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ABSTRACT

This paper focuses on the motion of a test particle moving around the Reissner-Nordström black
hole. It deals with circular motion and radial motion of the neutral massive test particles, and shortly
handles circular motion of the charged massive test particles. Both neutral and charged particles
are affected by black hole’s charge, but it is due to the fact that charge of the black hole bends the
spacetime more strongly. This procedure has nothing to do with electromagnetic interactions, and
these are only considered for charged test particles. However, it only treats mathematically easy,
approximated situations and general motions and complex motions will not be discussed. This paper
has tried to get some physical information only with the easiest mathematical tools and without
difficult concepts that general relativity contains. Contents of this paper would be suitable for those
who want to know something about the Reissner-Nordström black hole, but does not have much
knowledge in this field. They can begin their intellectual journey with this paper.

INTRODUCTION

Reissner-Nordström spacetime is one of vacuum solu-
tions of Einstein equation. Although this solution is gen-
erally considered unphysical since it is static and charged.
In the scale of stars, this is hardly probable because par-
ticles accumulated to create the black hole have their own
angular momentum and charges will attract the opposite
charges until the black hole becomes neutral. This space-
time, however, can be treated with a bit simple math-
ematical approach compared to Kerr or Kerr-Newman
spacetimes and might suggest us some physical informa-
tion. In this paper we will see how test particles moving
in the Reissner-Nordström spacetime behave in the most
easiest cases: circular motion and radial motion.
To begin with, Reissner-Nordström metric has this form:

ds2 = −(1− rS
r

+
r2Q
r2

)c2dt2+(1− rS
r

+
r2Q
r2

)−1dr2+r2dΩ2.

(1)
where rS is proportional to the mass of the black hole
and rQ is proportional to the net charge of the black
hole.[1] We will ignore an additional term given by mag-
netic charges throughout this paper(letting P = 0.) This
metric form ensures its spherical symmetry, and tells that
the spacetime will depend on the net charge and mass of
a star.
Because of its peculiar properties caused by electromag-
netic interactions, Reissner-Nordström black hole shows
quite different features from Schwarzschild or Kerr black
holes. One of them will be discussed here and it is de-
picted in FIG. 3. There have been some approaches to
gain some physical results from this kind of black hole,
since its static property makes it an easy choice to start
an intellectual journey. For example, see Ruffini (2005)[2]

I. NEUTRAL PARTICLE WITH CIRCULAR
ORBIT ON EQUATORIAL PLANE

In this case, since the particle is neutral, there is no
electromagnetic interaction between the test particle and
the Reissner-Nordström black hole. Spherical symmetry
of the Reissner-Nordström metric ensures that the mo-
tion will remain on the equatorial plane, thereby de-
scribed by (t, r, π2 , φ) with θ̇ = 0.
With these initial conditions, geodesic equation for µ = 0
yields

d2t

dτ2
+ 2Γ0

10

dt

dτ

dr

dτ
= 0,

simplified into

d

ds
[(1− rS

r
+
r2Q
r2

)ṫ] = 0 (µ = 0). (2)

This result denotes the conserved energy for massless par-
ticles, or the conserved energy per unit mass for massive
particles. [3]

(1− rS
r

+
r2Q
r2

)ṫ = E = const. (3)

For µ = 3, the equation gives

φ̈+
2

r
ṙφ̇ = 0,

which becomes

d

ds
[r2φ̇] = 0 (µ = 3). (4)

In the same reasoning, this result states the conserved an-
gular momentum(for massless particles) or the conserved
angular momentum per unit mass(for massive particles.)

r2φ̇ = L = const. (5)
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Instead of trying µ = 1 equation, we use the Reissner-
Nordström metric

ds2 = −(1− rS
r

+
r2Q
r2

)c2dt2+(1− rS
r

+
r2Q
r2

)−1dr2+r2dΩ2.

