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Thepositive and negative root states (E', E-) for a particle moving along a geodesic in a stationary background, 
introduced by Christodoulou and Ruffini, are here interpreted in the framework of a relativistic quantum field 
theory. It is shown how E + and E- have to be considered as the classical correspondent of the positive and negative 
energy states of a quantized field. It is explicitly shown that crossing between the states/~" and E- can occur and 
consequently the necessary condition for particle creation as given by Klein, Sauter, Heisenberg and Euler can be 
encountered. 

The equation o f  motion of  a particle of  mass/a in a given background geometry ga# can be derived from the 
Hamilton Jacobi equation 

gaOO SOoS =/a 2 (1) 

In a Schwarzschild or Kerr metric we have* 

ds 2=  (1 2Mr .2 p2 +  Sin40)o  
p2 p2 

where M is the mass of  the black hole, a its angular momentum per unit mass (a = 0 is the Schwarzschild case) 
and p2 = r 2 + a 2 cos20 and A = r 2 _ 2Mr + a 2. Eq. (1) can then be separated [1] and leads to the following radial 
Hamilton-Jacobi equation: 

({is/dr) 2 =/a 2 [E 2 -  (1-2M/r)  (1 + L 2/r)]/(1 - 2M/r) 2, for a = 0, (3. l)  

and for a =/= 0 

(ds/dr) 2 = [(r 2 +a2)2E2bt 2 + a2Cp 2 - 4MraEla~- A(/a2r2 + Q + ~b 2 +E21a2a2)]/A 2 0 . 2 )  

Here E, L, ¢ / #  are the energy, the angular momentum and its projection along the rotation axis per unit mass and 
Q is Carter's [1] constant of  motion. 

We then obtain for the equation of  motion of  the particle 

(dr/dT) 2 =/a 2 (E-E:o  ) ( E -  E o ) [ ( r  2 + a2)l(r 2 + a 2 cos20)] 2 (4) 

where r and r are respectively the radial coordinate and the proper time of  the particle and E~o and E o are the ef- 
fective potentials for the positive and negative energy solutions defined by Christodoulou and Ruffmi [2]. We 
have for a Schwarzschild geometry (a = 0) 

~o = -+(1-2M/r)1/2 (1 +L2/r2) 1/2 (5.1) 

and for a Kerr geometry (a ~ 0) in the equatorial plane (Q = 0) 

* On leave o f  absence from Ecole Normale Sup&ieure, Paris. 
** Work partially supported by NSF Grant GP30799X to Princeton University. 

* Here and in the fol lowing we are going to use geometrical units G = c = h = 1. 

437 



Volume 52B, number 4 PHYSICS LETTERS 28 October 1974 

SCHWARZSCHILD 
Io5 ~ ~ / ' l x  ®~M=2J-5 

t " ~ / ~ /  t0 20 It 
0.95 ~ ~ 1 I / / I ~ 1 1 1 1 ' / 1 1 1 / / ~  ¢/M 

1.0 CLASSICAL STATES 

- " °  

CLASS CALLY FORBIDDEN STATES 
• / ~~Z / I l l~  

KERR o=M 
1.o2} ~ 10 ~/P'M = - 5  20 

CLASSICAL STATES 

' ° ~ / / Z / _ _ - ' . / / / ,  

~" o- V,6,,~ V, 2o" ;/ 

_,.o 

CLASSICALLY FORBIDDEN STATES 

- 0 . 9 8 ~ ~  
. ,  DO 

Fig. 1. The positive (E ÷) and negative (E-) root energy states are here plotted for the Schwarzschild and Kerr geometries. In both 
cases the effective potentials for circular (indicated by a solid dot) and elliptical orbits ElM ~< 1 are enlarged. The positive root 
states correspond to solutions which are the general relativistic generalization of the usual Newtonian trajectories [5 ]. The forbidden 
states have no physical interpretation, since they would correspond to trajectories with a complex value of their radial momen- 
tum [ 5 ]. Finally the negative root states have no classical correspondence since they correspond to particle states with negative 
mass or, equivalently, with oppositely directed velocity and momentum. These states, as shown here in fig. 2 and fig. 3, acquire a 
meaning in the framework of a relativistic field theory and they correspond to the negative energy solutions of a relativistic wave 
equation. Important is here to stress that in the case of a Kerr geometry (as well as in a Kerr-Newman [6] or in a Reissner-Nord- 
str~'m geometry [7]) the positive root energy can cross the negative energy states, see e.g. solid line in this figure. 

