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Abstract We investigate charged particles’ circular motion
in the gravitational field of a charged mass distribution
described by the Reissner–Nordström spacetime. We intro-
duce a set of independent parameters completely character-
izing the different spatial regions in which circular motion
is allowed. We provide a most complete classification of cir-
cular orbits for different sets of particle and source charge-
to-mass ratios. We study both black holes and naked sin-
gularities and show that the behavior of charged particles
depend drastically on the type of source. Our analysis shows
in an alternative manner that the behavior of circular orbits
can in principle be used to distinguish between black holes
and naked singularities. From this analysis, special limiting
values for the dimensionless charge of black hole and naked
singularity emerge, namely, Q/M = 1/2, Q/M = √

13/5 and
Q/M = √

2/3 for the black hole case and Q/M = 1, Q/M =
5/(2

√
6), Q/M = 3

√
6/7, and finally Q/M = √

9/8 for the
naked singularity case. Similarly and surprisingly, analogous
limits emerge for the orbiting particles charge-to-mass ratio
ε, for positive charges ε = 1, ε = 2 and ε = M/Q. These
limits play an important role in the study of the coupled elec-
tromagnetic and gravitational interactions, and the investiga-
tion of the role of the charge in the gravitational collapse of
compact objects.

1 Introduction

The dynamics of massive or massless, charged or neutral
test particles in the vicinity of compact objects is one of the
most interesting problems of relativistic astrophysics. The
motion of test particles depends explicitly on the properties of
the source of gravity and, hence, the geometric and physical

a e-mail: d.pugliese.physics@gmail.com

properties of the trajectories can be used to derive informa-
tion as regards the compact object. Moreover, the structure
of spacetime in the surroundings of astrophysical compact
objects can be explored in detail by using test particles [1–3].

The study of particle motion has been revealed to be an
essential and useful method for the determination of the
geometric and topological properties of the spacetime as
described by the pseudo-Riemannian manifold of general
relativity. Some examples of this application are given in
[4,5,7–13].

The utility of this approach of analysis resides in the pos-
sibility of proposing several different methods for model-
ing the matter behavior even in those situations where the
approximation of point-like objects (i.e. without structure)
is no longer valid, in particular, in models of extended mat-
ter as described by accretion disks. Indeed, accretion disks
are predominantly toroidal structures that may be subject
to many different factors such as hydrostatic or radiative
pressure, viscosity, resistance and magnetic field [14–16].
The basic study of test particles motion is, however, always
essential to set up more sophisticated and rich studies of
accretion disks configurations, especially to characterize the
equilibrium, where the gravitational effects are so relevant to
require a general relativistic treatment or during the interac-
tion with the source as in the accretion, or in the jet emission
[16].

In this work, we focus on the still intriguing and veiled
challenge of coupling between gravitation in Einstein’s gen-
eral relativistic formulation and the electromagnetic field
in Maxwell’s theory. Our analysis can be classified within
the class of electromagnetic effects in curved spacetimes;
in particular, we study the circular motion of charged test
(point-like) particles in a Reissner–Nordström (RN) black
hole (BH) and naked singularity (NS) family of geometries.
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It is well known that in the RN spacetime, the electro-
magnetic field contributes to the make up of the geometry
[17–20]. On the other hand, some of the fundamental prob-
lems to be addressed is to correctly combine the curvature
and electromagnetic effects in the description of extended
bodies, for example, for the determination (definition and
limits) of the charge-to-mass ratio. Here the charge-to-mass
ratio determines the occurrence of a horizon or, on the con-
trary, the impossibility that it is formed. Here, in order to
reduce other interaction effects such as the presence of spin
for the particle and the attractor, which would imply a spin-
spin coupling and a spin-orbit coupling [4], we consider a
test particle with charge in a spacetime with spherical sym-
metry described by the (static) RN solution; we focus on the
exterior regions outside the exterior horizon.

The motion of charged material around singularities has
been investigated extensively, for instance, in [7,11–13,21–
26,28]. Essentially, the possibility has been analyzed that
there could be a significant change in the behavior of matter
under the effect of electromagnetic interaction in the pres-
ence or absence of an event horizon. This may affect the
evolutionary processes involving the event horizon and its
interaction with the environment; see, for example, [29]. It
has been found, among other things, that under certain cir-
cumstances even an arbitrarily small charge may have an
essential role in the destruction of the horizon, leading to
very peculiar stability properties of charged particles around
a NS. This could have a role in the events of horizon forma-
tion. A question which starts to be predominantly timely in
facing the problematic of merging of black holes or even the
merging of stars, leading to an one-horizon structure. This
phenomenon, however, disappears for particles with charge-
to-mass ratios (ε) sufficiently small, independently of the
attractive or repulsive nature of the electromagnetic interac-
tion. The peculiar structure of the stability is regulated by
a set of special charges which we single out for the attrac-
tors (NS or BH). However, intriguingly, the dimensionless
charge of the particle also may have a particular influence
on the interaction and horizon evolution, depending on some
special values we single out.

We deep the analysis performed in [21] in order to obtain
the complete classification of circular motion around RN
black holes and naked singularities. From a methodological
view point, this is a new systematic study of circular motion
which makes use of a double classification procedure intro-
duced in the double contest of a BH and a NS. This allows us
to reveal the motion’s characteristics on the basis of a dimen-
sionless parameter related to the attractor and the particle; this
type of analysis has not been considered in previous related
work. This kind of approach appears to be interesting also so
as to be implemented in other contexts where the dynamics
could be equally considered in the geometries of black holes
or naked singularities.

This article is structured as follows. After reviewing the
main properties of the RN spacetime in Sect. 2, the circu-
larly orbiting charged particles are considered in Sect. 2.1.
In Sect. 3, the circular motion around a RN black hole is
addressed, while Sect. 4 focuses on the RN naked singu-
larity case. Particularly, we explore the case of a “weak”
repulsive interaction, ε ∈]0, 1[, in Sect. 4.1, and a “weak”
attraction, ε ∈] − 1, 0[, in Sect. 4.2. Conclusions close the
paper in Sect. 5. In the appendices, we present exact details
of different circular orbits.

2 Reissner–Nordström spacetime and circularly
orbiting charged particles

The Reissner–Nordström (RN) line element

ds2 = − �

r2 dt2 + r2

�
dr2 + r2(dθ2 + sin2 θdφ2), (1)

in standard spherical coordinates, describes the background
of a static gravitational source of mass M and charge Q,
where

� = (r − r+)(r − r−) , r± = M ±
√
M2 − Q2 (2)

and r± are the radii of the outer and inner horizon, respec-
tively. We consider the motion of a test particle of charge q
and mass μ moving in a RN background (1) as described by
the specific charge of the test particle ε = q/μ (see [30]).
Due to the existence of spacetime symmetries, the following
two conserved quantities exist:

pt = −
(

�

r2 ṫ + εQ

r

)
= − E

μ
, pφ = r2 sin2 θφ̇ = L

μ
,

(3)

where L and E are, respectively, the angular momentum and
energy of the particle as measured by an observer at rest at
infinity. A dot represents differentiation with respect to the
proper time. On the equatorial plane θ = π/2, the motion
equations can be reduced to the form ṙ2+V 2 = E2/μ2 which
describes the motion of a test particle inside an effective
potential V . Then it is convenient to define the potential

V± = E±
μ

= εQ

r
±

√(
1+ L2

μ2r2

) (
1 − 2M

r
+ Q2

r2

)
, (4)

which corresponds to the value of E/μ at which the (radial)
kinetic energy of the particle vanishes [1,31–33], i.e. it is
the value at which r is a “turning point” (V = E/μ). The
effective potential with positive (negative) sign corresponds
to the solution with limr→∞ E± = ±μ. Notice that in gen-
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eral1 E+ ≥ E− and E+(L , ε, r) = −E−(L ,−ε, r). In the
limiting case of vanishing test charge, the effective potential
reduces to

V = +
√(

1 + L2

μ2r2

) (
1 − 2M

r
+ Q2

r2

)
. (5)

This case was analyzed previously in [34] and [35], where
we found that the stability properties of neutral test particles
strongly depend on the nature of the central source. Indeed, in
the case of a RN black hole there exists a minimum radius at
which the orbit is stable, and outside this radius all the orbits
are stable so that there exists only one region of stability.
In the case of a naked singularity, the situation is completely
different; the region of stability splits into two non-connected
regions so that a zone appears inside which no stable circular
orbit can exist. This means that the stability properties of
circular orbits could, in principle, be used to differentiate
between a black hole and a naked singularity.

