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Preface

This book is an attempt to present the rudiments of quantum field theory
in general and quantum electrodynamics in particular, as actually practiced by
physicists for the purpose of understanding the behavior of subatomic particles, in
a way that will be comprehensible to mathematicians.

It is, therefore, not an attempt to develop quantum field theory in a mathe-
matically rigorous fashion. Sixty years after the growth of quantum electrodynam-
ics (QED) and forty years after the discovery of the other gauge field theories on
which the current understanding of the fundamental interactions of physics is based,
putting these theories on a sound mathematical foundation remains an outstanding
open problem — one of the Millennium prize problems, in fact (see [67]). I have no
idea how to solve this problem. In this book, then, I give mathematically precise
definitions and arguments when they are available and proceed on a more informal
level when they are not, taking some care to be honest about where the problems
lie. Moreover, I do not hesitate to use the informal language of distributions, with
its blurring of the distinction between functions and generalized functions, when
that is the easiest and clearest way to present the ideas (as it often is).

So: why would a self-respecting mathematician risk the scorn of his peers by
undertaking a project of such dubious propriety, and why would he expect any of
them to read the result?

In spite of its mathematical incompleteness, quantum field theory has been an
enormous success for physics. It has yielded profound advances in our understand-
ing of how the universe works at the submicroscopic level, and QED in particular
has stood up to extremely stringent experimental tests of its validity. Anyone with
an interest in the physical sciences must be curious about these achievements, and
it is not hard to obtain information about them at the level of, say, Scientific Amer-
ican articles. In such popular accounts, one finds that (1) interaction processes are
described pictorially by diagrams that represent particles colliding, being emitted
and absorbed, and being created and destroyed, although the relevance of these dia-
grams to actual computations is usually not explained; (2) some of the lines in these
diagrams represent real particles, but others represent some shadowy entities called
“virtual particles” that cannot be observed although their effects can be measured;
(3) quantum field theories are plagued with infinities that must be systematically
subtracted off to yield meaningful answers; (4) in spite of the impression given by
(1)–(3) that one has blundered into some sort of twilight zone, these ingredients
can be combined to yield precise answers that agree exquisitely with experiment.
(For example, the theoretical and experimental values of the magnetic moment of
the electron agree to within one part in 1010, which is like determining the distance
from the Empire State Building to the Eiffel Tower to within a millimeter.)

v

                

                                                                                                               



vi PREFACE

People with mathematical training are entitled to ask for a deeper and more
quantitative understanding of what is going on here. They may feel optimistic about
attaining it from their experience with the older areas of fundamental physics that
have proved very congenial to mathematical study: the differential equations of
classical mechanics, the geometry of Hamiltonian mechanics, and the functional
analysis of quantum mechanics. But when they attempt to learn quantum field
theory, they are likely to feel that they have run up against a solid wall. There are
several reasons for this.

In the first place, quantum field theory is hard. A mathematician is no more
likely to be able to pick up a text on quantum fields such as Peskin and Schroeder
[89] and understand its contents on a first reading than a physicist hoping to do the
same with, say, Hartshorne’s Algebraic Geometry. At the deep conceptual level, the
absence of firm mathematical foundations gives a warning that some struggle is to
be expected. Moreover, quantum field theory draws on ideas and techniques from
many different areas of physics and mathematics. (Despite the fact that subatomic
particles behave in ways that seem completely bizarre from the human perspective,
our understanding of that behavior is built to a remarkable extent on classical
physics!) At the more pedestrian level, the fact that the universe seems to be
made out of vectors and spinors rather than scalars means that even the simplest
calculations tend to involve a certain amount of algebraic messiness that increases
the effort needed to understand the essential points. And at the mosquito-bite level
of annoyance, there are numerous factors of −1, i, and 2π that are easy to misplace,
as well as numerous disagreements among different authors as to how to arrange
various normalization constants.

But there is another difficulty of a more cultural and linguistic nature: physics
texts are usually written by physicists for physicists. They speak a different dialect,
use different notation, emphasize different points, and worry about different things
than mathematicians do, and this makes their books hard for mathematicians to
read. (Physicists have exactly the same complaint about mathematics books!) In
the mathematically better established areas of physics, there are books written from
a more mathematical perspective that help to solve this problem, but the lack of
a completely rigorous theory has largely prevented such books from being written
about quantum field theory.

There have been some attempts at cross-cultural communication. Mathemati-
cal interest in theoretical physics was rekindled in the 1980s, after a period in which
the long marriage of the two subjects seemed to be disintegrating, when ideas from
gauge field theory turned out to have striking applications in differential geometry.
But the gauge fields of interest to the geometers are not quantum fields at all, but
rather their “classical” (unquantized) analogues, so the mathematicians were not
forced to come to grips with quantum issues. More recently, motivated by the de-
velopment of string theory, in 1996–97 a special year in quantum field theory at the
Institute for Advanced Study brought together a group of eminent mathematicians
and physicists to learn from each other, and it resulted in the two-volume collection
of expository essays Quantum Fields and Strings [21]. These books contain a lot
of interesting material, but as an introduction to quantum fields for ordinary mor-
tals they leave a lot to be desired. One drawback is that the multiple authorships
do not lead to a consistent and cohesively structured development of the subject.
Another is that the physics is mostly on a rather formal and abstract level; the

                

                                                                                                               



PREFACE vii

down-to-earth calculations that lead to experimentally verifiable results are given
scant attention. Actually, I would suggest that the reader might study Quantum
Fields and Strings more profitably after reading the present book, as the real focus
there is on more advanced topics.

There is another book about quantum fields written by a mathematician, Tic-
ciati’s Quantum Field Theory for Mathematicians [121]. In its general purpose it
has some similarity to the present book, but in its organization, scope, and style it
is quite different. It turned out not to be the book I needed in order to understand
the subject, but it may be a useful reference for others.

The foregoing paragraphs should explain why I thought there was a gap in the
literature that needed filling. Now I shall say a few words about what this book
does to fill it.

First of all, what are the prerequisites? On the mathematical side, the reader
needs to be familiar with the basics of Fourier analysis, distributions (generalized
functions), and linear operators on Hilbert spaces, together with a couple of more
advanced results in the latter subject — most notably, the spectral theorem. This
material can all be found in the union of Folland [48] and Reed and Simon [94],
for example. In addition, a little Lie theory is needed now and then, mostly in
the context of the specific groups of space-time symmetries, but in a more general
way in the last chapter; Hall [62] is a good reference for this. The language of
differential geometry is employed only in a few places that can safely be skimmed by
readers who are not fluent in it. On the physical side, the reader should have some
familiarity with the Hamiltonian and Lagrangian versions of classical mechanics,
as well as special relativity, the Maxwell theory of electromagnetism, and basic
quantum mechanics. The relevant material is summarized in Chapters 2 and 3, but
these brief accounts are meant for review and reference rather than as texts for the
novice.

As I mentioned earlier, quantum field theory is built on a very broad base of
earlier physics, so the first four chapters of this book are devoted to setting the stage.
Chapter 5 introduces free fields, which are already mathematically quite nontrivial
although physically uninteresting. The aim here is not only to present the rigorous
mathematical construction but also to introduce the more informal way of treating
such objects that is common in the physics literature, which offers both practical
and conceptual advantages once one gets used to it. The plunge into the deep waters
of interacting field theory takes place in Chapter 6, which along with Chapter 7
on renormalization contains most of the really hard work in the book. I use some
imagery derived from the Faust legend to describe the necessary departures from
mathematical rectitude; its significance is meant to be purely literary rather than
theological. Chapter 8 sketches the attractive alternative approach to quantum
fields through Feynman’s sum-over-histories view of quantum mechanics, and the
final chapter presents the rudiments of gauge field theory, skirting most of the
quantum issues but managing to derive some very interesting physics nonetheless.

There are several ways to get from the starting line to the goal of calculating
quantities with direct physical meaning such as scattering cross-sections. The path
I follow here, essentially the one pioneered by Dyson [25], [26], is to start with free
fields, apply perturbation theory to arrive at the integrals associated to Feynman
diagrams, and renormalize as necessary. This has the advantages of directness and
of minimizing the amount of time spent dealing with mathematically ill-defined

                

                                                                                                               



viii PREFACE

objects. Its drawback is that it tethers one to perturbation theory, whereas non-
perturbative arguments would be more satisfying in some situations. Physicists
may also object to it on the grounds that free fields, although mathematically
meaningful, are physically fictitious.

The problem with interacting fields, on the other hand, is exactly the reverse.
Hence, although some might prefer to give them a more prominent role, I sequester
them in the last section of Chapter 6, where the mathematical soundness of the
narrative reaches its nadir, and do not use them at all in Chapter 7 except for a
couple of passing mentions. Their credibility is somewhat enhanced, however, by the
arguments in Chapter 8 using functional integrals, which are also mathematically ill-
defined but intuitively more accessible and seductively close to honest mathematics.
Some physicists like to use functional integrals as the principal route to the main
results, but despite their appeal, I find them a bit too much like sorcery to be relied
on until one already knows where one is going.

This book is meant to be only an introduction to quantum field theory, and it
focuses on the goal of explaining actual physical phenomena rather than studying
formal structures for their own sake. This means that I have largely (though not
entirely) resisted the temptation to pursue mathematical issues when they do not
add to the illumination of the physics, and also that I have nothing to say about the
more speculative areas of present-day theoretical physics such as supersymmetry
and string theory. Even within these restrictions, there are many important topics
that are mentioned only briefly or omitted entirely — most notably, the renor-
malization group. My hope is that this book will better prepare those who wish
to go further to tackle the physics literature. References to sources where further
information can be obtained on various topics are scattered throughout the book.
Here, however, I wish to draw the reader’s attention to three physics books whose
quality of writing I find exceptional.

First, everyone with any interest in quantum electrodynamics should treat
themselves to a perusal of Feynman’s QED [38], an amazingly fine piece of pop-
ular exposition. On a much more sophisticated level, but still with a high ratio
of physical insight to technical detail, Zee’s Quantum Field Theory in a Nutshell
[138] makes very good reading. (Both of these books adopt the functional integral
approach.) And finally, for a full-dress treatment of the subject, Weinberg’s The
Quantum Theory of Fields [131], [132], [133] is the sort of book for which the
overworked adjective “magisterial” is truly appropriate. Weinberg does not aim for
a mathematician’s level of rigor, but he has a mathematician’s respect for careful
reasoning and for appropriate levels of generality, and his approach has influenced
mine considerably. I will warn the reader, however, that Weinberg’s notation is at
variance with standard usage in some respects. Most notably, he takes the Lorentz
metric (which he denotes by ημν) to have signature −+++ rather than the usual
+−−−, and since he wants his Dirac matrices γμ to satisfy {γμ, γν} = 2ημν , what
he calls γμ is what most people call −iγμ.1

I call this book a tourist guide for mathematicians. This is meant to give the
impression not that it is easy reading (it’s not) but that the intended audience
consists of people who approach physics as tourists approach a foreign country, as
a place to enjoy and learn from but not to settle in permanently. It is also meant to

1There is yet a third convention for defining Dirac matrices, found in Sakurai [103] among
other places.

                

                                                                                                               



PREFACE ix

free me and my readers from guilt about omitting various important but technical
topics, viewing others from a point of view that physicists may find perverse, failing
to acquire a scholarly knowledge of the literature, and skipping the gruesome details
of certain necessary but boring calculations.

I wish to state emphatically that I am a tourist in the realm of physics myself.
I hope that my foreigner’s perceptions do not do violence to the native culture
and that my lack of expertise has not led to the perpetration of many outright
falsehoods. Given what usually happens when physicists write about mathemat-
ics, however, I dare not hope that there are none. Corrections will be gratefully
received at folland@math.washington.edu and recorded on a web page accessible
from www.math.washington.edu/~folland/Homepage/index.html. (Note added
for the second printing : Numerous small misprints and other errors have been cor-
rected for this printing, and two items have been added to the bibliography. As a
result, the page breaks are different in a few places, and many references have been
renumbered.) The American Mathematical Society will also host a web page for
this book, the URL for which can be found on the back cover above the barcode.

Acknowledgments. I am grateful to the students and colleagues who sat through
the course I offered in 2001 in which I made my rather inept first attempt to
put this material together. Several physicists, particularly David Boulware, have
patiently answered many questions for me, and they are not to blame if their
answers have become distorted in passing through my brain. Finally, an unnamed
referee provided several helpful suggestions and useful references.

The Feynman diagrams in this book were created with JaxoDraw, available at
jaxodraw.sourceforge.net/sitemap.html.

Gerald B. Folland
Seattle, April 2008

                

                                                                                                               



                

                                                                                                               



CHAPTER 1

Prologue

Men can do nothing without the make-believe of a beginning. Even
Science, the strict measurer, is obliged to start with a make-believe
unit, and must fix on a point in the stars’ unceasing journey when his
sidereal clock shall pretend time is at Nought. His less accurate grand-
mother Poetry has always been understood to start in the middle, but
on reflection it appears that her proceeding is not very different from
his; since Science, too, reckons backwards as well as forwards, divides
his unit into billions, and with his clock-finger at Nought really sets
off in medias res. No retrospect will take us to the true beginning;
and whether our prologue be in heaven or on earth, it is but a fraction
of the all-presupposing fact with which our story sets out.
—George Eliot, Daniel Deronda (epigraph of Chapter 1)

The purpose of this preliminary chapter is to present some notation and termi-
nology, discuss a few matters on which mathematicians’ and physics usages differ,
and provide some basic definitions and formulas from physics and Lie theory that
will be needed throughout the book.

1.1. Linguistic prologue: notation and terminology

Hilbert space and its operators. Quantum mechanicians and mathematical
analysts both spend a lot of time in Hilbert space, but they have different ways
of speaking about it. In this book we generally follow physicists’ conventions, so
it will be well to explain how to translate from one dialect to the other. (The
physicists’ dialect is largely due to Dirac, and its ubiquity is a testimony to the
profound influence that his book [22] had on several generations of physicists.)

To begin with, complex conjugates are denoted by asterisks rather than over-
lines:

x− iy = (x+ iy)∗ rather than x+ iy.

The inner product on a Hilbert space is denoted by 〈·|·〉 and is taken to be linear
in the second variable and conjugate-linear in the first:

〈u|av + bw〉 = a〈u|v〉+ b〈u|w〉, 〈v|u〉 = 〈u|v〉∗.
The Hermitian adjoint (conjugate transpose) of a matrix or an operator is denoted
by a dagger rather than an asterisk:

if A = (xjk + iyjk), then (xkj − iykj) = A† rather than A∗.

(More about adjoints below.) These shifted uses of ∗ and † may seem annoying at
first, but one gets used to them — and there is another consideration. The overline
is employed in physics not for conjugation but to denote the “Dirac adjoint” of a
Dirac spinor, as we shall explain in §4.1. This usage turns up sufficiently frequently

1

                                     

                

                                                                                                               



2 1. PROLOGUE

that any attempt to permute the physicists’ meanings of ∗, †, and would threaten
mass confusion.

We shall, however, employ the standard mathematical notation for the norm
on the Hilbert space: ‖u‖ = 〈u|u〉1/2. We also denote the transpose of a complex
matrix A by AT ; for real matrices we shall generally use A† instead.

Now, some more subtle matters. In mathematicians’ dialect, 〈u|v〉 is the inner
product of two vectors u and v in the Hilbert space H. Moreover, if u ∈ H, the
map φu(v) = 〈u|v〉 is a bounded linear functional on H; the correspondence u↔ φu

gives a conjugate-linear identification of H with its dual H′, which mathematicians
generally take for granted without employing any special notation for it. Physicists,
on the other hand, distinguish between elements of H and elements of H′, which
they respectively call ket vectors and bra vectors and denote by symbols of the
form |u〉 and 〈u|. If |u〉 is a ket vector (what mathematicians might call simply u),
the corresponding bra vector 〈u| is the linear functional denoted by φu above. The
action of the bra vector (linear functional) 〈u| on the ket vector (element of H) |v〉
is the inner product (i.e., “bracket” or “bra-ket”) 〈u|v〉.

In this system “u” can be any sort of convenient label to identify the vector:
either a name for the vector itself, like the mathematicians’ u, or an index or set
of indices that specify the vector within an indexed family. For example, if one
is working with an operator with a set of multiplicity-one eigenvalues, one might
denote a unit eigenvector for the eigenvalue λ by |λ〉, or an eigenvector for the nth
eigenvalue simply by |n〉. Likewise, joint eigenvectors for a pair of operators with
eigenvalues λn and μj might be denoted by |n, j〉; and so forth. (In most situations
the ambiguity of a scalar factor of modulus one in the choice of eigenvector is of
no importance, for reasons that will become clear in Chapter 3.) Mathematicians
may find this convention uncomfortably informal, but its virtue lies in its flexibility
and its ability to strip away inessential symbols. Mathematicians would typically
denote the nth eigenvector by something like un, but the symbol u is just a place-
holder; it is the n that carries the useful information, and the physicists’ notation
gives it the starring role it deserves.

Next, let A be a linear operator1 on H: in mathematicians’ notation, A maps
a vector v to Av; and in physicists’ notation, it maps |v〉 to A|v〉: no surprises here.
But the physicists’ notation for the scalar product of A|v〉 with the bra vector 〈u|
is 〈u|A|v〉:

physicists’ 〈u|A|v〉 = mathematicians’ 〈u|Av〉.
Now, 〈u|A|v〉 can also be considered as the scalar product of a bra 〈u|A with the
ket |v〉, and in this way A defines a linear operator on bra vectors. This operator
is what the mathematicians call the adjoint of A when H′ is identified with H — a
point that can lead to some confusion if one does not remain alert. Recalling that
the adjoint of A is denoted by A† and the conjugate of a ∈ C is denoted by a∗, we
have

〈u|A|v〉 = 〈v|A†|u〉∗.
On the theory that flexibility and concision are more important than consistency,
we shall feel free to denote elements of the Hilbert space by either u or |u〉, and we
shall write either 〈u|A|v〉 or 〈u|Av〉 as convenience dictates.

1A need not be bounded. The notion of adjoint for unbounded operators involves some
technicalities, but they are beside the point here.

                

                                                                                                               



1.1. LINGUISTIC PROLOGUE: NOTATION AND TERMINOLOGY 3

By the way, we will often write a scalar multiple of the identity operator, λI,
simply as λ. This commonly used bit of shorthand will cause no confusion if readers
will keep in mind that when they encounter a scalar where an operator or a matrix
seems to be needed, they should tacitly insert an I.

Vectors, tensors, and derivatives. In this book we reserve boldface type
almost exclusively to denote 3-dimensional vectors related to R3 as a model for the
physical space in which we live. (Exception: In §4.5 it is used to denote elements
of tensor products of Hilbert spaces.) Elements of Rn for general n are usually
denoted by lower-case italic letters (x, p, . . . ). We denote the n-tuple of partial
derivatives (∂1, . . . , ∂n) on Rn by ∇, and we denote the Laplacian ∇·∇ =

∑
∂2
j by

∇2 (rather than Δ, for which we will have other uses).
When n = 4, a variant of this notation will be used for calculations arising

from relativistic mechanics. Four-dimensional space-time is taken to be R4 with
coordinates

x0 = ct, x1 = x, x2 = y, x3 = z

on R
4, where t represents time, c the speed of light, and (x, y, z) a set of Cartesian

coordinates on physical space R3. Thus, a point x ∈ R4 may be written as (x0,x)
when it is important to separate the space and time components. The Lorentz inner
product on R4 is the bilinear form Λ defined by

Λ(x, y) = x0y0 − x1y1 − x2y2 − x3y3,

and R
4 equipped with this form is called Minkowski space. It is common in the

physics literature to denote the vector whose components are x0, . . . , x3 by xμ

rather than x. This is the same sort of harmless abuse of language that is involved
in speaking of “the sequence an” or “the function f(x)”; we shall use it when it
seems convenient.

We shall generally use classical tensor notation for vectors and tensors associ-
ated to Minkowski space. In particular, the Lorentz form is defined by the matrix

(1.1) gμν = gμν = diag(1,−1,−1,−1).
We employ the Einstein summation convention: in any product of vectors and
tensors in which an index appears once as a subscript and once as a superscript,
that index is to be summed from 0 to 3. Thus, for example,

(1.2) Λ(x, y) = gμνx
μyν .

We shall also adopt the convention of using the matrix g to “raise or lower indices”:

xμ = gμνx
ν , pμ = gμνpν ,

the practical effect of which is to change the sign of the last three components.
(Strictly speaking, vectors whose components are denoted by subscripts should
be construed as elements of the dual space (R4)′, and the map xμ �→ xμ is the
isomorphism of R4 with (R4)′ induced by the Lorentz form. But we shall not
attempt to distinguish between R

4 and its dual.) Formula (1.2) can then be written
as

Λ(x, y) = xμyμ = xμy
μ.

The Lorentz inner product of a vector x with itself is denoted by x2 and its Euclidean
norm by |x|:

x2 = xμx
μ, |x|2 = x2

0 + x2
1 + x2

2 + x2
3.

                

                                                                                                               



4 1. PROLOGUE

Vectors x such that x2 > 0, x2 = 0, or x2 < 0 are called timelike, lightlike, or
spacelike, respectively.

In this framework, the notation for derivatives on R
4 is

∂μ =
∂

∂xμ
,

so that, with respect to traditional space-time coordinates x and t,

(1.3) (∂0, . . . , ∂3) = (c−1∂t,∇x), (∂0, . . . , ∂3) = (c−1∂t,−∇x),

and ∂2 is the wave operator or d’Alembertian:

∂2 = ∂2
0 − ∂2

1 − ∂2
2 − ∂2

3 = c−2∂2
t −∇2

x.

Integrals. Physicists like to indicate the dimensionality of their integrals ex-
plicitly by writing the volume element on Rn as dnx. This convention is occasionally
an aid to clarity, and we shall generally follow it. Another convention for integrals
more commonly used in physics than in mathematics is to put the differential next
to the integral sign:

∫
dx f(x) rather than

∫
f(x) dx. This can also be an aid to

clarity, particularly in multiple integrals where writing
∫ b

a
dx

∫ d

c
dy f(x, y) in pref-

erence to
∫ b

a

∫ d

c
f(x, y) dy dx makes it easier to see which variables go with which

limits of integration. However, for reasons of inertia more than anything else, we
shall not adopt this convention.

Fourier transforms. If we are considering functions on the space Rn equipped

with the Euclidean inner product (x, y) �→ x · y, the Fourier transform f �→ f̂ and
its inverse f �→ f∨ will be defined by

f̂(y) =

∫
e−ix·yf(x) dnx, f∨(x) =

∫
eix·yf(y)

dny

(2π)n
.

The Parseval identity is then

(1.4)

∫
|f(x)|2 dnx =

∫
|f̂(y)|2 dny

(2π)n
.

However, most of the time the Fourier transform will pertain to functions on R
4

equipped with the Lorentz metric, in which case we define

f̂(p) =

∫
eipμx

μ

f(x) d4x, f∨(x) =

∫
e−ipμx

μ

f(p)
d4p

(2π)4
.

(The Parseval identity is again (1.4), with n = 4.) Thus the Lorentz sign conven-
tion in the exponent agrees with the Euclidean one as far as the space variables
are concerned, but it is reversed for the time variable. In this situation, generally
x is in “position space” and p is in “momentum space,” in which case the pμx

μ

in the exponent really needs to be divided by a normalization factor so that the
argument of the exponent is a pure number, independent of the units of measure-
ment. In quantum mechanics this factor is Planck’s constant �, but it will usually
be suppressed since we will be using units in which � = 1.

Lord Kelvin once quipped that a mathematician is someone to whom it is

obvious that
∫∞
−∞ e−x2

dx =
√
π. In the same spirit, I submit that a mathematical

physicist is someone to whom it is obvious that

(1.5) δ(x) =

∫
eix·y

dny

(2π)n
,

                

                                                                                                               



1.2. PHYSICAL PROLOGUE: DIMENSIONS, UNITS, CONSTANTS, AND PARTICLES 5

where δ denotes the delta-function (point mass at the origin) on Rn. This is the
Fourier inversion formula, stated in the informal language of distributions. Readers
who do not yet qualify as mathematical physicists by this criterion are advised to
spend some time playing with this formula until they understand how to make sense
of it and are convinced of its validity, for it will be used on many occasions in this
book. (The necessary tools from distribution theory can be found, for example, in
Folland [48].)

It is useful to remember that the factors of 2π always go with the measure on
momentum space; that is, the standard measure on momentum space (or, more
abstractly, “Fourier space” as opposed to “configuration space”) Rn is dnp/(2π)n.
A corollary of this is that delta-functions on momentum space are normally ac-
companied by a factor of (2π)n so that their integral against this measure is still
1.

Symbolic homonyms. It is an unfortunate fact of life that some letters of
the alphabet have more than one conventional meaning, while others are used
sometimes conventionally and sometimes just as a convenient label for a variable.
In such cases one must rely on context for clarification. For example, all of us have
surely seen uses of the letter π that have nothing to do with the constant 3.14 . . .;
there are some in this book. Other notable examples: (1) e is both exp(1) and the
electric charge that functions as the coupling constant in quantum electrodynamics
(typically the charge of the electron or its absolute value); occasionally it is also
the symbol for the electron. (Fortunately, we never need it to be the eccentricity of
an ellipse!) (2) q is sometimes an electric charge and sometimes a momentum. (3)
αj is a type of Dirac matrix, but α is the fine structure constant. (4) γμ is another
type of Dirac matrix, but γ is the Euler-Mascheroni constant and occasionally the
symbol for the photon. (5) Z is sometimes the number of protons in a nucleus,
sometimes a field renormalization constant, sometimes the generating functional in
the functional integral approach to field theory, and sometimes the symbol for the
neutral vector Boson of the weak interaction.

Caveat lector.

1.2. Physical prologue: dimensions, units, constants, and particles

The fundamental aspects of the universe to which all physical measurements
relate are mass [m], length or distance [l], and time [t]. All quantities in physics
come with “dimensions” that can be expressed in terms of these three basic ones.
For example, velocity v = dx/dt has dimensions of distance per unit time, or
[lt−1]. The dimensions of some of the basic quantities of mechanics are summarized
in Table 1.1. The fact that angular momentum and action both have dimensions
[ml2t−1] seems a mere coincidence in classical mechanics, but it acquires a deeper
significance in quantum mechanics, because [ml2t−1] is the dimensions of Planck’s
constant.

Units for electromagnetic quantities are related to those of mechanics by taking
the constant of proportionality in some basic law to be equal to one. For example,
the ampere is the unit of current defined as follows: if two infinite, straight, perfectly
conducting wires are placed parallel to each other one meter apart and a current
of one ampere flows in each of them, the (magnetic) force between them per unit
length is 2×10−7 newton per meter. The other everyday units of electromagnetism
(coulomb, volt, ohm, etc.) are then defined in terms of the ampere and the MKS
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Quantity Dimensions Defining relation
Momentum [mlt−1] p=mv
Angular momentum [ml2t−1] l = x× p
Force [mlt−2] F = m(dv/dt)
Energy [ml2t−2] E = 1

2m|v|2 or
∫
F · dx or mc2 or . . .

Action [ml2t−1] S =
∫
(Ekinetic − Epotential) dt

Table 1.1. Some basic quantities of mechanics.

mechanical units. However, for purposes of fundamental physics it is better to take
electric charge as the basic quantity. Naively, the simplest procedure (“Gaussian
units”) is to define the unit of charge so that the constant in Coulomb’s law is equal
to one. That is, having chosen a system of units for mechanics, one sets the unit
of charge so that the force between two point charges is equal in magnitude to the
product of the charges divided by the square of the distance between them. From a
slightly more sophisticated point of view, however, a better procedure (“Heaviside-
Lorentz units”) is to take the constant in Coulomb’s law to be 1/4π, essentially
because −1/4π|x| is the fundamental solution of the Laplacian (∇2[−1/4π|x|] = δ),
and this is the procedure we shall follow. Its practical advantage is that it makes
all the 4π’s disappear from Maxwell’s equations. Either way, the dimension [q]
of charge is related to mechanical dimensions by [q2l−2] = [force] = [mlt−2], or
[q] = [m1/2l3/2t−1].

The idea of setting proportionality constants equal to one can be carried further.
In relativistic physics it is natural to relate the units of length and time so that the
speed of light c is equal to one; doing this makes [l] equivalent to [t]. Moreover,
in quantum mechanics it is natural to choose units so that Planck’s constant � is
equal to one. Since � has dimensions [ml2t−1], in conjunction with the condition
c = 1 this makes [m] equivalent to [l−1] or [t−1]. We have c = 299792458 m/s
(an exact equality according to the current official definition of the meter) and
� = 1.054589× 10−34 kg ·m2/s, so the equivalences of the basic MKS units are as
follows:

1 second ∼= 299792458 meter ∼= 8.522668× 1050 kilogram−1.

These large numbers make the MKS system awkward for the world of particle
physics. Seconds and centimeters (accompanied by large negative powers of 10)
are still generally used for times and lengths, but the other commonly used unit is
the electronvolt (eV), which is the amount of energy gained by an electron when
passing through an electrostatic potential of one volt, or its larger relatives the
mega-electronvolt (MeV) or giga-electronvolt (GeV):

1 eV = 1.602176× 10−19 kg ·m2/s2, 1 MeV = 106 eV, 1 GeV = 109 eV.

The eV is a unit of energy, but setting c = 1 makes Einstein’s E = mc2 into an
equality of mass and energy, and in the subatomic world this is not just a formal
equivalence but an everyday fact of life. The eV, or more commonly the MeV or
GeV, is therefore used as a unit of mass :

1 MeV = 1.782661× 10−27 gram.
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The equivalence of units of mass, length, and time can be restated as follows:

(1.6) 1 MeV ∼= (6.581966× 10−22 second)−1 ∼= (1.973224× 10−11 centimeter)−1.

Again, in the subatomic world these are more than formal equivalences. The precise
constants are usually not important, but the orders of magnitude express relations
among the characteristic energies, distances, and times of elementary particle in-
teractions.

When we first discuss relativity in Chapter 2 and quantum theory in Chapter
3, we will include the factors of c and � explicitly for the sake of clarity, but starting
with Chapter 4 we will always use “natural” units in which c and � are both equal
to 1. We can still quote lengths in centimeters, times in seconds, and masses in
MeV, but having chosen one of these units, we must relate the other two to it by
(1.6).

Once one has made [l] = [t] = [m−1], the dimensions [m1/2l3/2t−1] of electric
charge cancel out, so that charge is dimensionless, and the unit of charge in the
Heaviside-Lorentz system is simply the number 1. The basic physical constant is
then the fundamental unit of charge, the charge of a proton or the absolute value of
the charge of an electron, which we denote here by e. The related quantity e2/4π
(or e2/4π�c if one does not use “natural” units) is the fine structure constant α,
which is nearly equal to 1/137 and is often quoted that way:

α =
e2

4π
= 0.0072973525 =

1

137.035
,

which gives

e = 0.30282212.

(In some parts of this book, the letter e may denote the charge of whatever particle
is in question at the time; this is always an integer multiple [ 13 -integer in the case
of quarks] of the e here.)

One can carry the reduction of different dimensions one final step by including
gravity. Having set � and c equal to one, one can set the coefficient G in Newton’s
law of gravity F = Gm1m2/r

2 equal to one too. This yields an absolute scale of
length, time, and mass, called the Planck scale. Since G = 6.674×10−11 m3/kg · s2,
we have

Planck length = 1.616× 10−33 centimeter,

Planck time = 5.390× 10−44 second,

Planck mass = 2.176× 10−5 gram = 1.221× 1019 GeV.

The Planck length and time are ridiculously small, and the Planck mass ridiculously
large, on the scale of ordinary particle physics. There is much speculation about
what particle physics on the Planck scale might look like, none of which will be
discussed in this book.

Here is a quick review of the terminology concerning subatomic particles. To
begin with, there are two basic dichotomies: all particles are either Bosons, with in-
teger spin, or Fermions, with half-integer spin; and all particles are either hadrons,
which participate in the strong interaction, or non-hadrons. The fundamental
Fermions are quarks, which are hadrons, and leptons, which are not. Quarks com-
bine in triplets to make baryons, of which the most familiar are the proton and
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neutron, and in quark-antiquark pairs to make mesons, of which the most im-
portant are the pions; baryons are Fermions, whereas mesons are Bosons. The
leptons comprise electrons, muons,2 tauons, and their associated neutrinos. The
fundamental Bosons are the mediating particles of the various interactions: pho-
tons (electromagnetism), W± and Z particles (weak interaction), gluons (strong
interaction), and the Higgs Boson (the field that generates particle masses). There
is also presumably a graviton for gravity, but it has not been observed as of this
writing. For each of the particles mentioned above there is also an antiparticle; in
some cases (photons, gravitons, Higgs Bosons, Z particles, and some gluons and
mesons) the particle and antiparticle coincide. Griffiths [59] is a good reference for
the physics of elementary particles.

The rest masses of the particles that we will encounter most frequently in this
book are as follows:

mγ = 0, me = 0.511 MeV, mp = 938.280 MeV, mn = 939.573 MeV,

mμ = 105.659 MeV, mπ± = 139.569 MeV, mπ0 = 134.964 MeV,

where the subscripts denote photons (γ), electrons, protons, neutrons, muons,
charged pions, and neutral pions. The mass of a proton in grams is 1.672635×10−24;
the reciprocal of this number, approximately 6×1023, is essentially Avogadro’s num-
ber, which to this one-significant-figure accuracy can be considered as the number
of nucleons (protons or neutrons) in one gram of matter.3

A few characteristic lengths: The diameter of a proton is about 10−13 cm. Di-
ameters of atoms are in the range 1–5×10−8 cm. (Heavy atoms are about the same
size as light ones, because although the former have more electrons, the increased
charge of the nucleus causes them to be packed in more tightly.) Electrons, as far
as we know, are point particles, but the Compton radius or classical radius of an
electron is the number r0 such that the mass of the electron is equal to the electro-
static energy of a solid ball of radius r0 with a uniform charge distribution of total
charge e, which in natural units is e2/4πme:

(1.7) r0 =
e2

4πme
= 2.8× 10−13 cm.

1.3. Mathematical prologue: some Lie groups and Lie algebras

In this section we review the basic facts and terminology concerning the Lie
groups and Lie algebras that play a central role in quantum mechanics and relativity.

The Lorentz and orthogonal groups and their Lie algebras. The Lorentz
group O(1, 3) is the group of all linear transformations of R4 (or 4×4 real matrices)
that preserve the Lorentz inner product:4

A ∈ O(1, 3) ⇐⇒ (Ax)μ(Ay)μ = xμy
μ for all x, y ⇐⇒ A†gA = g.

We employ the notation discussed in §1.1; in particular, g is the matrix (1.1).

2Muons were originally called “μ-mesons.” This is a misuse of the word “meson” according
to modern usage.

3The actual mass of an atom is generally less than the sum of the masses of its nucleons, even
after adding in the mass of its electrons. One has to subtract the binding energy of the nucleus.

4O(1, 3) is more commonly called O(3, 1), but I prefer to keep the arguments of O(·, ·) in the
same order as the coordinates on R4.
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The group O(1, 3) has four connected components, which are determined by
the values of two homomorphisms from O(1, 3) onto the two-element group {±1}:

A �→ detA and A �→ sgn(A0
0) (the sign of the (0, 0) entry of A).

The kernel of the first of these is the special Lorentz group SO(1, 3), and the kernel
of the second one is the orthochronous Lorentz group O↑(1, 3), the subgroup of
O(1, 3) that preserves the direction of time. The intersection

SO↑(1, 3) = SO(1, 3) ∩ O↑(1, 3),

sometimes called the restricted Lorentz group or proper Lorentz group, is the con-
nected component of the identity in O(1, 3). The linear isometry group or orthog-
onal group O(3) of R3 sits inside O↑(1, 3) as the subgroup that fixes the point
(1, 0, 0, 0), and the rotation group SO(3) is O(3) ∩ SO↑(1, 3).

The Lie algebra so(1, 3) of the Lorentz group consists of the 4×4 real matrices
X that satisfy

X†g + gX = 0.

A convenient basis for it may be described as follows. Let eμν be the matrix whose
(μ, ν) entry is 1 and whose other entries are 0, and define

Xjk = ekj − ejk, Xk0 = −X0k = ek0 + e0k (j, k = 1, 2, 3).

Then {Xμν : μ < ν} is a basis for so(1, 3), and of course one can replace any Xμν

by Xνμ = −Xμν . The commutation relations are given by

(1.8)
[Xμν , Xρσ] = 0 if {μ, ν} = {ρ, σ} or {μ, ν} ∩ {ρ, σ} = ∅,

[Xμν , Xνρ] = gννXμρ.

The Lie algebra so(3) of the spatial rotation group is the span of {Xjk : j, k > 0}.
In detail, the relation between these basis elements and the Lie group is as

follows. If (j, k, l) is a cyclic permutation of (1, 2, 3), exp(sXjk) is the rotation
through angle s about the xl-axis (counterclockwise, as viewed from the positive
xl-axis). On the other hand, exp(sX0k) is a so-called boost along the xk-axis that
changes from the initial reference frame “at rest” to one moving with velocity tanh s
along the xk-axis. Thus, for example,

exp(sX23) =

(
I 0
0 R(s)

)
, R(s) =

(
cos s − sin s
sin s cos s

)
,

and

exp(sX01) =

(
B(s) 0
0 I

)
, B(s) =

(
cosh s sinh s
sinh s cosh s

)
.

Orbits and invariant measures. We need to consider the geometry of the
action of O(1, 3) on R4. Actually, there are two natural actions of O(1, 3) on R4:
the identity representation of O(1, 3) and its contragredient A �→ A†−1. Strictly
speaking, the latter is the action of O(1, 3) on the dual space (R4)′; physically,
it is the action on momentum space rather than position space. Since the map
A �→ A†−1 is an automorphism of O(1, 3), however, the orbits in R4 under the two
actions are identical, and we need not distinguish them. In what follows we shall
think of R4 as momentum space, since this is the context in which the orbits usually
appear naturally.
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The orbits of the restricted Lorentz group and the orthochronous Lorentz group
are identical. Parametrized by a nonnegative real number m that generally has a
physical interpretation as a mass, they are as follows:

(1.9)

X+
m =

{
p : p2 = m2, p0 > 0

}
, X−

m =
{
p : p2 = m2, p0 < 0

}
,

Ym =
{
p : p2 = −m2

}
(m > 0),

{0}.

(Recall that p2 = pμp
μ.) The orbits X+

m (and sometimes also X−
m) are known as

mass shells, and the orbits X+
0 and X−

0 are called the forward and backward light
cones. (Under the action of the full group O(1, 3), the two orbits X±

m coalesce into
one.)

Observe that

(1.10) p ∈ X+
m ⇐⇒ p = (ωp,p), where ωp =

√
m2 + |p|2.

The symbol ωp will carry this meaning throughout the book.
Each of the orbits (1.9) has an O↑(1, 3)-invariant measure, which is known on

abstract grounds to be unique up to scalar multiples. The invariant measure on the
mass shell X+

m with m > 0 may be derived as follows. Let V =
⋃

m>0 X
+
m = {p :

p2 > 0, p0 > 0} be the region inside the forward light cone. Then V is O↑(1, 3)-
invariant, and since | detT | = 1 for T ∈ O↑(1, 3), the restriction of Lebesgue mea-
sure d4p to V is an O↑(1, 3)-invariant measure on V ; hence so is f(p2)d4p for any
nonnegative continuous f with support in (0,∞). One obtains the invariant mea-
sure on X+

m by letting f turn into a delta-function with pole at m2: δ(p2−m2)d4p.
The result often appears in precisely this way in the physics literature, but in order
to avoid possible pitfalls in using delta-functions with nonlinear arguments it is best
to take a little more care.

To wit, consider the map φ : (0,∞)× R3 → V defined by

φ(y,p) = (
√
y + |p|2,p),

so that q2 = y when q = φ(y,p). φ is a diffeomorphism, and its Jacobian is

1/2
√
y + |p|2, so for f ∈ Cc(0,∞) we have

f(p2)d4p =
f(y) dy d3p

2
√
y + |p|2

.

Now let f approach the delta-function with pole at y = m2: if we write points in
X+

m as (ωp,p) where ωp =
√
m2 + |p|2, we obtain the invariant measure

(1.11)
d3p

2
√
m2 + |p|2

=
d3p

2ωp
.

A limiting argument then shows that d3p/2|p| is an invariant measure on X+
0 . The

invariant measure on X−
m, of course, is also given by (1.11). We leave the calculation

of the invariant measure on Ym, for which we shall have no use, to the reader.

SL(2,C), SU(2), and the Pauli matrices. The three Pauli matrices are

(1.12) σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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We shall denote the triple (σ1, σ2, σ3) by σ. For any cyclic permutation (j, k, l) of
(1, 2, 3), we have

(1.13) σjσk = −σkσj = iσl, and hence [σj , σk] = 2iσl.

1
2iσ1,

1
2iσ2, and

1
2iσ3 are a basis for the Lie algebra su(2) of skew-Hermitian 2 × 2

matrices of trace zero, and together with 1
2σ1,

1
2σ2, and

1
2σ3, they are a basis (over

R) for the Lie algebra sl(2,C) of all 2× 2 complex matrices of trace zero. In view
of (1.8) and (1.13), the linear map κ′ : sl(2,C)→ so(1, 3) defined on this basis by
(1.14)
κ′( 1

2iσj) = Xkl for (j, k, l) a cyclic permutation of (1, 2, 3), κ′( 12σk) = X0k

is an isomorphism of Lie algebras, and its restriction to su(2) is an isomorphism
from su(2) to so(3).

The corresponding homomorphism on the group level may be described as
follows. Let us add the “fourth Pauli matrix”

σ0 = I =

(
1 0
0 1

)
to obtain a basis σ0, . . . , σ3 for the space H of 2× 2 Hermitian matrices. We then
identify R4 with H by the correspondence

(1.15) x ∈ R
4 ←→M(x) = xμσμ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
.

The crucial feature of this correspondence is that

(1.16) detM(x) = (x0)2 − (x1)2 − (x2)2 − (x3)2 = x2.

Every A ∈ SL(2,C) acts on H by the map X �→ AXA†, and we denote the
corresponding action on R4 by κ(A):

(1.17) M [κ(A)x] = AM(x)A†.

Since detA = 1, we have detAM(x)A† = detM(x), and by (1.16) this means that
κ maps SL(2,C) into O(1, 3). It is easily verified that the differential of κ at the
identity, which takes S ∈ sl(2,C) to the map M(x) �→ SM(x)+M(x)S†, is precisely
the map κ′ defined in (1.14). Thus κ is a local isomorphism, and since SL(2,C) is
connected, its image is the connected component of the identity in O(1, 3), namely,
SO↑(1, 3). Finally, it is easy to verify that the kernel of κ is ±I. In short, we have
proved:

The map κ is a double covering of SO↑(1, 3) by SL(2,C).
As we observed earlier, SO(3) can be identified with the subgroup of SO↑(1, 3)

that fixes the point (1, 0, 0, 0). The inverse image of SO(3) in SL(2,C) is therefore
the set of all A ∈ SL(2,C) that fix the point I = M(1, 0, 0, 0), i.e., that satisfy
AA† = I. This is the group SU(2) of 2 × 2 unitary matrices. It is easily verified

that SU(2) is the set of matrices of the form
(

a −b
b a

)
where |a|2 + |b|2 = 1, so

that SU(2) is homeomorphic to the unit sphere in C
2 and in particular is simply

connected. Hence:
SU(2) is the universal cover of SO(3), and the covering map is the restriction

of κ to SU(2).
There is another way to look at this. The map x �→ iM(0,x) = ix · σ is

an isomorphism from R3 to the space of 2 × 2 skew-Hermitian matrices of trace
zero, which is the Lie algebra su(2). Since A† = A−1 for A ∈ SU(2), the action
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A �→ κ(A)|{0}×R3 of SU(2) on R3 is essentially the adjoint action of SU(2) on its
Lie algebra.

The map κ has one more important property that is not quite obvious: it
respects adjoints, i.e.,

κ(A†) = κ(A)†.

This is most easily seen on the Lie algebra level: κ′ takes the Hermitian matrices 1
2σj

to the symmetric matrices Xj0 and the skew-Hermitian matrices 1
2iσj to the skew-

symmetric matrices Xkl. Thus κ′(X†) = κ′(X)†, so since κ(expX) = expκ′(X)
and exp preserves adjoints, the same is true of κ.

One can form a group that doubly covers the whole Lorentz group O(1, 3): it
is a semidirect product of SL(2,C) with the group Z2 × Z2. We leave the details
to the reader.

The Poincaré group. The Poincaré group or inhomogeneous Lorentz group
P is the group of transformations of R4 generated by O(1, 3) and the group of
translations (isomorphic to R

4 itself). That is, P is the semi-direct product of R4

and O(1, 3),
P = R

4
�O(1, 3),

whose underlying set is R4 ×O(1, 3) with group law given by

(a, S)(b, T ) = (a+ Sb, ST ), (a, S)−1 = (−S−1a, S−1).

The action of (a,A) ∈ P on R4 is

(a, S)x = Sx+ a.

Like O(1, 3), P has four connected components, and the component of the identity
is P0 = R4�SO↑(3, 1). The covering map κ of O(1, 3) by SL(2,C) induces a double
covering (a,A) �→ (a, κ(A)) of P0 by the group R4 � SL(2,C), whose group law is

(a,A)(b, B) = (a+ κ(A)b, AB).

                

                                                                                                               



CHAPTER 2

Review of Pre-quantum Physics

I was lucky enough to attend a few lectures of S. S. Chern just before
he retired from Berkeley in which he said that the cotangent bundle
(differential forms) is the feminine side of analysis on manifolds, and
the tangent bundle (vector fields) is the masculine side. From this
perspective, Hamiltonian mechanics is the feminine side of classical
physics, [and] its masculine side is Lagrangian mechanics.
—Richard Montgomery ([84], p. 352)

This chapter is devoted to a brief review of classical mechanics, special relativ-
ity, and electromagnetic theory. Among the many available texts on these subjects,
the Feynman Lectures [42] are excellent for Newtonian mechanics, relativity, and
electromagnetism, and Purcell [91] perhaps even better for the latter. The classic
physics text on Hamiltonian and Lagrangian mechanics is Goldstein [56]; Abraham
and Marsden [1] and Arnold [4] are good treatments of this material by and for
mathematicians.

2.1. Mechanics according to Newton and Hamilton

We may as well begin at the beginning with Newton’s law:

(2.1) F = ma.

Familiar as this is, it needs some explanation. We consider a system of k particles
with fixed masses m1, . . . ,mk, located at positions x1, . . . ,xk ∈ R3 at time t ∈ R.
The jth particle is acted upon by a force Fj that depends on the positions x1, . . . ,xk

and the time t (and perhaps on other parameters such as the masses mj). We then
concatenate the positions and forces into 3k-vectors,

F = (F1, . . . ,Fk) ∈ R
3k, x = (x1, . . . ,xk) ∈ R

3k

and the masses into a 3k × 3k matrix,

m =

⎛⎜⎜⎜⎝
m1I3 0 . . . 0
0 m2I3 . . . 0
...

...
...

0 0 . . . mkI3

⎞⎟⎟⎟⎠ (I3 = 3× 3 identity matrix),

and set

v =
dx

dt
, a =

dv

dt
.

Then (2.1) is a second-order ordinary differential equation for x when the force F
is known, and a solution is determined by initial values x0 = x(t0) and v0 = v(t0).

Mathematicians look at physical laws such as (2.1) with the expectation that
they will contain some universal truth about the world. They do, but not in the

13

                                     

                

                                                                                                               



14 2. REVIEW OF PRE-QUANTUM PHYSICS

absolute way that the formula A = πr2 is a universal truth about circles; they
are always burdened with a certain amount of fine print. The law (2.1) is valid in
all places at all times, as far as we know, but it has to be modified in relativistic
situations where the masses cannot be treated as constants, and it fades into the
background in the study of the submicroscopic world where the whole concept of
force loses much of its utility. Moreover, (2.1) is valid only in inertial coordinate
systems, so it gives the right answers about what goes on in a laboratory on the
surface of the earth only to the extent that the rotation of the earth and its motion
about the sun can be neglected. It is important to keep in mind that all physical
theories have their limitations; the quantum field theories toward which we are
heading are no exception.

We shall consider only autonomous and conservative forces, that is, those F
that depend only on the positions x (and not explicitly on t) and for which the line
integral

∫
C
F · dx vanishes for every closed curve C in R

3n. In this case, F is the

gradient of a function on R
3n denoted by −V and called the potential energy. We

also have the kinetic energy T of the system,

T = 1
2mv · v =

∑
1
2mj |vj |2,

and the total energy,
E = T + V.

It is to be noted that V , and hence E, is well defined only up to an additive constant.
Total energy is conserved:

dE

dt
= mv · dv

dt
+∇V · dx

dt
= (ma− F ) · v = 0.

The Hamiltonian reformulation of Newtonian mechanics allows more flexibility
and reveals some important mathematical structures. For reasons that will become
clearer below, it takes the momentum

p = mv

instead of the velocity v as a primary object. The total energy, considered as a
function of position and momentum, is called the Hamiltonian and is denoted by
H:

H(x, p) = 1
2m

−1p · p+ V (x).

We can rewrite Newton’s law F = ma as a first-order system in the variables x and
p:

dx

dt
= v = m−1p,

dp

dt
= ma = −∇V (x).

The key point is that the quantities on the right are derivatives of the Hamiltonian:

(2.2)
dx

dt
= ∇pH,

dp

dt
= −∇xH.

These are Hamilton’s equations, which tell how position and momentum evolve
with time. From them one easily obtains the evolution equations for any function
of position and momentum, f(x, p):

(2.3)
df

dt
= ∇xf ·

dx

dt
+∇pf ·

dp

dt
= {f,H},

where the Poisson bracket {f, g} of any functions f and g is defined by

{f, g} = ∇xf · ∇pg −∇pf · ∇xg.

                

                                                                                                               



2.1. MECHANICS ACCORDING TO NEWTON AND HAMILTON 15

Of particular importance are the Poisson brackets of the coordinate functions them-
selves:

(2.4) {xi, pj} = −{pj , xi} = δij , {xi, xj} = {pi, pj} = 0.

At this point a fundamental mathematical structure comes clearly into view (from
the modern perspective): that of a symplectic manifold.

Let us pause for a brief review of this concept. A symplectic manifold is a
C∞ manifold M equipped with a differential 2-form Ω that is closed (dΩ = 0) and
pointwise nondegenerate, i.e., for each a ∈ M and v ∈ TaM , Ωa(v, w) = 0 for all
w ∈ TaM only when v = 0. Nondegeneracy forces the dimension of M to be even,
dimM = 2n, and it is equivalent to the condition that the nth exterior power of Ω
is everywhere nonvanishing.

The form Ω gives an identification of 1-forms with vector fields. Namely, if φ
is a 1-form, the corresponding vector field Xφ is defined by

Ω(Y,Xφ) = φ(Y )

for all vector fields Y . In particular, if f is a smooth function on M , Xdf is a
smooth vector field on M called the Hamiltonian vector field of f ; by a small abuse
of notation, we denote it by Xf rather than Xdf . Thus, for any vector field Y ,

Ω(Y,Xf ) = df(Y ) = Y f.

The Poisson bracket of two smooth functions f and g is

{f, g} = Ω(Xf , Xg) = Xfg = −Xgf.

The Poisson bracket makes C∞(M) into a Lie algebra; the Jacobi identity is a
consequence of the fact that dΩ = 0 and the formula for the action of the exterior
derivative of a form on vector fields. Moreover, the correspondence f �→ Xf is a
Lie algebra homomorphism:

X{f,g}h = −{h, {f, g}} = {g, {h, f}}+ {f, {g, h}}
= −XgXfh+XfXgh = [Xf , Xg]h.

A celebrated theorem of Darboux states that for any point a in a symplectic
manifold M there is a system of local coordinates x1, . . . , xn, p1 . . . , pn on a neigh-
borhood of a such that Ω =

∑
dxj ∧dpj . A coordinate system with this property is

called canonical, and the coordinates xj and pj are said to be canonically conjugate.
In canonical coordinates, Hamiltonian vector fields and Poisson brackets are given
by

Xf =
∑(

∂f

∂pj

∂

∂xj
− ∂f

∂xj

∂

∂pj

)
, {f, g} =

∑(
∂f

∂xj

∂g

∂pj
− ∂f

∂pj

∂g

∂xj

)
.

A diffeomorphism Φ : M →M that preserves the symplectic structure is called
a canonical transformation (by physicists) or a symplectomorphism (by geometers).
Suppose {Φt : t ∈ R} is a one-parameter group of canonical transformations; then
its infinitesimal generator, the vector field X defined by Xf = (d/dt)f ◦ Φt|t=0,
satisfies LXΩ = 0, where L denotes the Lie derivative. Conversely, if X is a vector
field such that LXΩ = 0, the flow it generates consists of (local) canonical trans-
formations. But LXΩ = iX(dΩ)+ d(iXΩ) = d(iXΩ), where iX denotes contraction
with X, and iXΩ is the 1-form associated to X by Ω, so X is an infinitesimal
canonical transformation if and only if its associated 1-form is closed. But this
means that iXΩ = df for some function f (perhaps well-defined only on a covering

                

                                                                                                               



16 2. REVIEW OF PRE-QUANTUM PHYSICS

space of M if M is not simply connected), or in other words, that X = Xf . Thus,
with the understanding that functions and transformations may be only locally
well-defined, Hamiltonian vector fields are precisely the infinitesimal generators of
canonical transformations.

For Hamiltonian mechanics, the symplectic manifolds of primary importance
are cotangent bundles. Let N be an n-dimensional manifold, T ∗N its cotangent
bundle, and π : T ∗N → N the natural projection. There is a canonical 1-form ω
on T ∗N , defined by ω(v) = φ(π∗v) for φ ∈ T ∗N and v ∈ Tφ(T

∗N), and Ω = −dω
is a symplectic form on T ∗N . (The minus sign is inserted to make this consistent
with the preceding discussion and some standard conventions in the literature.)
Indeed, any system {x1, . . . , xn} of local coordinates on an open set U ⊂ N in-
duces a frame {dx1, . . . , dxn} on T ∗U and hence a system of linear coordinates
{p1, . . . , pn} on each fiber of T ∗U (that is, if φ is a 1-form on U , φ =

∑
pj(φ)dxj),

and {x1, . . . , xn, p1, . . . , pn} is a system of local coordinates on T ∗U . In these coor-
dinates the canonical 1-form is given by ω =

∑
pj dxj , so Ω =

∑
dxj ∧ dpj . Thus

Ω is indeed a symplectic form, and the coordinates xj , pj are canonical.
We return to physics. According to Newton’s law, once the forces are given,

the motion of the system is completely determined by (i) the position x and (ii) the
velocity v or the momentum p at an initial time t0. We therefore take this data as
a complete description of the state of the system. To build a general mathematical
framework for dealing with these matters, we start with a configuration space N ,
which is taken to be a manifold and is supposed to be a description of the possible
“positions” of the system. There is quite a lot of flexibility here. For example, if the
system consists of k particles moving in R3 as discussed previously, N will be R3k, or
perhaps {(x1, . . . ,xk) ∈ R3k : xi �= xj for i �= j}. If the motion is subject to some
constraints, N could be a submanifold of R3k instead. For an asymmetric rigid
body, however, the appropriate configuration space is R

3 × SO(3): three linear
coordinates to give the location of the center of mass (or some other convenient
point in the body), and three angular coordinates to give the body’s orientation in
space.

Velocities are taken to be tangent vectors to the configuration space, so the
position-velocity state space is TN . On the other hand, the appearance of Poisson
brackets in the Hamiltonian formalism leads us to take the position-momentum
state space to be the symplectic manifold T ∗N . That is, momenta should be
considered as cotangent vectors, and in the relation p = mv the mass matrix m
should be interpreted as a Riemannian metric on N that mediates between vectors
and covectors. Thus in the setting of N = R3k considered above, the inner product
on tangent vectors is given by 〈v, w〉m = mv · w; the corresponding inner product
on cotangent vectors is given by 〈p, q〉m = m−1p · q, and the cotangent vector
corresponding to the tangent vector v is p = mv. T ∗N is traditionally called the
phase space of the system. (The origin of the name lies in statistical mechanics.)

As a function on T ∗N , the Hamiltonian is H(φ) = 1
2 〈φ, φ〉m + V (π(φ)), where

〈·, ·〉m is the Riemannian inner product just described and π : T ∗N → N is the nat-
ural projection. Hamilton’s equations (2.2) say that the Hamiltonian vector field
XH is the infinitesimal generator of the one-parameter group Φt of time transla-
tions of the system. (If (x, p) is the state at time t0, Φt(x, p) is the state at time
t+ t0. Actually Φt may be only a flow rather than a full one-parameter group, as
particles might collide or escape to infinity in a finite time.) Consequently, the time

                

                                                                                                               



2.1. MECHANICS ACCORDING TO NEWTON AND HAMILTON 17

translations are canonical transformations: the symplectic structure is an invariant
of the dynamics.

In this setting it is easy to derive the connection between symmetries and
conserved quantities generally known as Noether’s theorem. To wit, suppose {Ψs :
s ∈ R} is a one-parameter group of canonical transformations of phase space,
and suppose the Hamiltonian H is invariant under these transformations. The
infinitesimal generator of Ψs is a Hamiltonian vector field Xf , and invariance means
that XfH = 0. But XfH = {H, f} = −{f,H} = −df/dt, so f is invariant under
time translations, i.e., f is a conserved quantity. For example, if N = R

3k and
Ψs is spatial translation in the direction of a unit vector u ∈ R3, i.e., Ψs(x, p) =
(x1+ su, . . . ,xk + su, p), then f is the u-component of the total linear momentum,
f(x, p) = (p1 + . . . + pk) · u. If N = R3 and Ψs is rotation through the angle s
about the u axis, then f is the u-component of the angular momentum, f(x,p) =
(x× p) · u.

One of the advantages of the Hamiltonian formulation of mechanics is that it
allows the possibility of simplifying the problem by performing arbitrary canonical
transformations, including ones that mix up the position and momentum variables.
As an illustration, we consider a simple but important problem whose quantum
analogue will be of fundamental importance later on: the one-dimensional harmonic
oscillator. This is a single particle of mass m, moving along the real line subject to
a linear restoring force F (x) = −κx (κ > 0). The associated potential is V (x) =
1
2κx

2. Of course, Newton’s equation mx′′ = −κx is easy to solve directly, but the
Hamiltonian method allows us to transform this simple differential equation into a
completely trivial one.

Let us first observe that canonical transformations on R2 are precisely those
transformations that preserve orientation and area, as the symplectic form dx∧ dp
is just the element of oriented area.

Let ω =
√
κ/m. The Hamiltonian is

H =
1

2m
p2 +

κ

2
x2 =

ω

2

(
1√
κm

p2 +
√
κmx2

)
.

As a first step, we make the canonical transformation x̃ = (κm)1/4x, p̃ = p/(κm)1/4,
which makes H = (ω/2)(x̃2 + p̃2). Now, the polar-coordinate map (x̃, p̃) �→ (r, θ) is
not area-preserving, but its close relative (x̃, p̃) �→ ( 12r

2, θ) is, since r dr = d( 12r
2).

Thus, the map (x̃, p̃) �→ (s, θ) is canonical if we take s = 1
2 (x̃

2 + p̃2) and θ =
arctan(p̃/x̃), and in the new coordinates, H is simply ωs. Hamilton’s equations
therefore boil down to

ds

dt
=

∂H

∂θ
= 0,

dθ

dt
= −∂H

∂s
= −ω.

Thus s is a constant — namely, s = E/ω where E is the total energy of the system

— and θ = θ0 − ωt. Finally, x̃ =
√
2s cos θ =

√
2E/ω cos(ωt− θ0), so

x =

√
2E

κ
cos(ωt− θ0).

The constant θ0 can be chosen to make the initial values x(t0) and p(t0) whatever
we wish, subject to the condition that H(x0, p0) = E.

                

                                                                                                               



18 2. REVIEW OF PRE-QUANTUM PHYSICS

Another canonical transformation that will be useful later is the one that sim-
plifies the two-body problem. Suppose that two particles with masses m1,m2, posi-
tions x1,x2, and momenta p1,p2 are subject to a conservative force with potential
V that depends only on their relative displacement x1 − x2, so the Hamiltonian is

H =
|p1|2
2m1

+
|p2|2
2m2

+ V (x1 − x2).

Let

M = m1 +m2, m =
m1m2

m1 +m2
, X =

m1x1 +m2x2

m1 +m2
, x = x1 − x2,

P = M
dX

dt
= p1 + p2, p = m

dx

dt
=

m2p1 −m1p2

m1 +m2
.

The transformation (x1,x2,p1,p2) �→ (X,x,P,p) is canonical, and in the new
coordinates the Hamiltonian becomes

H =
|P|2
2M

+
|p|2
2m

+ V (x),

in which the coordinates are decoupled. Hamilton’s equations then give dX/dt =
P/M , dP/dt = 0, so that X, the center of mass of the two-body system, moves with
constant velocity; and dx/dt = p/m, dp/dt = −∇V (x), so thatmx′′(t) = −∇V (x).
In short, after removing the uniform motion of the center of mass, the problem
reduces to that of a single particle of mass m, the reduced mass of the system,
moving in the potential V (x).

2.2. Mechanics according to Lagrange

We now turn to the other major reworking of Newtonian mechanics, the La-
grangian formulation. On the simplest level of a system of particles moving in a
potential V , whose Hamiltonian is H(x, p) = 1

2m
−1p · p+ V (x), the Lagrangian is

the function of position and velocity given by

(2.5) L(x, v) = mv · v −H(x,mv) = 1
2mv · v − V (x).

Stated in a more intrinsic fashion, if we regard H as a function on the cotangent
bundle T ∗N , the Lagrangian is the function on the tangent bundle TN given by
L(ξ) = 〈jmξ, ξ〉 − H(jmξ), where jm : TN → T ∗N is the isomorphism provided
by the inner product m, and 〈·, ·〉 is the pairing of cotangent vectors with tangent
vectors. Returning to (2.5), we have

∇xL = −∇xH = −∇V, ∇vL = mv,

so Newton’s law becomes Lagrange’s equation

d

dt
∇vL = ∇xL.

The significance of this is that it is the Euler-Lagrange equation for a certain
problem in the calculus of variations. Namely, given a path t �→ x(t), t0 ≤ t ≤ t1,
in the configuration space N , we consider the action

S =

∫ t1

t0

L(x(t), x′(t)) dt,

and the problem is to minimize the action over all paths x(t) that begin and end at
two given points x0 = x(t0) and x1 = x(t1). Indeed, suppose we replace x(t) by a

                

                                                                                                               



2.2. MECHANICS ACCORDING TO LAGRANGE 19

slightly different path x(t) + δx(t), where δx(t0) = δx(t1) = 0. To first order in δx,
the change in the Lagrangian is

δL = L(x+ δx, x′ + δx′)− L(x, x′) = ∇xL · δx+∇vL · δx′,

so the change in the action is

δS =

∫ t1

t0

δL dt =

∫ t1

t0

[
∇xL−

d

dt
∇vL

]
· δx dt,

where the endpoint terms in the integration by parts vanish since δx vanishes at
the endpoints. At a minimum, δS must vanish, and δx is arbitrary, so Lagrange’s
equation must hold.

This result is commonly known as the principle of least action; it will come
back to haunt us in Chapter 8. Of course, this name is somewhat inaccurate: a
solution of Newton’s equations is a path that is a critical point, not necessarily a
minimizer, of the action.

The calculation that led us from Hamiltonian mechanics to Lagrangian me-
chanics is easily reversible. Indeed, suppose we start with the Lagrangian L(x, v) =
1
2mv · v − V (x). We define the Hamiltonian H by

H(x, p) = m−1p · p− L(x,m−1p) = 1
2m

−1p · p+ V (x).

Then ∇pH = m−1p = v = dx/dt, and ∇vL = mv = p, so by Lagrange’s equation,
−∇xH = ∇xL = (d/dt)(∇vL) = dp/dt, and we have Hamilton’s equations.

The Lagrangian and Hamiltonian machinery can be used in many situations
other than the simple mechanical systems we have mentioned. The most common
paradigm is to formulate a physical problem as a variational problem for a La-
grangian L defined on the tangent bundle of some configuration space N . The
general procedure for converting such a problem to Hamiltonian form is as follows.

Let x1, . . . , xn be local coordinates on N , and let v1, . . . , vn be the correspond-
ing linear coordinates on the fibers of TN ; thus L is a function of x and v. For the
moment, we fix a point a ∈ N and think of L as a function on TaN . Its differential
dL =

∑
(∂L/∂vj)dvj is a 1-form on TaN . If we identify the vector space TaN with

its own tangent spaces, we can think of dL as a map that assigns to each v ∈ TaN
a linear functional on TaN , i.e., a map from TaN to T ∗

aN . Now letting a vary too,
we obtain a map W : TN → T ∗N .

Let us write this out in terms of local coordinates. Given coordinates x1, . . . , xn

on U ⊂ N , we identify TU and T ∗U both with U × Rn; then L is a function of
x and the fiber coordinates v on TU , and W (x, v) = (x,∇vL). The component
pj = ∂L/∂vj of ∇vL is called the conjugate momentum to the position variable xj

with respect to L.
Now suppose that W is invertible. From the Lagrangian L on TN we construct

the Hamiltonian H on T ∗N by

H(ξ) = 〈ξ,W−1ξ〉 − L(W−1ξ),

where the first term on the right is the pairing of a covector with a vector. A calcu-
lation similar to the one we performed above then shows that the Euler-Lagrange
equation for L is equivalent to Hamilton’s equations for H. Exactly the same recipe
can be used to go from H back to L; it is called the Legendre transformation.

In the general situation, this procedure for going from H to L and back may be
problematic because of the question of the invertibility of W . However, it clearly
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coincides with the transformation we considered earlier for the case where L(x, v) =
1
2mv · v − V (x). More generally, suppose that for each a ∈ N the restriction of L
to TaN is a quadratic function whose pure second-order part is positive definite.
Then W is indeed invertible: it is an affine-linear isomorphism of TaN and T ∗

aN
for each a. This is the most important case in practice, and the only one that will
concern us in the sequel.

The Lagrangian formulation of Noether’s theorem about symmetries and con-
served quantities (which is the original version) is as follows: Suppose {ψs : s ∈ R}
is a one-parameter group of diffeomorphisms of the configuration space N that
preserve the Lagrangian:

L(ψs(x), (ψs)∗(v)) = L(x, v).

Then the quantity I(x, v) = ∇vL(x, v) ·dψs(x)/ds is a constant of the motion. (See
Arnold [4] or Goldstein [56].)

Our real interest is not in mechanical systems with finitely many degrees of
freedom but in fields, which can be regarded as continuum mechanical systems
with infinitely many degrees of freedom. Let us illustrate the transition to this
situation with a simple example.

Consider a long elastic rod that is subject to longitudinal vibrations (or, if you
prefer, a long air column such as an organ pipe). As a simplified model, we chop
the rod up into small bits of equal size, consider each bit as a point particle, and
replace the elastic forces within the rod by ideal springs connecting the particles.
More precisely, we take each particle to have mass Δm and the separation between
adjacent particles when the system is at rest to be Δx. Let uj be the displacement
of the jth particle from its position at rest. Then Newton’s law gives the following
system of equations for the uj ’s:

(2.6) Δm
d2uj

dt2
= k(uj+1 − uj)− k(uj − uj−1) = k(uj+1 − 2uj + uj−1),

where k is the common spring constant, and the Lagrangian is

(2.7) L = T − V = 1
2

∑
Δm

(
duj

dt

)2

− 1
2

∑
k(uj+1 − uj)

2.

Let us divide (2.6) by the equilibrium separation Δx,

Δm

Δx

d2uj

dt2
= (kΔx)

uj+1 − 2uj + uj−1

Δx2
,

and rewrite (2.7) as

L = 1
2

∑[
Δm

Δx

(
duj

dt

)2

− (kΔx)

(
uj+1 − uj

Δx

)2
]
Δx.

Now pass to the continuum limit: Δm/Δx becomes the mass density μ, kΔx
becomes the Young’s modulus Y , the displacements uj become a displacement
function u(x), and we obtain

(2.8) μ
∂2u

∂t2
= Y

∂2u

∂x2
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from (2.6) and

(2.9) L(u, ∂tu, ∂xu) =
1
2

∫ b

a

[
μ

(
∂u

∂t

)2

− Y

(
∂u

∂x

)2
]
dx

from (2.7), where [a, b] is the interval occupied by the rod. Equation (2.8) is the
familiar wave equation which is indeed the standard model for elastic vibrations,
and (2.9) expresses the Lagrangian as the integral of the Lagrangian density

(2.10) L(u, ∂tu, ∂xu) =
1
2

[
μ

(
∂u

∂t

)2

− Y

(
∂u

∂x

)2
]
.

The wave equation (2.8) can be derived from the Lagrangian (2.9) by the cal-
culus of variations just as before. That is, one considers the action

S(u) =

∫ t1

t0

Ldt =

∫ t1

t0

∫ b

a

L(u, ∂xu, ∂tu) dx dt,

and requires δS = S(u+δu)−S(u) to vanish to first order in δu for appropriate δu.
To make this precise, one must consider what happens at the ends of the rod. One
possibility is to consider an infinitely long rod, [a, b] = R. The vibrations u(x, t)
are then assumed to have compact support in x or vanish rapidly as x → ±∞, so
that the Lagrangian makes sense, and one imposes the same requirement on δu,
together with δu = 0 at t = t0, t1. Likewise, for a rod with fixed ends or an air
column with closed ends, one requires u and δu to vanish at x = a, b.

A little more interesting is the case of a rod with free ends or an air column
with open ends. Here there is no a priori restriction on u and δu at the endpoints;
let us see what happens. With L given by (2.9), to first order in δu we have

δS =

∫ t1

t0

∫ b

a

[
μ
∂u

∂t

∂δu

∂t
− Y

∂u

∂x

∂δu

∂x

]
dx dt.

Integration by parts yields

δS =

∫ t1

t0

∫ b

a

[
−μ∂

2u

∂t2
+ Y

∂2u

∂x2

]
δu dx dt− Y

∫ t1

t0

[
∂u

∂x
δu

]b
x=a

dt.

(We always assume δu vanishes at t = t0, t1, so the terms with t-derivatives con-
tribute no boundary terms.) Thus if we want δS = 0 for arbitrary δu, u must satisfy
not only the wave equation but the boundary conditions ∂u/∂x = 0 at x = a, b.
These are in fact the physically correct boundary conditions for a rod with free
ends or an air column with open ends, and they yield a well-posed boundary value
problem for the wave equation.

Let us be clear about the subtle shift of notation that has taken place here. For
a system with finitely many degrees of freedom, we had position variables xj and
velocity variables vj . Here the index j has become the continuous variable x, xj

has become u(x, t), and vj has become ∂tu. It is not worthwhile to try to maintain
the geometric language of tangent and cotangent vectors at this point, but we can
still speak of the canonically conjugate momentum density to the field u,

p =
∂L

∂(∂tu)
= μ

∂u

∂t
,
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and the Hamiltonian density,

H = p∂tu− L = 1
2

[(
∂u

∂t

)2

+ Y

(
∂u

∂x

)2
]
.

The Hamiltonian H =
∫
H dx still represents the total energy, and it is a conserved

quantity.
Similar ideas pertain to the wave equation in higher dimensions. Beginning

with the Lagrangian density

(2.11) L = 1
2

[
c−2(∂tu)

2 − |∇xu|2
]

for a function u(x, t) with x ∈ Ω, an open subset of Rn, and t ∈ R, one forms the
action integral

S =

∫ t1

t0

∫
Ω

L dx dt.

Setting the first variation of S equal to zero yields the wave equation

c−2∂2
t u−∇2u = 0.

If Ω is a bounded domain and one imposes no restrictions on the perturbation δu
on the boundary ∂Ω, one obtains the Neumann boundary conditions ∂u/∂n = 0
for free. Alternatively, one can take Ω = Rn, t0 = −∞, and t1 = +∞, with some
implicit or explicit assumptions on the vanishing of the fields at infinity, and obtain
the wave equation on Rn.

This last point leads to a glimpse of the importance of Lagrangians for quantum
field theory. As we shall see, the transition from classical mechanics to quantum
mechanics proceeds most easily by adopting the Hamiltonian point of view. How-
ever, since this approach singles out the time axis for special attention, it lacks
relativistic invariance. A Lagrangian density, on the other hand, or the action
which is its integral over space-time, employs the space and time variables on an
equal footing, and it may have relativistic invariance built in — as (2.11) does, for
example. It therefore serves as a useful starting point for building relativistic field
theories.

When we return to these ideas in later chapters, we shall often be cavalier about
dropping the word “density”; that is, we shall often refer to L as the Lagrangian
and H as the Hamiltonian; the meaning will always be clear from the context.

2.3. Special relativity

It is taken as axiomatic that the fundamental laws of physics should be invariant
under the Euclidean group of translations and rotations of space, as well as under
translations of time. Newtonian physics and its immediate descendants are also
invariant under the Galilean transformations

(t,x) �→ (t, x+ tv),

for any v ∈ R3. The fundamental equations governing electromagnetism, however,
are not, as we shall see in the next section. Rather, they are invariant under
translations and under the Lorentz group O(1, 3) (see §1.3). For the time being we
adopt notation that displays the speed of light c explicitly, so O(1, 3) is the group
of linear transformations of R4 that preserve the Lorentz bilinear form

Λ((t,x), (t′,x′)) = c2tt′ − x · x′ = c2tt′ − xx′ − yy′ − zz′.
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Einstein’s great insight was that the laws of mechanics should be modified so as to
be invariant under this group too.

A typical Lorentz transformation that mixes space and time variables is the
boost along the x-axis with velocity v (|v| < c):

(2.12) (t, x, y, z) �→
(

t+ (vx/c2)√
1− (v/c)2

,
x+ vt√
1− (v/c)2

, y, z

)
.

(This description of the boost is related to the one in §1.3 by the substitution

v/c = tanh s.) The factors of
√
1− (v/c)2 in (2.12) are what account for the

“Fitzgerald contraction” and “time dilation” effects in relativistic motion. (The fact
that the word “contraction” is used in one case and “dilation” is used in the other
is purely a matter of psychology. The factor

√
1− (v/c)2 is in the denominator for

both x and t.) The feature of these phenomena that is perplexing to the intuition
is that the inverse transformation of (2.12) is of exactly the same form, with v

replaced by −v, so the same factors of
√
1− (v/c)2 appear in the inverse, not their

reciprocals. Nonetheless, everything works out consistently.
For example, suppose an observer A fires a bomb at an object O that is at rest

with respect to A, and an observer B rides along with the bomb like Slim Pickens
in Dr. Strangelove. A and B synchronize their clocks so that the bomb is launched
at time 0. Suppose the bomb is set to go off 1 second after launch, the speed of
the bomb is 0.6c, and the distance from A to O is 2.25× 108 meters (= 0.75 light-
second). Result: The bomb goes off when it reaches O. From A’s point of view, the
bomb takes 1.25 seconds to reach O, and it takes that long to go off because the
clock on board runs slow by a factor of

√
1− (v/c)2 = 0.8. From B’s point of view,

the bomb takes 1 second to reach O, but the distance from A to O is only 1.8×108

meters because it is shortened by a factor of 0.8. (This is why muons created by
cosmic rays in the upper atmosphere, around 10−4 light-second from earth, manage
to reach the earth’s surface by traveling at almost the speed of light, even though
the half-life of a muon is only about 10−6 second. We think the muons’ clocks run
slow; they think the distance is short.) On the other hand, from B’s point of view,
A’s clock runs slow, so (according to B) A’s clock only reads 0.8 second when the
bomb goes off. The point here is that the events of the explosion and the reading
of 0.8 second on A’s clock are simultaneous for B but not for A. This is possible
because the two events happen at different places: the transformation (2.12) does
not take equal times to equal times when x �= 0. In constrast, A and B agree that
B’s clock reads 1 second when the bomb goes off; these two events happen at the
same place, namely O, so their simultaneity is independent of the reference frame.

An elementary derivation of the relativistic formulas for momentum, energy,
etc., can be found in Feynman [42]. Here we take a different approach, via La-
grangian mechanics, as a simple exercise in the sort of thought processes that go
into finding the laws of quantum field theory.

We consider a free particle and wish to derive its laws of motion from an action

functional, S =
∫ t1
t0

L(x,v) dt, where x = x(t) is a path with given endpoints

x(t0) = x0 and x(t1) = x1, and v(t) = x′(t). (We implicitly assume that |v(t)| < c
and that c2(t1 − t0)

2 > |x1 − x0|2.) We wish the action to be Lorentz invariant,
i.e., to be unchanged if (x0, t0) and (x1, t1) are subjected to the same Lorentz
transformation, and we also wish it to yield Newtonian mechanics for a free particle
in the limit of small velocities. The first requirement narrows down the possibilities
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enormously; the simplest one is to take the integrand to be a constant multiple of
the Lorentz analogue of the differential of arc length,

(2.13) a ds = a
√
c2dt2 − dx2 − dy2 − dz2,

which in a given reference frame becomes

a

√
1− |v|

2

c2
c dt.

Thus we try the Lagrangian

L(x,v) = L(v) = ac

√
1− |v|

2

c2
.

To figure out the right value of a, observe that when |v| � c we have

L(v) ≈ ac− a|v|2
2c

.

Adding or subtracting a constant such as ac to the Lagrangian does not affect
the equations of motion, and the second term −a|v|2/2c becomes the classical
(nonrelativistic) Lagrangian m|v|2/2 for a free particle of mass m if we take a =
−mc. Thus we are led to the Lagrangian

(2.14) L = −mc2
√
1− |v|

2

c2
.

The corresponding conjugate momentum is

p = ∇vL =
mv√

1− |v2|/c2
.

Again, this is approximately the classical momentum mv when v is small. In
general, it is Mv where

M = M(v) =
m√

1− |v|2/c2
.

We are led to the conclusion that the effective mass of a particle of (rest) mass m
moving with velocity v is M(v). Thus mass is subject to the same dilation effect
as time and distance.

The Euler-Lagrange equation for the Lagrangian (2.14) is

0 =
d

dt
∇vL−∇xL =

dp

dt
,

which gives motion in a straight line with constant speed as expected. (In gen-
eral, if forces are present, Newton’s law remains valid if “ma” is reinterpreted as
dp/dt. But the question of a proper relativistic interpretation of forces is in general
problematic.)

Next, the quantity

E = p · v − L,

considered as a function of v, is a constant of the motion that constitutes the total
energy in nonrelativistic mechanics. In our situation,

E =
m|v|2√

1− |v|2/c2
+mc2

√
1− |v|2/c2 =

mc2√
1− |v|2/c2

= Mc2,
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which is Einstein’s formula for the energy of a free particle in relativistic mechanics.
When v is small,

E ≈ mc2 + 1
2m|v|

2,

the sum of the “rest energy” mc2 and the classical kinetic energy. We observe that

(2.15)
E2

c2
− |p|2 =

m2c2

1− |v|2/c2 −
m2|v|2

1− |v|2/c2 = m2c2,

so that

(2.16) E = c
√
|p|2 +m2c2.

Expressed in this way as a function of p, E is the Hamiltonian of the free particle.
Again, for small velocities we have |p| � mc and hence

E ≈ mc2 +
|p|2
2m

,

the rest energy plus the classical Hamiltonian.
The momentum p and the energy E are different in different frames of reference

related by Lorentz transformations. However, it is not hard to check that p and E/c
transform as the space and time components of a 4-vector, called the (relativistic)
4-momentum or energy-momentum vector. The relation (2.15) expresses the fact
that the Lorentz inner product of this vector with itself is m2c2. It is important to
note that in the tensor notation explained in §1.1, this vector is pμ rather than pμ;
otherwise the sign of p comes out wrong.

2.4. Electromagnetism

Classically, the electric field E and the magnetic field B are vector-valued func-
tions of position x ∈ R3 and time t that may be operationally defined by the Lorentz
force law : The force on a particle with charge q moving with velocity v is

(2.17) F = qE+
q

c
v ×B,

where c is the speed of light, and E and B are evaluated at the location of the
particle.1

The behavior of E and B is governed by Maxwell’s equations. Using the
Heaviside-Lorentz convention on the scale of electric charge (see §1.2), they are2

divE = ρ(2.18)

divB = 0(2.19)

curlE+
1

c

∂B

∂t
= 0(2.20)

curlB− 1

c

∂E

∂t
=

1

c
j(2.21)

Here ρ is the charge density and j is the current density, both of which are func-
tions of position and time. Everything here may be interpreted in the sense of

1In some texts the factor of c is omitted, which amounts to a redefinition of B. The point of
including it is to make E and B have the same dimensions, namely, force per unit charge.

