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We study the stability of a massive scalar field in the exterior metric of a rotating Kerr 
black hole. An argument based on energy conservation shows, under some strong technical 
assumptions, that unstable normal modes exist. These unstable modes can be interpreted 
as wave packets in bound, superradiant orbits. A JWKB estimate of the fastest growth 
rate gives lO-‘M-l exp(--1.84Mp) in the case Mp 3 1, where M is the mass of the hole 
and ~1 is the mass of the field. The existence of unstable normal modes has significant 
implications for quantum particle creation by rotating black holes, which we attempt to 
assess. 

I. INTRODUCTION 

Relstivists believe that black holes, both nonrotating and rotating, are stable to 
small perturbations, including gravitational perturbations, by massless fields. This 
belief is supported by several results: 

(a) The Schwarzschild metric has been proven to be stable to all massless fields 
[I, 2, 3941. 

(b) The Kerr metric has been proven to be stable to axially symmetric (m = 0) 
perturbations by massless scalar and gravitational fields [5,6]. 

(c) For the physically most worrisome case, that of nonaxisymmetric pertur- 
bations by massless fields of “superradiant” frequency (0 < w/m < a/2Mr+ ; see $11 
for notation and equations) no proof has been given. But numerical solution of the 
scalar and Teukolsky wave equations for real frequency has shown no hint of 
instability [4, 7-111, and theoretically any instability must set in via a real-frequency 
mode [12]. In addition, direct evaluation of the scattering amplitude for complex 
frequency has shown no instability [5, 131. 

In this paper we report on a situation that probably does give rise to a true instability 
as pointed out by Damour, Deruelle, and Ruffini [14]. We study solutions of the 
massive scalar wave equation (0 - p2)# = 0, the Klein-Gordon equation, in the 
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Kerr background metric. Roughly the idea is this. Due to the nonzero rest mass it is 
possible to construct wave packets in stable bound orbits around the black hole. 
Such a packet may leak down the hole and decay forever. However, when the hole 
is rotating, superradiant amplification of the packet may occur [14, 15, 91, and in this 
case one expects it to grow forever. Hence instability. A similar idea was suggested by 
Press and Teukolsky in the “black hole bomb” [9]. 

We do not have a rigorous proof of instability; in §I11 we present a fairly convincing 
argument. A similar argument goes through for any integer-spin field theory with 
nonzero rest-mass normal modes, whose stress-energy tensor obeys the Dominant 
Energy Condition [16], and we expect instabilities to occur under these general 
circumstances for a rotating black hole; in this paper we confine ourselves to the free 
Klein-Gordon field as a simple case. 

Instability ought to occur for all values of rest mass p > 0. In $IV and §V we 
estimate the actual growth rate for the case p > M-l (M is the mass of the hole) 
using the JWKB approximation, extending the results of Damour et al. [14]. The 
fastest growth rate we find in this approximation is 10-‘&F’ at i%+ - 1, but the 
approximation is breaking down badly. Meanwhile, Detweiler (to be published) has 
estimated growth rates in the opposite approximation L%@ < 1, using a method of 
Starobinsky [lo]. Again his approximation breaks down for the fastest growth rate, 
at 134~ - 1. Direct numerical solution of the eigenvalue problem seems necessary 
to find the actual fastest growth rate of the instability; we hope to return to this 
question in a future paper. 

The existence of unstable normal modes has significant, although probably not 
profound, consequences for quantum particle creation by rotating black holes [17]. 
In §VI we evaluate the probable consequences of our results. 

