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Detailed analyses have recently been made (!) of relativistic quantized fields in
a classical background geometry described by Einstein field equations. Much emphasis
has been directed toward the analysis of a) resonances of spin-0 and spin-% fields in
a Sechwarzschild backgronnd geometry (2), b) scalar fields fulfilling the Klein-Gordon
equation in a stationary geometry and their classical limits (h— 0, Hamilton-Jacobi
equation) (3), ¢) pair creation processes occurring in stationary geometries endowed,
as well, with electromagnetic fields (?).

The aim of this letter is to use some of the results presented in ref. (34) and show
by an explicit example how in a stationary geometry or in the field of a collapsed
object endowed with eleetromagnetic strueture resonance states with I'< 0 (growing
with time) can be found.

The existence of these states is most clear if the effective-potential ap-
proach (**) is used and has its physical justification in the interplay of the two pro-
cesses of pair creation (*) and resonance states (23) in the field of a collapsed object.

(*) E.S.A. International Fellow.

(**) Alfred P. Sloan Fellow.

(*) See, ¢.9., Proceedings of the Marcel Grossman Meeling, edited by R. RUFFINT (Amsterdam, 1976).
(*) See, e.g., J. A. WHRELER: Transcending the law of conservation of leptons, in Quaderno No. 157,
Accademia Nazionale dei Lincei (Roma, 1971), p. 133.

(*) N.DEerUELLE and R. RUFFINI: Phys. Lett.,52 B, 437 (1974); in this paper the positive- and negative-
root solutions introduced by D. CHRISTODOULOU and R. RUFFINI: Phys. Rev. D, 4, 3552 (1971), arc iden-
tified with the classicallimits of the positive- and negative-energy states of a relativistic quantized field.
Sce also T. DaMOUR: Letl. Nuovo Cimento, 12, 315 (1975), where this correspondence is made manifest
by a suitable choice of the co-ordinates.

(‘) See, e.g., T. DamoUR and R. RUFFINT: Phys. Rev. Lett., 35, 463 (1975); N. DERUELLE and R, RuF-
FINI: Phys. Lett., 38 B, (1975) and references mentioned there.
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Let us consider a spin-0 boson field @ of mass ¢ and charge ¢ in a Kerr-Newman
geometry

(1) (Ve e A%)(V,— e A) @ = p2 &
and
= in? 9 y
@) ds*— = drt 4 Z 0"+ S"; [(2 + a?) dp — ade)2 — 3[4t — a sin* 0dg)?
3) Az—%(dt—asian(p),

where A =72—2Mr -+ e+ a? and X =12+ a® cos20, with M the mass, ¢ the charge
and « the specific angular momentum of the background geometry (here and in the
following we choose G=c=7%=1).

The function @ in eq. (1) is separable (°), we then have

4) D = y(r) x(0) exp [i(mp — w?)] ,

where y(6) is expressible as a function of spheroidal harmonics (%) and m is the usual
azimuthal quantum number.
Introducing a new radial co-ordinate # such that (%)

(6.1) do = [(r2 + a®)fr2]s? dr/4,

where

(5.2) ; re= M+ (Mz_az_ez)}’

and such that r= + oo corresponds to #= + oo and r=r; to ¥ =— co, we have for

the radial dependence of the wave function

d2u
(6.1) o= Wu
with %= ry(r) and
%\ (4 K 2M 2(a®+ €?) 1
(6.2) W= (Ti—{— a2) {—7-_2- [#24— = + - = - —’-,'—4[(1'2 4+ a?)w — am —eer)?y ,

where K is given in the first approximation by (%)

(6.3) E=U+1)—2man + atef + [1—W 1)@+ 3)

with y? = a?(u?— 0?).

(*} See, e.g., B. CARTER: Comm. Math. Phys., 10, 280 (1968); D. Briry, P. M. CHRzZANOWSKI, C. M.
PEREIRA, E. D. FACKERELL and J. R. IPsER: Phys. Rev. D, 5, 1913 (1972).
(9 J. MEIXNER and F. W, SCHARFKE: Mathieusche Funktionen und Sphdroidfunktionen (Berlin, 1954).



ON QUANTUM RESONANCES IN STATIONARY GEOMETRIES 259

We are here interested in analyzing quantum states corresponding to classical
circular and elliptical orbits. It is well known (1-3) that the corresponding quantum
states are deseribed by resonances of the quantum field of the kind first considered
by Gamow (%) in the classical problem of the «-decay from a nuecleus (8).

In sharp contrast with the resonance states studied in ref. (2) we are here interested
in resonances which present a level crossing between the positive- and the negative-
energy states. We give an explicit example of this new kind of resonances in fig. 1.
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Fig. 1. — Example of resonance with level crossing between the positive- and the negative-energy states
in the fleld of an extreme Kerr black hole with @ = M. The scalar fleld is assumed to have I =m = 2
and a mass u such that uM =1. The energy of the resonance E/u = 0.930 corresponds to the first

c
excited state (I/n)f(— W')} dz =1.5. The width of the resonance is I'/jy = — 4-10-5,
14

We approach the problem by the Gamow method using complex eigenvalues and
the WKB approximation. Let us then first indicate by a, b and ¢ the values of the
@—co-ordinate corresponding to the zeros of the function Wi(w. w), for a real value of w,
such that

—oo<a<b<<e<<+ oo.

