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We present the full set of analytical solutions of the geodesic equations of charged test particles in the

Reissner-Nordström space-time in terms of the Weierstraß }, �, and � elliptic functions. Based on the

study of the polynomials in the # and r equations, we characterize the motion of test particles and discuss

their properties. The motion of charged test particles in the Reissner-Nordström space-time is compared

with the motion of neutral test particles in the field of a gravitomagnetic monopole. Electrically or

magnetically charged particles in the Reissner-Nordström space-time with magnetic or electric charges,

respectively, move on cones similar to neutral test particles in the Taub-NUT space-times.
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I. INTRODUCTION

The Reissner-Nordström space-time is a static, asymp-
totically flat solution of the Einstein-Maxwell equations in
general relativity. It describes charged, nonrotating spheri-
cal black holes or naked singularities. In general, the
Reissner-Nordström space-time represents a gravitating
source which is both electrically and magnetically charged.
It is a special case of the general family of electrovacuum
space-times of Petrov type D found by Plebański and
Demiański [1] and reviewed by Griffiths and Podolský
[2]. These space-times describe the gravitational fields of
isolated massive objects, e.g. stars or black holes, and are
in addition characterized by a NUT (named after Newman,
Unti, and Tamburino) charge, angular momentum, accel-
eration, and a cosmological constant. The higher dimen-
sional generalizations of the Reissner-Nordström solution
were found by Tangherlini [3].

The physical properties of a space-time can be inves-
tigated by studying the motion of test particles and light in
this space-time. Test particles are a sensitive tool to inves-
tigate the properties of the fields generated by the massive
body because of the coupling of the parameters of the
metric and the test particle in the equations of motion.
The geodesic equations can be solved either analytically
or numerically. A pioneer in finding analytical solutions
was Hagihara [4]. He integrated the geodesic equation of a
test particle in the Schwarzschild gravitational field in
terms of the Weierstrass } function. Some special cases
of the geodesics in the Reissner-Nordström space-time
were studied in [5,6]. General features of the motion of
charged test particles in the Kerr-Newman space-time were
considered in [7]. The influence of the gravitomagnetic
monopole moment on the motion of test particles in Kerr-
Newman-Taub-NUT space-time was studied in [8].

A breakthrough in the analytical integration of geodesics
camewith the papers of Hackmann and Lämmerzahl [9,10]
where geodesics in a 4-dimensional Schwarzschild-de
Sitter space-time were integrated analytically in terms of

the hyperelliptic � and � functions. The developed method
is based on the Jacobi inversion problem restricted to the �
divisor. Also, geodesics in the Reissner-Nordström-de
Sitter space-time in four dimensions as well as in some
higher dimensional Schwarzschild, Schwarzschild-(anti)de
Sitter, Reissner-Nordström, and Reissner-Nordström-(anti)
de Sitter space-times were integrated by this mathematical
method [11]. The elliptic and hyperelliptic functions were
subsequently used to obtain the solutions of the geodesic
equations in the axially symmetric Taub-NUT [12] and
Kerr-de Sitter [13] space-times. In these papers the types
of orbits are classified and the orbits of test particles are
extensively studied. Furthermore, the analytical solution of
the geodesic equations in the general Plebański-Demiański
space-time in four dimensions were obtained in terms of
the hyperelliptic Kleinian � function [14].
The Reissner-Nordström space-time as well as the

Schwarzschild space-time have singularities at their origin.
Whereas in the Schwarzschild space-timeparticles are bound
to end up in the central singularity, this does not hold for
particles which cross the event horizon in the charged space-
time. Here the potential barrier due to the charge does not
allow the singularity to swallow the particles. Instead, a (test)
particle will leave the vicinity of the singularity again. After
traversing the Cauchy horizon and the event horizon of the
Reissner-Nordström black hole, the particle will emerge in
another universe [5,11,15].Moreover, an orbit in such a black
hole space-time can be analytically continued into an infinite
sequence of further patches of the space-time. This feature of
the Reissner-Nordström solution is seen clearly in its Carter-
Penrose diagram.
The Taub-NUT space-time which is characterized by a

gravitomagnetic charge possesses also two horizons. A
Kruskal-like analytic extension [16] of the Taub-NUT
space-time would then likewise allow test particles to
move into other worlds. However, such an extension comes
at the price that the periodic identification of the time
coordinate, suggested by Misner in order to remove the
singularity from the symmetry axis, is no longer possible
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[16]. Consequently, the space-time is geodesically incom-
plete, since orbits end either at the singular axis (in the
Bonnor-Manko-Ruiz interpretation) or at one of the hori-
zons (in the Misner-Taub interpretation). For a recent
discussion, see [12].

But the presence of two horizons and the associated
many-world orbits is not the only similarity between the
Reissner-Nordström space-time with electromagnetic
charge and the Taub-NUT space-time with gravitomag-
netic charge. Also the motion of test particles has common
properties in both types of space-times. In this paper, we
study the motion of electrically and/or magnetically
charged particles in the general Reissner-Nordström
space-time. As in the Taub-NUT space-time, where a test
particle moves on a cone, the motion of a charged test
particle in the general Reissner-Nordström space-time pro-
ceeds on a cone. The condition for the motion on a cone is
that the products of the dual charges should not be equal
i.e., Gq � Qg (where Q and G are the electric and mag-
netic charges of the gravitational source and q and g those
of the test particle, see Section II for details). Otherwise the
motion would be planar.