In the following section we face the study of the circu-
lar motion for charged particles. We will find the conditions
for the existence of circular orbits, and we will analyze their
properties in different BH and NS spacetimes. We perform
a classification in accordance with the value of the specific
charge ε. Different ranges of the ε parameter evidently serve
to investigate the joint action and balance of the attractor
bending effects and the electromagnetic attraction or repul-
sion, when any backreaction effects on the spacetime are neg-
ligible. We then investigate the range ε ∈ [−1, 1], represent-
ing a “small” charge-to-mass ratio and the (more realistic)
cases with ε < −1 and, particularly, ε > 1 for the repulsive
case. We will use an alternative approach in which the orbit
properties are parametrized according to the values of Q/M
and ε. Depending on the orbital properties and the electro-
magnetic interaction we analyze, different sets of parameters
are used. This alternative treatment, adapted to the individual
cases under investigation, will allow us to derive limiting val-
ues for the dimensionless charges of the attractor and notice-
ably also of the particles, a fact that has not been revealed
in former studies. Therefore, the numerical values of the ref-
erence parameters Q/M and ε will be accompanied by the
reference orbital radii associated to the limiting photon orbit
or zero angular momentum orbit.

1 A thorough discussion of the meaning of the double solutions V±
has been provided in [27] for the case of the Kerr–Newman solution.
The positive root states are associated to the positive particle energy,
as measured by local observers with future-oriented time component of
the four-velocity. Moreover, V− determines the negative-root states with
negative locally measured energy and past-oriented time component of
the four-velocity. In the Kerr–Newman geometries, for the case of non-
extreme black holes, both solutions V± determine the particle motion.
In the case of extreme black holes and naked singularities, the negative-
energy particles (with V < V−) have been interpreted in terms of Dirac
negative-energy sea and holes.

2.1 Circular motion

The effective potential (4) regulates the circular motion of
charged test particles. We will see that due to the presence
of a test charge, many different possibilities appear which
require a detailed investigation. We therefore limit ourselves
here to the special case of the positive solution V+. Also,
in this case it is possible to compare our results with those
obtained in the case of neutral test particles in [34,35].

The extrema of the function V+, defined by the relations

dV+
dr

= 0, V+ = E+
μ

, (6)

determine the radius of circular orbits and the correspond-
ing values of the energy E and the angular momentum L .
In the following analysis, we drop the subindex +. Usually,
the properties of the circular motion are investigated by ana-
lyzing the behavior of the effective potential V in terms of
the parameters of the test particle. In this work, we follow
a different approach, in which the physical behavior of the
parameters is derived from the circular motion conditions.
Indeed, solving (6) with respect to L , we find

(L±)2

μ2 = r2

2�2

[
2(Mr − Q2)�

+ε2Q2� ± Q�
√

ε2(4� + ε2Q2)
]
, (7)

where

� ≡ r2 − 3Mr + 2Q2, (8)

which represents the specific angular momentum of the test
particle on a circular orbit of radius r . The corresponding
energy reads

E±
μ

= εQ

r
+ �

√
2� + ε2Q2 ± Q

√
ε2(4� + ε2Q2)√

2r |�| . (9)

We see that in the general case of charged test particles, the
presence of the additional term εQ

r changes completely the
physical properties of test particles moving along circular
orbits, and leads to several possibilities which must be ana-
lyzed separately for black holes and naked singularities. Sec-
tion 3 focuses on the case of a RN black hole while the case
of a RN naked singularity is addressed in Sect. 4.

3 Circular motion around a RN black hole

We are interested in investigating all the regions outside the
outer horizon r+ in which circular motion is allowed. In
this section, we present a classification of the circular orbits
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Fig. 1 The charge parameters εl (dashed curve)—defined in Eq.
(19)—, ε̃ (black solid curve), εn (dotdashed curve), and M/Q (gray
curve) as functions of the charge-to-mass ratio of the RN black hole

Fig. 2 The charge parameters Qn (gray curve), Q̃ (black solid curve),
and M/ε (dashed curve) as functions of the charge-to-mass ratio ε of
the test particle

around a RN black hole (Q ≤ M) by using certain values of
the parameters L and ε which follow from the conditions of
circular motion. It can be considered as an alternative study
to that presented in [21], in which the value of the ratio Q/M
plays a central role. An analysis of the conditions for circular
motion shows that it is convenient to introduce the parameters

ε̃ ≡ 1√
2Q

√
5M2 − 4Q2 +

√
25M2 − 24Q2, (10)

εn ≡
√

3M2

2Q2 − 1 +
√

(9M2 − 8Q2)M2

2Q2 , (11)

Q̃ ≡ M

√
4 + 5ε2

2 + ε2 , Qn ≡ M

√
1 + 3ε2

1 + ε2 , (12)

which represent upper and minimum boundaries for the par-
ticle charge-to-mass ratio with respect to the BH charge-to-
mass ratio.2

The behavior of these parameters is depicted in Figs. 1
and 2.

2 The charges ε̃ and εn introduced in Eqs. (10) and (11), respectively,
have been found by parameterizing the particle motion with charge
ε > 1 for the dimensionless charge Q/M ∈ [0, 1] of the central black
hole attractor. Consequently, we define the ranges of BH charges in
Table 3. The parametrization according to the particle charge-to-mass
ratio ε > 1, as given in Table 4, leads to the values Q̃ and Qn given in
Eq. (12).

Moreover, let us introduce the radii

r±
γ ≡ 3M

2
± 1

2

√
9M2 − 8Q2, (13)

which represent the limiting radii at which neutral parti-
cles (photons) can be in circular motion around a RN black
hole [34],

r±
l ≡ 3M

2
± 1

2

√
9M2 − 8Q2 − Q2ε2, (14)

where3 limε→0 r
±
l = r±

γ , and

r±
s ≡ (ε2 − 1)Q2M

ε2Q2 − M2 ±
√

ε2Q4(ε2 − 1)(M2 − Q2)

(ε2Q2 − M2)2 , (15)

which corresponds to a zero angular momentum circular orbit
(ZAMPs)

L = 0,
dV

dr
= 0, (16)

as seen by an observer at infinity. This special radius gener-
alizes the concept of the classical radius r∗ = Q2/M , which
is the limiting value for neutral test particles.