II. EQUATIONS AND BOUNDARY CONDITIONS 

a. Normal Modes 

The Klein-Gordon equation for a real, spinless, massive, free, classical field is 

(0 - p2)Y = 0 (1) 

where p is the inverse Compton wavelength associated with the rest mass Mti of the 
field, p = i&/fi. We use geometrized units (G = 1 = c) but preserve ti, so that p has 
units of l/length. The boundary conditions on Y for the problem of instability are: 
(a) Y is regular at infinity and there is no incoming radiation, (b) Y is regular across 
the future event horizon. A normal mode is any solution Y of Eq. (1) under these 
boundary conditions that has harmonic time dependence, Y a e-i”t, for some complex 
frequency w. The normal modes may be found by solving Eq. (1) as an eigenvalue 
problem in w. 
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The normal modes arise [4, 51 when an arbitrary solution Y(t, r, 8, 4) is recovered 
from its Fourier transform f(~, r, 0, $), 

Y(t, r, 8, I#) = (2n)-1 s, dw eeiwlf(w, r, 8, 6) (24 

zzz 
I -T dw e-iwt4w).Leadw, r, 0, 6) 

+ C eMiwjtUjfj(r, 8, 4). (2b) 

Here C is a contour from - co to + cc in the complex w-plane that passes above all 
singularities off. In the second formula, C has been deformed downward to just 
above the real axis, and the&i belong to a continuous set of real frequency, normal- 
ized wave functions. There are two square root branch points at the “threshold 
points” w  = -& on the real axis, and the contour must always pass above them. 
The h are normalized wave functions of a discrete spectrum of unstable normal 
modes at frequencies wj in the upper half-plane, which appear as poles in the integrand 
as C is deformed. The a(w) and the a, are then expansion coefficients for an arbitrary 
solution Y. 

If no modes h appear, then the field is stable, and one expects theJreal to form a 
complete basis of wave functions for either the classical or the quantum field Y. If the 
f; appear, then the f reai are incomplete, and one must include the f; to obtain a com- 
plete basis. In this case the fastest-growing normal mode will be that with the largest 
imaginary part w1 of frequency wi , and this mode will generally dominate at late 
times, 

y - fi evh0 as t-++cc (3) 

so that an arbitrary initial disturbance Y will grow without bound and the field is 
unstable. 

If C is further deformed below the real axis, more poles will generally appear in the 
lower half-plane, which correspond to stable, dying normal modes. 

b. Boyer-Lindquist Coordinates 

These are convenient for the JWKB calculation. Here the contravariant Kerr metric 
is [18, 191: 

a 2 
!-I a.9 = g”” dx, dx, 

= Z-l /A (-$-)” + (G)” + ((sin e)-2 - a2k1) (+)’ - 4MraA-l$- $ 

- [(r2 + u2)2 A-l - a2 sin2 e] (+)2/ 

with 
A-r2-2Mr+a2, Z E r2 + a2 co9 13 (5) 
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Here M is the mass of the hole, and a = J/M (0 < a < M) is the specific angular 
momentum. 

The Klein-Gordon equation separates in these coordinates [IS, lo], and we can 
write its solution Y as: 

Y = R(r) O(O) eim+e-iut (6) 

where m is an integer and w  is a complex number. Substituting solution (6) into Eq. (4), 
we obtain two separate ordinary equations, 

d f (d $) + [uzm2 - 4Mrumw + (r2 + ~2)~ w2 - p2r24]R 

= (Q + m2 + w2a2) dR (7) 

(sin 8)-l $ (sin 8 -$-) + [a2(wz - p2) cos2 0 - m2(sin f3-2]0 

= -(Q + m2)@ (8) 

where Q is the separation constant. See also [28]. 
We consider each equation separately: 

i. Angular Equation 

If we set 

Q + m2 = x,1 , c2 = ayw2 - p”), o(e) = smltc, cos e) (9) 

the angular equation becomes the well known [20] oblate spheroidal angular wave 
equation with m, 1 integers and J m 1 < 1. The h,, are eigenvalues which in general 
cannot be analytically expressed in terms of 1 and m. 

