
Volume 72B, number 4 PHYSICS LETTERS 16 January 1978 

D R E S S I N G  U P  A R E I S S N E R  N A K E D  S I N G U L A R I T Y  

Thibaut DAMOUR 
Observatoire de Paris, 92 Meudon, France 

and 

Nathalie DERUELLE 
Institute of Astronomy, Cambridge, GB 

Received 18 May 1977 

Spontaneous pair creation in the field of a large Reissner singularity (a point-like charge e whose massM is such 
that MG 1/2 < e) is here considered. Using as a guide the definition of the positive and negative energy states of a 
classical particle in this field, a particular basis of quantum states is chosen which contains resonance states - these 
are interpreted by invoking particle creation. Extremely energetic particles are shown to burst out to infinity whereas 
the antiparticles dress up and neutralize the singularity. This result is contrasted with the process of pair production by 
black holes and compared with the isotropization of the early universe by creation of matter. 

Introduction. The vacuum polarization by external 
gravitational and electromagnetic fields has been ex- 
tensively studied both  in cosmology and in black hole 
physics. A variety of  processes have been predicted, in 
particular: 

(i) the isotropization of  the early universe by crea- 
t ion of  bursts of  particles via a parametric resonance 
of  the vacuum modes [ 1 ] ,  

(ii) the loss of  angular momentum and charge from 
black holes via pair creation at constant rates [2].  

Pair production by a Reissner naked singularity 
(this problem was first considered in ref. [3] ), al- 
though taking place in a stationary background, is 
more similar to the cosmological than to the black 
hole pair production process. Indeed we shall show in 
this paper that if we are given a time-like singularity of  
the Reissner type at time t = 0 (as in cosmology we are 
given a space-like singularity) pairs are not  created at 
constant rates; rather, extremely energetic particles 
burst out  to infinity whereas the corresponding anti- 
particles dress up and neutralize the singularity; the 
underlying reason is that the vacuum modes which 
give rise to particle creation are resonance modes 
whose time dependence is crucial, instead of  the usual 
running waves. 

We shall use the effective potential  approach [4, 5] 
(a generalization of  the Klein paradox [6] as inter- 
preted by Heisenberg and Euler [7] ) which gives a di- 
rect understanding of  the physical mechanism respon- 

sible for the production of  particles :1:1 . We decompose 
this method into three steps: 

(1) Zeroth quantization where the Dirac "posit ive" 
and "negative" energy states of  a classical particle are 
defined. The positive energy states ~+ describe par- 
ticles of  charge e, energy w + ; the negative energy states 
co- have no direct meaning but are readily reinter- 
preted "~1 la Dirac" to describe antiparticles of  charge 
( - e ) ,  energy ( - c o - ) .  There is a "level crossing" be- 
tween the positive and negative energy states if the 
same w can be considered as a w + state in one region 
of  space and as an co-  state in another region. 

(2) First quantization where the classical co +- states 
serve as a guide to construct at each time t an ortho- 
normal basis of  quantum states whose elements can be 
classified into "posit ive" and "negative" frequency 
states. When there is level crossing, a wave initially of  
negative frequency (which, classically, would be con- 
fined in the m -  region) tunnels at later times through 
the classically forbidden region towards the w + region, 
leading to a Klein paradox. Spontaneous pair produc- 
tion is then easily predicted using for instance the 
heuristic concept of  the Dirac sea. 

(3) Second quantization which formalizes the pre- 
vious results. The Heisenberg quantum fields if(t) are 
expanded at each time t on the basis we have con- 

,1 For the application of this method to the loss of angular 
momentum and charge from black holes, see ref. [8]. 
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I.'ig. 1. Effective potentials co~(r) in the field of a large 
Reissner naked singularity (ee ~ 1). co~(r) = to gives the turn- 
ing points of a particle of energy to, charge e; too(r) = to gives 
the turning points of an antiparticle of energy (-to), charge 
(-e). When I < ee, totop > u: there is a wide domain of level 
crossing between the negative (to- < too(r)) and the positive 
(to+ > to~(r)) states (when l ~ ee, r i ~ fie, r e ~ ee/ta and 
totop ~ ee2/4l)" Classically the to- states such that ~z < to- 
< totop form a continuous spectrum and are confined in the 
to- region. In quantum mechanics the spectrum becomes a 
discrete spectrum of resonances which tunnel towards the to+ 
region thereby creating pairs. Their lifetimes characterize the 
process and show that only pairs such that l < (ee) 1/2 and 
~(ee) 1/2 < to < totop are created in significant number. 