Furthermore, the parameter

L2
n ≡ 9M7

2ε2Q2

(
3M +

√
9M2 − 8Q2

)
+ 2Q2M2

ε2 (1 + ε2)

−M3

2ε2

[
27M+5

√
9M2−8Q2

+3
(

3M+
√

9M2−8Q2
)

ε2
]

(17)

represents the value of the angular momentum, which satis-
fies the relationship (dV/dr)(Ln, r+

γ ) = 0.
A careful analysis of the circular orbits properties shows

that it is convenient to split the classification problem into
two different groups. The first group contains all the negative
test charges and positive test charges with ε ≤ 1. The second
group contains only positive test charges with ε > 1. For both
groups we investigate the values of the allowed orbit’s radius
and the corresponding angular momentum. The results are
summarized for ε ≤ 1 in Table 1, and for ε > 1 in Tables 3
and 4. Moreover, the characteristic parameters for all the
different cases are listed in Table 2.

3 The radii r±
l , introduced in Eq. (14), are found by considering the

particle motion to be parameterized by both the particle charge-to-mass
ratio ε and the dimensionless charge of the central attractor Q/M . Inves-
tigating the particle angular momentum in the different orbital regions,
the radii r±

l appear as orbital boundaries. We note also the photon orbits
r±
γ , which depend on the background parameters (Q, M) only, are the

limiting values of r±
l , respectively. Then, in the case of black holes,

the radius r−
l defines only the properties of the charged particle, while

in the case of naked singularities both solutions r−
l , and r+

l define the
limiting orbital ranges.
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Table 1 Characteristics of the circular orbits for charged test particles
with charge-to-mass ratio ε ≤ 1 in a RN black hole

ε ∈]0, 1] ε < 0

Region Momentum Region Momentum

r = r+
l L = ±L− r > r+

γ L = ±L+
r+
l < r < r+

γ L = ±L±
r = r+

γ L = ±Ln

r > r+
γ L = ±L−

We can summarize the results as follows. For ε ≤ 1,
Table 1, the infimum circular orbital radius is located at r+

γ

(r+
l ) for ε < 0 (0 < ε ≤ 1). For negative values of ε, circu-

lar motion can occur for any radius greater than the infimum

value r+
γ . The situation is much more complicated for posi-

tive values of ε within the interval 0 < ε ≤ 1. In this case, the
electromagnetic interaction is repulsive, but it is balanced by
the attractive gravitational component. The region in which
circular orbits are allowed is split by the radius r+

γ and r+
l , and

in each sub-region different values of the angular momentum
from the set {±L±,±Ln} are possible.

The case ε > 1 should be considered apart. This corre-
sponds to the real case of charged elementary particles, like
electrons, protons and ions, orbiting around a charged source
and hence several possibilities for realistic motion exist. In
the case εQ > 0, with ε > 1, the circular motion dynamics is
determined by the classification given in Table 3, for a fixed
source charge-to-mass ratio, or in Table 4, for a fixed particle
charge-to-mass ratio.

Table 2 Values of the angular
momentum L which are
possible in different regions of
the radial coordinate r

Class I Class II Class III

Region Momentum Region Momentum Region Momentum

r = r+
l L = ±L− r = r+

l L = ±L− r = r+
l L = ±L−

(r+
l , r+

γ ) L = ±L± (r+
l , r+

γ ) L = ±L± (r+
l , r+

γ ) L = ±L±
r = r+

γ L = ±Ln r = r+
γ L = ±Ln r = r+

γ L = 0

(r+
γ ,∞) L = ±L− (r+

γ , r+
s ) L = ±L−

Class IV Class V Class VI

Region Momentum Region Momentum Region Momentum

r = r+
l L = ±L− r = r+

l (r+
s ) L = 0 r = r+

l L = ±L−
(r+
l , r+

s ) L = ±L± (r+
l , r+

γ )((r+
s , r+

γ )) L = ±L+ (r+
l , r+

γ ) L = ±L±
r = r+

s L = ±L+; L = 0 r = r+
γ L = ±Ln

(r+
s , r+

γ ) L = ±L+ (r+
γ , r+

s ) L = ±L−
r = r+

s L = 0

Class VII Class VIII Class IX

Region Momentum Region Momentum Region Momentum

r = r+
l (r+

s ) ±L− r = r+
l L = 0 r = r+

s L = 0

(r+
l , r+

s ) L = ±L± (r+
l , r+

γ ) L = ±L+ (r+
s , r+

γ ) L = ±L+
r = r+

s L = 0 r = r+
γ L = ±Ln

Table 3 Classification of the circular orbits of a charged test particle with charge-to-mass ratio ε > 1 in terms of the value of the ratio Q/M of a
RN black hole

Q/M ∈ (0, 1/2] Q/M ∈ [1/2,
√

13/5) Q/M ∈ [√13/5,
√

2/3) Q/M ∈ [√2/3, 1)

Region Class Region Class Region Class Region Class

ε ∈]1, 2] I ε ∈]1, M/Q] I ε ∈]1, M/Q] I ε ∈]1, M/Q] I

ε ∈]2, M/Q] I ε ∈]M/Q, 2] II ε ∈]M/Q, εn] II ε ∈]M/Q, εn] II

ε ∈]M/Q, εn] VI ε ∈]2, εn[ VI ε = εn III ε = εn III

ε = εn VII ε = εn VII ε ∈]εn, 2] IV ε ∈]εn, ε̃[ IV

ε ∈]εn, ε̃[ IV ε ∈]εn, ε̃[ IV ε ∈]2, ε̃[ IV ε ∈]̃ε, 2] V

ε = ε̃ VIII ε = ε̃ VIII ε = ε̃ VIII ε > 2 IX

ε > ε̃ IX ε > ε̃ IX ε > ε̃ IX
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Table 4 Classification in terms of the charge-to-mass ratio ε > 1 of
the circular orbits of a charged test particle moving in the field of a RN
black hole with mass M and charge Q

ε ∈]1, 2] ε > 2

Region Class Region Class

Q ∈]0, M/ε] I Q ∈]0, M/ε] I

Q ∈]M/ε, Qn[ II Q ∈]M/ε, Qn[ VI

Q = Qn III Q = Qn VII

Q ∈]Qn, Q̃[ IV Q ∈]Qn, Q̃[ IV

Q ∈ [Q̃, M[ V Q = Q̃ VIII

Q ∈]Q̃, M[ IX

First, we can recognize nine different situations listed in
Table 2. There are orbits with angular momentum L = ±L±,
L = ±Ln or even L = 0. As mentioned above, this last
case occurs when the particle is located at rest with respect
to an observer at infinity. Clearly, these particular “orbits”
are the consequence of the full balance between the attrac-
tion and repulsion among test particles and sources. The infi-
mum circular orbital radius can be r = r+

γ , r = r+
l or also

r = r+
s . Comparing with the case ε < 1, we can clearly

see that the main difference between the two cases con-
sists in the presence of a supremum circular orbital radius
at r = r+

γ or at r = r+
s . This means that the repulsive

electromagnetic effect, predominant at larger distances, does
not allow circular orbits around the source. The classifi-
cations of Tables 3 and 4 are alternative and equivalent.
In the first one, if we fix the charge-to-mass ratio of the
black hole, and we move toward increasing values of the
particle charge-to-mass ratio, we propose to divide all the
possible scenarios into four classes of objects characterized
by

I : Q/M ∈ (0, 1/2], II : Q/M ∈ (1/2,
√

13/5] ,

III : Q/M ∈ (
√

13/5,
√

2/3) , IV : Q/M ∈]√2/3, 1),

(18)

respectively. Thus, for a fixed charge of the spacetime, and
following Tables 3 and 2, we can trace a picture of the dynam-
ical properties of that spacetime. An example is provided in
Figs. 3 and 4, where the case of a spacetime of charge-to-mass
ratio Q/M = 0.1 is illustrated.

