies at  comoving distances:   r0    (“0” = today) 
 
Other times:   r  =  S r0    or    S  =  r/r0    (same for all galaxies) 

0 

BB 

S = 0 



The velocity-distance law 
Expanding grid: galaxy distances increase. 
Cast as velocity. Take the time derivative: 

Thus, we have a linear velocity-distance law 

Introduces the Hubble parameter/constant: H, H0 
Units of 1/time, defining Hubble time and distance: Today’s values: 

H0 ≈ 22 km/s/Mly 
(0.0735 Gyr-1) 
tH0 ≈ 13.6 Gyr 
rH0 ≈ 13.6 Gly 

Note 1: Rigorously true to all distances (follows from uniform expansion) 
             e.g.  At r = rH , v = c;   at r = 100 rH ,  v = 100c.   (This is OK in GR)  
Note 2: Same law for all observers (galaxies) – see figure. 



Light’s motion across expanding space 
When light moves from a distant galaxy to 
us, there are THREE distances to consider: 

Analog: car moves 
at 60 mph (c) across 
expanding Earth 

re r0 

rlt 

re  emission distance = the distance when 
     light set out. 
  
r0  today’s distance = distance when light 
     arrives, today. (= comoving distance)  
 
rlt  light travel distance (odometer reading). 
     = journey’s duration = look-back time 

If Earth static, then 
all three distances 
are the same. But if 
Earth expands, 
they’re all different. 



Redshift:  Se and z 

Note: Cosmological redshift is different from 
Doppler or gravitational redshifts. 

Space-time diagram  (see later) 
Light waves and the Universe 
are stretched by the same factor 

λe
λ0

=
re
r0
= Se

Reshift tells us the scale factor 
when the light set out! 
 
Conventionally, use z: 

r0 

λ0 

λe     
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r lt
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z = Δλ
λe

=
(λ0 −λe )

λe
=
Δr
re

Clearly: 

z = 1
Se
−1 Se =

1
1+ z

and 

Redshift is our primary observable!! 



The Hubble Law 
More distant objects have longer light travel times, so expansion is greater.  
! Expect larger redshift for more distant objects. Hubble finds this in 1926: 

cz ≈ H0 ×D

This is a low redshift observational approximation to the velocity-distance law. 
Question: is cz = v0 and is D = r0  ? The answer is “only approximately”.  

z ≈ Δr
re
≈
v
c

Also: v ≈ ½ (ve + v0), not v0; light travels rlt not re; and Doppler cz isn’t ve or v0. 

and D ≈ r0

This is an an approximate Doppler 
expression 

The velocity-distance law: v0 = H0 r0 is exact but unobservable. 
The Hubble law: cz ≈ H0 D is an observational approximation to it.  



Changing velocities; the velocity factor: V 
How does a given galaxy’s recession velocity change over time? 
(Note: velocity-distance law is for a fixed time; different galaxies have v    r)  

Analogous to scale factor is  
velocity factor, V:  

Divide v = dr/dt 
by       v0 = H0 r0 

Normalized version 
of v = dr/dt 

S(t) and V(t) 

S and V are dimensionless  

∝



Three Cosmic Constituents 
For our purposes, there are three kinds of cosmic constituent. 

Their density changes with expansion: 
Matter:     ρm = ρm,0 / S 3 simple dilution 
Radiation: ρr = ρr,0 / S 4  dilution + redshift 
Vacuum:   ρv = ρv,0         constant 

Matter: non-relativistic; energy in rest mass " no change with expansion. 
Radiation (γ + ν): relativistic; energy in motion " redshift during expansion. 
Vacuum: ρv same for all observers; SR " ρv remains constant during expansion. 