(1)
Dividing both sides by ds2 and substituting Eqs. (3) and
(5), for the massive test particles, we obtain

1 = (1− rS
r

+
r2Q
r2

)E2− L2

c2r4
(1− rS

r
+
r2Q
r2

)−1(
dr

dφ
)2− a2

c2r2
.

Rearranging terms following the similar procedure pre-
sented by L. Ryder[4], we finally arrive at the equation:

d2

dφ2
(
1

r
) +

1

r
=
rSc

2

2L2
−
r2Qc

2

rL2
+

3rS
2r2
−

2r2Q
r3

. (6)

This is the equation that describes the motion of the
massive and neutral test particle on the equatorial plane
of the Reissner-Nordström black hole.

Stable, and Circular Orbit Motion

For further discussion, it would be difficult to handle
all kinds of possible motions of these test particles on
the equatorial plane. Thus, we focus on a specific case,
the circular orbit of the neutral and massive test particle.
To find a stable circular orbit radius we start from the
metric equation, Eq. (1). Rearranging terms to represent
the conserved energy part, E, on the RHS and the other
terms on the LHS, it becomes as follows:

1

2
ṙ2 +

1

2
(1− rS

r
+
r2Q
r2

)(
L2

r2
+ 1) =

1

2
E2 ≡ ε. (7)

This equation seems like the equation for conservation of
energy. In this analogy, the potential energy term for the
circular motion can be obtained.

V (r) =
1

2
(1− rS

r
+
r2Q
r2

)(
L2

r2
+ 1).

Let the circular orbit radius be rC . Then for the orbit to
be circular, this potential should satisfy the condition:

dV

dr
|r=rC = 0.

Satisfying this restriction yields a polynomial equation of
rC .

rS −
(2r2Q + L2)

rC
+

3rSL
2

r2C
−

4r2QL
2

r3C
= 0. (8)

If the test particle were massless, the first two terms of
this equation will be removed, thereby resulting in the
radii of

rC =
3rS ±

√
9r2S − 32r2Q

4
.

Especially for the extremal Reissner-Nordström black
hole, where rS = 2rQ, we have simple radius of

rC = 2rQ or rQ,

with rQ being the hozion.
Unlike this massless case, Eq. (8) for massive particles
will be cubic equation. To make things simple, we first
try the special case rC � rQ and then see whether it was
a reasonable approach afterwards.
In this limiting case, the last term in Eq. (8) vanishes, so
we solve this quadratic equation:

rSrC − 2(r2Q + L2)rC + 3rSL
2 = 0.

Solving this quadratic equation gives one inner, unstable
orbit and another farther, stable orbit. The innermost
stable orbit is, therefore, achieved when two orbits coin-
cide, i.e. when the discriminant of this quadratic equation
is zero. Again, supposing rS � rQ, the circular orbit ra-
dius is given by

rC ≈ 3rS −
r2Q
rS
. (9)

This result is compatible with the former constriction
rC > rS � rQ. Thus, we found the radius of stable
circular orbit of the massive particle, moving around
the weakly charged Reissner-Nordström black hole. Com-
pared with the Schwarzschild black hole, the stable cir-
cular orbit around the Reissner-Nordström black hole
moves a liitle inwards, towards the horizon. Also this re-
sult reproduces the Schwarzschild stable orbit, r = 3rS ,
in the limit rQ → 0, or more correctly, when Q → 0,
as desired. It complys with the more precisely calculated
radius, provided by Praloy, Ripon, and Subir[5],

rC = 3rS −
3r2Q
rS

,

within some coefficients which might depend on the
approximation procedure. In case of strongly charged
Reissner-Nordström black hole, we cannot apply the
same approximation so one has to solve Eq. (8) directly.
Since the potential has the general shape described in
FIG. 1, there is one stable circular orbit according to the
given potential, and the minimum radius is given by Eq.
(9). In the regime that has been used to get Eq. (9), there
is another solution; however, it is inside the horizon. Like
this, other possible solutions are not physical.