In the following section, we present the equations of
motion. We classify the orbits of charged test particles in
Sec. III. We analyze their motion by studying the influence
of the parameters of the metric and of the test particles. In
particular, we consider the dependence on the mass, on the
angular momentum, on the charges, and on the separation
(Carter) constant. In Sec. IV, we solve analytically the r,
#, ’, and t equations of motion, and we give the solutions
of the radial and time equations in terms of the Weierstrass
elliptic },�, and � functions. We give details on the elliptic
integrals in the Appendices A and B.

II. THE GEODESIC EQUATION

The Reissner-Nordström solution of the Einstein-
Maxwell field equations is described by the metric [2]

ds2 ¼ �r

r2
dt2 � r2

�r

dr2 � r2ðd#2 þ sin2#d’2Þ; (1)

where �r ¼ r2 � 2MrþQ2 þG2. Here M is the mass of
the solution, Q and G are the electric and magnetic
charges. The singularity is located at r ¼ 0. For 0<Q2 þ
G2 <M2, there are two horizons, defined by �r ¼ 0 and
given by

r� ¼ M

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � ðQ2 þG2Þ

q �
: (2)

Between the horizons, the radial coordinate r becomes
timelike and the time coordinate t spacelike. When Q2 þ
G2 ¼ M2, the horizons degenerate and the black hole is
called extremal. For Q2 þG2 >M2 the solution has a
naked singularity.

The field strength F�� ¼ A�;� � A�;� and the dual field

strength �F�� ¼ �A�;� � �A�;� of the electromagnetic field

are induced by the nonvanishing components of the vector

potentials A� and �A�

At ¼ Q

r
; A’ ¼ �G cos#; (3)

�A t ¼ i
G

r
; �A’ ¼ iQ cos#: (4)

The dual field strength is defined by the antisymmetric

Levi-Civita symbol "���� as �F�� ¼ i

2
ffiffiffiffi
gd

p "����F�� with

gd ¼ � detk g�� k .

The Hamilton-Jacobi equation for a particle with electric
charge q and magnetic charge g

2
@S

@�
¼ g��

�
@S

@x�
� qA� þ ig �A�

��
@S

@x�
� qA� þ ig �A�

�

(5)

has a solution in the form S ¼ 1
2��� Etþ L’þ SðrÞ þ

Sð#Þ. Here � is an affine parameter along the geodesic; � is
a parameter which is equal to 0 for a massless test particle
and equal to 1 for a test particle with nonzero mass. The
constants E and L are the conserved energy and the angular
momentum in the z direction of a test particle, respectively.
Because of the presence of the angle dependent terms qA’

and g �A’ in (5) the problem of charged particle motion is

axially symmetric, although the space-time itself as de-
scribed by the metric (1) is spherically symmetric.
For convenience, we introduce dimensionless quantities

(rS ¼ 2M)

~r ¼ r

rS
; ~t ¼ t

rS
; ~� ¼ �

rS
;

~Q ¼ Q

rS
; ~G ¼ G

rS
; ~L ¼ L

rS
:

(6)

The Hamilton-Jacobi Eq. (5) separates and yields for
each coordinate a corresponding differential equation�

d~r

d�

�
2 ¼ R (7)

�
d#

d�

�
2 ¼ � (8)

d’

d�
¼ 1

sin2#
ð ~Lþ�g cos#Þ (9)

d~t

d�
¼ ~r4

~�r

�
Eþ�q

~r

�
(10)

with the polynomial R and the function �

R ¼ ~r4
�
Eþ �q

~r

�
2 � ~�rð�~r2 þ kÞ (11)
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� ¼ k� 1

sin2#
ð ~Lþ �g cos#Þ2: (12)

The following notations were introduced:�g ¼ ~Gq� ~Qg,

�q ¼ ~Qqþ ~Gg, and ~�r ¼ ~r2 � ~rþ ~Q2 þ ~G2. Here k ¼
K þ ~L2, where K is known as Carter constant or separation
constant. For zero charges the equations of motion above
reduce to the Schwarzschild case. We also used the Mino
time � as ~r2d� ¼ d~� [17]. Note that for �g ¼ 0 the situ-

ation simplifies and the motion takes place in a plane.

III. COMPLETE CLASSIFICATION OF
GEODESICS

Consider the Hamilton-Jacobi Eqs. (7)–(10). The prop-
erties of the orbits are given by the polynomial R (11) and
the function � (12). The constants of motion (energy,
angular momentum, and separation constant) as well as
the parameters of the metric and the charges of the test
particle characterize these polynomials and, as a conse-
quence, the types of orbits. In this section, we discuss the
charged motion in the Reissner-Nordström space-time in
terms of the properties of the underlying polynomial R and
the function �.

A. The # motion

Since # is a polar angle, it can take only real values.
Equation (8) has real solutions if the requirement� � 0 is
fulfilled. This implies k � 0. With the new variable
	 ¼ cos#, Eq. (8) turns into the equation�

d	

d�

�
2 ¼ �	 with �	 ¼ a	2 þ b	þ c; (13)

with a simple polynomial of second order on the right hand
side, where a ¼ �ðkþ�2

gÞ, b ¼ �2 ~L�g, and c ¼
k� ~L2. From k � 0 follows a < 0. The zeros of�	 define

the angles of two cones which confine the motion of the
test particles (a similar feature appears in Taub-NUT [12]
and Kerr space-times [13]). Moreover, every trajectory is
not only constrained by these cones but lies itself on a cone
in 3 space [18,19]. If �g in the Eq. (9) and in the poly-

nomial (12) vanishes, then the motion lies on a plane (e.g.,
the motion of only electrically charged or neutral particles
reduces to a plane in a Reissner-Nordström space-time
with only electric charge). In the space-time of a gravito-
magnetic monopole, the trajectories of test particles simi-
larly lie on cones [20–22].