Scale Factor: S 

Two transitions of density equality: 
1) Matter-Radiation: ρm = ρr  

Seq =
ρr,0
ρm,0

=
Ωr,0

Ωm,0

= 2.8×10−4

2) Matter-Vacuum: ρm = ρv  
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ρm,0
ρv,0
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Three Cosmic Eras 



An Expanding Sphere of Matter 
A Newtonian analysis of an expanding sphere contains 
the relevant physics.  
Start with just matter, expanding with v = H × r 

Consider the KE & GE of a galaxy mass, m, on the edge: 

Define the ratio of GE to KE, and call it Ω: 
(this is independent of r so holds for all gals) 

Consider special case: Ω = 1 so TE = 0  Ω can also be written:   



The Friedman Equation: V(S) 
How does the velocity factor, V, change as the Universe expands, i.e. what is V(S)? 
A Newtonian analysis gets us the answer. 

Consider a galaxy: its energy is conserved during the expansion: 

Normalize (make dimensionless): divide by KE0 

⇒ ⇒

Matter only 

Adding the other components is straightforward: 
KE  +   GE     =     TE 

KE  +                    GE                          =     TE 

where 

and Note: reality has Ωt,0 = 1 so RHS = 0.  



Friedman Solutions: Pure Matter 
Choice of Ω’s define the expansion solution. 
First review matter-only, then do other components.   

S∝ t2/3

t0 = 2
3 tH 0

Energy diagram: Shows Friedman terms 
Gives V 2(S) and hence V(S). 

How to go to S(t) and V(t)? 
We have: 
 
 
 
Integration gives: 

t = dt = tH 0
dS
V0

S

∫
0

t

∫

This gives t(S).  Invert to get S(t). 
Get current age from:  

V = tH 0
dS
dt

so dt = tH 0
dS
V

t0 = tH 0
dS
V0

1

∫

V = S−1/2
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Friedman Solutions: Pure Matter 

V = const 

Lower matter density Higher matter density 
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Matter plus Radiation: Early Times 
Radiation dominates at early times. 
Equality occurs when ρr = ρm 

Ωm,0

Seq
=
Ωr,0

S2eq
→ Seq =

Ωr,0

Ωm,0

Slope of GE&KE curves " deceleration 
d(V2)/dS = 2V dV/dt × dt/dS  
= 2V dV/dt × tH0 /V 
= 2tH0 dV/dt  = 2A (acceleration) 
Or:  
a = -grad Φ = -d(GE)/dS 

Real Universe: Ωm,0 = 0.3  Ωr,0 = 8.4E-5 
Seq = Ωr,0/Ωm,0 = 2.8E-4 or teq = 50 kyr 
Transistion is very important. 
 
Radiation era: S ~ t1/2   V ~ t-1/2  
Matter era: S ~ t2/3   V ~ t-1/3 

Equality 
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Vacuum 
Because vacuum GE gets more negative 
with S, KE increases with S giving 
acceleration. 
 
For Ωv,0 = 1, we have V = S. 
This gives exponential growth with e-
folding time tH0: 

V = tH 0
dS
dt

= S ⇒
dS
S
=
dt
tH 0

Note: this is the nature of Inflation, 
where the vacuum density is very high so 
tH0 is very short. 
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Matter plus Vacuum: Late Times 
Sum of matter and vacuum gives a 
“hilltop” GE shape:  
     Early deceleration (matter domiantes) 
     Late acceleration (vacuum dominates) 

Equality occurs when ρm = ρv 

Ωm,0

Seq
=Ωv,0S

2
eq → Seq =

Ωm,0

Ωv,0
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For Ωm,0 = 0.3 and Ωv,0 = 0.7, Seq ≈ 0.6 

Coasting when slopes of GE curves for 
matter and vacuum equal and opposite. 

Ωm,0

S2da
= 2Ωv,0Sda → Sda =

Ωm,0

2Ωv,0
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For Ωm,0 = 0.3 and Ωv,0 = 0.7, Sda ≈ 0.75 

Cosmic Age:   t0 = 0.96 tH0 
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The Real Universe: All Three 

Energy 
diagram 
with log 

axes 

The Friedman equation 
gives the form for V(S) 
or V(z): 

Note: often H is used as main 
variable:  
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Intuiting vacuum’s accelerating expansion 
Given that vacuum’s density is constant, then 
the mass of an expanding sphere increases. 
 