structed and the creation and annihi la t ion operators 
and the vacuum are defined at time t. Hence, taking 
as the initial state for the system the vacuum state at 
t = 0, one obtains directly at each time the mean value 
of the particle number  operator.  

Z e r o t h  quant i za t ion .  We first define more precisely 
the positive and negative energy states co-+ of  a classi- 
cal particle of  mass/2, charge e, in the field of  a 
Reissner naked singularity of  mass M, charge e such 
that M <  e *2 and ee >> 1 (we have chosen the uni ts  G 
= c = h  = 1:1:3). 

The metric is: 

ds 2 = - 5  d t  2 + dr2/6  + r2(d02 + sin20 d~b 2) 
(1) 

6 = 1 - 2 M / r  + eZ/r  2, 

and the electromagnetic potent ia l  is: 

A =  e d t / r .  (2) 

The action S of  the particle can be separated as: 

,2 In fact we shall impose M ~ e and neglect M in all the 
practical calculations. 

~3 In these units 1/e 2 ~ 137 and e/u ~ 2 X 1021 for electrons. 

S = - c o t  + m~o + fpo dO + r jPr  dr, (3) 

which leads to the following H a m i l t o n - J a c o b i  equa- 
t ion: 

2 = [co 6o;(r)l  [co coo(r)]/~ 2, (4) Pr -- -- 

where 

coo(r) = ee/r  + [6(/~ 2 + 12/r2)11/2.  (5) 

(co and l are the energy and the total  angular momen-  
tum of  the particle.) 

The "classical effective potent ia l"  co0(r) are repre- 
sented in fig. 1 ; they are the loci of  the turn ing  points  
of  the particles moving in the field (1), (2). The posi- 
tive energy states are such that  co+ > co~(r) and de- 
scribe particles (co+, e); the negative energy states are 
such that co-  < co~(r) and describe antiparticles 

(-co-, -e). 
A few comment s  must  be made about  these classi- 

cal effective potentials:  
(a) If  we are given a fully formed singularity at r 

• + 

= 0 the whole diagram of  co~(r) has a meaning for t 
~> 0 from r = 0 to r ; oo. On the other  hand,  if the sin- 
gularity forms by a spherically symmetr ic  collapse, 

the effective potentials  are valid only  outside r = R ( t ) ,  

where R ( t )  is the radius of  the collapsing object.  In 
the following we shall on ly  consider "God  given" sin- 

gularities. 
(b) Because of  the potent ia l  wall near the origin, 

neither the particles nor  the antiparticles can ever 
reach the singularity; they do not  collapse to the cen- 
tre (unless l = 0) as special relativistic antiparticles of  
low angular m o m e n t u m  (l < ee) would,  because they 
"see" a repulsive effective mass Mef f = M -  e 2 / 2 r ,  
where e 2 / 2 r  is the electromagnetic mass between r 

and infini ty.  
(c) When l < ee, negative b o u n d  states can be 

found  such that:  

+/.t < co-  < (-°top' (cotop ~ ee2 /41  for l ~ ee). (5) 

For these states there is level crossing be tween the co-  
region and the co+ region at spatial inf ini ty .  Classically 
they form a con t inuous  spectrum and are confined in 
the co-  region, but  in q u a n t u m  mechanics they will 
be discrete, will tunne l  towards spatial inf in i ty  and 

pair creation will occur. 
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First quantizat&n. Using the above discussion and 
quantizing the states by introducing both orbital and 
internal (spin) quantum numbers we can predict the 
qualitative features of  the pair production process. 