2Some texts write Maxwell’s equations in a way that involves two additional vector fields
called D and H. This is appropriate for the study of electromagnetism in bulk matter, but on the
level of fundamental physics, D = E and H = B.
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distributions, so that one may allow point charges, charge distributions on curves
or surfaces, etc.

The quantities ρ and j are not independent; indeed, by (2.18) and (2.21),

∂ρ

∂t
= div

∂E

∂t
= c div(curlB)− div j = − div j,

since div curl = 0. This so-called continuity equation,

(2.22)
∂ρ

∂t
+ div j = 0,

is a strong form of the law of conservation of charge. More precisely, the total charge
in a region R ⊂ R

3 is the integral of ρ over R, and by the divergence theorem,

d

dt

∫∫∫
R

ρ dV = −
∫∫∫

div j dV = −
∫∫

∂R

j · n dS,

where n is the unit outward normal to ∂R. Thus the total charge in R can change
only to the extent that charge enters and leaves through ∂R.

On the one hand, electromagnetic fields are produced by charges and currents,
in accordance with Maxwell’s equations; on the other, they act on charged bodies
in accordance with the Lorentz force law. If one combines these things with a
specification of the relation between charge and mass distributions, one obtains
from (2.17)–(2.21) a system of differential equations that, in principle, completely
describes the evolution of the system. It is nonlinear because of the products in
(2.17). However, in practice one often considers electromagnetic fields produced
by a given system of charges and currents or the motion of some charged particles
induced by a given electromagnetic field (produced by some laboratory apparatus,
say) without worrying about feedback.

If ρ and j are taken as given (subject to (2.22)), Maxwell’s equations alone
provide a linear system of differential equations for the fields. The two equations
(2.20) and (2.21) that involve time derivatives form a symmetric hyperbolic system,

∂E

∂t
= c curlB− j,

∂B

∂t
= −c curlE.

The mathematical theory of such systems is well understood. In particular, the
Cauchy problem is well posed: there is a family of theorems that say that if j is in
some nice space X of functions or distributions on R

4 and the initial data E(t0, ·)
and B(t0, ·) are in some related space Y of functions or distributions on R3, there
is a unique solution (E,B) of this system in another related space Z. Versions of
this result can be found, for example, in Taylor [117], §6.5, and Treves [122], §15.
As for the other two Maxwell equations, observe that

∂

∂t
divB = div

∂B

∂t
= −c div curlE = 0,

∂

∂t
divE = div

∂E

∂t
= c div curlB− div j =

∂ρ

∂t
.

Hence if the equations (2.18) and (2.19) are satisfied at the initial time t0, they are
satisfied at all other times too, so they are merely restrictions on the initial values
of E and B.
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In what follows we assume that the quantities in Maxwell’s equations are de-
fined on all of space-time R4, although they may have singularities, in which case
the equations are to be interpreted in the sense of distributions. (However, one
should not think of the spatial component R3 as representing the entire universe.
Rather, one should regard it as a model for some region of which the phenomena
in which one is interested are largely concentrated in some compact subregion. De-
pending on the phenomena one is studying, the actual size of such a region could
be anything from a fraction of a meter to many light-years. But one almost always
has in mind that the fields and charge distributions vanish at infinity.)

By (2.19), B is the curl of a vector field A known as the vector potential. The
equation (2.20) then can be rewritten as curl(E + c−1∂tA) = 0, so E + c−1∂tA is
the gradient of a function −φ, the scalar potential. Of course A and φ are far from
unique: given any (smooth) function χ on R4, one can replace A by A−∇xχ and
φ by φ + c−1∂tχ without changing E and B. Such adjustments to A and φ are
called gauge transformations (for reasons that will be explained in §9.1), and the
choice of a particular χ to make A and φ satisfy some desired condition is called a
choice of gauge.

One of the commonly imposed gauge conditions is

(2.23) divA+
1

c

∂φ

∂t
= 0,

which can be achieved by starting with anyA and φ and replacing them withA−∇χ
and φ+c−1∂tχ where χ satisfies the inhomogeneous wave equation ∇2χ−c−2∂2

t χ =
divA+ c−1∂tφ. Potentials A and φ that satisfy (2.23) are said to be in the Lorentz
gauge or Landau gauge. In terms of such potentials, Maxwell’s equations take a
particularly appealing form. The equations (2.19) and (2.20) are already embodied
in the definition of A and φ. For (2.18), we have

ρ = divE = −∇2φ− 1

c

∂

∂t
divA = −∇2φ+

1

c2
∂2φ

∂t2
,

and for (2.21), since curl(curlA) = ∇(divA)−∇2A we have

1

c
j = curl(curlA)− 1

c

∂

∂t

(
−∇φ− 1

c

∂A

∂t

)
=

1

c2
∂2A

∂t2
−∇2A.

In short, denoting the wave operator or d’Alembertian by �,

� =
1

c2
∂2

∂t2
−∇2,

we see that Maxwell’s equations boil down to

(2.24) �φ = ρ, �A = j/c,

in the presence of the Lorentz gauge condition (2.23).
The situation here is best understood by thinking relativistically and putting

space and time on an equal footing. Henceforth we adopt the space-time coordinates

x0 = ct, (x1, x2, x3) = x
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to get rid of the factors of c, and we adopt the tensor notation explained in §1.1.
We define the electromagnetic 4-potential by

(2.25) Aμ = (φ,A), or Aμ = (φ,−A).

Gauge transformations now take the form

Aμ �→ Aμ + ∂μχ, or Aμ �→ Aμ + ∂μχ.

The electric and magnetic fields are combined into the electromagnetic field tensor

(2.26) Fμν = ∂μAν − ∂νAμ, or Fμν = ∂μAν − ∂νAμ,

that is,

Fμν =

⎛⎜⎜⎝
0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

⎞⎟⎟⎠ , Fμν =

⎛⎜⎜⎝
0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎞⎟⎟⎠ .

The Maxwell equations (2.19) and (2.20) become

(2.27) ∂κFμν + ∂μFνκ + ∂νFκμ = 0,

which is an immediate consequence of the form (2.26) of Fμν , and the equations
(2.18) and (2.21) become

(2.28) ∂μF
μν = jν ,

where the 4-current density jμ is defined by

jμ = (ρ, j/c).

The Lorentz gauge condition (2.23) becomes

∂μA
μ = 0,

and since
∂μF

μν = (∂μ∂
μ)Aν − ∂ν(∂μA

μ),

the Lorentz condition together with (2.28) yields the wave equations (2.24):

∂2Aμ = jμ.

Moreover, the continuity equation (2.22) becomes

(2.29) ∂μj
μ = 0.

Fans of the language of differential geometry may prefer to see this restated
in terms of differential forms. The potential and current density are expressed as
1-forms:

A = Aμ dx
μ = φ dt−Ax dx−Ay dy−Az dz, j = jμ dx

μ = ρ dt−jx dx−jy dy−jz dz

(with t measured in units so that c = 1). The electromagnetic field tensor F is the
negative of the exterior derivative of A:

F = −dA = (Ex dx+ Ey dy + Ez dz) ∧ dt+Bx dy ∧ dz +By dz ∧ dx+Bz dx ∧ dy.

We have
dF = −ddA = 0,

which is equivalent to (2.27). The other Maxwell equation (2.28) and the continuity
equation (2.29) become

∗d∗F = j, d∗j = 0,
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where ∗ is the Hodge star operator relative to the Lorentz form. (It is defined by

α ∧ ∗β = Λ(α, β)dt ∧ dx ∧ dy ∧ dz,

where Λ(α, β) denotes the bilinear functional on differential forms induced by the
Lorentz form.)

In terms of the potential A, we have

−∗d∗dA = j.

In the presence of the Lorentz gauge condition

d∗A = 0

this is equivalent to

−(∗d∗dA+ d∗d∗)A = j.

But −(∗d∗d + d∗d∗) is the “Lorentz Laplacian” — that is, the d’Alembertian ∂2,
acting componentwise; hence we recover (2.24) in the form

∂2A = j (d∗A = 0).

We now turn to the Lagrangian formulation of the laws of electromagnetism.
We first derive the Lagrangian for a charged particle with rest mass m and charge3

q, moving in a given electromagnetic field with potential Aμ = (φ,A). Relativistic
invariance severly restricts the possibilities for a Lorentz-invariant action functional,
and the simplest one is

(2.30) S =

∫ (t1,x1)

(t0,x0)

(−mds− qAμ dx
μ) ,

where ds is as in (2.13) and the integral is taken over a path in spacetime with
the given endpoints. The first term gives the action for a free particle; the second
one is meant to represent the interaction with the electromagnetic field; and as
with the coefficient −m for the free particle, the coefficient −q for the interaction
is dictated by the need to obtain the correct equations of motion. Notice that the
gauge ambiguity in Aμ is irrelevant: replacing Aμ by Aμ + ∂μχ subtracts the exact
differential dχ from the integrand and the constant χ(t1,x1) − χ(t0,x0) from the
action, which does not affect the dynamics.

Choosing a particular reference frame with coordinates (t,x) (and units chosen
so that c = 1) and rewriting the action as an integral in t with v = dx/dt gives

S =

∫ t1

t0

(
−m

√
1− |v|2 + qA · v − qφ

)
dt,

so the Lagrangian is

L = −m
√
1− |v|2 + qA · v − qφ.

At this point there are two different momenta to be considered. We shall refer
to the ordinary mass-times-velocity momentum mv/

√
1− |v|2 as the kinematic or

mechanical momentum and denote it by pκ. On the other hand, p will denote the
canonical momentum associated to the Lagrangian L:

p = ∇vL =
mv√
1− |v|2

+ qA = pκ + qA.

3It is an experimental fact that charge, unlike mass, does not depend on velocity.
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(This is the momentum that needs to be considered when we pass to quantum
mechanics.) The Euler-Lagrange equation is

dp

dt
= ∇xL = q∇x(A · v)− q∇φ.

Here L is considered as a function of the independent variables x and v, so v is
treated as a constant in the expression ∇x(A · v); hence,

∇x(A · v) = (v · ∇x)A+ v × curlA.

Moreover,
dA

dt
=

∂A

∂t
+ (v · ∇x)A.

Hence the Euler-Lagrange equation is equivalent to

dpκ

dt
=

d

dt
(p− qA) = q

(
−∇φ− ∂A

∂t

)
+ qv × curlA

= qE+ qv ×B.

This is the Lorentz force law (2.17) (with c = 1), so our choice (2.30) for the action
is indeed correct.

The corresponding Hamiltonian H = p · v − L is, in terms of the velocity v,

H =
m|v|2√
1− |v|2

· v +m
√
1− |v|2 + qφ =

m√
1− |v|2

+ qφ,

the sum of the free energy and the Coulomb potential energy. By the same calcu-
lation as in the case of a free particle, we find that (H − qφ)2 − |pκ|2 = m2, so in
terms of the canonical momentum p,

(2.31) H =
√
m2 + |p− qA|2 + qφ.

When v is small we have

L ≈ −m+ 1
2m|v|

2 + qA · v − qφ, H ≈ m+
1

2m
|p− qA|2 + qφ,

which yield the Lagrangian and Hamiltonian for nonrelativistic motion of a particle
in an electromagnetic field after subtraction of the rest mass m.

We observed earlier that the energy and momentum (E,p) of a free particle
make up a 4-vector pμ. In the presence of an electromagnetic potential Aμ, so
do the total energy given by (2.31) and the canonical momentum p, and we still
denote this 4-vector by pμ. Equation (2.31) implies that

(E − qφ)2 = m2 + |p− qA|2,
which says that the Lorentz inner product of pμ−qAμ with itself is m2: (p−qA)2 =
m2. Comparing this with the formula (2.16) for the free energy, we obtain a rule
for incorporating the electromagnetic field that will be of basic importance in the
quantum theory: To obtain the energy-momentum vector for a particle with charge
q in an electromagnetic field Aμ from that for a free particle, simply replace pμ by
pμ − qAμ.

Next we consider the Lagrangian form of the field equations for electromag-
netism. Here, since we are dealing with fields instead of particles, the action will be
a 4-dimensional integral of a Lagrangian density that is a function of the fields and
their derivatives. Moreover, the basic field is taken to be the potential Aμ rather
than the electromagnetic field Fμν ; the justification for this is that it is the only
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thing that works at the quantum level, in spite of the ambiguity in the definition
of Aμ. Moreover, there is an implicit assumption that all fields and charges vanish
at spatial infinity in such a way that these 4-dimensional integrals converge and all
boundary terms in spatial integrations by parts vanish. In the preceding paragraphs
we developed the Lagrangian for a particle moving in a given electromagnetic field;
it was the sum of the Lagrangian for a free particle and a Lagrangian for the in-
teraction. Similarly, we now develop the Lagrangian for a field in the presence of a
given system of charges and currents; it will be the sum of a Lagrangian involving
only the field and a Lagrangian for the interaction.

The form of the interaction term is suggested by the −qAμdx
μ/dt = −qφ+qA·v

that we found before. That was for a single charge q; if instead we consider a
continuous distribution of charge with charge density ρ and current density j, the
obvious analogue is −Aμj

μ = −ρφ+A · j where jμ = (ρ, j) is the 4-current density.
Thus, the interaction part of the action functional will be

(2.32) Sint = −
∫
R4

Aμj
μ d4x.

As before, the ambiguity in Aμ is irrelevant: If we change Aμ by adding ∂μχ, where
χ vanishes at infinity, the change in the action is

−
∫
(∂μχ)j

μ d4x =

∫
χ∂μj

μ d4x = 0

because of (2.29).
Now, what about the free-field Lagrangian? It should be Lorentz invariant; it

should be unaffected by gauge transformations; it should be quadratic so that the
field equations will turn out to be linear (Maxwell’s equations). The only possibility
is a constant multiple of FμνF

μν (recall that Fμν = ∂μAν − ∂νAμ), and the correct
constant turns out to be − 1

4 . Thus the full action functional is

(2.33) S = Sfield + Sint =

∫
R4

(
− 1

4FμνF
μν −Aμj

μ
)
d4x.

(In the classical notation, − 1
4FμνF

μν = 1
2 (|E|2 − |B|2).)

To confirm the validity of (2.33), let us derive the field equations. If we add a
perturbation δAμ that vanishes at (spatial and temporal) infinity to Aμ, the change
in S to first order is

δS =

∫ (
− 1

2F
μνδFμν − jνδAν

)
d4x

=

∫ (
− 1

2F
μν [∂μ(δAν)− ∂ν(δAμ)]− jνδAν

)
d4x

=

∫
(−Fμν∂μ(δAν)− jνδAν) d

4x

=

∫
(∂μF

μν − jν) δAν d
4x.

In the first line used the fact that FμνδF
μν = FμνδFμν , and in passing from the

second to the third we used the fact that −Fμν∂νδAμ = −F νμ∂μδAν = Fμν∂μδAν

(by relabeling indices and using the skew symmetry of Fμν). Thus the condition
δS = 0 yields the Maxwell equation (2.28). (Recall that the other equation (2.27)
is a consequence of the formula Fμν = ∂μAν − ∂νAμ.)
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We have developed a Lagrangian formulation of the evolution equations for a
charged particle moving in a given electromagnetic field and for an electromagnetic
field in the presence of a given charge-current distribution. An attempt to combine
these into a relativistically correct Lagrangian that describes a system of charges
and fields interacting with each other is problematic, largely because of the ques-
tion of finding a suitable form for the pure-matter term (the analogue of −

∫
mds

for a single particle); see Goldstein [56]. When we come to quantum electrody-
namics, however, this problem will evaporate. The charge-current distribution will
be derived from an electron field, and the pure-matter term will be its free-field
Lagrangian.

                

                                                                                                               



CHAPTER 3

Basic Quantum Mechanics

Raffiniert ist der Herrgott, aber boshaft ist er nicht. [God is subtle,
but he is not malicious.]
—Albert Einstein

This chapter is a brief exposition of the fundamentals of quantum theory from
a mathematical point of view. Our development of the underlying mathematical
structure follows Mackey [79]; see also Jauch [68] and Varadarajan [125]. For
quantum mechanics proper, there are many good texts available, so I will just
mention three old classics that I have found valuable: the introductory account in
the Feynman Lectures [42] and the comprehensive treatises of Messiah [83] and
Landau and Lifshitz [77]; the latter is particularly good from a mathematical point
of view. Reed and Simon [94] is an excellent source for the relevant functional
analysis; all the results about Hilbert spaces and their operators that are quoted in
this chapter without references can be found there. We also need a few facts about
Lie groups, Lie algebras, and their representations; we refer the reader to Hall [62]
for more background.

3.1. The mathematical framework

The fundamental objects in a mathematical description of a physical system
are states and observables. Observables are the physical quantities such as position,
momentum, energy, etc., that one is interested in studying. In this discussion we
shall consider only real-valued observables. This is not much of a restriction: for
vector-valued observables one can consider their components with respect to a basis,
and one can generally assign numerical labels to the values of other observables. In
particular, one can think of true-false statements about the system as observables
whose only values are 1 and 0. (Mackey [79] calls such observables “questions,”
but we prefer to think of them as assertions.) The state of a system is supposed
to be a specification of the condition of the system from which one can read off all
the available information about the observables of interest; the set of all possible
states is called the state space.

In Hamiltonian mechanics, the state space is a symplectic manifold M , the
observables are (Borel measurable) real-valued functions on M , and the true-false
observables can be identified with the (Borel) subsets ofM (the observable f : M →
{0, 1} corresponds to {x ∈ M : f(x) = 1}). Thus the set of true-false statements
on M is identified with the Borel σ-algebra on M , and the basic logical connectives
“or,” “and,” and “not” correspond to the Boolean operations of union, intersection,
and complement.

General observables can be analyzed in terms of true-false statements. A Borel
function f : M → R is completely specified by its level sets f−1({a}), a ∈ R, or
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more generally by the sets f−1(E), E a Borel subset of R. That is, an observable
f is specified by the sets on which the statements “f(x) = a” or “f(x) ∈ E” are
true.

The striking difference between classical and quantum mechanics is that in
a quantum system, the the true-false statements do not form a Boolean algebra.
Specifically, what fails is the distributive law:

(A or B) and C ⇐⇒ (A and C) or (B and C).

The classic counterexample is the double-slit experiment in which a beam of elec-
trons is directed at a barrier with two slits in it and the electrons that pass through
the slits arrive at a screen where they are detected. Thus, a given electron passes
through one of the two slits (A or B) and arrives at the screen (C). The resulting
pattern of arrivals at the screen exhibits the sort of interference oscillations one
would expect if the electrons were waves rather than particles. But if one puts
detectors at the slits to see which slit an electron goes through (and thus changes
the process to (A and C) or (B and C)), the interference pattern disappears. See
Feynman [42], Chapter 3 of vol. 3, for a detailed discussion.

Thus one must find a new model for states and observables in quantum me-
chanics, and what turns out to work is the following. The state space of a quantum
system is a projective Hilbert space PH, that is, the set of nonzero vectors in a
Hilbert space H modulo the equivalence relation that u ∼ v if and only if v is a
scalar multiple of u. In practice, one usually thinks of H itself as the state space,
with the understanding that two equivalent vectors define the same state. It is
almost always desirable to take the vectors representing states to be unit vectors;
one speaks of normalized states.

At this point we refer the reader back to §1.1 for a discussion of the physicists’
notation and terminology that we will be using from now on.

The true-false statements about the quantum system correspond not to sub-
sets of H but to closed linear subspaces of H. The logical “and” still corresponds
to intersection, but now “or” and “not” correspond to closed linear span and or-
thogonal complement, respectively. Thus the lattice of subspaces takes the place of
the Boolean algebra of subsets. However, to develop the theory further, it is more
convenient to identify a closed linear subspace with the orthogonal projection onto
that subspace. Thus, from now on, true-false statements will be identified with
orthogonal projection operators.

If the system is in the state represented by the unit vector u, and a true-false
statement is represented by the projection P , the statement is definitely true if u is
in the range R(P ) and definitely false if u is in the nullspace N(P ). In general, we
write u = u0 + u1 where u0 ∈ N(P ) and u1 ∈ R(P ). Then ‖u0‖2 + ‖u1‖2 = 1, and
we interpret ‖u0‖2 and ‖u1‖2 as the probabilities that the statement is false and
true, respectively. (In experimental terms, probability is interpreted in terms of
statistical frequency: If the system is prepared N times in state u where N is large,
the statement will be true about N‖u1‖2 times.) This probabilistic interpretation
is an essential feature of quantum mechanics, not just the result of an incomplete
description of the system.

The state u can be identified with the true-false statement “The system is in
the state u.” Taking u to be a unit vector, the corresponding projection is the
orthogonal projection P onto the line spanned by u, Pv = 〈u|v〉u, and for any unit
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vector v,
∣∣〈u|v〉∣∣2 = |〈u|P |v〉|2 is the transition probability that a system known to

be in the state u will also be found to be in the state v (or vice versa:
∣∣〈u|v〉∣∣2 is

symmetric in u and v). The fact that a system that is definitely in one state may
also be in a different state is another peculiarity of quantum systems.

By the way, physicists refer to the inner product 〈u|v〉 as a probability am-
plitude. This usage of the word “amplitude” is in conflict with the classical one
according to which the amplitude of a sinusoidal wave is the coefficient a (always
assumed positive) in the expression a sin(ωt+ c). This is just one of those semantic
peculiarities that one has to learn to live with.

The usual device for combining simpler quantum systems into more complicated
ones is the tensor product of Hilbert spaces, a concept which we now briefly review.
Given two Hilbert spaces H1 and H2, one way to define their (Hilbert-space) tensor
product H1 ⊗H2 is to begin with their algebraic tensor product (the set of finite
linear combinations of products u1 ⊗ u2 where uj ∈ Hj). There is a unique inner
product on this space such that

〈u1 ⊗ u2|v1 ⊗ v2〉 = 〈u1|v1〉〈u2|v2〉,
and H1 ⊗H2 is its completion with respect to the associated norm. Alternatively,
one can define H1 ⊗ H2 to be the space of all bounded conjugate-linear maps
A : H1 → H2 such that

∑
‖Aej‖2 < ∞ for some (and hence any) orthonormal

basis {ej} for H1, equipped with the inner product 〈A|B〉 =
∑
〈Aej |Bej〉. (In

this picture u1 ⊗ u2 is the map v �→ 〈v|u1〉u2.) Either way, if {ej} and {fk} are
orthonormal bases for H1 and H2, {ej ⊗ fk} is an orthonormal basis for H1 ⊗H2.
Other variations on this theme are possible; see Reed and Simon [94], §II.4, or
Folland [45], §7.3 for more details.

Here are two typical uses of tensor products in quantum mechanics. First, if
H1 and H2 are the quantum state spaces for two particles p1 and p2, the state space
for the two-particle system is H1 ⊗H2, with u⊗ v representing the state in which
p1 is in state u and p2 is in state v.1 (In this situation it is often appropriate to take
H1 = H2 = L2(R3), in which case H1⊗H2 can be identified with L2(R6) by taking
f1⊗f2 to be the function (x1, x2) �→ f1(x1)f2(x2).) Second, just as the motion of a
classical rigid body may be analyzed on one level by considering it as a featureless
“particle” and then in more detail by considering its rotations about its center of
mass, a quantum particle may have one set of “states” (i.e., one Hilbert space H1)
to describe its motion in space and another one H2 to describe its “internal degrees
of freedom” such as spin; then the full state space for the particle will be H1⊗H2.

Now, how do we model observables? Given a real-valued physical quantity O
that we want to be an observable of our system, we follow the hint indicated earlier
and analyze it in terms of the true-false statements

S(E): The value of O is in E,

where E a Borel subset of R. Let P (E) be the projection corresponding to S(E).
Obviously S(∅) is always false and S(R) is always true, so

(3.1) P (∅) = 0 and P (R) = I.

If E1 and E2 are disjoint, S(E1) is definitely false whenever S(E2) is definitely
true, and vice versa, so the ranges of P (E1) and P (E2) are mutually orthogonal;

1If p1 and p2 are identical — two electrons, for example — this picture needs to be modified;
see §4.5.
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equivalently,

(3.2) P (E1)P (E2) = 0 whenever E1 ∩ E2 = ∅.

In this case, the closed linear span of the ranges is their orthogonal sum, and
the projection onto the latter space is P (E1) + P (E2). But that projection cor-
responds to the statement “O is in E1 or E2,” which is the same as S(E1 ∪ E2)
and hence corresponds to the projection P (E1 ∪ E2). It then follows by induction
that P (

⋃n
1 Ej) =

∑n
1 P (Ej) whenever E1, . . . , En are disjoint, and it is eminently

reasonable to assume that the same relation holds for countable unions:

(3.3) P

( ∞⋃
1

Ej

)
=

∞∑
1

P (Ej) whenever Ei ∩Ej = ∅ for i �= j.

(The convergence of the sum on the right is in the strong operator topology, i.e.,
the topology of pointwise convergence in norm.) A map E �→ P (E) from the Borel
sets in R to the orthogonal projections on H that satisfies (3.1)–(3.3) is called a
projection-valued measure on R.

It is worth observing that projection-valued measures behave in the natural way
with respect to complements and intersections. Namely, since P (R \ E) + P (E) =
P (R) = I, P (R \ E) is the projection whose range and nullspace are the nullspace
and range of P (E), respectively. Moreover, for any E1 and E2, the sets E1 \ E2,
E1 ∩E2, and E2 \ E1 are disjoint, so by (3.2) and (3.3),

P (E1)P (E2) =
[
P (E1 \ E2) + P (E1 ∩E2)

][
P (E1 ∩ E2) + P (E2 \ E1)

]
= P (E1 ∩E2)

2 = P (E1 ∩ E2).

If P is any projection-valued measure on R and u is a unit vector, the map
Pu : E �→ 〈u|P (E)|u〉 is an ordinary probability measure on R. It is interpreted as
the probability distribution of the observable P in the state u. This is consistent
with the probabilistic interpretation of single projections mentioned earlier. The
states (if any) in which the observable P has a definite value a are those in the
range of P ({a}).

Now comes the leap into analysis: By the spectral theorem, projection-valued
measures are in one-to-one correspondence with self-adjoint operators. To wit, if
A is a self-adjoint operator, the spectral functional calculus yields a self-adjoint
operator f(A) for any Borel function f : R→ R, and the operators P (E) = χE(A)
(χ = characteristic function) form a projection-valued measure. On the other hand,
if P is a projection-valued measure, there is a unique self-adjoint operator A, whose
domain D(A) is the set of all u ∈ H with

∫
R
t2 dPu(t) < ∞, such that 〈u|A|u〉 =∫

R
tdPu(t) for all u ∈ D(A). (The diagonal matrix elements 〈u|A|u〉 determine all

other matrix elements 〈u|A|v〉, and hence A itself, by polarization.) Moreover, these
correspondences A �→ P and P �→ A are mutually inverse. In short, observables
may be identified with self-adjoint operators, and we shall do so henceforth.

The diagonal matrix elements 〈u|A|u〉 have an immediate physical interpreta-
tion: 〈u|A|u〉 =

∫
R
t dPu(t) is the expected value of the probability distribution Pu,

and it therefore represents the expected value — or, as physicists usually say, the
expectation value — of the observable A in the state u. Moreover, the states in
which the observable A has a definite value a are simply the eigenvectors of A with
eigenvalue a.
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Incidentally, this is the appropriate point to mention a bit of physicists’ argot
that the reader may encounter occasionally. In the early days of quantum mechan-
ics when the idea that observables are represented by noncommuting operators was
still new and strange, some people spoke of quantum observables as “quantities
whose values are q-numbers” — the notion of “q-number” being meant to suggest
noncommutativity — as opposed to “quantities whose values are c-numbers,” i.e.,
ordinary complex-valued quantities whose algebra is commutative. One still finds
the terms q-number (rarely) and c-number (more frequently) in the physics litera-
ture; in particular, to say that an operator is a c-number is to say that it is a scalar
multiple of the identity. (E.g., “The commutator of A and B is just a c-number.”)
That usage is echoed in this book by our tendency to write just λ instead of λI for
a scalar multiple of the identity.

The reader will notice that we have entered the perilous world of unbounded op-
erators. Bounded self-adjoint operators correspond to projection-valued measures
P such that P (E) = I for some bounded set E. But many important observables can
potentially have values anywhere on the real line, so the corresponding operators
will be unbounded. In this situation the word “self-adjoint” has to be understood
in its precise technical sense. Although these technicalities play a remarkably small
role in quantum field theory, we had better take a little time to set them out clearly.

To recall the precise definitions: let A be an operator defined on the domain
D(A) ⊂ H. If D(A) is dense in H, the adjoint of A is the operator A† on the
domain of all u ∈ H such that the map v �→ 〈u|Av〉 (v ∈ D(A)) extends to a
bounded linear functional on all of H (uniquely, since D(A) is dense); A†u is the
element of H corresponding to this functional, so that 〈A†u|v〉 = 〈u|Av〉. A is
called symmetric if 〈Au|v〉 = 〈u|Av〉 for all u, v ∈ D(A). This means that A† is an
extension of A, i.e. D(A†) ⊃ D(A) and A†|D(A) = A. A is called self-adjoint if
A† = A. If A is symmetric, it may be possible to extend A to a larger domain to
make it self-adjoint, perhaps in many different ways. A is called essentially self-
adjoint if it has a unique self-adjoint extension, or equivalently, if the graph of A†

in H ×H is the closure of the graph of A. The principal reason for insisting upon
these distinctions is that among the symmetric operators, the self-adjoint ones are
the only ones to which the spectral theorem and its consequences apply.

In the mathematics literature the word Hermitian is usually a synonym for
symmetric. In the physics literature, too, if one looks for a definition of “Hermitian”
one will usually find it stated that A is Hermitian if 〈u|A|v〉 = 〈v|A|u〉∗. However,
when physicists speak of Hermitian operators, they often want self-adjoint ones, for
those are the ones with a good spectral theory and the ones that really correspond
to observables. Generally this is not a serious problem; the diligent mathematician
can usually figure out what the appropriate domain is with a certain amount of
work. In particular, when the Hilbert space is something like L2(Rn), it often
happens that a symmetric operator is essentially self-adjoint when considered on
an obvious domain of “nice” functions, and then there is no problem. (The standard
position and momentum observables defined by (3.12) below are good examples. It
takes some thought to come up with a dense subspace of their domains on which
they are not essentially self-adjoint.) On the other hand, when the operator in
question is a differential operator on a region in R

n, the question of specifying an
appropriate domain usually amounts to choosing appropriate boundary conditions,
and these conditions are usually dictated by physical considerations.
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In any case, we shall be careful to use the term “self-adjoint” when it is really
an issue, and we shall generally follow the physicists in using the term “Hermitian”
when it is not.

For those who are not on easy terms with these ideas, it may be useful to
consider an example. Let H = L2([0, 1]), and let A = d2/dx2 on the domain of all
f ∈ C1([0, 1]) such that f ′ is absolutely continuous and f ′′ (defined a.e.) is in L2.
The fundamental formula arises from integration by parts:

(3.4) 〈Af |g〉 − 〈f |Ag〉

=

∫ 1

0

[f ′′(x)∗g(x)− f(x)∗g′′(x)] dx =
[
f ′(x)∗g(x)− f(x)∗g′(x)

]1
0
.

(Remember that ∗ denotes complex conjugation!) Thus A is not symmetric. How-
ever, the restriction A0 of A to {f ∈ D(A) : f(0) = f ′(0) = f(1) = f ′(1) = 0} is

symmetric, and it is not hard to show that A = A†
0. Note that D(A0) is defined

by the imposition of four boundary conditions; it is too small to give a self-adjoint
operator. The self-adjoint extensions of A0 are defined by restricting A to a do-
main defined by two boundary conditions in such a way that the boundary terms
in (3.4) vanish for all f and g satisfying the conditions. There is, in fact, a four-
parameter family of such conditions (naturally parametrized by the unitary group
U(2)), and the resulting operators all have different spectral resolutions. Three
cases will suffice to indicate the variety of possibilities:
i. A1 is the restriction of A to {f ∈ D(A) : f(0) = f(1) = 0}. The eigenval-

ues of A1 are −n2π2, n ≥ 1, each with multiplicity 1, and the corresponding
eigenfunctions are sinnπx.

ii. A2 is the restriction of A to {f ∈ D(A) : f(0) = f ′(1) = 0}. The eigenvalues
of A2 are −(n− 1

2 )
2π2, n ≥ 1, each with multiplicity 1, and the corresponding

eigenfunctions are sin(n− 1
2 )πx.

iii. A3 is the restriction of A to {f ∈ D(A) : f(0) = f(1) and f ′(0) = f ′(1)}.
The eigenvalues are −4n2π2, n ≥ 0; the eigenvalue 0 has multiplicity 1 and
all others have multiplicity 2, and the corresponding eigenfunctions are linear
combinations of cos 2nπx and sin 2nπx.

In each of these cases the operator has an orthonormal eigenbasis, and each of these
bases has a nice interpretation in terms of the classical physics of one-dimensional
vibrations. The first one models the normal modes of a string fixed at both ends; the
second models the normal modes of a cylindrical pipe (an organ pipe or clarinet,
say) that is closed at one end and open at the other; and the third models the
normal modes of a vibrating circular hoop. So the physicists may not talk about
domains of unbounded operators, but they have no trouble distinguishing these
cases! On the other hand, to bring home the point about good spectral theory, let
us add A and A0 to the list.
iv. Every λ ∈ C is an eigenvalue of A with multiplicity 2; the eigenfunctions are

linear combinations of e
√
−λx and e−

√
−λx for λ �= 0 and of 1 and x for λ = 0.

There is no canonical eigenfunction expansion associated to A.
v. The operator A0 has no eigenvalues at all. However, its spectrum, the set of all

λ ∈ C such that A0 − λ is not invertible, is the whole complex plane because
A0 − λ is never surjective; in fact, its range isn’t even dense. (The orthogonal
complement of its range consists of the eigenfunctions of A with eigenvalue λ∗.)
Again there is no good spectral resolution.
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If one replaces the condition “f ∈ D(A)” with “f ∈ C2([0, 1])” or “f ∈
C∞([0, 1])” in the definition of A1, A2, or A3, the resulting operator is essentially
self-adjoint. But adding an extra boundary condition, or taking one away, really
destroys the self-adjointness.

Next we consider symmetries of the quantum system. These are modeled by
automorphisms of the projective Hilbert space PH, that is, the bijections from PH

to itself that preserve the projectively invariant part of the inner product,

(u, v) =
|〈u|v〉|
‖u‖ ‖v‖ (u, v �= 0).

(Geometrically, (u, v) is the cosine of the angle between the complex lines spanned
by u and v. Physically, (u, v)2 is the transition probability between the states u and
v.) Clearly any unitary operator on H induces an automorphism of PH, as does any
anti-unitary operator (a conjugate-linear operator V such that 〈u|V |w〉 = 〈w|u〉).
A theorem of Wigner (see Bargmann [7] or Jauch [68]) assures us that these are
the only automorphisms of PH. Thus the automorphism group can be identified
with the group of unitary or antiunitary operators on H modulo scalar multiples
of the identity operator (which induce the identity transformation on PH). We
equip it with the topology inherited from the strong operator topology; the unitary
and antiunitary parts are then its connected components. (The group of unitary
operators is connected because, by spectral theory, every unitary operator belongs
to a continuous one-parameter group of unitary operators and so is connected to
the identity by a continuous path.) We denote the component of the identity,
U(H)/{cI : |c| = 1}, by PU(H).

Let us pass to continuous groups of symmetries. If G is a connected topolog-
ical group, a projective representation or ray representation of G is a continuous
homomorphism ρ : G → PU(H). The question that immediately arises is whether
such a ρ can be lifted to a continuous homomorphism ρ̃ : G→ U(H), i.e., a unitary
representation of G. There are two possible obstructions, one topological and one
cohomological. The topological problem is that if G is not simply connected, it
may not even be possible to lift ρ to a continuous map from G into U(H), let alone
a homomorphism. (Examples are provided by the double-valued representations
of the rotation group; see §3.5.) The solution to this problem is to pass to the
universal cover of G. Assuming then that G is simply connected, a continuous
lifting ρ̂ : G → U(H) always exists, and it satisfies ρ̂(xy) = ω(x, y)ρ̂(x)ρ̂(y) where
ω(x, y) is a numerical factor of absolute value 1. Moreover, the associative law for
G implies that ω satisfies the cocycle condition ω(xy, z)ω(x, y) = ω(x, yz)ω(y, z).
If ω is a coboundary, that is, if ω(x, y) = λ(x)λ(y)/λ(xy) for some continuous
λ : G → T1, then ρ̃(x) = λ(x)ρ̂(x) is the desired homomorphic lift of ρ. (Those
familiar with group cohomology will recognize the general framework into which
the words “cocycle” and “coboundary” should be placed; others need not worry

about it.) If ω is not a coboundary, it determines a group G̃ that fits into an exact

sequence 1 → U(1) → G̃ → G → 1 (that is, G̃ is an extension of G by the circle

group U(1)), and the best one can do is to find a unitary representation ρ̃ of G̃ such
that πU ◦ ρ̃ = ρ ◦ πG, where πU and πG are the projections from U(H) to PU(H)

and from G̃ to G.
When G is a simply connected Lie group, the problem in group cohomology

adumbrated above can be reduced to a problem in Lie algebra cohomology, which is
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more readily computable. The relevant cohomology group is H2(g,R), which is the
quotient of the space of all skew-symmetric bilinear maps φ : g×g→ R that satisfy
the cocycle condition φ(X, [Y, Z])+φ(Y, [Z,X])+φ(Z, [X,Y ]) = 0 by the subspace
of all such φ of the form φ(X,Y ) = f([X,Y ]) for some linear functional f on g. The
upshot is Bargmann’s theorem [6] (see also Simms [112] and Varadarajan [125]):

Let G be a simply connected Lie group with Lie algebra g. Every projective
representation ρ of G determines an element βρ ∈ H2(g,R), and ρ can be lifted to
a unitary representation of G if and only if βρ = 0. In particular, if H2(g,R) = 0,
every projective representation of G can be lifted to a unitary representation of G.

The cohomology group H2(g,R) vanishes whenever G is semisimple, and also
when G = R and when G is the Poincaré group. (It does not vanish when G = R

n

for n > 1, however. Examples of projective representations of Rn for even n that
cannot be lifted to unitary representations are provided by the representations of
the canonical commutation relations that we shall discuss in §3.2.) For the time
being, the essential case for us is G = R: Every one-parameter subgroup of PU(H)
comes from a one-parameter group of unitary operators on H.

We are now in a position to apply another of the big theorems of functional
analysis, the Stone representation theorem for (strongly continuous) one-parameter
unitary groups. Recall that an operator S is called skew-adjoint if S† = −S. If S
is any skew-adjoint operator, then U(t) = etS (defined by the spectral functional
calculus) is a strongly continuous one-parameter group of unitary operators, and
Stone’s theorem asserts that every strongly continuous one-parameter group of
unitary operators is of this form. Moreover, skew-adjoint and self-adjoint operators
are almost the same thing: multiplication by a purely imaginary scalar converts
one into the other. Thus, if one fixes a nonzero real constant b, the map A �→ ibA
defines a bijection from the self-adjoint to the skew-adjoint operators. (Why not
take b = 1? There are good reasons: more about this in the next section.) Thus
there is a correspondence between observables (self-adjoint operators) and one-
parameter groups of symmetries of a quantum system: A↔ eibtA.

Let us explore this a little further. A one-parameter group eibtA can be con-
sidered as transforming the states by u �→ ut = eibtAu while the observables re-
main fixed, or as transforming the observables by B �→ Bt = e−ibtABeibtA while
the states remain fixed. These are known as the Schrödinger and Heisenberg pic-
tures, respectively. If P is the projection-valued measure associated to B, then
Pt(·) = e−ibtAP (·)eibtA is the projection-valued measure associated to Bt, and the
probability distribution of the observable B in the state u, after the action of eibtA,
is E �→ 〈ut|P (E)|ut〉 = 〈u|Pt(E)|u〉.

In the Schrödinger picture, the differential equation governing the evolution of
ut is

dut

dt
= ibAut,

the (abstract) Schrödinger equation. (More precisely, this equation is valid when
u is in the domain of A; this domain is invariant under the group eibtA.) In the
Heisenberg picture, the differential equation governing the evolution of Bt is

dBt

dt
= −ibABt + ibBtA = ib[Bt, A] = ib[B,A]t.
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(More precisely, this equation is valid as an operator identity on the domain of all
u ∈ D(Bt) ∩D(A) such that Btu ∈ D(A) and Au ∈ D(Bt) for all t.)

The resemblance to Hamilton’s equation (2.3) is notable, and it leads us to think
about the analogy between Poisson brackets and commutators. Both operations are
Lie products, in the sense of being skew-symmetric and satisfying the Jacobi iden-
tity. The set of C∞ functions on a symplectic manifold forms a Lie algebra under
Poisson brackets, and the set of bounded skew-adjoint operators on a Hilbert space
forms a Lie algebra under commutators. The correspondence A ↔ ibA between
self-adjoint and skew-adjoint operators then induces a Lie algebra structure on the
set of bounded self-adjoint operators by

(A1, A2) �→
[ibA1, ibA2]

ib
= ib[A1, A2].

Alas, one sometimes needs to consider classical observables that aren’t C∞ and
quantum observables that aren’t bounded, so the Lie algebra structures aren’t per-
fect. The classical problem is not serious; one just has to remember that the Poisson
bracket of two Ck functions is only Ck−1. On the quantum side, if A1 and A2 are
self-adjoint operators, not both bounded, ib[A1, A2] is at least a symmetric operator
on the domain of all u ∈ D(A1)∩D(A2) such that A1u ∈ D(A2) and A2u ∈ D(A1),
but in general that domain will be too small for ib[A1, A2] to be self-adjoint. (If
one is fortunate, it will be essentially self-adjoint. There are substantial technical
issues to be dealt with here, but they do not concern us now.)

Let us pause to take stock of the analogies between the formalisms of Hamil-
tonian and quantum mechanics.

• In Hamiltonian mechanics, the state space is phase space, a symplectic
manifold M ; the observables are real-valued functions on M , and the
symmetries are canonical transformations of M . Every (smooth) observ-
able defines a Hamiltonian vector field, which generates a one-parameter
group (or at least a flow) of canonical transformations, and every such flow
arises from an observable in this way (at least if M is simply connected).
Moreover, the (smooth) observables form a Lie algebra under the Poisson
bracket. If f is an observable whose Hamiltonian vector field generates
the flow Φt, the evolution of any other observable g under the flow is given
by (d/dt)(g ◦ Φt) = {g, f} ◦ Φt.

• In quantum mechanics, the state space is a projective Hilbert space PH,
the observables are self-adjoint operators on H, and the symmetries are
unitary or anti-unitary operators on H. A choice of a nonzero real con-
stant b (to be specified shortly) sets up a bijection between self-adjoint
and skew-adjoint operators, A ↔ ibA. Via this correspondence, observ-
ables are precisely the infinitesimal generators of one-parameter groups
of symmetries: U(t) = eibtA. Moreover, self-adjoint operators form a Lie
algebra under the Lie product (A1, A2) �→ ib[A1, A2] (except for technical
difficulties concerning the domains of unbounded operators). If A is an ob-
servable, the evolution of any other observable B under the one-parameter
group eibtA is given by (d/dt)(e−ibtABeibtA) = e−ibtA

(
ib[B,A]

)
eibtA.

These analogies are a little ragged around the edges because of the differentiability
assumptions, the local nature of most flows on the classical side, and the hangups
with unbounded operators on the quantum side, but they are sufficiently striking
to assure us that we are onto something good.
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3.2. Quantization

So far we have only constructed a skeleton of a quantum theory. To put some
flesh on the bones, we need a way to find the quantum analogues of familiar clas-
sical observables such as position, momentum, and energy. (Once we understand
the observables, the nature of the states will become clearer.) We shall take the
Hamiltonian formulation of classical mechanics as a starting point so as to take
advantage of the analogies outlined above, and the resulting quantum theory will
therefore be nonrelativistic. Building a relativistic theory will require more work.

What we want is a way to assign to each classical observable (a real-valued
function f on phase space) a quantum observable Af (a self-adjoint operator on
Hilbert space). We (optimistically) ask for this correspondence to enjoy the follow-
ing properties:

• Constant functions correspond to constant multiples of the identity:

(3.5) Aα = αI (α ∈ R).

• If φ : R → R is a Borel function, and E ⊂ R is a Borel set, we have
(φ ◦ f)(x) ∈ E if and only if f(x) ∈ φ−1(E). Let Pf be the projection-
valued measure corresponding to the operator Af . Recalling the way in
which projection-valued measures are to be interpreted as observables,
we infer that the projection-valued measure corresponding to the classical
observable φ ◦ f should be E �→ Pf (φ

−1(E)). But the self-adjoint oper-
ator corresponding to this measure is just φ(Af ), defined by the spectral
functional calculus. In short,

(3.6) Aφ◦f = φ(Af ).

• If f and g are classical observables, the expected value of the quantum
observable Af+g in any state u should be the sum of the expected values
of Af and Ag, that is, 〈u|Af+g|u〉 = 〈u|Af |u〉+ 〈u|Ag|u〉. But the diago-
nal matrix elements of an operator completely determine the operator by
polarization, so

(3.7) Af+g = Af +Ag.

• Poisson brackets should correspond to commutators, as modified by the
correspondence between self-adjoint and skew-adjoint operators:

(3.8) A{f,g} = ib[Af , Ag].

(We ignore questions about domains here.)

It turns out that this is too much to ask for; quantum mechanics isn’t that similar
to classical mechanics. (See Folland [44] for further discussion of this point.) But
we are only looking for guidelines, not a functor that will magically transform
classical systems into quantum ones, and we shall use this wish-list in that spirit. In
particular, we expect only that (3.8) will hold in an approximate or asymptotic sense
in situations where the classical and quantum pictures can be compared directly.

It is time to explore the meaning of the mysterious constant b. The reason for
not simply taking b = 1 is that its value depends on the units of measurement being
used. Differentiation with respect to a position or momentum variable changes
the dimensions by adding a factor of [l−1] or [m−1l−1t], respectively. Thus, if f
and g have dimensions [df ] and [dg], their Poisson bracket will have dimensions
[dfdgm

−1l−2t]. On the quantum side, the “dimensions” of a self-adjoint operator

                

                                                                                                               



3.2. QUANTIZATION 43

A are the dimensions of the variable λ in its spectral resolution A =
∫
λ dP (λ)

(or equivalently, if A has discrete spectrum, the dimensions of its eigenvalues).
(This point may seem less than perfectly clear in the present abstract setting,
but it is always obvious in the concrete models actually used in quantum theory,
where the dimensions of an operator are manifest from its form and the coefficients
occuring in it.) If A and B are self-adjoint operators with dimensions [dA] and
[dB], the operator i[A,B] = i(AB − BA) will have dimensions [dAdB]. But this
means that if the correspondence (3.8) is to be valid, even in an approximate sense,
the constant b must have dimensions [m−1l−2t]. Hence, its value depends on the
system of units being used, and its value in a given system must be determined
empirically. Moreover, in order to make the correspondences between symmetries
and observables in classical and quantum mechanics parallel to one another, it turns
out to be necessary to take b to be negative. (Alternatively, one can take b positive
but replace the i in the correspondence A↔ ibA with 1/i.)

We are now ready to reveal the secret: the constant −1/b is called Planck’s
constant and is denoted by �; in MKS units it is approximately 1.054 × 10−34

kg · m2/s. (Planck’s original constant was h = 2π�, but now everyone uses �.
Basically, it is a question of whether one wants to measure frequency in cycles per
second or radians per second.) The dimensions [ml2t−1] of � can be interpreted as
[ml2t−2× t] (energy times time) or as [l×mlt−1] (moment arm times momentum),
and they are therefore the same as the dimensions of action, the basic quantity in
Lagrangian mechanics, and angular momentum. As we shall see, Planck’s constant
functions as a basic unit of both action and angular momentum in quantum theory.

The correspondences between observables and one-parameter symmetry groups
and between Poisson brackets and commutators can now be rewritten as

(3.9) A↔ etA/i�, A{f,g} ↔
1

i�
[Af , Ag].

While we are thinking of dimensions, let us point out that the dimensions of the t in
the one-parameter group must be related to those of A so that tA/� is dimensionless
(independent of the system of units). In particular, if e−itA/� is the group that
describes the time evolution of the system, so that t is time, then A must have the
dimensions of energy, in accordance with the analogy with Hamiltonian mechanics.

We now work toward the quantum description of a system of moving particles
with classical position and momentum coordinates x1, . . . , xn and p1, . . . , pn. (That
is, the phase space is T ∗Rn ∼= R2n, where n = 3k if there are k particles moving in
R

3.) As a starting point, we try to quantize these basic observables in such a way
that the correspondence between Poisson brackets and commutators in (3.9) is an
exact equality. Since

{xj , pk} = δjk, {xj , xk} = {pj , pk} = 0,

we are looking for self-adjoint operators X1, . . . , Xn and P1, . . . , Pn on a Hilbert
space H that satisfy

(3.10) [Xj , Pk] = i�δjkI, [Xj , Xk] = [Pj , Pk] = 0.

These are called the canonical commutation relations, and Pj is said to be canon-
ically conjugate to Xj when they are satisfied.

One must immediately face the fact that the operators Xj and Pj in (3.10)
are necessarily unbounded — not just because they are supposed to correspond to
unbounded classical observables but for purely mathematical reasons. (Suppose X

                

                                                                                                               



44 3. BASIC QUANTUM MECHANICS

and P are bounded self-adjoint operators satisfying [X,P ] = i�I. An easy induction
shows that [X,Pn] = ni�Pn−1, so n�‖Pn−1‖ ≤ ‖XPn−PnX‖ ≤ 2‖X‖ ‖Pn‖. The
self-adjointness of P implies that ‖P k‖ = ‖P‖k for any k, so n� ≤ 2‖X‖ ‖P‖ for
all n, which is absurd.) Consequently, the interpretation of the relation [Xj , Pk] =
i�δjkI is problematic: the operator on the right is defined on all of H, but the
operator on the left is not. To take the extreme case, there exist self-adjoint oper-
ators X and P whose domains contain only the zero vector in common, and then
[X,P ] = i�I is valid on D([X,P ]) for the stupid reason that D([X,P ]) = {0}. (Less
stupid pathologies can occur too, as we shall point out later.)

The best resolution of this problem is as follows. The commutation relations
(3.10) imply that the operators Xj , Pj , and iI span a Lie algebra. Let us consider
this algebra in the abstract; that is, let hn be Rn × Rn × R equipped with the Lie
bracket

[(v, w, t), (v′, w′, t′)] = (0, 0, v · w′ − w · v′).
(hn is called the Heisenberg algebra of dimension 2n+ 1.) Then the standard basis
vectors

Vj = (ej , 0, 0), Wj = (0, ej , 0), T = (0, 0, 1),

where {e1, . . . , en} is the standard basis for Rn, satisfy

[Vj ,Wk] = δjkT, [Vj , Vk] = [Wj ,Wk] = [Vj , T ] = [Wj , T ] = 0,

so the relations (3.10) mean that the map (v, w, t) �→
∑

(vjXj + wjPj) + i�tI is
a Lie algebra homomorphism. The “good” interpretation of (3.10) is that this
homomorphism should come from a unitary representation of the corresponding
Lie group.

That is, let Hn (the Heisenberg group) be the simply connected Lie group with
Lie algebra hn. Hn can be identified with R

n × R
n × R with the group law

(v, w, t)(v′, w′, t′) = (v + v′, w + w′, t+ t′ + 1
2 (v · w

′ − w · v′))

(see Folland [44]). If ρ is a unitary representation of Hn on H and Ξ ∈ hn, let dρ(Ξ)
be the infinitesimal generator of the one-parameter unitary group t �→ ρ(exp(tΞ))
(a skew-adjoint operator on H). Then the domains of the operators dρ(Ξ), Ξ ∈ hn,
all contain the space C∞(ρ) of C∞ vectors for ρ and map C∞(ρ) into itself; they
are all essentially skew-adjoint on C∞(ρ), and the relation

[dρ(Ξ1), dρ(Ξ2)] = dρ([Ξ1,Ξ2])

holds when both sides are interpreted as operators on C∞(ρ). Let Xj = i�dρ(Vj)
and Pj = i�dρ(Wj); then the relations (3.10) hold on C∞(ρ) provided that dρ(T ) =

I/i�, which means that ρ(0, 0, t) = et/i�I.
Thus, we are looking for unitary representations ρ of Hn such that ρ(0, 0, t) =

et/i�I. One such representation is the Schrödinger representation σ on L2(Rn),
defined by

(3.11) [σ(v, w, t)f ](x) = exp

(
v · x+ t− 1

2v · w
i�

)
f(x− w),

which yields

(3.12) [Xjf ](x) = i�dσ(Vj)f(x) = xjf(x), Pjf = i�dσ(Wj)f =
�

i

∂f

∂xj
.
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(The domains of Xj and Pj are simply the set of all f ∈ L2 such that xjf and the
distribution derivative ∂jf are in L2, respectively; the space C∞(σ) is the Schwartz
class S(Rn).)

The representation σ of Hn defined by (3.11) is easily seen to be irreducible.
Indeed, supposeM is a nonzero closed invariant subspace of L2, and pick f �= 0 ∈M.
If g ∈M⊥, then g ⊥ σ(v, w, 0)f for all v, w ∈ R

n, that is,

0 =

∫
e(v·x−(v·w)/2)/i�f(x− w)g(x)

∗
dx =

∫
ev·x/i�f(x− 1

2w)g(x+ 1
2w)

∗
dx.

By Fourier uniqueness, f(x− 1
2w)g(x+ 1

2w)
∗
= 0 for a.e. x and w. Since the linear

map (x,w) �→ (x− 1
2w, x+ 1

2w) is invertible, we have f(x)g(y)∗ = 0 for a.e. x and

y, and so either f = 0 or g = 0 as elements of L2. But f �= 0 by assumption; hence
M⊥ = {0}.

Now, what about other representations ρ of Hn such that ρ(0, 0, t) = et/i�I?
The answer is provided by the Stone-von Neumann theorem:

Suppose ρ is a unitary representation of Hn on a Hilbert space H such that
ρ(0, 0, t) = et/i�I. Then H is a direct sum of mutually orthogonal subspaces Hα

that are invariant under ρ, such that the subrepresentation of ρ on Hα is unitarily
equivalent to σ for each α. In particular, if ρ is irreducible, then ρ is unitarily
equivalent to σ.

There are two good ways to prove this theorem: by von Neumann’s original
argument and as a corollary of the Mackey imprimitivity theorem. See Folland
[44], [45].

A few mathematical remarks are in order at this point.
i. Given a unitary representation ρ of Hn, let ρ1(v) = ρ(v, 0, 0) and ρ2(w) =

ρ(0, w, 0). Then ρ1 and ρ2 are unitary representations of Rn. If ρ satisfies
ρ(0, 0, t) = et/i�I, then ρ1 and ρ2 satisfy the integrated form of the canonical
commutation relations,

(3.13) ρ2(w)ρ1(v) = e−v·w/i�ρ1(v)ρ2(w).

Conversely if ρ1 and ρ2 are unitary representations of Rn that satisfy (3.13),
then ρ(v, w, t) = e(it−(v·w/2))/i�ρ1(v)ρ2(w) is a representation of Hn that sat-
isfies ρ(0, 0, t) = et/i�I. The Stone-von Neumann theorem is often stated in
terms of ρ1 and ρ2 rather than ρ.

ii. The map (v, w) �→ ρ(v, w, 0) is a projective representation of R2n that does not
arise from a unitary representation of R2n.

iii. To appreciate the delicacy of passing from the commutation relations (3.10)
to a representation of Hn, consider the following example. Let H = L2([0, 1]),
[Xf ](x) = xf(x), and Pf = (�/i)f ′ on the domain D(P ) = {f ∈ AC : f ′ ∈
L2 and f(0) = f(1)} (AC is the space of absolutely continuous functions on
[0, 1].) Then X and P are both self-adjoint operators on H, and [X,P ] = i�I
on the domain of [X,P ], which is {f ∈ AC : f ′ ∈ L2 and f(0) = f(1) = 0}.
The representation (u, v, t) �→ uX + vP + (t/i�)I of the Heisenberg algebra h1

does not come from a unitary representation of H1. Indeed, the reader may
verify that the one-parameter groups generated by X/i� and P/i� (namely,
[esX/i�f ](x) = esx/i�f(x) and [esP/i�f ](x) = f(x − s), where x − s is taken
modulo 1) do not satisfy (3.13).
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iv. The Schrödinger representation σ depends on the parameter �. That is, for
each nonzero � ∈ R there is a Schrödinger representation σ�, and these repre-
sentations are all unitarily inequivalent. (Indeed, they are already inequivalent
on the center of Hn, namely, Z = {(0, 0, t) : t ∈ R}.) On the other hand, if
ρ is any irreducible unitary representation of Hn, Schur’s lemma implies that
ρ(0, 0, t) = eiatI for some a ∈ R. If a �= 0, then ρ is unitarily equivalent to
σ−1/a by the Stone-von Neumann theorem. If a = 0, ρ factors through the

quotient group Hn/Z ∼= R
2n, and hence ρ acts on a one-dimensional space by

ρ(v, w, t) = eiα·v+iβ·w for some α, β ∈ Rn. Thus the Stone-von Neumann the-
orem yields a complete classification of the irreducible unitary representations
of Hn.

Returning to physics, the upshot of all this is that we have a good candidate for
the quantum description of a (nonrelativistic) particle moving in Rn: the quantum
state space is L2(Rn), and the position and momentum observables are given by
(3.12). It is clear that these operators have the right dimensions: Xj = multi-
plication by xj , which carries dimensions of length; and Pj = (�/i)∂/∂xj , whose
dimensions are [ml2t−1] (from the �) times [l−1] (from the ∂/∂xj), or [mlt−1], which
is right for momentum.

The irreducibility of the Schrödinger representation is a desirable feature. By
the Stone-von Neumann theorem, any other representation of the canonical com-
mutation relations (suitably interpreted via the Heisenberg group) is equivalent to
a direct sum of copies of the Schrödinger representation, and taking two or more
copies would be like taking the union of two or more copies of of R2n for the classical
phase space.

The projection-valued measures Pj (so denoted in order to distinguish them
from the momentum operators Pj) corresponding to the position observables Xj

= multiplication by xj are simply given by Pj(E) = multiplication by the charac-
teristic function of {x : xj ∈ E}. In fact, these operators have a common spectral
resolution, namely, the projection-valued measure P on R

n defined by P(E) =
multiplication by χE for E a Borel set in Rn; the measures Pj on R are the push-
forwards of P by the coordinate functions. This means that if f is a unit vector
in L2(Rn) and E ⊂ Rn is a Borel set, 〈f |P(E)|f〉 =

∫
E
|f |2 is the probability that

the particle will be located in E when the system is in the state f . Thus, in this
model the normalized state vectors have the physical significance that the probabil-
ity density of the position of the particle in Rn in the state f is |f |2. (Incidentally,
if f ∈ L2(Rn) is a unit vector representing a state, the function f(x) carries dimen-
sions [l−n/2], so that |f(x)|2 has the dimensions [l−n] appropriate to a probability
per unit volume.)

A similar picture for the momentum variables is obtained by applying the
Fourier transform. For this purpose we employ the following version of the Fourier
transform that incorporates Planck’s constant: if f ∈ L2(Rn),

(3.14) f̂(p) =

∫
e−ip·x/�f(x) dnx.

The inversion and Parseval formulas are

(3.15) f(x) =

∫
eip·x/�f̂(p)

dnp

(2π�)n
,

∫
|f(x)|2 dnx =

∫
|f̂(p)|2 dnp

(2π�)n
.
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By integration by parts,

(Pjf )̂ (p) =
�

i

∫
e−ip·x/� ∂f

∂xj
(x) dx =

∫
pje

−ip·x/�f(x) dx = pj f̂(p).

Hence we arrive at the following picture: We think of the copy of Rn on which f̂
lives as “momentum space,” just as the original Rn is “position space.” (Thus the
coordinates pj have the dimensions of momentum, so that p·x/� is dimensionless, as
it should be.) In momentum space, Pj is just multiplication by the jth coordinate

function, so the same analysis as in the preceding paragraph shows that |f̂ |2 is the
probability density of the momentum of the particle in the state f with respect to
the normalized Lebesgue measure dnp/(2π�)n.

It should be noted that there are no states in which the particle has a definite
position or momentum. The “generalized state” (or, as the physicists say, “non-
normalizable state”) in which the particle is definitely at the position x0 ∈ R

n is
represented by the delta-function δ(x − x0), and the “generalized state” in which
the particle definitely has momentum p0 ∈ Rn is represented by the inverse Fourier
transform of the normalized delta-function (2π)nδ(p − p0), i.e., the plane wave
eip0·x/�. It is frequently convenient to allow such idealized states into one’s uni-
verse of discourse. This can, of course, be done with complete rigor by invoking
the theory of distributions (or, on a more abstract level, rigged Hilbert spaces; see
Gelfand and Vilenkin [52]), but we shall keep the discussion on an informal level as
the physicists do and take the opportunity to introduce and explain some notation
and formulas that may seem peculiar to mathematicians but are common in the
physics literature.

The generalized state δ(x − x0) where the particle is located at x0 is the si-
multaneous eigenvector of the position operators Xj with eigenvalues x0j , so it can
conveniently be labeled by these eigenvalues and denoted |x0〉. The corresponding
bra 〈x0| is then nothing but the evaluation functional at x0: 〈x0|f〉 = f(x0). The
states |x〉, x ∈ Rn, form a “generalized eigenbasis” for the position operators: just
as f =

∑
〈ek|f〉ek when we have a genuine orthonormal basis {ek}, here we can

write

|f〉 =
∫
|x〉〈x|f〉 dnx, or

∫
|x〉〈x| dnx = I,

which is just a restatement of the fact that
∫
f(x)δ(y−x) dx = f(y). Likewise, the

generalized state where the particle has momentum p may be denoted by |p〉. (Here,
of course, it must be understood that, contrary to common mathematical practice,
the letters x and p are not just arbitrarily chosen symbols but carry some semantic
content: x means position and p means momentum.) Here the scalar product 〈p|f〉
is f̂(p), and the fact that the states |p〉 are again a “generalized orthonormal basis,”
that is,

|f〉 =
∫
|p〉〈p|f〉 dnp

(2π�)n
, or

∫
|p〉〈p| dnp

(2π�)n
= I,

is a restatement of the Fourier inversion formula (3.15); cf. (1.5).
This is a good place to bring up an intriguing difference in the way physicists

and mathematicians regard mathematical objects. Mathematicians are trained to
think that all mathematical objects should be realized in some specific way as sets.
When we do calculus on the real line we may not wish to think of real numbers
as Dedekind cuts or equivalence classes of Cauchy sequences of rationals, but it
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reassures us to know that we can do so. Physicists’ thought processes, on the other
hand, are anchored in the physical world rather than in set theory, and they see
no need to tie themselves down to specific set-theoretic models. A physicist may
speak of the state space H of a quantum system Q; if a mathematician asks “What
Hilbert space is H?”, the response is “I just told you, it’s the state space of Q.” If
one is studying a particular observable, one may wish to represent H in a way that
makes the analysis more transparent. For example, if one is studying an operator
with discrete spectrum — eigenvalues λn and eigenvectors |λn〉— one may wish to
represent H as l2 by identifying the state |f〉 with the sequence {〈λn|f〉}; if one is
studying the position of a particle, one will represent H as L2(Rn) in a particular
way by using the generalized states |x〉 as a “basis” to form the wave function
f(x) = 〈x|f〉; if one is studying momentum, one will represent H as L2(Rn) in a
different way by using the generalized states |p〉 instead; and so forth. But, from this
point of view, choosing a particular representation is akin to choosing a particular
coordinate system for doing analysis on a manifold, and it is not unreasonable to
regard committing oneself to such a choice at the outset as a mistake.

(Similarly, it is clear from the way physicists talk about Lie algebras that
they regard a Lie algebra as an algebraic structure unattached to any particular
set, rather than as a set endowed with an algebraic structure. If you ask “What is
so(3)?”, a mathematician will answer “the set of skew-symmetric 3×3 real matrices,
with the commutator as Lie bracket,” but a physicist will answer something like
“three generators X, Y , and Z satisfying [X,Y ] = Z, [Y, Z] = X, and [Z,X] = Y ,”
and he will say that X, Y , and Z “satisfy the Lie algebra so(3).”)

Nonetheless, as this book is being written by a mathematician for mathemati-
cians, we shall continue to take state spaces for particular quantum systems to be
particular concrete Hilbert spaces.

It remains to quantize more general functions of position and momentum. For
functions of position alone or momentum alone, there is an obvious way to do this:
If φ is a function on Rn, the quantization of the classical observable φ(x) is mul-
tiplication by φ in position space, and the quantization of the classical observable
φ(p) is multiplication by φ in momentum space:

[φ(X)f ](x) = φ(x)f(x), [φ(P )f ]̂ (p) = φ(p)f̂(p).

However, one runs into difficulties in going further. For functions of the form
φ(x) + ψ(p), the symmetric operator φ(X) + ψ(P ) may not be self-adjoint on the
domainD(φ(X))∩D(ψ(P )), and when one considers functions involving products of
position and momentum variables it is impossible to satisfy (3.6) or (3.8) even on the
formal level: see Folland [44], p. 17 and pp. 197–199. These no-go theorems simply
reflect that fact that quantum mechanics is too different from classical mechanics
for a quantization procedure to exist that has all the properties in the wish list
(3.5)–(3.8). After all, classical mechanics is a limiting case of quantum mechanics,
not the other way around, and there is no reason to expect that one can fully
recover the quantum theory from the limiting case. From the physicists’ point of
view, quantization procedures are to be taken only as possible ways of arriving
at a good quantum theory. Once one has constructed such a theory, the test of
its correctness comes from working out its consequences and comparing them with
experiment, not from any a priori considerations.
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There is, however, some purely mathematical interest in quantization proce-
dures. One reason is the desire for a useful functional calculus for the noncommut-
ing operators Xj and Pj , motivated by problems in the theory of partial differential
equations. Indeed, the calculus of pseudodifferential operators, which sets up a cor-
respondence between “symbols” f(x, p) and operators f(X,P ) (usually with � = 1
or � = 1/2π), is such a procedure. We refer to Folland [44] for an extensive discus-
sion of it from a point of view similar to the one here.

The other mathematical motivation for studying quantization procedures comes
from group representation theory. Suppose one wishes to find all the irreducible
unitary representations of a connected Lie group G. In physical language, this can
be considered as finding all quantum systems on which G acts irreducibly as a group
of symmetries. The corresponding “classical” problem is to find all symplectic
manifolds on which G acts transitively as a group of canonical transformations,
i.e., all symplectic homogeneous G-spaces. The latter problem is actually quite
explicitly solvable: The orbits of the co-adjoint action of G on g∗ are symplectic
homogeneous G-spaces, as are the orbits of the coadjoint action of central extensions
of G by R (essentially the same family of groups that intervenes in the issue of
projective vs. unitary representations). Moreover, all symplectic homogeneous G-
spaces are more or less of this form (the phrase “more or less” has to do with
questions about covering spaces). Hence, if one has a good quantization procedure
for such spaces, one has a hope of understanding the unitary representations of
G. This idea works beautifully when G is nilpotent or when G is compact; the
Kirillov theory for nilpotent groups and the Borel-Weil theory for compact groups
can both be understood as special cases of quantization of coadjoint orbits. It also
provides much illumination when G is solvable or semisimple, although these cases
present additional technical problems. (See Kirillov [75] together with Vogan’s
review [128], and also Vogan [127].)

Back to physics: The time evolution of a quantum system is given by a one-
parameter group U(t) of unitary maps, and the observable corresponding to its
infinitesimal generator is the quantum Hamiltonian H; that is, U(t) = exp(tH/i�).
We expect this operator to be a quantized version of the Hamiltonian in classical
mechanics. Here we consider the case of particles moving in a potential V , for which
the classical Hamiltonian is 1

2m
−1p · p+ V (x). (Recall that m is a diagonal matrix

whose diagonal entries are the masses of the particles.) The obvious quantum
analogue is the differential operator on L2(Rn)

(3.16) H = − 1
2�

2m−1∇ · ∇+ V,

the Schrödinger operator with potential V , where V is considered as the operator
f �→ V f . The relation U(t) = etH/i� can be expressed as a differential equation for
the evolution of a state vector f :

(3.17) i�
∂f

∂t
= −�2

2
m−1∇ · ∇f + V f

(
f(·, t) = U(t)f

)
.

This is the classic Schrödinger equation with potential V .
The missing ingredient here is a specification of H as a self-adjoint operator

on L2. (In the study of particles confined to a bounded region, this will involve
imposition of boundary conditions, but we consider only particles moving in R

n

here.) The operator m−1∇ · ∇, a variant of the Laplacian, is self-adjoint on the
natural domain of all f ∈ L2 such that m−1∇ · ∇ ∈ L2 (i.e., the Sobolev space of
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order 2), and V is self-adjoint on the domain of all f ∈ L2 such that V f ∈ L2.
Hence, H is at least a symmetric operator on the intersection of these two domains,
and in most important cases it turns out to be essentially self-adjoint. There is a
considerable body of theorems relating to this question. Here are a couple of them,
with inessential constants omitted, in which ∇2 denotes the Laplacian on Rn:
i. If V ∈ L2

loc and V is bounded below, then −∇2 + V is essentially self-adjoint
on C∞

c .
ii. Suppose V is the sum of an Lp function and an L∞ function, where p = 2 if

n ≤ 3, p > 2 if n = 4, and p = 1
2n if n ≥ 5. Then −∇2 + V is essentially

self-adjoint on C∞
c .

iii. (Kato) Suppose V =
∑k

j=1 Vj ◦ πj , where each πj is a partial isometry of Rn

onto R
3 and each Vj is the sum of an L2 function and an L∞ function on R

3.
Then −∇2 + V is essentially self-adjoint on C∞

c .
In (iii), a “partial isometry” is a linear map that is an isometry on the orthog-

onal complement of its nullspace. In (ii) and (iii), −∇2 + V is actually self-adjoint
on D(∇2), the Sobolev space of order 2. In (ii), the essential point is that by the
Sobolev imbedding theorems, D(∇2) is contained in C0 (continuous functions van-
ishing at infinity) when n ≤ 3, in

⋂
2≤q<∞ Lq when n = 4, and in L2n/(n−4) when

n ≥ 5, so that the product of a function in D(∇2) and an Lp function (with p as
in (ii)) is in L2. (iii) is a consequence of (ii) and a little Fourier analysis. Proofs,
as well as other related theorems, can be found in Reed and Simon [95], Sections
X.2–X.4.

The result (iii) applies, in particular, to the Hamiltonian for an atom with
atomic number Z when the nucleus is considered as fixed at the origin and the
moving particles are taken to be the electrons:

H = − �2

2m
∇2 −

Z∑
j=1

Ze2

4π|xj |
+

∑
1≤j<k≤Z

e2

4π|xj − xk|
.

(Here m and −e are the mass and charge of an electron.) More generally, it applies
to any system of N particles attracting or repelling each other by inverse-square-law
forces; here n = 3N , each πj is of the form πj(x1, . . . ,xN ) = (xi1 − xi2)/

√
2 for

x1, . . . ,xN ∈ R3, and Vj(x) = cj |x|−1 for x ∈ R3. The analysis of such Hamiltoni-
ans is complicated when N is large, and it is remarkable that interesting things can
be deduced from them about assemblages of particles of macroscopic or even astro-
nomical size. The most famous result along these lines is the “stability of matter”
theorem, proved originally by Dyson and Lenard with subsequent improvements
and extensions by various other people. Lieb [78] gives a very interesting account
of this and related results.

One can also imagine physically unrealistic but conceptually reasonable situ-
ations in which essential self-adjointness fails. For example, consider a particle of
mass 1 moving on a line subject to a potential V (x) = −|x|a, with a > 1. (Thus
the particle is subject to a force (sgnx)a|x|a−1 that repels it from the origin, and
the force increases in strength along with the distance from the origin.) The Hamil-
tonian H = − 1

2 (d/dx)
2 + V (x) is esentially self-adjoint on C∞

c when a ≤ 2, but
not when a > 2. (See Dunford and Schwartz [24], Corollary XIII.6.22.) When
a > 2, H has a four-parameter family of self-adjoint extensions, which correspond
to imposing “boundary conditions at ±∞.” This phenomenon is actually reflected
in the classical physics, where the position of the particle evolves by the differential
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equation x′′(t) = (sgnx)a|x|a−1. This differential equation can be solved more or
less explicitly, and the upshot is that the position of the particle (starting at a
position x0 > 0 with velocity v0 > 0, say) behaves roughly like t2/(2−a) if a < 2 and
like et if a = 2, but it reaches infinity in a finite time if a > 2. Classically, that’s
the end of the story; quantum mechanically, one can impose a boundary condition
to tell the particle what to do when it gets to infinity, and the motion can then
continue to further times.

At any rate, once the Hamiltonian has been properly defined as a self-adjoint
operator, calculating the time-evolution group etH/i� amounts to solving the eigen-
value equation Hφ = λφ, λ ∈ R, and determining how an arbitrary f ∈ L2 can be
expanded in terms of the solutions. When the spectrum of H is purely discrete,
this just means finding an orthonormal basis of eigenvectors, but when H has con-
tinuous spectrum, the expansion of f will involve an integral as well as (perhaps)
a sum. In §3.4 and §3.6 we shall work out two examples: the harmonic oscillator
and the Coulomb potential.

3.3. Uncertainty inequalities

Again we consider the Schrödinger model for position and momentum with the
state space L2(Rn). Either the position or the momentum of a particle may be
localized to as small a region as we please (i.e., for any nonempty open set U ⊂ Rn

there are nonzero L2 functions f such that either f or f̂ vanishes outside U), but
there are limits on the extent to which position and momentum can be localized
simultaneously; this is one aspect of the uncertainty principle.

If μ is a probability measure on R, a natural measure of the “uncertainty” in
μ is the standard deviation

σ(μ) =

[
inf
a∈R

∫
(s− a)2 dμ(s)

]1/2
.

When μ is the probability distribution of an observable A in the state u (A a
self-adjoint operator, u a unit vector), i.e., μ(E) = 〈u|P (E)|u〉 where P is the
projection-valued measure associated to A, we have

σ(μ) =

[
inf
a∈R

∫
(s− a)2 〈u|dP (s)|u〉

]1/2
=

[
inf
a∈R

〈u|(A− a)2|u〉
]1/2

= inf
a∈R

‖(A−a)u‖.

(When σ(μ) < ∞, the infimum is achieved when a is the expectation value 〈A〉 =
〈u|A|u〉.) This notion easily yields an uncertainty inequality for any two noncom-
muting observables (self-adjoint operators) A and B. Indeed, if u is in the domain
of [A,B], i.e., the set of all u ∈ D(A)∩D(B) such that Au ∈ D(B) and Bu ∈ D(A),
we have

|〈u|[A,B]|u〉| = |〈Au|Bu〉 − 〈Bu|Au〉| = 2| Im〈Au|Bu〉| ≤ 2‖Au‖ ‖Bu‖.
Replacing A by A− a and B by B − b for arbitrary a, b ∈ R (which does not affect
[A,B]), we deduce that

(3.18) ‖(A− a)u‖ ‖(B − b)u‖ ≥ 1
2 |〈u|[A,B]|u〉| for all u ∈ D([A,B]).

This result is not as strong as one might wish, because the domain of [A,B]
may be “too small.” Indeed, if C is the closure of [A,B], it is in general false that
‖Au‖ ‖Bu‖ ≥ 1

2 |〈u,Cu〉| for all u ∈ D(A)∩D(B)∩D(C). (Counterexample: Let X
and P be as in the third remark following the Stone-von Neumann theorem, and let
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u be the constant function 1.) For the position and momentum operators defined
by (3.12), however, we can do better.

We state the result in the one-dimensional case for simplicity. For u ∈ L2(R)
with ‖u‖2 = 1, the standard deviations of X and P in the state u are

Δx =

[
inf
a∈R

∫
(x− a)2|u(x)|2 dx

]1/2
, Δp =

[
inf
b∈R

∫
(p− b)2|û(p)|2 dp

2π�

]1/2
,

which make sense for all u ∈ L2 with the understanding that they may equal +∞,
and the uncertainty inequality

(3.19) ΔxΔp ≥ 1
2�

is valid with no restriction on u. Moreover, equality holds if and only if u is a

Gaussian: u(x) = (c/π)1/4eibxe−c(x−a)2 for some a, b ∈ R (namely, the points
where the infimum is achieved in the formulas for Δx and Δp) and some c > 0. We
refer to Folland and Sitaram [50] (where � is taken to be 1/2π) for the proof, the
generalizations to n dimensions, and a large assortment of related results.

There is another important uncertainty inequality that is of a somewhat differ-
ent nature: that relating to time and energy, which is usually stated in the simple
form ΔtΔE ≥ 1

2�. That there should be such a relation is strongly suggested by
the classical theory of relativity, in which energy is the time component of a 4-
vector of which the momenta are the space components. However, unlike position
and momentum, time and energy are not observables that satisfy the canonical
commutation relations. Indeed, there is no observable T that is canonically conju-
gate to the Hamiltonian (energy) H, for if there were, by the Stone-von Neumann
theorem the spectrum of T and H would have to be the whole real line; but in any
reasonable quantum system the energy must be bounded below.

To make sense of the time-energy uncertainty inequality, one can proceed as
follows. Let H be the Hamiltonian of the system under consideration, and let
A = A(t) be a Heisenberg-picture observable; thus, dA/dt = (1/i�)[A,H]. For
any state |u〉 of the system, let 〈A〉 = 〈u|A|u〉 and ΔA = ‖(A − 〈A〉)u‖ be the
expectation and standard deviation of A (assumed finite) in the state |u〉, and let
ΔE be the standard deviation of H in |u〉. By (3.18), we have

(ΔA)(ΔE) ≥ 1
2 |〈[A,H]〉| = 1

2�|〈dA/dt〉| =
1
2�|d〈A〉/dt|.

Now, the quantity

ΔtA =

∣∣∣∣ ΔA

d〈A〉/dt

∣∣∣∣
represents an amount of time: it is the time required for the expectation of A to
change by an amount equal to the standard deviation, and hence the time required
for the statistics of A to change appreciably. The preceding inequality thus says
that

(3.20) (Δt)(ΔE) ≥ 1
2�, where Δt = inf

A
ΔtA.

This is the appropriate interpretation of the time-energy uncertainty inequality.
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3.4. The harmonic oscillator

Harmonic oscillators are interesting and important in their own right, and as
we shall see, they play a fundamental role in the modeling of quantum fields. The
n-dimensional harmonic oscillator Hamiltonian, with a single scalar mass m, is

H = −(�2/2m)∇2 + V

where V is a positive definite quadratic form on R
n. By a suitable rotation of coor-

dinates, one can assume that V is diagonal, in which case H decouples into a sum
of one-dimensional operators. It therefore suffices to consider the one-dimensional
case, as the n-dimensional eigenfunctions are just products of one-dimensional ones.
For a particle of mass m in the potential V (x) = 1

2κx
2, the Hamiltonian is

(3.21) H = − �
2

2m

d2

dx2
+

κ

2
x2.

We can get rid of the constants by rescaling: setting Sf(x) = f((�2/mκ)1/4x), a
simple calculation shows that

SHS−1 =
�

2
√
m/κ

(
− d2

dx2
+ x2

)
.

The factor of �/
√

m/κ just comes along for the ride, but it is convenient to keep

the factor of 1
2 explicitly. Thus, we consider the rescaled Hamiltonian

(3.22) H0 =
1

2

(
− d2

dx2
+ x2

)
.

To analyze this operator, we introduce the operators

(3.23) A =
1√
2

(
x+

d

dx

)
, A† =

1√
2

(
x− d

dx

)
.

(There is no need to worry about domains right now; all these operators can be
considered as acting on the Schwartz space S(R). Observe that the notation is
formally correct, as 〈f |A†|g〉 = 〈g|A|f〉∗ for f, g ∈ S.) Simple calculations yield the
following formulas:

H0 = AA† − 1
2I = A†A+ 1

2I,(3.24)

[A,A†] = I,(3.25)

and more generally, by (3.25) and induction on k,

(3.26) [A, (A†)k] = k(A†)k−1.

Let

(3.27) φ0(x) = π−1/4e−x2/2, φk =
1√
k!
(A†)kφ0 for k = 1, 2, 3, . . .