As a consequence of Eq. (8) the eigenfunctions satisfy orthogonality relations. If 
we define normalized spheroidal harmonics 

(10) 

these relations take the standard form 

1’ qcos e) JZn d+ z;*zy’ = S,,&,~ . (11) 
-1 0 

We note that for c = 0 we have hml = l(1 + l), S,, = P,m(~~~ @, i.e., Eq. (8) 
becomes the generalized Legendre equation. To find h,, and Zlm for small values of c 
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we can treat c2 co9 19 in Eq. (8) as a perturbation term on the generalized Legendre 
equation. To first order in c2 we then get: 

jj N l(l+ 1) + 2c2b2 - w+ 1) + WI 
w&z - (21 - 1)(21 + 3) (12) 

- (2z + 3)-1 [ 
((1 + I)2 - m2>((Z + 2)2 - In”) 1/Z y” 

(21+ 1)(21+ 3)2(21 + 5) 1 z+2 1 ’ (13) 

ii. Radial Equation 

The radial equation Eq. (7) can be written as a one dimensional equation with an 
effective potential by defining a new radial function u and a new radial coordinate r*: 

we then find 

u = (r2 + a2)l12 R, dr* 3 (r2 $- a”) A-l dr (14) 

g + b” - V(oJ)]u = 0 (15) 

with 
4Mramw - a2m2 + A[k,, + (w” - p2) a”] 

(r2 + a2)2 

+ A(3r2 - 4Mr + a”) _ 3A2r2 
(r2 + a2)3 1 (r2 + a2)4 . (16) 

Equation (15) is then readily amenable to the JWKB approximation. 
The correct boundary conditions for Eq. (15) have been discussed elsewhere [4, 71 

(see also below); they are: 

RNe -ik+r’ for r+r+(r*-+--00) (1% 

RN 
eihl-uv’~r* 

for r+co(r*--t+co) (17b) r 

where k, I w - mu,, w+ = a/2Mr, (“angular velocity of hole”), and rh = 
A4 f (M2 - a2)lj2 (“location of horizons”). In Eq. (17b) we must assume that w, 
for the bound case wR -=c FL, lies on the “first Riemann sheet” or “physical sheet,” 
0 < arg(w2 - p2)1/2 < 7~. 

c. Ingoing Timelike Kerr Coordinates [19] {i, r, 6, $} 

This coordinate system is well suited to the imposition of boundary conditions and 
derivation of conservation laws because it extends smoothly across the future event 
horizon, unlike the Boyer-Lindquist system, to which it is related by: 

t = t + 
s 

2MrA-ldr, C$ = 4 + I aA- dr. (18) 

595/118/1-10 
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The contravariant metric in this case is: 

($)’ = Z-1 Id (-$-)’ + (i)’ + (sin &2 (-$-)2 + 2~ ($)(-+) 

+ 4Mr (~)(~) - (Z + 2Mr) ($g21 (19) 

where d and Z are as previously defined. 
The Klein-Gordon equation is likewise separable in these coordinates, 

y = W(r) @((I) fjd&i (20) 

where 0 is exactly as in Eq. (8), and R is related to a by 

R(r) = a(r) exp [-i s (2Mrw - am) d-l dr]. (20 

The boundary condition that a be regular around r = r+ then leads to Eq. (17a). 
Condition (17b) at infinity holds for both R and 8. 

III. EXISTENCE OF UNSTABLE NORMAL MODES 

A fairly convincing argument for instability follows from the integral law of energy 
conservation for a normal mode of the form (20) in ingoing timelike Kerr coordinates. 
To derive this law, multiply Eq. (1) by iw*(-g)l12 sin BY*, integrate over r+ < 
r < cc and 0 < 19 < rr, and take the real part, to obtain 

0 = :B(uR2 + w12 - moRw+) + Aw, (22) 

where wR and w1 are the real and imaginary parts of w, and 

B = 4Mr, [Ior de sin 0 I YJ ?],=, (23) 
+ 

A= Irn dr 1” df3 sin 0 /(Z - 2Mr) 15 1’ + 1 g I2 
T+ 0 

+ KZ + 2Mr) I w I2 + p2Z] I Y I2 + 1 a sin 8 $ + imcsc8Y 1’1 . (24) 