We suppose that the singularity is given to us at t 
= 0, that  is, we assume that the negative bound states 
of  the Dirac sea are confined in the co- region at t = 0. 
When t > 0, the discrete states satisfying eq. (6) start 
to leak towards the co+ region as resonance states of  
energy co and lifetime 1/F. This leakage, being asso- 
ciated with level crossing, is interpreted by invoking 
particle creation. 

In the case of  fermions (e.g. electrons) each nega- 
tive state (n, l, m, o) where n = 1,2,  3 .... labels the 
bound states, l and m the angular momentum and o 
the spin, is occupied by one inobservable electron of  
the Dirac sea (exclusion principle). After a time t 

1/Fn, l this electron has flown out to the co+ region 
as a real electron we can detect,  leaving a hole in the 
co- region, i.e. a positron orbiting around the singular- 
i ty.  Even if the back reaction were not taken into ac- 
count a finite number of  pairs would be created, equal 
to the total  number of  resonance states. 

In the case of  bosons there is no exclusion principle 
and the number of pairs created in each state (n, l, m,  
o) increases exponential ly with time [9] but should 
however remain finite if one takes into account the 
back reaction and/or the Coulomb repulsion between 
the created antiparticles orbiting around the singular- 
i ty [10].  

These considerations serve as a guide to choose a 
basis of  quantum states. 

For  the sake of  simplicity we use the Lagrangian 
density: 

£ = _ ~gl /2  [IDa4] 2 + (/22 + XR)[ 412], (7) 

where 4 is a complex scalar field, D~ = V~ - ieA~, 
[Ba[ 2 = g ~ B * B ~  and where R is the scalar 
Riemannian curvature (X being a numerical constant).  
The extra term XR]4[ 2 is introduced to model the in- 
teraction between the curvature of  space- t ime  and 
the spatial extension of  the particle (non-minimal cou- 
pling). 4 satisfies the K le in -Gordon  equation: 

D,~D'~4 = (/32 + XR)4, (8) 

and the stress energy tensor is 

T ~  - - :  [(D~¢) D~¢ + (DS8 D~¢ 

- g~t3(]O.~4[ 2 +/121412)] (9) 

+ X[Ra~ - ½Rga¢ + g ~ # V o v o  - V,~V~] 1412. 

In a Reissner background R = 0 but  Rat  ~ 4: 0; therefore 
4 fulfils the usual K le in -G ordon  equation but its 
stress energy tensor exhibits extra terms. 

Thanks to the staticity and spherical symmetry of  
the Reissner geometry,  4 can be chosen as: 

4wlm = e iw t yrff (0, ~o)Uwl(r)/(r81/2), (10) 

so that eq. (8) reduces to: 

d2Uval/dr 2 = WUwl, where W = W class + W, ( l l a )  

with 

W class = - [ c o  - co~(r)] [co - co6(r)1/62 ( l l b )  

= { [u2r 2 + l(l + 1)] r28 - (cor 2 - eer)2}/(r482),  

= (e 2 _ M2)/ ( r482) .  (11 c) 

co~)(r) are given by eq. (5)where  l 2 is replaced by 
l(l + 1). The " t idal  term" W (a quantum correction to 
[4] class consisting in replacing l(l + 1) by l(l + 1) + @2 
- M2) / r28  can be eliminated by a proper choice of  
the radial coordinate [11] (for instance Z = f dr/r26).  
On the contrary the relative correction W/W class can 
be spuriously blown up by using a coordinate of  the 
type r* = f dr/8 [3].  In any case in the r coordinate 
W/W class is negligible if l >> 1 which we shall hence- 

forth assume. 
The origin r = 0 being an ordinary point of  eq. (11) 

the choice of  a boundary condition at the origin is not  
obvious. However, since we are considering test fields 
in a given background, the total energy of  the wave 4 
must be finite. Now because of  the extra terms, the en- 
ergy density - T o 0  deduced from eq. (9) is integrable 
only if 1412 ~ 0 as r -> 0; the total energy is then easily 
shown to be equal to co(4, 4) where ( , )  denotes the 
usual K le in -G ordon  scalar product .  Therefore we shall 
impose ~4: 

:~4 This boundary condition should be contrasted with the cor- 
responding condition in special relativity where for Z 
> 137/2 (Z > 137 for electrons in the Dirac equation) and 
for small enough angular momenta there is a collapse to the 
centre so that physical assumptions about what happens 
near the singularity must be made in order to choose a 
boundary condition. For details see e.g. ref. [ 12]. 
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4~(r) = u(r)  = 0 when r = 0, (12) 

which is in agreement with the fact that, classically, 
the singularity is repulsive. 