It is easy to verify that φk(x) = Pk(x)e
−x2/2 where Pk is a polynomial of degree k,

odd or even according as k is odd or even. It is called the kth normalized Hermite
polynomial, and φk is the kth normalized Hermite function. (The usual Hermite

polynomials are Hk = π1/4
√
2kk!Pk.) We have

(3.28) A†φk =
√
k + 1φk+1,
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and by (3.26) and the fact that Aφ0 = 0,

(3.29) Aφk =
1√
k!

(
[A, (A†)k] + (A†)kA

)
φ0 =

k√
k!
(A†)k−1φ0 =

√
k φk−1.

It follows that

(3.30) A†Aφk = kφk, AA†φk = (k + 1)φk,

and hence, by (3.24),

(3.31) H0φk = (k + 1
2 )φk.

We claim that {φk}∞0 is an orthonormal basis for L2. We first observe that
‖φ0‖2 = 1 (that’s why the π−1/4 is there) and that Aφ0 = 0. For k > 0, we have

〈φ0|φk〉 =
1√
k!
〈φ0|(A†)kφ0〉 =

1√
k!
〈Aφ0|(A†)k−1φ0〉 = 0.

Moreover, if k ≥ l > 0, by (3.30) we have

〈φl|φk〉 =
1√
kl
〈A†φl−1|A†φk−1〉 =

1√
kl
〈φl−1|AA†φk−1〉 =

√
k

l
〈φl−1|φk−1〉.

By induction and the preceding calculation, it follows that

〈φl|φk〉 =
√

k!

l!
〈φ0|φk−l〉 =

√
k!

l!
δk−l,0 = δkl,

and orthonormality is proved.
Finally, suppose 〈φk|f〉 = 0 for all k. It follows that f is orthogonal to

p(x)e−x2/2 for every polynomial p, and hence∫
f(x)eiξxe−x2/2 dx =

∞∑
k=0

∫
f(x)

(iξx)k

k!
e−x2/2 dx = 0

for every ξ. (The interchange of summation and integration is justified since both

f and e|ξx|e−x2/2 are in L2, so their product is in L1.) By Fourier uniqueness we

conclude that f(x)e−x2/2 = 0 for a.e. x, and hence f = 0 in L2.
In short, we have shown that {φk}∞0 is an orthonormal eigenbasis for H0. If

we put the constants �, m, and κ back in, we see that the Hamiltonian H given by
(3.21) has eigenfunctions φk((mκ/�2)1/4x), with eigenvalues �(k + 1

2 )/
√
m/κ.

Let us pause to see what this means for a macroscopic harmonic oscillator
such as a weight hanging from a perfectly elastic spring, where m and κ are of
the order of magnitude of unity in MKS units. The classical equation of motion is
mx′′ = −κx, whose solutions are trig functions of

√
κ/m t. To be specific, let us

assume the weight starts at rest at position x = a at time t = 0; then the classical
solution is x(t) = a cos(

√
κ/m t), and its energy and momentum are 1

2κa
2 and

mx′(t) = −a
√
mκ sin(

√
κ/m t). Now, � ≈ 10−34 in MKS units, so the quantum

energy levels are extremely closely spaced, and there is no trouble finding one that
is equal to 1

2κa
2 to reasonable accuracy. However, the quantum states of definite

energy are stationary — if Hφ = λφ then etH/i�φ = etλ/i�φ, which represents the
same state as φ — and there is no sign of the classical oscillatory motion. What is
going on here?
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The trouble is that the classical initial value problem, in which the position
and momentum at time t = 0 are specified exactly, makes no sense quantum me-
chanically because of the uncertainty principle. The best one can do is to specify
an initial state in which the position and momentum are as well localized as the
uncertainty principle permits; this will be a superposition of energy eigenstates,
and the classical motion effectively results from interference between the oscilla-
tions etλ/i� for the different eigenvalues λ. In fact, if the initial state is a suitable
uncertainty-minimizing Gaussian as described following (3.19), the quantum evo-
lution turns out to be exactly the classical periodic motion. This little miracle is
sufficiently entertaining that it is worth taking some space to work out in detail.
As above, we work with the rescaled Hamiltonian H0 and its eigenfunctions.

The essential ingredient in the calculation is a version of a classical generating
function identity for Hermite polynomials. We begin by observing that

A†f(x) =
1√
2
[xf(x)− f ′(x)] = − 1√

2
ex

2/2 d

dx
[e−x2/2f(x)],

so that

(A†)kf(x) =
(−1)k
2k/2

ex
2/2 dk

dxk
[e−x2/2f(x)],

and hence

φk(x) =
1

π1/4
√
k!
(A†)ke−x2/2 =

(−1)k

π1/4
√
2kk!

ex
2/2 dk

dxk
e−x2

=
1

π1/4
√
2kk!

ex
2/2 dk

dwk
e−(x−w)2

∣∣∣∣
w=0

.

Therefore, by Taylor’s theorem, for any w ∈ C we have

π−1/4e−(x−w)2 = e−x2/2
∞∑
0

√
2k

k!
φk(x)w

k.

Setting w = 1
2z, so that e−(x−w)2 = e−x2/2e−(x−z)2/2ez

2/4, we obtain the result we
want: For any z ∈ C,

(3.32) π−1/4e−(x−z)2/2 = e−z2/4
∞∑
0

1√
2kk!

φk(x)z
k.

Now, for a, b ∈ R, let

ψa,b(x) = π−1/4e−(x−a)2/2eibx.

Then the expected values of position and momentum in the state ψa,b are a and
b, respectively. We take ψa,0 as the initial state for the quantum oscillator corre-
sponding to the classical initial values x0 = a and p0 = 0. The expansion of ψa,0 in
terms of the energy eigenfunctions is obtained by taking z = a in (3.32). It is now
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a simple matter to compute its time evolution, using (3.31) and (3.32):

e−itH0ψa,0(x) = e−a2/4
∞∑
0

e−it(k+
1
2 )

√
2kk!

φk(x)a
k

= e−a2/4e−it/2
∞∑
0

1√
2kk!

φk(x)(ae
−it)k

= e−a2/4e(ae
−it)2/4e−it/2π−1/4e−(x−ae−it)2/2,

which simplifies to

ei(a
2 sin t cos t−t)/2π−1/4e−(x−a cos t)2/2e−ixa sin t = ei(a

2 sin t cos t−t)/2ψa cos t,−a sin t(x).

The factor ei(a
2 sin t cos t−t)/2 is just a scalar of modulus 1, so e−itH0ψa,0 is a Gaussian

wave packet with expected position a cos t and momentum −a sin t: the classical
periodic motion! (Putting the constants �, m, and κ back in changes these to

a cos
√
κ/m t and −a

√
mκ sin

√
κ/m t as it should.) The states ψa,0, or more gen-

erally ψa,b, are called coherent states because of the way they maintain their shape
under the time evolution.

Of course this exact quantum-classical correspondence is a highly unusual phe-
nomenon, but one can show that the evolution of Gaussian wave packets under
much more general potentials exhibits similar behavior in an approximate sense
when � is taken sufficiently small; see Hagedorn [61].

To complete the picture, let us calculate the expected energy of the state ψa,0.
Using the expansion of ψa,0 in terms of energy eigenfunctions given (3.32), we have

〈ψa,0|H0|ψa,0〉 = e−a2/2
∞∑
0

(k + 1
2 )

a2k

2kk!
=

e−a2/2

2

d

da

[
aea

2/2
]
=

1

2
(a2 + 1).

If the constants �, m, and κ are reinserted appropriately, the expected energy
turns out to be 1

2 (κa
2 + �

√
κ/m). The term 1

2κa
2 is the classical energy; the extra

1
2�

√
κ/m is the ground state energy. (In the classical ground state, x(t) ≡ 0, the

particle is absolutely at rest, but quantum mechanically this is not quite possible.)

3.5. Angular momentum and spin

Classically, the angular momentum (about the origin) of a particle in R
3 with

position x and momentum p is l = x × p (cross product). The Hamiltonian
vector fields corresponding to the three components of this vector observable are
the infinitesimal generators of rotations about the three coordinate axes. In more
detail, the first component of l is l1 = x2p3−x3p2, and its Hamiltonian vector field
is

Xl1 = x2
∂

∂x3
− x3

∂

∂x2
+ p2

∂

∂p3
− p3

∂

∂p2
,

which generates the flow in phase space given by a rotation about the x1-axis
in position space and the same rotation about the p1-axis in momentum space.
Similarly for the other two components.

Quantization of l in the obvious way leads to the vector-valued quantum ob-
servable L = X×P, that is,

L1 = X2P3 −X3P2 =
�

i

(
x2

∂

∂x3
− x3

∂

∂x2

)
, etc.,
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acting on L2(R3). (Note that there is no problem about ordering the factors here,
because Xi and Pj commute when i �= j.) The one-parameter groups generated by
L1, L2, and L3 are again the rotations about the coordinate axes. That is,

etL1/i�f(x) = f(R−1
t,1x), where Rt,1 =

⎛⎝1 0 0
0 cos t sin t
0 − sin t cos t

⎞⎠ ,

and likewise, if u is any unit vector in R3, etu·L/i�f(x) = f(R−1
t,ux), where Rt,u is

rotation through the angle t about the u axis.
In group-theoretic terms: The rotation group SO(3) acts on L2(R3) by

[ρ(R)f ](x) = f(R−1x).

Its Lie algebra so(3) can be identified with R3 with Lie bracket = cross product, the
unit vector u ∈ R3 corresponding to the generator of rotations about the u axis.
The angular momentum operators are the range of the infinitesimal representation
dρ of R3 ∼= so(3), that is, the angular momentum about the u axis is the operator

u1L1 + u2L2 + u3L3 = i� dρ(u) =
d

dt
ρ(Rt,u)

∣∣
t=0

.

The observables Lj are important in quantum mechanics, but they do not
tell the whole story about angular momentum: most quantum particles2 have an
additional intrinsic angular momentum that has nothing to do with their state of
motion, known as spin. Spin is a purely quantum phenomenon with no classical
analogue, so there is no point in trying to motivate the way it works; we simply
state the result. This discussion pertains to nonrelativistic particles of mass m > 0;
we shall fit it into the relativistic framework in the next chapter, where we shall
also discuss massless particles.

Until now we have been taking the state space for a quantum particle in R3

to be L2(R3). However, this usually does not provide a complete description of
the state of the particle; there are additional observables that do not fit into this
picture. Instead, the state space must be taken as L2(R3)⊗H, where H is another
Hilbert space that describes the “internal degrees of freedom” of the particle. We
assume given a unitary (possibly projective) representation of the rotation group
SO(3) on this state space that describes how the state of the particle changes under
spatial rotations. The (total) angular momentum operators will then be taken to
be the image of so(3) under the corresponding infinitesimal representation.

Since we are interested only in angular momentum at this point, and not in
other possible internal features of the particles, we take H to be the smallest Hilbert
space that will encompass this phenomenon. Namely, H will be a finite-dimensional
space equipped with an irreducible (possibly projective) representation π of SO(3),
and the action of SO(3) on L2(R3) ⊗ H will be ρ ⊗ π where ρ is the natural
representation on L2(R3) discussed above. We therefore need some facts about
representations of SO(3) and its universal cover SU(2). We refer the reader back
to §1.3 for the details of the relation between SO(3) and SU(2), and in particular
for the calculation of the covering map κ.

Up to unitary equivalence, SU(2) has exactly one irreducible unitary repre-
sentation on Cn for each positive integer n; it may be realized as the action of
SU(2) on the homogeneous (holomorphic) polynomials of degree n− 1 on C2. (See

2Particles can be elementary or composite here.
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Folland [45] or Hall [62] for a proof.) For physical purposes it is customary to set
n = 2k + 1, where k is an integer or half-integer; the irreducible representation
on C

2k+1 is denoted by πk. π0 is the trivial representation; π1/2 is the defining

representation of SU(2) on C
2, and π1 is (equivalent to) the adjoint representation

on the complexification of su(2).
We have πk(−I) = (−1)2kI, so πk descends to a representation of SO(3) ∼=

SU(2)/{±I} precisely when k is an integer, and in any case it defines a projective
representation of SO(3). We shall denote these representations also by πk. Thus,
if R ∈ SO(3), by πk(R) we really mean πk(κ

−1(R)) where κ is the covering map
defined in §1.3. This is defined only up to a factor of ±I when k is a half-integer; we
say that πk is a double-valued representation. The representations πk exhaust the
irreducible projective representations of SO(3), and those with k integral exhaust
the irreducible unitary ones, up to equivalence.

Let Y1, Y2, Y3 ∈ so(3) be the infinitesimal generators of the rotations about
the three coordinate axes; thus Yj = κ′( 12 iσj) in the notation of §1.3. Let π be
any unitary representation of SU(2) and dπ the corresponding representation of
so(3) ∼= su(2). The operators

Jj =
�

i
dπ(Yj) =

1
2� dπ(σj) j = 1, 2, 3,

are the three components of the angular momentum J in the representation π.
Further, let Y2 = Y 2

1 + Y 2
2 + Y 2

3 , an element of the universal enveloping algebra of
so(3). The operator

J2 = J2
1 + J2

2 + J2
3 = −�2dπ(Y2),

the squared total angular momentum, plays an important role. As is well known,
Y2 is the so-called Casimir element of the universal enveloping algebra of so(3),
and it belongs to (in fact, generates) the center of that algebra. It follows that
J2 commutes with the representation π; therefore, by Schur’s lemma, it acts as a
scalar on each irreducible subspace of the representation space of π.

Let us consider the angular momentum operators for the irreducible represen-
tations πk, with units of measurement chosen so that � = 1. Each operator Jj has
the 2k+1 distinct eigenvalues −k,−k+1, . . . , k−1, k. It is enough to verify this for
J3, as the Jj are all unitarily equivalent (rotations about all axes look the same).
If we realize πk as the action of SU(2) on the homogeneous polynomials of degree
2k on C2, we have

πk(e
itσ3/2)(zm1 z2k−m

2 ) = (eit/2z1)
m(e−it/2z2)

2k−m = ei(m−k)tzm1 z2k−m
2 ,

and so

J3(z
m
1 z2k−m

2 ) =
1

i

d

dt
πk(e

itσ3/2)(zm1 z2k−m
2 )

∣∣
t=0

= (m− k)zm1 z2k−m
2 .

Thus the eigenvalues of J3 are {k−m : m = 0, . . . , 2k}, as advertised. Furthermore,
since πk is irreducible, J2 is a scalar multiple of the identity. To find the scalar, it
suffices to compute the action of J2 on one vector, for example, the monomial z2k1 :

J2(z2k1 ) = − d2

dt2
[
(eit/2z1)

2k +(z1 cos
1
2 t+ iz2 sin

1
2 t)

2k +(z1 cos
1
2 t− z2 sin

1
2 t)

2k
]
t=0

,

which the reader may verify to be k(k + 1)z2k1 ; thus J2 = k(k + 1)I.
Now, a quantum particle whose state space is L2(R3)⊗ C2k+1, equipped with

the representation ρ⊗πk where ρ is the natural representation of SO(3) on L2(R3),
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is said to have spin k. We can think of L2(R3)⊗C2k+1 as L2(R3,C2k+1), the space
of square-integrable C2k+1-valued functions on R3, and the representation ρ ⊗ πk

is then given by

[(ρ⊗ πk)(R)f ](x) = πk(R)[f(R−1x)].

The infinitesimal representation of ρ ⊗ πk is dρ ⊗ I + I ⊗ dπk, so the angular
momentum operators are

J = L+ S, where L =
�

i
dρ(Y) and S =

�

i
dπk(Y).

L is just the angular momentum discussed at the beginning of this section, now
called the orbital angular momentum, acting componentwise on the vector-valued
functions in L2(R3,C2k+1). S is the spin angular momentum, acting on the com-
ponents of the functions.

We briefly describe the decomposition of the representation ρ into irreducible
components; see Folland [46] for more details. The basic ingredients are the spaces
of spherical harmonics SHl, l = 0, 1, 2, . . ., whose elements are functions of the
form Y (x) = P (x)|x|−l where P is a homogeneous harmonic polynomial of degree
l. (Note that such functions are homogeneous of degree 0, i.e., are effectively
functions of x/|x|.) The spaces SHl are invariant under the natural action of the
rotation group, and they are irreducible; the representation of SO(3) on SHl is
equivalent to πl. For each l, let

(3.33) Hl =
{
f ∈ L2(R3) : f(x) = g(|x|)Y (x) : Y ∈ SHl

}
.

The condition that f be in L2(R3) is equivalent to the condition that g be in
L2((0,∞), r2 dr). The rotation group acts trivially on the factor g and by the rep-
resentation πl on the factor Y , so a choice of orthonormal basis for L2((0,∞), r2 dr)
exhibits Hl as a direct sum of spaces isomorphic to SHl, and the representation
ρ|Hl as a direct sum of copies of πl. We have

L2(R3) =
∞⊕
0

Hl,

yielding the decomposition of ρ into SO(3)-isotypic components. Observe that this
can also be construed as the spectral decomposition of the squared orbital angular
momentum operator L2: the space Hl is the eigenspace of L2 with eigenvalue
l(l + 1).

From this one can obtain the irreducible decomposition of ρ ⊗ πk for any k.
The preceding analysis yields

L2(R3,C2k+1) =

∞⊕
0

Hl ⊗ C
2k+1,

and the representation of SO(3) on Hl⊗C
2k+1 is a direct sum of copies of πl⊗πk.

What remains, therefore, is to decompose πl ⊗ πk into its irreducible components.
This problem is well understood, but the details of its solution will not concern us
here. (See Landau and Lifshitz [77]; the key-words to look for are “Clebsch-Gordan
coefficients.”) For us it will suffice to describe the most important case, k = 1

2 .
Of course π0 is the trivial one-dimensional representation, so π0 ⊗ π1/2

∼= π1/2.
For l > 0, consider an irreducible subspace of Hl, say

X =
{
f : f(x) = g(|x|)Y (x), Y ∈ SHl

}
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for a fixed g, and consider the action of the z component of the total angular
momentum, J3 = L3+S3, on X⊗C2. The operators L3 and S3, considered as acting
on X and C

2 respectively, have orthonormal eigenbases {φm}2lm=0 and {v+, v−} with
L3φm = (l − m)φm, S3v± = ± 1

2 . Then {φm ⊗ va : m = 0, . . . , 2l; a = ±} is an

orthonormal eigenbasis for J3 with J3(φm ⊗ v±) = l − m ± 1
2 . The eigenvalues

±(l + 1
2 ) occur with multiplicity one and the others occur with multiplicity two.

The largest of them is l + 1
2 , which occurs only for the eigenvector φ0 ⊗ v+; hence

the representation of SO(3) on the invariant subspace generated by this vector is
a copy of πl+(1/2). This accounts for one copy of each of the eigenvalues l−m± 1

2 .

Its orthogonal complement in X⊗ C
2 is an SO(3)-invariant space on which J3 has

eigenvalues l − 1
2 , l −

3
2 , . . . ,−l +

1
2 , each with multiplicity one; the representation

on it is therefore a copy of πl−(1/2). In short,

(3.34) πl ⊗ π1/2
∼= πl+(1/2) ⊕ πl−(1/2) for l > 0, π0 ⊗ π1/2

∼= π1/2.

3.6. The Coulomb potential

We now perform a spectral analysis of the Hamiltonian

H = − �
2

2m
∇2 − a

|x|
for a particle of mass m moving in the potential V (x) = −a/|x| (a > 0) correspond-
ing to an attractive inverse-square-law force. The operatorH acts on L2(R3,C2k+1)
if the particle has spin k, but the spin variables just come along for the ride here, so
there is no loss of generality in taking k = 0. Our main task is to find and analyze
the solutions of the differential equation Hf = Ef for E ∈ R (E for energy). We
sketch the main points but omit many of the details of the calculations. A more
complete treatment can be found in Landau and Lifshitz [77].

The basic example is an electron with mass me and charge −e moving in the
Coulomb potential generated by an atomic nucleus with mass mN and charge Ze
where Z is the number of protons in the nucleus, so that a = Ze2/4π in Heaviside-
Lorentz units. It is a pretty good approximation to pretend that mN =∞, so that
the nucleus does not move; however, this two-body problem, just like the classical
one discussed at the end of §2.1, is mathematically exactly equivalent to a single
particle moving in the fixed potential −a/|x| if one takes its mass m to be the
reduced mass memN/(me +mN ).

First, we get rid of the constants by rescaling. The constant a has dimensions
[ml3t−2] since a/|x| represents an energy, so �2/ma has dimensions of length and
ma2/�2 has dimensions of energy. Setting x = (�2/ma)x̃ (so x̃ is dimensionless)
makes

H =
ma2

2�2

[
−∇2

x̃ −
2

|x̃|

]
.

We now drop the tildes and choose the unit of energy to be ma2/2�2, so

H = −∇2 − 2

|x| .

(For a hydrogen atom consisting of one electron and one proton, with m taken to
be the reduced mass memp/(me + mp), the resulting units of length and energy
are �2/ma = 5.29 × 10−9 cm and ma2/2�2 = 13.6 eV. The latter is known as the
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Rydberg energy ; as we shall see, it is the absolute value of the energy of the electron
in the ground state.)

Now, H is invariant under rotations, so it respects the decomposition L2(R3) =⊕∞
0 Hl, where Hl is as in (3.33). Moreover, the Laplacian is given in spherical

coordinates by

∇2 =
d2

dr2
+

2

r

d

dr
− 1

r2
L2 (r = |x|),

where L2 is our friend the squared orbital angular momentum operator. On Hl we
have L2 = l(l + 1)I, so the restriction of H to Hl is given by

H(g(r)Yl(x)) =

[
−g′′(r)− 2

r
g′(r) +

l(l + 1)

r2
g(r)− 2

r
g(r)

]
Yl(x).

Hence the partial differential equation Hf = Ef boils down to the ordinary differ-
ential equations

(3.35) g′′(r) +
2

r
g′(r) +

(
2

r
− l(l + 1)

r2
+ E

)
g(r) = 0 (l = 0, 1, 2, . . .).

As far as the discrete spectrum of H (i.e., the stationary states of the quantum
system) goes, we are interested in solutions g of (3.35) such that the function
f(x) = g(|x|)Yl(x) belongs to L2(R3); this requires that g be well-behaved at 0 and
∞. Moreover, we expect that the stationary states will occur when the particle is
“trapped in the potential well,” i.e., for energies E < 0. Thus we take the condition
E < 0 as a working assumption for the time being.

The equation (3.35) has a regular singular point at the origin, where its char-
acteristic exponents are l and −l− 1; thus it has two solutions that are asymptotic
to rl and r−l−1 as r → 0. The second solution must be discarded as the resulting
function on R3 is not square-integrable.3 Moreover, for large r the equation (3.35)
is approximately g′′(r)+Eg(r) = 0, so we expect to find solutions that are asymp-

totic to e±
√
−E r as r →∞, and we are only interested in the one with the negative

exponent. (Remember that we are assuming E < 0.)
Motivated by these considerations, we make some changes of variables. First,

to standardize the behavior at infinity (and, frankly, with some foreknowledge of
the final result), we set

ν =
1√
−E

, s =
2r

ν
, g̃(s) = g(r) = g(νs/2).

This turns (3.35) into

(3.36) g̃′′(s) +
2

s
g̃′(s) +

(
ν

s
− l(l + 1)

s2
− 1

4

)
g̃(s) = 0.

The solutions are now expected to be asymptotic to e±s/2 as s → ∞ and to sl as
s→ 0. This suggests the further substitution

g̃(s) = sle−s/2h(s),

which turns (3.36) into

(3.37) sh′′(s) + (2l + 2− s)h′(s) + (ν − l − 1)h(s) = 0.

3When l = 0 this argument is insufficient, as the function f(x) = |x|−1 is in L2(R3). However,
it is not in the domain of H, viz., the Sobolev space of order 2. Indeed, ∇2|x|−1 = −4πδ(x).
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This, finally, is something in standard form: it is the confluent hypergeometric
equation with parameters a = l + 1− ν and c = 2l + 2, and the solutions that are
regular at the origin are constant multiples of

F (l + 1− ν, 2l + 2; s) = 1 +

∞∑
k=1

(l + 1− ν)(l+ 2− ν) · · · (l + k − ν)

(2l + 2)(2l + 3) · · · (2l + k + 1)

sk

k!

(The other solutions are asymptotic to multiples of s−2l−1 as s→ 0.) A wealth of
information about these confluent hypergeometric functions is known; in particular,
they grow like es as s→∞ except when l+1− ν is a nonpositive integer, in which
case the series terminates and gives a polynomial of degree ν − l − 1. In this case
ν is itself an integer ≥ l + 1, which (following standard practice) we denote by n,
and the resulting polynomial is one of the (generalized) Laguerre polynomials :

F (l + 1− n, 2l + 2; s) =
(2l + 1)!(n− l − 1)!

(n+ l)!
L2l+1
n−l−1(s).

Undoing the changes of variables, we see that the numbers En = −1/n2 are eigen-
values of H|Hl for every integer n ≥ l + 1, and the corresponding (unnormalized)
eigenfunctions are

fn,Y (x) = rle−r/nL2l+1
n−l−1(2r/n)Y (x), Y ∈ SHl (r = |x|).

For E > 0 one can make the same changes of variables to find that the solutions
of (3.35) that are regular at the origin are multiples of rle−r/νF (l + 1 − ν, 2l +
2; 2r/ν), but here ν = 1/

√
−E is pure imaginary. One can use contour integral

techniques to figure out the asymptotic behavior of this function as r →∞; it turns
out to be asymptotic to a constant times r−1 sin(βr+β−1 log 2βr+Cl) with β =

√
E,

which is not in L2((0,∞), r2 dr). For E = 0, the equation (3.35) can be transformed

into a Bessel equation, and the solution turns out to be
√
1/r J2l+1(

√
8r), which

also is not in L2. Hence there is no discrete spectrum for E ≥ 0. However, the
corresponding eigenfunctions of the differential operator H,

fβ,Y (x) = rle−iβrF (l + 1 + (i/β), 2l + 2; 2iβr)Y (x), Y ∈ SHl,

are close enough to being in L2 that they contribute infinitesimally to the spectral
resolution of the Hilbert space operator H, just as eiωx contributes infinitesimally
to the spectral resolution of id/dx on L2(R) (viz., the Fourier transform).

In short, the discrete spectrum of H|Hl is {−1/n2 : n ≥ l+1} and the continu-
ous spectrum is [0,∞). Let us choose a basis Y1, . . . , Y2l+1 for SHl (the physicists’
standard choice is the eigenbasis of the z-angular momentum L3). Then any φ ∈ Hl

can be written as φ(x) =
∑2l+1

1 φm(r)Ym(x), and the expansion of φ in terms of
eigenfunctions of H has the form

φ(x) =
2l+1∑
m=1

[ ∞∑
n=l+1

Cmnfn,Ym
(x) +

∫ ∞

0

φ̃m(β)fβ,Ym
(x) dβ

]
.

The coefficients Cmn and φ̃m(β) are easily determined once the fn,Y ’s and fβ,Y ’s
are properly normalized.

Putting together all theHl’s, we see that the discrete spectrum ofH is {−1/n2 :
n ≥ 1}. The eigenvalue −1/n2 occurs in Hl when l ≤ n − 1, and its multiplicity

there is dim(SHl) = 2l + 1, so its total multiplicity is
∑n−1

0 (2l + 1) = n2. The
continuous spectrum is [0,∞), and it occurs in each Hl, so its total multiplicity is
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infinite. Finally, if the particle in the Coulomb potential has spin k, the Hamiltonian
is the direct sum of 2k+1 copies of the scalar Hamiltonian, so the multiplicities of
all the eigenvalues must be multiplied by 2k + 1.

In particular, for an electron, we have k = 1
2 , and the multiplicity of the

eigenvalue −1/n2 is 2n2. In this case it is customary to label the joint eigenstates
of the energy and the angular momentum by the integers n (the “principal quantum
number”), l (the “orbital angular momentum quantum number”), and j (the “total
angular momentum quantum number”). Here n and l are as in the preceding
discussion, and j is the half-integer such that the eigenvalue of the total squared
angular momentum J2 is j(j + 1). In view of (3.34), j is either l + 1

2 or l − 1
2 ,

with j = 1
2 being the only possibility when l = 0. Moreover, in deference to the

old spectroscopists’ terminology, for l = 0, 1, 2, 3 it is customary to denote the
states with quantum numbers (n, l, j) by nLj where L = S, P,D, F according as
l = 0, 1, 2, 3. Thus, for example, the states with quantum numbers (1, 0, 12 ), (2, 1,

1
2 ),

and (3, 2, 5
2 ) are denoted by 1S1/2, 2P1/2, and 3D5/2.

This description of an electron in a Coulomb potential, which accounts for the
“electron shells” of the Bohr model as the eigenspaces of the Hamiltonian, was
one of the early triumphs of the quantum theory. Its prediction of the electron
energy levels in a hydrogen atom agrees very well with the spectroscopic data that
were available when quantum mechanics was developed. Moreover, it provides a
somewhat cruder but still very informative model for larger atoms when one neglects
the electrical interaction of the electrons with each other except to note that the
inner electrons tend to shield the outer electrons from the charge of the nucleus.
The only further necessary ingredient is the Pauli exclusion principle, which we
shall discuss in §5.4, §5.5, and §6.5; in the present context it says that the state
vectors of the various electrons of the atom must all be orthogonal to each other.
Thus there is room for 2 electrons in the lowest energy level (n = 1), 8 electrons
in the next level (n = 2), and so forth. From this one can see the periodic table of
elements taking shape before one’s eyes.

The agreement with experiment is not perfect, however: the actual energy
levels of electrons in the hydrogen atom depend to a small extent on the angular
momentum quantum numbers too. The biggest of these effects, the so-called “fine
splitting” between the states with the same n but different j, is explained by the
Dirac model, which we shall discuss in the next chapter.

                

                                                                                                               



                

                                                                                                               



CHAPTER 4

Relativistic Quantum Mechanics

When an equation is as successful as Dirac’s, it is never simply a mis-
take. It may not be valid for the reason supposed by the author, it
may break down in new contexts, and it may not even mean what
its author thought it meant. . . . But the great equations of modern
physics are a permanent part of scientific knowledge, which may out-
last even the beautiful cathedrals of earlier ages.
—Steven Weinberg ([31], p. 257)

The historical development of relativistic quantum theory is too tangled a tale
to recount in detail here. (An interesting brief account can be found in Wein-
berg [131], and Schweber [107] has produced a masterful comprehensive history.
See also Schweber [108] and the references given there.) Initially the idea was to
develop a relativistic theory for the motion of a single particle, or a fixed finite
collection of particles, subject to electromagnetic forces. Eventually it was realized
that this is the wrong goal, as high-energy interactions necessarily involve creation,
annihilation, and transmutation of particles. (One should keep in mind that in the
late 1920s, when the initial attempts at a relativistic theory were made, the only
known subatomic particles were electrons, protons, and atomic nuclei, and the com-
position of the latter was still a matter of conjecture. The experimental discovery
of neutrons and positrons, not to mention other species of particles, was still in the
future.) The early attempts at a one-particle theory yielded differential equations,
now known by the names of Klein, Gordon, and Dirac, that were meant to be rela-
tivistic analogues of the Schrödinger equation.1 Interpreted as wave equations for
single quantum particles, the Klein-Gordon equation was largely unsuccessful, and
the Dirac equation was hugely successful in accounting for low-energy phenomena
but presented serious problems in the high-energy regime. But you can’t keep a
good differential equation down: these equations turn out to be of fundamental
importance for quantum field theory — but with a different interpretation that
we shall describe briefly at the end of §4.3 and exploit in the following chapters.
Before we get to that, however, it will be well to study the Klein-Gordon and Dirac
equations as the early quantum physicists did.

From now on we shall adopt “natural” units in which Planck’s constant � and
the speed of light c are both equal to 1. If one keeps track of the dimensions of the
quantities one is working with, reinserting the factors of � and c is always just a
matter of getting equations and formulas to be dimensionally correct.

1The Klein-Gordon equation was proposed independently by Schrödinger, so it could equally
well be named the relativistic Schrödinger equation, and it is so called by some people.
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4.1. The Klein-Gordon and Dirac equations

The Schrödinger equation i∂ψ/∂t = −(1/2m)∇2ψ+V ψ is obviously unsatisfac-
tory from the relativistic point of view, as it treats the time and space variables on
a drastically different footing. But recall how we derived it: (i) The (classical, non-
relativistic) energy of a particle of mass m in a potential V is H = |p|2/2m+V (x).
(ii) H is the generator of time translations according to the rules of Hamiltonian
mechanics. (iii) In quantum mechanics, p becomes (1/i)∇, and V (x) acts as a
multiplication operator. We might therefore try to obtain a relativistic equation
by modifying (i) so as to obtain a relativistically correct formula for the energy
and then proceeding as in (ii) and (iii). For this purpose we need to drop the
potential V , which is not relativistically meaningful as it stands, and replace it
with something else. The only Lorentz-covariant interaction we have at hand is
the electromagnetic one, so we shall consider only the cases of a free particle and a
particle in an electromagnetic field; and we shall not add the electromagnetic field
to the recipe until the case of a free particle is well in hand.

Recall that in relativistic mechanics, the energy E and the momentum p of a
free particle combine to give a 4-vector pμ = (E,p) (in units such that c = 1) whose
Lorentz inner product with itself is the rest mass of the particle. The quantum
analogue of the momentum p is the operator −i∇, and the quantum analogue of
the energy is the Hamiltonian operator H, which generates the time-translation
group etH/i and hence corresponds to i∂t. In short, in relativistic notation the
recipe for quantizing energy and momentum is simply

(4.1) pμ → i∂μ,

where ∂μ is given by (1.3). (Note that this makes the signs come out right!)
Applying (4.1) to the free-particle energy-momentum relation p2 = m2 yields our
first relativistic quantum wave equation, the Klein-Gordon equation:

(4.2) −∂2φ = m2φ, or ∂2
t φ = ∇2φ−m2φ.

The first thing that catches the eye is that (4.2) is second-order in t, so the
properly posed initial value problem requires not only ψ but also ∂tψ to be given
at t = 0. What to do about this? Perhaps one should take the state vector to be
not ψ but the pair (ψ1, ψ2) = (ψ, ∂tψ). One can then rewrite (4.2) as a first-order
system:

(4.3)
∂

∂t

(
ψ1

ψ2

)
=

(
ψ2

∇2ψ1 −m2ψ1

)
=

(
0 1

∇2 −m2 0

)(
ψ1

ψ2

)
.

The trouble with (4.3) is that the operator on L2 × L2 represented by the matrix
on the right is not skew-adjoint, so it does not generate a one-parameter unitary
group. One might also think of replacing (4.2) by the equation i∂tψ = Aψ where
A is a self-adjoint operator whose square is the positive operator −∇2 +m2. This
idea is not completely without merit, and it will resurface at the end of §4.3. But
of course i∂tψ = Aψ is no longer a differential equation, and it was not considered
seriously by the pioneers of quantum theory.

Another way of looking at the problem is to think of the unitarity of time
evolution as a conservation law. That is, if ψ(x, t) = e−itHψ0(x) is a solution of
the ordinary Schrödinger equation i∂tψ = Hψ, where H is (a self-adjoint form of)
−∇2/2m+ V , then ‖ψ‖2 =

∫
|ψ(x, t)|2 dx is a conserved quantity. We can express
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this conservation law as a continuity equation as we did for conservation of charge
in §2.4. Indeed,

∂

∂t
|ψ|2 =

∂ψ

∂t
ψ∗ + ψ

∂ψ∗

∂t
=

i

2m

[
(∇2ψ)ψ∗ − ψ(∇2ψ∗)

]
=

i

2m
div[ψ∗∇ψ − ψ∇ψ∗].

Thus, taking ‖ψ‖ = 1 so that ρ = |ψ|2 represents a probability density, if we
define the “probability current density” to be J = −(i/2m)(ψ∗∇ψ − ψ∇ψ∗) =
(1/m) Im(ψ∗∇ψ), we have

∂ρ

∂t
+ div J = 0.

There is a similar continuity equation associated to (4.2). Namely, if ψ satisfies
(4.2) and we set jμ = (1/m) Im(ψ∗∂μψ), then ∂μj

μ = 0, i.e., ∂tρ+ div j = 0 where
jμ = (ρ, j). Thus the conserved quantity for (4.2) is

∫
ρ = (1/m)

∫
Imψ∗∂tψ. But

ρ = (1/m) Imψ∗∂tψ (or its negative) cannot be interpreted as a probability density
because, in general, it is not positive. (If ψ is real, as it might well be since (4.2) has
real coefficients, ρ vanishes identically!) For this reason, among others, (4.2) was
found to be unsatisfactory as a relativistic wave equation for a free particle. (See
Weinberg [131] and Schweber [107] for more extensive discussions of this matter.)

Dirac had the insight that what is impossible with scalar-valued functions might
be feasible with vector-valued functions. What is desired is a Lorentz-covariant
Schrödinger-type equation i∂tψ = Hψ for a free particle of mass m > 0, where the
wave function ψ takes values in C

n for some n to be determined. For this purpose
the space and time variables must be on an equal footing, so H must be a first-order
differential operator in the space variables with constant coefficients:

H =
1

i
(α1∂1 + α2∂2 + α3∂3) +mβ.

Here α1, α2, α3 and β are n× n complex matrices that we require to be Hermitian
so that H will be self-adjoint, and the factor of m is inserted for later convenience.
Moreover, H represents the total energy of the particle, which in classical relativity
satisfies E2 = |p|2 +m2, so we want H2 = −∇2 +m2. But

H2 = −
3∑
1

(αj)2∂2
j −

∑
1≤j<k≤3

(αjαk + αkαj)∂j∂k +
m

i

3∑
1

(αjβ + βαj)∂j +m2β2,

so to make H2 = −∇2 +m2 we need

(4.4) αjαk + αkαj = 2δjkI, αjβ + βαj = 0, β2 = I.

We are now on familiar mathematical ground: the conditions (4.4) say that α1, α2,
α3, and β are the generators of a Clifford algebra. The smallest n for which one
can find n×n matrices satisfying (4.4) is n = 4, and the reader may verify that we
may take

(4.5) αj =

(
0 σj

σj 0

)
, β =

(
I 0
0 −I

)
,

(written in 2 × 2 blocks) where the σj are the Pauli matrices (1.12).2 Note that
these matrices are all Hermitian, as desired. We have now arrived at the Dirac

2If m = 0 we need only the α’s, not β, and in this case n = 2 suffices: we can take αj = σj .
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equation for a free particle of mass m:

(4.6) i
∂ψ

∂t
=

1

i

3∑
1

αj ∂ψ

∂xj
+mβψ.

There is still a slight asymmetry between the space and time variables that may be
removed as follows. Define the Dirac matrices γμ by

(4.7) γ0 = β =

(
I 0
0 −I

)
, γj = βαj =

(
0 σj

−σj 0

)
for j = 1, 2, 3.

Since β2 = I, multiplying (4.6) on the left by β yields

(4.8) iγμ∂μψ = mψ,

the covariant form of the Dirac equation. The γμ are easily seen to satisfy the
relations

{γμ, γν} ≡ γμγν + γνγμ = 2gμνI (μ, ν = 0, 1, 2, 3),(4.9)

(γμ)† = (γμ)−1 = γμ (= gμνγ
ν) (μ = 0, 1, 2, 3),(4.10)

where gμν = gμν is the Lorentz metric. (Here and in the sequel, we employ the
relativistic tensor notation introducted in §1.1.)

We refer to the copy of C4 on which the Dirac matrices act as spinor space,
and its elements are called (Dirac) spinors. (On the other hand, Pauli spinors are
elements of the copy of C2 on which the Pauli matrices act.) To avoid confusion,
it is important to remember that spinor space has nothing to do with space-time.
The fact that the dimensions of these two spaces are both 4 is a coincidence.

It is not hard to verify that the 16 matrices I, γμ, γμγν (μ < ν), γμγνγρ

(μ < ν < ρ), and γ0γ1γ2γ3 are a basis for the space of all 4× 4 complex matrices,
so the Clifford algebra generated by the γμ is the full 4 × 4 matrix algebra. By
the way, the last of these matrices occurs frequently enough to have its own name;
multiplied by i so as to make it real, it is conventionally called γ5:

(4.11) γ5 = iγ0γ1γ2γ3 =

(
0 I
I 0

)
.

(Obviously this notation was introduced by someone who took the Lorentz index
μ to run from 1 to 4 rather than 0 to 3. The convention changed but the name
stuck.)

There is nothing sacred about the choice (4.7) for the γμ; any four matrices
γ̃μ satisfying (4.9) and (4.10) would do just as well. One can obtain such sets of
matrices by taking γ̃μ = UγμU−1 where γμ is given by (4.7) and U is any unitary
4 × 4 matrix; conversely, every such set γ̃μ is obtained in this way. (This follows
from the well-known fact that the full matrix algebra has a unique irreducible
representation; see Messiah [83], §XX.10, for a direct proof.) The choice (4.7) is
called the Dirac representation. The other choice that we shall find useful is the
Weyl or chiral representation of the Dirac matrices,

(4.12) γ0 =

(
0 I
I 0

)
, γj =

(
0 σj

−σj 0

)
(j = 1, 2, 3), γ5 =

(
−I 0
0 I

)
which is related to the Dirac representation by

(4.13) γμ
Weyl = Uγμ

DiracU
−1, U =

1√
2

(
I −I
I I

)
.
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Many calculations with Dirac matrices are representation-independent. When
a particular representation is needed, for most purposes the Weyl representation is
the convenient one, particularly when questions of parity (left- or right-handedness)
arise. (We shall explain this at the beginning of §4.3.) In fact, in this book we shall
use the Dirac representation only in the discussion of the nonrelativistic approxi-
mation and the Coulomb potential in §4.3 and in a brief reference to the latter in
§7.11; elsewhere the reader should keep the Weyl representation in mind.

Unlike the Klein-Gordon equation, the Dirac equation yields a conservation-
of-probability law; this was one of the main things that persuaded Dirac that his
theory was a good one. To explain it, and for other purposes later on, we need to
introduce a modified adjoint for Dirac wave functions. We recall that the matrices
αj and β in (4.6) are Hermitian. Thus γ0 = β is Hermitian, but γj = γ0αj

(j = 1, 2, 3) is not; rather, (γj)† = γ0γjγ0, and this requires an extra twist in
setting up certain quantities.

Suppose ψ is a solution of the Dirac equation iγμ∂μψ−mψ = 0; here ψ is a 4×1
column vector of functions. Taking Hermitian adjoints yields −i∂μψ†(γμ)†−mψ† =
0, ψ† being the 1 × 4 row vector whose components are the conjugates of the
components of ψ. To turn this into an equation involving γμ rather than (γμ)†, we
multiply it on the right by γ0 and set

(4.14) ψ = ψ†γ0,

obtaining

(4.15) −i∂μψγμ −mψ = 0,

the adjoint Dirac equation.
ψ = ψ†γ0 is called the (Dirac) adjoint spinor of ψ; this notation will be em-

ployed throughout the sequel.
Now, if we multiply the original Dirac equation on the left by ψ and the adjoint

equation on the right by ψ and subtract, we obtain

iψγμ∂μψ + i∂μψγ
μψ = 0,

in other words,

∂μj
μ = 0, where jμ = ψγμψ.

This is the promised conservation law, for

j0 = ψγ0ψ = ψ†γ0γ0ψ = ψ†ψ,

which is the probability density for the position of the Dirac particle; the spatial
components (j1, j2, j3) therefore define the corresponding current density.

A related fact is that the Dirac equation can be derived from the Lagrangian
density

L = iψγμ∂μψ −mψψ,

in which ψ and ψ are to be regarded as independent dynamical variables. Variation
of

∫
L d4x with respect to ψ gives (4.8), whereas variation with respect to ψ gives

the adjoint equation (4.15). This Lagrangian is invariant under the transformations
ψ �→ eiθψ for θ ∈ R, and j0 is the corresponding conserved quantity according to
Noether’s theorem.

This gives the clue for incorporating an (unquantized, external) electromagnetic
field into the Dirac equation. As in the classical situation that we discussed in §2.4,
the rule is simply to replace the energy-momentum vector pμ by pμ−qAμ where Aμ
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is the electromagnetic potential and q is the charge of the particle. At this point,
however, we make a shift in notation to avoid confusion in later sections where
the letter q is needed to denote momenta: we denote the charge of the particle by
e. (The letter e is conventionally used to denote the charge of an electron or its
absolute value, and in most applications it will indeed have that meaning since most
charged subatomic particles (except quarks) have charge ±e. But for the present
discussion, e can be anything.)

As noted at the beginning of this section, the quantized energy-momentum
vector pμ is i∂μ, so the prescription for including electromagnetism in the Dirac
equation is

i∂μ → i∂μ − eAμ.

The Lagrangian density is now

(4.16) L = ψγμ(i∂μ − eAμ)ψ −mψψ,

which yields the Dirac equation and adjoint Dirac equation

γμ(i∂μ − eAμ)ψ −mψ = 0,(4.17)

(−i∂μ − eAμ)ψγ
μ −mψ = 0.(4.18)

(In taking the adjoint, the i acquires a minus sign, but the Aμ does not, because

it is real.) The probability current jμ = ψγμψ still works the same way, because
when one multiplies (4.17) by ψ and (4.18) by ψ and subtracts, the Aμ’s cancel
out.

The covariant formulation of the Dirac equation may have obscured the initial
idea of an evolution equation for vectors in a Hilbert space. Considered simply as
a differential operator, the Dirac operator on the left of (4.17) acts on more-or-less
arbitrary C4-valued functions on R4. But as an evolution equation for quantum
states, its domain should be taken to be the space of differentiable functions on
R (the time variable) with values in L2(R3,C4), and it should be rewritten in the
form (4.6):

(4.19) i∂tψ =

[
3∑
1

αj(−i∂j − eAj) + eA0 +mβ

]
ψ.

The operator in brackets is the Dirac Hamiltonian, which acts on L2(R3,C4). Of
course, this formulation spoils the relativistic symmetry between space and time.
To some extent this is inevitable when one singles out the time variable, but we
shall see in §4.4 that it is possible to give a “Lorentz-friendly” description of the
situation without losing sight of the Hilbert space.

If our derivation of (4.17)-(4.18) seems a bit breezy, one should keep in mind
that quantization rules are only guidelines. The real justification for the Dirac equa-
tion (4.17) is the extent to which it works as a description of quantum phenomena.
We shall present the fundamental evidence on this score in §4.3. First, though,
we shall examine the behavior of the Dirac equation under relativistic changes of
reference frame.

4.2. Invariance and covariance properties of the Dirac equation

The Dirac equation was proposed as a relativistically correct evolution equation
for quantum particles. If it is to fulfill that requirement, it had better maintain its
form under the Poincaré group of space-time symmetries. The key idea is that when
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applying Lorentz transformations, the 4-tuple of matrices (γ0, γ1, γ2, γ3) should be
treated like an ordinary 4-vector. (In particular, we can write γμ = gμνγ

ν ; we then
have, for example, γμγ

μ = 4I.)
To see how this works, suppose that L ∈ O(1, 3); we identify L with the matrix

(Lμ
ν ) so that (Lx)μ = Lμ

νx
ν . If we set

[Lγ]μ = Lμ
νγ

ν ,

the matrices γ̃μ = [Lγ]μ still satisfy the anticommutation relations (4.9), for

γ̃μγ̃ν + γ̃ν γ̃μ = Lμ
ρL

ν
σ(γ

ργσ + γσγρ) = 2Lμ
ρg

ρσLν
σ = 2gμν ,

by the defining property of O(1, 3). It follows on general grounds that there must
be a matrix BL such that γ̃μ = BLγ

μB−1
L . Rather than presenting the general

argument, we shall identify BL explicitly.
For this purpose we employ the Weyl representation (4.12) of the Dirac ma-

trices, which enables us to use the double covering map κ : SL(2,C) → SO↑(1, 3)
defined by (1.17) in an efficient way. In fact, if x ∈ R4, by (4.12) we have

(4.20) γ · x =

(
0 M(x)

M(Px) 0

)
,

where γ · x =
∑4

1 γ
μxμ is the Euclidean scalar product of γ and x, M(x) is defined

by (1.15), and P is the spatial inversion or parity operator,

P (x0,x) = (x0,−x).

Now, if

L = κ(A) ∈ SO↑(1, 3),

we haveM(Lx) = AM(x)A†. Moreover, it is easily verified that ifM(x) is invertible
then M(Px) = (detM(x))M(x)−1, so that

M(PLx) = (detM(Lx))M(Lx)−1 = (detM(x))A†−1M(x)−1A−1

= A†−1M(Px)A−1.

As the invertible matrices are dense in M(R4) (the space of Hermitian 2 × 2 ma-
trices), we have M(PLx) = A†−1M(Px)A−1 in general. Therefore, since L† =
κ(A)† = κ(A†),

Lγ · x = γ · L†x =

(
0 M(L†x)

M(PL†x) 0

)
=

(
0 A†M(x)A

A−1M(Px)A†−1 0

)
=

(
A† 0
0 A−1

)(
0 M(x)

M(Px) 0

)(
A†−1 0
0 A

)
.

In short, if we define the homomorphism Φ : SL(2,C)→ SL(4,C) by

(4.21) Φ(A) =

(
A†−1 0
0 A

)
,

we have

Lγ · x = Φ(A−1)(γ · x)Φ(A),

whence, by taking x to be one of the standard basis vectors,

(4.22) Lμ
νγ

ν = Φ(A−1)γμΦ(A) (L = κ(A)).
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At this point it will be convenient to sweep the double covering map under the
rug and regard the correspondence L �→ Φ(A) as a double-valued representation of
SO↑(1, 3). That is, we shall write

Φ(L) = Φ(κ−1(L)),

with the understanding that Φ(L) is defined only up to a factor ±1 (an ambiguity
that will never cause any difficulty as long as the the same sign is used for both
terms in (4.22)). Since κ preserves adjoints, (4.22) can then be rewritten as

(4.23) Lμ
νγ

ν = Φ(L−1)γμΦ(L).

The representation Φ can be extended to the full Lorentz group O(1, 3). In
fact, since the substitution x �→ Px simply interchanges the two M ’s in (4.20), it
is clear that for the parity operator P we can take

Φ(P ) = (±)γ0 = (±)
(
0 I
I 0

)
.

(A direct verification of (4.23) is also easy: (γ0)3 = γ0 and γ0γjγ0 = −γj for
j > 0.) For the time inversion T (x0,x) = (−x0,x) = −P (x0,x) it is then readily
verified that

Φ(T ) = (±)γ1γ2γ3 = (±)
(
0 −I
I 0

)
does the job.3

We are now in a position to analyze the Lorentz covariance of the Dirac equa-
tion. First suppose that L is an orthochronous Lorentz transformation. The elec-
tromagnetic potential A transforms under coordinate changes as a covariant vector
field, i.e., a differential 1-form. In other words, if two reference frames are related
by the transformation L, the components Aμ with respect to the first frame are
related to the components AL

μ with respect to the second one by

AL
μ(x) = Lν

μAν(Lx).

Now, if ψ is a C4-valued function on R4, let us set4

(4.24) ψL(x) = Φ(L−1)ψ(Lx).

Then since ∂μ(f ◦ L) = Lν
μ(∂νf) ◦ L (the chain rule), we have

[γμ(i∂μ − eAL
μ(x))−m]ψL(x)

= γμLν
μΦ(L

−1)[i(∂νψ)(Lx)− eAν(Lx)ψ(Lx)]−mΦ(L−1)ψ(Lx)

= (Φ(L−1)γνΦ(L)Φ(L−1)[i(∂νψ)(Lx)− eAν(Lx)ψ(Lx)]−mΦ(L−1)ψ(Lx)

= Φ(L−1)[γν(i∂νψ − eAνψ)−mψ](Lx).

Thus, if ψ satisfies the Dirac equation with potential Aμ, then ψL satisfies the Dirac
equation with potential AL

μ .

3The restriction of Φ to the orthochronous Lorentz group comes from a genuine representation
of its double cover. However, the ambiguity of sign when one adds in time inversion is unavoidable,
because P and T commute whereas Φ(P ) and Φ(T ) anticommute.

4If one wants the map taking L to the transformation ψ �→ ψL to be a group homomorphism,
one should replace L by L−1 in (4.24).
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For the time inversion Tx = (−x0,x) the transformation law for Aμ has an
extra minus sign in it:

AT
μ (x) = −T ν

μAν(Tx),

that is,
AT

0 (x
0,x) = A0(−x0,x) and AT

j (x
0,x) = −Aj(−x0,x).

The reason is that ∇2A0 is the charge density, which transforms as a scalar function
under time inversion, but ∇2A is the current density, which acquires a minus sign
because the motion of the charges is reversed. This necessitates an extra twist in
the transformation law for ψ that makes it antiunitary. To wit, since the complex
conjugate matrices γμ∗ satisfy the same anticommutation relations as γμ and are
still unitary, there is a unitary matrix B, determined up to a phase factor, such
that

γμB = Bγμ∗.

(In the Dirac andWeyl representations, γ0, γ1, and γ3 are real while γ2 is imaginary,
and it follows easily that B = γ0γ1γ3 works.) If we define

(4.25) ψT (x) = γ0Bψ(Tx)∗,

we have

[γμ(i∂μ − eAT
μ (x))−m]ψT (x)

= γ0B
[
γ0∗(i∂0 − eA0(Tx))−

∑3
j=1γ

j∗(i∂j + eAj(Tx))−m
]
(ψ ◦ T )(x)∗

= γ0B
{[

γ0(−i∂0 − eA0(Tx))−
∑3

j=1γ
j(−i∂j + eAj(Tx))−m

]
(ψ ◦ T )(x)

}∗

= γ0B
[
γμ(i∂μ − eAμ)ψ −mψ

]∗
(Tx).

(Here’s what has happened: γ0 commutes with itself and anticommutes with the
γj , and γμB = Bγμ∗, which gives the first equality. Putting the conjugation
on the whole expression to the right of γ0B changes the i’s to −i’s, and finally
∂0(ψ ◦ T ) = −(∂0ψ) ◦ T .) In short, if ψ satisfies the Dirac equation with potential
Aμ, then ψT satisfies the Dirac equation with potential AT

μ .

The time-reversal transform ψ �→ ψT is closely related to another basic antiu-
nitary symmetry of the system, charge conjugation, which is defined by

(4.26) ψC(x) = γ5Bψ(x)∗

where B is as above and γ5 is defined by (4.11). A calculation much like the
preceding one shows that if ψ satisfies the Dirac equation γμ(i∂μ − eAμ)ψ = mψ,
then ψC satisfies γμ(i∂μ+eAμ)ψ

C = mψC . The point here is that γ5 anticommutes
with all the γμ; combining this with complex conjugation, which changes i to −i,
the net effect is to change e to −e.

The transformation laws A �→ AL, ψ �→ ψL under Lorentz transformations
are complemented by the simple transformation law Aa

μ(x) = Aμ(x − a), ψa(x) =
ψ(x−a) under space-time translations. Thus the Dirac equation is covariant under
the full Poincaré group.

There is one other crucial invariance property that must be noted. The elec-
tromagnetic potential Aμ is well-defined only modulo the gauge transformations
Aμ �→ Aμ − ∂μχ, where χ is an arbitrary (smooth) real-valued function. The
product rule readily shows that the compensating transformation of the wave func-
tion is ψ �→ exp(ieχ)ψ; that is, if ψ and Aμ satisfy γμ(i∂μ − eAμ)ψ = mψ, then
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ψ′ = exp(ieχ)ψ and A′
μ = Aμ−∂μχ satsify γμ(i∂μ−eA′

μ)ψ
′ = mψ′. We shall place

this result into a broader context in Chapter 9.
There is much more that can be said about the mathematics of the Dirac

equation; a comprehensive account can be found in Thaller [118].

4.3. Consequences of the Dirac equation

Spin and parity. Since A†−1 = A for A ∈ SU(2), the restriction of the
representation Φ defined by (4.21) to the rotation group SO(3) is just the direct
sum of two copies of the irreducible representation π1/2 described in §3.5. It follows
that the solutions of the Dirac equation describe particles of spin 1

2 . For Dirac the
fact that spin is built into his equation in this way was an “unexpected bonus.”

However, the fact that there are two copies of π1/2 — that is, the shift from C2-

valued wave functions in §3.5 to C
4-valued wave functions here to describe particles

of spin 1
2 —requires further comment. The point is that the change from two to four

components does not represent an additional two degrees of freedom. The easiest
way to see this is to write out the Dirac equation using the Weyl representation
(4.12) of the Dirac matrices: setting

(4.27) ψL =

(
ψ1

ψ2

)
, ψR =

(
ψ3

ψ4

)
(L and R stand, conventionally, for “left” and “right”), the Dirac equation (4.17)
becomes

mψL = (i∂t − eA0)ψR −
3∑
1

(i∂j − eAj)σjψR,

mψR = (i∂t − eA0)ψL +
3∑
1

(i∂j − eAj)σjψL.

Thus, either of the two-component functions ψL and ψR is completely determined
once the other one is given. The enlargement from two to four components is
necessary in order to make room for the Dirac matrices, but the spin variables still
represent only two degrees of freedom for the wave functions.

The reason for associating the labels “left” and “right” to ψL and ψR is that
they are interchanged by the parity operator P . More precisely, since Φ(P ) = ( 0 I

I 0 ),
by (4.24) we have (ψP )L(x) = ψR(Px) and (ψP )R(x) = ψL(Px). Note also that
the left- and right-handed wave functions are ∓1-eigenvectors of γ5 =

(−I 0
0 I

)
: if

ψR = 0 then γ5ψ = −ψ, and if ψL = 0 then γ5ψ = ψ. This will be important in
§9.4.

The nonrelativistic approximation. The Dirac model for a spin-12 particle,

involving a first-order differential equation for a C
4-valued wave function, does not

seem to bear much resemblance to the nonrelativistic model of Chapter 3, involving
a second-order differential equation for a C

2-valued wave function. Nonetheless, the
Dirac theory does reproduce the old theory in the low-energy limit. We now give a
quick sketch of the way this works.
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For this purpose we write the Dirac equation in the form with the time variable
singled out:

(i∂t − eA0)ψ =
3∑
1

αj(−i∂j − eAj)ψ +mβψ,

where αj and β are given by (4.5). We also set

(4.28) ψl =

(
ψ1

ψ2

)
, ψs =

(
ψ3

ψ4

)
where l and s now stand for “large” and “small,” for reasons shortly to be explained.
(These are not the ψL and ψR of (4.27), because there we were employing a basis
for C4 that gives the Weyl representation (4.12) of the Dirac matrices, whereas here
we are employing a basis that gives the Dirac representation (4.7). By (4.13), the

two are related by ψl = (ψL+ψR)/
√
2, ψs = (ψL−ψR)/

√
2.) With the abbreviation

D =

3∑
1

σj(−i∂j − eAj),

the Dirac equation then becomes the pair of coupled equations

(4.29) i∂tψl = (m+ eA0)ψl +Dψs, i∂tψs = (−m+ eA0)ψs +Dψl.

We shall give a quick and easy account of the nonrelativistic limit of (4.29)
under the assumption that the electromagnetic field A is constant in time, so that
we are in the usual setting of an equation in the form i∂tψ = Hψ where H is a time-
independent operator. We proceed in the informal style of physicists by assuming
at first that ψ is an eigenfunction of the Hamiltonian with eigenvalue E, so that
i∂tψ = Eψ. (Honest L2 wave functions are continuous superpositions of these
eigenfunctions; to rework the argument in terms of them would be more laborious
but not more enlightening. For a more sophisticated and rigorous mathematical
discussion, see Thaller [118].) The second equation in (4.29) then says that

(4.30) ψs =
1

E +m− eA0
Dψl.

We now make the nonrelativistic approximation, namely, that (1) the relativistic
energy E consists almost entirely of the rest mass m, i.e., E − m � m, (2) the
electromagnetic field is weak so that |eAμ(x)| � m, at least in the region where
ψ(x) is nonnegligible, (3) ‖∇ψ‖, the root-mean-square momentum in the state ψ,
is small in comparison with m‖ψ‖. (With the factors of c and � reinserted, these
approximations are E −mc2 � mc2, |eAμ| � mc2 and �‖∇ψ‖ ≤ mc‖ψ‖.) Then
‖Dψl‖ � m‖ψ‖, whereas E+m− eA0 ≈ 2m, so ψs is small in comparison with ψ:

‖ψs‖ � ‖ψ‖.
In the nonrelativistic limit, ψs becomes negligible, and we are left with the two-

component wave function ψl. The equation it satisfies is obtained by substituting
(4.30) into the first equation in (4.29), again replacing i∂t by E:

(E −m)ψl = eA0ψl +D
1

E +m− eA0
Dψl.

Again making the approximation E +m− eA0 ≈ 2m, we obtain

(E −m)ψl = eA0ψl +
1

2m
D2ψl.
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A straightforward calculation shows that

D2 = (−i∇− eA)2 − e

3∑
1

Bjσj = (−i∇− eA)2 − 2eB · S,

where B = curlA is the magnetic field and S = 1
2σ is the spin operator for the

2-component wave function ψl. Finally, we drop the assumption that ψ is an energy
eigenstate and turn E back into i∂t. Setting ψ0 = eimtψl to compensate for the
shift from i∂t to i∂t −m (which does not affect the state represented by ψl at time
t), we obtain

(4.31) i∂tψ0 = eA0ψ0 +
1

2m
(−i∇− eA)2ψ0 −

e

m
B · Sψ0.

This equation, with the final term omitted, is the classical Schrödinger equation
for a particle in the electromagnetic potential Aμ, obtained from the free-particle
equation by the canonical substitution pμ �→ pμ − eAμ without taking spin into
account. The final term represents the interaction of the spin with the magnetic
field.

Let us consider the special case of a spin- 1
2 charged particle moving in a con-

stant magnetic field B (together with, perhaps, an electrostatic field such as a
Coulomb field). We can then take A = 1

2B×x, which gives, after a little algebraic
manipulation,

(−i∇− eA)2 = −∇2 − eB · L+
e2

4
|B× x|2.

The Hamiltonian for ψ0 is therefore

(4.32) eA0 −
1

2m
∇2 − e

2m
B · (L+ 2S) +

e2

8m
|B× x|2.

(When the magnetic field is weak, the last term is generally negligible.) The striking
feature here is the term L+ 2S: the spin interacts with the magnetic field twice as
strongly as the orbital angular momentum. This phenomenon, for atomic electrons,
was one of the outstanding puzzles of atomic physics in the 1920s, and Dirac’s
explanation of it was one of the triumphs of his theory.

Classically, a magnet in a constant magnetic field B experiences a force∇(μ·B)
where μ is the magnetic moment of the magnet, and the associated potential energy
is −μ · B. The intrinsic magnetic moment of a spin-12 particle (i.e., the moment
attributable to spin rather than the motion of the particle) has the form

μ =
ge

2m
S =

ge

4m
σ,

where g, the Landé g-factor, is determined experimentally and depends on the
particle in question. Thus, the preceding calculations show that the Dirac theory
predicts g = 2. This is quite accurate for electrons, but the true value of gelectron is
a bit bigger than 2. The discrepancy is known as the anomalous magnetic moment,
and the theoretical calculation of it is one of the triumphs of quantum electrody-
namics; we shall discuss it in §7.11.

On the other hand, the g-factor of a proton is about 5.59, which is nowhere near
2, and the magnetic moment of a neutron, which ought to be 0 since the neutron
has no charge, is actually about −2/3 times that of a proton. These figures, which
were a mystery for a long time, are now understood to be reflections of the fact
that protons and neutrons are not truly elementary but are made up of quarks.
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An approximate calculation of these magnetic moments in the quark model can be
found in Griffiths [59], §5.10.

The Coulomb potential revisited. The Dirac equation yields a model for
the bound states of electrons in atoms similar to the one we derived from the
Schrödinger equation in §3.6, but more refined. To wit, it takes the wave function for
an electron in an atom of atomic number Z (i.e., with Z protons in the nucleus) to be
a solution of the Dirac equation with e = the charge of the electron, A0 = Z|e|/4πr,
andA = 0, where r is the distance to the origin. The assumption that the nucleus is
infinitely heavy results in errors of the same order of magnitude as the fine-structure
effects that the Dirac equation captures, so one should use a reference frame in which
the center of mass of the electron-nucleus system is fixed and take the mass m in
the Dirac equation to be the reduced mass memN/(me +mN ), as in the classical
two-body problem discussed at the end of §2.1. The assumption that the charge
of the nucleus is all located precisely at the origin is also an idealization, but it
gives a very good approximation for realistic values of Z. Since we are now taking
� = c = 1, the constant e2/4π in the coefficient of the potential eA0 = −Ze2/4πr
is just the fine structure constant α (see §1.2):

α =
e2

4π
≈ 1

137
.

In short, the mathematical problem to be solved is the spectral theory of the Dirac
Hamiltonian

(4.33) H =
1

i

3∑
1

αj∂j +mβ − Zα

r
(Z ∈ Z+, α ≈ 1

137 ),

particularly the eigenfunctions and eigenvalues ofH that represent stationary states
of the electron. We shall concentrate on the structural features rather than going
through all the calculations in detail. Fuller discussions can be found in Thaller
[118], Sakurai [103], or Messiah [83].

The first point to be made is that unlike the Schrödinger Hamiltonian with
a −Zα/r potential, this H is scale-invariant, because both ∂j and 1/r are ho-
mogeneous of degree −1 under dilations, and so is m in the natural units where
[m] = [l−1]. Thus, whereas in the Schrödinger theory we could make the coefficient
of 1/r equal to 2 by choosing the units appropriately, this is not possible for the
Dirac theory, and the size of the coefficient Zα is significant.

The spherical symmetry of the problem points to a consideration of the decom-
position of the state space L2(R3,C4) into irreducible pieces under the action of
the rotation group. We recall from (4.24) that the rotation R ∈ SO(3) acts on the
state vector ψ by

(4.34) ψR(t,x) = Φ(R)ψ(t, R−1x).

This action is the tensor product of the natural representation ρ(R)φ(x) = φ(R−1x)
of SO(3) on L2(R3) and the representation Φ on C

4. The Schrödinger Hamiltonian
of §3.6 commutes with each of these actions separately, but the Dirac Hamiltonian
does not, so we need to take spin into account more carefully here than we did in
§3.6.

As we showed in §3.6, ρ decomposes via spherical harmonics as ρ ∼=
⊕∞

0 πl,
where πl is as in §3.5. Moreover, by the remarks on spin at the beginning of this
section, Φ|SO(3) is the direct sum of two copies of π1/2; but when ρ⊗Φ is restricted
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to solutions of the Dirac equation, where the first two components of ψ in the Weyl
representation determine the last two, there is only one copy. Hence, by (3.34), the
representation of SO(3) given by (4.34) decomposes as⊕

l=0,1,2,...

πl ⊗ π1/2
∼=

⊕
j= 1

2 ,
3
2 ,

5
2 ,...

2πj .

The 2 indicates multiplicity; one copy of πj comes from l = j − 1
2 , the other from

l = j + 1
2 .

One can think of this in terms of angular momentum. The angular momentum
operators J = (J1, J2, J3) are the infinitesimal generators of the action (4.34) of
the rotations about the coordinate axes. Corresponding to the two occurrences of
R on the right side of (4.34), we have

J = L+ S,

where L is the orbital angular momentum and S is the spin,

S =
1

2

(
σ 0
0 σ

)
.

The irreducible representation spaces of type πj are eigenspaces of the total squared
angular momentum J2 with eigenvalue j(j + 1), just as in §3.5. The Hamiltonian
(4.33) is invariant under the action (4.34) of the rotations and hence commutes
with J2, but it does not commute with L2.

We can resolve the multiplicity-two representations 2πj by passing to the full
orthogonal group O(3), that is, by considering the parity or spatial inversion oper-
ator P (t,x) = (t,−x). Its action on the state vectors commutes with the action of
SO(3) and with the Dirac Hamitonian, and the space of state vectors on which 2πj

acts decomposes into the ±1 eigenspaces of the action of P , that is, into the states
of even and odd parity. Identifying “even” with 0 and “odd” with 1, we denote the
parity of such an eigenstate by ε:

ψP = (−1)εψ.
At this point we need to be a little more concrete. We work in the Dirac

representation, where the coefficients αj and β in the Hamiltonian (4.33) are given
by (4.5), and we write ψl and ψs for the first and second pair of components of
ψ as in (4.28). We recall from §4.2 that Φ(P ) = γ0 = β, which in the Dirac
representation is

(
I 0
0 −I

)
, so that

ψP (t,x) =

(
ψl(t,−x)
−ψs(t,−x)

)
.

Thus if ψ is a state of either even or odd parity, the components ψl and ψs must
have opposite spatial parity: if ψP = ψ, then ψl is even and ψs is odd, and vice
versa if ψP = −ψ.

When one works out the implications of these remarks in more detail, one finds
that the eigenstates of J2 with eigenvalue j(j + 1) and definite parity ε are of the
form

(4.35) ψ =

(
ψl

ψs

)
=

1

r

(
f(r)Yl(θ, φ)
ig(r)Ys(θ, φ)

)
where Yl and Ys are C

2-valued functions whose components are spherical harmonics
of degree j± 1

2 . More precisely, if j+ 1
2 ≡ ε (mod 2), then Yl is of degree j+ 1

2 and
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Ys is of degree j − 1
2 ; vice versa if j − 1

2 ≡ ε (mod 2). The requirement that ψ be
an eigenfunction of the Hamiltonian H with eigenvalue E is then equivalent to the
following pair of differential equations for f and g:

(4.36)

f ′(r) +
κ

r
f(r) =

(
E +m+

Zα

r

)
g(r),

−g′(r) + κ

r
g(r) =

(
E −m+

Zα

r

)
f(r),

where

(4.37) κ = (−1)ε+j+(1/2)(j + 1
2 ).

The analysis up to this point is valid with −Zα/r replaced by any central potential
V (r).

The equations (4.36) are analytic with a regular singular point at the origin, so
they yield readily to standard power series techniques. Beginning with the Ansatz

f(r) = a0r
λ + higher order, g(r) = b0r

μ + higher order,

one sees first that μ must equal λ. (The left side of the equation involving g′ is
O(rμ−1), whereas the right side is ≥ Crλ−1 for r small; hence λ ≥ μ. Similarly,
μ ≤ λ.) With μ = λ, then, examination of the terms of order λ− 1 in (4.36) shows
that

(4.38) (λ+ κ)a0 = Zαb0, (−λ+ κ)b0 = Zαa0.

This pair of equations for a0 and b0 has nonzero solutions only when κ2 − λ2 =
(Zα)2, that is, when λ = ±

√
κ2 − (Zα)2.

At this point we must address the square-integrability of the solutions at the
origin. The factor of 1/r in (4.35) compensates for the factor of r2 in the measure
in spherical coordinates, so the ψ in (4.35) will be L2 near the origin with respect to
volume measure if and only if f and g are in L2 near the origin with respect to linear
measure; this happens precisely when Reλ > − 1

2 . Thus, if κ
2− (Zα)2 > 1

4 we take

the solution with λ =
√
κ2 − (Zα)2 and discard the one with λ = −

√
κ2 − (Zα)2.

If κ2 − (Zα)2 < 1
4 , however, both solutions are L2 near the origin, and this is a

disaster. It means that the differential operators in (4.36), and hence the Dirac
Hamiltonian itself, do not determine a unique self-adjoint operator on L2 and so
do not have a well-defined spectral theory. One could specify a self-adjoint form
by imposing “boundary conditions” at the origin, but their physical significance is
unclear.

Fortunately, this is not a serious cause for worry. Recall that |κ| = j + 1
2 is a

positive integer, so we are always safe when (Zα)2 < 3
4 , i.e., Z <

√
3/2α ≈ 118.5

All atomic nuclei with a more-than-ephemeral existence satisfy this condition with
room to spare. Even for large Z, one avoids the mathematical catastrophe by
recognizing that the charge of the nucleus is not really located at a single point.
Taking the nucleus to be a solid ball of charge of radius ∼ 10−13 cm gives a more
realistic model in which the potential has no singularity at the origin. (However,

the resulting model for an atom is still physically bizarre for Z >
√
3/2α, as the

5Some physics books say that the critical condition is (Z/α)2 < 1, i.e., Z < 137, because
for Z/α > 1 the solutions are all bounded (and wildly oscillatory) near the origin. But the real
problem occurs earlier.
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effective diameters of the electron orbits for small |κ| are of the same order of
magnitude as that of the nucleus.)

We henceforth assume that Z < 118. The next step is to solve the equations
(4.36), with

λ =
√
κ2 − (Zα)2.

For this purpose it is convenient to make a change of variables: keeping in mind
that for bound states, the total energy E will be less than the rest mass m, we set
ρ = r

√
m2 − E2 and take

f(r) = e−ρρλ
∞∑
0

anρ
n, g(r) = e−ρρλ

∞∑
0

bnρ
n.

Plugging these formulas into (4.36) gives simple recursion formulas for an and bn
that can be solved explicitly; the resulting power series can be expressed in terms
of confluent hypergeometric functions. From this one finds that f and g grow
exponentially at infinity, and hence are not in L2, except in those cases where the
power series actually terminate; moreover, the series terminate with the ρN term
(N = 0, 1, 2, . . .) precisely when

√
m2 − E2(λ+ N) = EZα. Solving this equation

for E gives

E = m

[
1 +

(
Zα

λ+N

)2
]−1/2

= m

[
1 +

(Zα)2

(N +
√

κ2 − (Zα)2)2

]−1/2

.

Recall from (4.37) that κ = ±(j+ 1
2 ). ForN > 0 there is a solution of the differential

equation for each of these values of κ, but for N = 0 there is a solution only for
κ < 0. (In brief, the reason is that when N = 0, the recursion formula together
with the fact that a1 = b1 = 0 implies that a0 is a negative multiple of b0; this is
incompatible with the first equation in (4.38) if κ > 0.)

To put this formula into a more recognizable form, we assume that Zα � 1
and expand the right side in powers of Zα. Using the fact that κ2 = (j + 1

2 )
2 and

setting

n = N + j + 1
2 ,

after some manipulation of Taylor polynomials we obtain

(4.39) E = E(n, j) = m

[
1− (Zα)2

2n2
+ (Zα)4

(
3

8n4
− 1

n3(2j + 1)

)
+O((Zα)6)

]
.

Here n = 1, 2, 3, . . . and j = 1
2 ,

3
2 ,

5
2 , . . ., subject to the relation j < n (since

n− j − 1
2 = N ≥ 0). For each such n and j there are four independent eigen-

functions with eigenvalue E(n, j) except when n = j + 1
2 , in which case there are

two: more precisely, there are two for each allowable value of κ, which can be taken
to be the states with spin up or down along some specified axis.

This is now amenable to comparision with the results of the Schrödinger equa-
tion. The first term on the right of (4.39) is, of course, just the rest mass. The next
term, −m(Zα)2/2n2, gives the energy levels predicted by the Schrödinger equation,
n being the “principal quantum number” that tells which “shell” the electron lives
in. (In the discussion in §3.6 we took the unit of energy to be m(Zα)2/2; here this
factor appears explicitly.) The (Zα)4 term gives Dirac’s corrections to the energy
levels. The interesting feature here is the dependence on j, which is not present in
the Schrödinger theory; this is the “fine splitting” of energy levels whose agreement
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with experiment is one of the major successes of the Dirac theory. In particular,
the difference in the energies of the 2P1/2 and 2P3/2 states6 for a hydrogen atom

(i.e., Z = 1, n = 2, j = 1
2 ,

3
2 ) is about mα4/32 ≈ 4.5 × 10−5 eV, which is about

10−5 times smaller than the main term −mα2/8 ≈ −3.4 eV for their energies.
But as with the magnetic moment of the electron, this is not the end of the

story. The Dirac theory gives the same energy to the 2S1/2 and 2P1/2 states, but

experimentally there is a difference of about 4.4 × 10−6 eV (the “Lamb shift”).
Explaining this is another job for quantum electrodynamics; we shall say more
about it in §6.2 and §7.11.

There is one respect in which the predictions of the Dirac and Schrödinger
equations for the electron in a hydrogen atom are both completely wrong. Accord-
ing to both of them, if the electron is in an energy eigenstate, it will remain there
for all time unless some external force comes along to knock it out. But in fact, if
the electron is in an eigenstate other than the ground state (an “excited state”), it
eventually gets tired of being there and drops down to a lower energy level with the
emission of a photon.7 The problem is that the Schrödinger and Dirac models as
presented here recognize only the Coulomb force generated by the nucleus and not
the whole electromagnetic field associated to the nucleus and the electron together.
The full analysis of this situation requires quantum field theory; we shall present a
simplified model of it in §6.2.

Negative-energy states. A problem with the Dirac equation that was rec-
ognized from the beginning is the existence of states of negative energy — that is,
the fact that the spectrum of the free Dirac Hamiltonian

H = −i
∑

αj∂j +mβ

is not bounded below. Indeed, on applying the Fourier transform on R
3 and using

the Dirac matrices (4.5), we see that

Ĥψ(p) = (p ·α+mβ)ψ̂(p) =

(
mI p · σ
p · σ −mI

)
ψ̂(p).

A straightforward calculation shows that for each p, the 4 × 4 Hermitian matrix

multiplying ψ̂(p) has eigenvalues ±
√

p2 +m2 (p = |p|), each with multiplicity 2,
and that the unitary matrix

U(p) =
(m+

√
p2 +m2)I + βp ·α

[2m
√
p2 +m2 + 2(p2 +m2)]1/2

diagonalizes it. Let P+(z1, z2, z3, z4) = (z1, z2) and P−(z1, z2, z3, z4) = (z3, z4);
then the transformation V defined by

V ψ(p) =
(
P+U(p)ψ̂(p), P−U(p)ψ̂(p)

)
is a unitary map from L2(R3,C4) to L2(R3,C2) ⊕ L2(R3,C2) that intertwines H
with the operator M defined by

M(f+, f−)(p) =
(√

p2 +m2f+(p), −
√

p2 +m2f−(p)
)
.

6Recall that the P in “2P1/2” referred to the orbital angular momentum quantum number
in the nonrelativistic theory. Here it is the orbital angular momentum quantum number of the
large component ψl.

7“Eventually” is typically around 10−9 second.

                

                                                                                                               



82 4. RELATIVISTIC QUANTUM MECHANICS

Thus, if we denote the inverse images of the two summands in L2(R3,C2) ⊕
L2(R3,C2) under V by H±, we see that the restrictions of H to H+ and H−
are operators on these spaces with spectra [m,∞) and (−∞,−m], respectively.

The existence of states with arbitrarily large negative energy is physically very
unsatisfactory. One might try to do away with them by assuming that the physical
Hilbert space consists only of the subspace H+, but this assumption is not tenable,
for various reasons. For example, H+ does not contain states that are highly
localized in space, nor does it contain the ground state wave function for the electron
in a hydrogen atom that we discussed earlier. Therefore, there must be some
mechanism for forbidding a particle to release an infinite amount of energy by
falling to lower and lower energy levels.

Dirac’s remarkable (not to say fantastic) solution to this problem was to invoke
the Pauli exclusion principle and to posit that almost all the negative-energy states
are already occupied by a completely invisible “sea” of electrons. The only ob-
servable things are the electrons with positive energy and the unoccupied negative-
energy states or “holes” in the negative-energy sea, which are perceived as particles
with positive charge. A positive-energy electron could fall into one of these un-
occupied states by emitting a pair of photons; this would be perceived as mutual
annihilation of the electron and the positively charged particle. Dirac originally
proposed that the positively charged particles should be protons, but it quickly
became clear that this is incompatible both with the discrepancy in mass between
electrons and protons and the complete lack of observational evidence for electron-
proton annihilation. Dirac was then forced to accept the possible existence of what
we now call positrons, and he did so in a paper in 1931. The discovery of the
positron by Anderson in 1932 was yet another triumph of the Dirac theory.

The “hole” theory, however, presents problems of its own. Aside from the epis-
temological difficulties associated to the “negative energy sea,” it implies that the
Dirac equation cannot really work as it was originally intended, as an evolution
equation for a single electron, for the possibility of electron-positron creation or
annihilation is always present. The interpretation of antiparticles as holes in a neg-
ative energy sea is also untenable for particles of integer spin, to which the exclusion
principle does not apply. The idea that negative-energy states have something to
do with antiparticles, however, is supported by the fact that the charge conjugation
operator ψ �→ ψC that we introduced in (4.26) intertwines H with −H and hence
interchanges H+ and H−. (The calculation that H(ψC) = −(Hψ)C is easy and
left to the reader.)

