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The crossing of the classical positive and negative energy states E + and E- introduced by Christodoulou-Ruffini 
and interpreted within the framework of a relativistic quantum field theory by Deruelle and Ruffini, leads to a Klein 
paradox. It has been shown by Euler and Heisenberg that when the transmission coefficient T ~ through the barrier 
between the E + and E-  states is small it is proportional to the probability of pair creation. Numerical computations 
show that, in the case of a small Kerr black hole (GM/c 2 ~ ~I/t~c), the probability of pair creation of particles of mass 

is maximum when E -~ fif~, where E is the energy of the created particles and 11 and M the angular velocity and the 
mass of the back hole. 

The Hamilton-Jacobi equation o f  a classical particle in a Kerr-Newman geometry leads to the following equa- 
tion o f  motion: 

(dr /dr)  2 = (E - Eo*)(E - Ef t ) [ ( r  2 + a2)/(r 2 + a 2 cos 20)] 2 (1) 

where 

E~o = ( a ¢  +eQr)  + [A(//2r 2 + K ) ]  1/2 
r 2 + a 2 (2) 

with A = r 2 - 2Mr  + a 2 + Q2. Here M, Q and a are the mass, the charge and the angular momentum per unit mass 
o f  the black hole, ~, e and K are the angular momentum, the charge and the Carter's constant o f  the motion of  
the particle o f  mass/a [1 ] : 

K = p2  o + (¢~ - Ea sin20)2/sin 2 0 + a2/.t 2 cos20. (3) 

In a previous letter [2],  we have given an interpretation in-the framework o f  a quantum field theory o f  the posi- 
tive and negative root solutions E ± introduced by Christodoulou and Ruffini [3] (details in ref. [4]).  We showed 
that: 

1) The classical E ± bound states are the classical limit o f  the "resonances" o f  a quantum field satisfying the 
Klein-Gordon equation written in the Kerr-Newman metric. 

2) The positive energy states (E + > E +, l, m) correspond to a positive probability density j o  (such that ~/~JU 
= 0) and therefore describe particles o f  energy E, quantum numbers l, m. 

3) The negative energy states ( E -  < E  o , l, m) correspond to a negative probability density J ° and therefore 
describe, thanks to the properties o f  particle-antiparticle conjugation, antiparticles o f  energy - E ,  quantum num- 
bers l, and - m .  

4) When there is a crossing of  the E + and the E -  states, the probability density j o  has not a constant sign; we 
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are then in the conditions of the Klein paradox as considered by Klein [5], Sauter [6], Euler and Kockel [7], 
Heisenberg and Euler [8], and Pauli [9]. 

In this letter we shall study the transmission coefficient through the barrier between the states E + and E -  of 
a scalar field satisfying the Klein-Gordon equation coupled to a classical gravitational background described by 
the Kerr-Newman metric. We write the Klein-Gordon equation 

(V~ + ieAa)(7 a + ieA ~) ~b +/z2~ = 0 (4) 

in the Kerr-Newman metric: 

ds 2 = [1 - ( 2 M r -  Q2)/p2] dt 2 _ (p2/A) dr 2 _ p2 d02 

- [r 2 +a 2 +a 2 sin20 (2Mr-Q2) /p2]  sin20 d~o2 + / 2 ( 2 M r -  Q2)a sin20/p 2] d~o dt 

where 

p2 = r 2 + a2 ¢os20; A = ( Q r / p 2 ) ( d t -  a sin20 d~o). 

The separation of the variables: 

= e x p  i(m~0 - Et)Sml(O)R(r) (6) 

where Sml are the spheroidal harmonics [10] of eigenvalues kml, leads to the following radial equation: 

ftd2 u/dr .2 = W(r*)u, It(r*) = A(p2r 2 +K) - [(r 2 + a 2 ) E-  am - eQr] 2 +(2A]r2)(Mr _ a 2 _ Q2) (7a, b) 

where 

K = kml + aE(aE - 2m) 

u = rR(r) and dr/dr* = Air 2 (see fig. 1). 
In the Schwarzschild case (a = Q = 0) there is no crossing of the E + and E -  solutions [2]. Whatever is the en- 

ergy E(E 2 >/a 2) of the particle, the probability density has a constant sign (positive for particles, negative for 
antiparticles). Therefore in a Schwarzsehild black hole there is no creation of particles due to the absence of level 
crossing. The problem is then a usual problem of diffusion in the potential (7) [11], the boundary condition being 
that nothing whatsoever can emerge from the horizon, i.e. that the wave is ingoing at the horizon of the black 
hole. Details in ref. [4]. 

On the other hand, when the black-hole is endowed with rotational energy or electromagnetic energy (a 4~ 0, 
Q ~ 0), there is a level crossing of the E + and the E -  states inside the effective ergosphere [12, 13] (of. fig. 1 and 
caption). 

When such a crossing occurs, the probability density jo  has not a constant sign. We are then in the conditions 
of the Klein paradox [5-9].  

To clarify the discussion, we shall only consider the case/~ < E < (am + eQr+)/(r + a 2) where r+ = [M + (M 2 
_ a2 _ Q2) 1/2] (incident particle; the case of an incident antiparticle (am + eQr+)/(r2+ + a 2) < E < -/~ is com- 
pletely analogous). 