Before proceeding we emphasize the following 
point: the Klein-Gordon eq. (8) is meaningful only if 
the external field approach is correct, and this is cer- 
tainly not the case in the Planck region of  radius rp 

el/2 (such that f~P(grr)  1/2 dr  ~ 1). When r >> el/2 
general relativity is valid and the linear and non linear 
radiative corrections to the Coulomb law are negli- 
gible t5 . When solving eq. (8) we shall therefore have 
to keep in mind that the solutions are meaningless for 
r <~ e 1/2. Note that e 1/2 < ee/6o (the radius at which 
the pairs are created) as long as co < e(ee) 1/2 and that 
e 1/2 < l ie (the radius o f  the potential wall) as long as 
1 > e(ee) 1/2. 

We can now construct an orthonormal basis of  posi- 
tive and negative frequency states. 

When l > ee, or l < ee with either co > 6oto _ or 6o 
</a ,  the (#o~Im are readily classified, with the Kelp of  
fig. 1, into positive frequency states ~b(+trn (if co > /z  
when l > ee, and w > 6otop if l < ee) and negative fre- 
quency states q~(~-]m (if co < ;t). The latter states will 
in fact be bound and therefore discrete when -/~ < co 
< + ~ .  

When I < ee and/a < co < 6otop we separate the fre- 
quencies by means of  the following formal trick which 
is the mathematical expression of  the physical assump- 
tion that the negative bound states are confined inside 
the co- region at t = 0: we suppose that for t < 0 
there is an "impermeable" membrane between the 6o- 
and the co+ region; more precisely we impose the fur- 
ther condition on 4~: 

if l < ee,/a < 6o < ¢Otop, 
0 3 )  

Cwlm(r )  = O for r = ee/6o w h e n  t < O, 

which consists in changing eq. (1 !) in an infinitesimal 
neighbourhood of  ee/w by increasing W to an infinitely 
high value when t < 0. (The locus r = e e / w  is chosen 
because it is always located in the classically forbidden 

,5 The linear radiative correction is the Uehling effect which 
is less than 10% as long as the proper radius is greater than 
10-28/~-I ~ 10-6 Planck lengths. The non linear radiative 
correction is the Heisenberg-Euler correction which is less 
than 10% as long as the proper radius is greater than 
10 -56 eta -2 ~ 10 -13 Planck lengths. See e.g. ref. [13], 

region between the w -  and the co+.) Thanks to condi- 
tion (13) we obtain a continuous spectrum of  positive 
frequency states: ¢(+) = ¢#~olm Y(r  - ee/6o) (the c~wl m co l rn 
are the solutions of  eq. (11) on the interval [ee/6o, 
+o~] satisfying condition (13) and Y is the Heaviside 
function) and a discrete spectrum of  negative frequen° 

( - )  Y ( e e / w  n - r) (here the ~tonlm cy states: (Pnlm = dPt°nlm 
are the solutions of  eq. (11) on the interval [0, ee/6on] 
satisfying conditions (12), (13). 

We have thus constructed a complete orthonormal 
set: ; a,(+) (-) (-) L'e'tolm' (Pwlm' (Pnlm)" 

The energy levels of  the negative bound states ¢knlrn 
are given in the WKB approximation by: 

I(6on, l) = 2n(n  - 7), (14) 

where n = 1,2,  3, ... and where I(6o,/) = 2 f ( - W )  1/2 dr, 
the integral being extended to the interval where W 
~< 0. When l >> (ee) 1/2, the WKB approximation is valid 
in the confining barriers (that is near r = 0 and r = ee/6o) 
so that 7 = 1/2 because one has to add 7r/4 to the 
phase o f  the wave function at each end of  the interval. 
But, as we shall see, we shall be interested in the case 
l ,~ (ee) 1/2 for which the WKB approximation is not 
valid in the confining barriers; using in this case a long 
wavelength approximation and approximating the con- 
fining barriers by low parabolic barriers [5],  it is easily 
shown that one has to add 7r/8 to the phase at each 
end of  the interval so that 7 = 1/4. 