The discriminant D ¼ b2 � 4ac of the polynomial �	

can be written as D ¼ 4k
 with 
 ¼ kþ �2
g � ~L2. The

existence of real zeros of �	 requires D � 0. This implies

that both k and 
 should be non-negative

k � 0 
 ¼ k� ~L2 þ�2
g � 0: (14)

These are conditions on the parameters ~L and k for given

values of ~Q, ~G, q, and g. As long as k� ~L2 is positive there

are no constraints on ~L. When k� ~L2 becomes negative
the inequalities (14) imply a lower limit for the angular

momentum given by ~Lmin ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

g þ k
q

.

One can show that

� ¼ k� 1

sin2#
ð ~Lþ cos#�gÞ2

¼ 
� 1

sin2#
ð ~L cos# þ �gÞ2: (15)

The zeros of �	 are given by

	1;2 ¼
~L�g �

ffiffiffiffiffiffi
k


p

�ðkþ �2
gÞ

: (16)

The conditions (14) ensure the compatibility of 	 2
½�1; 1� with �	 � 0.
The function�	 describes a parabola with the maximum

at

�
� ~L�g

kþ�2
g
; k

kþ�2

g

�
. For nonvanishing ~L and �g the maxi-

mum of the parabola is no longer located at 	 ¼ 0 or,
equivalently, the zeros are no longer symmetric with re-
spect to 	 ¼ 0. Only for vanishing ~L or �g both cones are

symmetric with respect to the equatorial plane.
The # motion can be classified according to the sign of

k� ~L2:
(1) If k� ~L2 < 0, then �	 has 2 positive zeros for

~L�g < 0 and # 2 ð0; �=2Þ, so that the particle

moves above the equatorial plane without crossing
it. If ~L�g > 0, then # 2 ð�=2; �Þ.

(2) If k� ~L2 ¼ 0, then �	 has two zeros: 	1 ¼ 0 and

	2 ¼ � 2 ~L�g

~L2þ�2
g
. If ~L�g < 0, then 	 2 ½0; 1Þ and # 2

ð0; �2�. If ~L�g > 0, then 	 2 ð�1; 0� and # 2
½�2 ; �Þ. If ~L ¼ ��g, then the # motion fills the

whole upper hemisphere # 2 ½0; �2�. The motion

fills the whole lower hemisphere with # 2 ½�2 ; ��
if ~L ¼ �g.

(3) If k� ~L2 > 0, then�	 has a positive and a negative

zero and # 2 ð0; �Þ, and the particle crosses the
equatorial plane during its motion.

In general, the second term of the function � in (15)
diverges for # ! 0, �. However, if ~L ¼ ��g, this term is

regular for # ¼ 0, and, if ~L ¼ �g, it is regular for # ¼ �.

If ~L ¼ ��g, then k ¼ 
. The regularity of� in these cases

can be seen from

� ¼ 
� ~L2 ð1� cos#Þ2
sin2#

; (17)

by application of L’Hôpital’s rule. If, furthermore, ~L2 ¼ 0,
then � ¼ kþ �2

g � ~L2, which is independent of #.

In the special cases, when one of the constants k or 
 or
both vanish, �	 has a double root which is the only

possible value for #. One can distinguish three cases:

(1) If k ¼ 0 and 
 > 0, then 	 ¼ � ~L
�g

for ~L2 < �2
g.
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(2) If 
 ¼ 0 and k > 0, then 	 ¼ � �g

~L
for ~L2 >�2

g.

(3) If k ¼ 
 ¼ 0, then 	 ¼ �1, implying that # ¼ 0 or
# ¼ � are possible. In this case, ~L ¼ ��g (as

discussed above).

This means that during a test particle’s motion the coor-
dinate# is constant and the trajectory lies on a cone around
the # ¼ 0, � axis with the opening angle arccos	. In
this case, we immediately obtain from (9) that ’ð�Þ ¼
Cð�� �inÞ with a constant C ¼ ~Lþ	�g

1�	2 , which in case 1 is

C ¼ 0 and in case 2 is C ¼ ~L.
Thus, the nonvanishing of k and 
 indicates that the

motion of the particle is not symmetric with respect to the
# ¼ 0, � axis. Therefore, these two constants may be
regarded to play the role of a generalized Carter constant
which appears, e.g., in the motion of particles in NUT and
Kerr space-times.

B. The ~r-motion

1. Possible types of orbits

In the following, we consider the motion of charged
particles in the regular Reissner-Nordström black hole
space-time, possessing two nondegenerate horizons r�.
Before discussing the ~r motion in detail, we introduce a
list of all possible orbits:

(1) Escape orbits (EO) with ranges ðr1;1Þ with r1 >
rþ. These escape orbits do not cross the horizons.

(2) Two-world escape orbits (TEO) with ranges ðr1;1Þ
with r1 < r�

(3) Periodic bound orbits (BO) with range ~r 2 ðr1; r2Þ
with r1 < r2 and
(a) either r1, r2 > rþ or
(b) r1, r2 < r�.

(4) Many-world periodic bound orbits (MBO) with
range ~r 2 ðr1; r2Þ, where r1 < r� and r2 > rþ.

Here, we used the notation for the orbits introduced in [11]
for the regular Reissner-Nordström space-time.