E 0 = {2~bajl,//~t + [4cb2a2M2/la2 + (i- 3 +a2r+2Ma 2) (r(r2-2Mr+a 2) + (~b2/~t 2) ( r -ZM)) ]  1/2}/(r3+a2r+2Ma2). (5.2) 

In the  fol lowing we shall focus un ique ly  on the cases a = 0 and a = M. Diagrams o f  the effect ive potent ia ls  are 

given in fig. 1. 

The purpose  o f  this le t ter  is to po in t  ou t  that  the solutions E - ,  meaningless in a classical theory ,  acquire signi- 

f icance as classical l imits  o f  a relativistic quan tum field theory.  

To prove this we first c o n s i d e r a  scalar field satisfying the general relativistic Kle in-Gordon equa t ion  

v~ v ~  + u2~ = 0, (6) 
wri t ten  in the met r ic  (2). We can separate the variables [e.g. 3] 

= exp (-i taEt)y/m (0, q~)R (r) for a = 0 (7.1) 

and 

q~ = exp ( - i / aEt )  exp (irn¢)Sml(O) R (r) for a :~ 0 (7.2) 

where Sml(O) are spheriodal  harmonics  [e.g. 4] ,  and obta in  the radial equat ions  

d2u /dr  • 2 = [(1 - 2M/r) 02 + l(l+ 1)/r 2 + 2M/r3) -/a2E 2 ] for a = 0 (8.1) 

and 
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Fig. 2. The lowest two resonances for W14 = 1 and l = 4 obtained by a direct numerical integration are here plotted as a function 
of the radial coordinate r*. We have r* --- r + 2M ln(r/2M - 1). On the right side the energy levels of the resonances are represented 
on the classical effective potentials. In the Schwarzschild geometry the positive and negative root states are symmetric. The width 
of the resonances have been computed applying the standard W.K.B. approximation to eq. (8.1). We then have for the energy 
levels of the resonances, fc(-  l ¥ ) V 2 d r * ~  = (n + 1/2)1r, and for the width of the resonances F = 2/Ldf/dEIE=E- with f(E) = 

C 1/2 1/2 * • /'/ 2 cos~b(IV) dr [1 + exp{2f~a(W ) dr }], wherea,b and c are the zeros of the funcUon IV = (1-2M/r) (# +l(l+l)/r:+2M/r 3) 
-t~ E . W e o b t a i n f o r g M = l , l = 4 ,  F E l ~ 2 7 X 1 0 -  a n d t ' E 2 ~ 4 . 1 × 1 0  -° and for l=  6, F E ~ 1 7 × I 0  - l s a n d F  E. 

-15 . . 1 " z 
2.5 × 10 . For Wkt-~ o, the distance between successwe energy levels goes to zero and r 40. Details in ref. [8]. 

d2u = l _ E 2 1 a 2 [ l + a 2 + 2 M a 2 ~ + 4 M a m E b t + l j 2 [ l _ ~ + a 2 1 _ ? v ~ n l 2 M  1 a 2 

dr .2 t ~ r2 ] 3 r 3 r r 2 / r 3 r 2 r 4 
m2a 2 2 } 

- - -  + ~ [ Mr3 - r 2 (a 2 + 2/142) + 3Ma2r - a 4 ] u for a 4 = 0 (8.2) 
r 4 r 6 

where u = R(r)r  and dr/dr* = A/r 2. We also have M +(M2-a2) l /2  <~ r <<. + oo and _oo <<. r* <~ + oo. 