When l ~ (ee) 1/2, the explicit expression for / (co, / )  

is: 

I(6o,/) = ee [ln(1 + e2/6o 2) - 2 + 2 (6o / e ) t an -1  (e/6o)]. 
(15) 

For the highest bound states (1 <~ n ~ ee): 

6on ~ e[ee/6rr(n - 1[4)] 1/2, (16) 

that is COn ~ [ee/(n  - 1/4)] 1/2 6op[50, where COp 
1.22 X 1028 eV. 
At t = 0 the impermeable membrane ( condition 

(13)) is removed. The negative frequency bound states 
such that l <-ee,/1 < 6o n < 6otop then become reso- 
nances which leak towards infinity thereby creating 
pairs; their "lifetime" 1 / rn l  :~6 is given by: 

I1/Pntl  ~ IdI/d6ol exp ~nt, (17) 

with 

26 See next page. 
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~nl = 2 f (W)l/2 dr '~ rr[12/ee + u2ee/co2] • 
barrier 

Eq. (17) shows that  only pairs with l < (ee) 1/2 and 
tt(ee) 1/2 < co < cotop will be created in significant num- 
ber. For the most energetic resonances: 

I 1/Fnl ~ (2/3)[67r(n - 1/4)] 3/2 e - l ( e e ) - l / 2 ,  (18) 

that is I1/Pnl ~ 3.4 (n - 1/4)3/2(ee)-U 2 X 10 -41 sec. 

Second quantization. Let us denote by ~( t )  the 
quantum field which satisfies the wave equation writ- 
ten as first-order equation in time. (In the scalar case 
we considered above, ff has two components:  ~ and 
oCgot.) 

Using the preceeding analysis and putt ing t = 0 in 
expression (10) and its derivative with respect to time, 
we get a t ime independent set o f  functions 

{'"(+) ¢" O, ~0), t~(~lma(r, O, ~), ~nlma~ , ~Uwlma~.', o,(-) Ir O, ~0)} clas- 
sified according to the sign of  the frequency. This set 
of  functions forms at each time a complete orthonor-  
mal basis on which we'can expand the second quan- 
tized field t~(t, r, 0, ~0). Suppressing the indices l, m, a, 
we can write: 

6(t, o, = f dco ato(t)~(+w)(r, O, ~o) 

u (19) 
- - , u  

+ f dcob;(t)g/(~)(r,O,~) + Bb;( t ) t ) ( - )(r ,O,~o) ,  
n 

_ o o  

the discrete sum being extended over all the bound 
states whose energies are contained between - / l  and 
('°top" Among these states only those for which ~u 

con ( cotop will give rise to pair creation. We then 
interpret the time dependent coefficients a(t), b+(t), 
appearing in eq. (19) as the annihilation and creation 
operators at time t for particles and antiparticles. They 

,6 In fact 1/I'nl is positive and can be interpreted as a decay 
time for fermions only. For bosons, as shown explicitly in 
ref. [9], 1/I'nl is negative and is an "amplification time" 
(superradiance effect). In both cases it would be impossible 
to consider as basic modes the exact Gamow resonance 
(solutions of eq. (11) for complex energies ¢o ~ ton 
- iFn/2) because they are not normalizable; their norm is 
infinite for fermions and null for bosons. That is why we 
introduced the formal trick (13) which allows us to nor- 
malize these resonance states. 

will satisfy the usual (ant i )commutat ion relations. 
The vacuum at time t is defined as the vector It), 

supposed unique, such that:  

ato(t)l t) = bto(t)l t) = bn(t)l t) = 0. (20) 