Precession Motion

We finish this section with discussing the precession
motion of an orbit. It might not be circular, in general,
but elliptical more probably. Before thinking about the
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(a) (b) (c)

FIG. 1: Graphs of the potential V (r) = 1
2 (1− rS

r +
r2Q
r2 )(L

2

r2 + 1) depending on variables rS , rQ, and L, keeping the
condition rS ≥ 2rQ . Whatever values we choose, the genaral shape of the potential does not change. The potential
shape resembles that of atoms. Stable circular motion is achieved at the pit. Note that the axes values are different.

(a) rS = 3, rQ = 1, L = 1, (b) rS = 3, rQ = 1, L = 3, (c) rS = 2, rQ = 1, L = 1.

precession motion in general relativistic way, we first con-
sider the familiar Newtonian elliptical orbit. It is well
known that in Newtonain language,

d2

dφ2
(
1

r
) +

1

r
=

1

p
=
rSc

2

2L2
.

Here, the quantity p is the semi-latus rectum of the el-
lipse, given by

p = a0(1− e2),

with the semi-major axis a0 and the eccentricity e. This
Newtonian equation has the solution

1

r
=

1

p
(1 + e cosφ). (10)

Now, we go back to the relativistic motion equation for
motions on the equatorial plane,

d2

dφ2
(
1

r
) +

1

r
=
rSc

2

2L2
−
r2Qc

2

rL2
+

3rS
2r2
−

2r2Q
r3

. (6)

The first term on the RHS is that of the Newtonian term.
To solve this equation, we substitute Eq. (10) into Eq. (6)
and neglect terms of order higher than e2(assuming that
e� 1.) Also, further assuming that rS and rQ are on the
same order and [(rSc)/L]2 � 1, the equation turns into

d2

dφ2
(
1

r
) +

1

r
≈ rSc

2

2L2
[1−

r2Qc
2

L2
e cosφ

+
3r2Sc

2

2L2
e cosφ−

3r2Qr
2
Sc

4

2L4
e cosφ].

In this approximation, the last term can be disregarded.
This is the differential equation and we already obtained

the soultion of the first part - it is the answer the New-
tonian equation yields - and the other terms give the so-
lution containing φ sinφ. Thus, the total solution of Eq.
(6) with some approximations is this:

1

r
=
rSc

2

2L2
(1 + e cosφ) +

r2Sc
4

2L4
(
3r2S
2
− r2Q)eφ sinφ.

Because of the cosmic censorship hypothesis, the condi-
tion rS ≥ 2rQ must hold, not to make naked singularity.

So the term
3r2S
2 − r2Q) in the above solution is always

positive. The approximation [(rSc)/L]2 � 1 enables us
to synthesize two trigonometric terms into one:

1

r
=
rSc

2

2L2
[1 + e cos{φ(1− c2

L2
(
3r2S
2
− r2Q))}]. (11)

with some minor terms of order higher than (rS/r)
2 ig-

nored.
This solution describes the precesss motion of an ellipti-
cal orbit with

δφ = 2π
c2

L2
(
3r2S
2
− r2Q)

=
6πc2rS

a0(1− e2)
[1− 2

3
(
rQ
rS

)2].

(12)

To see its effect, let’s imagine an imaginary star which
has the same properties as the Sun, except for one
change that this imaginary star has net charge of Q.
For the Sun and Mercury, the parameters are given by
rS = 2.95325008 × 103m, a0 = 5.7909175 × 1010m, and
e = 0.20563069.[6] Then the cumulative effect for 100
Earth-year becomes

δφ100 ≈ 43.03′′[1− 2

3
(
rQ
rS

)2]

= 43.03′′[1− 2

3
(

Q2

5.9× 1010
)].
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(a) rQ = 0, 20π (b) rQ = 0, 1, 000π (c) rQ = 0, 20, 000π

(d) rQ = 0, 30, 000, 000π (e) rQ = 0.5rS , 30, 000, 000π

FIG. 2: This figure shows how Mercury revolves the Sun. At the beginning, orbital motion follows the initial
elliptical path. As precession effect is accumulated, however, its orbit starts to differ from its original path and

covers more space. From (a) to (d), net charge of the Sun is zero (Q = 0,) as usual. In (e), however, net charge of the
Sun is chosen to satisfy extremal condition (rS = 2rQ). The difference between the neutral Sun and the charged Sun

becomes obvious when Mercury revolves more than ten million times.