2. The radial motion

The right hand side of the differential Eq. (7) has the
form R ¼ P

4
i¼0 ai~r

i with the coefficients

a4 ¼ E2 � � (18)

a3 ¼ �þ 2E�q (19)

a2 ¼ �ðk��2
q þ �ð ~Q2 þ ~G2ÞÞ (20)

a1 ¼ k (21)

a0 ¼ �kð ~Q2 þ ~G2Þ: (22)

Let us now consider massive particles only, that is � ¼ 1.
In order to obtain real values for ~r from (7), we have to

require R � 0. The regions for which R � 0 are bounded
by the zeros of R. The number of zeros depends on the

values of E, k, ~Q, ~G, q, and g. Two conditions R ¼ 0 and
dR
d~r ¼ 0 define the double zeros of the polynomial R and

thereby the boundary between the regions where R has 1, 2,
3, or 4 zeros. The parameter plots shown in Fig. 1 are based
on this. One has to additionally take care of the change of
the sign of E2 � 1when E crosses E2 ¼ 1. Then the sign of
Rð~rÞ for ~r ! �1 changes. Furthermore, the case E2 ¼ 1
requires additional attention: If the line E2 ¼ 1 is con-
tained in a region with 3 or 1 zeros, then on this portion
of the line we have 3 or 1 zeros, respectively. Taking all
these features into account, we obtain the k-E diagrams of
Fig. 1.
We define the effective potential from Eq. (7) as the

values of energy E when

0 ¼
�
d~r

d�

�
2 ¼ ~r4ðE� Vþ

effÞðE� V�
effÞ; (23)

thus,

V�
eff ¼ ��q

~r
� 1

~r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�rð�~r2 þ kÞ

q
: (24)

Condition (23) then determines the turning points of an
orbit.
Examples for the effective potential are given in Figs. 2

and 3. These figures combine the positive-root part Vþ
eff and

the negative-root part V�
eff . At the horizons, both parts V�

eff

coincide (i.e. at these points both parts V�
eff are glued

together) since ~�r vanishes here. Consequently, V
�
effðr�Þ ¼

� �q

r�
. Clearly, V�

effðr�Þ< 0 if �q > 0 and vice versa (see

e.g. Fig. 3).
We note that in contrast to the Schwarzschild case here

the positive-root Vþ
eff can allow for particles with negative

energies. The region outside the horizon where negative
energy particles may sojourn has been termed ‘‘general-
ized ergosphere’’ since energy may be extracted [23,24].
While particle energies below the negative-root V�

eff have

no classical interpretation, they are associated with anti-
particles in the framework of quantum field theory [25].
The relation Vþ

effðE; q; gÞ ¼ �V�
effð�E;�q;�gÞ shows

that the corresponding positive energy orbits are available
for particles with opposite charges (i.e., antiparticles). A
lower limit for the energies of particles is obtained from the
requirement that time should only run forward [see

Eq. (10)], E � � �q

r .

As we know from previous studies for neutral particles
(see e.g. [11]), the Reissner-Norström space-time pos-
sesses a potential barrier which prevents particles from
falling into the singularity. The potential barrier, which is
defined by the smallest positive-root r1 of R, is located in
the interval 0< r1 � r�.
For increasing values of �q, the influence of the charge

of a test particle becomes noticeable through the term
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� �q

~r . (We recall that the charges of the black hole ~Q and ~G

are constrained by the naked singularity condition ~Q2 þ
~G2 > 1

4 ). Namely, for larger values of the test particle

charge the effective potential can form a small potential
mound [Fig. 3(a)] or potential well [Fig. 3(b)] in the
interval ð0; r��. This indicates that bound orbits may exist
in this region. Such a feature is only present in the motion
of charged particles.

Using the k-E diagrams in Fig. 1 as well as the above
considerations we can give all possible combinations of

zeros of R and an interpretation in terms of specific types
of orbits, which are summarized in Table I.

The types of orbits related to the various parameters are
given by:
(1) Region (1): one positive zero. The orbit is a TEO

with particles coming from ~r ¼ þ1. From the fea-

tures of the effective potential (potential barrier) it is

clear that the turning point can lie on the inner

horizon (case A�). In this case, the energy of a test

particle corresponds to the glue point of the

FIG. 1 (color online). Parametric k-E diagrams showing the location of the regions (1)-(4), which reflect the number of zeros of the
polynomial R in Eq. (11). Each region contains a set of orbits peculiar to it which are described in Table I and in the text
(Section III B 2). Here the influence of the variation of the electric charge q of a test particle on the zeros of R is presented. Increasing
the positive value of the electric charge in plots (a)-(c), one observes that the region (4) with four positive zeros for negative E (left
side) disappears slowly. When the sign of q is changed (along with the sign of g) the right and left side of the k-E diagrams are
mirrored (compare plot (d) with the rest). One finds similar k-E diagrams by varying the value of the magnetic charge g. Because of the
inequalities (14) the constant k ¼ K þ ~L2 is positive.
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potentials V�
eff: EA� ¼ V�

effðr�Þ. For E2 ¼ 1, the co-

efficient of the highest power in R, given by E2 � 1
for massive test particles, vanishes. On the line
E2 ¼ 1within the region (1) there is one positive zero.

(2) Region (2): two positive zeros. Here only MBOs are
possible. In the special case, when �q ¼ 0 and

E2 ¼ 0, the turning points are lying on the horizons
(case B�). Also the cases B� and Bþ, when one of
the turning points lies on the horizons, are possible.

In this case, the energy again corresponds to the
glue points of the potentials V�

eff: EB� ¼ V�
effðr�Þ

(such an orbit can be found in e.g. Fig. 2(a)) or
EBþ ¼ V�

effðrþÞ (see e.g. Fig. 3(b)), respectively.
(3) Region (3): three positive zeros.

(a) Region ð3Þþ: Here MBOs and EOs with corre-
sponding subcases C� and Cþ are possible.