In Eq. (22), the first term is proportional to the energy flux down the hole, and the 
second term is proportional to the total energy content in a space slice i = const 
outside the hole. The boundary integral B is positive-definite (unless Y(r = r+) E 0, 
in which case Y E 0). In the slice integral A, the integrand is positive-definite outside 
the ergosphere, Z > 2Mr; A will be positive if Y peaks outside the ergosphere, but 
may be negative for certain Y (“negative-energy wave packets”) which peak inside the 
ergosphere. A is infinite for unbound “scattering states,” 1 w  1 > p along the real axis, 
but is finite elsewhere on the physical sheet. 
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Let us now &MW (and thereby the argument is technically not rigorous as it 
stands) that normal modes exist, either stable or unstable, that are bound, super- 
radiant, and peak far from the hole; specifically: 

(I) The mode is bound, 0 < wR < I*; 

(2) Y peaks far outside the ergosphere, so A > 0, A/B > 1; 
(3) w  is nearly real, 1 w, 1 < wR ; and 
(4) wR is “superradiant,” 0 -C wR < mw, . 

Now A < GO for any w  in the strip 0 < wR < (1 of the physical sheet. Then Eq. (22) 
constrains w  to lie on a large circle of radius -A/B, 

(wR - $mw+)2 + (w, + A/B)2 = A2/Bz + $m2w+2 (25) 

with center at w  = $mw+ - iA/B far down in the lower half-plane, which passes 
through w  = 0 and w  = mw, ; see Fig. 1. Under assumptions (I), (3) and (4), 

COMPLEX W 
PLANE 

FIG. 1. The complex w-plane. There are “threshold” branch points at w = +p, with cuts 
which may be taken out on the real axis to infinity. Poles belonging to normal modes must lie on the 
circle, under assumptions 1) - 4) of 0 III. 



146 ZOUROS AND EARDLEY 

w then must lie on the short arc in the upper half-plane between w  = 0 and w  = mu,; 
therefore w, > 0 and the normal mode must be unstable. 

It would be most surprising if such modes satisfying assumptions (l)-(4) did not 
exist; one would need such modes to build wave packets in bound distant Keplerian 
orbits around the hole. The physical interpretation of this argument is that the mode 
represents such a packet. By the “superradiance” assumptions (2), which is always 
achieved by a sufficiently distant prograde orbit, and by (3), the energy flux down the 
hole is negative (there is a net energy flow out of the hole), i.e., the first term in Eq. (22) 
is negative; as usual this can be shown directly from the Area Theorem [16, Prop. 9.2.71. 
Since the packet has positive total energy, A > 0, and since it cannot lose any energy 
to infinity because it is bound, it will grow indefinitely. 

Why does this argument not go through for massless Boson fields, if we ignore (1) ? 
Under the hypothesis w, > 0 the argument above still holds. However, under the 
alternate hypothesis w, < 0, we have A = co because of the boundary condition 
!P N eiwr at infinity, unlike above, so that the argument is vacuous. Therefore either 
w, > 0 or w, < 0 is possible (but not both), and no conclusion regarding stability 
can be drawn. Physically one can say that there are no superradiant bound states of 
a massless field around a rotating black hole. 

IV. JWKB CALCULATION OF o1 

How big or how small is w1 for unstable modes ? We can estimate in the short- 
wavelength regime Mp > 1 by the JWKB approximation [21]. 

First we approximate w  as real, w  = o R , and construct a JWKB solution Y to 
Eq. (16) in some time slice t = 0 in Boyer-Lindquist coordinates. The potential V(w) 
is now real and for the case of bound superradiant modes has the form seen in Fig. 2. 
The particle is bound in region III but can tunnel through the barrier region II. The 
boundary conditions are that Y die exponentially in region IV and that the phase 
velocity is positiue in region I. Therefore there is a flux toward increasing r in the barrier 
region II. 