In this case the GE for unit mass at the surface 
decreases (more negative) as sphere expands.  
 
Thus: outwards is “downhill”. 
Vacuum sphere’s fall outwards, naturally! 

Where does the new mass come from?? 
Several possible answers: 
Newtonian: new mass created from negative 
global gravitational energy (-GM2/R).  
E.g. a sphere with R ~ rH0 has GM2/R ~ Mc2. 
 
Einstein:  Gi,j = 8πG/c4 × Ti,j so gain on RHS 
has matching gain on LHS – i.e. the new 
energy comes from the changing metric. 



Three important differentials 
Simple space-time diagrams yield three useful differential relations. 
Blue lines are paths of receding galaxies (world lines). 
Red line is “past light cone”. All today’s visible galaxies lie on this line. 

Distance between two close 
objects on our light path. 

Cosmological time 
dilation: distant events 
appear slowed down. Simple kinematics 



Three important differentials (cont.) 
If you prefer to work with redshift, z, the differential relations become:  

Se =
1
1+ z

⇒

Direct application of the differential relations: 
 
a)  Time interval corresponding to given redshift interval, dz:     
       dt = tH0 S 2/V dz.  Clearly, this gets very short at high-z (small S): 
       e.g. at z ≈ 20, S ≈ 1/21, V ≈ 2.4, S 2/V ~ 10-5 so dz = 1 gives dt  ≈ 1.3 Myr 
 
b)  Comoving separation corresponding to given redshift interval dz:   
       dr0 = rH0dS/SV = –rH0 S/V  dz. 
       e.g. At z ≈ 20, S ≈ 1/21, V ≈ 2.4, S/V ≈ 0.02, so dr0 ≈ 0.02 rH0 ≈ 0.26 Gly. 
 
c)  Redshift is simply Cosmological time dilation: dt0 = dte/Se 
       For light wave periods:  1/f0 = 1/fe / Se or Se = f0/fe = λe/λ0 



Calculating times 
Use first differential to calculate time intervals: 

Example: z = 4 galaxy (Se = 0.2).  V  = [0.3/S + 0.7 S 2]1/2.  See figure. 
Lookback time: integrate from Se = 0.2 to 1.0 gives tlt ≈ 0.85 tH0 ≈ 11.5 Gyr. 
Age at z = 4: Integrate from 0 to 0.2, gives t(0.2) ≈ 0.11 tH0 ≈ 1.5 Gyr. 

a) Lookback time: 

Basically, duration of journey with speed v(x) 
from x1 to x2: use v = dx/dt, so dt = dx/v so 
integrate dx/v from x1 to x2 to find duration. 

b) Age at Se: 
    Invert to get S(t) 

c) Today’s age: 



Calculating Distances: r0 and re 
Integrate dr0 differential to calculate distances: 

Previous example (z = 4; Se = 0.2): 
Integration gives r0 = 1.67 rH0 ≈ 22.7 Gly 

b) Emission distance, re: 
    re = 0.33 rH0 ≈ 4.5 Gly 

c) Light travel distance:  rlt = ctlt  
    Same as lookback time: 11.5 Gly.    Notice re < rlt < r0. 

a) Comoving distance, r0: 

d) Particle horizon, rph,0, = furthest we can see:    
    Integration gives: rph,0 ≈ 3.3 rH0 ≈ 46 Gly. 

e) Event horizon, reh,0, = furthest we can signal: 
    Also, distance beyond which we will never see an 
    event that happens today.     
    Integration gives: reh,0 ≈ 1.14 rH0 ≈ 15.4 Gly. 