(b) Region ð3Þ�: For growing charges the term� �q

~r
leads to a bound orbit with turning points

FIG. 2 (color online). Effective potential V�
effð~rÞ for different values of ~Q, ~G, q, g, and k. The blue line represents Vþ

eff , the green line

represents V�
eff . The two potential parts glue at the horizons—glue points—with the ordinate V�ðr�Þ ¼ � �q

r�
. The grey area marks a

physically forbidden zone. The positions of the horizons are shown by vertical dashed lines. At infinity the effective potential tends to
the limiting values lim~r!1V�

eff ¼ �1. Figures (c) and (d) are plotted for opposite electric charges of the test particle. The glue points of
the V�

eff are either positive (for q < 0) or negative (for q > 0). As can be seen from the k-E diagram in Fig. 1(d) there are regions with 1,

2, or 3 zeros for the potential (c) with k ¼ 1.
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behind the inner horizon. It is also possible that
a turning point of the TEO lies on the inner
horizon (case D�). Here too for E2 ¼ 1 the
term of highest power in R vanishes giving three
positive zeros for the E2 ¼ 1 line within the
region (3).

(4) Region (4): four positive zeros. Here we find MBOs
and BOs (planetary orbits).

IV. SOLUTION OF THE GEODESIC EQUATION

Now we present the analytical solutions of the differen-
tial Eqs. (7)–(10).

A. Solution of the # equation

The solution of Eq. (13) with a < 0 and D> 0 is given
by the elementary function

FIG. 3 (color online). Effective potential V�
effð~rÞ for different values of ~Q, ~G, q, g, and k. The grey area marks a physically forbidden

zone. In this case, up to 3 turning points exist for ~r � ~r�. Such an effect can be caused by a high charge of the test particle. In the plot
(a), the orbits of type A, C, D from Table I are shown.

TABLE I. Types of polynomials and orbits of charged particles in the Reissner-Nordström
space-time. The thick lines represent the range of the orbits. The turning points are shown by
thick dots. The horizons are indicated by a vertical double line. In special cases, the turning
points lie on the horizons. Type D with a bound orbit behind the inner horizon is possible for
charged particles with relatively large charges.
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#ð�Þ ¼ arccos

�
1

2a
ð ffiffiffiffi

D
p

sinð ffiffiffiffiffiffiffi�a
p

�� �#
inÞ � bÞ

�
; (25)

where �#
in ¼

ffiffiffiffiffiffiffi�a
p

�in � arcsinð 2a	inþbffiffiffiffiffiffiffiffiffiffiffiffi
b2�4ac

p Þ and �in is the ini-

tial value of �.

B. Solution of the ~r equation

For timelike geodesics the polynomial R in (11) is of
fourth order. A standard substitution ~r ¼ � 1

x þ ~rR, where

~rR is a zero of R, reduces (7) to a differential equation with
a third order polynomial ðdxd�Þ2 ¼ R3, where R3 ¼P

3
i¼0 bix

i. A further substitution x ¼ 1
b3
ð4y� b2

3 Þ trans-

forms that into the standard Weierstraß form�
dy

d�

�
2 ¼ 4y3 � g2y� g3 ¼ P3ðyÞ; (26)

where

g2¼b22
12

�b1b3
4

; g3¼b1b2b3
48

�b0b
2
3

16
� b32
216

: (27)

The differential Eq. (26) is of elliptic type and is solved by
the Weierstraß } function [26]

yð�Þ ¼ }ð�� �0
in; g2; g3Þ; (28)

where �0
in ¼ �in þ

R1
yin

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y3�g2y�g3

p with yin ¼ � b3
4 ð~rin �

~rRÞ�1 þ b2
12 . Then, the solution of (7) acquires the form

~r ¼ � b3

4}ð�� �0
in;g2; g3Þ � b2

3

þ ~rR: (29)

C. Solution of the ’ equation

Equation (9) can be simplified by using (8) and by
performing the substitution 	 ¼ cos#

d’ ¼ � d	ffiffiffiffiffiffiffi
�	

q ~L

1� 	2
� 	d	ffiffiffiffiffiffiffi

�	

q �g

1� 	2
; (30)

where �	 is given in (13). This equation can be easily

integrated, and the solution for a < 0 and D> 0 is given
by

’ð�Þ ¼ 1

2
ðIþ þ I�Þj	ð�Þ	in

þ ’in; (31)

where

I�¼�
~L��g

j ~L��gj

� arcsin
kþ
�ð ~L��gÞ2�ðkþ
þð ~L��gÞ2Þ	ffiffiffiffi

D
p ð	�1Þ :

(32)

For the special case k ¼ ~L2 and ~L ¼ ��g, the solution

reduces to the simple form

’ð�Þ ¼ 1

2

~L

j ~Lj arcsin
1� 3	

	� 1

��������
	ð�Þ

	in

þ’in: (33)

D. Solution of the ~t equation

Equation (10) consists of two ~r integrals:

~t� ~tin ¼ E
Z ~rð�Þ

~rin

~r4

~�r

d~rffiffiffiffi
R

p þ�q

Z ~rð�Þ

~rin

~r3

~�r

d~rffiffiffiffi
R

p

¼: I1~r ð�Þ þ I2~r ð�Þ: (34)

Consider I1~r . The substitution ~r ¼ � b3

4y�b2
3

þ ~rR reex-

presses I~r in terms of y:

I1~r ð�Þ ¼ E
Z y

yin

� dyffiffiffiffiffiffiffiffiffiffiffiffi
P3ðyÞ

p ð~rRð4y� b2
3 Þ � b3Þ4

ð4y� b2
3 Þ2�y

; (35)

where �y ¼ ~�rð~rRÞð4y� b2
3 Þ2 � ð2~rR � 1Þb3ð4y� b2

3 Þ þ
b23 ¼ 16~�rð~rRÞðy� p1Þðy� p2Þ. Here, p1 and p2 are two

zeros of �y.