We refer the reader to physics books for a fuller discussion of these matters,
which took a fair amount of time for the physicists to sort out. The final upshot,
however, was that a much more radical reinterpretation of the Dirac equation is
necessary to produce a satisfactory theory, and that a similar reinterpretation of
the Klein-Gordon equation gives it a new life as a fundamental theoretical tool. To
wit, the Dirac and Klein-Gordon equations must be considered as wave equations
not for wave functions of a quantum particle but for classical fields, even though
these classical fields do not represent anything in classical physics. One must then
quantize these classical fields to produce quantum fields whose quanta are the par-
ticles one wishes to study. (This reinterpretation is sometimes given the rather
misleading name of “second quantization.” There is only one quantization; it just
takes place at a different level than one was originally expecting.)
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4.4. Single-particle state spaces

So far we have taken the state space for a quantum particle to be L2(R3, V )
where V is a suitable finite-dimensional vector space. The R3 here has to do with
the position of the particle in space; the time variable appears only as a separate
parameter. To do things on a more relativistically invariant footing, this picture
needs to be revised. More precisely, the state of a particle is determined by various
observations made on the particle from a particular inertial reference frame. Two
observers in two different reference frames will assign different state vectors to
the particle, but the underlying physics must be invariant — at least when the
two frames are related by a transformation T in the connected component of the
identity P0 of the Poincaré group P. (Space and time inversion may present some
problems that need to be considered separately.) The correspondence between the
state vectors in the two reference frames must be given by a unitary map UT of the
state space, determined up to a phase factor, and clearly UT1T2

must be UT1
UT2

up
to a phase factor. (Antiunitary maps are a possibility in principle, but since P0 is
connected, continuity considerations force all the UT to be unitary.)

In short, relativistic invariance implies that the state space H must come
equipped with a projective unitary representation of the group P0. Moreover, the
theorem of Bargmann [6] quoted in §3.1 guarantees that every projective unitary
representation of P0 comes from a genuine unitary representation of its universal
cover R4�SL(2,C). Finally, we shall assume that this representation is irreducible,
which means that the particle is in some sense “elementary.” (The particle may, in
fact, have some additional structure, as long as that structure is irrelevant for the
physical problems under consideration. Thus, for some purposes a proton, or even a
whole atomic nucleus, can be considered “elementary.” The situation is analogous
to the problems in classical celestial mechanics in which the sun and the planets
can be assumed to be point masses.)

We are therefore faced with the problem of describing the irreducible unitary
representations of the group

G = R
4
� SL(2,C).

This was first accomplished by Wigner [134] and is now usually treated as a classic
application of the “Mackey machine.” We refer to Folland [45] and Varadarajan
[125] for a detailed account of the mathematics and its physical implications; here
we just present the results succinctly.

In this discussion we will be dealing with two copies of R4, “position space” and
“momentum space,” which should be considered to be in duality with each other
via the Lorentz inner product (p, x) �→ pμx

μ. Since this notation with indices will
become very cumbersome in places, we shall also write the Lorentz inner product
as 〈p, x〉:

〈p, x〉 = pμx
μ.

The group SL(2,C) acts as Lorentz transformations on position space, and hence
also on momentum space by the dual or contragredient action. We denote the
action of A ∈ SL(2,C) on x ∈ R4 simply by Ax, and the contragredient ac-
tion of A on p ∈ (R4)∗ by A†−1p. Thus, strictly speaking, Ax = κ(A)x where
κ : SL(2,C) → SO↑(1, 3) is the covering map defined by (1.17), and A†−1p =
κ(A)†−1p = κ(A†−1)p.
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Given p ∈ R4, let Hp (the “little group” of p) be the subgroup of SL(2,C) that
fixes p, let Gp = R4 �Hp, and let σ be an irreducible unitary representation of Hp

on a Hilbert space Hσ. Then one can define an irreducible unitary representation
ρp,σ of Gp on Hσ by

ρp,σ(a,A) = exp(−ipμaμ)σ(A).

Finally, let πp,σ be the unitary representation of G induced from ρp,σ (to be de-
scribed in more detail later):

πp,σ = indGGp
(ρp,σ).

Then πp,σ is irreducible, and every irreducible unitary representation of G is equiva-
lent to some πp,σ. Moreover, πp,σ and πp′,σ′ are equivalent if and only if p and p′ be-
long to the same SL(2,C)-orbit, say p′ = Bp, and A �→ σ(A) and A �→ σ′(BAB−1)
are equivalent representations of Hp.

We recall from §1.3 that the SL(2,C)-orbits in R4 are as follows:

X+
m =

{
p : p2 = m2, p0 > 0

}
, and X−

m =
{
p : p2 = m2, p0 < 0

}
for m ∈ [0,∞),

Ym =
{
p : p2 = −m2

}
for m ∈ (0,∞), and

{0}.
For m > 0, we may take the representative point in the orbit X±

m to be p±m =
(±m, 0, 0, 0) and the representative point in Ym to be qm = (0, 0,m, 0); the corre-
sponding little groups are SU(2) (the double cover of SO(3), acting in the spatial
variables) and SL(2,R) (the double cover of SO↑(1, 2), acting in p0p1p3-space). For
m = 0, we may take the representative point in X±

0 to be p±0 = (±1, 0, 0,±1); the
little group is

(4.40) Hp±
0
=

{
Mθ,b =

(
eiθ b
0 e−iθ

)
: θ ∈ R, b ∈ C

}
.

The reader may verify that this is a double cover of the group of rigid motions
(translations and rotations) in the complex plane. Finally, the little group for the
orbit {0} is SL(2,C) itself.

To proceed further we need to describe πp,σ more explicitly. In general, if G is a
locally compact group and H is a closed subgroup such that G/H has a G-invariant
measure μ, and σ is a unitary representation of H on H, the induced representation
indGH(σ) may be described as follows. For g ∈ G, let g be the image of g in G/H,
and let F0 be the space of continuous H-valued functions f on G that satisfy

f(gh) = σ(h)−1f(g) (g ∈ G, h ∈ H)

such that {g : g ∈ supp f} is compact in G/H. Since σ is unitary, for f ∈ F0 we
have ‖f(gh)‖H = ‖f(g)‖H, so ‖f(g)‖H depends only on g. We define F to be the
completion of F0 with respect to the Hilbert norm

‖f‖F =

[∫
G/H

‖f(g)‖2H dμ(g)

]1/2

.

Then indGH(σ) is the representation of G on F by left translation:

[indGH(σ)(g)]f(g′) = f(g−1g′).
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An alternative, more geometrically appealing description of indGH(σ) is as the rep-
resentation of G by left translations on the L2 sections of the homogeneous vector
bundle B on G/H determined by σ. B is the quotient of G×H by the equivalence
relation

(g, v) ∼ (gh, σ(h)−1v) (g ∈ G, h ∈ H, v ∈ H),

and f ∈ F is identified with the section whose value at g is the image of (g, f(g))
under the equivalence relation.

In our case, the representation πp,σ of G = R
4
� SL(2,C) acts on Hσ-valued

functions f on G that satisfy
(4.41)

f((a,A)(b, B)) = ei〈p,b〉σ(B)−1f(a,A) (a, b ∈ R
4, A ∈ SL(2,C), B ∈ Hp).

Since
(b, I)(a,A) = (a+ b, A) = (a,A)(A−1b, I)

the action of the space-time translation group is given by

[πp,σ(b, I)f ](a,A) = f((−b, I)(a,A)) = f((a,A)(−A−1b, I)) = e−i〈p,A−1b〉f(a,A)

= e−i〈A†−1p,b〉f(a,A).

Hence, the energy and momentum operators — the infinitesimal generators of
the time and space translations — are multiplication by the functions (a,A) �→
(A†−1p)μ. In particular, the operator corresponding to E2 − |p|2, which is the
square of the rest mass of a particle, is the scalar m2 on X±

m and −m2 on Ym, and
the energy operator is positive on X+

m and negative on X−
m. It follows that the rep-

resentations associated to the orbits X+
m describe particles of mass m. The orbits

X−
m correspond to the negative-energy solutions of the relativistic wave equations

whose explanation requires quantum fields and antiparticles as discussed in the fol-
lowing chapter. The orbits Ym would correspond to particles of imaginary mass,
and the orbit {0} would correspond to particles whose state is invariant under all
space-time translations, neither of which exist in reality.8

For m > 0, the little group of the point p+m = (m, 0, 0, 0) (the energy and
momentum in the rest frame of the particle) is SU(2), and the action of SU(2), the
double cover of SO(3), is what determines the spin of the particle. More precisely,
if we take σ = σs to be the unique irreducible representation of SU(2) of dimension
2s + 1 (s = 0, 12 , 1, . . .), the representation πp+

m,σs
describes a particle of mass m

and spin s. To nail this down completely, one should compute πp+
m,σs

(0, A) for

A ∈ SU(2) and show that its infinitesimal generators (the angular momentum
operators) are the sum of the appropriate orbital angular momentum and spin
operators. For this purpose it is better to give an alternate description of πp+

m,σs
as

acting on a space of Hσ-valued functions on the orbit X+
m rather than a space of

functions on G. We shall work this out for s = 0 and s = 1
2 below; see Varadarajan

[125] or Simms [112] for the general case.
Henceforth we shall simplify the notation by writing

πm,s = πp+
m,σs

.

In the simplest case s = 0, where σs is the trivial one-dimensional represen-
tation of SU(2), the space on which πm,0 acts consists of functions on G that are

8However, the trivial one-dimensional representation, which is associated to the orbit {0},
may be said to represent the vacuum.
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constant on the cosets of Gp+
m

and hence can be considered as functions on the

orbit X+
m
∼= G/Gp+

m
. With this identification, the Hilbert space on which πm,0 acts

is L2(X+
m, d3p/(2π)3ωp), where

ωp =
√
|p|2 +m2

and d3p/(2π)3ωp is the invariant measure on X+
m. (See §1.3; we have chosen a

different normalization of the invariant measure here.) For each fixed t, the inverse
Fourier transform

φ(t,x) =

∫
exp(−iωpt+ p · x)f(ωp,p)√

ωp

d3p

(2π)3

defines a unitary map f �→ φ(t, ·) from L2(X+
m, d3p/(2π)3ωp) onto L2(R3). The

maps f(ωp,p) �→ e−iωptf(ωp,p) form a one-parameter unitary group on the former

space whose infinitesimal generator is multiplication by ωp =
√
|p|2 +m2, and the

inverse Fourier transform intertwines it with the time-translation group φ(s,x) �→
φ(s+t,x), whose infinitesimal generator is therefore

√
−∇2 +m2. Hence φ satisfies

the Klein-Gordon equation, and we have recovered the description of the state space
as position-space wave functions. A similar description is available for higher spin.

For m = 0, the little group of the point p+0 = (1, 0, 0, 1) is given by (4.40). It
has two sets of irreducible representations: the one-dimensional representations τn
(n ∈ Z) given by τn(Mθ,b) = einθ, and a family of infinite-dimensional ones induced
from the one-dimensional representations of the subgroup {M0,b : b ∈ C}. The
latter do not correspond to any known physical particles, but the representation
πp+

0 ,τn
describes a massless particle of spin 1

2 |n|. Again we shall abbreviate: for

s = 0, 1
2 , 1,

3
2 , . . . ,

π0,±s = πp+
0 ,τ2s

.

This requires some more explanation. For massive particles, the spin is the
particle’s angular momentum when the particle is at rest. It is a vector-valued
operator, and for any unit vector u ∈ R

3 one can consider its component in the
direction u, i.e., the spin about the u-axis. When one says that the particle has
spin s, one means that s is the largest eigenvalue of one (and hence all) of these
components. Massless particles, however, are never at rest. They always travel
with the speed of light, and the only component of spin that makes sense is the
one about the axis along which they are traveling. We are therefore dealing with
irreducible representations not of SO(3) but of SO(2), and these are parametrized
by integers. In particular, the momentum vector p+0 corresponds to travel along
the x3-axis, and rotation through an angle θ about this axis is the image of Mθ/2,0

in SO(3). Thus, in the representation induced from τn, the x3-spin has the value
1
2n. To distinguish this from the situation pertaining to massive particles, one often

says that the particle has helicity 1
2n.

Now, n can be either positive or negative, so one must ask what is the physical
difference beteween π0,s and π0,−s. To understand this, one needs to consider
the effect of the parity transformation (t,x) �→ (t,−x), that is, to enlarge the

symmetry group to the double cover G̃ of the orthochronous Poincaré group. The
representations πm,s with m > 0 all extend to representations of this larger group,
but π0,±s does not. Rather, the direct sum π0,s⊕π0,−s extends to a representation

of G̃ in which the parity operator interchanges the two summands. Since parity
is a symmetry of electromagnetism, gravity, and quantum chromodynamics, it is
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this direct sum that properly describes the associated massless particles: photons,
gluons, and gravitons, which have spins 1, 1, and 2, respectively. However, parity
is emphatically not a symmetry of the weak interaction, so in theories in which
neutrinos are treated as massless, the two representations π0,±1/2 describe two

different species of particle: π0,−1/2 gives neutrinos and π0,1/2 gives antineutrinos.9

How does the Dirac model for massive spin-12 particles, which uses functions

with values in C
4 rather than C

2, fit into this picture? In terms of the representation
πm,1/2, the answer is quite simple. The direct sum of two copies of πm,1/2 acts

on certain functions on G with values in C
4 = C2 × C2, and the representation

πD that corresponds to the positive-energy solutions of the Dirac equation is the
subrepresentation of πm,1/2⊕πm,1/2 on the subspace of functions f = (f1, f2, f3, f4)
such that (f1, f2) = (f3, f4). Here the little group is SU(2), and σ1/2 is simply the

identity representation of SU(2) on C
2.

To see how this works, recall the representation Φ of SL(2,C) defined by (4.21).
Since A†−1 = A for A ∈ SU(2), we can state the covariance condition (4.41) for the

representation πD in terms of Φ as f((a,A)(b, B)) = ei〈p
+
m,b〉Φ(B−1)f(a,A). That

is, the Hilbert space for πD is
(4.42)

HπD
=

{
f : G→ C

4 : f((a,A)(b, B)) = ei〈p
+
m,b〉Φ(B−1)f(a,A) for B ∈ SU(2),

(f1, f2) = (f3, f4),

∫
X+

m

|f(a,A)|2 d3p

(2π)3ωp
<∞

(
(ωp,p) = A†−1p+m

)}
.

The connection with the Dirac equation is as follows. Let V be the subbundle
of the product bundle X+

m×C4 over X+
m whose fiber at p is Vp = {v : pμγ

μv = mv},
where the γμ are the Weyl form (4.12) of the Dirac matrices. Thus, the sections of
V are the C4-valued functions f on X+

m that satisfy the Fourier-transformed Dirac
equation

pμγ
μf(p) = mf(p).

We define a Hilbert norm on the fiber Vp by

(4.43) ‖v‖2p =
m|v|2
p0

,

where |v| is the Euclidean norm on C4. The crucial point is that if A ∈ SL(2,C),
the operator Φ(A) is an isometry from Vp to VA†−1p. Indeed, if v ∈ Vp, by (4.22)
— recalling that Aγ is really κ(A)γ — we have

(A†−1p)μγ
μΦ(A)v = pμ[κ(A)−1]μνγ

νΦ(A)v = pμΦ(A)γμv = mΦ(A)v,

so Φ(A)v ∈ VA†−1p. Moreover, since γj is skew-adjoint for j > 0, for v ∈ Vp we

have m|v|2 = pμ〈γμv|v〉 = p0〈γ0v|v〉, so ‖v‖2p = 〈γ0v|v〉. (Here 〈·|·〉 is the Euclidean
inner product on C

4. The condition v ∈ Vp is essential for the positivity of 〈γ0v|v〉!)
The fact that Φ(A) is an isometry now follows since

Φ(A)†γ0Φ(A) =

(
A−1 0
0 A†

)(
0 I
I 0

)(
A†−1 0
0 A

)
=

(
0 I
I 0

)
= γ0.

9Photons, gravitons, and some gluons are their own antiparticles; other gluons are distin-
guished from their antiparticles by their color charge.
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We now transfer the representation πD to a space of sections of V . Let HΠ be
the Hilbert space of sections f of V that are square-integrable with respect to the
pointwise norm ‖ · ‖p and the invariant measure d3p/(2π)3ωp on X+

m, that is,∫
‖f(ωp,p)‖2p

d3p

(2π)3ωp
=

∫
m|f(ωp,p)|2

ω2
p

d3p

(2π)3
<∞.

In view of the results of the preceding paragraph, the following formula defines a
unitary representation Π of R4 � SL(2,C) on HΠ:

Π(b, B)f(p) = e−i〈p,b〉Φ(B)f(B†p).

We claim that the map T defined by

Tf(a,A) = exp[i〈p+m, A−1a〉]Φ(A−1)f(A†−1p+m)

gives a unitary equivalence of Π and πD.
To prove this, first observe that Tf has the right SU(2)-covariance property:

if B ∈ SU(2),

Tf((a,A)(b, B)) = Tf(a+Ab,AB)

= exp[i〈p+m, (AB)−1(a+Ab)〉]Φ((AB)−1)f((AB)†−1p+m)

= exp[i〈B−1†p+m, A−1a+ b〉]Φ(B−1)Φ(A−1)f(A−1†B−1†p+m)

= exp[i〈p+m, b〉]Φ(B−1)Tf(a,A),

since B−1†p+m = p+m. Next, observe that since p+m = (m, 0, 0, 0) and γ0 = ( 0 I
I 0 ),

the fiber Vp+
m

is just {v : γ0v = v} = {v : (v1, v2) = (v3, v4)}, and ‖v‖p+
m

= |v|.
Since Φ(A−1) is an isometry from VA†−1p+

m
to Vp+

m
, it follows that T is an isometry

from HΠ into HπD
. Since πD is irreducible, it remains only to check that T is an

intertwining operator from Π to πD:

T [Π(b, B)f ](a,A) = exp[i〈p+m, A−1a〉S(A−1)[Π(b, B)f ](A†−1p+m)

= exp[i〈p+m, A−1a〉 − i〈A†−1p+m, b〉]Φ(A−1)Φ(B)f(B†A†−1p+m)

= exp[i〈p+m, A−1(a− b)〉]Φ((B−1A)−1)f((B−1A)†−1p+m)

= Tf(B−1(a− b), B−1A) = Tf((b, B)−1(a,A))

= [πD(b, B)Tf ](a,A).

The Hilbert space HΠ consists of momentum-space wave functions, and one
can return to the position-space wave functions via the Fourier transform. That is,
if f ∈ HΠ, let

(4.44) ψ(t,x) =

∫
exp(−iωpt+ p · x)

√
mf(ωp,p)

ωp

d3p

(2π)3
.

The map f �→ ψ(t, ·) is an isometry from HΠ into L2(R3,C4) for each t, and
the fact that pμγ

μf(p) = mf(p) implies that ψ satisfies the free Dirac equation
iγμ∂μψ = mψ. The space of ψ’s thus obtained is the space of positive-energy
solutions to the Dirac equation; that is, for each t, ψ(t, ·) belongs to the subspace
of L2(R3,C4) on which the Dirac Hamiltonian is a positive operator (called H+ in
§4.3).

One obtains the negative-energy solutions by playing the same game with the
representation π−

m,1/2 = πp−
m,σ1/2

and the orbit X−
m. Since the equation pμγ

μv = mv

becomes −γ0v = v when p = p−m, the analogue of πD here is the subrepresentation
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of π−
m,1/2 ⊕ π−

m,1/2 on the space of functions f such that (f3, f4) = −(f1, f2). The

resolution of the negative-energy paradox by a reinterpretation of the Dirac equation
in terms of fields will be explained in the next chapter.

4.5. Multiparticle state spaces

Having discussed state spaces for single particles, we now turn to the question
of constructing state spaces for systems of particles. As we mentioned in §3.1, if
we have k particles with state spaces H1, . . . ,Hk, we can describe states of the
k-particle system using the tensor product H1 ⊗ · · · ⊗Hk. This is the completion
of the algebraic tensor product of the Hj ’s with respect to the inner product

〈u1 ⊗ u2 · · · ⊗ uk, v1 ⊗ v2 · · · ⊗ vk〉 = 〈u1|v1〉〈u2|v2〉 · · · 〈uk|vk〉.

To put it another way, if {ejn}∞n=1 is an orthonormal basis for Hj , then{
e1n1

⊗ · · · ⊗ eknk
: 1 ≤ n1, . . . , nk <∞

}
is an orthonormal basis for H1⊗· · ·⊗Hk. In this setting, u1⊗· · ·⊗uk describes the
compound state in which the jth particle is in state uj for each j. Superpositions
of states that are not reducible to single products also occur; for example, if u±
are states in which particle A has spin “up” or “down” along some axis, and v±
similarly for particle B, then (u+⊗ v+ + u− ⊗ v−)/

√
2 is a state in which the spins

of the particles are aligned but the direction is unspecified. On the macroscopic
level, the famous Schrödinger cat paradox [68] involves states of the form

(undecayed atom)⊗ (live cat) + (decayed atom)⊗ (dead cat).

If we are describing a system of k particles of the same species (k electrons, for
example), we can take the Hilbert spaces Hj all to be the same space H. However,

in this case the putative k-particle state space
⊗k

H is too big. It is a fundamental
fact that particles of the same species are truly indistinguishable; there is no way
to attach labels to two electrons so as to tell which one is which. Mathematically,

the permutation group on k letters, Sk, acts on
⊗k

H in a canonical way,

σ(u1 ⊗ · · · ⊗ uk) = uσ(1) ⊗ · · · ⊗ uσ(k),

and the only unit vectors that can represent sets of k identical particles are those
that are mapped into scalar multiples of themselves by the permutation group:
σ(v) = R(σ)v, where R(σ) is a scalar of absolute value 1. Clearly R is a one-
dimensional representation of Sk, of which there are only two, the trivial represen-
tation and the representation R(σ) = sgn σ, which correspond to symmetric and
antisymmetric tensors respectively. In short, we are led to consider the subspaces

�kH =
{
v ∈

⊗k
H : σ(v) = v, ∀σ ∈ Sk

}
,∧k

H =
{
v ∈

⊗k
H : σ(v) = (sgnσ)v, ∀σ ∈ Sk

}
.

Which of these is appropriate depends on the species of particle in question. Parti-
cles whose multiparticle states are symmetric are called Bosons ; those whose multi-
particle states are antisymmetric are called Fermions. It turns out that Bosons are
precisely those particles whose spin is an integer; this is the spin-statistics theorem,
and we shall say more about it in §5.3 and §6.5.
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Let us take a closer look at the Boson space �kH. There is a canonical pro-

jection Ps (s for symmetric) from
⊗k

H onto �kH:

Ps(u1 ⊗ · · · ⊗ uk) =
1

k!

∑
σ∈Sk

uσ(1) ⊗ · · · ⊗ uσ(k).

To analyze Ps it is convenient to consider an orthonormal basis {ej} for H. Suppose
u1, . . . , uk are all elements of this basis, say uj = ei1 for n1 values of j, . . . , uj = eim
for nm values of j, where i1, . . . , im are distinct and n1 + · · · + nm = k, and let
u = u1 ⊗ · · · ⊗ uk. The sum defining Ps(u) breaks up into groups of identical
terms, corresponding to permutations that only permute the factors of ei among
themselves. Each group has n1! · · ·nm! terms, there are k!/n1! · · ·nm! groups, and
terms in different groups are orthogonal to each other. Hence the sum is a sum of
k!/n1! · · ·nm! distinct terms, all orthogonal to each other, each of norm n1! · · ·nm!,
and so

‖Ps(u)‖ =
n1! · · ·nm!

k!

√
k!

n1! · · ·nm!
=

√
n1! · · ·nm!

k!
.

Moreover, if v1, . . . , vk are also elements of {ej} and v = v1 ⊗ · · · ⊗ vk, we have

〈Ps(u)|v〉 =
{

n1! · · ·nm!/k! if v = σ(u) for some σ ∈ Sk

0 otherwise

}
= 〈u|Ps(v)〉,

Thus Ps is an orthogonal projection.
For any sequence {nj} of nonnegative integers with

∑∞
1 nj = k, let

(4.45) |n1, n2, . . .〉 =
√

k!

n1!n2! · · ·
Ps

(
(⊗n1e1)⊗ (⊗n2e2)⊗ · · ·

)
,

where ⊗nej = ej ⊗ · · · ⊗ ej (n factors). (Here we are using the convenient Dirac
convention of labeling a vector simply by the indices that specify it.) Then{

|n1, n2, . . .〉 :
∑

nj = k
}

is an orthonormal basis for �kH.

The Boson Fock space. In order to form a state space that can accomodate
any number of identical Bosons, we put all the spaces �kH together to form the
complete symmetric tensor algebra over H, also known as the Boson Fock space
over H:

Fs(H) =

∞⊕
k=0

�kH.

Here �0H = C, and the object on the right is the orthogonal direct sum of Hilbert
spaces. We combine the orthonormal bases of the preceding paragraph for the
spaces �kH, together with

|0, 0, . . .〉 = 1 ∈ �0H,

to obtain the orthonormal basis{
|n1, n2, . . .〉 : nj ≥ 0,

∑
nj <∞

}
for Fs(H). Fs(H) is a state space that describes arbitrary numbers of identical
Bosons, including none at all. The basis vector |n1, n2, . . .〉 specifies the state in
which there are nj particles in state ej for each j.
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There are no states in Fs(H) that contain infinitely many particles, but there
are states in which there is a positive probability of finding arbitrarily large numbers
of particles, namely, infinite linear combinations of basis vectors |n1, n2, . . .〉 with∑

nj arbitrarily large. It is convenient also to consider the finite-particle subspace
of states in which the total number of particles is bounded above, that is,

F0
s(H) = the algebraic direct sum of the spaces �kH.

On this space we define the number operator N by

N
(∑

an1n2...|n1, n2, . . .〉
)
=

∑
(n1 + n2 + · · · )an1n2...|n1, n2, . . .〉.

If u ∈ �kH we have Nu = ku, so N is the observable that tells how many
particles are in a given state. (N has a unique extension to an unbounded self-
adjoint operator on Fs(H).)

We now introduce some operators that raise or lower the number of parti-
cles. For this purpose we retreat temporarily to the full tensor algebra F(H) =⊕∞

0

⊗k
H and its dense subspace F0(H), the algebraic direct sum of the tensor

spaces
⊗k

H. The number operator N is defined on F0(H) just as above:

N = kI on
⊗k

H.

For v ∈ H, the operators B(v) and B(v)† on F0(H) are defined by

B(v)(u1 ⊗ · · · ⊗ uk) = 〈v|u1〉u2 ⊗ · · · ⊗ uk,

B(v)†(u1 ⊗ · · · ⊗ uk) = v ⊗ u1 ⊗ · · · ⊗ uk.

(When k = 0, B(v)1 = 0 and B(v)†1 = v, and when k = 1, B(v)u = 〈v, u〉1, where 1
is the unit element in C =

⊗0
H.) It is easily verified that 〈B(v)u|w〉 = 〈u|B(v)†w〉

for u,w ∈ F0(H), so the notation is consistent. Note that B(v) depends anti-
linearly on v, whereas B(v)† depends linearly on v.

The operator B(v)† does not preserve the symmetric subspace F0
s(H), as the

factor v is inserted only on the left, but B(v) does preserve this subspace:

B(v)Ps(u1 ⊗ · · · ⊗ uk) =
1

k!

k∑
j=1

〈v, uj〉
∑

σ(1)=j

uσ(2) ⊗ · · · ⊗ uσ(k)

=
1

k

k∑
j=1

〈v, uj〉Ps(u1 ⊗ · · · ûj · · · ⊗ uk),

where the hat indicates that the term is omitted. If we take the uj and v to be
elements of an orthonormal basis {el} for H, say v = el and uj = el for n values of
j, the sum on the right consists of n identical nonzero terms and k− n zero terms.
Taking into account the normalizations in (4.45), we see that the action of B(ej)
on the basis {|n1, n2, . . .〉} for F0

s(H) is

B(ej)|n1, . . . , nj , . . .〉 =
√

nj

k
|n1, . . . , nj − 1, . . .〉 (k = n1 + n2 + · · · ).

For reasons that will become clearer shortly, it is convenient to get rid of the factor
of 1/

√
k in this formula by defining the operator A(v) on F0

s(H) as

(4.46) A(v) = B(v)
√
N =

√
N + IB(v) on F0

s(H),
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that is,

A(v)w =
√
k B(v)w for w ∈ �kH,

so that
A(ej)|n1, . . . , nj , . . .〉 =

√
nj |n1, . . . , nj − 1, . . .〉.

The adjoint of A(v) as an operator on F0
s(H) (rather than F0(H)) is given by

(4.47) A(v)† = PsB(v)†
√
N + I = Ps

√
N B(v)† on F0

s(H).

(An extra factor Ps could be inserted on the right of the formula defining A(v); it
has no effect since the domain of A(v) is contained in the range of Ps.) Informally
speaking, A(v)† creates a particle in the state v, whereas A(v) destroys a particle
in the state v and annihilates any multiparticle state in which no particle has any
probability of being in the state v. For this reason, A(v)† and A(v) are called
creation and annihilation operators.

The most important consequence of introducing the factor of
√
N into A(v) is

that the operators A(v) satisfy the following variant of the canonical commutation
relations:

(4.48) [A(v), A(w)†] = 〈v|w〉I, [A(v), A(w)] = [A(v)†, A(w)†] = 0

for any v, w ∈ H. To see this, we compute the action of A(v)A(w)† and A(w)†A(v)
on u = Ps(u1 ⊗ · · · ⊗ uk) ∈ �kH:

A(v)A(w)†u = (k + 1)B(v)PsB(w)†Ps(u1 ⊗ · · · ⊗ uk)

= (k + 1)B(v)Ps

[
1

k!

∑
σ∈Sk

w ⊗ uσ(1) ⊗ · · · ⊗ uσ(k)

]

=
1

k!
B(v)

k∑
j=0

∑
σ∈Sk

uσ(1) ⊗ · · · ⊗ w ⊗ · · · ⊗ uσ(k) (w in jth place)

=
1

k!

∑
σ∈Sk

〈v|w〉uσ(1) ⊗ · · · ⊗ uσ(k)

+
1

k!

k∑
j=1

∑
σ∈Sk

〈v|uσ(1)〉uσ(2) ⊗ · · · ⊗ w ⊗ · · · ⊗ uσ(k)

= 〈v, w〉Ps(u1 ⊗ · · · ⊗ uk) +

k∑
j=1

〈v|uj〉Ps(w ⊗ u1 ⊗ · · · ûj · · · ⊗ uk),

where ûj means that uj is omitted. On the other hand,

A(w)†A(v)u = kPsB(w)†B(v)Ps(u1 ⊗ · · · ⊗ uk)

=
k

k!
PsB(w)†

∑
σ∈Sk

〈v, uσ(1)〉uσ(2) ⊗ · · · ⊗ uσ(k)

= PsB(w)†
k∑

j=1

〈v|uj〉Ps(u1 ⊗ · · · ûj · · · ⊗ uk)

=
k∑

j=1

〈v|uj〉Ps(w ⊗ u1 ⊗ · · · ûj · · · ⊗ uk).

Thus A(v)A(w)†u−A(w)†A(v)u = 〈v|w〉u.
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This proves the first equality in (4.48). Moreover, an easy calculation similar
to the preceding ones shows that the restrictions of B(v) and B(w) to F0

s commute,
and hence

A(v)A(w) =
√
N + I B(v)B(w)

√
N =

√
N + I B(w)B(v)

√
N = A(w)A(v).

By taking adjoints it follows that A(v)†A(w)† = A(w)†A(v)†, so (4.48) is estab-
lished.

Rather than considering A(v) for arbitrary v ∈ H, it is often convenient to take
v to belong to some useful orthonormal basis. Thus, given an orthonormal basis
{ej} for H, we set

(4.49) Aj = A(ej), A†
j = A(ej)

†.

The action of these operators on the basis (4.45) is simple:

(4.50)
Aj |n1, . . . , nj , . . .〉 =

√
nj |n1, . . . , nj − 1, . . .〉,

A†
j |n1, . . . , nj , . . .〉 =

√
nj + 1|n1, . . . , nj + 1, . . .〉.

It follows that

A†
jAj |n1, . . . , nj , . . .〉 = nj |n1, . . . , nj , . . .〉,

and hence

(4.51)
∑

A†
jAj = N.

Moreover, by (4.48),

(4.52) [Aj , A
†
k] = δjkI, [Aj , Ak] = [A†

j , A
†
k] = 0.

There is one other important construction on Fock space that needs to be
discussed here. Suppose U is a unitary operator on H. Then U induces a unitary
operator on all the tensor powers of H and hence a unitary operator F(U) on the

full tensor algebra F(H) =
⊕∞

0

⊗k
H, by the formula

(4.53) F(U)(u1 ⊗ · · · ⊗ uk) = Uu1 ⊗ · · · ⊗ Uuk.

F(U) clearly commutes with the number operator N and with the projections onto
the symmetric and antisymmetric subspaces. Moreover, for any v ∈ H,

F(U)B(v)F(U)−1(u1 ⊗ · · · ⊗ uk) = F(U)〈v|U−1u1〉U−1u2 ⊗ · · · ⊗ U−1uk

= 〈Uv|u1〉u2 ⊗ · · · ⊗ uk = B(Uv)(u1 ⊗ · · · ⊗ uk),

so that F(U)B(v)F(U)−1 = B(Uv). It follows that F(U)B(v)†F(U)−1 = B(Uv)†

also. Combining these facts, we obtain

(4.54) F(U)A(v)F(U)−1 = A(Uv), F(U)A(v)†F(U)−1 = A(Uv)†.

The Fermion Fock space. Just as for Bosons, we can define a state space
for arbitrary numbers of identical Fermions: the Fermion Fock space

Fa(H) =
∧
H =

∞⊕
0

∧k
H

(∧0
H = C

)
.

As before, the direct sum on the right is an orthogonal sum of Hilbert spaces, and
the corresponding algebraic direct sum is denoted by F0

a.
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All of the preceding notions have analogues here. First, we have the natural

orthogonal projection Pa :
⊗k

H→
∧k

H:

Pa(u1 ⊗ · · · ⊗ uk) = u1 ∧ · · · ∧ uk =
1

k!

∑
σ∈Sk

(sgnσ)uσ(1) ⊗ · · · ⊗ uσ(k).

The number operator N is again defined by N = kI on
∧k

H, and for v ∈ H, the
annihilation and creation operators A(v) and A(v)∗ are defined on F0

a(H) by

(4.55) A(v) = B(v)
√
N, A(v)† = Pa

√
N B(v)†.

The exterior product notation leads to simple formulas for A(v) and A(v)∗:

A(v)(u1 ∧ · · · ∧ uk) =
1√
k

k∑
j=1

(−1)j〈v|uj〉u1 ∧ · · · ûj · · · ∧ uk,

A(v)†(u1 ∧ · · · ∧ uk) =
√
k + 1 v ∧ u1 ∧ · · · ∧ uk.

A(v) destroys a particle in the state v and gives 0 if there is no such particle; A(v)†

creates a particle in the state v but gives 0 if there is already a particle in that
state.

The big difference here is that the analogue of (4.48) involves anticommutation
relations. To wit,

(4.56) {A(v), A(w)†} = 〈v, w〉I, {A(v), A(w)} = {A(v)†, A(w)†} = 0

for any v, w ∈ H, where

{A,B} = AB +BA.

To see this, observe that since v ∧ w + w ∧ v = 0, we have {A(v)†, A(w)†} = 0 and
hence also {A(v), A(w)} = 0. Next,

A(v)A(w)†(u1 ∧ · · · ∧ uk) =
√
k + 1A(v)w ∧ u1 ∧ · · · ∧ uk

= 〈v, w〉u1 ∧ · · · ∧ uk +

k∑
1

(−1)j〈v, uj〉w ∧ u1 ∧ · · · ûj · · · ∧ uk,

whereas

A(w)†A(v)(u1 ∧ · · · ∧ uk) =
k∑
1

(−1)j−1〈v|uj〉w ∧ u1 ∧ · · · ûj · · · ∧ uk.

(The
√
k’s or

√
k + 1’s cancel out in both cases.) Hence {A(v), A(w)†} = 〈v, w〉I.

By the way, in marked contrast to the Boson case, the operators A(v) and
A(v)† extend to bounded operators on the whole Fermion Fock space. Indeed, for
any w ∈ F0

a(H), (4.56) implies that

‖A(v)w‖2 + ‖A(v)†w‖2 = 〈w|A(v)†A(v)w〉+ 〈w|A(v)A(v)†w〉 = ‖v‖2‖w‖2,

so that

(4.57) ‖A(v)‖ ≤ ‖v‖, ‖A(v)†‖ ≤ ‖v‖.

The operators F(U) defined by (4.53) can be considered as unitary operators on
Fa(H), and the formulas (4.54) remain valid in this setting (with the same proof).
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As in the Boson case, it is often convenient to express things in terms of an
orthonormal basis for H. First, if {ej} is such a basis,{

ei1 ∧ · · · ∧ eik : i1 < · · · < ik
}

is an orthogonal basis for
∧k

H. Moreover, since ei1 ∧ · · · ∧ eik is 1/k! times a sum
of k! orthogonal terms (sgnσ)eiσ(1)

⊗ · · · ⊗ eiσ(k)
, each of which has norm 1, we

have ‖ei1 ∧ · · · ∧ eik‖ = 1/
√
k!. The corresponding orthonormal basis for Fa(H) is

therefore {
|n1, n2, . . .〉 : nj = 0 or 1,

∑
nj <∞

}
given by

|n1, n2, . . .〉 =
√
k! ei1 ∧ · · · ∧ eik ,

where i1 < · · · < ik are the indices i for which ni = 1. The fact that each nj must
be 0 or 1 is a precise statement of the Pauli exclusion principle, which says that
“no two identical Fermions can occupy the same state.”

As before, we set

Aj = A(ej), A†
j = A(ej)

†.

By (4.56), we then have

(4.58) {Aj , A
†
k} = δjkI, {Aj , Ak} = {A†

j , A
†
k} = 0.

It is also easily verified that

Aj |n1, . . . , nj , . . .〉 =
{
(−1)m|n1, . . . , nj − 1, . . .〉 if nj = 1,

0 if nj = 0,

A†
j |n1, . . . , nj , . . .〉 =

{
(−1)m|n1, . . . , nj + 1, . . .〉 if nj = 0,

0 if nj = 1,

where m is the integer such that ni = 1 for m values of i with i < j. It follows that

A†
jAj |n1, n2, . . .〉 = nj |n1, n2, . . .〉,

and hence, as in (4.51), ∑
A†

jAj = N.

Finally, we consider the state spaces for arbitrary numbers of particles of several
different species. More precisely, we consider systems of free particles. The state
space for a rigorous model of an interacting system might turn out to be rather
different. However, our approach to interactions will be to apply perturbation
theory to noninteracting systems, so we still need the free-particle state space to
get started.

There is not much new to be said here. If one has K species of particles, one
takes an appropriate single-particle state space Hk for each species, k = 1, . . . ,K,
and forms the appropriate (Boson or Fermion) Fock space Fk over Hk for each k.
Then the state space for the whole system is

F = F1 ⊗ · · · ⊗ FK .

For each k one has annihilation and creation operators Ak(v), A
†
k(v) (v ∈ Hk) on

Fk, and these are taken to act on F by the identification

Ak(v)↔ I ⊗ · · · ⊗ I ⊗Ak(v)⊗ I ⊗ · · · ⊗ I.

                

                                                                                                               



96 4. RELATIVISTIC QUANTUM MECHANICS

With these definitions, creation and/or annihilation operators pertaining to two
different species of particle always commute with each other. However, it simplifies
some things to postulate that such operators pertaining to Fermions should anti-
commute, and this convention is commonly adopted in the physics literature. This
can be achieved by a small modification in the definitions of the Fermionic annihi-
lation and creation operators. To wit, it suffices to list the Fermion Fock spaces in
some definite order, say F1, . . . ,FJ , and then to replace the operators Aj(v) on Fj

by Aj(v)(−1)N1+···+Nj−1 where Ni is the number operator on Fi, and likewise for

Aj(v)
†. That is, the operators Aj(v) and A†

j(v) acquire an extra minus sign when
applied to states where there is an odd number of particles of the previously listed
Fermion species. This does not affect the states defined by these operators in a
significant way, as v and −v define the same physical state; for the same reason,
the choice of ordering is immaterial. Only the (anti)commutation relations among
the operators are important.

A footnote for fans of category theory. There are some abstract structural
aspects of the constructions in this section that may be worth pointing out. To begin
with, let H be the category whose objects are Hilbert spaces and whose morphisms
are (linear) contractions, i.e., linear maps of norm ≤ 1. (It might seem more natural
to take the morphisms to be the linear isometries, and one could do so. But if one
wants the set of morphisms to be closed under adjoints, and orthogonal direct
sums to be products in the sense of category theory, one needs to include partial
isometries; and every contraction can be approximated in norm by compositions
of partial isometries. Either way, the isomorphisms are the unitary maps.) To

each H ∈ H one can associate the full Fock space F(H) =
⊕∞

0

⊗k
H as well

as the Boson and Fermion Fock spaces Fs(H) and Fa(H), and to each morphism
A : H1 → H2 one can associate the morphism F(A) : F(H1)→ F(H2), defined just
as in (4.53), as well as its restrictions to Fs(H1) and Fa(H1). (It is obvious that
F(A) is a contraction whenever A is. Note, however, that if one tries to define F(A)
on F(H1) by (4.53) when ‖A‖ > 1, the result is generally an unbounded operator
on F(H1).) In short, F, Fs, and Fa are functors from H to itself. They are, in
fact, “exponential functors” in the sense that they convert direct sums into tensor
products: F(H1 ⊕H2) ∼= F(H1) ⊗ F(H2), and likewise for Fs and Fa. (We leave
the verification of this as an exercise for the interested reader.) See Nelson [87] for
a related functorial construction that is relevant to quantum field theory.

                

                                                                                                               



CHAPTER 5

Free Quantum Fields

He had bought a large map representing the sea,
Without the least vestige of land:

And the crew were much pleased when they found it to be
A map they could all understand.

—Lewis Carroll, The Hunting of the Snark (Fit the Second)

In this chapter we take our first step into quantum field theory by discussing
free fields, i.e., fields without interactions. The good thing about free fields is that
they can be constructed with complete mathematical rigor, although that task
requires more sophistication than one might imagine at the outset; the bad thing
is that they don’t exhibit any interesting physics. But the time spent on them is
not wasted, because they are an essential ingredient in the interacting field theories
that we shall consider in the next chapter.

5.1. Scalar fields

We begin by constructing the free quantum scalar fields of mass m > 0. What
this means is the following: we think of solutions φ of the Klein-Gordon equation
(∂2 + m2)φ = 0 as representing a classical field, and we are going to construct
the corresponding quantum field. The quanta of these fields, as we shall see, are
particles of spin zero and mass m.

There is a little conceptual barrier here in that there is no actual classical
physical field that is described by the Klein-Gordon equation, and spin-zero ele-
mentary particles are also rather scarce.1 (There are some; the pions are the least
exotic examples, but since the charged pions have a mean lifetime of about 10−8

seconds and the neutral ones have a mean lifetime of about 10−16 seconds, they
aren’t often seen by anyone but particle physicists.) The reader is best advised to
consider what we are doing as constructing a toy model for the electromagnetic
field. The free electromagnetic potential (not interacting with any charged matter)
in Lorentz gauge satisfies the wave equation ∂2Aμ = 0, which is the Klein-Gordon
equation but (i) with m = 0 and (ii) for a vector-valued rather than scalar-valued
function. These conditions correspond to the fact that photons have mass 0 and
spin 1. The vector nature of the field necessitates some additional algebra that does
not seriously affect the underlying ideas but makes their execution a little messier,
and the condition m = 0 complicates the situation considerably. The scalar field

1The ideas of quantum field theory also have interesting applications to condensed matter
physics, however, and certain excitations of crystal lattices (“phonons”) can be modeled by spin-
zero particles. We refer the reader to Mattuck [82] and Zee [138] for more information about this
subject.
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with positive mass exhibits all the essential ideas and difficulties of quantum fields
in general, but in the simplest possible context.

We start by deriving the quantum field as physicists (going back to Dirac)
usually do, paying more attention to intuitive clarity than mathematical rigor; then
we shall show how to perform the construction rigorously. The point of following the
physicists’ path is twofold: first, it shows how to arrive at the quantum field starting
from more familiar objects and makes clear what are the technical difficulties along
the way; second, it leads to the standard notations that are used throughout the
physics literature and in this book. In any case, the rigorous construction is easier
to understand if one already knows what one is trying to construct.

We shall first construct a neutral scalar field, which corresponds to a real-valued
classical Klein-Gordon field, and whose quanta are their own antiparticles (such as
neutral pions). We shall then modify the construction to obtain a “charged” scalar
field, which corresponds to a complex-valued classical Klein-Gordon field, and whose
quanta have distinct antiparticles (although they need not possess electric charge).

To make the technical details a bit easier to begin with, we consider the Klein-
Gordon equation not in all of R4 but in a box. That is, we fix a bounded region
B ⊂ R

3 and consider the differential equation (∂2
t −∇2 +m2)φ(t,x) = 0 for t ∈ R

and x ∈ B, subject to real boundary conditions that make −∇2 positive and self-
adjoint. (We shall make more specific choices of B and the boundary conditions
later.) The boundedness of B guarantees that −∇2 has only a discrete spectrum,
that is, there is an orthonormal eigenbasis {fj} for −∇2 with eigenvalues {λ2

j}.
Since the differential equation and boundary conditions are real, the eigenfunctions
fj may be chosen to be real, and for the time being we assume that they are.

Now, a classical real field φclas(t,x) can be expanded in terms of the eigenfunc-
tions fj :

φclas(t,x) =
∑

qj(t)fj(x),

where the coefficients qj(t) are also real. φclas satisfies the Klein-Gordon equation
if and only if these coefficients satisfy

(5.1) q′′j (t) + ω2
j qj = 0, ω2

j = λ2
j +m2.

But this is the equation for a classical harmonic oscillator. To turn φclas into a
quantum field, we replace these classical oscillators with quantum oscillators.

This necessitates a digression to discuss systems of quantum harmonic oscilla-
tors. First let us consider a system of K one-dimensional oscillators, where K is a
positive integer. The state space is L2(RK) and the Hamiltonian is

H = − 1
2∇

2 + 1
2

∑
ωjx

2
j =

∑ ωj

2

(
− 1

ωj

∂2

∂x2
j

+ ωjx
2
j

)
,

where ω1, . . . , ωK are positive numbers. The substitution yj =
√
ωj xj makes

H =
∑ ωj

2

(
− ∂2

∂y2j
+ y2j

)
,

a sum of standard one-dimensional oscillator Hamiltonians, to which we can ap-
ply the analysis of §3.4. Namely, let Xj and Pj be the position and momentum
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operators for the jth oscillator,

Xj = mult. byxj , Pj =
1

i

∂

∂xj
,

and let Yj and Qj be the corresponding operators for the y-coordinates,

Yj =
√
ωj Xj = mult. by

√
ωj xj , Qj =

1
√
ωj

Pj =
1

i
√
ωj

∂

∂xj
.

We then set

Aj =
1√
2
(Yj + iQj), A†

j =
1√
2
(Yj − iQj).

For future reference we note that

(5.2) Xj =
1√
2ωj

(Aj +A†
j), Pj =

1

i

√
ωj

2
(Aj −A†

j).

These operators satisfy the canonical commutation relations

[Xj , Pk] = iδjkI, [Aj , A
†
k] = δjkI,

[Xj , Xk] = [Pj , Pk] = [Aj , Ak] = [A†
j , A

†
k] = 0,

and the Hamiltonian is

H =
∑

ωj(A
†
jAj +

1
2 ).

The eigenfunctions of H are simply the products of the one-dimensional eigenfunc-
tions of the one-dimensional oscillator given by (3.27):

φn1n2···nK
(x) =

(A†
1)

n1 · · · (A†
K)nK

√
n1! · · ·nK !

φ00···0(x),

where φ00···0(x) =
[∏

(ωj/π)
]1/4

exp(− 1
2

∑
ωjx

2
j). By (3.28) and (3.29) we have

Ajφn1···nK
=
√
njφn1···nj−1···nK

, A†
jφn1···nK

=
√
nj + 1φn1···nj+1···nK

,

Hφn1···nK
=

[∑
ωj(nj +

1
2 )
]
φn1···nK

.

If the reader has studied §4.5, this should look very familiar. Indeed, the
correspondence

φn1...nK
�→ |n1, . . . , nK〉

defines a unitary map from L2(RK) to the Boson Fock space Fs(C
K) that inter-

twines the operators Aj and A†
j with the creation and annihilation operators on

Fs(C
K)! But what we really need for field theory is the case K = ∞, an infinite

collection of harmonic oscillators. The material of §4.5 gives us exactly the mathe-
matical machinery that we need: the Boson Fock space Fs(H), where now H is a
separable infinite-dimensional Hilbert space, equipped with its creation and anni-

hilation operators Aj and A†
j relative to a fixed orthonormal basis with the same

index set as the eigenfunctions fj .
There is just one problem that has to be addressed. Formally, the Hamiltonian

ought to be H =
∑∞

1 ωj(A
†
jAj +

1
2 ), but this does not make sense when the series∑

ωj diverges, as it will in the situations we need since ω2
j = λ2

j +m2 ≥ m2 for all
j. This is our first brush with the dreaded divergences of quantum field theory, but
unlike most of them, this one is easy to fix. Adding a constant to the Hamiltonian
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does not affect the dynamics, so we simply throw away the infinite 1
2

∑
ωj and

consider the “renormalized” Hamiltonian

(5.3) H =
∑

ωjA
†
jAj

instead. This is a well defined positive operator on the finite-particle space F0
s(H),

and it has a unique extension to a positive self-adjoint operator on Fs(H); the
vectors |n1, n2, · · · 〉 are an eigenbasis for it with eigenvalues

∑
ωjnj (a finite sum

since only finitely many nj are nonzero).
We are now in a position to quantize the classical field (5.1). By (5.2), the

position operator for the jth oscillator is Xj = (Aj +A†
j)/

√
2ωj . Substituting this

into (5.1) in place of the classical position variables qj , we obtain the quantum field,
denoted by φ:

(5.4) φ(x) =
∑ 1√

2ωj

fj(x)(Aj +A†
j).

(We shall not worry about the convergence of this series until a little later.)
Before proceeding further, we need to free ourselves from the assumption that

the eigenfunctions fj are real, that is, to obtain a formula for φ(x) in terms of an
arbitrary complex-valued orthonormal eigenbasis {gj} for−∇2 on the box B subject
to the given boundary conditions. It cannot be right simply to substitute gj for
fj in (5.4) because the resulting operator will not be Hermitian, and “Hermitian”
is the quantum analogue of the classical “real-valued.” Rather, let us observe that
gj =

∑
k ujkfk where U = (ujk) is a unitary matrix such that ujk = 0 unless the

eigenvalue for gj is the same as the eigenvalue for fk, and hence the corresponding
ωj ’s are also equal. Since fk is real and U−1 = U†,∑

j

u∗
jkgj = fk = f∗

k =
∑
j

ujkg
∗
j .

Substituting these equations into (5.4), we obtain

φ =
∑
k

1√
2ωk

fk(Ak +A†
k) =

∑
j,k

1√
2ωj

(
gju

∗
jkAk + g∗jujkA

†
k

)
.

Thus if we set
A′

j =
∑
k

u∗
jkAk,

we have

φ =
∑
j

1√
2ωj

(
gjA

′
j + g∗j (A

′
j)

†).
Moreover, we recall from §4.5 that Aj = A(ej) where {ej} is some orthonormal
basis of H. Since the map v �→ A(v) is antilinear, we then have A′

j = A(e′j) where
e′j =

∑
k ujkek, and {e′j} is again an orthonormal basis of H.

In short, we see that no matter what basis {fj} we pick, the correct formula
for the field is

(5.5) φ(x) =
∑
j

1√
2ωj

(
fj(x)Aj + fj(x)

∗A†
j

)
,

where the Aj ’s and A†
j ’s are the annihilation and creation operators for an orthonor-

mal basis of H. The choice of such a basis is irrelevant; only the formal structure
matters.
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The t-dependence of the classical field seems to have disappeared, but it is

restored by passing from the Schrödinger-picture operators Aj , A
†
j to the time-

dependent Heisenberg-picture operators

(5.6) Aj(t) = eitHAje
−itH , A†

j(t) = eitHA†
je

−itH .

This can easily be made more concrete. Indeed, from (4.52) and the fact that

H =
∑

ωjA
†
jAj , we see that

[Aj , H] = ωjAj , [A†
j , H] = −ωjA

†
j .

In view of this, (5.6) implies that

dAj(t)

dt
=

1

i
[Aj(t), H] = −iωjAj(t),

dA†
j(t)

dt
=

1

i
[A†

j(t), H] = iωjA
†
j(t),

and hence

Aj(t) = e−iωjtAj , A†
j(t) = eiωjtA†

j .

The Heisenberg-picture field φ(t,x) is therefore

(5.7) φ(t,x) =
∑ 1√

2ωj

(fj(x)e
−iωjtAj + fj(x)

∗eiωjtA†
j).

Now we make some specific choices. We take the box B to be the cube
[− 1

2L,
1
2L]

3 in R3, and we impose periodic boundary conditions. (Don’t worry
about the nature of the boundary conditions; we’re going to let L→∞ presently.)
Then we can take the normalized eigenfunctions to be fp(x) = L−3/2eip·x, with
eigenvalues −|p|2, where p lies in the lattice

Λ =

[
2π

L
Z

]3
.

The corresponding numbers ωp are

(5.8) ωp =
√
|p|2 +m2,

and the field takes the form

(5.9) φ(t,x) =
∑
Λ

1√
2ωpL3

(eip·x−iωptAp + e−ip·x+iωptA†
p).

This is starting to look promising. Although our calculations have been com-
pletely non-Lorentz-invariant, we can see Lorentz form re-emerging in the expo-
nents. Moreover, it is clear that (5.9) formally satisfies the Klein-Gordon equation.
However, it is time we paid a little attention to questions of convergence, and here
the situation is not so happy. Suppose, for instance, we apply the operator φ(t,x)
to the vacuum state:

φ(t,x)|0, 0, . . .〉 =
∑
Λ

1√
2ωpL3

e−ip·x+iωpt|0, . . . , 0, 1, 0, . . .〉 (1 in the pth slot).

The square of the norm of this alleged vector is
∑

Λ 1/2(|p|2+m2), which is infinite

(by comparison to
∫
R3 dp/(|p|2+m2) = 4π

∫∞
0

r2 dr/(r2+m2)). If we apply φ(t,x)
to a multiparticle state, the result is even worse, because the operators Aj and A∗

j

introduce factors of
√
nj that are generally bigger than 1.

The way out of this is to interpret φ as an operator-valued distribution rather
than an operator-valued function. That is, φ is the linear map that assigns to each
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compactly supported C∞ function χ1 on R and each C∞ Λ-periodic function χ2

on R3 the operator∫
B

∫
R

φ(t,x)χ1(t)χ2(x) dt dx

=
∑
Λ

1√
2ωpL3

[
χ̂1(ωp)χ̂2(−p)Ap + χ̂1(−ωp)χ̂2(p)A

†
p

]
,

with the obvious interpretation of the Fourier coefficients χ̂1 and χ̂2. The rapid
decay of these coefficients as |p| → ∞ guarantees that this series converges nicely
as an operator on the finite-particle space F0

s(H).
The final step in the construction of the quantum field is the removal of the

box B. That is, we think of (5.9) as a Riemann sum for an integral over p-space
and pass to the limit as L → ∞. The discrete volume element implicit in (5.9)
is ΔV = (2π/L)3, the volume of a fundamental cube of the lattice Λ, so we can
rewrite (5.9) as

φ(t,x) =
∑
Λ

1√
2ωp

L3/2
(
eip·x−iωptAp + e−ip·x+iωptA∗

p

) ΔV

(2π)3
.

As L → ∞, the sum becomes an integral over R
3, and the rescaled annihilation

and creation operators L3/2Ap and L3/2A†
p turn into operator-valued distributions

on R3, denoted by a and a† (actually, the action of a on test functions is an-
tilinear rather than linear). Indeed, if we take the underlying Hilbert space H

to be L2(R3, d3p/(2π)3), the evaluation of the distribution a on the test function
χ ∈ C∞

c (R3) is the operator denoted by A(χ) in §4.5. They satisfy the distributional
commutation relations

(5.10) [a(p), a†(p′)] = (2π)3δ(p− p′)I, [a(p), a(p′)] = [a†(p), a†(p′)] = 0.

which are a restatement of (4.48).
Maintaining the notational fiction that distributions are functions, we can

therefore write the field with the box removed as

(5.11) φ(t,x) =

∫
R3

1√
2ωp

(
eip·x−iωpta(p) + e−ip·x+iωpta†(p)

) d3p

(2π)3

or, with x = (t,x) and p = (ωp,p),

(5.12) φ(x) =

∫
1√
2ωp

(
e−ipμx

μ

a(p) + eipμx
μ

a†(p)
) d3p

(2π)3
.

Warning: It is a sad fact of life that if one examines n books on quantum field
theory, one will probably find n variants of (5.12) that differ in the factors of 2π
and ωp. The point is that one can redefine a(p) by incorporating such factors into
it. If one wants to think of (5.12) as an integral over the mass shell X+

m with its
Lorentz-invariant measure d3p/(2π)3ωp, for example, one can replace a(p) with

ã(p) = ω
1/2
p a(p); or if one wants to eliminate the 2π’s from (5.10), one can replace

a(p) with a(p)/(2π)3/2. In this book we shall keep the canonical relations (5.10)
for the annihilation and creation operators and let the consequences be what they
may.
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The good news about the formula (5.12) is its obviously Lorentz-friendly form.
The bad news is its analytic prickliness: the operator-valued functions in the in-
tegrand are actually distributions, and the integral itself must be interpreted in a
distributional sense. We shall reassure the reader by showing how to construct φ
by rigorous mathematics in the next section. However, it must be understood that
formulas such as (5.12) are quite convenient for the sort of calculations one actu-
ally has to perform to extract the physics, and they are ubiquitous in the physics
literature. They will appear frequently in this book, and hopefully the reader will
acquire greater comfort with them by seeing how they are used in practice.

Now, the Hilbert space on which φ(x) (or rather the regularized version ob-
tained by integrating against a test function) acts is Fs(H), the Boson Fock space
over a Hilbert space H. We introduced this Fock space simply because it is the
place where the required operators arising from the harmonic oscillators live. But
the physics of the quantum field comes from taking the Fock space seriously as a
multiparticle state space built from a single-particle state space H; the particles in
question are the quanta of the field. The operators a(p) and a†(p) annihilate and
create particles with momentum p (where again this is an idealization; a and a† are
distributions, and real particles don’t have completely definite momenta), and φ(x)
creates and annihilates particles at the space-time point x. The physical meaning
of these assertions may seem rather obscure, but we must ask the reader to accept
them for the time being on the level of hand-waving. We are building a house, and
at present we are merely laying the foundation.

Let us now turn to the quantization of a complex Klein-Gordon field. We
employ the informal language of distributions as in (5.12).

If φclas is a complex-valued solution of the Klein-Gordon equation, its real
and imaginary parts φ1,clas and φ2,clas are also solutions. To quantize them, we

introduce annihilation and creation operators a1(p), a
†
1(p) and a2(p), a

†
2(p), which

are taken to satisfy the canonical commutation relations (5.10) among themselves
and to commute with each other:

[a1(p), a
†
1(p

′)] = [a2(p), a
†
2(p

′)] = (2π)3δ(p− p′), all other commutators = 0.

(The Hilbert space F on which these operators act is obtained by starting with
two Fock spaces F1 and F2 on which the a1’s and a2’s act, respectively, and taking
F = F1 ⊗ F2.) We can then form the quantum fields

φj(x) =

∫
1√
2ωp

(
e−ipμx

μ

aj(p) + eipμx
μ

a†j(p)
) d3p

(2π)3
(j = 1, 2).

We put these together into a “complex” quantum field by setting
(5.13)

φ(x) =
φ1(x) + iφ2(x)√

2
, a(p) =

a1(p) + ia2(p)√
2

, b(p) =
a1(p)− ia2(p)√

2
,

so that

φ†(x) =
φ1(x)− iφ2(x)√

2
, a†(p) =

a†1(p)− ia†2(p)√
2

, b†(p) =
a†1(p) + ia†2(p)√

2
,

The factors of
√
2 are there to normalize the commutation relations so that

(5.14)
[a(p), a†(p′)] = [b(p), b†(p′)] = (2π)3δ(p− p′), all other commutators = 0.
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The fields φ and φ† are expressed in terms of the a’s and b’s as follows:

(5.15)

φ(x) =

∫
1√
2ωp

(
e−ipμx

μ

a(p) + eipμx
μ

b†(p)
) d3p

(2π)3
,

φ†(x) =

∫
1√
2ωp

(
e−ipμx

μ

b(p) + eipμx
μ

a†(p)
) d3p

(2π)3
.

Let us look at this from a slightly different angle. Suppose φ is a tempered
distribution on R4 that satisfies the Klein-Gordon equation (∂2 +m2)φ = 0. Then

the Fourier transform of φ is a tempered distribution that satisfies (−p2+m2)φ̂(p) =
0 and hence is supported on the two-sheeted hyperboloid{

p : p2 = m2
}
= X+

m ∪X−
m,

X+
m =

{
p : p2 = m2, p0 > 0

}
, X−

m =
{
p : p2 = m2, p0 < 0

}
.

In particular, we may consider the space of solutions of the Klein-Gordon equation
whose Fourier transforms are of the form uλ where λ is a Lorentz-invariant measure
on X+

m ∪X−
m, considered as a distribution on R4, and u is a (reasonable) function.

If φ is such a solution, we have

φ(x) =

∫
X+

m∪X−
m

e−ipμx
μ

u(p) dλ(p)

=

∫
X+

m

(e−ipμx
μ

u(p) + eipμx
μ

u(−p)) dλ(p).

Now, if φ is real-valued, we have φ̂(−p) = φ̂(p)∗, so φ is completely determined

by the restriction of φ̂ to X+
m. We obtain the corresponding quantum field by

replacing the Fourier coefficients u(p), p ∈ X+
m, by suitably normalized annihilation

operators and their complex conjugates u(−p) by their adjoint creation operators.

However, if φ is allowed to be complex valued, the restrictions of φ̂ to X+
m and X−

m

are independent, and both of them are needed to recover φ. Hence the Fourier
coefficients u(−p) must be replaced by a different set of creation operators.

The physical interpretation is as follows: a, a† and b, b† are the annihilation
and creation operators for two different species of particle with mass m and spin 0,
which are antiparticles of each other. We make the conventional choice that a, a†

are associated with “particles” and b, b† are associated with “antiparticles.” Thus
the field φ destroys particles and creates antiparticles; vice versa for φ†.

This interpretation gives the solution of the problem of “negative energy states,”
which plagued the early attempts to use the Klein-Gordon equation just as it did
the Dirac equation. When the Klein-Gordon equation is used as a single-particle
wave equation, the negative energy states present a real difficulty. But when we
think of the Klein-Gordon equation as describing a “classical” field and pass to the
corresponding quantum field, there is a way out: the part of the solution whose
Fourier transform lives on the negative energy shell contributes not particle states
with negative energy but antiparticle states with positive energy. We shall see how
this works in more detail in the next section.
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5.2. The rigorous construction

We now present the rigorous construction of a neutral (real) quantum scalar
field with mass parameterm. Afterwards we shall modify the construction to obtain
a charged (complex) field.

We have already assembled all the ingredients we need. The first is the state
space for a single spin-zero particle of mass m (see §4.4):

H = L2(X+
m, λ),

where X+
m is the mass shell and λ is the normalized Lorentz-invariant measure on

it:

dλ(p) = dλ(ωp,p) =
d3p

(2π)3ωp
(ωp = p0 =

√
|p|2 +m2).

Based on this, we construct the Boson Fock space Fs(H), on which we have annihi-
lation and creation operators A(v) and A(v)† for v ∈ H as defined in §4.5. Finally,
we define R : S(R4)→ H by

Rf = f̂
∣∣X+

m,

where f̂(p) =
∫
eipμx

μ

f(x) d4x is the Lorentz-covariant Fourier transform of f .
The quantum field Φ (which differs from the φ of the preceding section by a

change of variable, as we explain below) is defined as a real tempered distribution
on R4 with values in the space of operators on the finite-particle Fock space F0

s(H)
— that is, an R-linear map that takes a real-valued Schwartz-class function f on
R

4 to an operator Φ(f) on F0
s(H) — by

(5.16) Φ(f) =
1√
2
[A(Rf) +A(Rf)†].

(One can extend Φ to a C-linear map on complex-valued Schwartz functions by
setting Φ(f + ig) = Φ(f) + iΦ(g), of course, but (5.16) is only R-linear as it stands
because A is antilinear.)

Observe that Φ is a distribution solution of the Klein-Gordon equation, that

is, Φ((∂2 +m2)f) = 0 for any f ∈ S, because [(∂2 +m2)f ]̂ = (−p2 +m2)f̂ = 0 on
X+

m.
Let us see how to go from (5.16) to (5.12). First, we map X+

m to R3 in the
obvious way, (ωp,p) �→ p, and correspondingly identify L2(X+

m, λ) with L2(R3),
where the measure on R3 is taken to be d3p/(2π)3. Explicitly, this correspondence
is the unitary map J : L2(X+

m, λ)→ L2(R3) defined by

Ju(p) =
1
√
ωp

u(ωp,p).

We then have the induced unitary map F(J) : Fs(L
2(X+

m, λ))→ Fs(L
2(R3)), as ex-

plained in §4.5. We use it to transfer the annihilation, creation, and field operators
to L2(R3); that is, we define

a(v) = F(J)A(J−1v)F(J)−1, a†(v) = F(J)A(J−1v)†F(J)−1 (v ∈ L2(R3)),

(it will be more convenient to write a†(v) rather than a(v)†) and

φ(f) = F(J)Φ(f)F(J)−1 (f ∈ SR(R
4)).
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Now, a† can be interpreted as an operator-valued distribution on R3 by restrict-
ing its argument to S(R3). Adopting the notational fiction that it is a function, we
write

a†(v) =

∫
a†(p)v(p)

d3p

(2π)3
.

Likewise, a is an anti-linear distribution, and we write

a(v) =

∫
a(p)v(p)∗

d3p

(2π)3
.

By (4.48) we have∫∫
[a(p), a†(q)]u(p)∗v(q)

d3p d3q

(2π)6
= [a(u), a†(v)] = 〈u|v〉 =

∫
u(p)∗v(p)

d3p

(2π)3

=

∫∫
(2π)3δ(p− q)v(p)∗v(q)

d3p d3q

(2π)6

for all u and v, and similarly for [a(p), a(q)] and [a†(p), a†(q)]. (The last three
expressions are written as scalars but, as usual, are to be interpreted as scalar
multiples of the identity.) Hence the commutation relations (4.48) expressed in
colloquial distribution language are

(5.17) [a(p), a†(q)] = (2π)3δ(p− q), [a(p), a(q)] = [a†(p), a†(q)] = 0.

Next, observe that for f ∈ SR(R
4) we have

φ(f) =
1√
2
F(J)

[
A(Rf) +A(Rf)†

]
F(J)−1 =

1√
2

[
a(JRf) + a†(JRf)

]
,

and

JRf(p) =
1
√
ωp

f̂(ωp,p),

so

φ(f) =

∫
1√
2ωp

(
f̂(ωp,p)

∗a(p) + f̂(ωp,p)a
†(p)

) d3p

(2π)3

=

∫∫
1√
2ωp

(
e−ipμx

μ

a(p) + eipμx
μ

a†(p)
)
f(x) d4x

d3p

(2π)3
.

In other words,

φ(x) =

∫
1√
2ωp

(
e−ipμx

μ

a(p) + eipμx
μ

a†(p)
) d3p

(2π)3
,

which is (5.12).
We now modify the construction to obtain the charged (complex) field. For

this purpose we need both the positive and negative energy mass shells X+
m and

X−
m, each equipped with the invariant measure dλ(p) = d3p/(2π)3ωp. We set

H+ = L2(X+
m, λ), H− = L2(X−

m, λ), H = L2(X+
m ∪X−

m) = H+ ⊕H−,

and define the anti-unitary operator C : H± → H∓ by

Cu(p) = u(−p)∗.
(On the inverse Fourier transform side, i.e., in position space, C is just complex
conjugation, f �→ f∗.) H+ is the state space for a single particle of mass m and
spin 0; we build the Fock space F+ = Fs(H+) and the annihilation and creation
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operators A(u), A(u)† for u ∈ H+ on it as before. Now, here comes the twist. Let
F− be another copy of Fs(H+) (not Fs(H−)) and define annihilation and creation
operators B(v), B(v)† for v ∈ H− (not H+) on it by

B(v) = A(Cv), B(v)† = A(Cv)†.

We think of F+ and A,A† as the Fock space and annihilation-creation operators
for particles, and F− and B,B† as the Fock space and annihilation-creation opera-
tors for antiparticles. C is the “charge-conjugation” operator (although there may
be no electric charge involved) that turns a particle into an antiparticle and vice
versa. Observe that since A(v) and A(v)† depend antilinearly and linearly on v,
respectively, and C is antilinear, B(v) and B(v)† depend linearly and antilinearly
on v, respectively.

We combine the two Fock spaces into a single Fock space F = F+⊗F−. Observe
that F± =

⊕∞
0 Fk

± where Fk
± = �kH± is the space of k-particle (for +) or k-

antiparticle (for −) states, and hence

F =
∞⊕

j,k=0

F
j
+ ⊗ Fk

−,

where the summands on the right are the spaces of states with j particles and k
antiparticles. We consider A(u) and B(v) and their adjoints as operators on F by
letting A(u) act on the first factor and B(v) on the second one. Finally, we define
R± : S(R4)→ H± by

R±f = f̂
∣∣X±

m,

and for f ∈ S(R4) (now complex-valued) we define the field operators Φ(f) and
Φ†(f) on the finite-particle subspace of F by

(5.18)

Φ(f) =
1√
2

[
A(R+f) +B(R−f)

†],
Φ†(f) =

1√
2

[
A(R+f)

† +B(R−f)
]
.

Thus Φ† is a distribution on R4 with values in the space of operators on the finite-
particle subspace of F; Φ is too, except that it depends antilinearly on its argument
f . The reader may verify by a calculation similar to the one we performed for the
neutral field that (5.18) is equivalent to (5.15).

Further discussion of the mathematics of free scalar fields can be found in Reed
and Simon [95], §X.7.

5.3. Lagrangians and Hamiltonians

In nonrelativistic quantum mechanics the dynamics of a system is described
by the Schrödinger equation, which we derived by starting with the Hamiltonian
formulation of the classical mechanical system and quantizing the Hamiltonian.
Quantum field theory, on the other hand, is relativistic from the outset, so the
Lagrangian formulation provides a better starting point. That is, one begins with
a Lagrangian L that is the integral of a Lorentz-invariant Lagrangian density L,
derives a Hamiltonian from it, and then quantizes the latter. The requirement of
Lorentz invariance places severe constraints on the possible form of the Lagrangian
and hence provides much guidance on the possible forms of quantum field theories.
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Let us see how this works for free scalar fields. There is no interesting dynamics
here, but it is a useful exercise to see how the process works in this simple case.
It will lead to some useful formulas and provide some practice with the sort of
freewheeling calculations with operator-valued distributions that physicists like to
perform. We emphasize that all such calculations in this chapter can be made
perfectly rigorous. The reader may wish to do so as an exercise, but here the idea
is to see how the physicists operate.

We begin with the real scalar field. The Lagrangian that yields the Klein-
Gordon equation is

L =

∫
L d3x, L = 1

2 [(∂μφ)(∂
μφ)−m2φ2] = 1

2 [(∂tφ)
2 − |∇xφ|2 −m2φ2].

Here, by analogy with Lagrangian mechanics with finitely many degrees of free-
dom, φ(·,x) plays the role of a “position” variable labeled by x; the corresponding
canonically conjugate “momentum” is

π =
∂L

∂(∂tφ)
= ∂tφ,

and the Hamiltonian is

H =

∫
H d3x, H = π(∂tφ)− L = 1

2 [(∂tφ)
2 + |∇xφ|2 +m2φ2].

We can quantize these things. Let φ now denote the quantum field (5.12). The
canonically conjugate field (not the physical momentum associated with the field)
is

(5.19) π(x) = ∂tφ(x) =
1

i

∫ √
ωp

2
(eipμx

μ

a(p)− e−ipμx
μ

a†(p))
d3p

(2π)3
.

We could also arrive at this formula in another way. At the beginning of our
derivation of the quantum field φ, we replaced Fourier coefficients qj(t) for the

classical field with position operators (Aj + A†
j)/

√
2ωj for harmonic oscillators.

The conjugate momentum operators are
√
ωj/2(Aj − A†

j) (see (5.2)); if we insert
them in the Fourier series in place of the position operators and proceed as before,
we end up with (5.19). Similarly, one can modify the rigorous construction of φ(f)
for f ∈ S(R4) to obtain π(f); we leave the details to the reader. (They involve

replacing Rf by R̃f(p) = ωpRf(p).)
The fields φ and π at a given time t satisfy “canonical commutation relations.”

The formal calculation is as follows: φ(t,x) and π(t,y) are each the sum of two
integrals, the first involving annihilation operators and the second involving creation
operators. If one writes out the commutator [φ(t,x), π(t,y)] as a double integral
and uses the commutation relations (5.10) to simplify it, one finds that it is equal
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to

1

2i

∫∫ √
ωq

ωp
(e−ipμx

μ+iqμy
μ

[a†(p), a(q)]− eipμx
μ−iqμy

μ

[a(p), a†(q)])
d3p d3q

(2π)6

=
i

2

∫∫ √
ωq

ωp
(e−ipμx

μ+iqμy
μ

+ eipμx
μ−iqμy

μ

)δ(p− q)
d3p d3q

(2π)3

=
i

2

∫
(eipμ(y

μ−xμ) + eipμ(x
μ−yμ))

d3p

(2π)3

=iδ(x− y).

The last equality is (1.5), taking into account that x0 − y0 = t − t = 0. Similarly
one sees that φ(t,x) commutes with φ(t,y), and π(t,x) with π(t,y), for all x and
y. In short:

(5.20) [φ(t,x), π(t,y)] = iδ(x− y), [φ(t,x), φ(t,y)] = [π(t,x), π(t,y)] = 0.

(One may worry about the fact that (5.20) is not Lorentz-invariant, as the notion
of simultaneity at different points of space does not make sense relativistically. In
fact, one may replace (t,y) by (s,y) in (5.20) as long as |t−s| < |x−y|, i.e., as long
as (t,x) and (s,y) are space-like separated. We shall return to this point later.)

The formulation of these results in mathematicians’ language is a rather easy
consequence of (5.16). There is one little technicality to be overcome: the rela-
tions (5.20) hold only for a fixed time t, whereas smearing out φ(t,x) into φ(f) =∫
φ(t,x)f(t,x) dt d3x involves the values of φ at different times. But in fact, there is

no need to smear φ out in t. A glance at the definition of φ(f) shows that it makes
sense not just for f ∈ S(R4) but for distributions of the form f(t,x) = δ(t−t0)F (x)

with F ∈ S(R3). Indeed, for such f we have f̂(ωp,p) = e−it0ωp F̂ (−p) where F̂
denotes the Euclidean Fourier transform on R3, and this is still a nice function on
the mass shell X+

m.
Now let us calculate the Hamiltonian. There are three possible starting points.

First, the Hamiltonian is the infinitesimal generator of the time-translation group.
Thus, on the one-particle space L2(X+

m, λ) it is multiplication by ωp, and on the
k-particle space it is the sum of multiplications by ωp on all the factors:

(5.21) H(Ps(u1⊗· · ·⊗uk)) = Ps((ωpu1)⊗· · ·⊗uk)+ · · ·+Ps(u1⊗· · ·⊗ (ωpuk)).

Second, we can start from the renormalized Hamiltonian (5.3) for a discrete but
infinite system of harmonic oscillators and pass to the continuum limit, obtaining

(5.22) H =

∫
ωpa

†(p)a(p)
d3p

(2π)3
.

It is not hard to see that (5.21) and (5.22) are equivalent. Third, we can quantize
the formula for the classical Hamiltonian derived from the Lagrangian:

(5.23) H =
1

2

∫ [
(∂tφ(t,x))

2 + |∇xφ(t,x))|2 +m2φ(t,x)2
]
d3x,

by substituting the expression (5.12) for φ(t,x) in (5.23).
Let us see how this works. We have φ = φ+ + φ−, where

φ+(x) =

∫
1√
2ωp

e−ipμx
μ

a(p)
d3p

(2π)3
, φ−(x) = φ+(x)†.
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Now,

∂tφ
+(x) =

∫
1√
2ωp

(−iωp)e
−ipμx

μ

a(p)
d3p

(2π)3
,

so ∫
(∂tφ

+(x))2 d3x = −
∫∫∫ √

ωpω′
p

2
e−ipμx

μ

e−ip′
μx

μ

a(p)a(p′)
d3p d3p′

(2π)6
d3x.

By the Fourier inversion formula∫
ei(p+p′)·x d3x = (2π)3δ(p+ p′),

this reduces to∫
(∂tφ

+(x))2 d3x = −
∫

ωp

2
e−2iωpta(p)a(−p) d3p

(2π)3
.

After similar calculations to evaluate the integrals of (∂tφ−)2, (∂tφ
+)(∂tφ

−), and
(∂tφ

−)(∂tφ
+), we obtain∫

(∂tφ(x))
2 d3x

=

∫
ω2
p

2ωp

[
−e−2iωpta(p)a(−p)+a(p)a†(p)+a†(p)a(p)−e2iωpta†(p)a†(−p)

] d3p

(2π)3
.

Likewise,

∇xφ
+(x) =

∫
1√
2ωp

(ip)e−ipμx
μ

a(p)
d3p

(2π)3
,

so an analogous calculation gives∫
|∇xφ(x)|2 d3x

=

∫ |p|2
2ωp

[
e−2iωpta(p)a(−p)+a(p)a†(p)+a†(p)a(p)+e2iωpta†(p)a†(−p)

] d3p

(2π)3
.

The signs of the coefficients of a(p)a(−p) and a†(p)a†(−p) are different here be-
cause the δ(p+p′) makes p ·p′ into −|p|2 rather than |p|2. Yet another calculation
of the same sort gives∫

m2φ(x)2 d3x

=

∫
m2

2ωp

[
e−2iωpta(p)a(−p)+a(p)a†(p)+a†(p)a(p)+e2iωpta†(p)a†(−p)

] d3p

(2π)3
.

Adding these results and recalling that ω2
p = |p|2 +m2, we see that the expression

on the right of (5.23) is equal to

1

2

∫
ωp

[
a(p)a†(p) + a†(p)a(p)

] d3p

(2π)3
.

Finally, since [a(p), a†(p′)] = (2π)3δ(p−p′), a(p)a†(p) is equal to a†(p)a(p) plus an
infinite constant times the identity (an“infinite c-number” in physicists’ parlance).
After discarding the constant, we obtain (5.22). This infinite constant is exactly
the same one we discarded in renormalizing the Hamiltonian for the infinite family
of oscillators in §5.1.
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The correction that needs to be applied to (5.23) to remove the infinite constant
can be simply described as follows: replace all a(p)a†(p′) by a†(p′)a(p). This
procedure is sufficiently commonly encountered that it has a name. In general, a
sum of products of creation and annihilation operators is said to be Wick ordered
or normally ordered if all creation operators occur to the left of all annihilation
operators in each product, and to Wick order such a sum of products is to replace
it with the corresponding Wick ordered product. This is well defined since creation
operators commute with each other, as do annihilation operators. Wick ordering is
indicated by putting a colon on either side of the expression in question. Thus, for
example,

:a(p)a†(p): = :a†(p)a(p): = a†(p)a(p),

and the corrected version of (5.23) is

(5.24) H =
1

2

∫
:(∂tφ(t,x))

2 + |∇xφ(t,x))|2 +m2φ(t,x)2: d3x.

We now turn to the complex Klein-Gordon field. The Lagrangian for a classical
complex field is the same as for a real field except that squares of real numbers are
replaced by absolute squares of complex numbers. Taking into account the factor
of
√
2 that we introduced in (5.13), we find that the classical Lagrangian is

L =

∫
L d3x, L = (∂μφ)∂

μφ∗ −m2|φ|2,

so the canonically conjugate field is

π =
∂L

∂(∂tφ)
= ∂tφ

∗,

and the Hamiltonian is

H =

∫
H d3x, H = |∂tφ|2 + |∇xφ|2 +m2|φ|2.

When we quantize, the complex conjugates turn into adjoints: The canonical con-
jugate of the quantum field φ of (5.15) is

π(x) = ∂tφ
†(x) =

∫
iωp√
2ωp

[
eipμx

μ

a†(p)− e−ipμx
μ

b(p)
] d3p

(2π)3
.