Calculating Sizes from Angles 
What’s the size, Δ, of an object at distance r that subtends a small angle θ radians? 
For a static, Euclidean space:         Δ = C ×      = r × θ    
    
where C is the circumference of a circle of radius r.  

In cosmology, we have two complications:  
a)  Which r do we use?     Answer: we use re = Se r0 (see figure) 
b)  Space may not be Euclidean  

r0 
re 

θ 

For non-Euclidean space, a circle’s circumference-radius relation is modified:  
                                                       C = 2πr × Fc     where Fc is a correction factor. 
 
Hence our true relation is: 
Where  DA = Se r0 Fc  is an angular diameter distance: a pseudo-distance that gets 
Δ correct using the static Euclidean relation. 

 θ 
2π 

Δ = Ser0Fcθ ≡ DAθ

What is Fc ? ….. 



Curved Geometry 
Einstein’s GR: space-time geometry linked to mass/energy and momentum: 
Fortunately in cosmology, isotropy & homogeneity " geometry is simple. 
Time separates out; space has single curvature parameter, R (positive or negative). 

Rules of geometry are different from Euclidean: 
Equivalent to geometry on a curved surface. 
a)  Circle circumference C = 2πr Fc  
b)  Sphere area: A = C 2/π = 4πr2 Fc

2  
c)  Sphere volume: Vol = 4/3 πr3 Fcv 
d)  Triangle angle sum: π ± A/R2  

Deviations large when r ~ R  
Use parameter χ = r/R = r0/R0  
 
Circle circumference:  
C = 2πL = 2πR sin χ = 2πr (sin χ)/χ  
We have: 

Fc =
sin χ
χ

Positive (sphere)  

Fc =
sinh χ
χ

Fc =1

Euclidean (flat)  Negative (saddle) Curvature: 

See next " 



Curvature Radius 
The correction factors Fc & Fcv are shown " 
For small χ = r0 /R0 we have fractional 
changes:  
    Circumference: ±⅙ χ2 
    Sphere area:      ±⅓ χ2 
    Sphere volume: ±⅕ χ2 
Note: at χ = π (antipode), Fc = 0 and the 
circumference goes to zero! 

Two things set the value of R0 : 
a)  Cosmic density (ρ) 
b)  Cosmic expansion (H) 
Start from GR Friedman Eqn: 
Several ways to express R   

c2/R0
2 linked to 

Newtonian TE. 

Static region (H = 0) has  R ~ ctgrav ~ c/√Gρ. E.g. Earth has R ~ 1 lt hr. so χ ~ 10-4 
so δC/C = ⅙ χ2 ~ 2×10-9 so CE is 8 cm smaller than 2πRE.  

Here, sign of R2 sets 
sign of curvature 



Measuring R for the Universe 
Pick biggest circle possible (out to CMB) 
Measure angle subtended by known length – 
provided by sound wavelength, l. 

Gives Fc and hence R0  (or Ωtot,0) 
"  find Ωtot,0 = 1.001 ± 0.004 (R0 ≈ ∞) 
So, Euclidean geometry (Fc ≈ 1).  

l
C
=
θ !

360
=

l
2πreFc



Calculating Luminosity from Flux 
What’s the Luminosity, L, of an object at distance r with flux f ? 
For a static, Euclidean space:         L = 4π r2 × f 
    
Where 4π r2 = Asph is the area of a sphere of radius r.  

In cosmology, we have three complications:  
a)  Which r do we use?     Answer: we use r0  
b)  Space may not be Euclidean: Asph = 4πr0

2 Fc
2 

c)  Redshift reduces photon rate and energy: ×Se
-2 

r0 

Asph = 4πr0
2Fc

2 

Combining these, we have:  
    
                              L = 4π r0

2 Fc
2 Se

-2 × f  

We may write this as:   L = 4π DL
2 × f     

where   DL = r0 Fc / Se    is the Luminosity Distance: 
a pseudo-distance that gets L correct using the static 
Euclidean relation. 