We next apply a partial fractions decomposition upon
Eq. (35)

I1~r ð�Þ ¼ E
Z �

�in

� dyffiffiffiffiffiffiffiffiffiffiffiffi
P3ðyÞ

p
�
K0 þ

X3
j¼1

Kj

y� pj

þ K4

ðy� p3Þ2
�
;

(36)

where p3 ¼ b2
12 and Ki, i ¼ 0; . . . ; 4 are constants which

arise from the partial fractions decomposition. These de-
pend on the parameters of the metric and the test particle

and on ~rR. After the substitution y ¼ }ðvÞ with }0ðvÞ ¼
ð�1Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4}3ðvÞ � g2}ðvÞ � g3
p

, where � is either 0 or 1
depending on the sign of }0ðvÞ in the considered interval
and on the branch of the square root, Eq. (36) simplifies to

I1~r ð�Þ¼�E
Z v

vin

ð�1Þ�

�
�
K0þ

X3
j¼1

Kj

}ðvÞ�pj

þ K4

ð}ðvÞ�p3Þ2
�
dv: (37)

Here, v ¼ vð�Þ ¼ �� �0
in and vin ¼ vð�inÞ.

The second integral I2~r in (34) can be reduced in a similar
way to the necessary form, yielding

I2~r ð�Þ ¼ ��q

Z v

vin

ð�1Þ�
�
H0 þ

X3
j¼1

Hj

}ðvÞ � pj

�
dv; (38)

where Hi, i ¼ 0; . . . ; 3 are constants which arise from the
partial fractions decomposition.
The final solution takes the form (details can be found in

the Appendices A and B)
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I~rð�Þ ¼ �ð�1Þ�E
�
ðK0 þ A2K4Þðv� vinÞ þ

X2
i¼1

�X3
j¼1

Kj

}0ðvjiÞ
�
�ðvjiÞðv� vinÞ þ log

�ðv� vjiÞ
�ðvin � vjiÞ

�

� K4

ð}0ðv3iÞÞ2
�
�ðv� v3iÞ � �ðvin � v3iÞ þ }00ðv3iÞ

}0ðv3iÞ log
�ðv� v3iÞ
�ðvin � v3iÞ

���

� ð�1Þ��q

�
H0ðv� vinÞ þ

X2
i¼1

�X3
j¼1

Hj

}0ðvjiÞ
�
�ðvjiÞðv� vinÞ þ log

�ðv� vjiÞ
�ðvin � vjiÞ

���
; (39)

FIG. 4 (color online). MBO and BO with parameters ~Q ¼ 0:4, ~G ¼ 0:2, q ¼ 0:1, g ¼ 0:1, k ¼ 3, E ¼ 0:9548, ~L ¼ 1:0. The sphere
in the three-dimensional plots shows the horizon ~rþ. Orbits lie on cones with large opening angle �# ! �.
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where vji are the poles of the functions ð}ðvÞ � pjÞ�1 and
ð}ðvÞ � p3Þ�2 in (37) and (38) such that }ðvj1Þ ¼ pj ¼
}ðvj2Þ since }ðvÞ is an even elliptic function of order two,
which assumes every value in the fundamental parallelo-
gram with multiplicity two. Here, �ðvÞ is the Weierstraß
zeta function and �ðvÞ is the Weierstraß sigma function

[26]; A2 ¼ �P
2
i¼1

�
}ðv3iÞ

ð}0ðv3iÞÞ2 þ
}00ðv3iÞ�ðv3iÞ
ð}0ðv3iÞÞ3

�
is a constant.

E. The orbits

With these analytical results, we have found the com-
plete set of orbits for massive charged particles. The fol-
lowing figures show solutions of the geodesic equations for
the spatial coordinates. We start with small charges of a test
particle in Figs. 4–6. The orbits here lie on cones with large
opening angle �# ! �. Depending on the energy of the
test particle, one gets MBO, BO, TEO, or EO. In all these
figures, the energy is chosen in the vicinity of the maxi-
mum of the effective potential.

In the Figs. 7–9, we increased the charge of the test
particle. The orbital cone is most evident here. The orbit
7(a) with its x-z projection 7(b) is of type D from Table I.
The test particle orbits the singularity at ~r ¼ 0. Such kinds
of orbits are peculiar to particles with large charge (and
small constant k). An example of the effective potential is
presented in Fig. 3. As compared to super test particles
with small mass and small charge, a particle with small
mass and large charge is not super anymore, but it may still
be regarded as a test body or test particle [27].

F. The observables

The Reissner-Nordström space-time is believed to be of
little astrophysical relevance because a charged black hole
would lose its charge quickly by interactions with matter
around it. Nevertheless, the study of charged black holes
can help to understand more general space-times with
sources immersed into spherically symmetric matter
backgrounds.
Interestingly, charged neutron stars with exterior de-

scribed by the Reissner-Nordström metric are considered
in [28]. Here, the influence of the charge on the light curves
is studied, and it is shown that the gravitational lensing
properties are influenced by the charge of the star. In this
context, we also note that the gravitomagnetic charge (NUT
parameter) could possibly be detected by analyzing the
gravitational lensing effect on the photon geodesics [29].
For test particle motion, one can define frame indepen-

dent observables such as the perihelion shift for bound
orbits, the light deflection for escape orbit, the deflecton
angle for flyby orbits, or the Lense-Thirring effect. We
follow the lines of [12] to calculate possible observables.
We consider here bound orbits of type E and D from the

Table I. The ~r motion is periodic with a period

!~r ¼ 2
Z rmax

rmin

d~rffiffiffiffi
R

p ¼ 2
Z e2

e1

dyffiffiffiffiffiffiffiffiffiffiffiffi
P3ðyÞ

p ; (40)

where e1 and e2 are the zeros of P3ðyÞ related to rmin and
rmax. The corresponding orbital frequency is 2�

!~r
.