The Hamiltonian can be expressed by formulas analogous to (5.22) and (5.24). The
analogue of (5.22) is

(5.25) H =

∫
ωp

[
a†(p)a(p) + b†(p)b(p)

] d3p

(2π)3
,

and the analogue of (5.24) is

(5.26) H =

∫
:∂tφ

†∂tφ+∇xφ
† · ∇xφ+m2φ†φ: d3x,

Let us examine this a little more closely. If one starts from the classical Hamil-
tonian and quantizes the fields as in (5.23), without Wick ordering, one finds two
possibilities for H depending on whether one replaces |φ|2 by φ†φ or φφ†:∫

(∂tφ
†∂tφ+∇xφ

† · ∇xφ+m2φ†φ) d3x

and

∫
(∂tφ∂tφ

† +∇xφ · ∇xφ
† +m2φφ†) d3x.
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Calculations like the ones above that led from (5.23) to (5.22) show that these two
expressions are respectively equal to

(5.27)

∫
ωp

[
a†(p)a(p) + b(p)b†(p)

] d3p

(2π)3

and

∫
ωp

[
a(p)a†(p) + b†(p)b(p)

] d3p

(2π)3
.

Wick ordering turns both of these into (5.25); either way, there is an infinite con-
stant to be discarded.

There is another quantity of interest here. Recall that when we introduced the
Klein-Gordon equation in §4.1 we found the conserved quantity

∫
Imφ∗∂tφ d3x.

The quantum analogue of this is

Q = i

∫
:φ†∂tφ− ∂tφ

†φ: d3x,

which, by a calculation like the one leading from (5.23) to (5.22), is equal to∫
[a†(p)a(p)− b†(p)b(p)]

d3p

(2π)3
= Na −Nb.

Here Na and Nb are simply the number operators for particles and antiparticles
(the operators with eigenvalue k on the states with k particles and k antiparticles,
respectively). It is easily verified that Na−Nb commutes with the Hamiltonian, so
it represents a conserved quantity. (In fact, Na and Nb commute with H separately,
but that is because we are dealing with a free field where nothing is happening. The
net particle number Na−Nb is conserved in many situations where Na and Nb are
not.) If the particles and antiparticles carry unit electric charges of opposite signs,
then Na − Nb is the total net charge (if the charge of the “particles” is taken as
positive). In this situation, it is clear that the classical quantity Im[φ∗(∂tφ)] should
be interpreted as the charge density of the field, and the corresponding expression
with space derivatives, Im[φ∗∇xφ], as the current density.

One final remark. In classical mechanics, the Lagrangian and Hamiltonian are
close cousins. They are used for different purposes, but they are similar in form,
and it is usually easy to pass from one to the other. In quantum field theory, on
the other hand, the Hamiltonian turns into an operator on some Hilbert space,
while the Lagrangian remains a “classical,” unquantized object. The Lagrangian
is, so to speak, the classical root from which the quantum theory grows. This idea
will be illustrated in the following chapters, and it will attain a deeper and more
compelling significance in Chapter 8.

5.4. Spinor and vector fields

Spinor fields. The construction of the Dirac spinor field whose quanta are
spin-12 particles is similar to the construction of the complex scalar field, with only
minor algebraic complications, so we shall be brief. As before, the idea is to think
of a solution of the Dirac equation as a classical field, write it as a Fourier integral,
and quantize it by replacing the coefficients by creation and annihilation operators.

We begin with the Fourier representation of a (reasonably) general solution of
of the Dirac equation iγμ∂μψ = mψ. That is, we take ψ to be the inverse Fourier
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transform of a C4-valued function f on the extended mass shell X+
m ∪ X−

m times
the invariant measure dλ(p) = d3p/(2π)3ωp, satisfying pμγ

μf = mf :
(5.28)

ψ(x) =

∫
X+

m∪X−
m

e−ipμx
μ

f(p)

√
md3p

(2π)3ωp
=

∫
X+

m

[e−ipμx
μ

f(p) + eipμx
μ

f(−p)]
√
md3p

(2π)3ωp
.

(The
√
m is as in (4.44); we shall comment on its significance later.) Our first job

is to rewrite this in a way that displays the spin states explicitly and encodes the
equation pμγ

μf = mf .
Recall the discussion of the Dirac equation at the end of §4.4 — in particular,

the action of SL(2,C) on X±
m, which we denoted by (A, p) �→ A†−1p; the base points

p±m = (±m, 0, 0, 0); the spin representation Φ of SL(2,C) defined by (4.21); and the
fact that if v ∈ C4 satisfies pμγ

μv = mv, then w = Φ(A)v satisfies p′μγ
μw = mw

where p′ = A†−1p. Let
(5.29)

u(0,+) =

⎛⎜⎜⎝
1
0
1
0

⎞⎟⎟⎠ , u(0,−) =

⎛⎜⎜⎝
0
1
0
1

⎞⎟⎟⎠ , v(0,+) =

⎛⎜⎜⎝
1
0
−1
0

⎞⎟⎟⎠ , v(0,−) =

⎛⎜⎜⎝
0
1
0
−1

⎞⎟⎟⎠ .

Then u(0,±) and v(0,±), respectively, are bases for the subspaces of C4 defined
by the equations γ0v = v and −γ0v = v, i.e., (p+m)μγ

μv = mv and (p−m)μγ
μv = mv,

with γμ in the Weyl representation. Here the 0 is the space component of p±m and
the ± is a label for the spin state. (More precisely, ± 1

2 is the eigenvalue of the

x3-component of the spin, since the u’s and v’s are eigenvectors of ( σ 0
0 σ ) where

σ = σ3 is the 3rd Pauli matrix.) Now, for each p ∈ X±
m there is a unique positive

Hermitian Bp ∈ SL(2,C) such that B†−1
p p±m = p — or rather κ(B†−1

p )p±m = p.

(Indeed, let A be any element of SL(2,C) such that A†−1p±m = p, and let A = BU
be its polar decomposition. Since SU(2) is the subgroup that fixes p±m, we can take
Bp = B, and any other A′ with (A′)†−1p±m = p gives the same B because A′ = AU ′

for some U ∈ SU(2). The Lorentz transformation defined by Bp is a pure boost
with no rotation.) We set

(5.30) u(p,±) = Φ(B(ωp,p))u(0,±), v(p,±) = Φ(B(−ωp,p))v(0,±).

Then u(p,±) and v(p,±) are bases for the subspaces of C4 defined by the equation
pμγ

μv = mv for p ∈ X+
m and p ∈ X−

m, respectively. Thus, any C
4-valued function

f(p) on X+
m or X−

m that satisfies pμγ
μf(p) = mf(p) can be written as a linear

combination of u(p,±) or v(p,±) with scalar coefficients that depend on p.
We can therefore rewrite (5.28) as

ψ(x) =

∫ ∑
s=±

√
m

2ωp
[e−ipμx

μ

f(p, s)u(p, s) + eipμx
μ

g(p, s)v(p, s)]
d3p

(2π)3
,

where p = (ωp,p) and the coefficients f(p, s) and g(p, s) are scalar-valued functions

in which a factor of
√
2/ωp has been incorporated. Just as in the case of the complex

scalar field, the quantum Dirac field is now obtained by replacing the coefficient
f(p, s) by the annihilation operator a(p, s) for a particle with momentum p and
spin state s, and the coefficient g(p, s) by the creation operator b†(p, s) for an
antiparticle with momentum p and spin state s. The quanta of the Dirac field are
going to be Fermions (a point to which we shall return shortly), so these operators
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need to satisfy the anticommutation relations

(5.31)
{a(p, s), a†(p′, s′)} = {b(p, s), b†(p′, s′)} = (2π)3δ(p− p′)δss′ ,

{a(p, s), a(p′, s′)} = {b(p, s), b(p′, s′)} = {a�(p, s), b�(p′, s′)} = 0,

where a� is either a or a† and b� is either b or b†. Thus, the quantized Dirac field is

(5.32) ψ(x) =

∫ ∑
s=±

√
m

2ωp
[e−ipμx

μ

u(p, s)a(p, s) + eipμx
μ

v(p, s)b†(p, s)]
d3p

(2π)3
,

and its Dirac adjoint (recall (4.14)) is

(5.33) ψ(x) =

∫ ∑
s=±

√
m

2ωp
[eipμx

μ

u(p, s)a†(p, s) + e−ipμx
μ

v(p, s)b(p, s)]
d3p

(2π)3
.

(5.31)–(5.33) can be expressed in rigorous mathematical language just as we did
for the scalar field: the operators a(p, s), b(p, s), and ψ(x) are actually distributions
with values in the operators on the finite-particle subspace of F = F1⊗F2, where F1

and F2 are copies of the Fermion Fock space over the state space for a single Dirac
particle as discussed in §4.4, §4.5, and §5.2. These distributions are actually better
behaved than their Bosonic analogues in the following respect: The smeared-out
creation and annihilation operators, a(f, s) =

∫
a(p, s)f(p) d3p and so forth, are

bounded operators on F because of (4.57), and hence so are the spatially smeared-
out field operators ψ(t, f) =

∫
ψ(t,x)f(x) d3x.

At this point we insert a calculation of “spin sums” that will be used here
and later. Recall that u(p,±) and v(p,±) are column vectors; their Dirac adjoints
u(p,±) = u(p,±)†γ0 and v(p,±) = v(p,±)†γ0 are row vectors, and the products
u(p,±)u(p,±) and v(p,±)v(p,±) are therefore 4×4 matrices. An easy calculation
from the definitions (5.29) shows that∑

s=±
u(0, s)u(0, s) = γ0 + I,

∑
s=±

v(0, s)v(0, s) = γ0 − I.

From this we can obtain the corresponding sums for arbitrary p. By (5.30), with
B = B(ωp,p) we have∑

s=±
u(p, s)u(p, s) =

∑
s=±

Φ(B)u(0, s)u(0, s)†Φ(B)†γ0.

But by (4.12) and (4.15) we have Φ(B)† = Φ(B†) = γ0Φ(B)−1γ0, so∑
s=±

u(p, s)u(p, s) =
∑
s=±

Φ(B)u(0, s)u(0, s)Φ(B)−1 = Φ(B)γ0Φ(B)−1 + I.

Moreover, if L = κ(B)−1 ∈ SO(1, 3), by (4.22) we have Φ(B)γ0Φ(B)−1 = L0
μγ

μ,

and in view of the fact that B is Hermitian, the defining condition B†−1p+m = p just
means that mL0

μ = pμ. Therefore, after an isomorphic calculation with the v’s, we
conclude that

(5.34)
∑
s=±

u(p, s)u(p, s) = m−1pμγ
μ + I,

∑
s=±

v(p, s)v(p, s) = m−1pμγ
μ − I,

with p0 = ωp.
We recall from §4.1 that the Lagrangian density associated to the free Dirac

equation is
L = iψγμ∂μψ −mψψ,
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so the field π canonically conjugate to ψ is

π =
∂L

∂(∂tψ)
= iψ†.

The fields ψ and π satisfy canonical anticommutation relations analogous to (5.20):

(5.35)
{ψj(t,x), πk(t,y)} = iδ(x− y)δjk,

{ψj(t,x), ψk(t,y)} = {πj(t,x), πk(t,y)} = 0.
(j, k = 1, · · · , 4)

To prove this, observe that by (5.32), {ψj(t,x), iψ
†
k(t,y)} is equal to

i

∫∫ ∑
s,s′=±

me−iωpt+ip·xeiωp′ t−ip′·y

2
√
ωpωp′

u(p, s)ju(p
′, s′)†k{a(p, s), a†(p′, s′)} d

2p d3p′

(2π)6

plus a similar term with u’s and a’s replaced by v’s and b’s and the signs in the
exponents reversed. By (5.31), (5.34), and the fact that

u(p, s)ju(p, s)
†
k = u(p, s)j [u(p, s)γ

0]k = [u(p, s)u(p, s)γ0]jk,

integration over p′ and summation over s yield

{ψj(t,x), iψ
†
k(t,y)} =i

∫
m

2ωp
eip·(x−y)[(m−1pμγ

μ +mI)γ0]jk
d3p

(2π)3

+ i

∫
m

2ωp
e−ip·(x−y)[(m−1pμγ

μ −mI)γ0]jk
d3p

(2π)3
.

The substitution p→ −p in the second integral shows that the terms involving mI
and pμγ

μ with μ > 0 in the two integrals cancel out. The terms involving p0γ
0 add

up, and since (γ0)2 = I and p0 = ωp, the integrals reduce to

{ψj(t,x), iψ
†
k(t,y)} = i

∫
eip·(x−y)δjk

d3p

(2π)3
= iδ(x− y)δjk.

The other equations in (5.35) are obtained similarly.
The factor

√
m in (5.32) that we carried over from (4.44) is what gives the

proper normalization in (5.35). One can also see that the Dirac field (5.32) should
contain a factor with dimensions [m1/2] in comparison to the scalar field (5.15) from
the fact that the mass terms in their respective Lagrangians are mψψ and m2|φ|2,
both of which are supposed to yield an energy density. However, there are even
more variations on the formula (5.32) in the literature than there are for the scalar
field, because one can use different normalizations not only for a and b but also for
the spinors u and v. In particular, some people incorporate the factor of

√
m into

u and v.
The Hamiltonian density for the Dirac field ψ is

H = π∂tψ − L = π∂tψ = iψ†∂tψ,

since L = L(ψ, ∂μψ) = 0 when ψ is a solution of the Dirac equation. After sub-
stituting (5.32) for ψ in this expression, a short calculation involving the Fourier
inversion formula

∫
eip·x d3x = (2π)3δ(p) shows that the Hamiltonian is

(5.36) H =

∫
H d3x =

∫ ∑
σ

ωp[a
†(p, s)a(p, s)− b(p, s)b†(p, s)]

d3p

(2π)3
.
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At first sight this looks like it might not be bounded below, which would be most
unfortunate. But by (5.31) we have

b(p, s)b†(p′, s′) = −b†(p′, s′)b(p, s) + δ(p− p′)δss′ ,

so the cost of throwing away an infinite constant, as we did for the scalar field, we
can rewrite (5.36) as

(5.37) H =

∫ ∑
σ

ωp[a
†(p, s)a(p, s) + b†(p, s)b(p, s)]

d3p

(2π)3
,

which is manifestly positive. (5.37) is, of course, the Wick-ordered form of (5.36)
— with the understanding that where Fermionic operators are concerned, an inter-
change of two operators in the Wick-ordering process introduces a minus sign.

This brings up an important point. If we had tried to quantize the Dirac
field as a Boson field, so that the anticommutation relations (5.31) were replaced
by commutation relations, this trick would not work and we would end up with
energies that are not bounded below. For exactly the same reason, if we had tried
to quantize the scalar Klein-Gordon field as a Fermion field, we would be in trouble
after arriving at the expressions (5.27). This is one aspect of the spin-statistics
theorem, which we shall discuss further in §5.5 and §6.5.

Vector fields. We would now like to quantize the electromagnetic field. The
first point that has to be appreciated is that the field to be quantized is not the
electromagnetic field Fμν itself but its potential Aμ. For one thing, the vector
field Aμ rather than the tensor field Fμν is the appropriate thing to yield spin-one
quanta, which photons are known by experiment to be. Moreover, the Aharonov-
Bohm effect (see Sakurai [103]) shows that the potential Aμ has a real effect on
quantum phenomena even in regions where Fμν vanishes. As Weinberg [131],
p. 340, observes, one could construct a consistent theory “by demanding that all
interactions involve only Fμν(x) = ∂μAν(x) − ∂νAμ(x) and its derivatives, not
Aμ(x), but this is not the most general possibility, and not the one realized in
nature.”

But various difficulties arise from the fact that Aμ is defined only up to gauge
transformations and from the closely related fact that the photon is massless. To get
a handle on the situation, let us first consider an analogous field whose quanta have
nonzero mass. (Such fields describe the vector bosons that appear in the Weinberg-
Salam theory of weak interactions.) On the classical level, such a field is a C4-valued
function A on space-time that transforms under Lorentz transformations by the
identity representation of the Lorentz group: A(x) �→ LA(L−1x). Its Lagrangian is

(5.38) L = − 1
4FμνF

μν + 1
2m

2AμA
μ (Fμν = ∂μAν − ∂νAμ),

and the resulting field equations are a massive version of Maxwell’s equations known
as the Proca equations :

(5.39) ∂μF
μν +m2Aν = 0.

Since ∂μ∂νF
μν = 0, (5.39) implies that ∂νA

ν = 0, and since ∂μF
μν = ∂2Aν −

∂ν(∂μA
μ), we see that (5.39) is equivalent to the Klein-Gordon equation plus the

condition of zero 4-divergence:

(5.40) ∂2Aν +m2Aν = 0, ∂νA
ν = 0.
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In the limit m→ 0, this yields Maxwell’s equations with the Lorentz gauge condi-

tion. On the Fourier transform side, the Klein-Gordon equation implies that Â lives
on the mass shells X±

m, and the equation ∂νA
ν = 0 becomes the linear constraint

pνÂ
ν(p) = 0, which reduces the number of independent components of A from 4

to 3. With this in mind, one sees that the action of the rotation group on A is
given by its (complexified) identity representation on C3, i.e., the representation
associated to spin one.

The quantization of the massive vector field proceeds in much the same way as
that of the Dirac field. The result is
(5.41)

Aν(x) =

∫ 3∑
j=1

1√
2ωp

[e−ipμx
μ

εν(p, j)a(p, j) + eipμx
μ

εν(p, j)∗b†(p, j)]
d3p

(2π)3
,

where a and b represent annihilation operators for particles and antiparticles — the
possibility b = a for neutral particles is allowed — and the εν(p, j) are polarization
vectors. The nontrivial commutation relations for a and b are the usual ones,

[a(p, j), a†(p′, j′)] = [b(p, j), b†(p′, j′)] = (2π)3δ(p− p′)δjj′ ,

and the polarization vectors are specified as follows. For p = 0, {εν(0, j) : j =
1, 2, 3} is a given orthonormal basis for {0}×C

3 (the same one for each ν), and then
εν(p, j) = Bν

με
μ(0, j) where B ∈ SO↑(1, 3) is the pure boost that takes p+m = (m,0)

to (ωp,p) (similarly to the spinor coefficients of the Dirac field). (This automatically
guarantees that pνε

ν(p, j) = 0.)
Now, what happens if we let m → 0? The Proca equations (5.40) turn into

Maxwell’s equations with the Lorentz gauge condition, which is fine. But the single-
particle states for massive vector particles have three independent components,
corresponding to the three polarization vectors in (5.41), whereas the single-particle
states for massless ones have only two, specified by the positive or negative helicity
along the direction of motion. (On the classical level, this corresponds to the fact
that the electromagnetic field admits only transverse oscillations, not longitudinal
ones.) Thus if we try to quantize the electromagnetic field in the form (5.41) (with
b = a), we have too many components, and some of them will represent unphysical
“ghost fields” that create “ghost states” whose contributions to later computations
must ultimately cancel out. It is indeed possible to proceed in this way, picking one’s
way among the technical obstacles carefully; the result is known as Gupta-Bleuler
quantization.

Another possibility is to discard Lorentz invariance in favor of a quantization
that will yield the physical fields more directly. On the classical level, the Lorentz
gauge condition ∂μA

μ = 0 does not specify Aμ completely; one can still add a term
∂μχ where ∂2χ = 0. For a free field, in the absence of charges, one can thereby
arrange to make A0 = 0, that is, to put A into the Coulomb gauge or radiation
gauge:

A = (0,A), ∇ ·A = 0.

Quantization of this field yields

(5.42) A(x) =

∫ 2∑
j=1

1√
2|p|

[e−ipμx
μ

ε(p, j)a(p, j) + eipμx
μ

ε(p, j)∗a†(p, j)]
d3p

(2π)3
,
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where ε(p, 1) and ε(p, 2) are an orthonormal basis for {ε : ε · p = 0}. (One can
choose these vectors to depend smoothly on p ∈ R3 \ {0} by allowing them to be
complex — that is, by allowing general elliptical polarizations rather than just linear
ones. Note also that ωp = |p| since m = 0 here.) In effect, the condition ε · p = 0
means that one is keeping only that part of the field (5.41) whose polarization is
transverse to the direction of motion.

Using the Coulomb gauge, of course, destroys the manifest Lorentz invariance of
the theory. Moreover, both this procedure and the Lorentz-invariant quantization
with ghost fields present some technical problems in connection with constructing
canonically conjugate fields for use in constructing the Hamiltonian. There is no
general agreement among physics texts about the best way of handling these prob-
lems, and as mathematical tourists we are better off not getting into these muddy
waters. The most essential information that must be extracted from the fields is
the associated particle propagators; we shall address that problem in §6.5 and §8.3.

Concluding remarks. One can construct a free quantum field whose quanta
have any mass m > 0 and spin s ∈ 1

2Z+. It acts on the Fock space over the
one-particle state space associated to the representation πm,s of §4.4 (or the tensor
product of two copies of the Fock space for particle-antiparticle pairs). The general
idea is the same as in the cases s = 0, 1

2 , 1 that we have described; only the algebra
is different. See Streater and Wightman [116] and Weinberg [131].

Let us review what we have accomplished. We started from the idea of a
classical field, that is, a function φ on (some region in) space-time whose value
at a point x is an observable quantity — say, a force, a velocity, a temperature
— that can be determined by measurements performed at x. One would expect
quantization to yield a function Φ on space-time whose value at x is the quantum
observable — i.e., self-adjoint operator — corresponding to the classical observable
φ(x). Thus, when the system is in a state v the expectation value 〈v|Φ(x)|v〉 should
be somehow closely related to the classical field φ(x) in the corresponding classical
state.

What we seem to have ended up with, however, is rather different. The fact
that we need operator-valued distributions rather than functions is a technical
obstacle rather than a conceptual one, for even classically the notion of making
measurements at a single point specified to infinite precision is an idealization.
What is more serious is that the values of the quantum fields we have constructed are
self-adjoint (or, more loosely, Hermitian) only when the quanta of the field are their
own antiparticles; in other cases the values of the fields cannot directly represent
observable quantities. This is perhaps just as well, for what would we be observing?
The “classical fields” we have quantized to produce the scalar and Dirac quantum
fields have no meaning in classical physics; even for the electromagnetic field, what
we have quantized is not the directly observable field Fμν but the more abstract
potential Aμ. Rather, these “classical fields” arise as frameworks for describing
single quantum particles, and the quantum fields we have constructed turn out to
be machines for creating and destroying such particles.

At this point readers may well be wondering what these quantum fields have
to do with physical reality. So far, the answer is: not much. We have constructed
only free fields, whereas all the real physics comes from interactions. Getting to
the interesting stuff will require a little more patience and a lot more willingness to
accept mathematical incompleteness. We shall take the plunge in the next chapter.
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5.5. The Wightman axioms

The success of quantum electrodynamics naturally led to attempts to develop
the theory in a mathematically rigorous way and to generalize it to encompass other
kinds of quantum fields. In the late 1950s Wightman and G̊arding formulated a
list of basic properties that any physically reasonable and mathematically well-
defined quantum field theory should have. This list has come to be known as the
G̊arding-Wightman axioms or the Wightman axioms.

The ingredients for the Wightman axioms are a Hilbert space F equipped
with
i. a dense subspace D,
ii. a set of operator-valued distributions φ1, . . . , φN on R4 (the meaning of this is

explained more precisely in Axiom 1 below),
iii. a unitary representation U of the double cover R4 � SL(2,C) of the restricted

Poincaré group on F, and
iv. a (nonunitary) representation S of SL(2,C) on CN .
Since the unitary operators U(a, I) (a ∈ R

4) all commute, they have a common
spectral resolution; that is, there is a projection-valued measure E on R4 such that
U(a, I) =

∫
e−ipμa

μ

dE(p).
The axioms are as follows. All of them should look rather familiar except

perhaps the last one, which we shall discuss later.

1. Each φn is a map from the Schwartz space S(R4) to the set of (perhaps
unbounded) linear operators on F such that
i. for all f ∈ S(R4) we have

D ⊂ Dom(φn(f)) ∩Dom(φn(f)
†), φn(f)D ∪ φn(f)

†D ⊂ D;

ii. for all ξ, η ∈ D, the map f �→ 〈ξ|φn(f)|η〉 is a tempered distribution
on R4.

2. There is a unit vector Ω ∈ D (the “vacuum state”), unique up to a phase
factor, such that U(a,A)Ω = Ω for all (a,A) ∈ R

4
� SL(2,C).

3. The linear span of the set of vectors of the form φn1
(f1) · · ·φnk

(fk)Ω with
k ≥ 0, nj ∈ {1, . . . , N}, and fj ∈ S(R4) is dense in H.

4. For any f ∈ S(R4), (a,A) ∈ R4 � SL(2,C), and n ∈ {1, . . . , N},

U(a,A)φn(f)U(a,A)−1 =
N∑

m=1

S(A−1)mn φm((a,A) · f)

as operators on D, where [(a,A) · f ](x) = f(κ(A)−1(x − a)) and κ :
SL(2,C) → SO↑(1, 3) is the covering map. If we adopt the notational
pretense that φn is a function rather than a distribution, this means that

U(a,A)φn(x)U(a,A)−1 =

N∑
m=1

S(A−1)mn φm(Ax+ a).

5. The support of the projection-valued measure E is contained in the region
{(p0,p) : p0 ≥ |p|} inside the forward light cone. (Equivalently: if Pμ is
the infinitesimal generator of the one-parameter group t �→ U(teμ, I),

where e0, . . . , e3 are the standard basis for R4, then P0 and P 2
0 −

∑3
1 P

2
j

are both positive operators.)
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6. If f and g are in S(R4) and the supports of f and g are spacelike separated
(i.e., x − y is spacelike whenever f(x)g(y) �= 0), and m,n ∈ {1, . . . , N},
then as operators on D,

(5.43)
either [φm(f), φn(g)] = [φm(f), φn(g)

†] = 0

or {φm(f), φn(g)} = {φm(f), φn(g)
†} = 0.

(Which of these two possibilities occurs may depend on m and n.) Again,
if we pretend that the φn are functions, this means that φm(x) (and
φm(x)†) commutes or anticommutes with φn(y) and φn(y)

† whenever x−y
is spacelike.

This framework can accomodate any number of fields representing any number
of particle types, because there is no assumption that the representation S should
be irreducible. If S is a direct sum of irreducible representations Sk on Cnk with
k = 1, . . . ,K and n1 + · · ·nK = N , the N -tuple of fields φn separates out into
nk-tuples, each of which may be the components of the field representing one of the
particles of the theory.

The free massive scalar, Dirac, and vector fields that we have discussed earlier
in this chapter are all examples of systems that satify the Wightman axioms, as
are the free fields of arbitrary mass m > 0 and spin s ∈ 1

2Z+. The Hilbert space
F is the (Boson or Fermion) Fock space over the appropriate single-particle state
space H, and the dense subspace D is the finite-particle subspace. The vacuum Ω
is the no-particle state, i.e., a unit vector in

⊗0
H = C, and the closed linear span

of the vectors φn1
(f1) · · ·φnk

(fk)Ω with k ≤ K is the sum of the k-particle spaces
for k ≤ K. The representation U is given by U(a,A) = F(π(a,A)), where π is the
appropriate irreducible representation of R4�SL(2,C) onH as described in §4.4 and
F(π(·)) is the corresponding representation on F given by (4.53). The representation
S is the trivial representation on C for the scalar field, the representation Φ defined
by (4.21) for the Dirac field, and the covering map κ : SL(2,C) → SO↑(1, 3) for
the vector field. The joint spectrum of the position-momentum operators on the
single-particle space H is the mass shell X+

m, and hence the joint spectrum on the
k-particle space is {p1 + · · ·+ pk : p1, . . . , pk ∈ X+

m}. All of these sets lie inside the
forward light cone, and the support of the measure E in Axiom 5 is the closure of
their union. The verification of Axiom 6 is a calculation that we shall perform in
§6.5. (See Streater and Wightman [116] or Bogolubov et al. [11], [12];2 also Reed
and Simon [95] for a thorough treatment of the free scalar field.)

Let us examine the meaning of Axiom 6, known as the microscopic causality
condition, in more detail. The idea is that for x ∈ R4 the fields φn(x) are supposed
to represent phenomena that take place at x; more precisely, if f ∈ S(R4), the φn(f)
are supposed to represent phenomena that take place in the space-time support
of f . (For example, if one unravels all the Fourier analysis in the definition of
the free scalar field φ, one finds that φ(t,x)Ω is the state containing one particle
located at position x at time t.) If x and y are space-like separated, nothing that
happens at x can influence what happens at y and vice versa, so (according to the
discussion of uncertainty in §3.3) observables connected with phenomena at x and
y must commute. This argument does not immediately imply (5.43), for as we

2As with many Russian names, there are several possible spellings of “Bogolubov” in the
Roman alphabet; the most common variations involve the replacement of the “u” by “iu,” “ju,”
or “yu.” We use the spelling in the works just cited.
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have observed in the preceding section, the field operators usually do not represent
observable quantities. However, as we shall see in the next chapter, quantities of
direct physical significance are constructed out of field operators, and for them
these (anti)commutation relations are important.3 In particular, they are needed
to guarantee the Lorentz invariance of the scattering matrix; according to Weinberg
[131], p. 198, this is the real reason to insist on microscopic causality.

In this setting one can prove a rigorous form of the spin-statistics theorem that
particles of integer spin must be Bosons and particles of half-integer spin must be
Fermions.4 The precise statement is as follows. Suppose φ1, . . . , φN are the fields
of a theory satisfying the Wightman axioms that describes one or several particle
types; thus each φn is a component of an irreducible subset of fields that describes
one of the particle types. If φn is a component of a field describing a particle of
half-integer spin and [φn(f), φn(g)

†] = 0 whenever f and g have spacelike-separated
supports, then φn(f)Ω = 0 for all f ; likewise if φn is a component of a field
describing a particle of integer spin and {φn(f), φn(g)

†} = 0. In either case, if
the different fields of the theory all either commute or anticommute (normally the
case), it follows that φn = 0.

The Wightman axioms have served as the foundation for a large body of re-
search in the mathematically rigorous theory of quantum fields. We shall not pursue
this subject here, but we would be remiss not to mention an especially fundamental
result, the so-called PCT theorem. This states that any quantum field theory satis-
fying the axioms is invariant under the combined operation PCT (the factors may
be permuted in any order) where P and T are the space and time inversion opera-
tors coming from the action of the Lorentz group and C is the charge-conjugation
operator that interchanges particles and antiparticles. (We discussed the latter for
Dirac wave functions in §4.2 and for scalar fields in §5.2; the definition in general is
similar.) A half-century ago it was believed that these three operators individually
should be symmetries of any reasonable physical theory, so that the PCT theorem
might have seemed like much ado about the obvious. But then it was discovered
that the weak interaction has a definite “handedness” and so is not P -invariant
(see §9.4), and more recently, experimentalists found that certain meson decays are
not CP -invariant — at which point the significance of the PCT theorem could no
longer be doubted.

A different but related mathematical framework in which rigorous quantum
field theory can be studied is provided by the notion of algebras of local observables.
The fundamental data here are:
i. a C* algebra A of operators on a Hilbert space H,
ii. a C* subalgebra A(O) ⊂ A for each bounded open set O ⊂ R4, and
iii. a representation α of the restricted Poincaré group P0 as automorphisms of A,
subject to the following axioms:

1. A(O1) ⊂ A(O2) whenever O1 ⊂ O2.
2.

⋃
O A(O) is dense in A.

3. α(g)(A(O)) = A(g(O)) for all g ∈ P0.

3These quantities almost always involve products of even numbers of Fermion field operators,
and anticommutation relations for the latter yield commutation relations for the products.

4This result is due to Fierz and Pauli; the rigorous proof in the framework of the Wightman
axioms is due to Burgoyne and to Lüders and Zumino. See Streater and Wightman [116] for
references.
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4. [A1, A2] = 0 for all A1 ∈ A(O1) and A2 ∈ A(O2) whenever O1 and O2 are
spacelike separated.

For example, if {φ1, . . . , φN} is a set of fields satisfying the Wightman axioms
for Bosons (i.e., with commutators in (5.43)), one can take A(O) to be the C*
algebra generated by the operators φj(f) with 1 ≤ j ≤ N and f ∈ C∞

c (O), with
α(g)A = U(g)AU(g)−1. The study of quantum fields in this framework is known
as local or algebraic quantum field theory. (In spite of initial appearances, it can
also accomodate Fermion fields.)

There is an extensive mathematical theory based on the Wightman or local-
observable axioms. The reader who wishes to learn more about it may consult
Streater and Wightman [116], Jost [70], Bogolubov et al. [11], [12], and Araki
[3]. All of these contain proofs of the spin-statistics and PCT theorems. In addi-
tion, Haag [60] gives a comprehensive survey of the subject, with many arguments
sketched or omitted.

The bad news is that it has turned out to be a remarkably difficult task to
construct examples of field theories that satisfy the Wightman axioms and have
nontrivial interactions. Attempts to produce such examples in physical space-time
R4 have yet to succeed, so most of the work has dealt with field theories in Rd

(equipped with the Lorentz group O(1, d−1)) for d = 2 or 3, where the singularities
that plague quantum fields tend to be somewhat tamer. (It is easy to adapt the
Wightman axioms to any number of space dimensions.) Even there, things are not
easy, and for several years after the formulation of the Wightman axioms it was an
open question whether they were satisfied by any systems other than the free fields
and minor modifications thereof. The first example, a self-interacting scalar field in
dimension d = 2, was constructed by Glimm and Jaffe. Since then a variety of other
examples have been explored: other self-interacting fields, a Dirac field and a scalar
field with a Yukawa interaction, and various gauge fields — but all in dimensions 2
and 3. Much of this work has made use of the functional integral approach, and we
shall say more about it in Chapter 8. There is a lot of interesting mathematics in it
as well as interesting physics, including connections to other areas of physics such
as statistical mechanics, but none of it does much to help with the down-to-earth
calculations of quantum electrodynamics that we are aiming towards. We therefore
leave it aside and refer the reader to the appendix of Streater and Wightman [116]
and Rosen [101] for concise surveys and to Glimm and Jaffe [55] and Simon [113]
for more extensive accounts.

                

                                                                                                               



CHAPTER 6

Quantum Fields with Interactions

To have to stop to formulate rigorous demonstrations would put a
stop to most physico-mathematical inquiries. . . . The physics will
guide the physicist along somehow to useful and important results,
by the constant union of physical and geometrical or analytical ideas.
—Oliver Heaviside, Electromagnetic Theory (§224)

Mephistopheles: Allwissend bin ich nicht; doch viel ist mir bewusst.
[I am not omniscient, but much is known to me.]
—J. W. Goethe, Faust (Part I, 4th scene)

The last temptation is the greatest treason:
To do the right deed for the wrong reason.
—T. S. Eliot, Murder in the Cathedral (Part I)

Everything we have done so far is mathematically respectable, although some
of the results have been phrased in informal language. To make further progress,
however, it is necessary to make a bargain with the devil. The devil offers us effec-
tive and conceptually meaningful techniques for calculating physically interesting
quantities. In return, however, he requires us to compromise our mathematical
souls by accepting the validity of certain approximation procedures and certain
formal calculations without proof and — what is a good deal more disconcerting
— by working with some putative mathematical objects that lack a rigorous defi-
nition. The situation is in some ways similar to the mathematical analysis of the
eighteenth century, which developed without the support of a rigorous theory of
limits and with the use of poorly defined infinitesimals.

The first and most essential tool the devil offers us is perturbation theory.

6.1. Perturbation theory

Suppose we have a quantum system whose Hamiltonian H is the sum of two
terms:

H = H0 +HI .

We take H0 to be known and understood, and we wish to study the effect of adding
in the extra term HI . In most of our applications, H0 will be the Hamiltonian for
a free field and HI will be the interaction term, but the discussion below applies
also to other situations where H is taken to be a perturbation of H0. There is a
considerable mathematical literature dealing with this kind of situation, in which
precise hypotheses are placed on H, H0, and HI . Unfortunately, it is largely irrel-
evant for our purposes, because the HI ’s that we shall need are too singular. We
simply have to proceed step by step, taking some care to recognize when we are
taking something on faith.
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We begin with some general considerations. For psychological comfort, the
reader may wish to think of the case where H0 is a self-adjoint operator and HI is
a bounded self-adjoint operator, in which case H is a self-adjoint operator with the
same domain as H0. However, this is far from the case we shall need in the sequel.

What we are really interested in is not H andH0 but the one-parameter unitary
groups they generate, i.e., the time evolution operators for the unperturbed system
and the perturbed system:

U0(t) = e−itH0 , U(t) = e−itH .

We assume that the group U0(t) is “well known,” and our problem is to compute
U(t). For this purpose it is convenient to adopt a point of view that is intermediate
between the Schrödinger picture (in which the states evolve in time, ψ(t) = U(t)ψ,
while the observables remain fixed) and the Heisenberg picture (in which the states
remain fixed while the observables evolve in time, A(t) = U(−t)AU(t)), called the
interaction picture. Namely, we let the observables evolve in time according to the
unperturbed Hamiltonian,

(6.1) A(t) = U0(−t)AU0(t),

and the states evolve in such a way as to correct U0(t) to U(t):

(6.2) ψ(t) = V (t)ψ, where V (t) = U0(−t)U(t).

The matrix element of the observable A between the states ψ1 and ψ2 at time t is
thus

〈ψ2(t)|A(t)|ψ1(t)〉 = 〈ψ2|V (t)†U0(−t)AU0(t)V (t)|ψ〉 = 〈ψ2|U(−t)AU(t)|ψ1〉,
which is the matrix element of A between U(t)ψ1 and U(t)ψ2 (Schrödinger picture)
or the matrix element of U(−t)AU(t) between ψ1 and ψ2 (Heisenberg picture), as
it should be.

In the interaction picture, the problem is to compute V (t) (from which U(t) =
U0(t)V (t) is easily derived since U0(t) is assumed known). Now, V (t) satisfies the
differential equation

(6.3)
dV (t)

dt
= iU0(−t)H0U(t)− iU0(−t)HU(t) =

1

i
U0(−t)HIU(t) =

1

i
HI(t)V (t),

where the t-dependence of HI(t) is defined by (6.1). This is the real basis for our
calculations. That is, instead of starting with the Hamiltonians H and H0, we start
with a one-parameter unitary group U0(t) and a Hermitian operatorHI , and we look
for a one-parameter family V (t) of unitary operators such that iV ′(t) = HI(t)V (t).
(HI may be unbounded, in which case there are issues about domains that we
ignore here.) Then U(t) = U0(t)V (t) will be a one-parameter unitary group, and
H0 and H will merely be the infinitesimal generators of U0(t) and U(t); we need
not worry about them further.

The differential equation iV ′(t) = HI(t)V (t) is equivalent to the integral equa-
tion

V (t) = V (0) +

∫ t

0

d

dτ
V (τ ) dτ = I +

1

i

∫ t

0

HI(τ )V (τ ) dτ,

which may be iterated in the usual way:

V (t) = I +
1

i

∫ t

0

[
HI(τ ) dτ +

1

i

∫ τ

0

HI(τ )HI(τ
′)V (τ ′) dτ ′

]
dτ,
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and so forth, leading to the formal expansion

(6.4)

V (t) ∼ I +
∞∑
1

Vn(t),

Vn(t) =
1

in

∫ t

0

∫ τn

0

· · ·
∫ τ2

0

HI(τn)HI(τn−1) · · ·HI(τ1) dτ1 · · · dτn−1 dτn.

The series I +
∑∞

1 Vn(t) is called the Dyson series1 for V (t).
What does this really mean? If HI is actually a bounded operator, the series

I +
∑

Vn(t) converges in the norm topology since ‖Vn(t)‖ ≤ ‖HI‖ntn/n!, and its
sum is indeed the operator V (t). If HI is unbounded, but there is a dense domain
D mapped into itself by HI and the operators U0(t), then Vn(t) at least makes

sense as an operator on D. If HI also contains a coefficient λ (i.e., HI = λH̃I), it
may be that the formula V (t) ∼ I +

∑
Vn(t) is an asymptotic expansion in powers

of λ, valid on D. Of course, making this into a rigorous theorem requires some
estimates for the error term. All this is mathematically interesting, but it does not
really serve our purposes.

The gist of perturbation theory as a practical art is to take the first few partial
sums of the series (6.4) as effective approximations to the operator V (t). More
precisely, the theory should generate numbers representing physically significant
quantities that can be compared with experiment. Typically these numbers come
from matrix elements of V (t); in any case, the series (6.4) is used to generate
numerical series

∑∞
0 cn that formally represent a physical quantity C. The first

part of our bargain with the devil is this:

(6.5)
If the first few terms cn decrease rapidly in magnitude as n increases,
the corresponding partial sums of the series

∑
cn are to be accepted

as effective approximations to the quantity C.

The hypothesis of this Ansatz is a serious business. The progress of quantum
field theory remained almost at a standstill for twenty years because the terms
cn, at first sight, have an unfortunate predilection for being infinite, and it takes
some hard work to prune away the divergences and generate cn’s that are finite
and meaningful. Even then, there is no guarantee that they will be suitably small.
In quantum electrodynamics they are, and the theory is very successful; but for
the interaction that holds atomic nuclei together they are usually not, and our
understanding of nuclear phenomena at a fundamental level remains incomplete for
this reason.

Let us be perfectly clear about one thing here: the validity of (6.5) has abso-
lutely nothing to do with the convergence of the series

∑
cn or the series

∑
Vn from

which it is derived. To bring this point home, here is a simple parable. Consider
the two series

∞∑
0

(−100)n
n!

,

∞∑
0

n!

(−100)n .

The first series converges to e−100, but its first few partial sums are 1, −99, 4901,
−161765 2

3 , 4004901, etc. To call these “approximations” to e−100 (≈ 10−44) is
nothing but a bad joke. On the other hand, the second series diverges, but its

1This notion antedates Dyson; the name is more properly applied to the perturbation series
for the S-matrix that we shall introduce in §6.3. See Dyson [25], [26].
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first few partial sums — 1, 0.99, 0.9902, 0.990194, 0.99019424 — provide excellent
approximations to the integral ∫ ∞

0

100e−t dt

100 + t
.

Indeed, the error is less in magnitude than the first neglected term of the series (to
see this, write 1/(1 + (t/100)) as a finite geometric series plus a remainder), and
these magnitudes decrease up to the 100th term 100!/(100)100 ≈ 10−42.

We return to the Dyson series. The formulas (6.4) can be rewritten in a conve-
nient way by using the notion of time-ordered product. Suppose A1(t), . . . , An(t)
are operators depending on t ∈ R. If t1, . . . , tn are distinct points in R, the time-
ordered product T[A1(t1) · · ·An(tn)] is defined by

T[A1(t1) · · ·An(tn)] = Ai1(ti1) · · ·Ain(tin), where ti1 > ti2 · · · > tin .

That is, the factors are ordered so that the operators are applied in the order
of increasing time parameter. We also declare the time-ordering operation to be
linear, so that the time-ordering of a sum or integral of such products is the sum or
integral of the time-ordered products. If Vn(t) is defined as in (6.4), we then have

(6.6)

Vn(t) =
1

inn!

∫ t

0

∫ t

0

· · ·
∫ t

0

T[HI(τ1) · · ·HI(τn)]dτ1 · · · dτn

= T

[
1

inn!

∫ t

0

∫ t

0

· · ·
∫ t

0

HI(τ1) · · ·HI(τn)dτ1 · · · dτn
]
.

Indeed, the integral over the cube (0, t)n is the sum of the integrals over the n!
simplices where the coordinates have a particular ordering such as τ1 > τ2 > · · · >
τn, and each of the latter integrals is equal to Vn(t). The expansion of V (t) then
takes the form

(6.7)

V (t) ∼ T

[ ∞∑
0

1

inn!

∫ t

0

∫ t

0

· · ·
∫ t

0

HI(τ1) · · ·HI(τn)dτ1 · · · dτn

]

≡ T exp

[
1

i

∫ t

0

HI(τ ) dτ

]
.

This last expression is called the time-ordered exponential of i−1
∫ t

0
HI(τ ) dτ , and

it is, by definition, the sum of the time-orderings of the terms in the Taylor series
of the exponential. This is merely a convenient and suggestive notation, not a new
formula for V . A time-ordered exponential has just as much, or as little, meaning
as the series that defines it.

Recall that what we really want to calculate is the group U(t). Since U(t) =
U0(t)V (t), the Dyson series (6.4) yields an expansion of U(t) in terms of the free
evolution group U0(t) and the interaction Hamiltonian HI . Indeed, we have

U(t) ∼ U0(t) +

∞∑
1

Un(t), where Un(t) = U0(t)Vn(t) for n ≥ 1.
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Recalling that HI(t) = U0(−t)HIU0(t), for t > 0 we have

U1(t) =
1

i

∫ t

0

U0(t− τ )HIU0(τ ) dτ,

U2(t) =
1

i2

∫
t>τ2>τ1>0

U0(t− τ2)HIU(τ2 − τ1)HIU0(τ1) dτ1 dτ2,

and so forth. These formulas admit a very suggestive graphical interpretation,
shown in Figure 6.1.
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Figure 6.1. Graphical interpretation of the Dyson series.

In the formula for U1(t), the integrand U0(t− τ )HIU0(τ ) represents the system
propagating freely until time τ , being hit with the interaction HI , then propagat-
ing freely again until time t. Likewise, in U2(t), the system propagates freely until
time τ1, is hit with HI , propagates freely again until time τ2, is hit with HI again,
and then propagates freely until time t. Thus, at least to the extent to which the
Dyson series can be trusted, the picture that emerges is as follows. The system
can propagate freely (U0(t))over the time interval (0, t), interact once at some in-
termediate time (U1(t)), interact twice (U2(t)), and so forth. We add up all the
ways these things can happen over all possible intermediate times, and the result is
the interacting propagator U(t). This is the simplest version of the philosophy for
computing time evolutions that was pioneered by Feynman, and Figure 6.1 consists
of embryonic Feynman diagrams.

We conclude this section with an elementary but technical calculation that will
be needed in the next section. Let us rewrite the interaction Hamiltonian as gHI ,
where g is a small parameter. Suppose that the unperturbed Hamiltonian H0 has
an eigenvalue λ0 with unit eigenvector v0, and suppose that H = H0 + gHI has an
eigenvalue λg with eigenvector vg, normalized so that 〈v0|vg〉 = 1, such that λg and
vg depend smoothly on g. (Of course, there are theorems that guarantee that this
will happen under suitable hypotheses — for example, if HI is bounded, or just
bounded relative to H0, and the eigenvalue λ0 is simple; see Reed and Simon [97],
§XII.2.) Thus we have

λg = λ0 + ε1g + ε2g
2 +O(g3), vg = v0 + gw1 + g2w2 +O(g3),

for some εj ∈ C and wj ∈ H. We wish to calculate ε1 and ε2. (This calculation can
be extended recursively to find the higher-order coefficients in the Taylor expansion
of λg too.)

We first observe that since

1 = 〈v0|vg〉 = 1 + g〈v0|w1〉+ g2〈v0|w2〉+ · · ·
for all small g, we have

(6.8) 〈v0|w1〉 = 〈v0|w2〉 = 0.
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Now,

Hvg = (H0 + gHI)(v0 + gw1 + g2w2 + · · · )
= λ0v0 + g(HIv0 +H0w1) + g2(HIw1 +H0w2) + · · · ,

and on the other hand,

Hvg = λgvg = λ0v0 + g(ε1v0 + λ0w1) + g2(ε2v0 + ε1w1 + λ0w2) + · · · .
Hence

H0w1 +HIv0 = ε1v0 + λ0w1,(6.9)

H0w2 +HIw1 = ε2v0 + ε1w1 + λ0w2.(6.10)

Since 〈v0|H0|w1〉 = λ0〈v0|w1〉 = 0, by taking the inner product of (6.9) with v0 and
using (6.8) we obtain

(6.11) ε1 = 〈v0|HI |v0〉,
and hence

(H0 − λ0)w1 = −(HI − ε1)v0 = −(HIv0 − 〈v0|HI |v0〉v0) = −(I − P )HIv0,

where P is the orthogonal projection onto Cv0. The restriction of H0 − λ0 to the
orthogonal complement of v0, i.e., the range of I − P , is invertible on that space,
so with a small abuse of notation,

w1 = −(H0 − λ0)
−1(I − P )HIv0 = −(I − P )(H0 − λ0)

−1(I − P )HIv0.

Finally, we take the inner product of (6.10) with v0 and use (6.8) as above to obtain

(6.12) ε2 = 〈v0|HI |w1〉 = −〈v0|HI(I − P )(H0 − λ0)
−1(I − P )HI |v0〉.

6.2. A toy model for electrons in an atom

In this section we analyze a nonrelativistic particle of mass M moving in a
potential V and interacting with a neutral scalar field φ of mass μ, as a toy model
for an electron in an atom interacting with the electromagnetic radiation field. In
more detail, in the latter situation we take the atomic nucleus to be infinitely heavy
and therefore stationary. The potential V is the Coulomb potential generated by
the nucleus (perhaps modified by the presence of other electrons), the particle is
an electron moving nonrelativistically (according to the Schrödinger equation) in
the potential V , and the field φ is the rest of the electromagnetic field — which
classically is the radiation field produced by the motion of the electron, but here is
treated as a quantum field. However, in our toy model we neglect the complications
due to the spins of electrons and photons, and hence take the wave function for
the particle to be scalar-valued and the field to be a scalar field. We also assign
a positive mass μ to the field quanta, but this should be envisioned as being very
small in comparision with all other masses and energies under consideration. (An
analogous discussion for genuine electromagnetism, without the simplifications, can
be found in Sakurai [103], Chapter 2.) In what follows, it will be tempting to refer
to the nonrelativistic particle as an electron and the particles associated to the field
as photons, but in order not to create false impressions, we shall refer to them as
“the particle” and “the (field) quanta,” respectively.

We are going to perform two calculations with this model: the transition rate
for the particle to emit or absorb field quanta, and the shift in the energy levels En

due to the presence of the field. This is not fundamental physics, but it will provide
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a useful illustration of the workings of a quantum field and the art of approximation
as well as some insight into real phenomena of atomic physics.

Here is the setup. To minimize technicalities, we take the particle and the
field to live in a large cubical box B of side length L, with periodic boundary
conditions, as in §5.1 — that is, on a 3-torus rather than R3. The state space is
H = Hpart ⊗Hfield, where Hpart = L2(B) and Hfield is the Boson Fock space over
L2(B). The Hamiltonian is H = Hpart +Hfield +HI , where Hpart = −∇2/2M + V
acting on Hpart, Hfield =

∑
p∈Λ ωpa

†(p)a(p) as in (5.3) with Λ = [(2π/L)Z]3 being
the lattice of allowable momenta, and HI is the interaction term. Our first choice
forHI is the simplest possible thing: HI = gφ, where g is a scalar called the coupling
constant. It corresponds to the charge of the electron, and the form HI = gφ of
the interaction is motivated by classical electrodynamics, where the interaction of
a charged body with the electromagnetic field is proportional to the charge and to
the field strength.

More precisely, if φ(x) is the Schrödinger-picture field,

(6.13) φ(x) =
1

L3/2

∑
p∈Λ

1√
2ωp

(eip·xa(p) + e−ip·xa†(p)),

we would like to take

HI(ψ ⊗ v)(x) = gψ(x)φ(x)v (ψ ∈ L2(B) = Hpart, v ∈ Hfield).

To put it another way, we can think of H as L2(B,Hfield), and then HI should be
simply pointwise multiplication by the operator-valued function gφ(·).

But already there is a difficulty: φ(·) is not a genuine function, as the series
(6.13) converges only in the sense of distributions, as we pointed out in §5.1. (If we
replaced the box by R3, the situation would be even worse.) When we deal with
interacting fields in a relativistically correct manner, we shall have to bite the bullet
and proceed somehow in the face of such singularities. But since we are presently
treating the particle as nonrelativistic, there cannot be much harm in discarding
the high-frequency (i.e., high-energy) components of the field and replacing (6.17)
by a finite sum over the p such that |p| ≤ K, for some large K. Another way
to look at this is as follows: since we are taking the the particle’s velocity to be
much less than 1 (the speed of light) in magnitude, its momentum must be much
less than its mass M in magnitude; in particular, the uncertainty in momentum is
much less than M . But then by (3.19), the uncertainty in position must be larger
than (roughly) �/M = 1/M . It is therefore reasonable to smooth the field φ out
by convolving it with a smooth approximation χ to the delta-function on R3 that
is negligibly small outside the set |x| < 1/M :

φ ∗ χ(x) = 1

L3/2

∑
p

χ̂(p)√
2ωp

(eip·xa(p) + e−ip·xa†(p)),

We can specify such a χ by requiring that its Fourier transform χ̂(p) be equal to 1
on a ball |p| ≤ K and supported in a slightly larger ball, where K ≥M , and then
φ ∗ χ is essentially the finite sum suggested above. The details of the smoothing
will be of no importance to us, so we shall simply replace φ by this finite sum and
take

(6.14) HI =
g

L3/2

∑
p∈Λ, |p|≤K

1√
2ωp

(eip·xa(p) + e−ip·xa†(p)).
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Since the system is in a box, the spectra of Hpart and Hfield are discrete. Let
E0 ≤ E1 ≤ E2 ≤ · · · be the eigenvalues of Hpart, with eigenvectors ψ0, ψ1, ψ2, . . ..
(The eigenvalues of interest are the negative ones, corresponding to the bound
states, and the nonrelativistic condition entails their being much less than the mass
M in absolute value.) Also, let Ω be the vacuum state in the Fock space Hfield.
Then a basis for the state space H is obtained by taking the tensor products of
the ψn’s with the k-quantum states a†(p1) · · ·a†(pk)Ω (k = 0, 1, 2, . . .) as the pj ’s
range over the lattice Λ of allowable momenta. We employ Dirac-style shorthand
notation for these basis vectors:

|n;p1, . . . ,pk〉 = cp1,...,pk
ψn ⊗ a†(p1) · · · a†(pk)Ω, |n〉 = ψn ⊗ Ω.

(cp1,...,pk
is a normalization constant, equal to [

∏
p∈Λ np!]

−1/2 where np is the

number of pj equal to p.) These vectors are eigenvectors for the free Hamiltonian
H0 = Hpart +Hfield:

(6.15) (Hpart +Hfield)|n;p1, . . . ,pk〉 = (En + ωp1
+ · · ·+ ωpk

)|n;p1, . . . ,pk〉,

where ωp =
√
|p|2 + μ2. On the other hand, the interaction Hamiltonian is given

by

(6.16) HI |n;p1, . . . ,pk〉(x)

=
g

L3/2

∑
|p|≤K

1√
2ωp

[
eip·x

√
mp |n;p′

1, . . . ,p
′
k−1〉

+ e−ip·x√mp + 1|n;p,p1, . . . ,pk〉
]
,

wheremp is the number of pj that are equal to p and, when mp > 0, (p′
1, . . . ,p

′
k−1)

is obtained from (p1, . . . ,pk) by omitting one of the pj ’s that is equal to p.

Emission and absorption of quanta. Let us find the transition probability
for emission of a field quantum when there are no quanta present initially. That
is, we assume that at time 0 the state is |n〉 (the particle has energy En, and there
are no quanta), and ask for the probability that at time t > 0 the state is |m,p〉
(the particle has energy Em and there is one quantum with momentum p), namely,
|〈m,p|U(t)|n〉|2. (We assume that |En|, |Em|, and |p| are less than the cutoff energy
K.) According to (6.4), the first-order approximation to 〈m,p|U(t)|n〉 is

〈m,p|U(t)|n〉 ≈ 〈m,p|U0(t)|n〉+
1

i

∫ t

0

〈m,p|U0(t− τ )HIU0(τ )|n〉 dτ.

The term 〈m,p|U0(t)|n〉 vanishes because the vacuum state of the field is orthogonal
to the 1-quantum states. The action of U0(t) = e−itH0 and HI in the other term
are given by (6.15) and (6.16):

1

i

∫ t

0

〈m,p|U0(t− τ )HIU0(τ )|n〉 dτ

=
1

i
e−i(Em+ωp)t

∫ t

0

ei(Em+ωp−En)τ 〈m,p|HI |n〉 dτ

=
g

L3/2i
e−i(Em+ωp)t

ei(Em−En+ωp)t − 1

i(Em − En + ωp)

∫
B

ψm(x)
∗ e

−ip·x√
2ωp

ψn(x) d
3x.
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Thus, if we set

α = Em − En + ωp, C(m,n,p) =

∫
B

ψm(x)∗e−ip·xψn(x) d
3x,

the transition probability to first order is
(6.17)

|〈m,p|U(t)|n〉|2 ≈ g2

L3

|C(m,n,p)|2
2ωp

∣∣∣∣eiαt − 1

iα

∣∣∣∣2 =
g2

L3

|C(m,n,p)|2
2ωp

sin2(αt/2)

(α/2)2
.

Let us examine the meaning of this. First, when t is reasonably large the
function

ft(α) =
sin2(αt/2)

(α/2)2

has a spike at α = 0 of height t2 and width ≈ 1/t, and is small elsewhere; moreover,
by a standard contour integral,

∫∞
−∞ ft(α) dα = 2πt. Therefore, ft(α) ≈ 2πtδ(α).

This expresses the fact that for the transition to take place we must have (approx-
imately) α = 0, that is, the energy ωp of the quantum must equal the difference
En − Em between the initial and final energies of the particle. The fact that this
relation becomes blurred for t small is a reflection of the time-energy uncertainty
principle: for very short times there is an unremovable uncertainty in the energy.
In real life, this phenomenon manifests itself in the fact that the photons emitted
when an atomic electron makes a transition from one energy level to another one
are not all of exactly the same frequency; the spectroscopists speak of the line width
in the resulting spectral plot.

The approximation ft(α) ≈ 2πtδ(α) is useful provided t is large enough so that
almost all the mass of ft(α) is concentrated in an interval where α (the deviation
from perfect energy conservation) is small in comparison with the energy difference
En − Em of the of the initial and final states of the particle, that is, when t "
1/(En −Em). In this situation, (6.17) says that the transition probability per unit
time is approximately

(6.18)
πg2

L3

|C(m,n,p)|2
ωp

δ(Em − En + ωp).

Of course this makes sense only when t is small enough so that the probability
at time t is substantially less than one. Thus we are in a slightly uncomfortable
situation where t must be neither too small nor too large; without some more
specific numbers it is impossible to tell whether we have accomplished anything at
all. We shall consider this question in more detail after carrying out the calculation
one step further for the limiting situation in which we dispense with the box, i.e.,
let L→∞.

We now have the emission rate for the particular quantum whose momentum
is p. However, if we are just interested in the decay of an excited state, a quantum
with momentum p′ is just as good as a quantum with momentum p provided
that ωp = ωp′ = En − Em. The number of quantum states per unit volume in
momentum space is (L/2π)3 (for L very large), so the number of quantum states
whose momentum points into a small solid angle dΩ and whose energy is in a small
band [ω, ω + dω] (that is, p/|p| ∈ dΩ, ωp ∈ [ω, ω + dω]) is(

L

2π

)3

|p|2 d|p|
dω

dω dΩ =

(
L

2π

)3

ω|p| dω dΩ,
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since |p| =
√
ω2
p − μ2, μ being the rest mass of a field quantum. The rate of

emission of any quantum in this region of momentum space is the quantity (6.18)
multiplied by the number of states in this region, that is,

g2

8π2
|C(m,n, p)|2|p|δ(En − Em + ω) dω dΩ.

Observe that at this point the box has disappeared, and the total emission rate for
a quantum in any direction, written out explicitly, is

(6.19) Γ =
g2

8π2

∫
|p|2=(En−Em)2−μ2

|p|
∣∣∣∣∫ ψm(x)

∗
e−ip·xψn(x) d

3x

∣∣∣∣2 dΩ(p).

We emphasize that dΩ(p) is solid angle measure, not surface area measure; i.e.,∫
|p|=r

dΩ(p) = 4π no matter what r is.

As we said above, Γ is a “transition probability per unit time,” so that for
reasonably short times Δt the probability of a transition in time Δt is approximately
ΓΔt — assuming that the restriction Δt" 1/(En−Em) doesn’t interfere with the
notion of “reasonably short.” Under this assumption, the interpretation of Γ for
longer time intervals is easily obtained. Suppose we start with a large number N
identical systems (N atoms, if you will) with particles in the state ψn. After a short
time interval Δt, NΓΔt of the particles will have undergone the transition to state
ψm. This leads to the differential equation dN/dt = −ΓN , so that N(t) = N0e

−Γt.
That is, Γ is the transition rate or decay rate of the excited state.

Now let us plug in numbers for the parameters in this simplified model that cor-
respond to the quantities in the real physical situation that inspired it: an electron
in the Coulomb potential of an atomic nucleus interacting with the electromagnetic
field to make a transition from an excited state with energy En to the ground state
with energy E0. That is, we take g2/4π to be the fine structure constant 1/137 (so
g2 ≈ 10−1), M to be the mass of the electron (M = 5 × 105 eV), and μ to be the
mass of the photon (μ = 0). (Yes, our model requires μ �= 0, but we can assume
μ � En − E0 and replace it by 0 as an approximation here.) The difference in
energy levels En − E0 is on the order of a few eV, or 10−5M . The magnitude of
the integral

∫
ψ0(x)

∗eip·xψn(x) d
3x depends strongly on the shape of the excited

state wave function ψn. The integral always vanishes at p = 0, so when ψn is
concentrated near the origin (i.e., when n is not too large), it can be estimated by
replacing eip·x by ip · x:∣∣∣∣∫ ψ0(x)

∗(p · x)ψn(x) d
3x

∣∣∣∣ ≤ |p|〈r〉
where 〈r〉 is the root-mean-square distance of the particle from the origin in the
state ψn. (If the integral vanishes to higher order in p, it is even smaller.) We
may take 〈r〉 to be at most a few times the Bohr radius of the hydrogen atom,
r0 = �

2/Mg2 ≈ 10/M (with M and g as above), so with |p| = En − E0 ≈ 10−5M ,
we have |p|〈r〉 ≈ 10−3 or less. Thus the integral (6.19) is estimated by

Γ � g2

2π
(10−5M)(10−3)2 ∼ 10−11M.

This is some 106 times smaller than En − E0. In other words, the decay time is
some 106 times longer than the time 1/(En − E0) needed to dispose of the energy
uncertainty, so the assumption that there are times that are neither too small nor
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too large is tenable. The mass-time conversion (1.6) shows that the decay time
(10−11M)−1 is on the order of 10−10 second, which is in the right ball park for
emission of photons in real atoms.

To do a thorough job of analyzing this situation, one should go further. By a
more careful analysis of the operator Pe−itHP , where P is the orthogonal projection
onto the state |n〉, one can show that 〈n|e−itH |n〉 ≈ e−(Γ+iβ)t where Γ is the decay
rate (6.19) found above and β = En +ΔEn, ΔEn being a correction to the energy
level En that we shall discuss below. See Messiah [83], §XXI.13.

We took the initial state to be one with no field quanta present. If we take the
initial state to contain field quanta, the calculations are very similar, but there are
some points to be noted. First, if the initial state has k quanta, there is a nonzero
transition probability to states with either k + 1 or k − 1 quanta, that is, a new
quantum can be emitted or an existing quantum can be absorbed. If all the existing
quanta are in different states initially, the calculations go through with no essential
change. But if some of them — say, m of them — are in the same state, there
is an extra factor of

√
m+ 1 or

√
m in (6.16) that shows up as an extra factor of

m+ 1 or m in the transition rate. It is no surprise that a quantum in a particular
state is more likely to be absorbed when there are lots of such quanta around; the
interesting thing is that the presence of quanta in a particular state speeds up the
rate at which such quanta are emitted too. This is the principle behind the laser.

What happens if we go to higher orders? The second-order term in the Dyson
series (6.4) contains the interaction Hamiltonian — that is, the field operators —
twice, so it has nonzero matrix elements between states with k quanta and states
with k + 2, k, or k − 2 quanta. It therefore has no effect on the transition rate
for emission or absorption of a single quantum, but it introduces new processes:
emission of two quanta, absorption of two quanta, and emission and reabsorption (or
absorption and reemission) of a single quantum. If one works out the calculations,
in the first two cases one finds formulas for the emission or absorption rate of the
same nature as (6.18); they involve delta-functions (or approximate delta-functions)
that express conservation of energy. But in the third case, the uncertainty principle
allows the particle and/or quantum to be temporarily “off mass shell” between the
times of emission and absorption or vice versa. In particular, when a quantum is
emitted and reabsorbed, it can have any energy E as long as it is reabsorbed in
a time ≈ 1/E. We say that it is a virtual quantum. This is the paradigm for all
“virtual particles,” which we shall discuss in more detail in §6.6.

Rather than considering absorption and emission processes further, we shall do
another calculation to show how the presence of the field affects the energy levels
of the particle. This will provide an introduction to the idea of renormalization.

Energy level shifts. We consider an eigenvalue En of Hpart, which is also an
eigenvalue of H0 = Hpart +Hfield with eigenvector |n〉, the state where the particle
has energy En and there are no field quanta present. We assume as before that
|En| � M so that the nonrelativistic approximation is valid, and we wish to de-
termine how the presence of the field affects En, to second order in the coupling
constant g. We indicated at the end of §6.1 how to perform this calculation, pro-
vided that the perturbed eigenvalue and eigenvector depend smoothly on g. Here
we proceed on the assumption that this condition is valid.2

2No physicist would waste a moment worrying about this, but here are a few remarks for
the mathematically fastidious. The calculations that follow involve only states with at most two
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The results at the end of §6.1, with λ0 = En and v0 = |n〉, show that the
perturbed eigenvalue is of the form En + ε1g + ε2g

2 to second order in g, where ε1
and ε2 involve HI |n〉. We have

HI |n〉 = L−3/2
∑

|p|≤K

(2ωp)
−1/2e−ip·x|n;p〉,

where e−ip·x denotes the operation of pointwise multiplication by the function
e−ip·(·) on L2(B,Hfield). The 1-quantum state HI |n〉 is orthogonal to the 0-
quantum state |n〉, so ε1 = 0 by (6.11). Hence, by (6.12), second-order correction
is

ΔEn = ε2g
2 = − g2

2L3

∑
p,p′

1
√
ωp′ωp

〈n;p′|eip′·x(I−P )(H0−En)
−1(I−P )e−ip·x|n;p〉,

where P is the orthogonal projection onto |n〉. The operator e−ip·x takes |n;p〉
to a linear combination of the vectors |m;p〉 with different m’s but the same p.
These are all orthogonal to |n〉, so the factors I − P can be omitted; they are also
preserved up to scalar multiples by H0, so the relation 〈p′,p〉 = δp′p implies that
only the terms with p′ = p survive, and we have

(6.20) ΔEn = − g2

2L3

∑
|p|≤K

1

ωp
〈n;p|eip·x(H0 − En)

−1e−ip·x|n;p〉.

Moreover, the operator eip·x commutes with Hfield and with multiplication by the
potential V (x), and eip·x ◦ ∇ ◦ e−ip·x = ∇− ip, so

eip·x(H0 − En)
−1e−ip·x =

(
− (∇− ip)2

2M
+ V (x) +Hfield − En

)−1

=

(
H0 − En −

p · ∇
iM

+
|p|2
2M

)−1

.

Therefore,

(6.21) ΔEn = − g2

2L3

∑
|p|≤K

1

ωp

〈
n;p

∣∣∣∣∣
(
ωp +

|p|2
2M

− p · ∇
iM

)−1
∣∣∣∣∣n;p

〉
.

Now, ∇/iM is the velocity operator for the particle, and the nonrelativistic
approximation entails the velocity being small. Thus, as a crude estimate of ΔEn,
we drop the term p · ∇/iM :

ΔEn ∼ −
g2

2L3

∑
|p|≤K

1

ωp(ωp + (|p|2/2M))
.

field quanta, so they are unaffected if we multiply the interaction Hamiltonian (6.14) fore and aft
by the orthogonal projection onto the space of these states. Since we have already cut off the
high frequencies, the result is a bounded operator. Hence standard results of perturbation theory
quoted in §6.1 apply provided that En is a simple eigenvalue of H0, and this can be artificially
arranged by adding a small generic perturbation to the potential V . Then the perturbed eigenvalue

depends smoothly on g for sufficiently small g, but whether the physical value g =
√

4π/137 is

“sufficiently small” is another matter.
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At this point we might as well pass to the limit L→∞, so that the sum becomes
an integral and (2π/L)3 becomes the volume element d3p:

(6.22) ΔEn ∼ −
g2

16π3

∫
|p|≤K

d3p

ωp(ωp + (|p|2/2M)
.

We can calculate this exactly in the limit of massless field quanta, for which ωp =
|p|:

− g2

16π3

∫
|p|≤K

d3p

|p|2(1 + (|p|/2M)
= − g2

4π2

∫ K

0

dρ

1 + (ρ/2M)

= − g2

2π2
M log

(
1 +

K

2M

)
.

There is clearly something fishy about this result, because it depends on the
artifical cutoff parameter K (although it is quite insensitive to the precise value of
K). In fact, if we remove the cutoff by letting K →∞, it diverges. Moreover, if we
takeK = M and use values for the other parameters appropriate to atomic electrons
(g2/4π = 1/137, M = 5 × 105 eV, En ∼ −10 eV) we get ΔEn ∼ −2 × 10−3M =
−103 eV, which is around 100 times as big as En itself. Thus the validity of (6.22)
as a “correction” to En seems highly dubious.

On the other hand, the integral (6.22) doesn’t depend on the particular energy
eigenstate |n〉, or even on the potential V . In fact, it is exactly the second-order
correction (in the limit L → ∞) to the ground-state energy level of a free parti-
cle. Indeed, in this case the eigenfunctions for Hpart = −∇2/2M are indexed by
the same lattice in momentum space as the one-quantum states of the field; the
normalized eigenfunction with momentum p is ep = L−3/2e−ip·x, with eigenvalue
Ep = |p2|/2M . Noting that ep is the result of applying the operator e−ip·x to the
ground state |0〉 = e0, we see that (6.20) for the ground state of a free particle (i.e.,
V = 0, n = 0, and En = 0) becomes

ΔE0 =
g2

2L3

∑
p

1

ωp
〈ep;p|(Hpart +Hfield)

−1|ep;p〉

= − g2

2L3

∑
|p|≤K

1

ωp(ωp + (|p|2/2M))
,

which is (6.22) in the limit L→∞.
What can this shift in the ground state energy of a free particle possibly mean?

The only energy such a particle has is its mass, so ΔE0 must be interpreted as a
change in the rest mass of the particle due to its interaction with the field:

ΔE0 = ΔM.

Now, thinking in terms of the real world of atomic electrons of which this is a
simplified model, we can move an electron into or out of an atomic potential well
and measure what happens when we do so, but we cannot decouple it from the
electromagnetic field, as its electric charge is always present. Hence the physical
mass that is measured in the laboratory is not the M in our Hamiltonian but the
corrected — or renormalized — mass M +ΔM . (The same issue arose in classical
electrodynamics, where it was an unresolved puzzle to figure out how much of an
electron’s mass should be attributed to the energy of the electrostatic field that it
generates. We shall return to this point in §7.10.)
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With this in mind, it is clear that the mass shift ΔM accounts for a large frac-
tion of all the energy level shifts for a particle in an arbitrary potential. Indeed, the
approximation we made by neglecting the term p ·∇/M in (6.21) amounts precisely
to replacing ΔEn by ΔM , and the physically interesting part of the shift ΔEn is the
remainder ΔEn−ΔM . Actually this is not quite right either. The numbers En are
the eigenvalues of the Hamiltonian Hpart = −(∇2/2M)+V containing the original
“bare” mass M , but the physically meaningful energy levels are the eigenvalues E′

n

of the Hamiltonian obtained by replacing M by the physical mass M +ΔM . The
“true” energy level shifts are the differences

Δ′En = (ΔEn −ΔM) + (E′
n − En),

and it is their differences Δ′En−Δ′Em, as corrections to the differences E′
n−E′

m,
that are observed spectroscopically when particles make a transition from one state
to another.

We shall not carry out the calculation of these corrections here, as the dif-
ferences between our model and real atomic electrons are too great to make it
worthwhile. But nonrelativistic calculations of this sort by Bethe gave the first
reasonably accurate theoretical calculation of the Lamb shift, i.e., the difference in
the energy levels between the 2S1/2 and the 2P1/2 states of the hydrogen atom.
The interested reader can consult Bethe’s original account [9] or the retelling of it
in Sakurai [103], §2.8. Of course, to obtain really accurate and theoretically sound
results along these lines, one must proceed from a relativistically correct theory and
take account of the contributions of high-energy virtual quanta, so that the results
do not depend on the choice of cutoff. We shall say a little more about this in §7.11.

One tends to think of renormalization as a way of “subtracting off infinities,”
and indeed it plays that role here if we define HI in terms of the original quan-
tum field without cutting off the high frequencies. But the fact that it still has a
substantial role to play when the cutoff is employed highlights the fact that it has
a deeper significance. The presence of interactions really does change the effective
parameters of a system, and those changes must be taken into account whether
they be finite or not.

6.3. The scattering matrix

After this warmup, we now turn to the real subject at hand: quantum fields
with interactions. The path we follow here is the one we followed in discussing free
fields, “canonical quantization.” That is, we start out with classical field equations
and a relativistically invariant Lagrangian from which they are derived, then replace
the classical field variables by quantum fields, which are Fourier integrals of creation
and annihilation operators that satisfy suitable commutation or anticommutation
relations. The Lagrangian will be a sum of free-field terms and interaction terms,
and the same will be true of the corresponding Hamiltonian. We then make the
assumption that perturbation theory will yield some meaningful results, so that we
can calculate the time evolution by using the Dyson series.

What are we trying to calculate, anyhow? In the typical particle-physics ex-
periment some incoming particles with certain momenta, initially far apart, come
together and interact with each other, producing some outgoing particles with cer-
tain momenta that again become far apart and eventually arrive at detectors. The
phrase “far apart” is meant to indicate that the particles no longer interact and can
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be treated as free particles, and we are emphasizing that the momenta of the parti-
cles are usually a lot more important than their positions. Speaking loosely, there
is an “incoming” state |in〉 consisting of free particles and an “outgoing” state |out〉
consisting of free particles, and we wish to find the transformation |in〉 �→ |out〉.

Setting up a precise description of this situation is a rather subtle business.
We shall do so quite informally and refer the reader to Weinberg [131], §3.1, for a
more careful analysis. Let U(t) = e−itH be the time evolution operator; we assume
that H is the sum of a free-field Hamiltonian H0 and an interaction Hamiltonian
HI . If |v〉 is the state vector of the system at the present time, one might at
first think that |in〉 and |out〉 would be limt→−∞ U(t)|v〉 and limt→+∞ U(t)|v〉, but
these limits are unlikely to exist, as the particles move off to infinity as t → ±∞.
But if U(t)|v〉 is essentially a collection of free particles for ±t large, we can keep
that collection in our field of view by moving it back to the present using the free-
field evolution U0(−t) = eiH0t. Thus we are led to the interaction-picture time
dependence |v(t)〉 = U0(−t)U(t)|v〉 as discussed in §6.1, and |in〉 and |out〉 should
be the limits of |v(t)〉 as t → −∞ or t → +∞. In short, the transformation
|in〉 → |out〉 that we are interested in is the scattering operator

(6.23) S = lim
t0→−∞, t1→+∞

U0(−t1)U(t1 − t0)U0(t0).

More practically, we are interested in the matrix elements of S, 〈out|S|in〉, which
are collectively known as the scattering matrix or S-matrix.

From the point of view of rigorous mathematics, the existence and unitarity of
the scattering operator is an interesting and highly nontrivial question. (There is
a rigorous scattering theory in the context of the Wightman axioms due to Haag
and Ruelle; see Jost [70], Bogolubov et al. [11], [12], and Araki [3]. The scattering
theory of nonrelativistic quantum mechanics is developed in Reed and Simon [96].)
But we have already made our bargain with the devil, so we shall not stop to worry
about this, but rather proceed directly to try to calculate the matrix elements by
perturbation theory. By (6.3), the operator V (t) = U0(−t)U(t) is the solution of the
initial value problem iV ′(t) = HI(t)V (t), V (0) = I, where HI(t) = U0(−t)HIU0(t)
is the interaction-picture form of HI . Therefore, the operator

V (t, t0) = U0(−t)U(t− t0)U0(t0) = V (t)V (t0)
−1

is the solution of the initial value problem

i
d

dt
V (t, t0) = HI(t)V (t)V (t0)

−1 = HI(t)V (t, t0), V (t0, t0) = I,

so by the same calculation that leads to (6.4), it is formally given by the Dyson
series

V (t, t0) ∼ T exp
1

i

∫ t

t0

HI(t) dt

= I +
∞∑
1

1

inn!

∫ t

t0

· · ·
∫ t

t0

T[HI(τ1) · · ·HI(τn)] dτ1 · · · dτn.

The corresponding formal expansion for the scattering operator (6.23) is then
(6.24)

S = V (+∞,−∞) ∼ I +

∞∑
1

1

inn!

∫ ∞

−∞
· · ·

∫ ∞

−∞
T[HI(τ1) · · ·HI(tn)] dτ1 · · · dτn.
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Proceeding on the faith that formula (6.24) has some useful content, we proceed
to calculate its matrix elements 〈out|S|in〉 by calculating the corresponding elements
for the operators on the right. In line with the ideas sketched above, we take the
in and out states to be idealized states describing particles with definite momenta,
namely, states obtained by applying a finite sequence of creation operators aj(pj)
to the vacuum state. More precisely, the “vacuum state” here is the no-particle
state in the tensor product of the Fock spaces for the free fields in question, which
we denote by |0〉,3 and the in and out states are taken to be of the form

a†1(p1) · · · a†k(pk)|0〉,

where the subscripts 1, . . . , k on the a†’s specify the particle species, spin state, and
any other relevant parameters.

Now, there are both mathematical and physical drawbacks to this. Mathemat-

ically, one must recall that a†j(·) is a distribution rather than a function; applying it

to |0〉 yields what physicists call a “non-normalizable state,” that is, a generalized
state whose Fourier-transformed wave function is a delta-function in momentum
space. Physicists have no a priori objection to such states, but they bear only a
vague resemblance to a collection of distinct particles that are supposed to be “far
apart” from each other, as they are not localized in position at all.4 Nonetheless,
we brush all such objections aside for the time being and proceed; once we get some
results it will be time to ask what significance they have.

Before proceeding with the quantum field theory, let us briefly examine how
these ideas work in a simpler situation: the scattering of a particle by a fixed
potential. Let V (x) be a potential function on R3, which we assume to be negligibly
small outside some bounded set Σ; the minimal condition we need is that V ∈
L1(R3). We send in a particle with momentum p from far outside Σ; the potential
deflects it, and it emerges with some momentum q. What is the amplitude for this
process?

Here the Hilbert space is L2(R3), the (nonrelativistic) state space for a single
particle; the free Hamiltonian H0 is −∇2/2m, and the “interaction” Hamiltonian
HI is multiplication by the function V . The state |p〉 of a free particle with momen-
tum p is given by the wave function eip·x, and we wish to calculate 〈q|S|p〉. Let
us consider just the first-order approximation to S arising from the series (6.24):

S ≈ I +
1

i

∫ ∞

−∞
HI(t) dt = I +

1

i

∫ ∞

−∞
eiH0tV e−iH0t dt.

Since H0|p〉 = (|p|2|/2m)|p〉, we have

〈q|S|p〉 ≈ 〈q|p〉+ 1

i

∫ ∞

∞
〈q|ei|q|2t/2mV e−i|p|2t/2m|p〉 dt

=

∫
ei(p−q)·x d3x+

1

i

∫ ∞

−∞
ei(|q|

2−|p|2)t/2m dt

∫
R3

e−i(q−p)·xV (x) d3x,

3The other common symbol for the vacuum, Ω, will be used for a different vacuum state in
§6.11.

4Still, given that space is infinite in extent, particles whose position is uniformly distributed
over space should be far apart on the average.
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so by the Fourier inversion formula (1.5),

(6.25) 〈q|S|p〉 ≈ (2π)3δ(q− p)− 2πiδ

(
|q|2 − |p|2

2m

)
V̂ (q− p).

This is known as the Born approximation to the scattering amplitude. We shall
find it useful later on in comparing the results of quantum field theory with more
classical descriptions of various processes.

The formula (6.25) requires some commentary. First, the delta-functions are
the price we pay for using the idealized states 〈q| and |p〉. In this situation, of
course, it is easy to restate the result in terms of honest L2 states with wave

functions g and f : just multiply both sides by ĝ(q)f̂(p) and integrate over p and
q to obtain

〈g|S|f〉 ≈ 〈g|f〉 − 2πi

∫
R3

δ

(
|q|2 − |p|2

2m

)
ĝ(q)V̂ (q− p)f̂(p)

d3p d3q

(2π)6
.