The conserved current vector J, for Y is 

J, = -i(Y*8,Y - Ya,Y*) 

At t = 0 we normalize Y by imposing 

E(O) = 1 

(26) 

(27) 
where 

E(t) = 1” dr J: d9 J‘,z” d$ Z sin OJO(t) 
72 

(28) 
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KERR POTENTIAL 

20.4 vmax a/M =o.w8 l=m=13 

M2V 

FIG. 2. Effective potential for motion in Kerr geometry as seen by a Bose field, expressed as a 
function of the Wheeler tortoise coordinate r*, for a typical set of parameters a, TV, w, I, m. The three 

* turning points I$ , Y: , r, , define the regions I, II, III, IV used in the JWKB approximation. I’,,,&, 
and I’min define the local maximum and minimum of the potential V. The barrier height h is defined 
as the distance from V,,, to w*. The tortoise coordinate: 

Y* = r + 2Mr+(r+ - r-)-l log(r/r+ - 1) - 2Mr-(r, - r-)-l log(r/r- - 1) 
is given in units of M, while the effective potential V and wz, $ are given in units of 1 iM* . For these 
parameters r+ = 3.0632M, M2Vmax = 19.7246, M’Vmin = 14.4488, Mu, = 0.4693, MW = 
14.8225. 

The flux of J,, downward into the hole across a 2-surface r = r,, , r+ < r, < rl , at 
t =Ois 

F=- s s n dt’ 2n d#(-g)‘/” Jr 
0 0 

F can be computed using the JWKB solution Y to be 

F = -y’exp(--I) 
with 

I=2 s 

‘i2 
tc(r” + a”) d-l dr 

r1 

= “barrier integral”; 

y = Y(WN, a, M, 4 m> 

- 
2Mtnar dr -I 

A(rZ + a”) I I 

(291 

(30) 

(31) 

zz? “normalization integral”; (32) 
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/3(r) = j’” k(r2 + a2) A-’ dr - r/4 (r2 < r < rJ (33) T 

5 = IO* de J2n d+ sin 8ZTm sin’ 8ZL”’ (34) 
0 

k = (wN2 - V(W~))~/~ (35) 

K = (li(WN) - oJN2)1/2. (36) 

Here UN are those frequencies for which 

s Q k(r2 + a2) A-l dr = (N + 1/2)~r, N = 0, 1, 2,... (37) 
ra 

with N being the “energy” quantum number. Condition (37) is a result of matching 
the JWKB solution in IV so as not to give an exponential increasing mode. 

The normalization integral y is always positive by construction and neglecting terms 
of order i/r2 and l/ra, which is valid for sufficiently distant wave packets, we have 

yr U 73 4 cos” /3(r) 
k 

oN(r2 + a”) d-l dr 1 -l. *a (38) 

Finally we can estimate the value of wI as a correction to the initial approximation 
w  = wR . From 1 Y 1 a exp(w,t) we have 

E(t) = E(O) exp(2w,t) (3% 

from current conservation, V,J” = 0, we have 

dH0) --p ___ = 
dt (40) 

so that 
wI = -;F = irexp(-1). (41) 

V. RESULTS OF JWKB CALCULATIONS 

Using the formulas we derived in $11 and §IV we calculate w, and search for the 
most unstable modes. Noting that the Kerr potential V(w) = V(w, m) = V(--w, -m) 
and that if wI > 0 and mR 2 0 then m 2 0 respectively, we pick wR > 0 and m > 0 
with no loss of generality [5]. The results are best expressed in the dimensionless 
quantities a/M, Mp and MwI. 

Our JWKB approximation has to satisfy the condition dk/dr* Q k2 (k as defined 
in Eq. 35), and since hml is approximated to first order in c2 (Eq. 12) we must keep 
c2=u2(w2-$)<1. 
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We first explore the condition for minimizing the barrier integral I of Eq. (31). It is 
known [cf. 221 that I = m minimizes I. We therefore set 1 = m and note that the 
barrier height h (see Fig. 2) decreases with increasing frequency w. Therefore choose m 
and w  according to CO = mw, = min{p, (VMAX)1/2}. Then I reaches a minimum as 
a+M. 