On the other hand, in Table 4, if we fix the charge-to-
mass ratio of the test particle and move toward increas-
ing values of the charge-to-mass ratio of the source, we
find only two different cases: ε ≤ 2 and ε > 2. In
conclusion, using this classification, we can determine the
orbital radius followed by the selected particle in the fixed
spacetime.

Fig. 3 Black hole case with Q = 0.1M . T the radii r+
s , r+

l and r+
γ are

plotted as functions of the test particle charge-to-mass ratio ε. Shaded
regions are forbidden

4 Circular motion around a RN naked singularity

Equations (6) govern the circular motion around a RN naked
singularity (Q ≥ M) as well. Because (7) and (9) define the
angular momentum L± and the energy E± in terms of r/M ,
Q/M , and ε, it is necessary to investigate several intervals
of values where circular motion is allowed. To this end, it is
useful to introduce the following notation:

εl ≡
√

9M2 − 8Q2

Q
, (19)

ε̃± ≡ 1√
2Q

√
5M2 ± 4Q2 +

√
25M2 − 24Q2, (20)

˜̃ε± ≡ 1√
2Q

√
3M2 − 2Q2 ± M

√
9M2 − 8Q2, (21)

where ε̃− = ε̃ and ˜̃ε+ = εn as defined in Eqs. (10) and (11),
respectively.4 These limiting values for the particle charge

4 The charge parameters εl , ε̃± and ˜̃ε± in Eqs. (19, 20, 21) have been
found by parameterizing the motion of charged particles in naked sin-
gularity geometries for the dimensionless charge Q/M of the central
singularity. In this way, we define the classes of naked singularities pre-
sented in Tables 5, 6, 7, 8, 9 and 10. Hence the particle motion is analyzed
according to the appropriate restrictions on the charge-to-mass ratio of
the particle. The study of the particle angular momenta has led to the
identifications of the charge limits (19), (20) and (21). An alternative
analysis based on a different parametrization can be found in [21].
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Fig. 4 Black hole case with Q = 0.1M . Shaded regions are forbidden. The radii r+
s , r+

l and r+
γ are plotted as functions of the test particle

charge-to-mass ratio ε in the region [−10, 30]

Fig. 5 The charge parameters εl , ε̃±, and˜̃ε± as functions of the charge-
to-mass ratio of the RN naked singularity. The special lines Q/M =
5/

(
2
√

6
)

≈ 1.02, Q/M = 3
√

6/7 ≈ 1.05, and Q/M = √
9/8 ≈

1.06 are also plotted

must be real and positive, therefore, the ranges of definitions
for the charges (εl , ε̃±,˜̃ε±) are chosen in accordance with
the positive roots of the Eqs. (19), (20) and 21 in terms of
the charge-to-mass ratio Q/M of the naked singularity. For
completeness, and following [21], we reproduce here in Fig. 5
the behavior of these parameters in terms of the ratio Q/M >

1, where the definition domains for the charges (εl , ε̃±,˜̃ε±)

are also shown.
The special points where ε̃+ = ε̃−, εl = ˜̃ε− and˜̃ε+ = ˜̃ε−

correspond to three special values of the ratio Q/M , which
define four different intervals as follows:

I : Q/M ∈ (1, 5/(2
√

6)],
II : Q/M ∈ (5/(2

√
6), (3

√
6)/7] ,

III : Q/M ∈ ((3
√

6)/7,
√

9/8] ,

IV : Q/M ∈ [√9/8,∞). (22)

Furthermore, it turns out that the properties of circular orbits
drastically depends on the sign of the test charge. Moreover,
particles with charges within the interval −1 < ε < 1 present

a very rich structure of possible circular orbits. We therefore
analyze separately positive and negative test charges in two
different intervals.

4.1 Positive test charges

For ε > 0, in general, circular orbits exist in the region
r > r∗ ≡ Q2/M . This means that, in the repulsive case,
even a small electric charge generates a drastic change in the
structure of circular orbits in a NS spacetime, making this an
extremely sensitive case. We therefore introduce a classifica-
tion of naked singularities which includes four classes (I+<,
II+<, III+<, V+

<) in the interval of small charges, 0 < ε < 1,
and two classes (I >+, II >+) for large charges, ε > 1.

In the case of small test charges, it is necessary to con-
sider separately all the possible values of the charge param-
eters εl , ε̃± and ˜̃ε± in all the regions determined by the
four classes of naked singularities given in (22). The angu-
lar momentum of the test particles depends on the value
of the charge-to-mass ratio ε and the distance r from the
origin of coordinates. The results are schematically repre-
sented in the Tables 5, 6, 7 and 8. A detailed analysis of
the behavior of the energy and angular momentum of pos-
itive test charges is presented in the figures of given in
“Appendix A”.

We see that in the interval of small test charges several
subclasses appear which are delimited by the value of the
charge parameters εl , ε̃± and ˜̃ε±. In general we can sum-
marize the situation as follows. There is always a mini-
mum radius rmin at which circular motion is allowed. At
the radius r−

γ the energy of the test particle diverges, indi-
cating that the hypersurface r = r−

γ is lightlike. In the sim-
plest case, there is a minimum radius rmin so that circular
orbits are allowed in the infinite interval ]rmin,∞). Other-
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Table 5 Class I+<: M < Q ≤ 5/(2
√

6)M for a test particle charge-to-mass ratio ε ∈]0, 1[
(a): 0 < ε ≤ ˜̃ε− (Fig. 6) (b): ˜̃ε− < ε < ε̃− (Fig. 7) (c):̃ε− ≤ ε ≤ ε̃+ (Fig. 10)

Region Momentum Region Momentum Region Momentum

r = r+
s L = 0 (r−

γ , r+
s ) L = ±L+ (r−

γ , r+
s ) L = ±L+

(r+
s , r−

γ ) L = ±L− [r+
s , r−

l ) L = ±L± r = r+
s L = 0

(r−
γ , r−

l ] L = ±L± [r+
l , r+

γ ) L = ±L± [r+
l , r+

γ ) L = ±L±
[r+
l , r+

γ ) L = ±L± r ≥ r+
γ L = ±L− r ≥ r+

γ L = ±L−
r ≥ r+

γ L = ±L−

(d): ε̃+ < ε ≤ εl (Fig. 9) (e): εl < ε < ˜̃ε+ (Fig. 8) (f): ˜̃ε+ ≤ ε < M/Q (Fig. 11)

Region Momentum Region Momentum Region Momentum

(r−
γ , r+

s ) L = ±L+ (r−
γ , r+

s ) L = ±L+ (r−
γ , r+

γ ) L = ±L+
[r+
s , r−

l ) L = ±L± [r+
s , r+

γ ) L = ±L± r > r+
s L = ±L−

[r+
l , r+

γ ) L = ±L± r ≥ r+
γ L = ±L−

r ≥ r+
γ L = ±L−

(g) M/Q ≤ ε < 1 (Fig. 12)

Region Momentum

(r−
γ , r+

γ ) ±L+

Table 6 Class II+<: 5/(2
√

6)M < Q < (3
√

6/7)M , for a test particle charge-to-mass ratio ε ∈]0, 1[
(a): 0 < ε < ˜̃ε− (Fig. 13) (b): ˜̃ε− < ε < εl (Fig. 14) (c): εl ≤ ε ≤ ˜̃ε+ (Fig. 15)

Region Momentum Region Momentum Region Momentum

r = r+
s L = 0 (r+

γ , r+
s ) L = ±L+ (r+

γ , r+
s ) L = ±L+

(r+
s , r−

γ ] L = ±L− r = r+
s L = 0 [r+

s , r+
γ ) L = ±L±

(r−
γ , r−

l ] L = ±L± (r+
s , r−

l ) L = ±L± r ≥ r+
γ L = ±L−

[r+
l , r+

γ ) L = ±L± [r+
l , r+

γ ) L = ±L±
r ≥ r+

γ L = ±L− r ≥ r+
γ L = ±L−

(d): ˜̃ε+ ≤ ε < M/Q (Fig. 16) (e): M/Q ≤ ε < 1 (Fig. 17)

Region Momentum Region Momentum Region Momentum

(r−
γ , r+

γ ) L = ±L+ (r−
γ , r+

γ ) L = ±L+
r > r+

s L = ±L−
r = r+

s L = 0

wise, this region is split by a lightlike hypersurface situated at
r+
γ > rmin.