Just as FIG. 2 shows, the effect of the net charge becomes
macroscopic after the planet revolves the star countless
times.

∗ ∗ ∗

What these two results - circular orbit change and
precession change - tell us is this: Even the neutral test
particles are affected by the net charge of the black
hole, thus giving different consequnces for Schwarzschild
spacetime and Reissner-Nordström spacetime. The
presence of charge affects the spacetime and curves it
stronger than neutral case when the masses are the same.
The more charge it acquires, the more the spacetime
curved, like mass does. As expected, not only mass and
angular momentum, but also charge is an obvious hair
for black holes.

II. NEUTRAL MASSIVE PARTICLE WITH
RADIAL MOTION

Without loss of generality radial motion of the test
particle can be chosen to follow these conditions:

r0 = R,
dr

dt
|t=0= 0, θ =

π

2
, φ = 0, θ̇ = φ̇ = 0.

Eq. (3) still holds, but angular terms in Eq. (1) vanishes.

ds2 = −(1− rS
r

+
r2Q
r2

)c2dt2 + (1− rS
r

+
r2Q
r2

)−1dr2. (13)

Under this situation, we first try to gain t, the time of
an observer far away from the origin, as a function of r.
Substitute

ṙ =
dr

dt
ṫ

into Eq. (13) and arrange terms, then we have

[c2(1− rS
r

+
r2Q
r2

)− (1− rS
r

+
r2Q
r2

)−1(
dr

dt
)2]ṫ2 = c2.
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Applying initial conditions into this equation gives

dt

dτ
|R=

1√
1− rS

R +
r2Q
R2

.

Since Eq. (3) still valid, we obtain

E =

√
1− rS

R
+
r2Q
R2

and
dt

dτ
=

√
1− rS

R +
r2Q
R2√

1− rS
r +

r2Q
r2

.

With these results, we finally reach at the relationship
between the time t and the radial position r.

ct = −

√
1− rS

R
+
r2Q
R2
×∫ r

R

dx

(1− rS
x +

r2Q
x2 )

√
rS
x −

r2Q
x2 − rS

R +
r2Q
R2

.

(14)

This integral cannot be solved easily, so we again solve
it for special case by taking limits R→∞(although one
can retain R to be finite, it will simplify things) and rS →
2rQ(extremal approximation,) the integral is solved into

ct =

√
2r
rQ
− 1

r − rQ
. (15)

When the Reissner-Nordström black hole is extremal,
rS = 2rQ, the outer event horizon and the inner Cauchy
horizon coincide at r = rQ. Therefore,

t→∞ as r → rQ,

as desired since in terms of the far away observer, an ob-
ject falling into the black hole will never cross the horizon.
However, it does not make any physical problem because
in the view of the infalling observer, it would take finite
time to cross the horizon. That is, the proper time inte-
gration

cτ = −
∫ r

R

dx√
E2 − (1− rS

r +
r2Q
r2 )

, (16)

produces finite time even when r is inside the horizon,
although it is hard to obtain the general formula.
In calculating the proper time, one should note that the
denominator of Eq. (16) can become zero, meaning non
physical situation when

r =
−rS +

√
r2S + 4r2Q(E2 − 1)

2(E2 − 1)
.