For M,LL > 1, we then have I = m > 1, w  = II; and under these conditions I 
can be expressed in terms of complete elliptical integrals [23]: 

I = 2 d/z Mp ($)“‘] (r1 + $- 2M) F(p) + *I7 ( ;; 1;; ) P) 

A- +---- n 
rz - r- ( 

with 

l&H 
rl 2 = 4~Q2 (r2 > rl) 

H = [I - 16M2Q2(aQ - 1)z]1/2 

Q = w/m 

. 

OS a/M-a D 
,333333 

(42) 

(43) 

(44) 

(45) 

(46) 

FIG. 3. Barrier integral Z in units of Mp, expressed as a function of a for the case of very large 
I (I = m > 1) and w = p, for different values Q. For o = mw, the Barrier integral is smallest and 
has the limiting form Z N M&U4/a)(ln 8&f/a - 1) as a + 0 and Z N Mp(2 - l/z>r as a --) M. 
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A+ ~ r&” + 2(rl + r,)M - r,r, - 4M7 - az(rl + r2 - 2M) 
M(rk - h) (47) 

F(x) = I” (1 - x2 sin2 p)-l12 dp (48) 

at, ‘7) = jy2 (1 + !f sin2 p)-l(l - q2 sin2 ~)-l/~ dp. (49) 

In Fig. 3 we plot Z as a function of a/M at different values of P = w/(mw+) = 
Q/o+ in this approximation. We conclude that Z is minimized for P -+ 1. For P = 1, 
Z is of the form 

Z = M/J .f(u/M) (50) 

I  

“3’. 
I  

3’. 
I  

3’. 
I  

3’. 
I  

4’. 
I  

4’. 
I 

65 75 85 95 05 15 4. 25 

Mru, 

a/M=0.9980 N:9 N=lO 
N=fi N=ll 

L=m=9 

FIG. 4. Imaginary part of the frequency (WI) expressed as a function of the quantized real part 
of the frequency (ON). As the energy quantum number N increases, the barrier height h (see Fig. 1) 
decreases and both the barrier integral Z and the normalization factor y  diminish. Since WI - y  
exp(-Z) these effects act in opposite ways. For small N, Z dominates, causing WI to increase even 
though y  decreases. After a certain point (N = lo), wI reaches a maximum and then y  takes over and 
dominates the behavior of WI causing it to decrease to zero as N + 03. Both wI and wN are given in 
units of l/M. 
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and in the limits a/M = 0 and a/M = 1 is 

I a Mp(8M/a)[ln(8M/u) - I] as a/M+ 0: (51) 

I-+ Mp(2 - d/2), m 1.84&I/~ as a/M+ 1. (52) 

We next investigate the conditions for maximizing y (Eq. 38). For w,,, + t.~ (corre- 
sponding to marginally bound orbits), rQ + co and y -+ 0. We note that there exist 
cases where V,,, -C pz and therefore “energy” quantum number N cannot always 
go to infinity. 

0 

m  
9 

0 

0 

7 3. 

PI a/M =.9980 

SUPERRFiDIRN 
REGION 

w> mw+ 

I I I I I I 
0 1.0 2.0 3.0 4:o 5.0 6.0 

MIJ 
0 

FIG. 5. Summary of JWlyB results for fastest growing modes. Plotted is imaginary part of the 
frequency, wI , expressed as a function of the mass of the Bose field p, for a = 0.9980 M and w = 
0.98~ at different values of I = m. The region of bound superradiant orbits is separated by line a 
from the region of negative radial kinetic energy and by line b from the region of non-superradiant 
orbits. Close to lines a and b the JWKB approximation breaks down due to the closeness of the 
turning points. Line c marks off the region within’the bound superradiant regime which satisfies 
the JWKB validity criterion for more than 60% of the distance between turning points. Line c is 
very qualitative and should only be used as a rough guideline. 