Another possible structure is that of a spatial configuration
formed by two separated regions in which circular motion is
allowed in a finite region filled with charged particles within
the spatial interval (rmin = r−

γ , rmax = r+
γ ). This region

is usually surrounded by an empty finite region in which
no motion is allowed. Outside the empty region, we find a
zone of allowed circular motion in which either only neutral
particles or neutral and charged particles can exist in circular
motion.

The situation in the case of large charges (ε > 1) is sim-
pler. There is only one region in class I+> in which circular
motion can exist. Naked singularities within the Class II+>
do not allow any circular orbits. In fact, since for εQ > 0
the Coulomb interaction is repulsive, the configuration char-
acterized by the values Q ≥ √

9/8M and ε > 1 corresponds
to a repulsive electromagnetic effect that cannot be balanced
by an attractive gravitational interaction.

The energy and angular momentum of circular orbits
diverge as r approaches the limiting orbits at r±

γ ; the bound-
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Table 7 Class III+<: (3
√

6/7)M ≤ Q ≤ √
9/8M , for a test particle charge-to-mass ratio ε ∈]0, 1[

(a): 0 < ε ≤ εl (Fig. 18) (b): εl < ε ≤ ˜̃ε− (Fig. 19) (c):̃̃ε− < ε < ˜̃ε+ (Fig. 20)

Region Momentum Region Momentum Region Momentum

[r−
γ , r−

l ] L = ±L− r = r+
s L = 0 (r−

γ , r+
s ) L = ±L+

r = r+
s L = 0 (r+

s , r−
γ ) L = ±L− [r+

s , r+
γ ) L = ±L±

(r+
s , r−

l ) L = ±L± [r−
γ , r+

γ ) L = ±L± r ≥ r+
γ L = ±L−

[r+
l , r+

γ ) L = ±L± r ≥ r+
γ L = ±L−

r ≥ r+
γ L = ±L−

(d): ˜̃ε+ ≤ ε < M/Q (Fig. 21) (e): M/Q ≤ ε < 1 (Fig. 22)

Region Momentum Region Momentum Region Momentum

(r−
γ , r+

γ ) L = ±L+ (r−
γ , r+

γ ) L = ±L+
r = r+

s L = 0

r > r+
s L = ±L+; L = ±L−

Class IV+
< Q >

√
9/8M (Fig. 23)

0 < ε < M/Q
Region Momentum

r = r+
s L = 0

r > r+
s L = ±L−

Table 8 Classes for large test
charges (ε > 1)

Class I+>: M < Q <
√

9/8M Class II+>:
√

9/8M < Q

Region Momentum Region Momentum

(r−
γ , r+

γ ) L = L+ Forbidden

ary r = r+
γ in this case corresponds to a lightlike hypersur-

face. Finally, the energy of the states is always positive.

4.2 Negative test charges

In the case of test particles with negative charge, the depen-
dence of circular orbits on the charge-to-mass ratio of the
naked singularity is simpler than in the case of positive
charges. Indeed, we need to consider only two intervals
defined as follows:

I− : M < Q <
√

9/8M II− : Q/M >
√

9/8. (23)

Large negative particle charge-to-mass ratio: For ε < −1,
the contribution of the electromagnetic interaction is always
attractive. Hence, the repulsive force necessary to balance
the attractive effects of the Coulomb interactions can be gen-
erated only by a RN naked singularity. In particular, for
ε < −1 and for Q >

√
9/8M (Class II−) circular orbits

with L = L+ always exist for r > 0. For M < Q ≤ √
9/8M

(Class I−), circular orbits exist with L = L+ in 0 < r < r−
γ

and r > r+
γ . Charged test particles with ε < −1 can move

along circular orbits also in the region (0, r∗]. The value of
the energy on circular orbits increases as r approaches r = 0,
and the angular momentum, as seen by an observer located
at infinity, decreases as the radius of the orbit decreases. In
the region M < Q ≤ √

9/8M , two limiting orbits appear at
r±
γ (similar to the neutral particle case [34]).

Small negative particle charge-to-mass ratio: In the case of
small charges (−1 < ε < 0), it is necessary to split the
analysis into three different intervals. The results are summa-
rized in Tables 9 and 10. We classify naked singularities into
two classes, according to the interval of Q/M to which they
belong. In general, two different configurations are allowed.
For Q >

√
9/8M (Class II−) a continuous region appears

from a minimum radius rmin ∈ {r±
s , Q2/(2M)} to infinity in

which circular orbits are allowed. For M < Q ≤ √
9/8M

(Class I−) there is a non-connected region (rmin,∞) inside
which there is a forbidden region (r−

γ , r+
γ ). The configuration

is therefore composed of two disconnected regions.
In “Appendix B”, we include several figures that depict the

behavior of the angular momentum and energy of negative
test charges.
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Table 9 Class I− M < Q ≤ √
9/8M

(a): ε < −1 (b): −1 < ε < −M/Q (Fig. 24) (c): ε = −M/Q (Fig. 25)

Region Momentum Region Momentum Region Momentum

(0, r−
γ ) L = ±L+ r = r+

s L = 0 r = Q2/2M L = 0

r > r+
γ L = ±L+ (r+

s , r−
γ ) L = ±L+ (Q2/2M, r−

γ ) L = ±L+
r > r+

γ L = ±L+ r > r+
γ L = ±L+

(d): −M/Q < ε < 0 (Fig. 26)

Region Momentum

r = r−
s L = 0

(r−
s , r−

γ ) L = ±L+
r > r+

γ L = ±L+

Table 10 Class II− Q >
√

9/8M

(a): ε < −1 (b): −1 < ε < −M/Q (Fig. 27) (c): ε = −M/Q (Fig. 28)

Region Momentum Region Momentum Region Momentum

r > 0 L = ±L+ r = r+
s L = 0 r = Q2/2M L = 0

r > r+
s L = ±L+ r > Q2/2M L = ±L+

(d): −M/Q < ε < 0 (Fig. 29)

Region Momentum

r = r−
s L = 0

r > r−
s L = ±L+

5 Discussion and future perspectives

In this work, we explored the motion of charged test par-
ticles along circular orbits in the spacetime described by
the Reissner–Nordström metric. A detailed discussion of the
dynamics for the black hole and naked singularity cases has
been performed. Circular orbits have been classified in detail
for a complete set of cases.

We adopt the effective potential approach to study test par-
ticle orbits in the Reissner–Nordström spacetime, focusing
on the equatorial orbits. We explore the morphology of the
orbital regions. This analysis leads to a clear differentiation
between naked singularities and black holes. A remarkable
implication of this description is that the circular orbit con-
figuration in the black hole case is not allowed in the naked
singularity regime. Instead, the study of the circular orbits
traces out a possible way to distinguish the two physical sit-
uations.