The particle number operator at time t is then de- 
fined as: 

N(t) = f dco a+(t) ato(t). (21) 
# 

The mean value of  N(t)  in the vacuum state at t = 0, 
(0[N(t)[ 0), is the total  number of  particles created at 
time t given that at t = 0 there were no particles pres- 
ent in the field. An expression for this quant i ty  is 
readily obtained by introducing the functions 
~(~)(t, r, 0, •) which evolve in time according to the 
wave equation in the external field considered and 
which take the ff~)(r,  0, ¢) as initial values when t = 0. 
These functions are just the first quantized solutions 
we considered above. One easily gets: 

(0[N(t)10) = ~  fdco I(ffto(+), ~(-)(t))/2 (22) 
n 

Each term in this sum is in fact the part of  the norm 
of  ff(n-)(t) which has leaked out  of  ee/co. Now, by the 
definition of  Pn, the part of  the norm of  ff(n-)(t) 
which did not  leak out ~ +exp(-Pnt) ,  where the up- 
per sign holds for fermions and the lower one for bos- 
ons. The total  norm +1 being conserved we get, rein- 
serting all the indices: 

(0 [N( t ) [0 )~  ~ + [ 1 - e x p ( - F n l m o t ) ] ,  (23) 
nlmo 

as expected and previously described. In this formula 
P is positive for fermions and negative for bosons (see 
footnote  6). 

Let us now take into account the back reaction. It 
is clear that the process will stop when the singularity 
is neutralized i.e. when e/e = 137(ee) pairs are created. 
If we consider the production of  electrons only, one 
pair is created per state (n, l, m, o) where e = +1/2, 
-1  ~< m ~< l and 0 ~< l ~< (ee) 1/2 so that roughly 
2 E~ee)l/2(2l + 1) ~ 2(ee)pairs  are created per state 
con" Therefore pair creation in the first 69 bound 
states is enough to completely discharge the singular- 
ity. It is clear that the more different species of  par- 
ticles we consider, the more this number is reduced. 
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The net effect is that 137(ee) particles burst out  to in- 
finity in a time of  the order of  a few I 1/I" 1 I. Their en- 
ergy is of  the order of  co 1 and their angular momenta  
are equally distributed up to ~(ee)  1/2. The 137(ee) 
created antiparticles stay in orbit  around the singular- 
i ty neutralizing it. As seen from infinity the singularity 
appears as a neutral object,  stable against further pair 
creation, and endowed with a negative energy: E ~ M 
- e w l / e  ~ - e ( e e )  1/2. This means that the singularity 
has suddenly released in a burst of  particles all the 
electromagnetic field energy contained in the space 
outside r 1 ~ ee/co 1 ~ (e/e) 1/2. 

We must, however, be aware of  the crudeness of  
the results since: 

(a) The most energetic pairs are created not far 
from the Planck region. 

(b) We have used the external field approximation 
and therefore neglected the very important  radiative 
effects of  the created particles. 

(c) The physical assumption about the confinement 
of  the negative states at t = 0 has been crucial to our 
analysis. This condition cannot be fulfilled if the singu- 
larity forms by an adiabatically slow collapse because 
in this case pair creation occurs progressively as the 
negative states reach the energy +/a [14]. Neither 
could it be fulfilled if the singularity formed by a very 
rapid collapse because in this case the pair creation 
process would be mainly due to the time variation of  
the fields. 

C o n c l u s i o n .  The main point of  this paper was to 
show that the process of  pair creation by a large 
Reissner singularity, given at t ime t = 0, is very differ- 
ent from what happens 

(a) in the Coulomb problem in special relativity 
where pair creation is predicted when imposing the 

condition of  "collapse to the center" and where pairs 
are then created at infinite rates; or 

(b) in black hole physics where the horizon behaves 
like an inner infinity which implies that pairs are 
created at constant rates. 

Rather , the neutralization of  the singularity by pair 
creation is similar to the isotropization of  space in 
early cosmology. 

We thank E.S.A. for financial support at the begin- 
ning of  this project.  
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