Corresponding to the classical bound  states (circular or elliptical orbits) we look for "resonances"  states of  the 
Klein-Gordon equa t ion  imposing as boundary  condit ions.  (a) an exponent ia l  decay of  the wave func t ion  for 
r* ~- +oo, (b) a purely ingoing wave at r* -* --oo. The solutions of  the problem have been found both  by a num-  
erical search o f  the eigenvalue and by the W.K.B. approximat ion.  A few results from direct integrat ion are shown 
in fig. 2 for the case a = 0 and in fig. 3 for a = M. Details of  the techniques used the further results are given else- 
where [8]. 

Impor tan t  here is to summarize the main  conclusion:  

(1) the con t inuous  spectrum of  the classical stable b o u n d  states is replaced by a discrete spectrum of  resonances 
with the tunne l ing  through the potent ia l  barrier giving the finite probabi l i ty  of  the particle to be captured by the 
hor izon (see fig. 2 and fig. 3). 
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Fig. 3. Resonances in an extreme Kerr geometry with ~ = 1 and a = M corresponding to positive root states and positive energy 
states for m = 2 and m = -5. The case of a Kerr geometry differs strongly from the one of the Schwarzschild geometry in the asym- 
metry between the positive and negative root states. The equality E(p¢) = -E(-pc#) is, however, fulfilled both in the classical and 
quantum level as evidenced by eqs. (3.2) and (8.2). The energy levels of the first two resonances both in the case of m = 2 and 
m = -5  are reproduced on the right side of the figure on the classical effective potentials. In both cases it is clear how tunnelling 
processes can occur between the positve and negative energy states (level crossing), an explicit example is given by the resonance 
form = 2. 

(2) These resonances states can be found for values of the angular momentum l/> 3t.dl in the case of a Schwarz- 
schild geometry and for values of l = m and m i> 2 ~  or m ~< - 5 l ~  in the case of an extreme Kerr geometry 

(3) When ~ ~ ~ or (GM/c2) / (h / lac )  ~ ~' the separation of the energy levels of the resonances tends to zero 

and the exponential in the forbidden region decreases more rapidly, the leakage toward the horizon also decreases 

and the width of the resonances P -~ 0. (see fig. 2 and caption) 
(4) From the results presented in figs. 2 and 3 follows that the negative root solutions do correspond to the 

classical limit (/xM ~ ~ )  of the negative energy solutions of the Klein Gordon equations and consequently they 
can be thought of as antimatter solutions [ 10]. The negative root states can only be interpreted, then, in the frame. 
work of a fully relativistic quantum field theory. 

(5) A fundamental difference exists between the positive and negative root solutions in the Schwarzschild and 
Kerr geometries. In the Schwarzschild case a positive root state never crosses a negative root state, in particular 
we always have E + > 0, E -  < 0. In the Kerr case we can have positive root states of negative energy in the ergo- 
sphere [2, 11 ] and we can also have for large enough value of the angular momentum of the particle states for 
which E + < E - .  See fig. 3. This corresponds to a classical example of level crossing as considered by Klein [12], 
Sauter [13], Euler and Kockel [14], Heisenberg and Euler [15], Pauli [16] and this leads directly in the quantum 
description to the possibility of particle creation [ 10]. 

440 



Volume 52B, number 4 PHYSICS LETTERS 28 October 1974 

Similar considerations can be made in the case in which the geometry is endowed with an electromagnetic 
field, either a Reissner-Nordstr~/m or a Kerr-Newman solution. In these cases we have clearly to substitute to eq. 
(1) the generalized Hamilton-Jacobi equation 

gaO(~ S +qA ) (~oS +qAo)=la 2 

and the Klein-Gordon equation 

(7 a + iqA ) (7 ~ + i qA '~  + la2~ = 0 

where q is the change of the test particle and A a the four vector potential of the background geometry. The 

resonance states can be obtained much in the same way as in the case here considered, imposing purely ingoing 
waves at the horizon and exponentially decaying solutions at infinity. Once again we can have level crossing in- 
side the effective ergosphere [6, 7] and therefore possible pair creation with consequent discharge of the black 
hole. 

(9) 
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