In previous work [21,34,35], we analyzed the dynam-
ics of the RN spacetime, and studied the motion of neutral
and charged test particles, by using the effective potential
approach. We showed that in the case of charged test parti-

cles the term εQ/r drastically changes the behavior of the
effective potential. The study shows the existence of stabil-
ity regions whose geometric structure clearly distinguishes
naked singularities from black holes (see also [36–39]). In
[21], in particular, we studied the spatial regions of the RN
spacetime where circular motion is allowed around either
black holes or naked singularities. We showed that the geo-
metric structure of stable accretion disks allows us to clearly
distinguish between black holes and naked singularities. In
this work, we presented the complete classification of circu-
lar motion around a RN black hole, and around a RN naked
singularity with 0 < ε < 1 and −1 < ε < 0.

Clearly, this analysis could be used to construct an
accretion disk with disconnected rings made of test par-
ticles. A precise characterization of matter configurations
surrounding a charged compact astrophysical object can
account for significant astrophysical processes observed in
the electromagnetic band, like the jet emissions. There-
fore understanding the dynamics around compact objects
is important for the understanding of the accretion disk
phenomena and the classification of their general
properties.
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In the naked singularity case, gravity can assume a repul-
sive nature that produces a complicated picture of dynamics
around the source. We distinguish four regions of charge-
to-mass ratio values of the source that characterized these
configurations. In each region, different cases can occur:
an infinite, continuum, region or otherwise a disconnected
region. In the black hole case the circular orbits’ configura-
tion strongly varies if ε ≤ 1 or ε > 1. An infimum radius
always appears, and in the case ε > 1 a supremum circular
orbits radius can appear.

The existence of special schemes for circular orbits in
RN geometries as outlined in Tables 1, 2, 3, 4, 5, 6, 7,
8, 9 and 10 show a complicated scenario able to distin-
guish classes of attractors and particles in motion identi-
fied through their charge-to-mass ratios. More importantly,
this investigation has enlighten particular limiting values for
the BH and NS metric parameters and, remarkably, notable
values for the charge-to mass ratio of the orbiting parti-
cle. The importance of these studies lies also in the fact
that for a long time the existence and interpretation have
been discussed of the limits of the charge-to-mass ratio and
of the dimensionless spin emerging from the general rela-
tivistic formulation of non-quantum self-gravitating objects
with electric charge or intrinsic spin. These descriptions have
been performed by using the relativistic exact solutions of
Kerr, Reissner–Nordström and Kerr–Newman. In the case
of black holes, considered in Tables 1, 2, 3 and 4, the situ-
ation is very clear. For negatively charged elementary par-
ticles, ε < 0 (with attractive force Qε < 0) the region
of circular motion is bounded from below by the photon’s
circular orbit. The situation is definitely complicated for
particles with small positive charges, ε ∈]0, 1[, where an
articulated structure, determined by the new limiting radius
rl , appears. The role of the radius r∗ = Q2/M for zero
angular momentum particles (ZAMPs) in BH geometries
and r	 ≡ Q2/2M for ZAMPs in NS spacetimes are thor-
oughly considered, leading to a generalization with radius
r+
s (Q). It is interesting to note that r∗ corresponds to the

value of the classical radius of an electric charge.5 How-
ever, this proves that high negative charges (attractive inter-
action) have some similarities with small charges ε ∈]0, 1[
with repulsive force (εQ/M < 1). The repulsive case, how-
ever, Qε > 0, shows a richer classification of possible cases
as ε increases (see Tables 2 and 3). From the rich struc-

5 We note that rs = 2GM/c2 is the Schwarzschild radius r2
Q =

Q2G/4πε0c4 is the scale radius corresponding to the central mass
M with an electric charge Q, where G the gravitational constant and
(4πε0)

−1 is the Coulomb constant (ε0 is here the electric permittivity).

ture of the cases shown in Table 3, we point out the pres-
ence of particular limiting values for black holes, namely
Q/M |lim ∈ (1/2,

√
13/5,

√
2/3), and for charged parti-

cles, namely ε|lim ∈ (1, 2, M/Q, εn(Q), ε̃(Q)). However,
Table 4 clearly shows that ε = 1 and ε = 2 are particularly
important limiting particle charges. Naked singularities, on
the other hand, must be classified as weak (Q/M <

√
9/8)

or strong (Q/M >
√

9/8) compact objects. We recognize
four classes for the charge parameters with limiting values
Q/M |lim ∈ (1, 5/(2

√
6), 3

√
6/7,

√
9/8), and different val-

ues for the particle charge, for instance, εlim = M/Q.6 These
results are important in the characterization of interactions
between self-gravitating charged objects and charged parti-
cles, particularly for parameters close to the limiting values
pointed out here. Further limits have been studied, for exam-
ple, in [5]. In [6], some limiting values have been found in the
context of Keplerian accretion in braneworld Kerr–Newman
spacetimes. In particular, in the limit of RN-solutions, the
parameter values Q/M = √

5/4 and Q/M = √
9/8 have

already been identified.
More generally, these studies can also be applied in the

investigation of the coupling between gravitational and elec-
tromagnetic waves, which is a well-known feature of this
geometry, and of the role of the electric charge in the grav-
itational collapse. Indeed, the Reissner–Nordström metric is
a static electrovacuum, spherically symmetric exact solution
of Einstein–Maxwell equations with a radial electric field.
This metric can also be interpreted as describing the exterior
gravitational and electromagnetic fields of a static, expand-
ing or collapsing, or oscillating spherically symmetric, elec-
trically charged body. Stability and instability of Reissner–
Nordström black holes and, particularly, the extreme case
are investigated, for example, in [43–46] and in [47,50,51].
Quasinormal modes of nearly extreme Reissner–Nordström
black holes are studied in [48]. The investigation of this solu-
tion still leaves open the problem of finding a precise astro-
physical situation in which the metric is of considerable rele-
vance. Indeed, it is usually assumed that, if formed, a highly
charged object, such as a black hole with (Q/M ∈]0, 1[),
would in short time be neutralized by some matter-field envi-
ronments (see, for instance, [49]). Despite this, the inter-
est in the Reissner–Nordström solution is still huge. For
instance, several applications have been found also as an

6 A similar limit, present also in the analysis of the BH regimes, has
been found with respect to the angular momentum and rotational fre-
quency for an orbiting particle in different regions of the Kerr geometry.
In this case, the correspondence is between the charge and the spin of
the central source, namely, a limiting value of ≈ M/a [4,40–42].
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extension in super-symmetric analysis and super-string the-
ories [50–52], where it is considered even as a general rel-
ativistic (non-quantum) model of charged elementary par-
ticles (ε ≷ ±1). The RN metric has also been considered
for a number of stellar objects as a limiting electrovacuum
solution determined by matching an interior solution with
an exterior naked singularity. The interior solution can be a
boson star [19], a solution with cosmological constant [54]
or the class of astrophysical Tolman–Bayin solutions [53].
An interesting comparison of the results found here could
be carried out by considering similarities with braneworld
scenarios. Indeed, assuming a spherically symmetric met-
ric induced on the 3-brane, the constrained effective gravi-
tational field equations on the brane can be solved, giving
NS and BH solutions with a braneworld parameter play-
ing the role of a tidal charge (see [59,60]). Further appli-
cations may be found by considering the regular spacetimes
related to non-linear electrodynamics solutions discussed in
[9,61]. Furthermore, the role of the electric charge during
the collapse of compact stars remains still to be fully under-
stood [18,55,56]. In general, the study of collapsing stars
permits to investigate the relationship between the gravita-
tional and electromagnetic fields in a geometrized approach
to unification where, for example, the electromagnetic wave
gives rise to gravitational waves, constituting therefore one
of the most intriguing aspects of the possible conversion of
electromagnetic energy into gravitational energy and vice
versa. This is a very remarkably feature of the coupling
between the electromagnetic and gravitational perturbations
[30,31,57,58].