The JWKB criterion used is (dk/dr*)/k” < 1 with values of (dk/dr*)/k2 5 0.2 considered adequate. 
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In Fig. 4 we present a typical plot (for MEL = 4.186, u/M = 0.998) of o, as a 
function of wN and observe a sharp maximum occuring roughly at w  - 0.95~ - 0.98~. 
This behavior is a result of Z monotonically decreasing with increasing wN , but of 
Y-fOasw,+Cr.(N+ co). 

Finally we investigate the behavior of w, as a function of Mp. As can be seen in 
Fig. 5, for a fixed Mp the most unstable modes occur at the smallest permissible value 
of I (closest orbit), with w  E mw, . 

In summary we conclude that for a certain mass Mp, the most unstable (bound, 
superradiant) mode is the one with: 

(a) Smallest permissible I. 

(b) Largest permissible m (m = I). 

(c) Largest permissible a (a/M = 1). 
(d) Largest permissible real frequency wR = w  (w - 0.98~ < mw,). 

These optimal conditions lead to a growth rate that is approximately 

Mu, - lo-‘exp(-1.84Mp). (53) 

Our results suggest that the fastest growing modes occur for Mp 2 1 and have 
growth rates of at least Mp - lo-‘. The small magnitude of this estimate is due 
mainly to the normalization factor y - 10-O, and not to the barrier factor exp(-Z), 
which is only -0.1 in favorable cases. These are all JWKB estimates. 

In the opposite approximation Mp < I, Detweiler [to be published] finds that the 
bound states of the scalar field approximate those of the (spinless) nonrelativistic 
hydrogen atom; the fastest growth is in the 2P state with 

Mm, z (M/$712. (54) 

VI. CONCLUSIONS 

If, as we have argued, unstable normal modes exist, then calculations of quantum 
particle creation by black holes are incomplete for the case of rotating holes and 
integer-spin, massive free particles with Mp - 1. In fact, the main mechanism by 
which the hole gives up its angular momentum and free energy of rotation has been 
missed. Technically, these calculations are incomplete because they have implicitly 
assumed that a real-frequency basis of classical wave functions is complete; but this 
is not so if there exist unstable normal modes of the classical field, as we discussed in 
511. Several technical difficulties crop up when one sets out to build a proper quantum 
field theory in these circumstances; e.g. the Hamiltonian is non-self-adjoint. However, 
we expect that quantum corrections will be small, and that the effect of the instability 
can be assessed correctly in the classical approximation. In contrast, the Hawking 
Process is essentially quantum in nature, and is of much greater fundamental interest 
D71. 
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For a free field, the instability will continue growing until the total energy and 
angular momentum content of the field begins to approach that of the hole. At this 
point, back-reaction becomes important, the hole begins to spin down, and gravita- 
tional radiation accompanied by some unbound radiation in the massive field goes 
off to infinity, carrying energy and angular momentum. Presumably the system 
asymptotically approaches a static final state consisting of a nonrotating black hole 
and some outgoing radiation at infinity. The horizon area of the final black hole is 
greater than that of the initial one; the Area Theorem [ 16, Prop. 9.2.71 applies because 
the process is classical. 

Whether any of the above applies to a rapidly rotating black hole of some mass M 
in the real world is quite another question, Firstly, there must exist a massive Boson 
field of an appropriate mass TV so that M,u - 1, in order that the instability can grow 
on a time-scale short enough to be interesting. Secondly, the other interactions, for 
instance decays, of this field must be sufficiently feeble that the instability is not 
quenched. 