We then choose for x> ¢

(7) u(z, ) = W-texp [-}W‘} dw]

for z<a, u(r, w) is a mixture of equal-intensity ingoing and outgoing waves, the

(y G. Gavow: Zeits. Phys., 51, 204 (1928). Scec also G. Gamow: Structure of Atomic Nuclei and
Nuclear Transformations (Oxford, 1937).

(*) Thereis oncimportant difference botween the study of the resonances of a nucleus and the resonances
of a guantized fleld around a collapsed object: the leakage in the case of a nucleus occurs always toward

spatial infinity (# — o) while in the case of a collapsed object occurs toward the horizon (r —r, or
x> — o).
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amplitude of which are complex conjugates:
(8.1)  u(@, w) = exp [—in/4] (— W)~ [2 c0s (1/2) exp [¢/2] + 3 sin (1/2) oxp [— 5/2]] :

-exp [— f(— W)k da;] + exp [in/4] (—W)~%.

. [2 cos (I/2) exp [£/2] —% sin (I/2)exp [—5/2]] exp [—[— 'if(— w)t dw] ,

where

(8.2) I= 2[(— W)t dx
b

and
b

(8.3) L= 2f(W)i dz .

a

The function W(x) has the asymptotic behaviours

1 — 7’"%' : 2__ 2
0.1 Jim W = () e
and
9.2) lim W)= —(0—mQ2—eV)2,
>~

where we have indicated by (*) Q2= a/(r?+ a?) the angular velocity of the black hole
and by (1) V its electric potential V = er /(r2 + a?).

Analytically continuing now the functions in egs. (7) and (8) in the complex
plane (1), we consider a complex eigenvalue

(10.1) 0= w,—l}2

with the following additional conditions

(10.2) we> T,
(10.3) w0< ",
(10.4) we<mR + eV .

(*) D. CHRISTODOULOU and R. RUFFINI: On the electrodynamics of collapsed objects, in Black Holes, edited
by B. bpE WirT and C. pE Wirt (London, 1973).

(1) B. CARTER: in Black Holes, edited by B. pE WiTT and C. bE WitT (London, 1973).

(1) Sese, ¢.¢., G. BREIT and F. L. YosT: Phys. Rev., 48, 203 (1935).
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Equation (10.4) guarantees the condition of the level crossing between the positive-
and the negative-energy solutions at resonance. This allows in the classical Gamow
way () one to consider the entire spatial and time evolution of the resonance. However
it is important to stress that the boundary conditions at the horizon are drastically
influenced by the existence of the level crossing. We have to impose a physically
ingoing wave at the horizon which corresponds here to a stream of antiparticles haviag
a group velocity directed towards the hole. Therefore we have to keep in eq. (8.1)
only the term in

exp [+ i|(— W)t dx] ~exp[—iw—mR—eV)x],

that is we must impose
(11) 2 cos (I/2) exp [£/2] + %sin I/2)exp[—(/2]1=0.

But this stream of antiparticles carry a megative flux out of the potential well and
therefore the conservation of flux implies that the function inside the potential well
must be growing with time. This is easily checked by expanding eq. (11) which yields
both the resonance condition

(12.1) I{wp) = (n + }) 27,

where n is a positive or null integer, and

dI(e,) ]!
(12.2) I'=— [exp [${ep)] ]

dw,

One can check straightforwardly that dI/dw,> 0.

In all the resonances having level crossing between the positive- and negative-energy
states, we then have

(13) r<o.

It following the Gamow approach we consider not only the time dependence of the
resonance but also the space dependence implied by the presence of an imaginary com-
ponent in the eigenvalue, we conclude that the eigenfunction is exponentially decreasing
both for £— 4 o and z—+>— co.

The radial dependence of the wave function at x—>— oo will, in fact, contain a
factor exp [—iwx] = exp [—iw,x — (I/2)z]. The absence of the usual divergence in
the spatial dependence of the eigenfunction (7) should be interpreted as a direct con-
sequence of the fact that the amplitude of the resonance goes to zero when {—>— co.

The exponential decrease of the function as #—>— co also implies that the norm
of the function @, defined by the conserved current, is convergent and is identically
zero. Since @0 as t—— co, this implies that an equal number of particles and
antiparticles have been created from the vacuum. Let us stress that, if eq. (10.4) is not
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fulfilled and if
(14.1) wy> m2+ eV,

then the resonant state will have its usual behaviour with a I'>0. If however
(14.2) wy=m + £V,

it is possible to have a resonance state with I'= 0. This limiting case has as bound-
ary condition at the horizon a wave function which tends to a constant value, which
corresponds to a running wave.

It is possible, as usual ('), to build spatially bounded wave packets reproducing
this wave till a cut-off in space which moves with the speed of light towards the horizon.