We expect that future analysis in these directions can place
more precisely in this context the parameter limits for the cen-
tral source and the charged particles; these additional anal-
ysis could give a clear explanation of the existence and role
of these limits.
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Appendix A: Behavior of the angular momentum and
energy of positive test charges

Fig. 6 Class: M < Q ≤ 5/(2
√

6)M and 0 < ε ≤ ˜̃ε−. Param-
eter choice is as follows: Q = 1.02M and ε = 0.1. Then ˜̃ε− =
0.215376, r+

s = 1.06185M , r−
γ = 1.08866M , r+

γ = 1.91134M ,

r−
l = 1.09183M , and r+

l = 1.90817M . Circular orbits exist with
angular momentum L = L− (gray curve) and energy E = E− (black
curve) in r+

s < r < r−
γ ; L = 0 at r = r+

s (upper left plot); L = L±
in r−

γ < r ≤ r−
l (upper right plot) and in r+

l ≤ r < r+
γ (bottom left

plot); L = L− in r ≥ r+
γ (bottom right plot). The angular momentum

L+ is represented by a gray dotted curve and the energy E+ by a black
dashed curve

Fig. 7 Class: M < Q ≤ 5/(2
√

6)M and ˜̃ε− < ε < ε̃−. Parameter
choice is as follows: Q = 1.02M and ε = 0.5. Then ˜̃ε− = 0.215376,
ε̃− = 0.564915, r+

s = 1.17698M , r−
γ = 1.08866M , r+

γ = 1.91134M ,

r−
l = 1.17724M , and r+

l = 1.82276M . Circular orbits exist with
angular momentum L = L+ (gray curve) and energy E = E+ (black
curve) in r−

γ < r < r+
s (upper left plot); L = L± in r+

s ≤ r < r−
l

(upper right plot) and r+
l ≤ r < r+

γ (bottom left plot); L = L− in
r ≥ r+

γ (bottom right plot). The angular momentum L− (gray dotted
curve) and the energy E− (black dashed curve) are also plotted
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Fig. 8 Class: M < Q ≤ 5/(2
√

6)M and ε̃− ≤ ε ≤ ε̃+. Parameter
choice is as follows: Q = 1.02M and ε = 0.68. Then ε̃− = 0.564915,
ε̃+ = 0.697649 r+

s = 1.27878M , r−
γ = 1.08866M , r+

γ = 1.91134M ,

r−
l = 1.2788M and r+

l = 1.7212M . Circular orbits exist with angular

momentum L = L+ (gray curve) and energy E = E+ (black curve) in
r−
γ < r < r+

s (left plot); L = 0 at r = r+
s ; L = L± in r+

l ≤ r < r+
γ

(center plot); L = L− in r ≥ r+
γ (right plot)

Fig. 9 Class: M < Q ≤ 5/(2
√

6)M and ε̃+ < ε ≤ εl . Parameter
choice is as follows: Q = 1.02M and ε = 0.8. Then εl = 0.806548,
ε̃+ = 0.697649, r+

s = 1.42131M , r−
γ = 1.08866M , r+

γ = 1.91134M ,

r−
l = 1.44769M , and r+

l = 1.55231M . Circular orbits exist with
angular momentum L = L+ (gray curves) and energy E = E+ (black
curves) in r−

γ < r < r+
s (upper left plot); L = L± in r+

s ≤ r < r−
l

(upper right plot) and r+
l ≤ r < r+

γ (bottom left plot); L = L− in
r ≥ r+

γ (bottom right plot)

Fig. 10 Class: M < Q ≤ 5/(2
√

6)M and εl < ε < ˜̃ε+. Param-
eter choice is as follows: Q = 1.02M and ε = 0.85. Then εl =
0.806548, ˜̃ε+ = 0.914942, r+

s = 1.53979M , r−
γ = 1.08866M , and

r+
γ = 1.91134M . Circular orbits exist with angular momentum L = L+

(gray curves) and energy E = E+ (black curves) in r−
γ < r < r+

s (left
plot); L = L± in r+

s ≤ r < r+
γ (center plot); and L = L− in r ≥ r+

γ

(right plot)
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Fig. 11 Class: M < Q ≤ 5/(2
√

6)M and ˜̃ε+ ≤ ε < M/Q. Param-
eter choice is as follows: Q = 1.02M and ε = 0.92. Then ˜̃ε+ =
0.914942, M/Q = 0.980392, r+

s = 1.96981M , r−
γ = 1.08866M , and

r+
γ = 1.91134M . Circular orbits exist with angular momentum L = L+

(gray curves) and energy E = E+ (black curves) in r−
γ < r < r+

γ (left
plot) and L = L− in r > r+

s (right plot)

Fig. 12 Class: M < Q ≤ 5/(2
√

6)M and M/Q ≤ ε < 1. Parameter
choice is as follows: Q = 1.02M and ε = 0.99. Then ˜̃ε+ = 0.914942,
r+
s = 0.431596M , r−

γ = 1.08866M , and r+
γ = 1.91134M . Circular

orbits exist with angular momentum L = L+ (gray curve) and energy
E = E+ (black curve) in r−

γ < r < r+
γ

Fig. 13 Class: 5/(2
√

6)M < Q < (3
√

6/7)M and 0 < ε < ˜̃ε−.
Parameter choice is as follows: Q = 1.04M and ε = 0.3. Then ˜̃ε− =
0.338294, r+

s = 1.18836M , r−
γ = 1.20538M , r+

γ = 1.79462M , r−
l =

1.25007M , and r+
l = 1.74993M . Circular orbits exist with angular

momentum L = L− (gray curves) and energy E = E− (black curves)
in r+

s < r ≤ r−
γ (upper left plot); L = 0 at r = r+

s ; L = L± in

r−
γ < r ≤ r−

l (upper right plot) and r+
l ≤ r < r+

γ (bottom left plot);
L = L− in r ≥ r+

γ (bottom right plot)

Fig. 14 Class: 5/(2
√

6)M < Q < (3
√

6/7)M and ˜̃ε− < ε < εl .
Parameter choice is as follows: Q = 1.04M and ε = 0.4. Then ˜̃ε− =
0.338294, εl = 0.566574, r+

s = 1.23565M , r−
γ = 1.20538M , r+

γ =
1.79462M , r−

l = 1.29135M , and r+
l = 1.70865M . Circular orbits

exist with angular momentum L = L+ (gray curve) and energy E =
E+ (black curve) in r−

γ < r < r+
s (upper left plot); L = 0 at r = r+

s ;

L = L± in r+
s < r < r−

l (upper right plot) and r+
l ≤ r < r+

γ (bottom
left plot); L = L− in r ≥ r+

γ (bottom right plot)
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Fig. 15 Class: 5/(2
√