If M 2 lOI g, then the evaporation of the black hole takes longer than the age of 
the universe -Hil, where H,, - 10-lss-l is the Hubbl e constant, and the rotational 
instability will be interesting if the hole spins down in the age of the universe; from the 
results of §V, then, 

(12MH,)‘IQ 5 Mp 5 0.54 ln(l/MH,) - 8.8 

for M = M, = 2 x 1O33 g, 

(55) 

7 x lo-12eV ,< MY 5 4 X IO-*eV (56) 
5 x 102cm~X,~3 x 106cm (57) 

where MY is the mass of the field (in eV) and X, = p-l is the reduced Compton 
wavelength. These limits scale nearly linearly in M. No such fields are known, but it 
has been speculated that such a field might contribute to macroscopic gravitation so 
that the inverse square law would break down for separations r - X, [24,25]; it 
seems that this wild possibility cannot be ruled out today [26,27]. The definite obser- 
vation of a rapidly rotating black hole could rule it out. Similar instabilities involving 
rotating neutron stars might similarly rule it out. 

If M 5 lOl5 g, then the rotational instability will be interesting if it grows faster 
than the timescale [ 171 -M3/M& for Hawking evaporation, where MpI = 2 x 1 O-5 g. 
From $V, then 

(Mpl/M)2/Q 5 Mp 5 1.1 ln(M/M,i) - 8.8 (58) 

which for two representative values of M gives 

10 keV 5 M$ 5 10 GeV (for M = 1015 g) (59) 
50 MeV 5 M* 5 lo4 GeV (for M = 1012 g) (60) 

Again these limits scale nearly linearly in M. These ranges span the presently known 
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or conjectured spectrum of elementary particle masses; for instance the r”, the J/Y, 
and the Z” are possible candidates. (The latter two particles have spin I; the estimates 
for spin 0 in §V should be conservative for spin I.) 

Now the question of other interactions and decays become crucial, and we can 
only speculate on possible processes. All know massive neutral Bosons decay with a 
half-life tt - IO-%, and we expect that the instability will be quenched unless 
w, 2 l/t, , which will place more stringent limits on Mp. Further, the yr” and the J/Y 
are probably not elementary fields; according to the standard QCD theory of hadrons, 
these particles are quark-antiquark bound states, so that at sufficiently high occu- 
pation number they will stop behaving like Bosons. The rotational instability will 
spin down the hole only if the field grows to very high occupation numbers -(M/MJ2 
(for this reason, incidentally, the corresponding process for Fermions can be ignored); 
therefore we rather doubt that there are instabilities for no and J/Y. On the other 
hand there could be an instability in the purely gluonic sector of QCD, with the role 
of p played by the characteristic mass scale -1 GeV of the strong interactions; this 
would be a “glueball” instability. 

In contrast, the (as-yet-unobserved) neutral intermediate Boson Z” is an elementary 
field, at least according to the Weinberg-Salam and similar theories of the weak and 
electromagnetic interactions, and we expect the Z” field to be unstable if wI exceeds 
(t+)-’ N 10-3p. The effect of the instability is a little different in this case, because the 
mass of the Z, , MzO - 100 GeV, is in theory due to spontaneous breakdown of a 
gauge symmetry. The free energy released from the hole will go into healing the 
symmetry breakdown in a small, growing region around the hole. In this phase 
transition region the intermediate Bosons W* and Z” will be massless along with the 
photon y; but the instability probably will presumably continue to grow because of 
reflection from the boundary between the normal and symmetric phases. The region 
might grow to an eventual size r - M(M/MPi)z/3(M~)-4’3 - lO-6 cm; ultimately 
all the energy will be released in decay products such as lepton pairs, and the symmetry 
will break down again when the hole is spun down. In this way, a rotating black hole 
can cause a temporary phase change in the vacuum of an ambient gauge field theory. 

In summary, the actual occurrence of the rotational instability for a mini black hole 
will depend very much on the detailed behavior of elementary particles. It will be 
necessary both to calculate numerically the actual rate of growth for the fastest 
growing classical field, and also to take real elementary particle physics into more 
careful account than we have done, in order to decide if the process actually can occur. 
The possible astrophysical interest of this process is that the sudden growth of the 
instability for a mini black hole might produce a sudden burst of energetic particles, 
y’s and e*‘s, rather like that from the explosion due to the Hawking process, but 
of greater magnitude if it occurs at greater mass M. 
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