(The integral on the right makes sense without further interpretation if f and g
have a little regularity.) The delta-function δ(q−p) is always there simply because
the perturbation series starts with the identity, but it disappears as soon as q differs
from p even slightly, and it is the second term in (6.25), the matrix element for
S − I, that contains the interesting information. The delta-function in it expresses

conservation of energy; we shall refer to the rest — that is, −2πiV̂ (q − p) — as
the Born amplitude for scattering by the potential V . We refer to Reed and Simon
[96], §XI.6, for a detailed mathematical treatment of the Born approximation and
the full perturbative series of which it is the first-order part.

We shall find that the S-matrix in quantum field processes has a form similar
to (6.25). More specifically, for incoming particles with 4-momenta p1, . . . , pm and
outgoing particles with 4-momenta q1, . . . , qn, we will have
(6.26)
〈q1, . . . , qn|S − I|p1, . . . , pm〉 = i(2π)4δ(

∑
qk −

∑
pj)M(q1, . . . , qn; p1, . . . , pm),

where the quantity of real interest is M . Note that here the delta-function expresses
conservation of total energy and momentum. In (6.25) there was conservation of
energy only, because the fixed potential does not respect conservation of momentum.

Let us now return to quantum fields. We have in mind a field theory with k
interacting fields, corresponding to k species of particles and antiparticles. Each
field will contribute a free-field term to the classical Lagrangian density. For a real
scalar field φ of mass m, this term is 1

2 [(∂φ)
2 −m2φ2]; for a Dirac field ψ of mass

m it is ψ(iγμ∂μ −m)ψ; for the electromagnetic field it is − 1
4FμνF

μν , and so forth.
In addition, there will be interaction terms, which we assume to be polynomials in
the fields and their conjugates. (Here the “conjugate” of a field is the field that
becomes the operator adjoint on the quantum level.) Since the Lagrangian must be
real, nonreal fields (i.e., non-Hermitian ones — ones whose particles have distinct
antiparticles) and their conjugates must appear symmetrically in the Lagrangian.
This is true also for Fermion fields. (Fermions that are their own antiparticles are
theoretically possible; none are definitely known in nature so far, although they
may have something to do with neutrinos.) These interaction terms will contain
numerical coefficients, the “coupling constants.”

The two examples that we shall keep returning to for most of the rest of this
book are as follows:
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• Quantum electrodynamics (QED). Here we have one Dirac (spin-12 ) field
ψ of mass m > 0 (representing charged particles of some species and
their antiparticles) and one neutral vector field Aμ of mass 0 (representing
photons), and the Lagrangian density is

(6.27) L = ψ(iγμ∂μ −m)ψ − 1
4FμνF

μν − eAμψγ
μψ,

where Fμν = ∂μAν − ∂νAμ and e (the coupling constant) is the charge of
the particles in question. More generally, we can allow several Dirac fields
ψj here, each one representing a different type of charged particle; we

simply include one term ψj(iγ
μ∂μ −mj)ψj and one term −ejAμψjγ

μψj

in the Lagrangian for each such field. The resulting theory describes only
the electromagnetic interactions of these various charged particles. (If
the particles interact with each other in other ways, one must include
additional interaction terms in the Lagrangian, resulting in a more com-
plicated theory.) Most of the time it is enough to consider just one species
of charged particle, and the most important case is that of electrons, for
which e is conventionally taken to be negative (about −

√
4π/137). When

we speak of QED in the sequel, we shall always mean the one-Fermion
form arising from (6.27) unless we say otherwise, and we shall take the
Fermion in question to be the electron.

• The φ4 scalar field theory. Here we have just one self-interacting neutral
scalar field φ of mass m > 0. The Lagrangian density is

(6.28) L =
1

2
(∂μφ)(∂

μφ)− 1

2
m2φ2 − λ

4!
φ4,

where the coupling constant λ is assumed positive (and small). (The
factor of 4! is just for convenience.) This corresponds to the nonlinear
Klein-Gordon equation ∂2φ = m2φ+ λφ3/3!. Fields of this sort do occur
in real-world physical theories; in particular, the Higgs Boson that plays
a crucial role in gauge field theories is a neutral scalar particle whose self-
interaction is of a similar type. But the main reason for the ubiquitous
appearance of the φ4 scalar field theory in quantum field theory texts
is that it is the simplest example of an interacting field theory, which
offers a setting in which to learn how quantum fields work without the
various complicating factors of QED. In space-time dimensions 2 and 3 it
is also one of the few quantum field theories that admits a mathematically
rigorous model.

We shall meet other physically important fields in Chapter 9. In addition, we shall
occasionally make a few remarks about two other field theories:

• Yukawa field theory. In the simplest version of this, we have one Dirac
field ψ of mass mψ > 0 and one neutral scalar field φ of mass mφ > 0,
and the Lagrangian density is

(6.29) L = ψ(iγμ∂μ −mψ)ψ + 1
2 (∂φ)

2 − 1
2m

2
φφ

2 − gφψψ.

The coupling constant is g. With a little elaboration, this is the model
needed for the first reasonably successful theory of the strong interaction,
which accounts for the attraction between nucleons in an atomic nucleus
in terms of exchange of (virtual) pions. In the simple Lagrangian (6.29),
ψ can represent either protons or neutrons and φ represents neutral pions.

                

                                                                                                               



6.3. THE SCATTERING MATRIX 141

For a more realistic theory, one needs two Dirac fields ψp and ψn for pro-
tons and neutrons, as well as two scalar fields φ0 (real) and φ1 (complex)
for neutral and charged pions. Moreover, pions have negative parity (they
are “pseudoscalars” rather than“scalars”), which entails an extra factor of
γ5 in the interactions. Besides the free-field terms for each particle type,
the Lagrangian includes the interactions

(6.30) −g
[
φ0(ψpγ

5ψp + ψnγ
5ψn) + φ1ψpγ

5ψn + φ∗
1ψnγ

5ψp

]
.

The first two terms represent a proton or neutron emitting or absorbing a
neutral pion; the next one represents a neutron absorbing a positive pion
or emitting a negative pion and turning into a proton, and the last one a
proton absorbing a negative pion or emitting a positive pion and turning
into a neutron.5

• The Fermi model for beta decay. Here we have four Dirac fields ψe, ψp,
ψn, and ψν representing electrons, protons, neutrons, and neutrinos. The
free-field Lagrangian is the sum of the four ψ(iγμ∂μ − mψ)ψ’s, and the
interaction terms are

(6.31) −G[ψpΓψnψeΓψν + (ψpΓψnψeΓψν)
∗],

where G is the coupling constant and Γ is a suitable combination of Dirac
matrices. (There are several possibilities here; we shall be more specific
when we discuss this model in §9.4.) This interaction is meant to model
the decay of the neutron, n→ e+ p+ ν, and related processes.

In all of these cases (as well as others of importance), the passage from the
Lagrangian to the Hamiltonian on the classical level is quite simple, following the
paradigm

L = T − V −→ H = T + V

with T and V the kinetic and potential energies. The kinetic terms are those
involving the time derivatives of the fields in question, and the potential terms
are everything else. In particular, the kinetic terms are always part of the free-field
terms, so the interaction Hamiltonian — the crucial ingredient for the perturbation-
theoretic treatment — is the spatial integral of a Hamiltonian density,

(6.32) HI(t) =

∫
R3

HI(t,x) d
3x,

and HI(t,x) in turn is simply the negative of the sum of the interaction terms in
the Lagrangian density. For the three examples above the interaction Hamiltonian
densities are, respectively,

HI = eψγμψAμ, HI =
λ

4!
φ4, HI = gψψφ.

Thus in all these cases, as well as more complicated ones that arise in the standard
model, the classical interaction Hamiltonian density is a sum of products of field
variables.

When we pass to the quantum picture, the field variables become operator-
valued functions (or rather distributions). Suppose the theory involves k fields
φ1, . . . , φk, each of which acts on its own Fock space Fj . The Hilbert space for the

5The fact that pions are unstable particles that readily decay into leptons is largely irrelevant
here; the lifetime of the pion is large in comparison with the characteristic time scale of the strong
interaction.
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interacting theory is then the tensor product F = F1⊗· · ·⊗Fk, and the fields act on
this space in the obvious way, with the jth field acting “in the jth variable.” Each

Fock space Fj comes with its own creation and annihilation operators a†j and aj for

particles and b†j and bj for antiparticles (if particles and antiparticles are distinct),

and the field φj is a Fourier integral of such operators. (As noted in §4.5, this
picture needs to be modified slightly so that the creation/annihilation operators for
different Fermion fields anticommute rather than commute.)

Our notation for creation and annihilation operators will be as follows. For
each particle species, its creation and annihilation operators are functions of mo-
mentum p ∈ R3 and a discrete variable σ that specifies the spin state of the particle.
(Actually they are distributions rather than functions in p, but we ignore this dis-
tinction here. And of course σ is absent for spin-zero fields.) It will be convenient
to introduce a label for the particle species as a third variable π. (If a particle has
a distinct antiparticle, these two are considered different species for this purpose.
Any other discrete parameters relevant to the problem should also be incorporated
into π.) Thus, we write a(p, σ, π) or a†(p, σ, π) for the operator that annihilates or
creates a particle of species π with momentum p and spin state σ. The canonical
(anti)commutation relations are then

(6.33)

a(p, σ, π)a†(p′, σ′, π′) = ±a†(p′ σ′, π′)a(p, σ, π) + (2π)3δ(p− p′)δσσ′δππ′ ,

a(p, σ, π)a(p′, σ′, π′) = ±a(p′, σ′, π′)a(p, σ, π),

a†(p, σ, π)a†(p′, σ′, π′) = ±a†(p′, σ′, π′)a†(p, σ, π).

Here the ± sign is + if at least one of the species π, π′ is Bosonic and − if both
species are Fermionic.

What is the quantum interaction Hamiltonian density? The classical HI(t,x)
is a product of field variables, but the corresponding quantum objects are operator-
valued distributions, so it is not clear how to multiply them, or how to integrate
the resulting product over R3 to obtain the actual interaction Hamiltonian HI(t)
as a well-defined operator on the state space. In fact, a rigorous mathematical
construction of HI(t) is generally not available, but fortunately it is not really
needed to extract meaningful results from the theory. Rather, one has to regard
the formal expression for HI(t,x) simply as a way of encoding certain information
to be used as input for calculations that do have a well-defined meaning. One
might draw a parallel with a formal power series, which encodes certain useful
algebraic information about its sequence of coefficients that does not depend on
the convergence of the series.

Of course, if HI cannot be taken seriously as an operator, then neither can
the full Hamiltonian H, the unitary operators e−itH it generates, the scattering
operator S, or the individual terms in its Dyson series

∑∞
0 Sn. What can be

taken seriously, as it turns out, are the S-matrix elements in perturbation theory,

that is, the quantities
∑N

0 〈out|Sn|in〉 for N finite. They are given by sums of
integrals of well-defined functions over R4k for suitable k. Many of these integrals
diverge (a reflection of the ill-definedness of the operators just mentioned), but
in favorable cases the divergences can be removed by renormalization, and the
resulting quantities can then be taken to the lab and compared with experiment.
Our goal, therefore, is to compute these matrix elements.
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6.4. Evaluation of the S-matrix: first steps

By (6.24) and (6.32), the scattering operator S is formally given by

(6.34) S ∼ I +
∞∑
1

1

inn!

∫
R4

· · ·
∫
R4

T[HI(x1) · · ·HI(xn)] d
4x1 · · · d4xn.

It is not clear whether this makes any sense at all, but at least on a formal level
it is rather nice. In particular, the fact that it is given by integrals over space-
time suggests at least the possibility of relativistic invariance, except for the time-
ordering inside the integrals. We shall have to examine this point in more detail
later; for now, we just forge resolutely ahead. Recall that HI is a sum of products
of field operators. If

|in〉 =
kin∏
1

a†(pin
j , σin

j , πin
j )|0〉, |out〉 =

kout∏
1

a†(pout
j , σout

j , πout
j )|0〉,

the S-matrix element 〈out|S|in〉 is given by a sum of integrals of terms of the form

(6.35)

〈
0

∣∣∣∣ kout∏
1

a(pout
j , σout

j , πout
j )T

[kfield∏
1

φj(xj)

] kin∏
1

a†(pin
j , σin

j , πin
j )

∣∣∣∣0〉.

One small technical point arises here. In passing from the classical to the quan-
tum interaction Hamiltonian, one is replacing classical functions, which commute,
with operators, which may not, so how is one to order the factors? Actually, this
is rarely an issue. Since operators pertaining to particles of different species al-
ways commute or anticommute, the only possible problem arises when there is a
product of a non-Hermitian field with its own adjoint. In the specific theories we
are concerned with, the only such terms are of the form ψγμψ where ψ is a Dirac
field, and here we take the order dictated by the matrix algebra, with the ψ on the
left. Another prescription that has some theoretical justification is to declare that
all products of fields with themselves or their adjoints should be Wick ordered; see
Weinberg [131], p. 200. We shall say more about this later, but it will not be a
serious concern for us.

Our first job is to evaluate expressions of the form (6.35). The field operators
φj(xj) are themselves Fourier integrals of the operators a(p, σ, π) and a†(p, σ, π),
so we have to evaluate the vacuum expectation values of products of creation and
annihilation operators. The method for doing this is simple: use the commutation
relations (6.33) to move each creation operator to the left and each annihilation
operator to the right. When any annihilation operator reaches the right end and
acts on |0〉 it yields 0, and when any creation operator reaches the left end and acts
on 〈0| (via its adjoint) it yields 0. The only nonzero terms will arise when each
creation operator (in the initial ket |in〉 or in one of the fields) is paired with an
annihilation operator (in the final bra 〈out| or in one of the fields); their commutator
will yield a numerical factor (containing delta-functions), and the resulting product
of these factors is what must be integrated to get the final result.

Let us work out a very simple example (too simple to be useful all by itself,
although it occurs as a part of larger calculations). Consider a single neutral scalar
field φ and its associated creation operator a†(p), and let |in〉 = a†(p)|0〉 and
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|out〉 = |0〉. We have

〈0|φ(t,x)a†(p)|0〉 =
∫

1√
2ωq

〈0|[eiqμxμ

a(q) + e−iqμx
μ

a†(q)]a†(p)|0〉 d3q

(2π)3
.

Now 〈0|a†(q) = 〈0|a†(p) = 0, and a(q)a†(p) = a†(p)a(q) + (2π)3δ(q− p), so

(6.36) 〈0|φ(t,x)a†(p)|0〉 =
∫

1√
2ωq

eiqμx
μ

δ(q− p) d3q =
eipμx

μ√
2ωp

.

The reader may be reassured to see that the final answer is a perfectly well-defined
function!

Returning to the general case, we need a generalization of the notion of Wick
ordering that was introduced in §5.3. First, suppose A1, . . . , An are operators that
are sums or integrals of Bosonic creation and annihilation operators; that is, Aj =
Aa

j + Ac
j where Aa

j (resp. Ac
j) is a sum or integral of annihilation (resp. creation)

operators satisfying the commutation relations (6.33) with the ± signs taken to be
+. For example, Aj could be a field operator φ(t,x) or a single creation operator
a†(p). The Wick ordered product or normally ordered product :A1 · · ·An: is the
product A1 · · ·An with the terms rearranged so that all creation operators are to
the left of all annihilation operators. For example, when n = 2,

:A1A2: = :(Aa
1 +Ac

1)(A
a
2 +Ac

2): = Aa
1A

a
2 +Ac

1A
a
2 +Ac

2A
a
1 +Ac

1A
c
2

= A1A2 − [Aa
1 , A

c
2],

(6.37)

and for n = 3,

:A1A2A3: =Aa
1A

a
2A

a
3 +Ac

3A
a
1A

a
2 +Ac

2A
a
1A

a
3 +Ac

1A
a
2A

a
3

+Ac
1A

c
2A

a
3 +Ac

1A
c
3A

a
2 +Ac

2A
c
3A

a
1 +Ac

1A
c
2A

c
3.

(6.38)

(The order of the Aa’s and Ac’s is immaterial, as creation operators commute with
each other.)

If some or all of the An involve Fermionic creation and annihilation operators,
the operation of Wick ordering is defined as above except that a factor of −1 is
attached to any term when two Fermionic operators are interchanged. Thus, the
analogues of (6.37) and (6.38) when all the Aj are Fermionic are

:A1A2: = :(Aa
1 +Ac

1)(A
a
2 +Ac

2): = Aa
1A

a
2 +Ac

1A
a
2 −Ac

2A
a
1 +Ac

1A
c
2

= A1A2 − {Aa
1, A

c
2}

and

:A1A2A3: =Aa
1A

a
2A

a
3 +Ac

3A
a
1A

a
2 −Ac

2A
a
1A

a
3 +Ac

1A
a
2A

a
3

+Ac
1A

c
2A

a
3 −Ac

1A
c
3A

a
2 +Ac

2A
c
3A

a
1 +Ac

1A
c
2A

c
3.

In all cases, the essential feature of Wick ordered products is that their vacuum
expectation values vanish:

(6.39) 〈0|:A1 · · ·An:|0〉 = 0.

We shall also modify our definition of time-ordered products where Fermion
fields are concerned, again by introducing a minus sign when two Fermionic opera-
tors are interchanged. Namely, if A1(t), . . . , An(t) are Fermionic operators depend-
ing on a time parameter t, we set

(6.40) T[A1(t1) · · ·An(tn)] = (sgnσ)Aσ(1)(tσ(1)) · · ·Aσ(n)(tσ(n)),
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where σ is the permutation of 1, . . . , n such that tσ(1) > · · · > tσ(n). This convention
has no effect on the time-ordered products of interaction Hamiltonians that occur in
the Dyson series, because Fermion fields always occur in pairs in such Hamiltonians,
so interchanging HI(t1) with HI(t2) always involves an even number of Fermion
interchanges.

Next, suppose A1 and A2 are sums or integrals of Bosonic or Fermionic creation
and annihilation operators as above, and suppose that one or both of them depend
on time parameters. If both do, and their time parameters are different, T(A1A2)
denotes their time-ordered product; otherwise, T(A1A2) = A1A2. The contraction

of A1 with A2 is the scalar
︷ ︸︸ ︷
A1A2 defined by

(6.41)
︷ ︸︸ ︷
A1A2 I = T(A1A2)− :A1A2: .

To see that the difference on the right is indeed a scalar multiple of I, suppose
that at most one of the Aj ’s is Fermionic. By (6.37), if at most one of the A’s is
time-dependent, then

T(A1A2)− :A1A2: = [Aa
1 , A

c
2],

whereas if A1 = A1(t1) and A2 = A2(t2), then

T(A1A2)− :A1A2: =

{
[Aa

1 , A
c
2] if t1 > t2,

[Aa
2 , A

c
1] if t2 > t1.

If both Aj ’s are Fermionic, the result is the same except that commutators are
replaced by anticommutators, and there is an extra minus sign from interchanging
A1 and A2 in the case t2 > t1. In all cases, these commutators or anticommutators
are scalars by (6.33). (As usual, we shall be cavalier about identifying the scalar︷ ︸︸ ︷
A1A2 with the operator

︷ ︸︸ ︷
A1A2 I.)

Recall that we are trying to evaluate vacuum expectation values of integrals
of products of operators Aj of the types we have been discussing. More precisely,
the products involve annihilation operators on the left, time-ordered field operators
in the middle, and creation operators on the right: symbolically, AaT[Af ]Ac. As
a matter of notational convenience, we agree that the time-ordering on Af may
encompass the other operators without changing anything:

T[AaAfAc] = AaT[Af ]Ac.

Moreover, the individual fields that make up the Hamiltonian HI(t), which all
involve the same time t, are taken in the order in which they appear in HI(t).
With this understanding, the result of moving all the annihilation operators to the
right as described above is known as Wick’s theorem:

T(A1 · · ·An) is equal to the sum of all operators obtained by contracting k pairs
of Aj’s, 0 ≤ k ≤ [n/2], and Wick-ordering the product of the remaining Aj’s.

The proof is a straightforward but tedious induction on n, and we omit it. But
to make the meaning clear, we shall write out the result for small n. For n = 2,

the theorem states that T(A1A2) = :A1A2: +
︷ ︸︸ ︷
A1A2, which is just the definition of︷ ︸︸ ︷

A1A2. For n = 3, we have

T(A1A2A3) = :A1A2A3: +
︷ ︸︸ ︷
A1A2 A3 +

︷ ︸︸ ︷
A1A3A2 +

︷ ︸︸ ︷
A2A3 A1,
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and for n = 4 we have

T(A1A2A3A4) =:A1A2A3A4:

+
︷ ︸︸ ︷
A1A2 :A3A4: +

︷ ︸︸ ︷
A1A3 :A2A4: +

︷ ︸︸ ︷
A1A4 :A2A3:

+
︷ ︸︸ ︷
A2A3 :A1A4: +

︷ ︸︸ ︷
A2A4 :A1A3: +

︷ ︸︸ ︷
A3A4 :A1A2:

+
︷ ︸︸ ︷
A1A2

︷ ︸︸ ︷
A3A4 +

︷ ︸︸ ︷
A1A3

︷ ︸︸ ︷
A2A4 +

︷ ︸︸ ︷
A1A4

︷ ︸︸ ︷
A2A3 .

As an immediate corollary of Wick’s theorem and (6.39), we achieve our goal of
evaluating the vacuum expectation value of a time-ordered product T(A1, . . . , An):

The vacuum expectation value of T(A1 · · ·An) is

(6.42) 〈0|T(A1 · · ·An)|0〉 =
{
0 if n is odd,∑︷ ︸︸ ︷

Aj1Aj2

︷ ︸︸ ︷
Aj3Aj4 · · ·

︷ ︸︸ ︷
Ajn−1

Ajn if n is even,

where the sum in the even case is over all 1 · 3 · · · (n − 1) ways of grouping the
Aj’s into n/2 ordered pairs with the ordering in each pair being the same as in the
original product (j1 < j2, j3 < j4, etc.).

Our interest with these vacuum expectation values is as ingredients in the
Dyson series for the scattering matrix. In that situation the operators Aj are
either field operators (from the interaction Hamiltonians) or individual creation or
annihilation operators (from the in and out states). The former are time-dependent;

the latter are not. So we need to compute
︷ ︸︸ ︷
A1A2 where each Aj is either a creation

or annihilation operator or a field operator. If both Aj ’s are individual creation
or annihilation operators, the result is simply given by the canonical commutation
relations (6.33). If one Aj is a field operator, the calculation is still simple; we
essentially did it in (6.36). To wit, if the field operator is

φπ(x) =
∑
τ

∫
f(q)

[
u(q, τ, π)a(q, τ, π)e−iqμx

μ

+ v(q, τ, π)a†(q, τ, π)eiqμx
μ] d3q

(2π)3

(π being the antiparticle of π, and f(q) incorporating the remaining scalar factors
such as

√
2ωq), then

(6.43)

︷ ︸︸ ︷
a(p, σ, π′)φπ(x) = f(p)v(p, σ, π)eipμx

μ

δππ′ ,︷ ︸︸ ︷
φπ(x)a

†(p, σ, π′) = f(p)u(p, σ, π)e−ipμx
μ

δππ′ ,

(The contractions
︷ ︸︸ ︷
a†(p, σ, π)φ(xμ) and

︷ ︸︸ ︷
φ(xμ)a(p, σ, π) don’t arise in practice, and

in any case they both vanish.)
The interesting case is where both Aj ’s are field operators. Here each Aj

involves annihilation operators for some species of particle and creation operators
for its antiparticle. Unless the particles of one Aj are the antiparticles for the
other one, these operators all commute or anticommute, with the result that the
contraction vanishes. Thus the only nontrivial contractions are those involving a
field and its adjoint. These contractions (up to a conventional factor of i) are known
as propagators for the field in question.
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The reason for the name is that by (6.39) and (6.41),︷ ︸︸ ︷
φ(t,x)φ†(s,y) = 〈0|T[φ(t,x)φ†(s,y)]|0〉.

The expression on the right is the amplitude for the field to create a particle out
of the vacuum at y at time s and annihilate it at x at time t if t > s, and the
amplitude for the field to create an antiparticle out of the vacuum at x at time t
and annihilate it at y at time s if s > t; in either case the particle or antiparticle
“propagates” from y to x or from x to y. We shall see that this interpretation
remains valid when propagators are incorporated into more realistic processes.

We must now pause to study propagators in some detail.

6.5. Propagators

We begin by considering a neutral scalar field φ of mass m:

φ(t,x) =

∫
1√
2ωp

[e−iωpt+ip·xa(p) + eiωpt−ip·xa†(p)]
d3p

(2π)3
.

If t1 > t2,
︷ ︸︸ ︷
φ(t1,x1)φ(t2,x2) is equal to∫∫

1

2
√
ωp1

ωp2

e−iωp1
t1+ip1·x1+iωp2

t2−ip2·x2 [a(p1), a
†(p2)]

d3p1 d
3p2

(2π)6

=

∫∫
1

2
√
ωp1

ωp2

e−iωp1
t1+ip1·x1+iωp2

t2−ip2·x2δ(p1 − p2)
d3p1 d

3p2

(2π)3

=

∫
1

2ωp
e−iωp(t1−t2)+ip·(x1−x2)

d3p

(2π)3
.

If t1 < t2 we must replace t1− t2 in this last integral by t2− t1, but the x1−x2 can
remain as it is because the substitution p→ −p shows that the integral is even in
x1 − x2. In short,

(6.44)
︷ ︸︸ ︷
φ(t1,x1)φ(t2,x2) = −iΔF (t1 − t2, x1 − x2),

where

(6.45) ΔF (t,x) = i

∫
e−iωp|t|+ip·x

2ωp

d3p

(2π)3
.

This is to be interpreted as the tempered distribution on R4 whose Fourier transform
in the space variables x is

(6.46) (FxΔF )(t,p) =
ie−iωp|t|

2ωp
.

(The foregoing derivation of (6.44) is easily made rigorous by integrating both sides
against a test function f(x1)g(x2).)

ΔF is called the Feynman propagator. It is both physically and mathematically
interesting. Here is a list of its most important properties:

i. ΔF is a fundamental solution of the Klein-Gordon operator:

(∂2
t −∇2

x +m2)ΔF = δ.
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ii. The full space-time Fourier transform of ΔF is

(6.47) Δ̂F (ω,p) = lim
ε→0+

1

−ω2 + |p|2 +m2 − iε
,

that is,

(6.48) Δ̂F (p) = lim
ε→0+

1

−p2 +m2 − iε
,

where the limit is taken in the weak topology of tempered distributions.
iii. ΔF is invariant under the full Lorentz group.
iv. ΔF is a C∞ function away from the light cone, and its support is R4.

Let us prove these assertions. (Mathematical readers should find this a refresh-
ing change of pace!) For (i), by taking the Fourier transform in x it is equivalent
to show that g(t) = ie−iωp|t| satisfies (∂2

t + |p|2 + m2)g(t) = 2ωpδ(t). This is

elementary: ∂tg = ωp(sgn t)e
−iωp|t|, so

∂2
t g(t) = 2ωpδ(t)e

−iωp|t| − iω2
pe

−iωp|t| = 2ωpδ(t)− (|p|2 +m2)g(t).

Next, given ε > 0 and p ∈ R
3, let a = a(ε,p) be the square root of iε−|p|2−m2

with positive real part. Then, for ω ∈ R,

1

−ω2 + |p|2 +m2 − iε
= − 1

2a

[
1

a+ iω
+

1

a− iω

]
= − 1

2a

[∫ ∞

0

e−(a+iω)t dt+

∫ 0

−∞
e(a−iω)t dt

]
.

That is, as a function of ω, (−ω2 + |p|2 + m2 − iε)−1 is the Fourier transform

in t of −(1/2a)e−a|t|. Now let ε → 0+: we have a → i
√
|p|2 +m2 = iωp, so

−(1/2a)e−a|t| → (i/2ωp)e
−iωp|t|. This convergence takes place in the topology of

tempered distributions on R4, by the dominated convergence theorem, so (ii) follows
from (6.46). Also, the function h(ω,p) = (−ω2 + |p|2 + m2 − iε)−1 is manifestly
Lorentz-invariant on R

4; hence so is its limit as ε → 0+, and so is the latter’s
Fourier transform ΔF , which proves (iii).

One can compute ΔF explicitly by replacing |t| by |t| − iε in (6.45), evaluating
the resulting absolutely convergent integral, and letting ε → 0+ at the end of the
calculation. Since e−ωp(ε+i|t|)/ωp is a radial function of p, the integration reduces
to a one-dimensional one that is part of the classic lore of special functions, and
the result is that

ΔF (t,x) =
im

4π2
√
|x|2 − t2

K1(m
√
|x|2 − t2) on R

4 \
{
(t,x) : |t| = |x|

}
,

where K1 is the modified Bessel function of order 1. We omit the details since we
shall have no use for this explicit formula, but it implies (iv).

The fact that ΔF is C∞ on the complement of the light cone can also be
deduced from general considerations about differential equations (see Folland [46],
§8G). Since ΔF is a fundamental solution for the Klein-Gordon operator, its wave
front set is contained in the characteristic variety of that operator (i.e., the union of
the light cones in the cotangent spaces at all points of R4) together with the wave
front set of δ (i.e., the cotangent space at the origin). On the other hand, since ΔF

is Lorentz-invariant, its wave front set is contained in the union of the conormal
bundles of the orbits of the Lorentz group. Since the normal to the orbit through
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(t,x) does not lie on the light cone unless (t,x) itself does, ΔF has no wave front
set away from the light cone and is therefore C∞ there.

Important remark : It is common in the physics literature to suppress the
“limε→0+” in (6.47) and (6.48). In general, in formulas of this sort that contain an
unspecified ε, a “limε→0+” should be understood, with the limit taken in a suitable
sense. We shall often avail ourselves of this bit of shorthand.

Property (i) is the reason for factoring out the −i in the definition of ΔF .
By the way, the preceding results apply equally to the case m = 0, where ΔF

is a fundamental solution of the wave operator ∂2
t −∇2. It is quite different from

the fundamental solution that usually arises in classical wave mechanics, namely,
the one supported on the forward light cone. Let us denote that solution by Gr

(for “retarded Green’s function”), and let Ga (“advanced Green’s function”) be the
corresponding solution supported on the backward light cone, Ga(t,x) = Gr(−t,x).
Then ΔF − 1

2 (Gr +Ga) is a solution of the homogeneous wave equation; in fact,

ΔF (t,x)
∣∣
m=0

= 1
2 (Gr +Ga)(t,x) +

i

4π2
(∂2

t −∇2
x) log

∣∣ |x|2 − t2
∣∣,

which agrees off the light cone with the function i/4π2(|x|2 − t2). It may be in-
structive to compare the Fourier transforms of Gr and Ga with that of ΔF :

Ĝr(ω,p) = lim
ε→0+

1

−(ω − iε)2 + |p|2 , Ĝa(ω,p) = lim
ε→0+

1

−(ω + iε)2 + |p|2 ,

Δ̂F (ω,p) = lim
ε→0+

1

−ω2 + |p|2 − iε
.

See Folland [47] for a complete derivation of these facts.
We return to the calculation of contractions of field operators. For a charged

scalar field

φ(x) =

∫
1√
2ωp

[e−ipμx
μ

a(p) + eipμx
μ

b†(p)]
d3p

(2π)3
,

where a and b are the annihilation operators for particles and antiparticles, the
calculation is similar to the neutral case. Since [a(p), b†(p′)] = 0 for any p,p′,
whereas [a(p), a†(p′)] = [b(p), b†(p′)] = (2π)3δ(p− p′), it follows easily that

(6.49)

︷ ︸︸ ︷
φ(t1,x1)φ(t2,x2) =

︷ ︸︸ ︷
φ†(t1,x1)φ

†(t2,x2) = 0,︷ ︸︸ ︷
φ(t1,x1)φ

†(t2,x2) =
︷ ︸︸ ︷
φ†(t1,x1)φ(t2,x2) = −iΔF (t1 − t2, x1 − x2).

Thus the propagator −iΔF is the same as for the neutral field.
For Dirac fields, the important quantity is the contraction of a component ψj of

a Dirac field ψ with a component ψk of its Dirac adjoint ψ = ψ†γ0 (j, k = 1, . . . , 4)
(in either order). We have︷ ︸︸ ︷

ψj(t1,x1)ψk(t2,x2) = T[ψj(t1,x1)ψk(t2,x2)]− :ψj(t1,x1)ψk(t2,x2):

=

{
{ψa

j (t1,x1), ψ
c

k(t2,x2)} if t1 > t2,

−{ψa
k(t2,x2), ψ

c

j(t1,x1)} if t1 < t2,

where the superscripts a and c indicate the parts of the fields involving annihilation
and creation operators, respectively. These anticommutators are evaluated by using
the Fourier expansions (5.32)–(5.33) of the fields and the spin sums (5.34) in much
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the same way as in the calculation of (5.35). In fact, setting t = t1 − t2 and
x = x1 − x2, for t1 > t2 we have︷ ︸︸ ︷

ψj(t1,x1)ψk(t2,x2) =

∫ ∑
s=±

m

2ωp
e−iωpt+ip·xu(p, s)ju(p, s)k

d3p

(2π)3

=

∫
m

2ωp
e−iωpt+ip·x(m−1pμγ

μ + I)jk
d3p

(2π)3

= (iγμ∂μ +mI)jk

∫
e−iωpt+ip·x

2ωp

d3p

(2π)3
,

and by (6.45), the last integral is equal to −iΔF (t,x). On the other hand, for
t1 < t2 we have︷ ︸︸ ︷

ψj(t1,x1)ψk(t2,x2) = −
∫ ∑

s=±

m

2ωp
eiωpt−ip·xv(p, s)kv(p, s)j

d3p

(2π)3

= −
∫

m

2ωp
eiωpt−ip·x(m−1pμγ

μ −mI)jk
d3p

(2π)3

= (iγμ∂μ +mI)jk

∫
eiωpt−ip·x

2ωp

d3p

(2π)3
.

The substitution p→ −p shows that the e−ip·x can be replaced by eip·x in this last
integral, so it is again equal to −iΔF (t,x). The calculation with ψ and ψ switched
is similar, and the result is the same except for a minus sign.

We have shown that
(6.50)︷ ︸︸ ︷

ψj(t1,x1)ψk(t2,x2) = −
︷ ︸︸ ︷
ψj(t1,x1)ψk(t2,x2) = −i

[
ΔDirac(t1 − t2, x1 − x2)

]
jk
,

where the Dirac propagator ΔDirac, a 4× 4 matrix-valued distribution, is

ΔDirac = (iγμ∂μ +m)ΔF ,

that is,

(6.51) Δ̂Dirac(p) =
(pμγ

μ +m)

−p2 +m2 − iε
.

In this last formula there is an implicit “limε→0+,” as we described in connection
with ΔF .

The Fourier-transformed propagator (6.51) is a matrix-valued distribution that
agrees with the function (pμγ

μ +m)/(−p2 +m2) off the mass shell p2 = m2. Since

(pμγ
μ +m)(pμγ

μ −m) = p2 −m2,

one often finds (6.51) rewritten as

(6.52) −iΔ̂Dirac(p) =
i

pμγμ −m
(p2 �= m2).

(Of course, the expression on the right denotes the matrix i(pμγ
μ −mI)−1.) For the

same reason, ΔDirac is a fundamental solution for the Dirac operator −iγμ∂μ +m.
Similar calculations yield the propagators for field operators for fields of ar-

bitrary spin; see Weinberg [131], §5.7. Their Fourier transforms all turn out to
be of the form F (p)/(−p2 + m2 − iε) where F is a polynomial with values in the
appropriate spinor space. The one we will need for quantum electrodynamics is the
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photon field, which is a spin-1 field of mass 0. Unfortunately, the absence of mass
complicates the picture, and a detailed analysis of the situation is rather difficult.
Readers may consult physics texts for more information, but they will not find any
unanimity about the best way to explain this matter. For the present we content
ourselves with a brief heuristic discussion leading to the final result. We shall give
another derivation of it — still nonrigorous but perhaps more convincing — in §8.3.

Let us begin with the easier case of a massive vector field instead. Just as the
propagators for spin-0 and spin- 12 fields are given by fundamental solutions for the
corresponding field operators — the Klein-Gordon and Dirac operators — so we
expect the propagator for the massive vector field to be given by a fundamental
solution of the Proca operator. The Proca equation (5.39) equation can be written

(−gμν(∂2 +m2) + ∂μ∂ν)Aμ = 0,

so we are looking for a fundamental solution of −gμν(∂2 +m2) + ∂μ∂ν , that is, a
matrix-valued distribution whose Fourier transform evaluated at p is the inverse of
the matrix

Dμν = gμν(p2 −m2)− pμpν .

This inverse is readily computed:

(D−1)μν =
−gμν + pμpν/m

2

−p2 +m2
,

and indeed, the propagator for the massive vector field is given by

(6.53) ΔProca
μν = −(gμν + ∂μ∂ν/m

2)ΔF , i.e., Δ̂Proca
μν (p) =

−gμν + pνpμ/m
2

−p2 +m2 − iε
.

Of course, to verify this, and to see that the overall sign and normalization are
correct, one must actually calculate the relevant contractions; the reader may try
this as an exercise or consult Weinberg [131], §5.3.

Now, (6.53) blows up as m → 0; the trouble is that when m = 0 the matrix
Dμν is not invertible, for Dμνp

ν = 0. This has to do, once again, with the fact that
the elecromagnetic field cannot propagate longitudinal waves, and with the gauge-
invariance of the theory. If one imposes the Landau gauge condition ∂μA

μ = 0,
however, the term ∂μ∂νA

μ in Maxwell’s equation disappears. In fact, under this
condition one can replace the Maxwell equation (−gμν∂2 + ∂μ∂ν)Aμ = 0 by

(−gμν∂2 + (1− b)∂μ∂ν)Aμ = 0

for any b ∈ R, and as long as b �= 0 the corresponding matrix

Dμν
(b) = gμνp2 + (b− 1)pμpν

is invertible: its inverse is

gμν + (a− 1)pμpν/p
2

p2
, a = b−1.

And, in fact, this device gives the right answer: in computing S-matrix elements
one can take the contractions of photon fields to be given by

(6.54)
︷ ︸︸ ︷
Aμ(t1,x1)Aν(t2,x2) −→ −iΔ(a)

μν (t1 − t2, x1 − x2),

where

(6.55) Δ̂(a)
μν (p) =

gμν + (a− 1)pμpν/p
2

p2 + iε
.
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We write an arrow rather than an equal sign in (6.54) because a can be taken to be
any real number. This indeterminacy may seem unsettling, but as it turns out, the
gauge-invariance of the theory guarantees that the contributions of the pμpν term
in the photon propagators ultimately cancel out when one computes a physically
meaningful quantity. (We shall explain this more fully in §7.7.) As a result, one can
use the freedom in choosing a to simplify calculations as needed. In particular, the
default choice is a = 1 (sometimes called Feynman gauge), which gives the photon
propagator

(6.56) −iΔμν = igμνΔF

∣∣
m=0

, i.e., Δ̂μν(p) =
gμν

p2 + iε
.

Propagators and the spin-statistics theorem. The terms of the Dyson
series (6.24) are integrals over space-time of time-ordered products of interaction
Hamiltonian densities HI(xj) (xj ∈ R4). If these integrals are to have a relativisti-
cally invariant meaning, it is necessary to examine the time-ordering in more detail.
For x, y ∈ R4 it makes Lorentz-invariant sense to say that x0 > y0 if x− y is time-
like ((x− y)2 > 0), but if x− y is spacelike there are Lorentz transformations that
reverse the sign of x0 − y0 or make it vanish. Since the time-ordered products are
to be integrated over all space-time, the result will have a relativistically invariant
meaning only if the time ordering is irrelevant when the space-time points in ques-
tion are spacelike separated. In other words, we must require of the Hamiltonian
density HI that

[HI(x),HI(y)] = 0 when (x− y)2 ≤ 0.

Because of the way HI is formed from products of field operators, the way to
guarantee this is to require that the field operators φ(x) and φ(y) commute or
anticommute when x− y is spacelike. More precisely, if φ is a field that occurs an
odd number of times in some term in HI (which can only happen if φ = φ†), we
must have [φ(x), φ(y)] = 0 when x− y is spacelike. On the other hand, if φ and φ†

together occur an even number of times in each term, it is enough to have either
[φ(x), φ(y)] = 0 or {φ(x), φ(y)} = 0 for x − y spacelike and likewise with φ†(y)
instead of φ(y), as two minus signs will cancel in the latter case. (For example, in
the interaction for QED, the electromagnetic field occurs once and the Dirac field
occurs twice; the field φ occurs four times in the φ4 interaction.)

Calculating these commutators and anticommutators is easy enough; it is es-
sentially the same as the calculation of contractions that we did earlier, except that
the time-ordering is absent. For a neutral scalar field φ of mass m given by (5.11),
with p = (ωp,p) we have

[φ(x), φ(y)] =

∫
e−ipμx

μ+iqμy
μ

2
√
ωpωq

[a(p), a†(q)]
d3p d3q

(2π)6

+

∫
eipμx

μ−iqμy
μ

2
√
ωpωq

[a†(p), a(q)]
d3p d3q

(2π)6
,

and since [a(p), a†(q)] = −[a†(p), a(q)] = (2π)3δ(p− q), this boils down to

[φ(x), φ(y)] = −iΔ+(x− y) + iΔ+(y − x),

where

Δ+(x) = i

∫
e−ipμx

μ

2ωp

d3p

(2π)3
.
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Δ+ is just like the Feynman propagator ΔF except that one has x0 = t in the
exponent instead of |t|; in particular, the Fourier integral is to be interpreted in
the sense of distributions as before. (Rather than being a fundamental solution for
the Klein-Gordon operator like ΔF , though, Δ+ is a solution of the homogeneous
Klein-Gordon equation.)

Δ+ is just i times the Fourier transform of the invariant measure d3p/2ωp on
the positive mass shell p0 = ωp, and hence it is invariant under the orthochronous
Lorentz group. (It is not invariant under time inversion, which interchanges the
mass shell with p0 = −ωp.) Moreover, it agrees with ΔF in the region t > 0 (where
|t| = t), and hence — since Δ+ and ΔF are both invariant under the orthochronous
Lorentz group — it agrees with ΔF in the whole region outside the backward light
cone, and in particular in the spacelike region. Therefore, if x− y is spacelike,

[φ(x), φ(y)] = −iΔ+(x− y) + iΔ+(y − x) = −iΔF (x− y) + iΔF (y − x) = 0,

because ΔF is even. This is exactly what we were looking for.
By the same calculation, for a charged scalar field we have [φ(x), φ†(y)] = 0

when x − y is spacelike. (That [φ(x), φ(y)] = 0 is automatic since φ contains
annihilation operators for a particle and creation operators for its antiparticle;
these operators commute.)

However, suppose we tried to construct a quantum theory involving Fermions
with spin zero. The field describing these Fermions would be constructed out of
creation and annihilation operators that satisfy anticommutation relations, so we
would have to use anticommutators instead of commutators in this calculation.
With this change, the calculation proceeds much as before, except that one crucial
minus sign changes to a plus sign, giving

{φ(x), φ(y)} = −iΔ+(x− y)− iΔ+(y − x) = −2iΔF (x− y) for x− y spacelike.

As we have observed earlier, ΔF is not zero in the spacelike region, so relativistic
invariance is destroyed. Particles of spin zero must be Bosons.

For a Dirac field ψ of mass m, calculations similar to the ones above show that

(6.57) {ψa(x), ψb(y)} = −i
[
(iγμ∂μ +m)Δ+(x− y) + (iγμ∂μ −m)Δ+(y − x)

]
ab
.

Since Δ+ is even in the spacelike region, the terms involving m cancel out there, and
since ∂μΔ+ is odd, so do the terms involving γμ∂μ. However, if we tried to construct
a Dirac field out of creation and annihilation operators that satisfy commutation
relations, we would have to consider [ψa(x), ψb(y)] instead, and it would be given by
the right side of (6.57) with the plus sign between the two distributions replaced by
a minus sign. Those two terms would add up instead of canceling, and relativistic
invariance would be violated again. Particles of spin 1

2 must be Fermions.
Similar considerations apply to particles of higher spin: for fields of spin s, the

commutators or anticommutators will involve derivatives of order 2s of Δ+, which
will be even or odd according as 2s is even or odd. Hence, in order to obtain rela-
tivistic invariance, one must use commutators when 2s is even and anticommutators
when s is odd. This gives another way of arriving at the conclusion that particles
of integer spin must be Bosons; particles of half-integer spin must be Fermions. See
Weinberg [131], §5.7, for a more detailed treatment.
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6.6. Feynman diagrams

We now return to the Dyson series for a scattering matrix element between
initial and final states consisting of free particles with definite momenta. The Nth
term in the series is

(6.58)
(−i)N
N !

∫
· · ·

∫ 〈
0
∣∣a1(pout

1 ) · · · aJ (pout
J )T[HI(x1) · · ·HI(xN )]

· a†1(pin
1 ) · · ·a†K(pin

K)
∣∣0〉 d4x1 · · · d4xN ,

Each HI(xn) is a sum of products of field operators, and (6.58) is the sum of
the integrals obtained from it by replacing each HI(xn) by a single one of these
products (including the relevant coupling constant). There can be any number of
different fields here, and the initial and final creation and annihilation operators
can be for any of the corresponding particle or antiparticle types. By the corollary
(6.42) of Wick’s theorem, when each HI(xn) is taken to consist of a single product,
(6.58) is equal to (−i)N/N ! times the sum of all the terms obtained by pairing up

all the creation operators a†k(pk), the annihilation operators aj(p
′
j), and the field

operators in the HI(xm) in all possible ways and integrating the resulting product
of contractions. Each such term is the integral, with respect to x1, . . . , xN , of a
product of contractions of the form︷ ︸︸ ︷

aj(p
out
j )a†k(p

in
k ),

︷ ︸︸ ︷
aj(p

out
j )φ(xn),

︷ ︸︸ ︷
φ(xn)a

†
k(p

in
k ),

︷ ︸︸ ︷
φ(xn)φ

†(xn′),

where φ is one of the fields contributing to HI . (The notation here is very stripped-
down. If φ is a field involved in HI then so is φ†, so contractions of the form︷ ︸︸ ︷
aj(p

out
j )φ†(xn) and

︷ ︸︸ ︷
φ†(xn)a

†
k(p

in
k ) are also included in this scheme. Moreover, there

may be other parameters indicating components of vectors, spin states, particle
species, and other entities such as Dirac matrices, that are being suppressed. Fi-

nally, the a’s and a†’s are completely unrelated; for instance, a1(p
out
1 ) and a†1(p

in
1 )

may pertain to different spin states or different particles.)
We now know how to evaluate all of these:

•
︷ ︸︸ ︷
aj(p

out
j )a†k(p

in
k ) is zero if aj and a†k pertain to different spin states or

different particles and is (2π)3δ(pout
j − pin

k ) otherwise.

•
︷ ︸︸ ︷
aj(p

out
j )φ(xn) is zero unless φ creates particles of the type annihilated by

aj . In that case

φ(x) =

∫
e−ipμx

μ

u(pj)a
†
j(p) d

3p/(2π)3 + · · · (p = (ωp,p)),

where any further ingredients such as spin components and
√
2ωp are

incorporated in u(p), and we have︷ ︸︸ ︷
aj(p

out
j )φ(xn) = e−ipout

μ xμ

u(pout
j ).

• Similarly,

︷ ︸︸ ︷
φ(xn)a

†
k(p

in
k ) is zero unless φ annihilates particles of the type

created by a†k. In that case

φ(x) =

∫
e−ipμx

μ

u(pj)aj(p) d
3p/(2π)3 + · · · (p = (ωp,p)),
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and we have ︷ ︸︸ ︷
φ(xn)a

†
k(p

in
k ) = eip

in
μ xμ

u(pin
k ).

• Finally,
︷ ︸︸ ︷
φ(xn)φ

†(xn′) = −iΔ(xn− xn′) where Δ is the propagator for the
field φ.

So now it remains to multiply these together and integrate, but we postpone
this task for a bit. First, we present the marvelous graphical interpretation of these
integrals due to Richard Feynman, which makes it much easier to see what is going
on and keep track of all the different terms.

Each product of nonzero contractions of the above types corresponds uniquely
to a graph with some additional structure called a Feynman diagram, according to
the following rules.

• For each initial creation operator a†j(p
in
k ), each final annihilation operator

aj(pout
j ), and each point xn where field operators act there is a vertex.

The vertices corresponding to the initial (resp. final) operators are called
initial (resp. final); initial and final vertices are both called external ; and
the vertices corresponding to the field operators are called internal. The
external vertices are labeled with the on-mass-shell 4-momenta p = (ωp,p)
corresponding to their 3-momenta pout

j and pin
k , and the internal vertices

are labeled with their points xn; other parameters such as spin states and
Lorentz indices may be included too. When drawing a Feynman diagram,
it is customary to put the vertices for creation operators at the left or
bottom of the picture, the vertices for annihilation operators at the right
or top of the picture, and the internal vertices in between. In this book
we almost always use the left-right convention.

• For each contraction there is an edge of the graph between the appro-
priate vertices: between the external vertices with labels poutj and pink for︷ ︸︸ ︷
aj(p

out
j )a†k(p

in
k ), between the internal vertices with labels xn and xn′ for︷ ︸︸ ︷

φ(xn)φ
†(xn′), etc. Edges with one end at an external vertex are called

external lines ; edges with both ends at internal vertices are called internal
lines.

• Each line is associated to a particular particle species, namely, the one
to which the operators in its contraction pertain. It should be labeled in
some way to indicate this species. In practice this is done by using solid
lines, dotted lines, wavy lines, etc., for the various species. (In particular,
in QED electrons are denoted by solid lines and photons by wavy lines.)
However, for this purpose, particles and antiparticles are considered as
belonging to the same species; the distinction between then comes in the
next item.

• At this point, for each particle-antiparticle pair that occurs in the calcu-
lation, one must decide once and for all which one is the “particle” and
which one is the “antiparticle.” (In practice this is a matter of iron-clad
convention. In particular, electrons and protons are “particles,” and the
determination for other leptons and baryons is determined by laws to the
effect that in any interaction the number of leptons [or baryons] minus
the number of antileptons [or antibaryons] is conserved.) The lines of the
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graph associated to particles with distinct antipaticles are equipped with
arrows as follows. (No arrows are drawn on lines corresponding to a par-
ticle without a distinct antiparticle, such as a photon; however, arrows
may be drawn adjacent to them to indicate the direction of momentum
flow, as we shall explain later.)
i. The arrow of a line with one end at an initial vertex pin points away

from that vertex if the entity created there is a particle and toward
that vertex if it is an antiparticle.

ii. The arrow of a line with one end at a final vertex pout points toward
from that vertex if the entity annihilated there is a particle and away
from that vertex if it is an antiparticle. (Note that this is consistent
with (i) for lines that join initial and final vertices.)

iii. The arrow of an internal line joining the vertices x and x′ points

from x′ to x if the field φ in the associated contraction
︷ ︸︸ ︷
φ(x)φ†(x′)

annihilates particles and creates antiparticles, and from x to x′ if it
creates particles and annihilates antiparticles.

We observe that the following conditions always hold:

• Every external vertex is contained in exactly one line, and the other end of
that line is either an internal vertex or an external vertex of the opposite
sort (initial or final).

• Recall that the integral giving rise to a Feynman diagram is obtained from
(6.58) by replacing each HI(xn) by one of its constituent products of field
operators. The number of lines that meet the vertex xn is the number of
terms in that product. More precisely, if the contribution of a particular
Hermitian field φ to the product is φm, there will be m lines of type φ at
xn; if the contribution of non-Hermitian field φ is (φφ†)m, there will be
m lines of type φ with arrows pointing toward the vertex xn and m with
arrows pointing away.

Part of what makes this graphical representation useful is that one can go
the other way, from Feynman diagrams to terms in the Dyson series. To wit,
suppose one is given an interaction Hamiltonian HI of the sort described above
and some initial and final states of free particles with definite momenta. One
builds a Feynman diagram by starting with K initial vertices labeled with momenta
pink , J final vertices labeled with momenta poutj , and N internal vertices labeled
with spacetime points xn, and choosing one product in HI(xn) for each n to be
the interaction at the vertex xn. One then connects the vertices subject to the
conditions detailed above. Each way of doing this yields a product of contractions
whose values can be read off from the list compiled above; the integral of this

product, multiplied by (−i)N
∏N

1 λn, where λn is the coupling constant for the
vertex xn, yields one of the terms whose sum is (6.58).

This is a very neat way to catalogue all the integrals that need to be calculated!
However, there are some combinatorial issues that must be addressed. First, we do
not distinguish between two Feynman diagrams that differ only in the relabeling
of their internal vertices. With that understanding, the factor of 1/N ! in (6.58)
disappears. (If one compares the present discussion with the derivation of the
Dyson series in §6.1, one sees that this 1/N ! is there precisely to cancel the N !
equal contributions of these permuted diagrams.) Second, if the interaction involves
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powers higher than one of a single field, there are additional counting problems.
For example, in the φ4 scalar field theory, each of the four factors of φ(x) in an
interaction term HI(x) must be contracted with some other operator, and there are
generally 4! ways to arrange these contractions; it is precisely to compensate for this
fact that the factor of 1/4! is inserted into (6.28). However, if two or three of these
factors are contracted with φ(y)’s that are all in the same HI(y), this compensation
is off by a factor of 2! or 3!, which must therefore be adjusted accordingly. (The
corresponding diagrams have two or three lines connecting the vertices x and y,
and the point is that the diagram is unchanged by the permutation of these lines.)
These symmetry factors, which can also arise in other ways, can be annoying to
deal with, but they will cause no difficulty in the calculations we shall perform here.
(See Weinberg [131], §6.1, for a more extended discussion of these issues.)

One also has to be careful about keeping track of minus signs when the interac-
tions involve Fermions. For one thing, changing the order of the creation operators
that define the initial and final states can introduce factors of −1, so one has to
order the operators in the initial and final states consistently. Moreover, when one

expresses an S-matrix element as a product of contractions
︷︸︸︷
AB , one must permute

the operators involved so that each A is adjacent to its partner B, and permuting
Fermionic operators introduces a factor of the sign of the permutation. In the next
section we shall see an example of the importance of these minus signs.

At this point the reader is undoubtedly hungry for some specific examples, so
let us look at the lowest-order terms for an S-matrix element in φ4 scalar field theory
in which the initial and final states have two particles each: |in〉 = a†(p1)a

†(p2)|0〉
and |out〉 = a†(p3)a

†(p4)|0〉. The zeroth term in the perturbation series is

〈0|a(p3)a(p4)a
†(p1)a

†(p2)|0〉

=
︷ ︸︸ ︷
a(p3)a

†(p1)
︷ ︸︸ ︷
a(p4)a

†(p2)+
︷ ︸︸ ︷
a(p3)a

†(p2)
︷ ︸︸ ︷
a(p4)a

†(p1)

= (2π)6
[
δ(p3 − p1)δ(p4 − p2) + δ(p3 − p2)δ(p4 − p1)

]
,

which corresponds to the two Feynman diagrams in Figure 6.2. No surprises here:
nothing happens, and the two outgoing particles are the two incoming particles.

������
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Figure 6.2. The trivial interaction in φ4 theory.

Note: We shall always indicate internal vertices of Feynman diagrams by black
dots. If two lines cross but there is no black dot at the intersection, there is no
vertex there.

The first-order term is

λ

4!

∫
〈0|a(p3)a(p4)φ(x)φ(x)φ(x)φ(x)a

†(p1)a
†(p2)|0〉 d4x.
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The various ways of contracting the eight terms in the integrand yield diagrams of
the types shown in Figure 6.3. The first one, representing the most basic scattering
process of the φ4 interaction, comes from contracting each of the φ(x)’s with one of
the external creation or annihilation operators. There are 4! ways to do this, which
all give the same result; this cancels the 4! in the coupling constant. By (5.12) we
have ︷ ︸︸ ︷

a(pj)φ(x) =

∫
eipμx

μ√
2ωp

δ(p− pj) d
3p =

eipjμx
μ√

2ωpj

and likewise
︷ ︸︸ ︷
φ(x)a†(pj) = e−ipjμx

μ

/
√
2ωpj

, so the value of Figure 6.3a is

λ

∫
ei(p3μ+p4μ−p1μ−p2μ)x

μ

4
√
ωp1

ωp2
ωp3

ωp4

d4x = λ
(2π)4

4
√
ωp1

ωp2
ωp3

ωp4

δ(p3 + p4 − p1 − p2).

The delta-function embodies the overall conservation of energy and momentum in
the process.

��� ��� ���

Figure 6.3. First-order interactions in φ4 theory.

Figure 6.3b corresponds to contracting two of the field operators with external
creation or annihilation operators and the other two with each other. There are
actually four diagrams of this type, depending on which initial vertices are con-
nected to which final ones and which line gets the extra loop. Each of them has
a symmetry factor of 2, because there is only one way to pair two factors of φ(x)
rather than two. Figure 6.3c corresponds to contracting all of the field operators
with each other; there are two such diagrams, depending on the pairing of initial
and final vertices, and they have a symmetry factor of 8 since there are only 3
ways of grouping the four φ’s into two pairs. But there is something highly pecu-
liar about these diagrams, because the contraction that corresponds to the loop is
−iΔF (x− x) = −iΔF (0), and ΔF has a singularity at the origin.

There are two possible attitudes to take to this problem. One is to declare
that the interaction Hamiltonian must be Wick ordered at the outset — that is,
to take HI(x) to be (λ/4!):φ(x)4: rather than (λ/4!)φ(x)4. This has the effect of
removing all contractions of operators within the same HI(x) from consideration;
diagrammatically, it amounts to adding a rule that no line can begin and end at the
same vertex. This prescription is always followed in the study of rigorous models in
space-time dimensions 2 and 3, and there is a theoretical justification for it noted
by Weinberg [131], p. 200. On the other hand, the Fourier representation (6.47) of
ΔF gives a formula for ΔF (0) as a divergent integral,

ΔF (0) =

∫
1

−p2 +m2

d4p

(2π)4
.
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As such it is only one of many divergent integrals that arise from Feynman diagrams
containing loops, and one can include it in the general renormalization scheme to
be discussed in Chapter 7; it then affects the counterterms that must be added to
cancel the divergences. In the end, these procedures lead to physically equivalent
results as long as the field φ is considered in isolation, although one-line loops can
have a nontrivial effect when there are external fields present. (See, e.g., Weinberg
[131], p. 576.) We shall take the easy way out by henceforth forbidding lines to
start and end at the same vertex.

��� ������

Figure 6.4. Second-order interactions in φ4 theory

With this simplification, the reader can easily verify that the second-order term∫∫ 〈
0
∣∣a(p3)a(p4)T[:φ(x)

4: :φ(y)4:]a†(p1)a
†(p2)

∣∣0〉 d4x d4y
gives rise to the three kinds of diagrams in Figure 6.4. They have symmetry factors
2!, 3!, and 4!, respectively, from the permutation of the internal lines. We shall
analyze the first of these in detail in §7.4 and the second in a more qualitative way
in §7.6. The last one contains a “vacuum bubble,” one of the quantum fluctuations
of the vacuum; we shall say more about such diagrams in §6.11.

For QED the basic ideas are the same, but the algebra is more complicated.
There are two fields here, the photon field A and the electron field ψ (although
one can substitute another charged spin-1

2 particle for the electron); the interaction

Hamiltonian is HI = eAμψγ
μψ where e is the charge of the electron. These fields

are both vector-valued, and the vector spaces for both of them are 4-dimensional,
but they are not the same: for the photon field the space is physical space-time
or its dual momentum space, whereas for the electron field it is the space of Dirac
spinors. Likewise, the photon propagator and the electron propagator are both
4×4 matrices, but acting on these two different spaces. The standard way to avoid
massive confusion is to display all Lorentz indices but no spinor indices explicitly.
Here is a list of the main features to keep in mind:
i. Each internal vertex, labeled by a space-time point x, has its own Lorentz index

μ, which is the Lorentz index of the Dirac matrix γμ in HI(x); it forms part of
the label of the vertex. If two internal vertices lableled by (x, μ) and (y, ν) are
joined by a photon line, the corresponding photon propagator is −iΔμν(x− y)
(which is symmetric in μ and ν and even in x−y, so the order doesn’t matter).

ii. The contraction
︷ ︸︸ ︷
Aμ(x)a

†(p) or
︷ ︸︸ ︷
a(p)Aμ(x) corresponding to an external photon

line has the form εμ(p)/
√
2|p| or ε∗μ(p)/

√
2|p| where εμ is the polarization
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vector for the incoming or outgoing photon.6 This will be contracted into the
Dirac matrix γμ for the internal vertex x.

iii. If an electron line joins the vertices labeled by x and y and its arrow points
from x to y, the corresponding propagator is −iΔDirac(y− x). (Here the order
does matter!)

iv. The contraction
︷ ︸︸ ︷
ψ(x)a†(p) or

︷ ︸︸ ︷
a(p)ψ(x) has the form

√
m/2ωp u(p) (a column

vector) or
√
m/2ωpu(p) (a row vector), where u(p) is the appropriate Dirac

spinor defined by (5.29) and (5.30).
v. The electron lines in any diagram fall into two kinds of groups: chains of lines

connecting an incoming electron vertex to an outgoing one, and internal loops.
The total contribution of a chain connecting external vertices through n internal
vertices with labels (xj , μj) has the form

(−ie)nu(pout)γμnΔDirac(xn − xn−1)γ
μn−1 · · · γμ2ΔDirac(x2 − x1)γ

μ1u(pin).

Note that this is a product of a row vector, some matrices, and a column vector,
and hence is a scalar as far as spinor space is concerned. The total contribu-
tion of a loop with vertices labeled (x1, μ1), . . . , (xn, μn) (and (xn+1, μn+1) =
(x1, μ1)) has the form

(6.59)
−(−ie)n tr

[
γμnΔDirac(xn− xn−1)γ

μn−1 · · · γμ2ΔDirac(x2− x1)γ
μ1ΔDirac(x1− xn)

]
,

which is also a scalar vis-a-vis spinor space. The extra minus sign comes from

the fact that all the propagators from contractions
︷ ︸︸ ︷
ψ(xj+1)ψ(xj) except the last

one, which comes from
︷ ︸︸ ︷
ψ(xn)ψ(x1) = −

︷ ︸︸ ︷
ψ(x1)ψ(xn). The fact that the formula

involves a trace comes from the workings of the linear algebra; the point is that
the product of two matrices A and B is given by (AB)ik =

∑
j AijBjk, but

when one completes the loop at the end, one sets k = i and sums to obtain∑
i,j AijBji = tr(AB).

vi. The Lorentz indices in the expressions in (v) are all summed out against photon
propagators or external polarization vectors. Hence the final result is a scalar.

��� ��� ��� ���

Figure 6.5. Some Feynman diagrams for QED.

6This is exactly what one would expect, and exactly what one gets from the quantization
of the photon field in Coulomb gauge (5.42). Even if one quantizes in another way, the external
photons must be in physically correct states with polarization vectors that have no time component
and are orthogonal to the momentum. See Weinberg [131], §5.9, for further discussion.
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The algebra is sufficiently tedious that we shall not write out a list of examples
here, but rather consider individual examples as the occasion arises. However, a
few simple Feynman diagrams for QED are shown in Figure 6.5. The first one
is the main contribution to electron-electron scattering; the second is the main
contribution to electron-positron annihilation; the third represents a photon turning
into an electron-positron pair and back into a photon. The last one represents the
fundamental interaction of QED, but unlike the analogous diagram (Figure 6.3a)
for the φ4 interaction, it cannot stand on its own. One doesn’t need quantum field
theory, merely conservation of energy, to see that the amplitude for the depicted
process, a (real) electron emitting or absorbing a (real) photon with nothing else
happening, is zero. (Hint: Consider the reference frame in which the electron is
initially at rest.)

By the way, if one rotates the diagram in Figure 6.5b through a right angle
clockwise, it depicts the scattering of a photon off an electron, a process that we
shall study in detail in §6.10. It follows that the corresponding amplitudes for
electron-positron annihilation and electron-photon scattering are closely related.
As the reader may verify, the precise relation is as follows. The values of these
diagrams are functions of the external particle momenta; the value of the original
diagram with the incoming positron assigned (4-)momentum p and the bottom
photon assigned momentum k is equal to the value of the rotated diagram with
the outgoing electron assigned momentum −p and the incoming photon assigned
momentum −k. Note that p and −p, or k and −k, cannot both be physically
allowed, as p0 > 0 for physical particles, so the relation is a mathematical one rather
than a directly physical one, but it is useful nonetheless. An analogous result holds
for any pair of diagrams that are obtained from one another by replacing some
incoming particles by outgoing antiparticles or vice versa, a phenomenon known as
crossing symmetry.

The correspondence between the integrals that make up the Dyson series and
Feynman diagrams is perfectly precise and well-defined. However, it is customary
to go further and think of the Feynman diagrams as schematic pictures of physical
processes, and here the interpretation acquires a more imaginative character. The
lines starting at the initial or final vertices can clearly be thought of as the trajec-
tories of the initial and final particles entering or leaving the interaction. Once one
has made this connection, the temptation is irresistible to interpret the lines joining
internal vertices also as trajectories of particles involved in intermediate steps of
the interaction. Some of them form chains pertaining to the same particle species
that connect an incoming line to an outgoing one by following the arrows; they
can be interpreted as the trajectories of the real particles that enter, interact, and
leave. The particles that are created and annihilated within the diagram, however,
have a much more tenuous claim to reality. They are not observed directly; they
sometimes travel faster than the speed of light; they may violate conservation of
energy quite flagrantly. They are, in short, the infamous virtual particles that are
so ubiquitous in physicists’ discourse. In the final analysis, the only existence they
possess for certain is as picturesque ways of thinking about the ingredients of the
integrals in the Dyson series.

However, it must be said that the line between virtual particles and real ones is
not completely sharp. A real particle may be observed to be a little off mass shell
because of the uncertainty principle, and a photon emitted by an electron in the
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sun that manages to reach the earth before being absorbed by another electron has
every right to claim reality even though the photon in Figure 6.5a is presumably
virtual.

The arrows in a Feynman diagram indicate the direction of travel of the (vir-
tual) particles in question: they point in the direction of travel for particles and
in the opposite direction for antiparticles. The convention for the direction of the
arrow on an edge joining two internal vertices is explained as follows. If φ is a

field that destroys particles and creates antiparticles, the contraction
︷ ︸︸ ︷
φ(x)φ†(y) in-

volves either the commutator of the annihilation operators in φ(x) with the creation
operators in φ†(y) or the commutator of the creation operators in φ(x) with the
annihilation operators in φ†(y), depending on the time-ordering of x and y. That

is, if x0 > y0,
︷ ︸︸ ︷
φ(x)φ†(y) represents the creation of a (virtual) particle at y followed

by its destruction at x, whereas if y0 > x0, it represents the creation of a (virtual)
antiparticle at x followed by its destruction at y. Both processes are represented
by the same directed line in the Feynman diagram. In fact, Feynman argued for
their physical indistinguishability; he was fond of asserting that antiparticles are
just particles traveling backward in time.

6.7. Feynman diagrams in momentum space

What we have described so far is the “position space” correspondence between
Feynman diagrams and multiple integrals that contribute to an S-matrix element;
that is, the vertices in the diagram are labeled by position-space variables, and these
are the variables of integration. However, when one actually performs the calcu-
lation, it is easier to use a “momentum space” representation instead, because the
most convenient way of expressing the propagators is by their Fourier expansions.
The way this works is as follows.

Each integral represented by a Feynman diagram is of the form

(6.60)

∫
· · ·

∫
F1(x,p

out)F2(x)F3(x,p
in) d4x1 · · · d4xN ,

where x = (x1, . . . , xn) ∈ R4n and pout and pin are likewise concatenations of the
outgoing and incoming momentum vectors. More precisely,
i. F1(x,p

out) is a product of factors exp(ipoutjμ xμ
n), multiplied by coefficients that

depend on poutj and the field types but not on xn, coming from the final lines

(i.e., the contractions
︷ ︸︸ ︷
a(pout

j )φ(xn));
ii. F2(x) is a product of propagators coming from the internal lines (i.e., the

contractions
︷ ︸︸ ︷
φ(xn)φ

†(xn′));
iii. F3(x,p

in) is a product of factors exp(−ipinkμxμ
n), again multiplied by certain

coefficients, coming from the initial lines (i.e., the contractions
︷ ︸︸ ︷
φ(xn)a

†(pin
k )).

(There may also be some combinatorial factors.) We express each of the propagators
in F2(x) as a Fourier integral:

(6.61) −iΔ(xn − xn′) = −i
∫

exp[−iqμ(xn − xn′)μ]Δ̂(q)
d4q

(2π)4
,
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in which Δ̂(q) is a rational function of q with denominator −q2+m2− iε (and there
is an implicit limε→0). Substituting these integrals for the propagators turns (6.60)
into
(6.62)∫

· · ·
∫ ∫

· · ·
∫

F1(x,p
out)F ′

2(x, q)F
′′
2 (q)F3(x,p

in) d4x1 · · · d4xN
d4q1 · · · d4qM

(2π)4M
,

where there is one 4-momentum variable qm for each internal line, and
i. F ′

2(x, q) is the product of factors exp[−iqmμ(xn − xn′)μ];
ii. F ′′

2 (q) is the product of the Fourier transforms of the propagators.
At this point the x-dependence in the integrand is simply a product of imagi-

nary exponentials, so the x-integrations can be performed by the Fourier inversion
formula ∫

e−ixμa
μ

d4x = (2π)4δ(a).

The result is that the integral (6.62) becomes
(6.63)

G(pout,pin)

∫
· · ·

∫
(2π)4Nδ(Σ1) · · · δ(ΣN )R1(q1) · · ·Rm(qM )

d4q1 · · · d4qM
(2π)4M

,

where
i. G(pout,pin) is the product of field coefficients coming from the external lines

(and any combinatorial factors),
ii. the Rm are the Fourier-transformed propagators (“R” stands for “rational func-

tion”), and
iii. Σn is the algebraic sum (see below) of the 4-momenta (poutj , pink , and/or qm)

associated to the lines that meet at the vertex xn.
In addition, when any initial vertex pin

k is connected directly to a final vertex pout
j ,

there will be an extra factor of δ(pin
k − pout

j ).
The term “algebraic sum” requires some explanation. Some lines that meet at

the vertex xn have arrows attached to them; a line is considered “incoming” if its
arrow points toward xn and “outgoing” if it points away from xn.

7 Lines without
arrows (corresponding to neutral particles) are arbitrarily assigned arrows for this
purpose; one merely has to be consistent in using the same arrow for the calculations
at both ends of the line. (These arrows are usually drawn adjacent and parallel
to the lines rather than on them.) The algebraic sum Σn of the momenta at xn is
then the sum of the outgoing momenta minus the sum of the incoming momenta.
Thus, the delta-function δ(Σn) expresses “conservation of energy-momentum at the
vertex xn.”

When one thinks of a Feynman diagram as representing the momentum-space
integral (6.63), instead of labeling the internal vertices with the position variables,
one labels the lines with 4-momentum variables. The conversion from position to
momentum labels is as follows. The line from the initial vertex with momentum pin

k

is labeled by the corresponding 4-momentum pink = (ωpin
k
,pin

k ), and likewise for lines

to final vertices. The internal line from the vertex xn′ to the vertex xn (representing
the propagator −iΔ(xn−xn′)) is labeled by the momentum variable q in the Fourier
expansion (6.61). We think of q as flowing in the direction of the arrow associated to

7One can reverse this convention for lines that are considered to represent antiparticles; it
doesn’t matter as long as the convention is consistent from vertex to vertex.
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Table 6.1. Momentum-space Feynman rules for φ4 scalar field
theory. (External vertices are denoted by crosses.)

the line (that is, “from xn′ to xn”) if the line is considered as representing a particle
(including neutral particles) and in the opposite direction if the line is considered
as representing an antiparticle, as in the preceding paragraph. This distinction is
unimportant for internal Boson lines, as their propagators are even functions and
−qm is just as good a variable as qm in (6.63); but it is significant for internal
Fermion lines (whose propagators are not even) and external lines (whose momenta
p must be on mass shell so that p0 > 0).

The integral (6.63) corresponding to a diagram labeled in this way is built up
as follows:
i. For each external line labeled by the momentum p there is a factor u(p) consist-

ing of the appropriate field coefficient arising from the contraction associated
to the line.

ii. For the internal line labeled with qm (m = 1, . . . ,M) there is a factor −iΔ̂(qm),
the Fourier-transformed propagator for the field associated to the line.

iii. For each vertex there is a factor −i(2π)4λδ(Σ), where Σ is the algebraic sum
of the 4-momenta at that vertex and λ incorporates the coupling constant and
any other algebraic factors such as Dirac matrices for the interaction at that
vertex.

One now multiplies all these factors together, integrates over all the internal mo-
menta, and also sums over whatever discrete indices (spin, etc.) are present. One
must also include combinatorial factors and Fermionic minus signs as needed, just
as for the position-space integral.

In this setting the “virtualness” of the particles associated to the internal lines
manifests itself in the fact that their 4-momenta qm are completely arbitrary, not
on mass shell.

For future reference, we give a summary of the momentum-space Feynman rules
for the φ4 scalar field theory and for QED in Tables 6.1 and 6.2.

We return to the general discussion of the evaluation of integrals associated
to Feynman diagrams. Because of the delta-functions in the integrand, some, and
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Table 6.2. Momentum-space Feynman rules for QED. (External
vertices are denoted by crosses. The Lorentz indices at internal
ends of photon lines contract with the Lorentz indices at internal
vertices.)

perhaps all, of the integrations in (6.63) collapse immediately. Each internal mo-
mentum variable qm occurs in precisely two of the sums Σn (the ones coming from
the vertices at the ends of the line associated to q), so repeated application of the
formula ∫

(2π)4δ(q − q′)(2π)4δ(q′ − q′′)
d4q′

(2π)4
= (2π)4δ(q − q′′)

(this is honest mathematics: the convolution of two measures) serves to eliminate
some or all of the internal momenta, which are then expressed in terms of the
external momenta and remaining internal momenta (if any) in the remaining part
of the integrand.

The form of the result of performing these trivial integrations depends on the
topology of the Feynman diagram. First, if the diagram is disconnected, the inte-
gral it represents is just the product of the integrals represented by its connected
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subdiagrams, so it suffices to consider connected diagrams. For these we quote
a basic topological result for one-dimensional cell complexes, the analogue of the
Euler formula V − E + F = 2 − 2g for polyhedra. (A proof can be found in any
introductory book on algebraic topology; see, e.g., Croom [19], Theorem 2.5.)

Let V and E be the number of vertices and edges, respectively, in a connected
graph G, and let L be the number of independent loops in G (i.e., the rank of the
homology group H1(G)).8 Then V − E = 1− L.

In a Feynman diagram, each external vertex lies on only one line, so deletion
of external vertices and lines does not affect the connectedness or the numbers
V −E and L. By applying the preceding theorem to the subgraph consisting of the
internal vertices and lines, we obtain:

Let V and I be the number of internal vertices and internal lines, respectively,
in a connected Feynman diagram, and let L be the number of independent loops.
Then

(6.64) V − I = 1− L.

In particular, we always have I ≥ V −1, so there are always enough q-integrals
to eat up all but one of the delta-functions δ(Σn). As the reader may verify by
keeping more careful track of the different internal and external momenta in the
sums Σn, once these V − 1 integrations have been performed, the argument of
the remaining delta-function is precisely

∑
j p

out
j −

∑
k p

in
k , the sum of the final 4-

momenta minus the sum of the initial 4-momenta. Hence this delta-function simply
expresses the fact that overall momentum and energy, for the real (nonvirtual)
initial and final particles, must be conserved by the interaction. It contains no
internal momenta and so plays no role in any further integrations.

If L = 0, that is, if the diagram is a tree, then I = V − 1, there are no more
integrations after the delta-functions have been reduced, and the calculation is
complete. The result is a product of (1) field coefficients evaluated at the external
momenta, (2) propagators whose internal momentum variable has been expressed in
terms of the external momenta via the conditions Σn = 0; (3) the overall momentum
conservation delta-function (2π)4δ(

∑
poutj −

∑
pink ).

If L > 0, there are L additional integrations to be performed, and the integrand
is a rational function of the remaining internal momenta (a product of propagators).
These integrals have an unfortunate propensity for diverging, so their analysis must
be postponed until the next chapter.

There are a couple of modifications to the rules for evaluating external lines in a
Feynman diagram that are frequently useful. First, one may wish to consider a part
of a Feynman diagram in isolation, so that its external lines are actually internal
lines of a larger diagram. In that case the external particles are not on mass
shell and the external lines correspond to propagators rather than field coefficients.
(The same idea is relevant to evaluation of vacuum expectation values of products
of fields, as we shall explain in §6.11.) On the other hand, sometimes one wants
to concentrate on the integrations associated to the internal lines without worrying
about the quantities associated to one or more external lines at all, so one omits the

8For example, the diagram in Figure 6.4b has three loops, one formed by the two curved arcs
and the other two formed by one of the arcs and the line segment in between, of which any two
are independent; the third is the sum or the difference of the other two in H1(G).
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corresponding field coefficients or propagators entirely. This is known as amputating
the external line.

The integral associated to any Feynman diagram will be called the value of the
Feynman diagram. However, it is often convenient to take a short-cut and identify
a diagram with its value. Thus, we may speak of a “sum of Feynman diagrams,” a
“divergent Feynman diagram,” etc.

6.8. Cross sections and decay rates

At this point, let us see what we have accomplished. We have shown how to
compute the scattering matrix elements between initial and final states consisting of
collections of particles with definite momenta in terms of quantities represented by
Feynman diagrams; more precisely, our expectation is that the sum of finitely many
of these quantities will yield a good approximation to the matrix element. Some
of the quantities are divergent, but there are methods to be discussed in the next
chapter for removing the divergence. Let us assume either that this has been done
or that we are content to use only diagrams without loops where the divergence
problem does not occur (the “tree level approximation”), so that we have obtained
a formula for the scattering matrix element. Now what? That is, what does this
matrix element have to do with quantities that the experimentalists can measure?

The question of interpretation is clearly nontrivial. A scattering matrix ele-
ment is a transition amplitude between the initial and final states, and the actual
transition probability is obtained by taking the absolute square of this amplitude.
But the matrix element always contains a momentum-conservation delta-function,
so how is one supposed to interpret its square? Of course, some such problem is not
unexpected, since the initial and final states with definite momenta are not actual
elements of the appropriate Hilbert space. To get more rigorous results, one should
replace them with honest wave packets. However, if the final answer is to have any
experimental relevance, it had better not depend in any serious way on the precise
structure of the wave packets. In the typical situation where an interaction results
from the collision of two initial particles prepared in a particle accelerator, one usu-
ally has very little precise information about the wave functions of these particles
except that their momenta are well localized about certain values determined by
the experiment — so that, on some level, the assumption of definite momenta has
to be a good approximation after all.

In short, the bad news is that mathematical precision is difficult to achieve,
but the good news is that it is also somewhat irrelevant: the end result needs to be
insensitive to a certain amount of sloppiness. As Weinberg [131], p. 134, says, “(as
far as I know) no interesting open problems in physics hinge on getting the fine
points right regarding these matters.” We therefore follow him in taking a quick
and dirty route to the main results, using the same device we employed in §5.1
and §6.2: putting the particles in a box. This also has the advantage of clarifying
the normalization constants. (See Peskin and Schroeder [89], §4.5, or Itzykson
and Zuber [66], §5-1-1, for alternate derivations using wave packets. However, one
should be aware that different authors use different normalization conventions; in
particular, factors of 2π are likely not to be invariant under change of reference
text.)

Before getting started on this, we need to make a general observation about
scattering amplitudes. If one of the initial particles is in exactly the same state as
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one of the final particles (same species, same momentum, same spin, etc.), there is
a possibility — in fact, an overwhelming likelihood — that one incoming particle
simply goes in one side and out the other without interacting with anything else.
(This corresponds to Feynman diagrams in which one initial vertex is connected to
one final vertex by a single line that is disconnected from the rest of the diagram.)
More generally, if the sets of initial and final particles can each be partitioned into
k subsets such that the total momentum in each incoming subset is equal to the
total momentum in the corresponding outgoing subset, the main contribution to the
total scattering process will be k separate interactions involving the various subsets.
(This corresponds to Feynman diagrams with at least k connected components, each
component carrying its own momentum-conservation delta-function.)