What happens here is well described in Carroll’s text-
book [7]:
After the infalling observer passes the outer horizon

FIG. 3: Conformal diagram for Reissner-Nordström
black hole. This figure was sampled from S. Carroll’s
Spacetime and Geometry An Introduction to General
Relativity[7]. It is shown that an object fallen into the

Reissner-Nordström black hole oscillates back and forth
around the horizon. In this paper, p, the total magnetic

charge is always considered to be zero.

r+, he has to pass the inner horizon r− also. When
he crosses the inner horizon, however, r coordinate
becomes spacelike, so he can go back to the inner
horizon and then cross it from the inside to outside.
Then, r coordinate again becomes timelike but since it
is reversed, he is forced to move along the increasing r
path, thereby passing the outer horizon. Finally, he will
be released from the black hole, then again he starts to
feel attraction towards the black hole.
In this way, the observer can oscillate back and forth
around the Reissner-Nordström black hole’s outer
horizon. The parodox, however, arises because the far
away observer never sees the infalling observer crossing
the outer horizon. When the infalling observer crosses
the outer horizon from inside to outside, the far away
observer will notice that there exist two totally same
person: one is still falling, but the other is coming out.
To remedy this paradox, it was suggested that when
the infalling observer is released from the outer horizon,
it will not be the same universe that he lived when
he was falling. In case of the Scwarzschild black hole,
the infalling observer cannot escape but fall into and
collide to the singularity. On the other hand, an observer
diving into the Reissner-Nordström black hole can go to
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other universes as well as escape the black hole. This
is another main difference between two types of black
holes and it can be implied from the radial motion of
the massive particle.

III. CHARGED PARTICLE WITH CIRCULAR
ORBIT ON EQUATORIAL PLANE

We finally deal with the motion of the charged test
particle. First, when the particle is far away from the
Reissner-Nordström black hole, the black hole will seem
like a point charge with mass. This can be shown easily
from Reissner-Nordström black hole’s properties: Ftr =
−Frt = − rQr2 , else = 0. [8] Electromanetic tensor Fµν is
given by

Fµν =


0 Er rEθ r sin θEφ

0 −rBφ r sin θBθ
0 −r2 sin θBr

0

 =


0

rQ
r2 0 0
0 0 0

0 0
0


Noting that rQ ∼ Q, we find the expected classical elec-
tric field produced by static charge Q. In the neutral
particle case, however, the innermost stable circular or-
bit was constructed at rC ≈ 3rS . This is close enough
to the black hole, so one cannot expect this classical re-
sult to be applied. We again follow the procedure done
in section I. For stable circular orbit, since radius should
remain constant, its derivative will automatically vanish.
Then,

d2

dφ2
1

rC
= 0

results in

0 =(1− rQqE

rS
)−

2r2Q
rSrC

(1− q2 +
L2

r2Qc
2

)

+
3L2

c2r2C
−

4r2QL
2

rSc2r3C
.

(17)

Also, the fact that stable orbit occurs at the inflection
point of the orbital equation requires derivative of Eq.
(17) to be zero. These two conditions are written by pow-
ers of rC as

0 =(1− Λ)r3C −
2r2Q
rS

(1− q2 +
L2

r2Qc
2

)r2C

+
3L2

c2
rC −

4r2QL
2

rSc2
.

(18)

0 = 3(1−Λ)r2C −
4r2Q
rS

(1− q2)rC −
4L2

rSc2
rC +

3L2

c2
. (19)

where Λ ≡ (rQqE)/rS . We now solve these two equa-
tions and suppose that (

rQ
rS

)2 � 1, then the last term in
Eq. (18) vanishes. Therefore, the approximated answer is
obtained.

rC ≈
3

2
rS [1 +

√
1−

4r2Q
rS

(
1− 2

3Λ− 1
3q

2

1− Λ
)].

When the charge of the particle is small enough, this can
be roughly stated as

rC ≈ 3rS −
3r2Q
rS

(1 +
rQE

rS
q). (20)

This is the exact solution presented by Praloy, et al. in
more rigorous way.[9] Note that the coefficient of q is van-
ishingly small since we assumed that (

rQ
rS

)2 � 1.
What is interesting here is that when q = 0, the neu-
tral test particle solution is retrieved. Moreover, this re-
sult also tells that the net charge of the particle can be
translated into the change of the charge of the Reissner-
Nordström black hole. According to the sign of the test
charge, the innermost circular orbit becomes closer or
farther.
Not just being satisfied with the circular case, one can
solve the equation

d2

dφ2
(
1

r
) +

1

r
=
rSc

2

2L2
−
r2Qc

2

rL2
+

3rS
2r2
−

2r2Q
r3

+
rQqc

2

L2
(
rQq

r
− 1

2
E)

(21)

to see the full picture. This is Eq. (6) plus some addi-
tional terms due to the electromagnetic interaction of
the black hole and the test particle.