FIG. 5 (color online). TEO with parameters ~Q ¼ 0:4, ~G ¼ 0:2, q ¼ 1:0, g ¼ 0:1, k ¼ 6:5, E ¼ 1:0039, ~L ¼ 1:0. The particle
crosses both horizons, is reflected at the potential barrier, and emerges into a second universe, where it moves out to infinity. The orbit
lies on a cone with large opening angle �# ! �.

SASKIA GRUNAU AND VALERIA KAGRAMANOVA PHYSICAL REVIEW D 83, 044009 (2011)

044009-10



The period of the # motion is given by

!# ¼ 2
Z #max

#min

d#ffiffiffiffiffi
�

p ¼ �2
Z 	min

	max

d	ffiffiffiffiffiffiffi
�	

q ¼ 2�ffiffiffiffiffiffiffi�a
p (41)

and the corresponding frequency by 2�
!#

.

The secular accumulation rates of the angle ’ and the
time t are given by

Y’ ¼ 2

!#

Z 	min

	max

~Lþ�g	

1� 	2

�
� d	ffiffiffiffiffiffiffi

�	

q
�
¼ 1

!#

ðIþ þ I�Þj	min

	max

¼ ffiffiffiffiffiffiffi�a
p

(42)

FIG. 6 (color online). MBO and EO with parameters ~Q ¼ 0:4, ~G ¼ 0:2, q ¼ 1:0, g ¼ 0:1, k ¼ 6:5, E ¼ 1:0038, ~L ¼ 2:5. An
increase of ~L (compare e.g. with Fig. 5(b)) leads to a decrease of the opening angles of the two cones, which confine the orbit. The
orbits lie on cones with large opening angle �# ! �.

GEODESICS OF ELECTRICALLYAND MAGNETICALLY . . . PHYSICAL REVIEW D 83, 044009 (2011)

044009-11



FIG. 7 (color online). BO and TEO with parameters ~Q ¼ 0:4, ~G ¼ 0:25, q ¼ �4, g ¼ 0:2, k ¼ 0:2, E ¼ 4:4673, ~L ¼ 0:1. Because
of the large charge of the test particle, the orbital cone has a small opening angle.
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and

� ¼ 2

!~r

�
E
Z rmax

rmin

~r4

~�r

d~rffiffiffiffi
R

p þ �q

Z rmax

rmin

~r3

~�r

d~rffiffiffiffi
R

p
�

¼ 2

!~r

ðI1~r j
�e2
�e1

þ I2~r j
�e2
�e1

Þ; (43)

where I1~r and I2~r defined in the Eqs. (37) and (38) are
evaluated at �ei , corresponding to the root ei, i ¼ 1, 2.

The orbital frequencies �r,�# , and�’ are then given by

�~r¼2�

!~r

1

�
; �# ¼ 2�

!#

1

�
; �’¼

Y’

�
: (44)

The perihelion shift and the Lense-Thirring effects are
defined as differences between these orbital frequencies

�perihelion ¼ �’ ��~r ¼
� ffiffiffiffiffiffiffi�a
p � 2�

!~r

�
1

�
(45)

�Lense�Thirring ¼ �’ ��# ¼ 0: (46)

As expected, there is no Lense-Thirring effect.

FIG. 8 (color online). MBO and BO with parameters ~Q ¼ 0:45, ~G ¼ 0:1, q ¼ 0:0, g ¼ 4:0, k ¼ 5, E ¼ 0:9167, ~L ¼ 0:01. The
sphere in the three dimensional plots shows the horizon ~rþ.
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V. CONCLUSIONS AND OUTLOOK

In this paper, we presented the analytic solution of the
geodesic equations of charged test particles in the Reissner-
Nordström space-time in terms of the Weierstraß }, �, and
� functions. The derived orbits depend on the particle’s
energy, angular momentum, electric and magnetic charges,
Carter constant, and on the parameters of the gravitating
and charged source. We discussed the general structure of
the orbits and gave a complete classification of their types.
The orbits of charged test particles lie on a cone similar to
the motion in Taub-NUT space-times with gravitomagnetic
charge. This happens because of the nonvaning �g cos#

term in the Eqs. (8) and (9). Thus, the motion of only
electrically charged particles around an only electrically
charged source or the motion of only magnetically charged
particles around an only magnetically charged source re-
duces to motion in a plane. However, this is not true for the
motion of test particles with both types of charge around a
charged source or the motion of charged particles around a
source with both types of charges (as in the examples
considered in this paper).

We showed that for large charge of test particles bound
orbits behind the inner horizon are possible. So, a test
particle moves in a space-time that has horizons which
hide the singularity, but for the motion of the particle the

singularity is not hidden. Such an effect is not present for
neutral particles.
Finally, we remark that as compared to the geodesics in

the field of a gravitomagnetic monopole [12] the geodesics
in the Reissner-Norström space-time are complete because
the space-time can be analytically continued (without de-
stroying some of its essential properties [16]). Thus, at
least theoretically, a particle crossing the horizons may
emerge afterwards into another universe, following a
many-world orbit.
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APPENDIX A: INTEGRATION OF ELLIPTIC
INTEGRALS OF THE THIRD KIND

We consider an integral of the type I1 ¼
R
v
vin

dv
}ðvÞ�p1

.