We assume at the outset that we are only interested in “irreducible” scattering
processes in which all the incoming particles participate, that is, for which the
Feynman diagrams are connected. We therefore disallow outgoing states in which
some subset of the outgoing particles has exactly the same total momentum as some
subset of the incoming particles. This is hardly a serious restriction, as the forbidden
subset of the joint momentum space of the outgoing particles is a subvariety of
positive codimension (and hence measure zero). Under this condition, if |in〉 and
|out〉 are the initial and final states, and pin and pout are their total 4-momenta,
the S-matrix element 〈out|S|in〉 has the form

(6.65) S(in→ out) = 〈out|S|in〉 = i(2π)4δ(pβ − pα)M(in→ out),

where M(in→ out) is free of delta-functions. (The i is conventional.) Here |in〉 and
|out〉 are of the form a†1(p1) · · · a†N (pN )|0〉 where the subscripts on the a’s encode
spin states, particle species, and any other relevant parameters. N will always

denote the number of particles in such a state, p =
∑N

1 pj will denote its total

3-momentum, Ep =
∑√

|pj |2 +m2
j its total energy, and p = (Ep,p) its total

4-momentum; all of these will carry superscripts “in” or “out.”
We now replace R

3 by a box B = [− 1
2L,

1
2L]

3 with volume V = L3. (One may
envision L as a length scale that is extremely large in comparison to subatomic par-
ticles but perhaps not in comparison to the experimental apparatus: just a region
large enough so that all events of interest happen well inside it.) For simplicity
(and here again, specifics are unimportant), we impose periodic boundary condi-
tions on the sides of the box, so that the 3-momenta of the particles are restricted
to the lattice [(2π/L)Z]3, and the Dirac delta δ(p1−p2) is replaced by the rescaled
Kronecker delta

(6.66) δB(p1 − p2) =

∫
B

ei(p1−p2)·x d3x

(2π)3
=

V

(2π)3
δp1p2

.

Having cut down space to a finite size, we need also to restrict the time during
which the interaction can take place to a large but finite interval [− 1

2T,
1
2T ], since

the particles can no longer escape to infinity at large positive and negative times.
Here again, in practice T should be only large enough to encompass the interaction
in question comfortably; it need not be large on a human or cosmological time scale.
The Dirac delta δ(E1 − E2) is then replaced by a smooth bump function,

(6.67) δT (E1 − E2) =

∫ T/2

−T/2

ei(E1−E2)t
dt

2π
=

1

π

sin 1
2 (E1 − E2)T

E1 − E2
.
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We must now address the question of the normalization of the initial and final
states. In order to obtain a transition probability, we must use state vectors with
norm one. In R

3 this is problematic because the states |in〉 and |out〉 have definite
momenta and are therefore not normalizable. But in the box, we use the creation

operators a†B(p) (p ∈ [(2π/L)Z]3) appropriate to the box instead, and then it is

easy: the vectors a†B(p)|0〉 always have norm one, and hence so do all states of the

form a†B1(p1) · · · a†BN (pN )|0〉 provided only that no two of the operators a†Bj(pj)

are identical (creating particles of the same species in the same spin state with
exactly the same momentum).9 This is an entirely harmless restriction, and we
adopt it henceforth. However, there is a rescaling implicit in the replacement of a†

by a†B, because as we saw in §5.1 (in the calculations leading to (5.11), where we

denoted a†B(p) by A†
p), it is not a

†
B but L3/2a†B = V 1/2a†B that turns into a† as the

box is removed. We see this again in the rescaling of delta-functions in (6.66): the

inner product of V 1/2a†B(p1)|0〉 and V 1/2a†B(p2)|0〉 is V δp1p2
= (2π)3δB(p1 − p2),

which turns into (2π)3δ(p1 − p2) = 〈0|a(p1)a
†(p2)|0〉 when the box is removed.

We can therefore adapt the S-matrix element (6.65) to the box by replacing
the initial and final states |in〉 and |out〉 with

V N in/2|in〉B = V N in/2
N in∏
1

a†(pin
j )|0〉, V Nout/2|out〉B = V Nout/2

Nout∏
1

a†(pout
j )|0〉

(we are suppressing indices that indicate spin states, particle species, etc.) and the
delta-function δ(pout − pin) with box delta-functions:

S(V N in/2|in〉B → V Nout/2|out〉B)
= i(2π)4δB(p

out − pin)δT (E
out − Ein)M(in→ out).

(The factor M(in→ out), which contains the hard-won information from the quan-
tum field theory, remains the same!) The transition amplitude SB(in → out) for
the normalized states uin

B and uout
B is then

SB(in→ out) = iV (−N in−Nout)/2(2π)4δB(p
out − pin)δT (E

out − Ein)M(in→ out),

and the transition probability is the absolute square of this quantity:

PB(in→ out) = V −N in−Nout

(2π)8δB(p
out − pin)2δT (E

out − Ein)2|M(in→ out)|2.
We can now deal with the squared delta-functions, as they no longer have

infinite singularities. Indeed, by (6.66) we have

δB(pβ − pα)
2 = δB(0)δB(pβ − pα) =

V

(2π)3
δB(pβ − pα).

There is no corresponding exact formula for δ2T , but we can make an analogous
approximation from (6.67):

δT (Eβ − Eα)
2 ≈ δT (0)δT (Eβ − Eα) =

T

2π
δT (Eβ − Eα).

Using this approximation, we obtain

PB(in→ out) = V −N in−Nout+1T (2π)4δB(p
out−pin)δT (E

out−Ein)|M(in→ out)|2.

9If m of the operators are identical, the norm of uB has a factor of
√
m!.
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At this point we can drop the pretense of the box as far as the discreteness of
possible momenta is concerned. In practice the probability of finding each outgoing
particle with any particular momentum is infinitesimal, so we are interested instead
in particles whose momentum lies in a small bit d3p of momentum space. The
number of points of the lattice of box momenta in this small region is [V/(2π)3]d3p.
Hence, if p1, . . . ,pNout are the momenta of the outgoing particles (so that pout =
p1 + · · ·+ pNout) and we write

d3N
out

pout = d3p1 · · · d3pNout

for short, the differential transition probability for outgoing particles having mo-

menta in the range d3N
out

pout is

(6.68) dP (in→ out)

= V 1−N in

T (2π)4δ(pout − pin)δT (E
out − Ein)|M(in→ out)|2 d

3Nout

pout

(2π)3Nout .

Here, having passed to the continuum limit in describing the momentum states, we
have done the same for the momentum-conservation factor and replaced δB by δ.

This is the general formula for interpreting the S-matrix elements. What re-
mains is to explain the role of V and T , and for this it is necessary to consider the
specific cases of various numbers of initial particles.

For experiments in particle accelerators, by far the most common situation is
that there are two initial particles that are made to collide. More precisely, one
manufactures a beam of particles of one species that is directed at a target consisting
of a bunch of particles of another (or the same) species. (In some experiments, two
particle beams are directed at each other; the only difference is in whether one
group of particles is at rest in the laboratory frame or not. For the moment we
assume that the target is at rest.) In experiments of this sort, the quantity that is
usually measured is the scattering cross section σ, which is the number of scattering
events per unit time, unit volume, unit density of target particles, and unit flux
of beam particles. (Here density means number of particles per unit volume, and
the flux of the beam is its density times the speed of its particles.) Since time,
volume, density, and flux have dimensions [t], [l3], [1/l3], and [l/tl3] = [1/tl2], σ has
dimensions [l2], i.e., it is an area. One can think of it as the effective cross-sectional
area of the target that is scattered by each particle in the beam.

Now, returning to our model, we take the box B to be the (macroscopic)
region where the interaction of the beam and target takes place, and T to be
the (correspondingly long) time during which the interaction takes place. Since
the wave functions ψ of particles with definite momenta are evenly spread out in
space, i.e., |ψ|2 = constant, 1/V can be interpreted as the density of each particle,
so normalizing a quantity to be “per unit density” means multiplying by V . Thus,
from the definition of σ in the preceding paragraph, we see that the differential
cross-section for an initial state |in〉 to be scattered into a range of states with

momenta in the infinitesimal region d3N
out

pout is

dσ(in→ out) = dP (in→ out) · 1
T
· 1
V
· V · V|v| =

V dP (in→ out)

T |v| ,
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where v is the velocity of the beam. Plugging (6.68) into this, noting that N in = 2,
and replacing the smeared-out δT by the plain δ, we obtain

(6.69) dσ(in→ out) = (2π)4δ(pout − pin)|v|−1|M(in→ out)|2 d
3Nout

pout

(2π)3Nout .

Finally the V and T have disappeared, and we have a useful result! Despite the
considerable amount of handwaving in its derivation, this is actually the correct
formula for computing cross-sections.

Let us say a few words about the Lorentz transformation properties of dσ, with
an eye to removing the hypothesis that the target is stationary. The states |in〉
and |out〉 describe particles in definite spin states, so the transformation law for
the matrix elements S(in → out) or M(in → out) involves the transformation of
these spin states — in general, a complicated mess. However, the particles are not
normally prepared or detected in any particular spin state, so the experimentally
measured quantity is obtained by averaging dσ(in→ out) over an orthonormal basis
of spin states for the incoming particles and summing it over an orthonormal basis
of spin states for the outgoing particles (with the given momenta); we denote this
process simply by

∑
spins. A close examination of the definitions of the variables

that enter into S(in→ out) and M(in→ out), which we omit (see Weinberg [131],
§3.4), shows that the quantity

(6.70) R(in→ out) =
∑
spins

|M(in→ out)|2
∏

Ein
j

∏
Eout

k

is Lorentz-invariant, where the Ein
j and Eout

k are the energies of the incoming and
outgoing particles, respectively. On the other hand,

d3N
out

pout

(2π)3Nout
∏

Eout
k

=
∏ dpout

k

(2π)3Eout
k

is a Lorentz-invariant measure on the momentum space of the outgoing particles.
Therefore, if E1 and E2 are the energies of the incoming particles, the quantity∑

spins

dσ(in→ out) =
(2π)4δ(pout − pin)

Ein
1 Ein

2 |v|
R(in→ out)

∏ dpout
k

(2π)3Eout
k

will be Lorentz-invariant provided we replace the term E1E2|v| by the Lorentz-
invariant quantity that agrees with it when the second particle is at rest, namely,

U =
√

(p1μp
μ
2 )

2 −m2
1m

2
2,

p1, p2 and m1,m2 being the 4-momenta and masses of the two initial particles.
(Indeed, U is clearly Lorentz-invariant; and if p2 = 0, then m2 = E2 and p1μp

μ
2 =

E1E2, so U = E2

√
E2

1 −m2
1 = E2|p1| = E1E2|v1|.)

The quantity U/E1E2 can still be interpreted as a “relative velocity” when
both incoming particles are in motion provided that they are aimed directly at
each other so that p1 · p2 = −|p1| |p2|. Indeed, in this case a short calculation
shows that U = E1|p2|+ E2|p1|, so

U

E1E2
=
|p1|
E1

+
|p2|
E2

= |v1 − v2|,
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the absolute difference in velocities of the two particles as viewed from the labora-
tory frame. (It is not, however, the speed of one particle as viewed from the rest
frame of the other.)

After the case of two initial particles, the most important situation is that
of one initial particle. The “scattering” process here is the decay of an unstable
particle. When N in = 1, the V factor in (6.68) disappears, so dividing by T (again,
the time during which the decay process occurs) yields the differential transition
rate

dΓ(in→ out) =
dP (in→ out)

T
.

If one replaces δT by δ (a step that requires some comment — see below), integrates
over momenta, and sums over spins and possible decay modes, one obtains a formula
for the total decay rate of the particle:

(6.71) Γ =
∑

spins, modes

1

Ein

∫
R(in→ out)(2π)4δ(pout − pin)

∏ d3pout
k

(2π)3Eout
k

,

where R(in → out) is as in (6.70). This expression is Lorentz-invariant except for
the energy Ein of the initial particle; that factor incorporates the relativistic time
dilation, according to which more rapidly moving particles (with respect to the
laboratory frame) decay more slowly (with respect to the laboratory clock). The
“half-life” of the particle in the usual sense is (log 2)/Γ0, where Γ0 is the decay rate
in the rest frame of the particle.

However, one cannot let T → ∞ with impunity to replace δT by δ in (6.71):
unstable particles are unstable, after all, and one cannot assume that they come
from the infinitely distant past. This is the same problem that we encountered in
studying the decay of an excited state in §6.2: for the approximation δT ≈ δ to be
valid, T must be large enough so that 1/T is much less than the energies Ein, Eout

k

involved in the process, but dP (in → out)/T can be interpreted as a transition
rate only if T is much less than the mean lifetime of the particle, so there needs
to be a gap between these two quantities. The energies involved in typical particle
decays correspond to times of 10−20 second or less, so this analysis is valid for all
but the extremely short-lived particles. (See Peskin and Schroeder [89], §7.3, for
an analysis of the latter situation.) As with the decay of excited states, the fact
that δT is not exactly δ manifests itself in the fact that there is an unremovable
uncertainty in the experimentally observed energy difference Eout − Ein.

Processes with three or more incoming particles are occasionally encountered,
and the general formula (6.68) is again the bridge from field theory to experimental
or observational results concerning them. However, we shall say no more about
them here.

6.9. QED, the Coulomb potential, and the Yukawa potential

It is time to see how to connect our machinery to the real world. To begin
with, the description of electromagnetism provided by QED, in terms of emission
and absorption of photons by electrons or other Fermions, looks very different from
the description given by classical field theory, so we had better be able to relate the
latter to the former. For this purpose, let us examine the basic Feynman diagram
for the interaction of two electrons (Figure 6.6). We shall calculate the value of this
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diagram in excruciating detail; later calculations of a similar sort can then be done
somewhat more tersely. The momentum-space integral for this diagram is

(6.72)∫
m2

4
√
ωp1

ωp2
ωp′

1
ωp′

2

u(p′
1, s

′
1)(−ieγμ)u(p1, s1)

−igμν
q2

u(p′
2, s

′
2)(−ieγν)u(p2, s2)

× (2π)4δ(p′1 + q − p1)(2π)
4δ(p′2 − q − p2)

d4q

(2π)4
.

�� �
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Figure 6.6. The basic Feynman diagram for electron-electron scattering.

Some explanations:
i. For the external (on-mass-shell) momenta we have p = (ωp,p) as usual.
ii. The internal momentum q is taken to flow from the first particle to the second

one. It could equally well be taken to flow the other way; the only change
would be in the signs of q in the delta-functions.

iii. The Fourier-transformed photon propagator is the limit of −igμν/(q2 + iε) as
ε → 0+, and we have passed to the limit immediately since the iε serves no
purpose here.

iv. The factors of m and ωp come from the
√
m/2ωp in the formula (5.32) for the

Dirac field.

The q-integration in (6.72) is easy to perform:

∫ −igμν
q2

(2π)4δ(p′1 + q − p1)(2π)
4δ(p′2 − q − p2)

d4q

(2π)4

=
−igμν

(p′1 − p1)2
(2π)4δ(p′1 + p′2 − p1 − p2).

(We could equally well write (p′2−p2)2 instead of (p′1−p1)2.) The overall momentum-
conservation delta-function (with its faithful (2π)4) can safely remain in the back-
ground, so we factor it out and consider only the remaining part, which we denote
by iM as in (6.65):
(6.73)

iM =
im2e2

4
√
ωp1

ωp2
ωp′

1
ωp′

2

u(p′
1, s

′
1)γ

μu(p1, s1)
gμν

(p′1 − p1)2
u(p′

2, s
′
2)γ

νu(p2, s2).
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Since Fermions are involved, we had better check that we have not misplaced
a minus sign. The position-space integral corresponding to (6.72) comes from

(6.74)
1

i2

∫∫ 〈
0
∣∣a(p′

1, s
′
1)a(p

′
2, s

′
2)Aμ(x)ψ(x)γ

μψ(x)Aν(y)ψ(y)γ
νψ(y)

× a†(p2, s2)a
†(p1, s1)

∣∣0〉 d4x d4y
by pairing up the operators into the contractions

(6.75)
1

i2

∫∫ ︷ ︸︸ ︷
a(p′

1, s
′
1)ψ(x) γ

μ
︷ ︸︸ ︷
ψ(x)a†(p1, s1)

︷ ︸︸ ︷
Aμ(x)Aν(y)

×
︷ ︸︸ ︷
a(p′

2, s
′
2)ψ(y) γ

ν
︷ ︸︸ ︷
ψ(y)a†(p2, s2) d

4x d4y.

(Note that the orders of the creation operators for the initial and final states
a†(p2, s2)a

†(p1, s1)|0〉 and a†(p′
2, s

′
2)a

†(p′
1, s

′
1)|0〉 are consistent!) One can easily

check that the permutation of Fermion operators needed to change the order from
that in (6.74) to that in (6.75) is even, so the sign in (6.73) is indeed correct. How-
ever, Figure 6.6 is only one of two diagrams that arise from the integral (6.74) and
contribute to the basic photon exchange process; the other one is Figure 6.7, with
the final particles reversed so that a(p′

1, s
′
1) is contracted with ψ(y) and a(p′

2, s
′
2)

with ψ(x). The permutation needed to effect this arrangement is odd, so the value
of Figure 6.7 is obtained from (6.73) by switching the u(p′

j , s
′
j)’s and inserting a

factor of −1. This −1 is important because it is the sum of the two diagrams that
gives the S-matrix element. (Permuting the operators to go from (6.74) to (6.75)
may seem to do violence to the matrix algebra, but it does not, as one sees by
writing out all the components of the spinor fields explicitly; it is these individual
components that are contracted with one another.)

�� �
�

�

�
�

���

� �

Figure 6.7. Electron-electron scattering with outgoing particles interchanged.

By the way, we could equally well have used one of the alternative photon
propagators (6.55). The result is exactly the same, because

u(p′
1, s

′
1)γ

μp′1μ = mu(p′
1, s

′
1), p1μγ

μu(p1, s1) = mu(p1, s1),

so addition of any term proportional to (p′1 − p1)μ to the gμν in (6.73) yields two
terms that cancel out. Thus our claim that the qμqν term in (6.55) does not
contribute to physically meaningful quantities is verified in this simple case.

The fact that the diagrams of both Figures 6.6 and 6.7 contribute to the S-
matrix element complicates things a bit, so to make the connection with classi-
cal physics as simply as possible we shall consider the scattering of two different
Fermions with possibly different masses m1 and m2 and possibly different charges
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e1 and e2. Then Figure 6.6, where the subscripts 1 and 2 remain unmixed, is the
only relevant one. Its value is still given by (6.73) except that the factor m2e2 must
be replaced by m1m2e1e2.

Let us examine what happens to (6.73) in the nonrelativistic limit where the
external momenta (and hence also the internal momentum q = p1−p′

1 = p′
2−p2)

are all very small by replacing all the quantities in (6.73) by their lowest-order
terms as functions of the momenta:

ωpj
→ mj , ωp′

j
→ mj , (p′1 − p1)

2 → −|p′
1 − p1|2

u(pj , s)→ u(0, s), u(p′
j , s

′
j)→ u(0, s′).

Here the u(0, s), with s = ±, are given by (5.29). We have

(6.76) u(0, s)γ0u(0, s′) = u(0, s)†u(0, s′) = 2δss′

by (5.29), and for j = 1, 2, 3,

(6.77) u(0, s)γju(0, s′) = uR(0, s)
†σjuR(0, s

′)− uL(0, s)
†σjuL(0, s

′) = 0

where uR and uL are as in (4.27) and the σj are the Pauli matrices, simply because
uL(0, s) = uR(0, s) for all s. Therefore, since g00 = 1, in this approximation (6.73)
boils down to

(6.78) iM =
−ie1e2
|p′

1 − p1|2
δs1s′1δs2s′2 .

The first conclusion is that the spins of the two particles are separately con-
served by the interaction. To get to the more interesting electrostatic aspect, con-
centrate on the first particle and compare (6.78) with the Born approximation
(6.25) to the S-matrix element for the scattering of the particle by a potential
V (x). Putting aside the energy-conservation delta-function and its 2π as we did
for the 4-momentum-conservation delta-function here,10 we see that (6.78) gives
(in the first-order approximation) the amplitude for scattering by the potential

V such that V̂ (q) = e1e2/|q|2. The condition |q|2V̂ (q) = e1e2 is equivalent to
−∇2V (x) = e1e2δ(x), so V is just what it should be: the Coulomb potential
V (x) = e1e2/4π|x|. (If this result isn’t familiar, see the calculation at the end of
this section and take the limit as mφ → 0.) Thus we recover the classical physics
in the low-energy limit.

What happens if we replace one of the particles — say, the second one — by its
antiparticle? The a†(p2, s2) and a(p′

2, s
′
2) in (6.74) must be replaced by b†(p2, s2)

and b(p′
2, s

′
2), the creation and annihilation operators for the antiparticle. This has

the effect that the u(p2, s2) and u(p′
2, s

′
2) in (6.73) are replaced by v(p2, s2) and

v(p′
2, s

′
2). In the nonrelativistic approximation, these v’s still satisfy (6.76) and

(6.77) (this time because vL = −vR), so it would seem that (6.78) is unchanged.
But no: there is an extra minus sign in going from (6.74) to (6.75) because b and
b† contract with ψ and ψ rather than the other way around, and this minus sign
survives in (6.78). Thus this calculation is consistent with the fact that particles
and antiparticles have opposite charges.

Let us carry this line of thought further by considering the corresponding cal-
culations for the Yukawa interaction (6.29): the exchange of a quantum of the

10In the center-of-mass frame in which p1 + p2 = 0, the spatial momentum-conservation
delta-function disappears on integration over p2; all that is left is the energy-conservation delta-
function.
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scalar field φ between two distinguishable Fermions (say, a proton and a neutron).
The Feynman diagram in Figure 6.6 still serves the purpose, with the wavy line
now representing a quantum of the field φ. The corresponding quantities (6.73),
(6.74), and (6.75) are the same as before except that (i) the field Aμ is replaced by
φ and the photon propagator −igμν/q2 is replaced by the scalar field propagator
−i/(−q2 +m2

φ), (ii) the e1 and e2 are replaced by the coupling constant g for the

Yukawa interaction (which we now assume to be the same for both particles, as it is
for the proton and neutron), and (iii) the Dirac matrices γμ and γν are omitted.11

We pass to the nonrelativistic approximation. The analogue of (6.76) is

u(0, s)u(0, s′) = u(0, s)†u(0, s′) = 2δss′ ,

as before, because γ0u = u. (There are no terms corresponding to (6.77).) The
analogue of (6.78) is therefore

(6.79) iM =
ig2

|p′
1 − p1|2 +m2

φ

δs1s′1δs2s′2 ,

which corresponds to the potential V such that V̂ (q) = −g2/(|q|2 + m2
φ). By a

calculation that we shall sketch at the end of this section, we find that

(6.80) V (x) = −g2e−mφ|x|

4π|x| .

This is called the Yukawa potential. It resembles the Coulomb potential for x small
but decays rapidly for x large, and it is negative. Hence it describes an attractive
short-range force whose range is essentially 1/mφ. The fact that the Yukawa inter-
action produces an attractive force whereas the electromagnetic interaction between
particles of the same charge produces a repulsive force comes out of the opposite
signs of q2 in the photon and scalar field propagators.

What happens if we replace the second particle by its antiparticle in this situ-
ation? There is an extra minus sign from the permutation of Fermion operators as
with the electromagnetic interaction, but here there is yet another minus sign from
the replacement of u’s by v’s for the second particle, because γ0v = −v and hence

v(0, s)v(0, s′) = −v(0, s)†v(0, s′) = −2δss′ .
Thus the force remains attractive! If we also replace the first particle by its antipar-
ticle, we get another pair of minus signs, so (6.79) again remains unchanged. The
Yukawa force is universally attractive as long as all Fermions in question interact
with the scalar field with the same coupling constant g.

Yukawa proposed his interaction in 1935 as a model for the strong force that
binds atomic nuclei. The existence of a particle representing the quantum of the φ
field was one of the main predictions of the theory, and Yukawa estimated its mass
at around 150 MeV from experimental data about the range of the strong force.
The first particle to be discovered that seemed like a reasonable candidate to fit
Yukawa’s theory was the muon, but it didn’t fill the bill for various reasons; Yukawa
was finally vindicated with the discovery of pions (with masses around 140 MeV) in
1947. His theory doesn’t have many more notable successes, however, because the
coupling constant g is too large to allow the effective use of perturbation theory.

11If one uses the pseudoscalar interaction (6.30) with γ5 in place of γμ instead, the effect
is to replace u spinors with v spinors and vice versa, but the final result concerning the Yukawa
potential is unchanged.

                

                                                                                                               



6.10. COMPTON SCATTERING 177

We conclude this section by sketching the derivation of (6.80), which is a bit

delicate because V̂ /∈ L1. One can begin by restricting the integration to the ball
|q| ≤ R. Since the result is a radial function of x, it suffices to take x = (0, 0, a)
with a > 0; then integration in spherical coordinates gives∫

|q|≤R

eiq·x

|q|2 +m2
φ

d3q

(2π)3
=

∫ R

0

∫ π

0

eiar cos θ

r2 +m2
φ

r2 sin θ
dθ dr

(2π)2

=

∫ R

0

r(eiar − e−iar)

4π2ia(r2 +m2
φ)

dr =

∫ R

−R

reiar

4π2ia(r2 +m2
φ)

dr.

The limit of this as R → ∞ can be evaluated via the residue theorem to give
e−mφa/4πa. To certify the validity of (6.80) from this, one needs to verify that
the convergence take place not just pointwise but in a sense at least as strong as
weak convergence of distributions. Alternatively, once one has used this calculation
to guess (6.80), it is a completely elementary exercise (using spherical coordinates
as above) to check that the Fourier transform of the L1 function e−mφ|x|/4π|x| is
1/(|q|2 +m2

φ).

6.10. Compton scattering

As another illustration of the basic calculations of QED, we sketch the calcu-
lation of the cross-section for the scattering of a photon by an electron, known as
Compton scattering, in the first-order approximation. The initial state |in〉 consists
of an electron with momentum p and spin state s and a photon with momentum k
and polarization 4-vector ε = (0, ε); the final state |out〉 consists of an electron with
momentum p′ and spin state s′ and a photon with momentum k′ and polarization
4-vector ε′ = (0, ε′). (Here ε and ε′ must be orthogonal to k and k′, respectively.)
We shall assume the electron is initially at rest, so that p = 0 and p0 = m, where m
is the mass of the electron. We denote by ω = |k| and ω′ = |k′| the energies of the
incoming and outgoing photons, and by p, k, p′, k′ the 4-momenta of the electrons
and photons (i.e., p = (m,0), k = (ω,k), etc.).

Conservation of energy and momentum means that

m+ ω =
√

m2 + |p′|2 + ω′, k = p′ + k′,

so that

(6.81) (m+ ω− ω′)2 = m2 + |p′|2 = m2 + |k− k′|2 = m2 + ω2 + ω′2 − 2ωω′ cos θ,

where θ is the angle between the incoming and outgoing photon momenta. A
little algebraic manipulation with this yields the relation between the incoming
and outgoing photon energies (or wavelengths):

(6.82)
1

ω′ =
1

ω
+

1− cos θ

m
.

which was confirmed in Compton’s experiments on the scattering of x-rays by elec-
trons.

(At the end of the nineteenth century the wave theory of light appeared to have
won a decisive victory over Newton’s corpuscular theory. In 1900 and 1905, Planck
and Einstein revived the hypothesis that electromagnetic radiation is quantized to
explain the spectrum of black-body radiation and the photoelectric effect, but many
physicists remained dubious. Compton’s experiments in 1923 clinched the matter:
the relation (6.82) is almost obvious if x-rays consist of photons, as we have just
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seen, but it is hard to account for if one uses a wave model. See Pais [88] for a
fuller account of this history.)

� �
�

� �
�

� �

� ��

���

Figure 6.8. Feynman diagrams for Compton scattering.

In the first-order approximation, there are two Feynman diagrams that con-
tribute to this process, shown in Figure 6.8. The sum of these diagrams is

S =
(−ie)2(2π)4√m

4
√
ωp′ωω′

∫
u(p′, s′)

[
ε′
∗
μγ

μ−i(qργρ +m)

−q2 +m2
ενγ

νδ(q−p′−k′)δ(q−p−k)

+ εμγ
μ−i(qργρ +m)

−q2 +m2
ε′
∗
νγ

νδ(q + k − p′)δ(q + k′ − p)

]
u(0, s) d4q.

(The (2π)4 comes from the (2π)4’s attached to the delta-functions and the 1/(2π)4

attached to the d4q, and we have used the fact that ωp = ω0 = m.)
After performing the integration (merely a convolution of delta-functions) and

using the facts that p2 = m2 and k2 = k′
2
= 0 to simplify the resulting denomina-

tors −(p+ k)2 +m2 and −(p− k′)2 +m2, we find that

S = (2π)4δ(p′ + k′ − p− k)iM,

where

(6.83) M =
−e2

√
m

8
√

ωp′ωω′

× u(p′, s′)

[
ε′∗μγ

μ[(p+ k)ργ
ρ +m]ενγ

ν

pρkρ
− εμγ

μ[(p− k′)ργ
ρ +m]ε′∗νγ

ν

pρk′
ρ

]
u(0, s).

This M is the delta-function-free matrix element that is used to calculate cross-
sections. Namely, according to (6.68), the differential cross-section for scattering
into the region d3p′ d3k′ of momentum space is

dσ = (2π)4δ(p′ + k′ − p− k)|M |2 d3p′ d3k′

(2π)6
.

The factor of |v| has disappeared because we have assumed that the electron is at
rest, so |v| is just the speed of the incoming photon, namely, 1. Now,

(2π)4δ(p′ + k′ − p− k)
d3p′ d3k′

(2π)6
= δ(p′ + k′ − k) d3p′ · δ(p′0 + ω′ −m− ω)

d3k′

(2π)2
.

The first delta-function on the right just means that in calculating the cross-section
we must set p′ = k − k′ and drop the d3p′. Likewise, if we write the element of
volume in k′-space in spherical coordinates,

d3k′ = ω′2 dω′ dΩ,
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where dΩ is surface measure on the unit sphere, the second delta-function fixes ω′

at the value given by (6.82) and eliminates the dω′, but an extra factor arises from
the general fact that δ(f(t)) = δ(t − t0)/f

′(t0) when f is a smooth function that
vanishes at t0. In our case, by (6.81),

f(ω′) = p′0 + ω′ −m− ω =
√
ω2 − 2ωω′ cos θ + ω′2 +m2 + ω′ −m− ω,

so with p′0 = m+ ω − ω′ and ω′ given by (6.82),

f ′(ω′) =
ω′ − ω cos θ

p′0
+ 1 =

−ω cos θ +m+ ω

m+ ω − ω′ =
mω

ω′(m+ ω − ω′)
.

The upshot is that the differential cross-section for the direction of the outgoing
photon to be in the solid angle dΩ located at an angle θ from the direction of the
incoming photon is

dσ = |M |2 (m+ ω − ω′)ω′3

(2π)2mω
dΩ,

where ω′ is determined by ω according to (6.82).
This is all very well, but the simple notation |M |2 conceals a rather formidable

expression (see (6.83)) to calculate. Moreover, |M |2 depends on the spin and helicity
states of the incoming and outgoing electrons and photons. Normally one does not
wish to specify or measure the electron spin state, so one must average over the two
orthonormal states s = ± for the incoming electron and sum over the two states for
the outgoing electron. Plugging in the definition of M and reducing the resulting
expression to something manageable takes several pages of tedious algebra involving
products of Dirac matrices, which the mathematical tourist would probably prefer
to skip. We refer to Weinberg [131], §8.7, or Peskin and Schroeder [89], §5.5, for
the details, with the warning that their normalizations differ from ours. However,
the final result is quite simple:

1
2

∑
s,s′

dσ =
e4ω′2

64π2m2ω2

[
ω

ω′ +
ω′

ω
− 2 + 4(ε · ε′)2

]
dΩ.

This formula was originally derived in 1929 by Klein and Nishina by more old-
fashioned methods.

Furthermore, the polarization ε of the incoming photon is also usually unspeci-
fied, so one should average over the two orthonormal possibilities for it. The result
is

(6.84) 1
4

∑
s,s′,ε

dσ =
e4ω′2

32π2m2ω2

[
ω

ω′ +
ω′

ω
− 2(ε′ · k̂)2

]
dΩ,

where k̂ = k/|k|. It follows that dσ is maximized when ε′ is orthogonal to k, and
ε′ is always orthogonal to k′, so the outgoing photon is preferentially polarized in
the direction orthogonal to the plane of the scattering.

The cross-section for outgoing photons of arbitrary polarization is obtained by
summing (6.84) over two orthonormal values of ε′, and the result is

(6.85) 1
4

∑
s,s′,ε,ε′

dσ =
e4ω′2

32π2m2ω2

[
ω

ω′ +
ω′

ω
− 1 + cos2 θ

]
dΩ.

(Recall that θ is the angle between the incoming and outgoing photon momenta.)
If we assume that the incoming photon energy ω is much less than the mass of the
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electron (as it is for any photon less energetic than a gamma ray), (6.82) shows
that ω′/ω ≈ 1. With this approximation, (6.85) simplifies to

1
4

∑
s,s′,ε,ε′

dσ =
e4

32π2m2
(1 + cos2 θ) dΩ,

and since ∫
(1 + cos2 θ) dΩ =

∫ 2π

0

∫ π

0

(1 + cos2 θ) sin θ dθ dφ =
16π

3
,

the total cross-section is

σT =
e4

6πm2
=

8πr20
3

,

where r0 is the Compton radius (1.7).12 This result was originally derived in the
context of classical electrodynamics as a formula relating to the scattering of low-
energy radiation by a static charge.

6.11. The Gell-Mann–Low and LSZ formulas

In the preceding sections we have taken the most direct path to the integrals
corresponding to Feynman diagrams that are used to compute quantities that can
be tested against experiment. All of our calculations have been based on free field
operators; we have not so much as mentioned operators representing interacting
fields.13 Moreover, the full interacting Hamiltonian was quickly swept under the
rug after making a brief appearance at the beginning of the chapter.

From a mathematical point of view, this is all to the good. A precise mathemat-
ical construction of the interacting fields that describe actual fundamental physical
processes in 4-dimensional space-time is still lacking and may not be feasible with-
out serious modifications to the theory. Similarly, we have no way to define the
Hamiltonian H in a mathematically rigorous way as a self-adjoint operator. It was
presented as the sum of the free Hamiltonian H0, which is well-defined, and the
interaction Hamiltonian HI ; but the latter was presented as the integral of a den-
sity consisting of products of fields, which are operator-valued distributions rather
than functions. Fortunately, this formal characterization of HI is sufficient to lead
to well-defined calculations in perturbation theory, but we have not really defined
HI as an operator; and if we had, we would still not have shown how to define the
appropriate domain to make the sum H0 +HI self-adjoint.

The devil now offers us another bargain: If we are willing to accept the existence
of the interacting fields and the full Hamiltonian associated to them (but without
any expectation of finding a mathematically rigorous way to construct them) and
to make a few arguments on the level of pure hand-waving about their structure,
we can use them to obtain a more complete picture of the theory.

From a practical point of view, it is possible to do a lot of quantum field
theory without accepting this bargain. The perturbation theory of this chapter
together with the renormalization techniques of the next one suffice to calculate
cross sections, anomalous magnetic moments, energy level shifts, and other such
items of experimental interest. In this section, however, we shall accept the bargain
to the extent of making the connection between scattering processes and Feynman

12The subscript T can stand for either “total” or “Thomson.”
13Hence the carefully chosen title of the chapter.
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diagrams, on the one hand, and vacuum expectation values of time-ordered products
of interacting fields, on the other. The latter are widely used in the physics literature
and are of fundamental importance in the study of rigorous models that satisfy the
Wightman axioms. But from a strict mathematical point of view, everything in this
section should be taken on the level of heuristics and plausibility arguments. We
will add some credibility to main results by rederiving them in an entirely different,
still nonrigorous, but intuitively very appealing way in Chapter 8.

To keep the notation manageable, we consider the simple case of the φ4 scalar
field theory. The generalization to several fields with arbitrary spin and interactions
given by suitable products of field operators is straightforward and will be sketched
in due course.

The setup is as follows: We begin with a Hilbert space of states on which
we are given a self-adjoint operator H, the full Hamiltonian, whose spectrum is
bounded below by some number E0 that is a simple eigenvalue with eigenvector
|Ω〉. Furthermore, we are given an operator-valued distribution φ on R4, and as
usual, we shall pretend that it is a function for notational purposes. The time
dependence of φ is “Heisenberg-picture,” that is,

(6.86) φ(t,x) = eiHtφ(0,x)e−iHt,

and H is formally defined in terms of φ by

(6.87) H =

∫ [
1

2

[
(∂tφ(t,x))

2 + |∇xφ(t,x)|2 +m2φ(t,x)2
]
+

λ

4!
φ(t,x)4

]
d3x.

(The expression on the right apparently depends on t, but in fact it does not, in
view of (6.86) and the fact that H commutes with eiHt.) Associated to φ and H is
the classical Lagrangian density

L =
1

2
[(∂μφ)(∂

μφ)−m2φ2]− λ

4!
φ4,

and with respect to this Lagrangian there is a canonically conjugate field π, namely,
π = ∂L/∂(∂tφ) = ∂tφ just as for the free field. We assume that φ and π satisfy the
canonical equal-time commutation relations

(6.88) [φ(t,x), π(t,y)] = iδ(x− y), [φ(t,x), φ(t,y)] = [π(t,x), π(t,y)] = 0.

We fix a reference time, which may as well be t0 = 0, and expand φ(0,x) and
π(0,x) as Fourier integrals,

φ(0,x) =

∫
eip·xφ̂(p)

d3p

(2π)3
, π(0,x) =

∫
eip·xπ̂(p)

d3p

(2π)3
,

where φ̂ and π̂ are operator-valued distributions on R3. Since φ(0,x) and π(0,x)

are Hermitian, we have φ̂(p)† = φ̂(−p) and π̂(p)† = π̂(−p). We next set

a(p) =
ωpφ̂(p) + iπ̂(p)√

2ωp

(ωp =
√
m2 + |p|2).

Then a†(−p) = [ωpφ̂(p)− iπ̂(p)]/
√
2ωp, so

φ̂(p) =
a(p) + a†(−p)√

2ωp

, π̂(p) = −i
√

ωp

2
[a(p)− a†(−p)],

and hence φ(0,x) and π(0,x) are given by the same integrals (5.11) and (5.19) as
for free fields. A short calculation then shows that the commutation relations (6.88)
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for the fields imply the canonical commutation relations (5.10) for the operators
a(p) and a†(p). In short, the field φ(0,x) has the same formal structure as the free
field studied in Chapter 5; what is different is the time evolution.

We wish to describe things in the “interaction picture,” obtained by decom-
posing the Hamiltonian (6.87), with t = 0, into the free part and the interaction
part:

(6.89)

H = H0 +HI ,

H0 =

∫
1
2

[
(∂tφ(0,x))

2 + |∇xφ(0,x)|2 +m2φ(0,x)2
]
d3x,

HI =
λ

4!

∫
φ(0,x)4 d3x.

As in §5.3, H0 needs to be renormalized by subtracting off an infinite constant, or
by Wick ordering, so that the lowest eigenvalue of H0 is 0. When this is done, the
calculations in §5.3 following (5.23) show that H0 is given in terms of a(p) and
a†(p) by (5.22). We define the interaction picture field φ0 by

φ0(t,x) = eiH0tφ(0,x)e−iH0t.

The quantities on the right are defined in terms of a(p) and a†(p) just as in the
free field case, so φ0 is indeed structurally identical to a free field and is given by
(5.12):

φ0(x) =

∫
1√
2ωp

(
e−ipμx

μ

a(p) + eipμx
μ

a†(p)
) d3p

(2π)3
.

In the interaction picture, the interaction Hamiltonian is the time-dependent oper-
ator HI(t) defined by

(6.90) HI(t) = eiH0tHIe
−iH0t =

λ

4!

∫
φ0(t,x)

4 d3x.

As in §6.1 and §6.3, we define

V (t, t′) = eiH0te−iH(t−t′)e−iH0t
′
,

so that

(6.91) V (t, t′)V (t′, t′′) = V (t, t′′), φ(t,x) = V (0, t)φ0(t,x)V (t, 0),

and, for t > t′, V (t, t′) is given perturbation-theoretically by the Dyson series:

(6.92) V (t, t′) = T exp

[
1

i

∫ t

t′
HI(τ )

]
dτ.

This is the point where the mathematical credibility of the argument falls to the
infinitesimal level. One has to face the fact that the Stone-von Neumann theorem
is false in infinite dimensions, so there are many inequivalent representations of the
canonical commutation relations (6.33) (see Segal [111]). We therefore have no
right to expect that the field φ0 is just the free field studied in Chapter 5. In fact, a
theorem of Haag (see Streater and Wightman [116] or Bogolubov et al. [11], [12])
says in effect that it cannot be unless the interaction is trivial. Nonetheless, we
shall proceed: after a bit we shall arrive at some results that beg to be interpreted
in perturbation theory, in terms of Feynman diagrams, and on that level they seem
to be perfectly correct. There are some unresolved mysteries here about the radical
restructuring of a quantum system that is produced by any nontrivial interaction
of fields, but this is not the place to explore them.
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The next step is to examine the vacuum states. As mentioned earlier, we denote
the vacuum for H (i.e., the unique state whose eigenvalue E0 is the infimum of the
spectrum of H) by |Ω〉. The free Hamiltonian H0 has its own vacuum state, i.e., its
eigenstate with eigenvalue 0, which we denote as before by |0〉. There is no reason
for |Ω〉 and |0〉 to coincide, but to extricate ourselves from the wilderness of the
preceding paragraph we must take on faith that they have some overlap, i.e., that
〈Ω|0〉 �= 0. Granted this, there is a neat device for expressing |Ω〉 in terms of |0〉.
Let P be the projection-valued measure associated to H, so that H has the spectral
resolution

H =

∫
[E0,∞)

E dP (E) = E0P ({E0}) +
∫
(E0,∞)

E dP (E).

Then for any T ∈ R,

e−iT (H−E0)|0〉 = |Ω〉〈Ω|0〉+
∫
(E0,∞)

e−iT (E−E0) dP (E)|0〉.

If we now give T a negative imaginary part, T → T (1− iε), and send it to infinity,
the second term vanishes and we obtain

(6.93) |Ω〉 = lim
T→∞(1−iε)

e−iT (H−E0)|0〉
〈Ω|0〉 = lim

T→∞(1−iε)

eiE0TV (0,−T )|0〉
〈Ω|0〉 ,

since eiH0T |0〉 = |0〉. At this point ε is unrestricted, but in what follows we will need
to let it tend to zero, and one should think of it intuitively as being infinitesimal.

We are now ready to express vacuum expectation values of products of in-
teracting fields in terms of quantities defined in terms of free fields. For any
x1, . . . , xn ∈ R4, let tj = (xj)

0; then by (6.91) we have

φ(x1) · · ·φ(xn) = V (0, t1)φ0(x1)V (t1, t2)φ0(x2) · · ·V (tn−1, tn)φ0(xn)V (tn, 0),

and hence by (6.93),

〈
Ω
∣∣φ(x1) · · ·φ(xn)

∣∣Ω〉
= lim

T→∞(1−iε)

e2iE0T

|〈Ω|0〉|2
〈
0
∣∣V (T, t1)φ0(x1)V (t1, t2)φ0(x2) · · ·

· · ·V (tn−1, tn)φ0(xn)V (tn,−T )
∣∣0〉.

We can get rid of the unpleasant numerical factor in front by observing that the
same equation holds with n = 0:

1 = 〈Ω|Ω〉 = lim
T→∞(1−iε)

e2iE0T

|〈Ω|0〉|2 〈0|V (T,−T )|0〉.

Taking the quotient of these two equalities yields〈
Ω
∣∣φ(x1) · · ·φ(xn)

∣∣Ω〉
= lim

T→∞(1−iε)

〈
0
∣∣V (T, t1)φ0(x1)V (t1, t2)φ0(x2) · · ·V (tn−1, tn)φ0(xn)V (tn,−T )

∣∣0〉
〈0|V (T,−T )|0〉 .

Finally, suppose that x1, . . . , xn are time-ordered: t1 ≥ · · · ≥ tn. Then, for T
sufficiently large, the time parameters in this expression all decrease from left to
right (where the ordering refers to the real parts of T and −T ), so we can expand
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the V ’s in their Dyson series (6.92). Since (exp
∫ b

a
)(exp

∫ c

b
) = exp

∫ c

a
, the integrals

in these series combine to yield an elegant final result:

(6.94)
〈
Ω
∣∣T[φ(x1) · · ·φ(xn)]

∣∣Ω〉
= lim

T→∞(1−iε)

〈
0
∣∣T[φ0(x1) · · ·φ0(xn) exp(−i

∫ T

−T
HI(τ ) dτ )

]∣∣0〉〈
0
∣∣T[ exp(−i ∫ T

−T
HI(τ )dτ )

]∣∣0〉 .

To be perfectly clear about the meaning of this: the numerator on the right side of
(6.94) is the series whose kth term is
(6.95)〈

0

∣∣∣∣∣ (−i)kk!

∫ T

−T

· · ·
∫ T

−T

T[φ0(x1) · · ·φ0(xn)HI(τ1) · · ·HI(τk)] dτ1 · · · dτk

∣∣∣∣∣ 0
〉
,

and similarly for the denominator. These series are to be interpreted perturbation-
theoretically: that is, one uses the finite partial sums to obtain approximate results,
in a way that we shall explain shortly, without worrying about the convergence of
the entire series. The only slightly mysterious thing is the iε, and we shall shed
some more light on it in due course.

We considered the simplest self-interacting scalar field theory in deriving (6.94)
only in order not to clutter the picture up with complicated notation, but the
result is valid in great generality for quantum field theories involving particles of
arbitrary spin whose interaction is given by a sum of products of field operators,
as our calculations did not depend on the specific properties of the fields or the
interaction in any essential way. The φ(xj) need not all come from the same field
but can be various components of the various different fields in the theory, and
HI(τ ) is the interaction-picture Hamiltonian given by the first equation in (6.90),
the expression on the right of the second equation being replaced by the appropriate
interaction for the theory in question. One merely has to exercise care, as always,
to introduce appropriate minus signs when time-ordering the Fermion fields. (It
is always legitimate to assemble all the HI factors on the right, however, as they
each contain even numbers of Fermionic operators.) Let us restate (6.94) with the
minor notational change necessary to indicate this generality:

(6.96)
〈
Ω
∣∣T[φ1(x1) · · ·φn(xn)]

∣∣Ω〉
= lim

T→∞(1−iε)

〈
0
∣∣T[φ01(x1) · · ·φ0n(xn) exp(−i

∫ T

−T
HI(τ ) dτ )

]∣∣0〉〈
0
∣∣T[ exp(−i ∫ T

−T
HI(τ )dτ )

]∣∣0〉 .

This result is known as the Gell-Mann–Low formula; it was first derived in [53].
There are several things that need to be said about the Gell-Mann–Low formula.

First, if one writes the interaction Hamiltonian as the integral of a Hamiltonian
density, HI(t) =

∫
HI(t,x) d

3x, and then lets T →∞ (ignoring the iε for the time
being), the typical term (6.95) in the numerator becomes

(6.97) Ik(x1, . . . , xn)

=

〈
0

∣∣∣∣ (−i)kk!

∫
R4

· · ·
∫
R4

T[φ01(x1) · · ·φ0n(xn)HI(y1) · · ·HI(yk)] d
4y1 · · · d4yk

∣∣∣∣ 0〉 .

This is exactly the sort of thing we had to evaluate in computing S-matrix elements
in §6.4, except that the creation and annihilation operators for initial and final
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particles have been replaced by the free-field operators φ0j(xj). Hence the value of
(6.97) is computed just as before, as an integral of a sum of products of contractions
of free-field operators, and it can be represented by a position-space Feynman dia-
gram just as before. The only difference is that the external vertices are labeled by
the points xi and the external lines represent propagators. Conversely, given such
a diagram with internal vertices labeled by yj and external vertices labeled by xi,
one obtains a contribution to (6.97) that is an integral over the internal variables
yj of a product of propagators −iΔj1j2(yj1 −yj2) and −iΔk(xk−yj). (Note for the
external lines one indeed has Δk(xk − yj) and not Δk(yj − xk), because the φ(xk)
in (6.96) are all on the left.)

It is more convenient to pass to the momentum-space representation, obtained
by writing each propagator as a Fourier integral. However, since the external ver-
tices here also involve propagators, one must pass to their momentum-space repre-
sentation too, that is, to consider the Fourier transform

Îk(p1, . . . , pn) =

∫
· · ·

∫
Ik(x1, . . . , xn)e

i
∑

pjμx
μ
j d4x1 · · · d4xn.

Writing each propagator in the form

−iΔ(z) = −i
∫

Δ̂(q)e−iqμz
μ d4q

(2π)4
(z = xk − yj or yj1 − yj2),

we obtain an integral over all position variables xi and yj and all internal momenta
q of exponentials times Fourier-transformed propagators. The position variables
appear only in the exponentials, so the integration over them reduces to integrals
of the form

∫
e−iqμz

μ

d4q/(2π)4, where z is one of the vertices and q is the algebraic
sum of the momenta at that vertex; these give the momentum-conservation delta-
functions as before. The pj are the momenta associated to the external lines, which
here are arbitrary (not on mass shell), and the Fourier variables q are the momenta
associated to the internal lines. Note that according to the remark at the end of
the preceding paragraph and the conventions we established in §6.7, the external
momenta always flow toward the external vertices.

This is the right place to account for the mysterious iε in (6.96). It will be
convenient to write e−iε instead of 1 − iε; then the position-space integrals of the
preceding paragraph are not really

∫
e−iqμz

μ

d4q/(2π)4 but

lim
T→∞e−iε

∫
R3

∫ T

−T

e−ip0z
0+ip·z dz0 dz

(2π)4
.

If p0 is real, this is not good: the integrand blows up exponentially at one end or
the other, and even when one is doing informal distribution theory this is a disaster.
But if we replace p0 by eiεp0, the eiε’s cancel and we obtain the purely oscillatory
integral whose value is the delta-function we want. This modification of p0 is
one way to produce the correct iε in the denominator of the Fourier-transformed
propagator — we shall explain this in detail in §7.1 — so in fact the iε fits into the
picture perfectly.

We shall say more shortly about the relation between the Gell-Mann–Low for-
mula and the calculation of S-matrix elements, but first we pause to explain the
role of the denominator. The denominator in (6.96) is of the same form as the nu-
merator, but without the factors φ0j(xj); thus, it is the sum of the values of all the
Feynman diagrams with no external vertices. Such diagrams represent fluctuations
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of the vacuum, and we shall refer to them as vacuum bubbles. We encountered one
such bubble for the φ4 scalar field theory in Figure 6.4c; a few of them for QED
are shown in Figure 6.9.

Figure 6.9. Some vacuum bubbles in QED.

Let {Bi}∞1 be a list of all the connected vacuum bubbles for the theory in
question. Then every vacuum bubble has the form B =

∑∞
i=1 niBi for some non-

negative integers ni of which all but finitely many are zero; that is, B is the union
of n1 copies of B1, n2 copies of B2, etc. If V and Vi denote the values of B and Bi,
respectively, we have

V =

∞∏
i=1

1

ni!
V ni
i .

The
∏

ni! is the symmetry factor of the bubble; it is there because permutation of
the ni copies of Bi does not change B. The denominator of (6.96) is the sum of all
these quantities, namely,〈

0

∣∣∣∣T [
exp

(
−i

∫
HI(y) d

4y

)]∣∣∣∣ 0〉 =
∑

n1,n2,...≥0, n1+n2+···<∞

∞∏
i=1

1

ni!
V ni
i .

If we provisionally assume that
∑

Vi < ∞, so that Vi → 0 in particular, we can
drop the restriction that n1 + n2 + · · · < ∞, since

∏∞
i=1 V

ni
i /ni! = 0 whenever

infinitely many ni are nonzero. In this case we have

(6.98)

〈
0

∣∣∣∣T [
exp

(
−i

∫
HI(y) d

4y

)]∣∣∣∣ 0〉 =

∞∏
i=1

∞∑
ni=0

1

ni!
V ni
i = exp

( ∞∑
i=1

Vi

)
.

Now, in fact, the values Vi are given by integrals that are generally divergent.
However, there are regularization procedures, which will be discussed in the next
chapter, for expressing the Vi in a systematic way as limits of finite integrals, and
one should replace the Vi by these regularized finite values. Having done this,
however, there is still no reason for the series

∑
Vi to converge. Rather, both

sides of (6.98) should be interpreted in perturbation theory. One thinks of HI as
containing a coefficient λ; then the Vi also contain various powers of λ, and one
drops all terms containing powers of λ higher than N for a fixed but arbitrary N .
Then (6.98) is valid with this interpretation, and the extra terms we inserted (with
infinitely many ni �= 0) have no effect because they are of infinite order in λ. (This
may seem very murky, but don’t give up just yet!)

Now consider the Feynman diagrams contributing to the numerator of (6.96).
In general they are disconnected, and many of them contain vacuum bubbles. In-
deed, each diagram can be written in the form D +

∑
niBi where D is a diagram
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with no vacuum bubbles (i.e., such that each connected component contains some
external vertices). The value of this diagram is the value of D times the value of
the bubble

∑
niBi, so by the preceding calculation, the sum of these values, over

all possible bubbles, is the value of D times exp(
∑

Vi). Hence, when one divides
by the denominator (6.98), the values of all the vacuum bubbles (whatever devices
one uses to interpret them) simply cancel out. In short:

The right side of the Gell-Mann–Low formula (6.96) is the sum of all the
position-space integrals represented by Feynman diagrams that contain no vacuum
bubbles and that possess n external lines corresponding to the fields φ1, . . . , φn, in
which the jth external line Lj represents the propagator −iΔj(xj − yj). (Here Δj

is the propagator for φj and yj is the variable of integration that labels the vertex
at the internal end of Lj).

It is frequently more convenient to pass to the momentum space representation
by taking the Fourier transform. Thus, we set
(6.99)

W (p1, . . . , pn) =

∫
· · ·

∫ 〈
Ω
∣∣T[φ1(x1) · · ·φn(xn)]

∣∣Ω〉
eip1μx

μ
1+···+ipnμx

μ
n d4x1 · · · d4xn.

In view of the remarks in the second paragraph following (6.96), the preceding
result can then be restated as follows:

W (p1, . . . , pn) is the sum of all the momentum-space integrals represented by
Feynman diagrams that contain no vacuum bubbles and that possess n external lines
corresponding to the fields φ1, . . . , φn, in which the jth external line represents the

Fourier-transformed propagator −iΔ̂j(pj) and pj flows toward the external vertex.

The overall momentum-conservation delta-function that appears in all Feyn-
man diagrams comes out of the translation invariance of the vacuum expectation
values. That is, the translation-invariance of the vacuum |Ω〉 implies that

(6.100)
〈
Ω
∣∣T[φ1(x1) · · ·φn(xn)]

∣∣Ω〉
=

〈
Ω
∣∣T[φ1(0)φ2(x2 − x1) · · ·φn(xn − x1)]

∣∣Ω〉
.

Substituting this into (6.99) and then making the change of variable xj = x′
j + x1

turns the integrand of (6.99) into a function whose only dependence on x1 is a

factor ei(
∑

pj)μx
μ
1 ; integration over x1 then gives (2π)4δ(

∑
pj).

We now return to the relation between vacuum expectation values of products
of fields and S-matrix elements, that is, the problem of calculating

(6.101)
〈
0
∣∣a1(pout

1 ) · · · aJ(pout
J )Sa†1(p

in
1 ) · · ·a†K(pin

K)
∣∣0〉

from

(6.102)
〈
Ω
∣∣T[φ1(x1) · · ·φn(xn)]

∣∣Ω〉
.

We shall assume, as we did in §6.8, that no proper subset of {pin
1 , . . . ,pin

K} has
the same sum as any proper subset of {pout

1 , . . . ,pout
J }, so that the only Feynman

diagrams that contribute to (6.101) are connected ones. (The analysis in the general
case is similar but a little more complicated.) The first step is to convert the position
dependence of (6.102) into momentum dependence by taking the Fourier transform
(6.99). We are going to take n = J +K and the pj to be, essentially, the on-mass-
shell 4-momenta corresponding to the 3-momenta in (6.101), but there has to be a
twist because the momenta in (6.99) all flow toward the external vertices, whereas
the momentum pin

k in (6.101) should flow away from its initial vertex. (Recall (6.43),
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which shows that an incoming momentum p contributes a factor e−ipμx
μ

to the
position-space integral for the S-matrix element, whereas an ougtoing momentum
contributes a factor of eipμx

μ

; the sign is important because p0 = ωp > 0 in either
case.) Thus, to get the right momentum dependence we must consider

W (p1, . . . , pJ ,−pJ+1, . . . ,−pJ+K) (pl = (ωpl
,pl)),

where
pj = pout

j for 1 ≤ j ≤ J, pJ+k = pin
k for 1 ≤ k ≤ K.

(Note that the momentum-conservation delta-function herein is δ(
∑

j pj−
∑

k pJ+k),

as it should be.)
The preceding discussion shows that this quantity is the sum of the values of all

connected Feynman diagrams with external lines labeled by the momenta pout
k ,pin

j

and representing the Fourier-transformed propagators−iΔ̂j(p
out
j ), −iΔ̂k(−pink ). On

the other hand, (6.101) is the sum of the values of all Feynman diagrams of the
same sort in which external lines represent the appropriate coefficient functions
uk(p

in
k ) and u∗

j (p
out
j ). Thus, to get from (6.99) to (6.101) one has merely to replace

the external propagators by coefficient functions. The result is

(6.103)

〈
0
∣∣a1(pout

1 ) · · · aJ(pout
J )Sa†1(p

in
1 ) · · ·a†K(pin

K)
∣∣0〉

= iJ+K
J∏

j=1

u∗
j (p

out
j )

Δ̂j(poutj )

K∏
k=1

uk(p
in
k )

Δ̂k(−pink )
W (pout1 , . . . , poutJ ,−pin1 , . . . ,−pinK),

where W is as in (6.99). This is known as the Lehmann-Symanzik-Zimmermann
reduction formula, or LSZ formula for short.

For a scalar field, the function Δ is even, and it is a fundamental solution for

the Klein-Gordon operator ∂2 + m2, so dividing by Δ̂ in momentum space is the
same as applying the operator ∂2+m2 in position space. Thus, for scalar fields the
LSZ formula can be restated as〈

0
∣∣a1(pout

1 ) · · · aJ(pout
J )Sa†1(p

in
1 ) · · ·a†K(pin

K)
∣∣0〉

= iJ+K
∏
j,k

u∗
j (p

out
j )uk(p

in
k )

∫
· · ·

∫
exp

⎡⎣i∑
j

poutjμ xjμ − i
∑
k

pinkμx
μ
J+k

⎤⎦×
(∂2

x1
+m2) · · · (∂2

xJ+K
+m2)

〈
Ω
∣∣T[φ1(x1) . . . φJ+K(xJ+K)]

∣∣Ω〉
d4x1 · · · d4xJ+K .

Similarly, the Dirac propagator is the fundamental solution for the Dirac operator
−iγμ∂μ +m, so when spin-12 fields are involved one obtains a similar formula with

∂2
xj
+m2 replaced by −iγμ(∂xj

)μ+m and ∂2
xJ+k

+m2 replaced by iγμ(∂xJ+k
)μ+m.

There is one technicality that must be mentioned here. As we shall discuss
in the next chapter, to carry out the evaluation of Feynman diagrams involving
loops, it is necessary to renormalize the field operators, that is, to multiply the
field φ by a constant that is conventionally called Z−1/2. (If the theory involves
several different fields, each one has its own renormalization factor.) The fields φj

in (6.99) and hence in the LSZ formula (6.103) must be taken to be renormalized
fields. Otherwise, the appropriate Z factors must be included in the formula.

We shall content ourselves with an informal qualitative explanation of this fact.
The Feynman-diagram picture suggests that particles propagate from one vertex to
the next without anything happening in between, but in fact they have encounters
with virtual particles along the way. As we shall see in §7.6, this effectively turns
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the 1/(−p2 +m2) in the propagator into Z/(−p2 + (m+ δm)2) for some constants
Z and δm. The δm is a mass shift of the sort we encountered in §6.2, but the Z
must be compensated for by renormalizing the field. The point is that the fields in
the contractions that give rise to the external propagators in (6.102) must also be
adjusted in this way, and this gives rise to the extra factors of Z.

We derived the LSZ formula on a diagram-by-diagram basis, that is, in per-
turbation theory. The physics literature also contains a number of (nonrigorous)
nonperturbative derivations of it; for example, Itzykson and Zuber [66], §5-1-3,
Peskin and Schroeder [89], §7.2, and Weinberg [131], §10.3. In addition, it is possi-
ble to prove the LSZ formula rigorously within the setting of the Wightman axioms
and the Haag-Ruelle scattering theory; see Bogolubov et al. [11], [12], and Araki
[3].

                

                                                                                                               



                

                                                                                                               



CHAPTER 7

Renormalization

O God, I could be bounded in a nutshell and count myself a king of
infinite space, were it not that I have bad dreams.
—W. Shakespeare, Hamlet (II.2)

In this chapter we explore the basic ideas of renormalization in quantum field
theory. Our main objective is to make sense out of the divergent integrals repre-
sented by Feynman diagrams so as to extract physical information from them. In
broad outline, the strategy is as follows:

1. Analyze the Feynman diagrams so as to identify which of them correspond
to divergent integrals and to understand just what sorts of divergence are
to be expected.

2. Modify the divergent integrals to make them converge — that is, express
them as limits of convergent integrals that depend on a parameter ε as
ε → 0 — while preserving essential structural features such as Lorentz
covariance. (There are several ways to do this.) The regularized integrals
depend on the parameters in the Lagrangian: masses, coupling constants,
field normalizations. The key point is that the presence of interactions
affects all of these quantities, and a careful examination of the relation
of the regularized integrals to quantities that can be measured in the
laboratory reveals that the parameters in the Lagrangian are not the true
physical ones.

3. Determine the parameters in the Lagrangian as functions of the regular-
ization parameter ε, with singularities as ε → 0, in such a way that the
divergences all cancel out and yield physically meaningful results in terms
of the physical masses and coupling constants.

4. Feynman diagrams are creatures of perturbation theory, so all of the pre-
ceding work is to be done to a given finite order in perturbation theory.
Each additional order of perturbation theory requires more Feynman dia-
grams and more readjustments of parameters, and an argument must be
made that this can be done consistently to arbitrarily high order.

The first two steps are relatively easy, and we shall study them in a fairly
general context. The fourth step presents some interesting and highly nontrivial
issues, but it is of limited relevance to practical calculations, which always involve
only low-order perturbation theory. We shall give only a brief discussion of it, with
references to the literature.

The third step is difficult — it presented an obstacle to the development of
quantum field theory for two decades before Feynman, Schwinger, and Tomonaga
showed how to deal with it in the case of QED — and the actual evaluation of the
integrals for all but the simplest Feynman diagrams is very laborious. We shall
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restrict attention to two specific examples, QED and the φ4 scalar field theory, and
we shall work out the calculations only for the basic one-loop diagrams. Even to
do this much requires some rather lengthy computations, and most mathematical
tourists will probably not want to go through all of them in detail. The author
will sympathize if they wish to skim over the parts where the density of symbols
exceeds some (reader-dependent) critical value and proceed to the discussion of the
physical consequences. On the other hand, if one wants to feel confident that one
really understands how renormalization works, one must be willing to undertake a
certain amount of toil.

Tricky though this subject is, it entails the commission of almost no mathe-
matical sins beyond the acceptance of perturbation theory that we agreed to at the
beginning of Chapter 6. Only at one point (in §7.6) will we need to step outside of
perturbation theory and ask the devil for a bit more assistance in understanding
how to proceed.

7.1. Introduction

To warm up, and to make the idea of “subtracting off infinities” seem less
mysterious to those who are not aficionados of distribution theory, we begin by
discussing a purely mathematical problem that will illustrate some of the ideas of
renormalization theory.

Let φ be a smooth compactly supported function on R. If φ(0) �= 0, the inte-
gral

∫∞
−∞ |t|−1φ(t) dt is unambiguously divergent. The problem is to find ways of

extracting a well-defined “finite part” from it — more precisely, to find distribu-
tions F on R that agree with the function f(t) = |t|−1 away from the origin. We
observe at the outset that if F is one such distribution, then so is F + G where
G is any distribution supported at the origin, that is, any linear combination of
the delta-function and its derivatives. We can remove most of this ambiguity by
stating the defining condition for F in the following stronger form: we require that
tF (t) = sgn t as distributions ; that is, if φ(t) = tψ(t), then 〈F, φ〉 =

∫
(sgn t)ψ(t) dt.

Since tδ(n)(t) = −nδ(n−1)(t), this reduces the family of allowable G’s to the scalar
multiples of δ itself.

There are several ways to solve this problem. Here is one: pick a positive
number a and define the distribution Fa by

〈Fa, φ〉 =
∫
|t|≤a

φ(t)− φ(0)

|t| dt+

∫
|t|>a

φ(t)

|t| dt.

The integrals on the right are absolutely convergent, the first because φ(t)−φ(0) =
O(t) and the second because φ is compactly supported; moreover, if φ(t) = tψ(t),
then φ(0) = 0 and we have 〈Fa, φ〉 =

∫
(sgn t)ψ(t) dt as desired. Now, formally we

have

〈Fa, φ〉 “=”

∫
R

φ(t)

|t| dt− φ(0)

∫
|t|≤a

dt

|t| ,

so Fa can be considered as arising from the original function |t|−1 by subtraction
of Cδ where C is the infinite constant

∫ a

−a
dt/|t|. Moreover, if a, b > 0, Fa and Fb

differ by a finite multiple of δ:

〈Fb, φ〉 − 〈Fa, φ〉 = −φ(0)
(∫ −a

−b

+

∫ b

a

)
dt

|t| = −2φ(0) log
b

a
,

                

                                                                                                               



7.1. INTRODUCTION 193

so Fb − Fa = −2 log(b/a)δ. To decide which value of a to use, one needs to impose
some additional condition on F . The infinite multiple of δ that is subtracted here
corresponds to the “counterterms” that are subtracted from Feynman integrals
to produce finite results, and the determination of the remaining finite multiple
of δ corresponds to matching some finite result to an experimentally determined
quantity.

Here is another approach to this problem that is more in the spirit of the
dimensional regularization that we shall use for Feynman diagrams. For Re z > −1,
let T z(t) = |t|z. T z is an analytic distribution-valued function of z in the half-plane
Re z > −1, where the function |t|z is locally integrable. It can be meromorphically
continued to the half plane Re z > −2 (and hence, by bootstrapping, to the entire
complex plane) by the relation

T z =
d

dt

[
(sgn t)

T z+1

z + 1

]
.

There is a simple pole at z = −1, and the residue there is 2δ, because

lim
z→−1

(z+1)〈T z, φ〉 = − lim
z→−1

〈(sgn t)T z+1, φ′〉 =
∫ 0

−∞
φ′(t) dt−

∫ ∞

0

φ′(t) dt = 2φ(0).

We can therefore obtain a distributional version of |t|−1 by passing to the limit as
z → −1 while subtracting off the singular part of the Laurent expansion. The result

is the distribution F1 of the preceding paragraph, because
∫ 1

−1
|t|z dt = 2/(z + 1):

lim
z↘−1

〈
T z− 2δ

z + 1
, φ

〉
= lim

z↘−1

[∫
|t|≤1

[φ(t)−φ(0)]|t|z dt+
∫
|t|>1

φ(t)|t|z dt
]
= 〈F1, φ〉.

To see a situation where one might want Fa with a �= 1, let us consider the
Fourier transform. A classic calculation that is outlined in Exercise 27 of §9.2 of
Folland [48]1 shows that for −1 < Re z < 0,

T̂ z =

√
π 21+zΓ( 12 (1 + z))

Γ(− 1
2z)

T−1−z,

and hence

T̂ z − 2δ̂

z + 1
=

2

z + 1

[√
π 21+zΓ( 12 (3 + z))

Γ(− 1
2z)

T−1−z − 1

]
.

Taking the limit as z → −1 via l’Hôpital’s rule shows that F̂1 is the locally integrable
function

F̂1(s) = 2

[
log 2 + Γ′(1)−

Γ′( 12 )√
π
− log |s|

]
.

One might now wish to specify a so that F̂a is the function −2 log |s/c| for some
given c > 0. Since Fa = F1 − 2(log a)δ, the solution is

a =
2

c
exp

(
Γ′(1)−

Γ′( 12 )√
π

)
.

Having refreshed ourselves with this mathematical snack, let us return to
physics. The general problem we will be considering is the evaluation of a con-
nected Feynman diagram for some field theory, with

1A different convention for the placement of the 2π’s is used there.
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V internal vertices,
I internal lines,
E external lines (and external vertices),

and hence, by (6.64),

L = I − V + 1 independent loops.

We recall that each external line in the diagram is labelled with an external momen-
tum pj = (ωpj

,pj), and each internal line is labeled with an internal momentum
qi. The integrand for the momentum-space integral defined by the diagram is the

product of Fourier-transformed propagators −iΔ̂i(qi) (one for each internal line),
delta-functions δv(p, q) = δ(Σv) for each vertex v (Σv being is the algebraic sum of
the momenta at v), certain factors coming from the external lines, and factors of
2π, i, and coupling constants. In more detail, the propagators have certain forms
depending on the particle species they represent, for example,

Δ̂F (q) =
1

−q2 +m2 − iε
for a scalar field of mass m,

Δ̂Dirac(q) =
qμγ

μ +m

−q2 +m2 − iε
for a Dirac field of mass m,

Δ̂Proca
μν (q) =

gμν − (qμqν/m
2)

q2 −m2 + iε
for a vector field of mass m,

Δ̂μν(q) =
gμν

q2 + iε
for a massless vector field.

There is an implicit “limε→0+” in these formulas; we shall say more about it later,
but for now one should think of ε as a small but positive number. The integral
corresponding to the diagram is then

C(p)

∫
· · ·

∫ ∏
vertices

δv(p, q)
∏

internal lines

Δ̂i(qi) d
4qi,

where C(p) is a factor that incorporates the coefficients from the external lines,
coupling constants, factors of 2π, etc.

If there are V vertices, the equations Σv = 0 give V linear equations in the
internal and external momenta, of which V − 1 are independent; the compatibility
condition for a solution to exist is the overall conservation of external momenta,∑

poutj =
∑

pink . We use V − 1 of the delta-functions to dispose of V − 1 of the
integrals and to express V − 1 of the internal momenta in terms of the rest of
them and the external momenta. This having been done, let the remaining internal
momenta be (re)labeled as q1, . . . , qL and the external momenta as (p1, . . . , pE); we
write q = (q1, . . . , qL) and p = (p1, . . . , pE) for short. Then the integral reduces to

(7.1) C(p)δ
(∑

poutj −
∑

pink

)∫
· · ·

∫ I∏
i=1

Δ̃i(q, p) d
4Lq.

Here Δ̃i(q, p) = Δ̂i(qi) for i ≤ L; and for i > L, Δ̃i(q, p) is Δ̂i(qi) with qi replaced
by its expression in terms of q1, . . . , qL and p1, . . . , pE.

The principal difficulty here — what we will be focusing on in the ensuing
discussion — is that the integral may diverge because the integrand does not decay
fast enough at infinity (“ultraviolet divergence”). When one passes to the limit
ε → 0+, it looks as though things will get worse because the factors −q2 +m2 in
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the denominator will blow up along the mass shells. This turns out not to be much
of a problem as long as the masses m are all positive. We shall say more about
this shortly, but for now it may reassure the reader to observe that the function
λ(q) = −q2 + m2 vanishes only to first order on the mass shell q2 = m2, so in

suitable local coordinates one is considering integrals similar to
∫ 1

−1
f(t) dt/(t− iε)

where f is smooth, and this has a finite limit as ε→ 0+:

lim
ε→0+

∫ 1

−1

f(t)

t− iε
dt = p.v.

∫ 1

−1

f(t)

t
dt+ iπf(0).

However, if the theory involves massless particles, the singularity of 1/q2 at the
origin will cause additional headaches (“infrared divergence”). We therefore assume
in this general discussion that the masses of all the field quanta in question are
positive, or — as a temporary expedient — that any massless denominators q2 + iε
have been replaced with q2 − μ2 + iε where μ is a small positive number. We shall
comment on the removal of this assumption for QED near the end of §7.8.

The analysis of the integrals (7.1) is greatly facilitated by a device known as
Wick rotation, which is essentially an analytic continuation of the energy variables
to imaginary values. To derive this, we need to insert the iε’s in the propagator
denominators in a slightly different fashion. To be specific, let us consider the
Feynman propagator ΔF (t,x). We recall from §6.5 that ΔF is the distribution
whose Fourier transform in x is the locally (but not globally) integrable function

FxΔF (t,q) = ie−iωq|t|/2ωq (ωq =
√
|q|2 +m2). In §6.5 we derived the formula

Δ̂F (q) = lim
ε→0+

1

−ω2 + |q|2 +m2 − iε

for its full Fourier transform by considering the function t �→ ie−iωq|t|/2ωq as the
limit as ε→ 0+ of the L1 function

t �→ −
exp[−

√
iε− ω2

q |t|]

2
√
iε− ω2

q

,

where the square root is the one with positive real part. However, we could also
consider it as the limit as ε→ 0+ of the L1 function

t �→ ie−iε exp[−ie−iεωq |t|]
2ωq

,

and the Fourier transform of this function, evaluated at q0 ∈ R, is

ie−iε

2ωq

[∫ 0

−∞
exp[(ie−iεωq − iq0)t] dt+

∫ ∞

0

exp[(−ie−iεωq − iq0)t] dt

]
=

ie−iε

2ωq

[
1

ie−iεωq − iq0
+

1

ie−iεωq + iq0

]
=

1

−(eiεq0)2 + |q|2 +m2
.

In short, instead of incorporating the−iε into the expression −q2+m2 as an additive
term, we can incorporate it as a multiplicative coefficient eiε of q0. Either way, the
effect is to add a small negative imaginary part. The only significant difference
occurs in the case m = 0, where the new procedure does nothing to mollify the
singularity of 1/q2 at the origin — but we have agreed to exclude this case.
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The same idea applies to all the other propagators. Thus we may write the
propagator denominators in (7.1) as

(7.2) −(eiεq0)2 + |q|2 +m2

rather than−q2 + m2 − iε. Doing so, of course, destroys the manifest Lorentz
covariance, which is recovered only in the limit as ε→ 0. Concerning the latter, we
have the following rigorous theorem for the case where the integrals with suitably
incorporated ε’s are absolutely convergent.

Let R(q, p) denote the integrand of (7.1), considered simply as a rational func-
tion of q = (q1, . . . , qL) and p = (pin, pout) (without ε’s), and let qε = (qε1, . . . , q

ε
L)

where qεl = (eiεq0l ,ql), and likewise for pε. If the integrals Iε(p) =
∫
R(qε, pε) d4Lqε

(p ∈ R4E) are absolutely convergent for some ε ∈ (0, π), then they are absolutely
convergent for every such ε. In this case, as ε → 0+, Iε converges in the weak
topology of tempered distributions on R4E to a distribution with the appropriate
Lorentz-covariance properties.

This result is due to Zimmermann [139]; see also Manoukian [80].
Having gone this far, the temptation is irresistible to let ε tend not to 0 but to

1
2π. Indeed, let us agree that, as in the preceding theorem, we shall insert a factor

of eiε not only into the internal energy variables q0l of (7.1) but into the external
ones as well. Then (7.1) becomes, in effect, an integral in which the energy variables
range not over R but over eiεR, and the result of passing to ε = 1

2π is that the the

Lorentz norms −q2 = −(q0)2 + |q|2 in the denominators in (7.1) are replaced by
Euclidean norms |q|2 = (q0)2 + |q|2. We say that (7.1) has been changed from a
Minkowski-space integral into a Euclidean-space integral by Wick rotation.

In summary, Wick rotation transforms an integral of the form (7.1) into an
integral of the form

(7.3)

∫
· · ·

∫ I∏
i=1

Pi(q, p)

|fi(q, p)|2 +m2
i

d4Lq

where the Pi(q, p) are polynomials, the fi(p, q) are linear combinations of the q’s
and p’s, and mi > 0. Moreover, transformation properties of the original integral
under the Lorentz group turn into transformation properties of the Wick-rotated
integral under the rotation group SO(4).

7.2. Power counting

The next order of business is to develop a way of telling whether the integrals
(7.1), or rather their Wick-rotated versions (7.3), converge (absolutely) or not. Now,
one can consider such integrals in which the variables ql and pm belong not to R

4

but to Rd for any positive integer d, and it will make the general structure clearer
(and serve as a warmup for some future manipulations) to do so. Let deg+(R) and
deg−(R) be the degrees of the numerator and denominator of R, and let deg(R) =

deg+(R)− deg−(R). Then for large |q| we have |R(q)| ≥ C|q|deg(R) except perhaps

in some sectors where the numerator grows more slowly than |q|deg+(R), so a crude
integration in polar coordinates shows that the integral (7.3) (over (RdL) has no
hope of converging unless deg(R) + dL < 0.
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We define the superficial degree of divergence of the integral, or of its associated
Feynman diagram, to be

(7.4) D = deg(R) + dL.

Thus, the integral is surely divergent if D ≥ 0.
The graph may also be divergent if D < 0, because there may be sectors where

the denominator grows more slowly than |q|deg−(R) and hence some subintegrations
that diverge. (A simple example: The rational function R(x, y) = 1/(1 + x2)2 on
R2 has deg(R) = −4 while d = 2, so crude power counting would predict that∫∫

R(x, y) dx dy should converge, but of course it does not because R has no decay
in y.) Pictorially, the difficulty arises from the fact that superficially convergent
diagrams may contain divergent subdiagrams. An example from QED is shown in
Figure 7.1.

Figure 7.1. A superficially convergent QED diagram with a di-
vergent subdiagram (enclosed by dotted lines).

However, the situation is no more complicated than these remarks would in-
dicate. Indeed, we have the following basic result, known as Weinberg’s theorem
(see Weinberg [129], Hahn and Zimmerman [63], and Manoukian [80]; also Zim-
mermann [141] for an extension to the case where massless fields are involved):

Let R(p, q) denote the integrand in (7.3). The integral (7.3) is convergent if
and only if the superficial degrees of divergence of all the subintegrals

∫
V
R(p, q) ddkq

(including the original integral) are negative, where V is any dk-dimensional affine

subspace of RdL (k = 1, . . . , L) defined by a set of linear equations
∑L

j=1 a
j
i qj = ci,

i = 1, . . . , L− k.

When one restricts the variables q in (7.3) to affine subspaces, the situation that
tends to produce the greatest increase in the superficial degree of divergence is where
one or more of the linear forms fi(q, p) is constant on the domain of integration, that
is, where the momentum associated to one or more of the propagators is constant.
As far as convergence is concerned, making one of the propagators constant in this
way is equivalent to cutting the corresponding line in the Feynman diagram. As a
result, one has the following diagrammatic version of Weinberg’s theorem:

The integral corresponding to a connected Feynman diagram is convergent if
and only if the superficial degrees of divergence of the diagram and all its connected
subdiagrams are negative.
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It is convenient to replace the parameters deg(R) and L in (7.4) by quantities
that can be read off more directly from the diagram. One of these should be the
number of external lines, as we are usually interested in processes with a fixed
set of incoming and outgoing particles. For this purpose we can use the identity
L = I−V +1 together with identities relating the number of vertices to the number
of edges, which will depend on the nature of the interactions in the diagram. We
shall work this out for some important examples below, but first there is one general
point to be addressed.

In general, one expects each internal line of a connected Feynman diagram
to contribute a nonconstant factor to the integrand in (7.3). However, if some
line has the property that cutting it would disconnect the diagram, its associated
momentum is completely determined by the external momenta: up to a factor of
±1, it is the sum of the external momenta in each of the two subdiagrams that the
line connects. In this situation the integral (7.3) is essentially the product of the
two integrals associated to these subdiagrams. Hence, to analyze convergence it is
enough to consider diagrams that cannot be disconnected by cutting one internal
line; such diagrams are called one-particle irreducible (1PI).

We now analyze the superficial degrees of divergence of the 1PI Feynman di-
agrams for the particular field theories that we listed in §6.3. In this discussion
“vertex” always means “internal vertex.”

For the φ4 scalar field theory, each external line connects to one vertex and each
internal line connects to two, whereas each vertex connects to four lines; hence
2I + E = 4V . Moreover, the degree of each propagator is −2, and there is one
propagator for each internal line, so deg(R) = −2I. Therefore,

D = −2I + dL = −2I + d(I − V + 1) = (d− 2)I − dV + d

= 1
2 (d− 2)(4V − E)− dV + d = (d− 4)V − 1

2 (d− 2)E + d.