CONCLUSION

This paper has concentrated on the motion of a mas-
sive test particle moving near the Reissner-Nordström
black hole. First, we treated neutral test particles. Al-
though they are neutral, so there should be no elec-
tomagnetic interactions, it turns out that even neutral
test particles show different motions compared to that
of the Schwarzschild cases. This is because the pres-
ence of charge can curve the spacetime as mass and en-
ergy does; however, it should be noted that electromag-
netic interaction itself has nothing to do with curvature
just as gravity is the curved spacetime itself. When the
Schwarzschild black hole has started to get net charge,
it becomes Reissner-Nordström black hole and it begins
to curve spacetime more strongly than before. A neutral
test particle can follow a cirrcular orbit around the black
hole. The innermost stable circular orbit it can have dif-
fers from two black holes. For schwarzschild black hole,
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the radius is only determined by rS , because it is the only
hair it has, while the orbit radius around the Reissner-
Nordström black hole depends on both rS and rQ and
becomes closer, as expected.
Second, we paid attention to the fact that Schwarzschild
metric is used to explain precession of the perihelion of
the Mercury. From this, we imagined a star which has the
same properties with the Sun except for its net charge,
and calculated how it affects Mercury. It is described in
FIG. 2 and we found that its effect is quite small, so one
can notice the difference after Mercury revolved tremen-
dous times - even for the extremal case which has the
most drastic effect.
After that, neutral test charge’s radial motion was consid-
ered. Like all other kinds of black holes, a person falling
into the Reissner-Nordström black hole never crosses the
event horizon in the view of the far away observer. How-
ever, another observer falling together with the infalling
person surely sees him taking finite time to pass the hori-
zon. Also, radial motion implies a weird characteristic of
the Reissner-Nordström black hole. Even though it has
the name ’black hole,’ already fallen person can go out-
side the event horizon; however, he will be in another
universe. This is quite an interesting story, although the
Reissner-Nordström black holes are not realistic objects
in the universe.
Finally, charged test particle was handled, but it was not
discussed in depth since it is difficult to insert electro-
magnetic interactions into the Reissner-Nordström met-
ric and develop a theory. It was shown that the existence
of net charge of the test particle can be translated into an
increased or decreased charge of the black hole. Also, the
innermost circular orbit radius approached that of the
neutral particle when we let the charge of the particle be
zero.
Since Reissner-Nordström black holes distinguish them-
selves from other kinds of black holes by their charge,
most dramatic and amusing effects come from their in-
teraction with the charge of the test particle. Because
of its mathematical hardship, however, this paper has
satisfied only with the easiest cases. Who one to go fur-
ther and see what happens could solve Eq. (21). For ex-
ample, this equation can teach us how electron beams
caused by supernovae or whatever behaves when they
pass the Reissner-Nordström black hole nearby. Gravity
only works as a convex lens for all kinds of matters, but
Reissner-Nordström black hole might be able to scatter

charged particles, working as a concave lens. Or because
charged particles emit electromagnetic waves when it is
accelerated, its orbit will not remain stable. One can see
how it will fall into the Reissner-Nordström black hole in
this way.
Although this paper has tried to gain some simple phys-
ical results in some simpliest cases, general orbits of the
charged test particles’ motions are well described in the
paper of Grunau and Kagramanova.[10] This paper is
strongly recommeded for those who want to see parti-
cles’ exact behaviors not in equations, but in figures.
Also, works done by Praloy, et al., which has been cited
all along this paper shows how neutral and charged test
particles move in much more rigorous way.
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