The solution of the radial eq. (7) near the horizon is an outgoing wave corresponding to an infalling antiparticle: 

u(r*) "~ C e x p  i ]  [(r2+ + a 2)  E "  am - eQr+]/r2+[ r* - C exp i I kl r*. (8) 

The solution at infinity is: 

u(r*) ~ A  exp[- i (E  2 - ~2)1/2r*] +B exp[i(E 2 - ~2)1/2 r*]. (9) 

The reflexion coefficient through the barrier (cf. fig. 1 and caption) is defined by R 2 = (B/A) 2 and the transmis- 
sion coefficient by T 2 =~ [I kl/(E 2 - #2)1/2] I C/Aj2. The theorem of the Wronskian then implies: 
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Fig. 1. The classical and quantum descriptions are here com- 
pared and constrasted in the extreme Kerr case. The effective 
ergosphere [ 3 ] in the region where  the positive (negative) root  
solutions have a negative (positive energy. When there is a 
crossing o f  the E + and E -  states the corresponding quantum 
potential  W(r*) (cf. eq. (7) has two zeros. There is the tunnel- 
ling from the E + to the E -  states through this Gamow barrier. 
The transmission coefficient is proport ional  to the probability 
for the incident particle to create a pair o f  particles [ 5 - 9 ] .  In 
this figure and in the following we have chosen h = c = G = 1. 

0.5 x 10"sl T2 

O.I x 10 "3 \ \  
l I ~ ~) ~ \~,'~ - [ , ~////~ e / /~ \ \ \a  - ~ -  E / I , - ' - "  ~. 

Fig. 2. The transmission coefficient through the potential  bar- 
tier separating the  E + from the E- states is here represented 
as a function of E/p the energy per unit mass o f  the particle 
and ¢ ~ / p  where ¢ = m in the angular momentum o f  the par- 
ticle and F~ the angular velocity o f  the black hole. In the ex- 
treme Kerr case here considered, g2 = (1/2)/M; p/~2 = 1 which 
means that the Compton  wave-length o f  the particle is twice 
the  radius o f  the black hole. 

T21 

Fig. 3. The transmission coefficient T 2 is here given as a funct ion o f  the energy E/p of  the particle and the parameter p/fZ. It is 
then clear that  the  transmission coefficient goes to zero i f  p / f l  > 1 and tends to  a finite value (T 2 -- 0,35 X 10 -2 )  in the  limit 
p/fZ -* 0. In this last limit the transmission coefficient reaches a maximum value for an energy o f  the pair created E ~ f i  (E ~ hl'l  
in the  conventional units). 
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T 2 + 1 =R 2. (10) 

Within the framework of a single particle theory, the transmission coefficient T 2 through the potential barrier 
separating the positive from the negative energy states is proportional to the probability for an incident particle 
to create a pair of particles of mass/~. This transmission coefficient was also studied in a different physical frame- 
work (superradiant scattering) and in the case of massless fields by Teukolsky and Press [14]. 

The transmission coefficient can be computed using the B.K.W. approximation: 
b 

T2=exp(-2 f r-2(w)l/2 dr *) (11) 
a 

where a and b are the zeros of the potential W(r*) defined by eq. (7) (of. fig. 1 and caption). T 2 can also be com- 
puted by a direct integration of eq. (7). A few results of anumerical computation of T 2 in the extreme Kerr case 
(Q -- 0, a =/14) are shown in fig. 2 and fig. 3. Further results in ref. [4, 15, 16]. 

Important here is to summarize the main results: 
1) The probability of pair creation is negligible when the Compton wave-length of the incident particle is small 

compared to the radius of the black hole (h//~ ~ GM/c; classical limit). 
2) When h//a ~> GM/c the maximum of the probability of pair creation increases and tends asymptotically, for 

izM/(hC/G) --, O, to a finite value: T 2 "- 0.35 X 10 -2 independent of the particle mass/a (see fig. 3). This limiting 
value is the same as the one obtained for a massless field in ref. [14]. 

3) In the case of a small black hole (GM/c < h/t0 the transmission coefficient reached is maximum value for the 
energy of the particle. 

E "~" h a  (12) 

Here ~2 is the angular velocity of a black hole [17] I2 = a/(r2+ + a2). This result is in perfect accordance with the 
classical paper by Zel'dovich [18, 19] concerning the amplification of a massless scalar wave scattered by a rotat- 
hag cylinder. The result given in eq. (12) has a very satisfactory physical interpretation: the transmission coeffi- 
cient reaches its maximum value for particles with a DeBrogiie wavelength comparable to the characteristic length 
(in geometrical units) associated with the angular velocity of the black hole ~2. 

4) From the law of conservation of the four momentum it follows that through the process of  pair creation ro- 
tation energy can be extracted from a rotating black hole. It is important to stress that this process is always irre- 
versible, in the sense def'med in ref. [3] and increases the irreducible mass of the black hole. In this sense the pro- 
tess here considered differs drastically from the one studied by Hawking [20]. Physically the two processes are 
also drastically different. Here particle creation is produced by the shear in the space surrounding the horizon of 
the black hole due to the dragging of the inertial frames. There [20] particle creation is due to the time varying 
background geometry. 
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