When the light 
reaches us, it’s 
spread over a 
sphere radius r0 

DL is large: 
distant galaxies 
are very faint. 

Note: need extra power of Se (1/Se) for Lλ (Lν) 



Calculating Surface Brightness 
Consider an object of luminosity L and physical area Δ. 
Famously, its surface brightness, µ, is independent of distance: 

Thus the surface brightness drops rapidly with redshift  (note: Se
4 = 1/(1+z)4 ). 

Bad news: makes studying high-z galaxies very hard, however, 
Good news: saves us from lethal CMB (106 W/m2 " 10-6 W/m2) 
 
Note: the factor Se

4 comes explicitly from cosmic expansion (Se
2 from object being 

closer when light set out; Se for redshift; Se from reduced rate). Showing galaxies 
follow µ   Se

4 nicely proves the Universe is expanding (Tolman test). 

µ =
f
dΩ

=
L
4πr2

÷
Δ
r2
=

L
4πΔ

However, in cosmology, expansion adds a new quality: 

µ =
f
dΩ

=
L

4πDL
2 ÷

Δ
DA
2 =

L
4πΔ

DA
2

DL
2 = µ0Se

4 Recall: DA = r0 Fc Se 
and       DL = r0 Fc / Se  

∝



Calculating Volumes 
Knowing the volume of a survey is very important – e.g. for calculating the 
space density of a particular class of objects.  
 
Almost always, we use the comoving volume – the volume out to r0 in today’s 
universe. For Euclidean space, this is easy: Vol0 = 4/3 π r0

3. 
For non-Euclidean, each spherical shell has area 4πr0

2 Fc
2 so the total volume is: 

Physical (non-comoving) volume out to Se: 

See earlier figure 

Recall:  
χ = r0/R0 

Visible Universe:                                  = 160 rH0
3  

Survey area dΩ from z1 to z2:  

Total volume: Voltot = 1.2 rH0
3 (= Voltot,0/134)  

Progress in mapping the entire visible universe: 
z(survey): SDSS ~ 0.2; BOSS ~ 1; QSOs ~ 2.5 
Mapping the entire visible realm is within reach. 



Space-Time Diagrams 
These help us think about a number of aspects of our expanding Universe.   

a) Comoving distance, r0: 

Expanding Space and today’s past light path (cone) Static Space 

Observing a single galaxy Three distances, and the Velocity-Distance Law 

r0 

re 

rlt 



Space-Time Diagrams (cont.) 
Various horizons are visible on the space-time diagrams. 

Particle horizon 
(visible limit) 

Hubble 
distance: 
rH = c/H  
= rH0 S/V 

Event horizon: 



Space-Time Diagrams (cont.) 
Full version, showing the light cone, three world lines and three horizons: 
Curves plotted as parametric, in S.  
E.g. light cone is:  
Marked on the light cone are r0, z, Se   



Space-Time Diagram for CMB 
The space time diagram for the CMB and its light is an interesting example. 
Light leaves at 380,000 yrs moving in our direction.  
At that time, the CMB is at r = 40Mly moving at 65c so light recedes from us at 64c. 
Recedes for 3.5 Gyr (crosses rH) then approaches and arrives today.  
Notice: velocity of CMB material has always been >c and is also outside reh. 



Redshift Drift 
An example of real-time cosmology is the steady drift in redshift over cosmic time. 

Notice: abcd and ABCD are congruent (sides and depth stretched by 1/Se = 1+z) 
But wavelengths stretch the same as distances: so AB/ab = CD/cd = λ0 / λe 
But true stretch has increased (by DE), so dλ/λ0 = (v0 – v)dt0 / r0 = (1 – V)dt0/tH0 
Express dλ/λ0 as dv/c so dv/dt0 = (1 – V)c/tH0 = (1 – V) × 2.2 cm/s/yr    (see graph). 
Use QSO absorption lines, laser comb spectrographs, and ELT: needs ~10yrs 



End of Cosmology Lite 