6)M < Q < (3
√

6/7)M and εl ≤ ε ≤ ˜̃ε+.
Parameter choice is as follows: Q = 1.04M and ε = 0.6. Then ˜̃ε+ =
0.811927 and εl = 0.566574, r+

s = 1.37651M , r−
γ = 1.20538M , and

r+
γ = 1.79462M . Circular orbits exist with angular momentum L = L+

(gray curve) and energy E = E+ (black curve) in r−
γ < r < r+

s (left
plot); l = L± in r+

s ≤ r < r+
γ (center plot); and L = L− in r ≥ r+

γ

(right plot)

Fig. 16 Class: 5/(2
√

6)M < Q < (3
√

6/7)M and ˜̃ε+ ≤ ε < M/Q.
Parameter choice is as follows: Q = 1.04M and ε = 0.96. Then ˜̃ε+ =
0.811927, M/Q = 0.961538 r+

s = 52.4944M , r−
γ = 1.20538M , and

r+
γ = 1.79462M . Circular orbits exist with angular momentum L = L+

(gray curve) and energy E = E+ (black curve) in r−
γ < r < r+

γ ( left
plot) and L = L− in r > r+

s ; L = 0 at r = r+
s (right plot)

Fig. 17 Class: 5/(2
√

6)M < Q < (3
√

6/7)M and M/Q ≤ ε < 1.
Parameter choice is as follows: Q = 1.04M and ε = 0.97, Then ˜̃ε+ =
0.866828, M/Q = 0.961538, r−

γ = 1.20538M , and r+
γ = 1.79462M .

Circular orbits exist with L = L+ (gray curve) and E = E+ (black
curve) in r−

γ < r < r+
γ

Fig. 18 Class: (3
√

6/7)M ≤ Q ≤ √
9/8M and 0 < ε ≤ εl Parameter

choice is as follows: Q = 1.06M and ε = 0.01. Then εl = 0.0998397,
r+
s = 1.12756M , r−

γ = 1.44708M , r+
γ = 1.55292M r−

l = 1.44735M ,

and r+
l = 1.55265M . Circular orbits exist with angular momentum L =

L− (gray curve) and energy E = E− (black curve) in r−
γ ≤ r ≤ r−

l ;

L = 0 at r = r+
s (upper left plot); L = L± in r+

s < r < r−
l (upper

right plot) and r+
l ≤ r < r+

γ (bottom left plot); L = L− in r ≥ r+
γ

(bottom right plot)
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Fig. 19 Class: (3
√

6/7)M ≤ Q ≤ √
9/8M and εl < ε ≤ ˜̃ε−.

Parameter choice is as follows: Q = 1.06M and ε = 0.2. Then
εl = 0.0998397, ˜̃ε− = 0.536564, r+

s = 1.21047M , r−
γ = 1.44708M ,

and r+
γ = 1.55292M . Circular orbits exist with angular momen-

tum L = L− (gray curve) and energy E = E− (black curve) in
r+
s < r < r−

γ ; L = 0 at r = r+
s (left plot); L = L± in r−

γ ≤ r < r+
γ

(center plot); and L = L− in r ≥ r+
γ (right plot)

Fig. 20 Class: (3
√

6/7)M ≤ Q ≤ √
9/8M and ˜̃ε− < ε < ˜̃ε+.

Parameter choice is as follows: Q = 1.06M and ε = 0.6. Then
˜̃ε+ = 0.618133, ˜̃ε− = 0.536564, r+

s = 1.52596M , r−
γ = 1.44708M ,

and r+
γ = 1.55292M . Circular orbits exist with angular momen-

tum L = L+ (gray curve) and energy E = E+ (black curve) in
r−
γ < r < r+

s (left plot); L = L± in r+
s ≤ r < r+

γ (center plot);
and L = L− in r ≥ r+

γ (right plot)

Fig. 21 Class: (3
√

6/7)M ≤ Q ≤ √
9/8M and ˜̃ε+ ≤ ε < M/Q.

choice is as follows: Q = 1.06M and ε = 0.66. Then ˜̃ε+ = 0.618133,
M/Q = 0.943396 r+

s = 1.62572M , r−
γ = 1.44708, M , and r+

γ =
1.55292M . Circular orbits exist with angular momentum L = L+ (gray
curve) and energy E = E+ (black curve) in r−

γ < r < r+
γ (left plot)

and L = L− in r > r+
s ; L = 0 at r = r+

s (right plot)

Fig. 22 Class: (3
√

6/7)M ≤ Q ≤ √
9/8M and M/Q ≤ ε < 1.

Parameter choice is as follows: Q = 1.06M and ε = 0.96. Then
M/Q = 0.943396, r−

γ = 1.44708, M and r+
γ = 1.55292M . Circular

orbits exist with angular momentum L = L+ (gray curve) and energy
E = E+ (black curve) in r−

γ < r < r+
γ
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Fig. 23 Class:0 < ε < M/Q and Q >
√

9/8M . Parameter choice
is as follows: Q = 5M and ε = 0.1. Then M/Q = 0.2 and r+

s =
49.2481M . Circular orbits exist with angular momentum L = L− (gray
curve) and energy E = E− (black curve) in r > r+

s and L = 0 at
r = r+

s

Fig. 24 Class: M < Q ≤ √
9/8M and −1 < ε < −M/Q.

Parameter choice is as follows: Q = 1.06M and ε = −0.95. Then
r+
s = 0.542901M , r−

γ = 1.44708M , and r+
γ = 1.55292M . Circular

orbits exist with angular momentum L = L+ (gray curve) and energy
E = E+ (black curve) in r+

s < r < r−
γ (left plot) and in r > r+

γ for
(right plot). For r = r+

s , L = 0

Fig. 25 Class: M < Q ≤ √
9/8M and ε = −M/Q. Parameter

choice is as follows: Q = 1.06M . Then Q2/(2M) = 0.5618M ,
r−
γ = 1.44708M and r+

γ = 1.55292M . Circular orbits exist with angu-
lar momentum L = L+ (gray curve) and energy E = E+ (black curve)
in Q2/(2M) < r < r−

γ (left plot) and in r > r+
γ (right plot). For

r = Q2/(2M), L = 0

Appendix B: Behavior of the angular momentum and
energy of negative test charges

Fig. 26 Class: M < Q ≤ √
9/8M and −M/Q < ε < 0. Parame-

ter choice is as follows: Q = 1.06M and ε = −0.6. Then M/Q =
0.943396, r−

γ = 1.44708M , r+
γ = 1.55292M , and r−

s = 0.889152M .
Circular orbits exist with angular momentum L = L+ (gray curve) and
energy E = E+ (black curve) in r−

s < r < r−
γ (left plot) and in r > r+

γ

(right plot). For r = r−
s , L = 0

Fig. 27 Class: Q >
√

9/8M and −1 < ε < −M/Q. Parameter
choice is as follows: Q = 5M and ε = −0.5. Then M/Q = 0.2,
r+
s = 6.5301M . Circular orbits exist with angular momentum L = L+

(gray curve) and energy E = E+ (black curve) in r > r+
s . For r = r+

s ,
L = 0

Fig. 28 Class: Q >
√

9/8M and ε = −M/Q. Parameter choice is as
follows: Q = 5M and ε = −0.2. Then r+

s = 16M . Circular orbits exist
with angular momentum L = L+ (gray curve) and energy E = E+
(black curve) in the region r > Q2/(2M). For r = Q2/(2M), L = 0
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Fig. 29 Class: Q >
√

9/8M and −M/Q < ε < 0. Parameter choice
is as follows: Q = 5M and ε = −0.1. Then r−

s = 16.7519M . Circular
orbits exist with angular momentum L = L+ (gray curve) and energy
E = E+ (black curve) in r > r−

s . For r = r−
s , L = 0
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