This integral is of the third kind because the function
f1ðvÞ ¼ ð}ðvÞ � p1Þ�1 has two simple poles v1 and v2

in a fundamental parallelogram with vertices 0, 2!1,

FIG. 9 (color online). TEO with parameters ~Q ¼ 0:45, ~G ¼ 0:1, q ¼ 0:0, g ¼ 4:0, k ¼ 5:0, E ¼ 1:0001, ~L ¼ 0:01. The particle
crosses both horizons, is reflected at the potential barrier, and emerges into a second universe, where it moves out to infinity.
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2!1 þ 2!2, 2!2, where 2!1 and 2!2 are fundamental
periods of }ðvÞ and }0ðvÞ.

Consider the Laurent series for the function f1 around vi

f1ðvÞ ¼ a�1;iðv� viÞ�1 þ holomorphic part (A1)

and the Taylor series of f�1
1 about vi

f�1
1 ðvÞ ¼ }0ðviÞðv� viÞ þOðv2Þ: (A2)

Comparing the coefficients in the equality 1 ¼
f1ðvÞf�1

1 ðvÞ where
1 ¼ f1ðvÞð}0ðviÞðv� viÞ þOðv2ÞÞ
¼ a�1;i}

0ðviÞ þOðv2Þ (A3)

yields a�1;i ¼ 1
}0ðviÞ . Thus, the function f1ðvÞ has a residue

1
}0ðviÞ in vi.

The Weierstraß �ðvÞ function is an elliptic function with
a simple pole in 0 and residue 1. Then the function A1 ¼
f1ðvÞ �P

2
i¼1

�ðv�viÞ
}0ðviÞ is an elliptic function without poles

and therefore a constant [26], which can be determined
from f1ð0Þ ¼ 0. Thus,

f1ðvÞ ¼
X2
i¼1

�ðv� viÞ þ �ðviÞ
}0ðviÞ ; (A4)

here }0ðv2Þ ¼ }0ð2!j � v1Þ ¼ �}0ðv1Þ. Applying now

the definition of the Weierstraß � function
R
v
vin

�ðvÞdv ¼
log�ðvÞ � log�ðvinÞ upon the integral I1, we get the
solution

I1¼
Z v

vin

f1ðvÞdv

¼X2
i¼1

1

}0ðviÞ
�
�ðviÞðv�vinÞþ log

�ðv�viÞ
�ðvin�viÞ

�
: (A5)

APPENDIX B: INTEGRATION OF ELLIPTIC
INTEGRALS OF THE TYPE I2 ¼

R
v
vin

dv
ð}ðvÞ�p3Þ2

We consider the Laurent series of f2ðvÞ and the Taylor
series of f�1

2 ðvÞ around vi for f2ðvÞ ¼ 1
ð}ðvÞ�p3Þ2 :

f2ðvÞ ¼ a�2;iðv� viÞ�2 þ a�1;iðv� viÞ�1

þ holomorphic part; (B1)

f�1
2 ðvÞ ¼

�
}0ðviÞðv� viÞ þ 1

2
}00ðviÞðv� viÞ2 þOðv3Þ

�
2

¼ ð}0ðviÞÞ2ðv� viÞ2
þ }0ðviÞ}00ðviÞðv� viÞ3 þOðv4Þ: (B2)

The function f2ðvÞ has poles of second order in v1 and v2

such that f2ðv1Þ ¼ p3 ¼ f2ðv2Þ. Comparison of the coef-
ficients in

1 ¼ f2ðvÞðð}0ðviÞÞ2ðv� viÞ2
þ }0ðviÞ}00ðviÞðv� viÞ3 þOðv4ÞÞ

¼ a�2;ið}0ðviÞÞ2 þ ðv� viÞ½a�1;ið}0ðviÞÞ2
þ a�2;i}

0ðviÞ}00ðviÞ� þOðv2Þ (B3)

yields

a�2;i ¼ 1

ð}0ðviÞÞ2
; a�1;i ¼ � }00ðviÞ

ð}0ðviÞÞ3
: (B4)

The function }ðvÞ possesses a pole of second order in
v ¼ 0 with residuum 0, and the Laurent series of } begins
with v�2. Then the Laurent series of a�2;i}ðv� viÞ around
vi begins with a�2;iðv� viÞ�2, which is similar to the first

term in (B1). The Laurent series of a�1;i�ðv� viÞ around
vi begins with a�1;iðv� viÞ�1. Thus, the function A2 ¼
f2ðvÞ �

P
2
i¼1ð}ðv�viÞ

ð}0ðviÞÞ2 �
}00ðviÞ�ðv�viÞ

ð}0ðviÞÞ3 Þ has no poles and is

constant [26] and can be calculated from f2ð0Þ ¼ 0: A2 ¼
�P

2
i¼1ð }ðviÞ

ð}0ðviÞÞ2 þ
}00ðviÞ�ðviÞ
ð}0ðviÞÞ3 Þ.

Using of
R
v
vin

}ðvÞdv ¼ ��ðvÞ þ �ðvinÞ and the defini-

tion of the � function, the integral I2 takes the form

I2 ¼
Z v

vin

f2ðvÞdv

¼ A2ðv� vinÞ �
X2
i¼1

�
�ðv� viÞ � �ðvin � viÞ

þ }00ðviÞ
}0ðviÞ log

�ðv� viÞ
�ðvin � viÞ

�
1

ð}0ðviÞÞ2
: (B5)
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