In the “real-world” case d = 4, we have simply D = 4 − E. Thus, only diagrams
with at most four external lines are superficially divergent. The superficial degree
of divergence is 4 for vacuum bubbles (diagrams with no external lines) and at
most 2 otherwise. In dimensions d = 2 or 3, things are even better: here there
are actually only finitely many superficially divergent diagrams, as the degree of
divergence decreases with the number of vertices. However, in dimensions d ≥ 5,
there are diagrams with arbitrarily high degrees of divergence.

For QED, we have to distinguish between electron lines and photon lines; we
indicate the former with a subscript e and the latter with a subscript γ. The
electron propagator has degree −1 and the photon propagator has degree −2, so
deg(R) = −Ie−2Iγ . Moreover, each vertex meets two electron lines and one photon
line, so 2Ie + Ee = 2V and 2Iγ + Eγ = V , and L = Ie + Iγ − V + 1. Therefore,

D = −Ie − 2Iγ + d(Ie + Iγ − V + 1) = (d− 1)Ie + (d− 2)Iγ − dV + d

= (d− 1)(V − 1
2Ee) +

1
2 (d− 2)(V − Eγ)− dV + d

= 1
2 (d− 4)V − 1

2 (d− 1)Ee − 1
2 (d− 2)Eγ + d.

For d = 4 we have D = 4− 3
2Ee − Eγ , so again D depends only on the number of

external lines and is nonnegative only when that number is small; it is 4 for vacuum
bubbles and at most 2 otherwise (with equality for Ee = 0, Eγ = 2). For d < 4 the
situation again improves, and for d > 4 it again deteriorates.
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The result is exactly the same for the Yukawa interaction, as the propagators
for photons and pions both have degree −2. (The Yukawa interaction is simpler
than QED in one respect: since pions are massive, it has no infrared divergences.)

Finally, the Fermi model for beta decay involves a four-Fermion interaction.
The Feynman diagrams here have the property that (i) every line represents a
particle of spin 1

2 , whose propagator has degree −1, and (ii) four lines, one for
each particle species, meet at every vertex. Hence, with notation as above, we have
2I + E = 4V and deg(R) = −I, from which we obtain

D = (2d− 3)V − 1
2 (d− 1)E + d.

Thus there are divergences of arbitrarily high orders in all dimensions d ≥ 2. It
was recognized early on that this presented a serious problem and implied that the
Fermi model could be trusted only as a low-energy approximation. Eventually it
was supplanted by the Glashow-Salam-Weinberg theory, which we shall discuss in
§9.4.

It is not hard to generalize the calculations in the preceding examples to ar-
bitrary field theories. We refer the reader to Weinberg [131], §12.1, for a detailed
discussion. Here we just state the main result: In a field theory in d dimensions
involving several different fields f and several different interactions i, the superficial
degree of divergence of a Feynman diagram has the form

(7.5) D = d−
∑
f

afEf −
∑
i

biVi

where d is the space-time dimension, Ef is the number of external lines of field type
f , Vi is the number of vertices of interaction type i, and the af and bi are coefficients
depending on the particular field theory. Specifically, af is the number such that

the Fourier-transformed propagator Δ̂f (p) for field f has degree −d + 2af , and bi
is the number such that the coupling constant for the interaction i has dimension
[mbi ] (in natural units where [l] = [t] = [m−1]). Since the degree of any propagator
is at least −2, we have af ≥ 0, with equality possible only when d = 2.

From this one sees that there are three possibilities, depending on whether the
constants bi are positive, zero, or negative:

(1) All bi > 0. In this case there are only finitely many diagrams with D ≥ 0.
The theory is said to be superrenormalizable.

(2) All bi ≥ 0, but some bi = 0. In this case there are infinitely many
diagrams with D ≥ 0, but the degree of divergence is bounded above by
d, and superficial divergence can occur only for diagrams with sufficiently
few external lines.2 The theory is said to be renormalizable.

(3) Some bi < 0. In this case there are diagrams with arbitrarily high degrees
of divergence. The theory is said to be nonrenormalizable.

Thus, for example, the φ4 scalar field theory, QED, and Yukawa theory are su-
perrenormalizable in dimensions 2 and 3, renormalizable in dimension 4, but non-
renormalizable in dimensions d ≥ 5; the Fermi model is nonrenormalizable in any
dimension.

It can be shown that the divergences in a renormalizable theory can be removed
by renormalizing the field strengths, particle masses, and coupling constants, per-
haps after adding a finite number of additional terms to the Lagrangian; we shall

2The possible exceptions to this last assertion for d = 2 are of no importance.
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indicate how this works for φ4 theory and QED later in this chapter. For nonrenor-
malizable theories one can still remove the divergences one by one but cannot create
a consistent theory to all orders of perturbation theory by renormalizing finitely
many parameters. For a long time this was taken to mean that nonrenormalizable
theories are to be eschewed, but in recent years theorists have adopted a more
flexible attitude. Having faced the fact that even renormalizable theories do not
come with any guarantee of physical validity in regimes where very high energies
are involved, they have become more willing to accept nonrenormalizable theories
as useful “effective field theories” in regimes of sufficiently low energy that the con-
tributions of high-order diagrams are suppressed. See Weinberg [131], §12.3, and
Zee [138], §VIII.3, for discussions of this issue.

7.3. Evaluation and regularization of Feynman diagrams

In this section we develop some mathematical techniques for evaluating the
integrals arising from Feynman diagrams when they converge and approximating
them in a systematic way by convergent integrals when they do not.

Feynman parameters. The first device is a trick, first exploited by Feynman,
for converting the product of quadratic functions in the denominator of (7.1) or
(7.3) into a single quadratic function raised to a power. It involves integration over
the (n − 1)-simplex Σn of points x ∈ Rn whose coordinates are nonnegative and
add up to 1 (i.e., the convex hull of the standard unit basis vectors). We shall write
such integrals as ∫

[0,1]n
δ(1− x1 − · · · − xn)f(x) d

nx.

In other words, the prescription is to set one of the variables (say, xn) equal to 1 mi-
nus the sum of the others and then integrate over the “base simplex” in Rn−1 whose
vertices are the origin and the standard unit basis vectors , i.e., the region defined
by the conditions 0 ≤

∑n−1
1 xj ≤ 1, xj ≥ 0. (The measure δ(1−

∑
xj) dx1 · · · dxn

is 1/
√
n times the Euclidean surface measure on the simplex Σn.) The result we

need is as follows:

Suppose c1, . . . , cn (n ≥ 2) are complex numbers whose convex hull does not
contain the origin. Then

(7.6)
1

c1c2 · · · cn
= (n− 1)!

∫
[0,1]n

δ(1−
∑

xj)

(
∑

cjxj)n
dnx.

We shall refer to (7.6) as Feynman’s formula; the variables x1, . . . , xn in it
are known as Feynman parameters. Its hypothesis is necessary to guarantee the
nonsingularity of the integrand on the right.

To prove (7.6) we use induction on n. For n = 2, the integral on the right is∫ 1

0

dx

(c1x+ c2(1− x))2
=

∫ 1

0

dx

((c1 − c2)x+ c2)2
=

1

c1 − c2

∫ c1

c2

dy

y2
=

1

c1c2
,

as claimed. Moreover, differentiating this formula n − 1 times with respect to c1
yields

1

cn1 c2
=

∫ 1

0

nxn−1 dx

(c1x+ c2(1− x))n+1
.
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We use these formulas (with the variables relabeled) to accomplish the inductive
step:

1

c1 · · · cn+1
=

1

(c1 · · · cn)cn+1
=

∫
[0,1]n

(n− 1)!δ(1−
∑

yj) d
ny

(
∑

cjyj)ncn+1

=

∫
[0,1]n

∫ 1

0

n!δ(1−
∑

yj)z
n−1 dny dz

(z
∑

cjyj + (1− z)cn+1)n+1
.

Now set xj = zyj for j ≤ n and zn+1 = 1−z. Then δ(1−
∑n

1 yj) = zδ(z−
∑n

1 zyj) =

zδ(1−
∑n+1

1 zj) since δ is homogeneous of degree −1, and zn−1 dny dz = z−1dn+1x
(the change of measure is the absolute value of the Jacobian), and we obtain (7.6)
with n replaced by n+ 1.

One can apply Feynman’s formula either to the integrand of a Feynman integral
either in its original form (7.1) or in its Wick rotated form (7.3). For the latter,
the result is an integral of the form

(7.7)

∫
R4L

∫
[0,1]I

(n− 1)!P (q, p)

(
∑I

1 xi(|fi(q, p)|2 +m2
i ))

I+1
δ(1−

∑
xi) d

Ix d4Lq.

If the integral (7.3) is absolutely convergent, so is the integral (7.7), and one can
interchange the order of integration. The q-integral can be evaluated explicitly
without much difficulty, as we shall explain shortly. One is then left with the x-
integral, which, being a proper Riemann integral, can be evaluated numerically if
not analytically.

One point should be made here. If one lets one of the masses, say m1, tend to
zero to accomodate a massless particle, the integrand of (7.3) develops a singularity
at the origin in q1-space, and the integral may blow up. The integrand in (7.7) has
no singularities as a function of q, but the divergence manifests itself as a singularity
with respect to the Feynman parameters near the vertex (x1, . . . , xn) = (1, 0, . . . , 0).

The q-integrals can be evaluated by reducing them to integrals of radial func-
tions, and this calculation will also play an important role in the analysis of di-

vergent integrals. To begin with, the expression
∑I

1 xi(|fi(q, p)|2 +m2
i ) in (7.7) is

a positive quadratic function of the variables ql, so by a suitable linear change of
variables q′l =

∑
aml qm+bl it can be reduced to the form |q′|2+c2(p, x). (Of course

c2 also depends on the masses mi.) The integral (7.7) then takes the form

(7.8)

∫
[0,1]I

[∫
R4L

P ′(q′, p, x)

(|q′|2 + c2(p, x))I+1
d4Lq′

]
δ(1−

∑
xj) d

Ix,

where c2 is a positive quadratic function of p and x.
We shall show below how to evaluate the inner integral. Once this is done, the

integration over the Feynman parameters remains, and then one must Wick-rotate
the external momenta back from Euclidean space to Minkowski space. The theorem
we quoted earlier guarantees that the latter process converges in the topology of
tempered distributions, but in practice one can usually just replace the Euclidean
momenta pointwise by the Minkowski momenta in the integrand of the Feynman-
parameter integral, using the Wick rotation process to determine the appropriate
branch of any fractional powers or logarithms.

If this is the goal, one might wonder why one should bother Wick rotating
the external momenta in the first place, as they return to Minkowski space at the
end, and branches of multivalued functions can be determined at that point by
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temporarily replacing p0 by eiεp0. The answer is that this step is needed to make
the intermediate steps legal: to guarantee that 0 is not in the convex hull of the
factors in the original denominator so that Feynman’s formula can be applied, and
to make the c2(p, x) in (7.8) positive so that the integrand is nonsingular. However,
as a matter of practical computation, it can be omitted, and in physics books it
usually is. The common procedure is first to introduce the Feynman parameters,
interchange the order of integration, and eliminate the p-q cross terms by a linear
change of variable in the original Minkowski-space integral, and then to Wick-
rotate the internal momenta only. In spite of some possible ill-definedness in the
intermediate steps, this algorithm works (and one could prove a theorem to that
effect).

Reduction to radial functions. We turn to the evaluation of the q-integral
in (7.8). Dropping all extraneous parts of the notation and generalizing to arbitrary
d-dimensional integrals, we are faced with an integral of the form∫

Rd

P (q)

(|q|2 + c2)n
ddq,

where P is a polynomial, necessarily of degree less than 2n−d if the original integral
is convergent.3 (One can either take q = (q1, . . . , qL) and d = 4L or q = qi and
d = 4; in the latter case the c2 depends on the other qj as well as p and x. Other
values of d will appear later!) We think of this as the integral of the polynomial P
with respect to the rotation-invariant measure (|q|2 + c2)−nddq, and it suffices to
consider the case where P is homogenous. We can then use the following general
result, in which we use multi-index notation: α = (α1, . . . , αd) will denote a d-tuple
of nonnegative integers, and we set

qα = qα1
1 qα2

2 · · · qαd

d , α! = α1!α2! · · ·αd!, |α| = α1 + · · ·+ αd.

Let Pk be the space of homogeneous polynomials of degree k on Rd, and define
the inner product ≺ ·, · $ (linear in the second variable, in accordance with physi-

cists’ convention) on Pk by declaring the monomials qα/
√
α! (|α| = k) to be an

orthonormal basis:

(7.9) ≺ qα, qβ $= α!δαβ .

Let dμ(q) = ρ(|q|) dq be an O(d)-invariant measure on R
d such that Pk ⊂ L1(μ).

If k is odd, then
∫
P dμ = 0 for any P ∈ Pk. If k is even, then for any P ∈ Pk,

(7.10)

∫
P dμ =

≺ rk, P $
≺ rk, rk $

∫
rk dμ,

where rk ∈ Pk is the polynomial defined by rk(q) = |q|k.
The assertion for k odd is obvious since then every P ∈ Pk is odd whereas dμ is

even. To prove the result for k even, we need some preliminary observations. First,
we clearly have ≺ qα, qβ $= α!δαβ = ∂α(qβ), so in general we have ≺ P,Q $=
P ∗(∂)Q. Hence, multiplication by r2 (a map from Pk−2 to Pk) is the adjoint of
∇2 : Pk → Pk−2, for if P ∈ Pk−2 and Q ∈ Pk,

≺ r2P,Q $= P ∗(∂)∇2Q =≺ P,∇2Q $ .

3Apologies for the two conflicting uses of the letter d.
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It follows that Pk = Hk ⊕ r2Pk−2, where Hk ⊂ Pk is the space of harmonic
polynomials and the sum is orthogonal with respect to the inner product (7.9). By
induction, then,

Pk = Hk ⊕ r2Hk−2 ⊕ r4Hk−4 ⊕ · · · ⊕ rkH0,

where the direct sums are again orthogonal with respect to (7.9). Now, the linear
functional P �→

∫
P dμ annihilates all the spaces r2jHk−2j with 2j < k, since the

mean value of a harmonic polynomial on any sphere about the origin is its value at
the origin, which is 0 when the polynomial is homogeneous of degree k − 2j > 0.

Hence,
∫
P dμ =

∫
P̃ dμ where P̃ is the orthogonal projection of P onto rkH0, the

scalar multiples of rk, and this is just (7.10). This completes the proof.

For k = 2, we have ≺ qiqj , r
2 $= 2δij and ≺ r2, r2 $= 2d, so (7.10) says that

(7.11)

∫
qiqj dμ =

δij
d

∫
r2 dμ.

For k = 4, we have r4 =
∑

q4j + 2
∑

j<k q
2
j q

2
k, so ≺ q4j , r

4 $= 4! = 24 and

≺ q2j q
2
k, r

4 $ = 2 · (2!)2 = 8 for j �= k. It follows that ≺ r4, r4 $= 8d(d + 2)
and hence∫

q4j dμ =
3

d(d+ 2)

∫
r4 dμ,

∫
q2j q

2
k dμ =

1

d(d+ 2)

∫
r4 dμ,

and
∫
qα dμ = 0 if any αj = 1. These equalities may be combined as follows:

(7.12)

∫
qiqjqkql dμ =

1

d(d+ 2)
(δijδkl + δikδjl + δilδjk)

∫
r4 dμ.

Important remark: If we apply these results to a Wick-rotated Feynman integral
with a single momentum variable q ∈ R4 (or with several q1, . . . , qL, but doing
the integration one ql at a time) and undo the Wick rotation by replacing q0 by
q0/i, the δij ’s in (7.11) and (7.12) turn into gij ’s (the Lorentz metric), and the
obvious rotational covariance of these formulas turns into the appropriate Lorentz
covariance. The same is true for polynomials of higher degree; we shall not go into
detail.

Regularization of divergent integrals. We now turn to the problem of
extracting some meaning from the divergent integrals. As we indicated earlier,
the first step is to modify, or “regularize,” the integrals to make them convergent.
There are several ways to do this, of which we shall discuss two. These methods all
eventually lead to the same results, but one may be more convenient than another
in specific situations; in particular, one may wish to choose a regularization that
preserves certain symmetries of the theory.

Perhaps the most straightforward procedure is Pauli-Villars regularization,
which goes as follows. Let Δm be the propagator for one of the particle types
occurring in the given diagram, where m is the mass of the particle: one simply
replaces Δm by Δm −ΔM where M is a large mass that eventually will be sent to
infinity. This gives some extra decay of the momentum space integral: for example,
for a scalar particle, after Wick rotation, one has

1

|q|2 +m2
− 1

|q|2 +M2
=

M2 −m2

(|q|2 +m2)(|q|2 +M2)
.
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If this decay is not enough, one can replace Δm by Δm− c1ΔM1
− c2ΔM2

where c1
and c2 are chosen to satisfy c1+ c2 = 1 and c1M

2
1 + c2M

2
2 = m2: the first condition

gives 1/|q|4 decay, and the second one then gives 1/|q|6 decay. Further decay can
be obtained by adding more ΔMj

terms with appropriate coefficients. (In position
space, the extra decay corresponds to a weakening of the singularities along the
light cone.) In any event, one chooses the modified propagator so as to produce a
convergent integral, whose value will depend on the Mj . Renormalization is then
accomplished by analyzing the behavior as Mj →∞.

Informally, one can think of Pauli-Villars regularization as a matter of adding
some fictitious particles with large masses to the theory; as their masses tend to
infinity, they decouple from everything else and disappear from the calculations.

Pauli-Villars regularization is still used for many calculations, but another
method has become more popular because it works better for non-Abelian gauge
fields: the dimensional regularization of ’t Hooft and Veltman [120]. The idea of
dimensional regularization is to perform an analytic continuation in the number d
of space-time dimensions. This is not as crazy as it sounds at first! We are not
proposing to develop a theory of integration in d dimensions for arbitrary complex
d, only to extend certain special kinds of d-dimensional integrals to complex d. Nor
are we claiming that there is only one way to do so; all we need is one way that
works.

To apply this method to a divergent integral of the form (7.1), one prepares the
ground by retracing the steps we have used to evaluate convergent integrals:
i. Wick-rotate the momenta.
ii. Convert the denominator from a product of quadratics to a power of a single

quadratic by Feynman’s formula, obtaining an integral of the form (7.7), and
then interchange the momentum space integration with the integration over
the Feynman parameters.

iii. Perform a linear change of variable to get rid of the linear terms in the denom-
inator and obtain an integral of the form (7.8).

iv. Reduce the resulting integral to integrals of radial functions on R4L by using
the formula (7.10).

In the present setting, each of these steps consists of formal manipulations. They
must be regarded simply as parts of a symbolic calculation that will eventually
interpret the original divergent integral as a limit of well-defined finite quantities.

It is with the final reduction to integrals of radial functions that we can start
doing some honest analysis. Specifically, for a radial function on Rd, say f(|q|), inte-
gration in polar coordinates reduces its d-dimensional integral to a one-dimensional
one:

(7.13)

∫
f(|q|) ddq = Ωd

∫ ∞

0

f(r)rd−1 dr,

where Ωd = 2πd/2/Γ(d/2) is the area of the unit sphere in Rd. (See, e.g., Folland
[49].) Now, the expression on the right does define an analytic function of d in the
domain of those d for which the integral converges. For our purposes f(r) will be of
the form f(r) = r2k/(r2 + c2)n, so the integral converges provided 0 < d < 2n− k
and can be evaluated in terms of the gamma function: the substitution t = (r/c)2
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yields

(7.14)

∫ ∞

0

r2k+d−1

(r2 + c2)n
dr =

c2k+d−2n

2

∫ ∞

0

tk+(d/2)−1 dt

(1 + t)−n

=
c2k+d−2n

2
B(k + 1

2d, n− k − 1
2d)

=
c2k+d−2n

2

Γ(k + 1
2d)Γ(n− k − 1

2d)

Γ(n)
.

This expression continues analytically to larger values of d except for poles where
n−k− 1

2d is a nonnegative integer. In our situation, one of these poles will occur at
d = 4, which corresponds to the original divergent integral (when we integrate over
the loop momenta one at a time). The “∞” of the original integral then becomes
a “1/(4− d)” term in a well-defined analytic expression that can be used in further
calculations.

The shortcut that we discussed for evaluating convergent integrals after (7.8)
can be used here too: that is, one postpones the Wick rotation until after intro-
duction of the Feynman parameters and elimination of the cross terms, and one
performs it explicitly only for the internal momenta. When we do our first concrete
dimensional regularization in the next section, we shall do it by the more careful
procedure, but thenceforth we shall use the shortcut.

Now, as far as convergence or divergence is concerned, the only d-dependence
in (7.13) that matters is the rd−1; one could replace the Ωd by its value 2π2 at
d = 4 without changing anything essential. On the other hand, the integrals with
which we shall be concerned contain other ingredients with a natural dependence on
(integer-valued) dimension. For one thing, the momentum space volume element
is equipped with a factor of (2π)4 in the denominator that arises from Fourier
analysis; in d dimensions it would be (2π)d. For another, the reductions to radial
functions by means of (7.10), such as (7.11), are d-dependent. Finally, certain
identities involving Dirac matrices are dimension-dependent. More precisely, for
d-dimensional space-time the Dirac matrices are taken to be the generators of the
Clifford algebra over the Minkowski space Rd, satisfying {γμ, γν} = 2gμν . It follows
that γνγ

ν = dI and hence, for example, that γνγ
μγν = 2gμνγν−γνγνγμ = (2−d)γμ.

Inclusion or exclusion of these d-dependences in the dimensional regularization
algorithm does not affect the pole of the regularized integral at d = 4 or the residue
there, but it does affect the remaining finite part (the constant term in the Laurent
series). For the calculations arising from any individual Feynman diagram this
ultimately doesn’t matter, because if one adds an extra finite part to the integral,
one will just end up subtracting it off again in the counterterms (as we shall see).
However, if one wants to compare contributions from different diagrams, a little
more care is needed to maintain consistency.

The physicists’ standard prescription is to include all the natural dimension
dependences in the dimensional regularization algorithm, so that one obtains correct
formulas for d-dimensional space-time whenever d is an integer. Specifically, this
means:
i. The d-dependence of formulas such as (7.11) that arise from (7.10) is main-

tained.
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ii. For integrals of radial functions, the d-dependence is given by
(7.15)∫

R4

f(|q|) d4q

(2π)4
−→ Ωd

(2π)d

∫ ∞

0

f(r)rd−1 dr =
2

(4π)d/2Γ( 12d)

∫ ∞

0

f(r)rd−1 dr.

iii. The d-dependence of contractions of Dirac matrices is maintained:

(7.16) γνγ
ν = dI, γνγ

μγν = (2− d)γμ, γργνγ
μγνγρ = (2− d)2γμ.

There is an additional dimension dependence that one can take into account,
arising from the fact that the action — the integral of the Lagrangian density over
space-time — can also be considered in d dimensions. In natural units in which
length, time, and reciprocal mass are equivalent, the action is dimensionless, so the
Lagrangian density has dimension [l−d] = [md], or, as we shall say, “mass dimension
d.” From this one can deduce the dimensions of the fields and coupling constants.
For example, in QED, the fact that the free-field terms − 1

4F
μνFμν and ψγμ∂μψ

have mass dimension d imply that the electromagnetic field Aμ and the electron
field ψ have mass dimensions 1

2 (d− 2) and 1
2 (d− 1), respectively. The fact that the

interaction term eψγμAμψ has mass dimension d then implies that the coupling
constant e has mass dimension 1

2 (4 − d). One can make this explicit by setting

e = e0μ
(4−d)/2 where e0 is dimensionless and μ is a parameter with dimensions

of mass, which is arbitrary at the outset but can be chosen to correlate with the
energy scale at which one is doing physics. This additional d-dependence results
in additional terms proportional to logμ in the regularized integrals, which are of
use in connection with renormalization group techniques. However, as that subject
is beyond the scope of this book, we shall not incorporate this refinement in our
calculations.

There is one place where factors of 4 turn up that should not automatically be
turned into d’s, namely, calculations involving traces of products of Dirac matrices.
They arise because the trace of the 4× 4 identity matrix is 4, but this 4 is the di-
mension of spinor space, not space-time! One could take tr(I) to be f(d) where, for
integer d, f(d) is the dimension of a suitable representation of the Clifford algebra
over d-dimensional Minkowski space, but here the common practice is simply to
take traces of products of Dirac matrices to be dimension-independent.

For more about various regularization and and renormalization techniques, see
the anthology of Velo and Wightman [126], particularly the articles by Wightman,
Speer, and Lowenstein.

7.4. A one-loop calculation in scalar field theory

In this section we carry out the regularization and renormalization procedure
for the simplest possible example: the regularization of a one-loop diagram in the
φ4 scalar field theory and the resulting renormalization of the coupling constant.

The Feynman diagram we wish to study is shown in Figure 7.2. It has two in-
coming particles with 4-momenta p1, p2 and two outgoing particles with 4-momenta
p3, p4. The value of the diagram includes a factor of (2π)4δ(p3+p4−p1−p2), which
we may ignore after setting

p1 + p2 = p3 + p4 ≡ p,
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Figure 7.2. The basic one-loop diagram in φ4 theory.

as well as factors of 1/
√
2ωpj

from the external lines, which play no role in the
analysis. After amputating these inert ingredients, the value of the diagram is

(7.17) I(p) =
(−iλ)2

2

∫ −i
−q2 +m2 − iε

· −i
−(q + p)2 +m2 − iε

d4q

(2π)4
.

(The 2 in the denominator is the symmetry factor arising from the invariance of
the diagram under interchange of the two internal lines.)

This integral has superficial degree of divergence 0; in other words, it is loga-
rithmically divergent. To regularize it, we begin with a Wick rotation: replacing
q0 by iq0 and p0 by ip0 yields the Euclidean-space integral

(−iλ)2
2

∫ −i
(|q|2 +m2)(|q + p|2 +m2)

d4q

(2π)4
.

Next, introducing the Feynman parameter x and switching the order of integration
gives

(−iλ)2
2

∫ 1

0

∫
R4

−i
(|q|2 + 2xq · p+ x|p|2 +m2)2

d4q

(2π)4
dx,

and then the substitution k = q + xp turns this into

(7.18)
(−iλ)2

2

∫ 1

0

∫
R4

−i
(|k|2 + x(1− x)|p|2 +m2)2

d4k

(2π)4
dx.

Now do the inner integral not in 4 dimensions but in d dimensions with d < 4,
using (7.14):∫

R4

1

(|k|2 + x(1− x)|p|2 +m2)2
d4k

(2π)4

→ 2

(4π)d/2Γ(d/2)

∫ ∞

0

rd−1 dr

2(r2 + x(1− x)|p|2 +m2)2

=
Γ(2− (d/2))

(4π)d/2(m2 + x(1− x)|p|2)(4−d)/2
.

Finally, undo the Wick rotation of p to turn |p|2 = −(eiπ/2p0)2 + |p|2 back into
−p2 = −(p0)2 + |p|2. For p2 > 4m2, the quantity m2 − x(1 − x)p2 is negative for
some values of x; in this case the branch of the fractional power is determined by
the requirement that it vary continuously as ε goes from π/2 to 0 in −(eiεp0)2. For
p2 ≥ 4m2, the resulting function of x has singularities, but the x-integral is still
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absolutely convergent provided d is close to 4. In short, the regularized value of the
integral I(p) (a function of d as well as p) is

Id(p) = −i
(−iλ)2

2

Γ(2− (d/2))

(4π)d/2

∫ 1

0

dx

(m2 − x(1− x)p2)(4−d)/2
.

This is a well-defined finite quantity for all p when 3 < d < 4.
We could also do this computation using the shortcut discussed after (7.8). The

reader may verify that if we start with the original integral (7.17), introduce the
Feynman parameter x, make the substitution k = q+xp, and thenWick-rotate q (all
on the level of formal calculation), the result is the integral (7.18) with |p|2 replaced
by −p2. The rest of the computation proceeds as before, with p0 implicitly given
a positive imaginary part to ensure the convergence of the d-dimensional integral
and then returned to the real axis to determine the branch of the fractional power.

It will be convenient to factor out the (−iλ)2 and make explicit the fact that
Id(p) depends only on the Lorentz norm of p by setting

(7.19)

Id(p) = (−iλ)2Jd(p2),

Jd(s) =
−iΓ(2− (d/2))

2(4π)d/2

∫ 1

0

dx

(m2 − sx(1− x))(4−d)/2
.

For ε = 4 − d near 0 we have xε = 1 + ε log x + O(ε2) and Γ(ε) = ε−1 − γ + O(ε)
where γ is the Euler-Mascheroni constant; therefore,

(7.20)

Jd(s) =
−i
32π2

∫ 1

0

[
2

4− d
− γ + log(4π)− log(m2 − sx(1− x)) +O(4− d)

]
dx

=
i

32π2

∫ 1

0

log(m2 − sx(1− x)) dx− i

32π2

(
2

4− d
− γ + log(4π)

)
+O(4− d).

(The branch of the logarithm is determined as above.) The divergence has now been
effectively quarantined as the 2/(4−d), and all the p-dependence that survives when
d→ 4, which presumably contains all the interesting physics, is in the integral.

It should be noted that the constant −γ+log(4π) is of no real significance; it is
an artifact of our conventions concerning dimensional regularization. For example,
we could have kept the original factor of (2π)4 instead of turning it into (2π)d,
which would replace the log(4π) by − log π.

Now, what are we to do with the divergent 2/(4 − d) term? To answer this
question we need to consider how the Feynman diagram under consideration enters
into a quantity that might actually be measured in a laboratory, namely, the S-
matrix element

〈0|a(p3)a(p4)Sa
†(p1)a

†(p2)|0〉.
We shall calculate this to second order in the coupling constant λ, and part of the
game is to throw away all terms containing a factor λn with n > 2. This cavalier
treatment of higher-order error terms may cause some qualms, but it is part of
the bargain with the devil that we made in §6.1 that such perturbation-theoretic
calculations are to be deemed credible as long as the coupling constant λ is small.

We assume that neither p1 nor p2 is equal to p3 or p4 to exclude the case of triv-
ial scattering. To second order in λ, then, the Feynman diagrams that contribute to
the S-matrix element are the simple one-vertex diagram in Figure 7.3 and the three
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Figure 7.3. The basic diagram for two-particle scattering in φ4 theory.
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Figure 7.4. One-loop diagrams for two-particle scattering in φ4 theory.

one-loop diagrams in Figure 7.4.4 After setting aside the momentum-conservation
delta-function and the factors of

√
2ωpj

from the external lines that are common
to all these diagrams, the value of the diagram in Figure 7.3 is −iλ and the values
of the one-loop diagrams in Figure 7.4 are I(p1 + p2), I(p1 − p3), and I(p1 − p4),
respectively. Thus the delta-function-free amplitude iM = iMp3p4,p1p2

as in (6.65),
to second order in λ and with external-line factors omitted, is

iM = −iλ+ I(p1 + p2) + I(p1 − p3) + I(p1 − p4).

As it stands, this makes no sense because the last three terms are divergent, but
on introducing the Mandelstam variables

(7.21) s = (p1 + p2)
2, t = (p1 − p3)

2, u = (p1 − p4)
2,

we can rewrite it as

(7.22) iM = lim
d→4

(
− iλ+ (−iλ)2[Jd(s) + Jd(t) + Jd(u)]

)
.

This limit may be well-defined if we allow λ to depend on d in such a way that the
divergences cancel.

At first glance this suggestion seems outrageous; isn’t λ a coupling constant
with physical meaning, not something that can depend on the fictional parameter
d? But no, in fact: λ is merely a parameter in the Lagrangian or Hamiltonian.
We may call it the “bare coupling constant,” but the physical coupling constant
λphys is something that must be determined by experiment, and it need not equal
λ. Since scalar fields with φ4 interaction do not model any currently observed

4We are using the Wick-ordered φ4 interaction here, as explained in §6.6. Without this
stipulation there are also diagrams obtained from Figure 7.3 by attaching a one-line loop to
one of the external lines. Even if such diagrams are included, they do not contribute to the
renormalization of λ that we are about to perform; see Peskin and Schroeder [89], §10.2.
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physical process, the experiment will have to be a thought experiment, and we
have some freedom in deciding what it will be. Here is a reasonable choice: we aim
two particles at each other at low velocity and see what happens. That is, we take
λphys to be the magnitude of the scattering amplitude iM in the limit where the
3-momenta of the particles vanish:

(7.23) −iλphys = iM |p1=p2=p3=p4=(m,0).

Thus, to first order in λ, λphys is indeed λ, but to second order,

(7.24) λphys = λ
(
1− iλ[Jd(4m

2) + 2Jd(0)]
)
.

This equation can be solved for λ in terms of λphys and the function Jd of d. One
could do so exactly, but it is not worth the trouble because we are only doing
perturbation theory to order λ2; if we go to higher order, additional Feynman
diagrams will make additional contributions to this formula. Rather, we perform
all calculations modulo terms that are O(λ3). Since λphys = λ + O(λ2), we have
λ2
phys = λ2 +O(λ3) and O(λ3

phys) = O(λ3); thus,

λphys = λ[1− iλphys(Jd(4m
2) + 2Jd(0))] +O(λ3),

and hence

(7.25)
λ = λphys[1− iλphys(Jd(4m

2) + 2Jd(0))]
−1 +O(λ3)

= λphys + iλ2
phys[Jd(4m

2) + 2Jd(0)] +O(λ3).

We now substitute (7.25) into (7.22) and drop all O(λ3) terms to obtain

(7.26) iM = lim
d→4

(
−iλphys+(−iλphys)

2[Jd(s)+Jd(t)+Jd(u)−Jd(4m
2)−2Jd(0)]

)
.

At this point the divergences in the Jd’s all cancel, as do the finite constants γ and
log(4π). Explicitly, we have

(7.27) M = −λphys −
λ2
phys

32π2

∫ 1

0

[
log(m2 − sx(1−x)) + log(m2 − tx(1−x))

+ log(m2 − ux(1−x))− log(m2 − 4m2x(1−x))− 2 log(m2)
]
dx,

where s, t, u are given by (7.21).
There is still something a little arbitrary in our definition of coupling constant.

What if we had chosen some other “subtraction point” — that is, some values of s,
t, u other than 4m2, 0, 0 — to define λphys? It doesn’t matter. For example, some
theorists favor the simple (but unphysical) subtraction point s = t = u = 0, which
yields λ′

phys = λ(1− 3iλJd(0)). To second order, these constants are related by

λ′
phys = λphys + iλ2

phys[Jd(4m
2)− Jd(0)],

and the quantity Jd(4m
2)−Jd(0) has a finite limit as d→ 4. The formula analogous

to (7.26) in terms of λ′
phys is

iM = lim
d→4

(
− iλ′

phys + (−iλ′
phys)

2[Jd(s) + Jd(t) + Jd(u)− 3Jd(0)]
)
.

But on substituting λphys + iλ2
phys[Jd(4m

2) − Jd(0)] for λ′
phys in this formula and

discarding terms of order higher than 2, one recovers (7.26). In short, (7.27) is
a well-defined and physically meaningful quantity that can (in principle) be taken
to the laboratory and compared with experiment. If the agreement is pretty good
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but not excellent, the next step is to go to order λ3 in hopes of obtaining an
improvement.

7.5. Renormalized perturbation theory

Let us review what we have done. We computed the value of the Feynman
diagram using the bare coupling constant and regularized the divergence, obtaining
a value depending on the parameter ε = 4−d. We then found the relation between
the bare coupling constant and the physical coupling constant, which also involves
ε, and used it to re-express the regularized value in terms of the physical coupling
constant. At this point the divergences cancel out and we obtain a meaningful
quantity in the limit as ε→ 0.

The same procedure can be followed for higher-order diagrams and for other
quantum field theories. One starts with a Lagrangian that contains some param-
eters that are interpreted as bare masses and coupling constants as well as some
overall scale factors that are interpreted as field normalizations. One computes the
values of Feynman diagrams in terms of the bare parameters, relates the bare pa-
rameters to the physical ones, and re-expresses the value of the diagram in terms of
the latter, at which point (one hopes that) the divergences cancel. This procedure
is called bare perturbation theory.

There is another procedure generally known as renormalized perturbation theory
that is often more convenient, although the two procedures are equivalent; going
from one to the other is just a matter of bookkeeping. Its conceptual advantage
is that one is perturbing about the fixed physical values of the parameters rather
than about the unphysical bare parameters that are going to be sent off to infinity
by the renormalization.

To do renormalized perturbation theory, one starts from the realization that the
masses and the coupling constants in the Lagrangian L may not be the physical
ones, and moreover that it may be necessary to rescale the fields — that is, to
replace each field φ in L with a “renormalized field” φr = Cφ, where C is a positive
constant.5 (This last phenomenon is not something we have encountered yet. We
shall see in the next section how it arises; for now we beg the reader’s indulgence.)
Let us write L as the sum of the Lagrangian for the free fields and the interaction
terms:

L = Lfree + Lint.

Moreover, let L′
free and L′

int be Lfree and Lint with the masses and coupling con-
stants replaced by the physical ones and the fields replaced by the renormalized
fields, and let L′ = L′

free + L′
int. Then we have

L = L′ + Lct = L′
free + L′

int + Lct,

where Lct is a sum of terms of the same form as the terms in L′, written in terms of
the renormalized fields, whose coefficients involve the differences between those in
L and those in L′. These terms are known as counterterms , and at this point their
coefficients are just some arbitrary constants whose meaning is yet to be specified.

The idea is to calculate S-matrix elements by the Feynman diagram machinery,
taking the interaction to be L′

int+Lct. That is, we first calculate Feynman diagrams
arising from the interaction L′

int, as in Chapter 6, obtaining integrals involving the
physical masses and coupling constants. Some of them diverge, so we regularize

5C is conventionally denoted by Z
−1/2
j where j is an index to label the field.
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them to make them finite but dependent on a regularization parameter. We then
add in some new Feynman diagrams arising from the counterterms Lct (in con-
junction with L′

int), according to some rules that we shall specify below, resulting
in some additional terms in the S-matrix element that involve the coefficients of
the counterterms. These coefficients are then specified, as functions of the regu-
larization parameter, in such a way that the counterterm contributions cancel the
divergences from the original diagrams.

Here is how this works for the scalar field with φ4 interaction. The Lagrangian
is

L =
1

2
(∂φB)

2 − 1

2
m2

Bφ
2
B −

λB

4!
φ4
B,

where the subscript B indicates that φB, mB, and λB are the bare (unrenormalized)
field, mass, and coupling constant. Let m and λ be the physical mass and coupling
constant, and let φ = Z−1/2φB be the renormalized field. The Lagrangian written
in terms of φ is

L =
Z

2
(∂φ)2 − Z

2
m2

Bφ
2 − Z2λB

4!
φ4,

so

L′ =
1

2
(∂φ)2 − 1

2
m2φ2 − λ

4!
φ4,

and

Lct =
Z − 1

2
(∂φ)2 − Zm2

B −m2

2
φ2 − Z2λB − λ

4!
φ4.

It is conventional to write

(7.28) δZ = Z − 1, δm2 = Zm2
B −m2, δλ = Z2λB − λ,

so that

Lct =
δZ

2
(∂φ)2 − δm2

2
φ2 − δλ

4!
φ4.

The contributions of the counterterms to the momentum-space Feynman diagrams
are as follows. The term (δλ/4!)φ4, just like the term (λ/4!)φ4 in L0, corresponds
to a vertex at which four lines meet, and it contributes a value of −iδλ to the
corresponding integral. To distinguish such a vertex from the one coming from the
ordinary interaction, we indicated it by a crossed circle, as shown in Figure 7.5a.
The sum 1

2 [(δZ)(∂φ)2− (δm2)φ2] is considered as a single unit; it corresponds to a
vertex at which two lines meet, again denoted by a crossed circle, as in Figure 7.5b.
As we shall show in the next section, it contributes a factor of −i(−(δZ)p2+ δm2),
where p is the momentum of the incoming (or outgoing) line.

��� ���

Figure 7.5. Counterterm vertices in φ4 theory.

In this approach, the calculation of the two-particle scattering amplitude to
second order in perturbation theory that we performed in the preceding section
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goes as follows. There are five diagrams that contribute: the four that we consid-
ered before, and a counterterm diagram of the form in Figure 7.5a to cancel the
divergences in the loop diagrams. The first one has the value −iλ; the last one
has the value −iδλ; and the sum of the others (after regularization) has the value
(−iλ2)[Jd(s) + Jd(t) + Jd(u)] as in (7.26), except that now λ denotes the physical
coupling constant. Thus,

iM = lim
d→4

(
− iλ+ (−iλ)2[Jd(s) + Jd(t) + Jd(u)]− iδλ

)
.

On the other hand, by (7.23),

−iλ = iM |p1=p2=p3=p4=(m,0) = lim
d→4

(
− iλ+ (−iλ)2[Jd(4m2) + 2Jd(0)]− iδλ

)
,

so the value of δλ, to order λ2, is

δλ = iλ2[Jd(4m
2) + Jd(0)].

This is consistent with (7.25) and (7.28) if we take Z = 1. But indeed Z = 1 to
zeroth order, as Z = 1 is the correct normalization for free fields, and we will see in
the next section that there is no first-order correction to Z, so everything is correct
to order λ2.

Figure 7.6. Third-order diagrams for two-particle scattering in
φ4 theory.

Figure 7.7. Counterterm diagrams for two-particle scattering in
φ4 theory.

If one proceeds to order λ3, three more topologically distinct types of “ordi-
nary” diagrams enter the picture, as shown in Figure 7.6. (For each of these, one
must consider all the different ways of assigning the incoming and outgoing mo-
menta p1, . . . , p4 to the four external legs.) There are also two additional types of
counterterm diagram, one involving δλ and one involving 1

2 [(δZ)(∂φ)2 − (δm2)φ2],

as in Figure 7.7. The first provides an O(λ3) correction to δλ to cancel the di-
vergences of the first two in Figure 7.6; the second one cancels the divergence of
the last one. In fact, this last pair does not contribute to the scattering amplitude
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at all. It is part of the description of what happens to one of the particles on its
journey to or from the scattering event, a problem that we shall study in the next
section. (See Peskin and Schroeder [89], §10.5, for the details.)

7.6. Dressing the propagator

The propagation of a free particle from x to y is a simple matter. Diagram-
matically, it is represented by a single line whose ends are marked x and y, and its
amplitude is just the free propagator −iΔ(x−y) for the particle species in question.
But interacting particles can undergo all sorts of little adventures as they travel.
For every diagram that contains a single line from x to y, there will be higher-order
diagrams contributing to the same process in which the particle interacts with some
virtual particles along the way. Some examples for the propagation of an electron
in QED are shown in Figure 7.8. We shall call the propagation amplitude for a par-
ticle with all of these virtual interactions taken into account the dressed propagator
and denote it by −iΔdressed(x− y).

Figure 7.8. Some higher-order modifications of the electron propagator.

What should Δdressed — or, more to the point, its Fourier transform — look
like? Virtual particles that are far off mass shell are creatures of perturbative field
theory, so one does not expect any concrete general answer to this question. But if
a particle is on mass shell, or very nearly so, so that it can be observed, what we
should see is just a particle traveling from one point to another; the extra virtual

interactions are unobservable. That is, near the mass shell p2 = m2, Δ̂dressed(p)
should look very much like a free-particle propagator; more precisely, it should have
the same singularity structure as the free propagator there:

(7.29) −iΔ̂dressed(p) = −iΔ(p)
∣∣
m=mphys

+stuff that is nonsingular at p2 = m2
phys.

We emphasize the point that the mass in this formula is the physical mass of the
particle because a mass renormalization will be necessary. In fact, (7.29) will hold
only after all mass and field renormalizations have been performed, and it is the
guiding beacon that determines how these renormalizations should be performed,
just as (7.23) was the guide for coupling constant renormalization in scalar field
theory.

To bring this to the level of calculation, consider the set P of all connected
Feynman diagrams for a given theory that contain just two external lines, both of
the same particle species. We think of the external lines as representing propagators
and pass to the momentum-space representation. Thus the two external lines are
both labeled by the momentum p of the particle (not on mass shell) as it enters and

leaves the picture, and they correspond to factors −iΔ̂(p) in the total propagation
amplitude. Each such diagram consists of a finite number of one-particle irreducible
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pieces linked by simple propagators, which again have the value −iΔ̂(p). Let us
denote by −iΠ(p) the sum of all possible nontrivial 1PI subdiagrams with their
external lines amputated, with the divergent diagrams regularized in a consistent
fashion, as indicated schematically in Figure 7.9. Then the (regularized) sum of all
the diagrams in P is

(−iΔ̂(p)) + (−iΔ̂(p))(−iΠ(p))(−iΔ̂(p))

+ (−iΔ̂(p))(−iΠ(p))(−iΔ̂(p))(−iΠ(p))(−iΔ̂(p)) + · · · .
This is a geometric series that can be formally summed to give

(7.30) (−iΔ̂(p))
∞∑
0

(−Π(p)Δ̂(p))n = −i[Δ̂(p)−1 +Π(p)]−1.

The geometric series need not converge, of course, but (7.30) is valid in perturbation
theory. That is, if one takes Π(p) to be the sum of all regularized values of 1PI
diagrams up to a given order N in perturbation theory and discards terms of order
> N from the geometric series, then the equality in (7.30) holds modulo terms of
order > N .

���
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Figure 7.9. Scheme of the higher-order modifications to a propagator.

Suppose now that (7.30) can be taken literally, so that the expression on the
right is the actual dressed (but unrenormalized) propagator — a supposition that
will receive more attention shortly. As we shall see, this expression has almost the
form that we were expecting:
(7.31)

[Δ̂(p)−1 +Π(p)]−1 = ZΔ̂(p)
∣∣
m→m′ + stuff that is nonsingular at p2 = (m′)2.

Here Z is a constant, m is the mass occurring in the free propagator Δ̂(p), and
the notation m → m′ means that m must be shifted to a different value m′. On
comparing this with (7.29), we see that (in bare perturbation theory) m′ must be
identified with the physical mass mphys; this determines the proper mass renor-
malization. The factor of Z is then disposed of by renormalizing the field φ that
produces the particle in question — specifically, by replacing φ by Z−1/2φ. In
renormalized perturbation theory, one recalculates everything with the inclusion
of counterterm insertions, which are added to Π(p); the counterterms are then
adjusted so that the value of m remains mphys and the value of Z is 1.
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The algebraic details of these calculations differ from field to field. We shall
derive (7.31) and perform the renormalization on a case-by-case basis for scalar
field, electron, and photon propagators. However, if one wants to think in terms
of interacting field operators as in §6.11, other general arguments are available.
Indeed, by the result following (6.99), the sum of all the momentum-space Feynman
diagrams of the class P, with the external lines carrying momentum p — that is,
the sum on the left side of (7.30) — is the Fourier-transformed vacuum expectation
value ∫

〈Ω|T[φ(x)φ(y)]|Ω〉eipμ(x−y)μ d4x

(which is independent of y by (6.100)), where φ here denotes the interacting field.
One can then fashion nonperturbative arguments to see that this quantity has the
form on the right side of (7.31); see Weinberg [131], §10.3, or Peskin and Schroeder
[89], §7.1. Moreover, it is clear from this that the replacement of φ by Z−1/2φ will
cancel the Z in that formula.

Now, what about our claim that the expression on the right side of (7.30)
really is the (unrenormalized) dressed propagator, or at least that it has the same
singularity structure? The perturbation-theoretic validity of (7.30) does not suffice,
for it cannot detect the shift in the location of the singularities: all the partial sums
of the left side of (7.30) have singularities in the same places as the free propagator

Δ̂. We shall simply accept this as an extension of our bargain with the devil. In
Chapter 6 we agreed to use perturbation theory with no rigorous proof that it would
work; here we do the same for the nonperturbative validity of (7.30).6

We can make this result more plausible, however, by considering an “interac-
tion” of a particularly trivial sort. We start with the free real scalar field of mass m
with Lagrangian L = 1

2 [(∂φ)
2 −m2φ2] and add some more mass — that is, replace

m2 by m2+δm2 — but regard the extra term (δm2)φ2 as an interaction to be dealt
with by perturbation theory. The set P of connected Feynman diagrams is very
simple in this situation: the interaction Hamiltonian is 1

2 (δm
2)φ2, so each internal

vertex has just two lines attached to it, and its value is −i times the “coupling
constant” δm2. (There is a symmetry factor of 2, like the 4! in φ4 theory, so the
1
2 drops out.) Thus the dressed propagator is given diagramatically by Figure 7.10
and analytically by

−i
−p2 +m2 − iε

∞∑
0

[
(−iδm2)(−i)
−p2 +m2 − iε

]n
=

−i
−p2 +m2 + δm2 − iε

.

The geometric series certainly does not converge for p2 nearm2; nonetheless, the ex-
pression on the right is the true propagator for a scalar particle of mass

√
m2 + δm2,

with singularities at p2 = m2 + δm2.
A variation on this calculation in which we adjust both the mass and the field

strength explains the form of the mass-and-field renormalization counterterm for
the scalar field that we asserted in the previous section. We start with the bare

scalar field φB with bare mass mB, whose propagator is −iΔ̂(p) = −i/(−p2 +m2
B)

(suppressing the infinitesimal iε, which plays no role here). The renormalized field is

φ = Z−1/2φB, and since
︷ ︸︸ ︷
φ(x)φ(y) = Z−1

︷ ︸︸ ︷
φB(x)φB(y), its propagator is−iZ−1Δ̂(p).

6Renormalization group techniques, as discussed briefly in §7.12, can be used to put this
result on a more solid foundation.
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Figure 7.10. Added mass as an interaction.

Writing Z = 1 + δZ and Zm2
B = m2 + δm2 as in (7.28), this becomes

−i
−p2 +m2 − (δZ)p2 + δm2

=
−i

−p2 +m2

∞∑
0

[
(−i)2−(δZ)p2 + δm2

−p2 +m2

]n
,

and this is the sum of the diagrams in Figure 7.10 if the vertices there are reassigned
the asserted value for the counterterm vertex, −i[−(δZ)p2 + δm2].

Let us see how all this works in renormalized perturbation theory for the scalar
field with φ4 interaction. At the outset, let us observe that since we are dealing
with a scalar field, by Lorentz invariance the sum Π(p) of the 1PI insertions in the
propagator can only depend on p2:

Π(p) = Π0(p
2).

The explicit calculation of Π0(p
2) to a given order in perturbation theory is accom-

plished by evaluation of the appropriate Feynman diagrams; it will not concern us
here. The only important thing is that each term in Π0(p

2) contains a power of the
coupling constant λ, and for each n there are only finitely many terms containing
λn.

��� ������

��� ���

Figure 7.11. Modifications to a propagator including counterterms.

To calculate the dressed propagator in renormalized perturbation theory, we
start with the free propagator and insert any number of 1PI subdiagrams and
counterterm vertices, producing diagrams such as those in Figure 7.11. For any
j, k ≥ 0, there are

(
j+k
j

)
ways to arrange the insertion of j 1PI subdiagrams and k

counterterm insertions. After adding up all the possibilities for 1PI subdiagrams,
the corresponding contribution to the dressed propagator is the product of j factors
of −iΠ0(p

2), k factors of −i[−(δZ)p2 + δm2], and j + k + 1 factors of the free
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propagator −i/(−p2 +m2 − iε). Thus the grand total is

∞∑
j,k=0

(
j + k

j

)
−i(−1)j+k[Π0(p

2)]j [(−(δZ)p2 + δm2)]k

(−p2 +m2 − iε)j+k+1

=

∞∑
n=0

−i[−Π0(p
2) + (δZ)p2 − δm2]n

(−p2 +m2 − iε)n+1

=
−i

−p2 +m2 +Π0(p2)− (δZ)p2 + δm2 − iε
,

with the last equality understood as explained earlier. On performing a Taylor
expansion of Π0(p

2) about p2 = m2,

Π0(p
2) = Π0(m

2) + (p2 −m2)Π′
0(m

2) + o(p2 −m2),

we can rewrite this last expression as

(7.32)
−i

(−p2 +m2)[1−Π′
0(p

2) + δZ + o(1)] + Π0(m2)− (δZ)m2 + δm2
.

Thus we obtain the correct pole and residue by setting

(7.33) δZ = Π′
0(m

2), δm2 = −Π0(m
2) + (δZ)m2 = −Π0(m

2) + Π′
0(m

2)m2.

With this specification, (7.32) has the desired form (7.29). The formulas (7.33) are
to be used to calculate δZ and δm2 order-by-order in perturbation theory, with the
adjustments at any given order depending on the previous ones.

There is one more important general point to be made. A Feynman diagram
that contributes to an S-matrix element contains external lines as well as internal
ones, and the incoming and outgoing particles undergo the same interactions with
virtual particles on their way to and from the real interaction as the particles in the
middle of the interaction. One might therefore expect a need to renormalize the
external coefficient functions (including spinors for Dirac particles and polarization
vectors for vector particles) that correspond to the external lines. But in fact, that
is not the case. If we go back to the calculation of (7.30) and take one of the two
external lines to represent a real on-mass-shell particle, the effect is to replace one of

the factors of −iΔ̂(p) in the series on the left of (7.30) by the appropriate external

coefficient C, that is, to multiply (7.30) by iCΔ̂(p)−1. The same operation on the
renormalized, dressed propagator (7.29) turns it into

C + iCΔ̂(p)−1(stuff that is nonsingular at p2 = m2).

But since the external particle is on mass shell, we must set p2 = m2 here, and then

the second term vanishes. For the scalar field, for example, Δ̂(p)−1 = −p2+m2 = 0

when p2 = m2; for a Dirac field, iCΔ̂(p)−1|p2=m2 = −u(p)(pμγμ −m) = 0 by the
Fourier-transformed Dirac equation; and similarly for other types of fields. In all
cases, the final result is simply C.

That interactions change the effective mass of a particle is a common phe-
nomenon — we encountered it in §6.2 — and it would not be unexpected even if
there were no divergences to be removed. The renormalization of field strength is
more mysterious, because the latter (unlike the mass of a particle) is generally not
something that can be measured in the laboratory. In fact, by now the reader has
probably forgotten how we normalized the field operators in the first place: they
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were constructed out of creation and annihilation operators, and those were nor-
malized to satisfy the canonical (anti)commutation relations (6.33). (Alternatively,
the field normalization can be specified by the commutation relation between a field
and its canonical conjugate, as in (5.17).) We are assured that this is appropriate
when renormalization is not an issue by the success of calculations such as those
in §6.9 and §6.10. When it is an issue, the most direct connection of field strength
with measurable quantities comes through the propagator; hence our use of (7.29)
as a foundation.

There are ways of giving some intuitive content to the renormalization factor Z,
but they are fraught with pitfalls. The calculations with vacuum expectation values
of interacting fields that we alluded to earlier in this section7 lead one to believe that
Z is a number between 0 and 1, and hence infinitesimal if it is not a well-defined
nonzero quantity; but the evaluation of Z in perturbation theory yields Z =∞ —
more precisely, in dimensional regularization, its regularized value becomes infinite
as d → 4. (This discrepancy is related to the fact that (1 − x)−1 = 1 + x to first
order in x; in effect, we are applying this formula to an x that contains a divergent
coefficient.) I asked a well-respected physicist how I could think about this without
getting a headache, and his response was, “You just have to get the headache and
get over it.” It is best to take a ruthlessly pragmatic attitude: we perform the field
renormalization as indicated because it works.

7.7. The Ward identities

The next five sections are devoted to a study of renormalization in QED. The
messiness of the calculations will be somewhat abated by the adoption of a couple
of notational abbreviations. First, if p is a Lorentz 4-vector (usually but not always
representing a momentum), we set

�p = pμγ
μ,

and likewise with p replaced by any other letter. Second, we shall write the Dirac
propagator in the form (6.52):

−iΔ̂Dirac(p) =
i

�p −m
.

The infinitesimal iε that should be in there will be incorporated in a Wick rotation
when it really matters; otherwise it will be suppressed. We shall also write Dirac
spinors as u(p) rather than u(p, s); here p = (ωp,p) as usual, and the dependence
on the spin state will be left implicit until it plays a significant role.

Before we proceed to the main order of business, we need to develop a collection
of related results known as Ward identities or Ward-Takahashi identities8 that play
a crucial role in the theory. One of their main applications will be to justify the
freedom in choosing the parameter a in the photon propagator (6.55).

We begin with a simple observation. Consider the fundamental interaction
diagram of QED (Figure 7.12), where the incoming and outgoing electron lines
carry momenta p and q and the photon line carries incoming momentum k = q− p
(or outgoing momentum −k = p − q). These momenta may or may not be on
mass shell, and the lines will represent spinor/vector coefficients or propagators
accordingly. If the electron lines are on mass shell, so that they represent Dirac

7In particular, the so-called Källén-Lehmann representation.
8Ward derived a special case; Takahashi generalized; others then generalized further.
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Figure 7.12. The fundamental interaction diagram of QED.

spinors u(p) and u(q), the value of this diagram with the photon line amputated
and the ubiquitous (2π)4δ(q − p − k) suppressed, is simply u(q)(−ieγμ)u(p), and
the Lorentz product of this with the photon momentum k is

(7.34) kμu(q)(−ieγμ)u(p) = −ieu(q) �ku(p)
= −ieu(q)( �q − �p)u(p) = −ieu(q)(m−m)u(p) = 0,

because of the Dirac equation ( �p − m)u(p) = u(q)( �q − m) = 0. On the other
hand, if the electron lines are off mass shell and represent propagators, the value of
the diagram (modified as before) is −i3e( �q −m)−1γμ( �p −m)−1, and the Lorentz
product of this with k is

(7.35)

i

�q −m
(−ie�k ) i

�p −m
= −ie i

�q −m
[( �q −m)− ( �p −m)]

i

�p −m

= e

[
i

�p −m
− i

�q −m

]
.

We can also take the incoming electron on mass shell and the outgoing one off mass
shell or vice versa; the same calculations then yield

(7.36)
i

�q −m
(−ie�k )u(p) = eu(p), u(q)(−ie�k ) i

�p −m
= −eu(q).

�� �� �� ����

� �

� � � � � �

Figure 7.13. Inserting a photon line into an electron pathway.

With this in mind, consider an arbitrary connected Feynman diagram D con-
taining a connected sequence L0, . . . , LJ of electron lines, where L0 is incoming,
L1, . . . , LJ−1 are internal, LJ is outgoing, and Lj−1 and Lj meet at a vertex xj for
1 ≤ j ≤ J . Let Dj be the diagram obtained from D by attaching an additional ex-
ternal photon line in the middle of the line Lj , as in Figure 7.13. We are interested
in the values of D and Dj as functions of the momenta p, q, and k of the incoming
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electron, outgoing electron, and added photon, respectively. If the external electron
lines represent propagators, for example, the value of D has the form

D(p, q)prop =
i

�q −m
γνJ

i

�pJ−1 −m
· · · i

�p1 −m
γν1

i

�p −m
Φν1···νJ−1

,

where “prop” stands for “propagators at the ends,” p1, . . . , pJ−1 are the momenta on
the lines L1, . . . , LJ−1, and the Φν1···νJ

are quantities that depend on everything else
in the diagram (including the factors of −ie that should accompany the γνj ’s). The
corresponding value Dμ

j (p, q, k)
prop of Dj , with the added photon line amputated,

is obtained by inserting an extra −ieγμ and propagator i/( �p j + �k − m) at the
appropriate spot and replacing all the subsequent �p i by �p i + �k .

Now consider the sum
∑J

j=0 kμD
μ
j (p, q, k)

prop. We apply (7.35) to the piece of

Dj consisting of the added photon line and the line Lj (now broken into two) to
express the product of the (−ieγμ) and its two adjacent propagators in the term
kμD

μ
j (p, q, k)

prop as e times the difference of two propagators. Summing over j
yields a telescoping sum: everything cancels out except for one term on each end,
with the result that

(7.37)
J∑

j=0

kμD
μ
j (p, q, k)

prop = e[D(p, q − k)prop −D(p+ k, q)prop].

(Readers who are not convinced by this briefly sketched argument can remedy the
situation by performing the calculation for J = 1 or J = 2 with their own pencil
and paper; or see Peskin and Schroeder [89], §7.4, or Zee [138], §II.7. The formula
(7.35) can be regarded as the case J = 0, since q − k = p and p+ k = q there.)

If we take the external electron lines L0 and LJ to be on mass shell and hence
represent spinors, this calculation goes through without change except that one
must use (7.36) instead of (7.35) at the ends. The value Dμ(p, q)spinor of D with
this interpretation is obtained from Dμ(p, q) by replacing the factors of i( �p −m)−1

and i( �q −m)−1 by u(p) and u(q), respectively; likewise for Dμ
j (p, q, k)

spinor. But

this replacement nullifies the difference between D(p, q− k) and D(p+ k, q), so we
have

(7.38)

J∑
j=0

kμD
μ
j (p, q, k)

spinor = 0.

There is one more variation to be played on this theme. Consider a Feynman

diagram D̃ that contains a set L1, . . . , LJ of electron lines that form a closed loop
(with Lj−1 and Lj meeting at xj for j > 1, and LJ and L1 meeting at x1), and

again let D̃μ
j (k) be the value of the diagram obtained from D by attaching a photon

line with momentum k to Lj , with that photon line amputated (see Figure 7.14).

Let pj be the momentum on the line Lj in D̃; thus pj = p1 +
∑j−1

1 ki where ki is
the incoming photon momentum at the vertex joining Li to Li+1. Taking p1 to be
the variable of integration for the loop integral, by (6.59) the value of D has the
form

(7.39) −
∫

tr

[
i

�pJ −m
γνJ · · · i

�p1 −m
γν1Φν1···νJ

]
d4p1
(2π)4

,

where the Φν1···νJ
again incorporate all the rest of the diagram. If we apply (7.35)

to the diagrams D̃j and sum over j as before, there is again a lot of cancellation,
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Figure 7.14. Inserting a photon line into an electron loop.

and we find that
∑

kμD̃
μ
j (k) is equal to the integral (7.39) minus the same integral

with �p j replaced by �p j + �k . The change of variable p1 → p1−k in the latter shows
that these two integrals cancel; thus,

(7.40)

J∑
j=1

kμD̃
μ
j (k) = 0.

The last part of this argument needs more buttressing. The integral (7.39)
may be divergent, in which case its exact cancellation with the shifted integral is
not clear. (Physicists tend to assume that such formal manipulations are innocent
of error until proven guilty, but in this case there is a similar calculation in a
different situation — the “chiral anomaly” or “axial vector anomaly” in the theory
of massless Fermions — that does give an incorrect result.) The resolution of the
problem is that the integrals must be regularized, and the cancellation should be
valid for the regularized integrals. For this to happen, one needs to take care that
the regularization procedure does not distort the structure of the integrals in a way
that destroys the cancellation. Dimensional regularization avoids such distortion
quite automatically (this is one of its advantages), however, and so (7.40) is indeed
valid.

The equalities (7.37), (7.38), and (7.40) are the Feynman-diagram version of the
general Ward identities. Other versions are obtained by applying these identities
to amplitudes M that are given by sums of Feynman diagrams with the property

that all of the diagrams Dj or D̃j contribute to M whenever any one of them
does. For example, consider a (connected, δ-function-free) S-matrix element M
in which one of the initial or final states contains a photon with momentum k
and polarization vector εμ(k), and which thus has the form M = εμ(k)M

μ(k).
In any connected Feynman diagram contributing to M , the line for this photon
connects to an electron line that is part of either a path from an incoming electron
to an outgoing electron, both on mass shell, or an internal loop, and all diagrams
obtained by reattaching it at other points of the path or loop also contribute to M .
On summing over such diagrams and applying (7.38) and (7.40), we find that

kμM
μ(k) = 0.
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The same reasoning also applies when the photon with momentum k is internal
(so M = −iΔμν(k)M

μ(k) rather than M = εμ(k)M
μ(k)). This is the reason why

the different choices for the parameter a in the photon propagator (6.55) lead to the
same result in computing S-matrix elements. Indeed, consider an S-matrix element
M and a diagram D1 that contributes to M and contains an internal photon line
with momentum k. The diagrams Dj obtained from D1 by reattaching one end of
this line at other points on the same electron path or loop also contribute to M .
If one applies (7.38) or (7.40) to (appropriate parts of) the Dj ’s with the photon
propagator amputated, one finds on reinserting the propagator that any term in
it that is proportional to kμ contributes nothing to M . Hence one can modify the
propagator by inserting any term akμkν/k

2 as in (6.55), and in fact, a need not
be a constant but can be a function of k (more precisely, a function of k2 in order
to preserve Lorentz covariance). This observation will be important in the next
section.

� �

� ��

Figure 7.15. The fundamental interaction with higher-order corrections.

One can also use (7.37) and (7.40) to obtain results about processes where the
external electron lines are off mass shell. The simplest and most important of these
is the “dressed vertex function,” which is the sum of the basic diagram in Figure 7.12
and all of its higher-order corrections. That is, we consider all Feynman diagrams of
the form in Figure 7.15, with one incoming electron with momentum p, one outgoing
electron with momentum p′, and one incoming photon with momentum k = p′ − p
(or outgoing photon with momentum −k), all of which represent propagators. The
virtual processes that modify the basic vertex are of three kinds: those that begin
and end on the photon line, which represent corrections to the photon propagator;
those that begin and end on an electron line, which represent corrections to the
electron propagators; and all the rest — namely, all the one-particle irreducible
diagrams of the form in Figure 7.15. In other words, Figure 7.15 can be reexpressed
as Figure 7.16, in which the external lines represent dressed propagators. The sum
of the values of all the 1PI vertex diagrams, with the external legs amputated, is
denoted by −ieΓμ(p′, p), where μ is the Lorentz index to be contracted with the
photon propagator. Of course Γμ(p′, p), as it stands, is an infinite sum of integrals
that generally diverge; it is understood that for actual calculations, one includes
only the diagrams up to a fixed finite order in perturbation theory and regularizes
all the divergent integrals. (Note that Γμ(p′, p) is a 4× 4 matrix and that to zeroth
order, i.e., including only the basic vertex diagram (Figure 7.12), Γμ(p′, p) = γμ.)

Let S(p) denote the dressed electron propagator with momentum p, which we
shall describe more explicitly in §7.8 and §7.9. The value of the diagram in Figure
7.16 with electron propagators included but the photon propagator still amputated
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Figure 7.16. The fundamental interaction with vertex correc-
tions and dressed propagators.

is then −ieS(p′)Γμ(p′, p)S(p). On applying the Ward identities (7.37) and (7.40)
to the various specific diagrams contributing to Figure 7.16, we find that

(7.41) −iekμS(p′)Γμ(p′, p)S(p) = e[S(p)− S(p′)].

Note that to zeroth order in perturbation theory — that is, considering only Figure
7.12 instead of Figure 7.16 — S(p) = i( �p − m)−1 and Γμ(p′, p) = γμ, so (7.41)
reduces to (7.35). (7.41) is usually restated by multiplying both sides on the left
by S(p′)−1 and on the right by S(p)−1:

(7.42) −ikμΓμ(p′, p) = S(p′)−1 − S(p)−1.

This is the Ward-Takahashi identity in the form derived by Takahashi; Ward’s
original version is obtained by passing to the limit as q → 0, i.e., as p′ → p:

(7.43) Γμ(p, p) = i
∂S(p)−1

∂pμ
.

The identity (7.42), as well as the analogous results for more complicated pro-
cesses involving more external electrons, can be interpreted as statements about
vacuum expectation values of time-ordered products of interacting fields, as ex-
plained in §6.11. From this point of view they can also be derived nonperturba-
tively, rather than via the diagram-by-diagram calculations we have performed; see
Weinberg [131], §10.4.

7.8. Renormalization in QED: general structure

The Lagrangian for QED is

(7.44) L = − 1
4FμνBF

μν
B + iψBγ

μ∂μψB −mBψBψB − eBψBγ
μAμBψB ,

where the subscripts B are there to remind us that the quantities in question are
bare (unrenormalized). We can rewrite it in terms of the renormalized fields

Aμ = Z
−1/2
3 AμB and ψ = Z

−1/2
2 ψB

and the physical charge e of the electron as follows:

(7.45) L = 1
4Z3FμνF

μν + iZ2ψγ
μ∂μψ − Z2mBψψ − Z1eψγ

μAμψ,

where

(7.46) Z1 = Z2Z
1/2
3

eB
e
.
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Table 7.1. Feynman rules for counterterms in QED.

(The assignment of the subscripts to the Z’s is firmly fixed by convention.) Intro-
ducing also the physical mass m of the electron, we separate the Lagrangian into
its “physical” and “counterterm” parts:

(7.47)
L =− 1

4FμνF
μν + iψγμ∂μψ −mψψ − eψγμAμψ

− 1
4 (δZ3)FμνF

μν + i(δZ2)ψγ
μ∂μψ − (δm)ψψ − (δZ1)eψγ

μAμψ,

where

δZj = Zj − 1, δm = Z2mB −m.

The Feynman rules for QED in renormalized perturbation theory are given
in Table 7.1. As the diagrams would suggest, the three types of counterterm are
connected with the radiative corrections to the electron propagator, the photon
propagator, and the electron-photon vertex. The form of the counterterms for the
electron-photon vertex and the electron propagator are entirely analogous to the
corresponding counterterms for the scalar field that we saw in §7.5 and §7.6; the
form of the counterterm for the photon propagator requires some explanation that
we shall give later in this section. We now examine each of these processes in some
detail to see how the renormalization should work. In particular, we shall prove
and discuss the very important fact that the renormalization constants Z1 and Z2

coincide.

The electron propagator. The discussion of the electron propagator pro-
ceeds as in §7.6, with some additional complications from the fact that it is a
matrix-valued function. Let −iΣ(p) denote the sum of all 1PI diagrams with one
incoming and one outgoing electron with momentum p (not on mass shell). (No
renormalization is being performed yet. Only ordinary Feynman diagrams without
counterterm insertions are included; all divergent integrals are to be regularized;
and one sums only the diagrams up to a fixed but arbitrary order in perturbation
theory.) As in §7.6, the dressed electron propagator is given diagrammatically by
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Figure 7.9 and analytically by

S(p) =
i

�p −m
+

i

�p −m
(−iΣ(p)) i

�p −m

+
i

�p −m
(−iΣ(p)) i

�p −m
(−iΣ(p)) i

�p −m
+ · · · ,

where, for the moment, m is the bare mass of the electron. Now, Σ(p) is a 4 × 4
matrix, and it is a Lorentz scalar (i.e., invariant under Lorentz transformations)
just like the free propagator i( �p − m)−1, so it can depend on p only through �p
and p2. Moreover, �p2 = p2 (i.e., �p2 = p2I) so Σ(p) is actually function of �p .9 It
therefore commutes with i( �p−m)−1, so we can sum the series (as in §7.6) to obtain

S(p) = i( �p −m− Σ(p))−1.

The electron mass and field strength now need to be renormalized to make this
look as much like the free propagator i( �p −m)−1 as possible.

We therefore redo this calculation in renormalized perturbation theory: add
arbitrary numbers of counterterm insertions of the form in the first row of Table
7.1 into the diagrams in Figure 7.9 and take m to be the physical mass of the
electron. Just as before, the result is

(7.48) S(p) = i( �p −m− Σ(p) + (δZ2) �p − δm)−1.

This is the quantity whose pole and residue must be examined.
The physicists’ shorthand language for what happens next is: “We choose δZ2

and δm so that S(p) has a pole at �p = m with residue i; this is accomplished by
using the Taylor expansion of Σ(p) about �p = m.” Taken literally, the condition
�p = m is nonsense even though m is really mI, for tr( �p) = 0 whereas tr(mI) = 4m.
However, whenever q is a 4-vector such that q2 = m2, the matrix �q −m has a 2-
dimensional nullspace consisting of the Dirac spinors u(q), so ( �p −m)−1u(q) does
have a pole at p = q. The condition that “S(p) has a pole at �p = m with residue
i” can likewise be interpreted by applying it to a spinor u(q), but more practically,
it means that S(p) = i[( �p − m)(1 + E(p))]−1 where the error term E(p) is itself
divisible by �p −m.

The “Taylor expansion of Σ(p) about �p = m” is accomplished as follows.
Since Σ(p) is a function of �p as we have noted, it has the form f(p2)I + g(p2) �p
where f and g are scalar functions. We expand them about p2 = m2 (f(p2) =
f(m2) + f ′(m2)(p2 −m2) + · · · and similarly for g), use the identity (p2 −m2) =
2m( �p −m) + ( �p −m)2, and write �p = ( �p −m) +m to obtain

(7.49) Σ(p) = Σ(m)I +Σ′(m)( �p −m) + terms divisible by ( �p −m)2,

where

Σ(m) = f(m2) +mg(m2), Σ′(m) = g(m2) + 2mf ′(m2) + 2m2g′(m2).

Substituting (7.49) into (7.48), we find that

S(p) = i
[
( �p −m)[1− Σ′(m) + δZ2 +O( �p −m)]− Σ(m) + (δZ2)m− δm

]−1
,

9The implicit assumption here is that Σ(p) is an analytic function, so that it can be expanded
in a power series in �p and p2 and hence in �p alone. The regularized integrals that contribute to
Σ(p) are in fact analytic in p; in practice, though, we need to look only at the first couple of terms
of the Taylor expansion.
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so the renormalization condition (7.29) becomes

(7.50) δZ2 = Σ′(m), δm = −Σ(m) + (δZ2)m = −Σ(m) +mΣ′(m).

We emphasize again that Σ(p) contains regularized divergent integrals and is taken
to a certain order in perturbation theory; these equations then determine δZ2 and
δm as functions of the regularization parameter and the order. We shall perform
the first-order calculation of these quantities in the next section.

The photon propagator. Let iΠμν(p) be the sum of all 1PI diagrams that
have just two external photon lines with off-mass-shell momentum p with the ex-
ternal lines amputated (and as usual, taken to some finite order in perturbation
theory with all divergent integrals regularized). The general idea is the same as for
the corrections to the scalar field propagator and the electron propagator discussed
previously. Denoting the bare photon propagator −igμν/p2 by Δμν(p), the dressed
propagator is given, as with electrons and scalar fields, by

(7.51) Δ +Δ(iΠ)Δ+Δ(iΠ)Δ(iΠ)Δ+ · · · = Δ(1− iΠΔ)−1 = (Δ−1 − iΠ)−1,

where all of the terms are 4× 4 spinor matrices labeled with Lorentz indices μ, ν.
We can say more about the form of Πμν(p). It must have the same Lorentz

covariance as (Δ−1)μν = ip2gμν and hence must have the form ρ(p2)gμν+σ(p2)pμpν

for some scalar functions ρ and σ. Moreover, the Ward identity (7.40) implies that

0 = pμΠ
μν = ρ(p2)pν + σ(p2)p2pν ,

so that ρ(p2) = −p2σ(p2). Thus, setting π0(p
2) = −σ(p2), we have

(7.52) Πμν(p) = (p2gμν − pμpν)π0(p
2).

It follows that

(Δ−1 − iΠ)μν = i[p2gμν − (p2gμν − pμpν)π0(p
2)]

= ip2(1− π0(p
2))

[
gμν +

pμpν

p2
π0(p

2)

1− π0(p2)

]
,

and it is easily verified (by computing their product) that the inverse of this matrix,
the dressed propagator, is

[(Δ−1 − iΠ)−1]μν =
−i

p2(1− π0(p2))

[
gμν − π0(p

2)
pμpν
p2

]
.

As we showed in the preceding section, however, the Ward identity (7.38) implies
that the pμpν term can be dropped for any S-matrix calculations. In short, the
effective dressed photon propagator is

−igμν
p2(1− π0(p2))

.

We observe, with great relief, that no mass renormalization is necessary: the
pole of the propagator still occurs at p2 = 0, so the photon remains massless.
However, the factor 1 − π0(p

2) necessitates a renormalization of field strength.
Thus, we redo this calculation by including the photon-propagator counterterm
from Table 7.1, the effect of which is to make the following replacement for Π in
(7.51):

Πμν(p)→ Πμν(p)− (δZ3)(p
2gμν − pμpν) = (p2gμν − pμpν)[π0(p

2)− δZ3].
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We now see the explanation for the form of the counterterms: it must be the same
as the form (7.52) of Π. The dressed propagator is now

−igμν
p2(1− π0(p2) + δZ3)

,

so the renormalization condition, that the residue at the pole p2 = 0 be −igμν , is
simply

δZ3 = π0(0).

The renormalized tensor

(7.53) Πμν
renorm(p) = (p2gμν − pμpν)π(p2), π(p2) = π0(p

2)− π0(0),

remains finite as the regularization is removed, and it is a quantity of physical
significance. We shall calculate it to lowest order and examine its meaning in §7.10.

The vertex function. As explained in the preceding section, −ieΓμ(p′, p) de-
notes the sum of all 1PI diagrams containing one incoming electron with momentum
p, one outgoing electron with momentum p′, and one incoming (or outgoing) pho-
ton with momentum q = p′−p (or −q = p−p′), with the external lines amputated.
We shall call it the vertex function. As usual, the divergent integrals in Γμ(p′, p)
are to be regularized and the sum is to be truncated at some finite order of pertur-
bation theory. The renormalization condition for Γμ(p′, p) comes from considering
the interactions of a real, nonvirtual electron, so we assume that the incoming and
outgoing electron lines are on mass shell and are labeled by Dirac spinors u(p) and
u(p′), and we are interested in the quantity u(p′)Γμ(p′, p)u(p). Some simplifica-
tions take place when Γμ is thus sandwiched between spinors, and what we shall
continue to call Γμ below is really the “effective” part of Γμ that contributes to
u(p′)Γμ(p′, p)u(p).

We recall that the Dirac matrices γν generate the whole algebra of 4×4 matri-
ces, so the matrix Γμ(p′, p) is a linear combination of I, the γν ’s, and products of
2, 3, or 4 distinct γν ’s. Moreover, its zeroth-order approximation (coming from the
bare vertex) is just γμ, so it must transform as a 4-vector under Lorentz transfor-
mations (including spatial reflections) just as γμ does. From this it follows easily
that it must be a linear combination, with coefficients that are Lorentz-invariant
scalar functions of p and p′, of pμ1 I, γ

μ, pμ1 �p2, [γ
μ, �p1], [�p1, �p2]p

μ
3 , and �p1 �p2γ

μ and
similar products with the factors permuted, where p1, p2, and p3 are each either p
or p′. But then the Dirac equation

u(p′)( �p ′ −m) = ( �p −m)u(p) = 0

together with the anticommutation relations for the γν ’s implies that, once Γμ(p′, p)
is sandwiched in between u and u, the �p ’s and �p ′’s can be replaced by m’s. Hence,
Γμ(p′, p) can be replaced by a linear combination merely of γμ, pμ, and p′

μ
(dropping

the I as usual), or equivalently of γμ, (p+ p′)μ, and qμ = (p′ − p)μ:

Γμ(p′, p) = Aγμ +B(p+ p′)μ + Cqμ (q = p′ − p),

where A, B, and C, are Lorentz-invariant scalar functions of p and p′. But this
means that A, B, and C can depend only on p2, p′2, and p′μp

μ, and since p2 =

p′2 = m2 and 2p′μp
μ = p2 + p′

2− (p′− p)2 = 2m2− q2, we conclude that A, B, and

C are functions of q2 alone.
A further simplification comes from the Ward identities (7.38) and (7.40),

which imply that kμu(p
′)Γμ(p′, p)u(p) = 0. Since u(p′)qμγ

μu(p) = 0 by (7.34)
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and qμ(p+ p′)μ = p′
2 − p2 = m2−m2 = 0, this reduces to Cq2 = 0, so that C = 0.

In short,

(7.54) Γμ(p′, p) = A(q2)γμ +B(q2)(p+ p′)μ.

It is customary to rewrite (7.54) by using the Gordon identity :

(7.55) u(p′)(p+ p′)μu(p) = u(p′)(2mγμ − iσμνqν)u(p),

where
σμν = 1

2 i[γ
μ, γν ].10

To prove this, observe that �pγμ = −γμ �p + 2pμ for any p, so

[γμ, γν ]qν = (γμγν − γνγμ)(p′ − p)ν

= γμ �p ′ − �p ′γμ − γμ �p + �pγμ

= 2p′
μ − 2�p ′γμ − 2γμ �p + 2pμ.

Since u(p′) �p ′ = mu(p′) and �pu(p) = mu(p), this gives

u(p′)[γμ, γν ]qνu(p) = u(p′)[2(p+ p′)μ − 4mγμ]u(p)

and hence (7.55).
The Gordon identity says that, as long as Γμ(p′, p) is to be sandwiched between

spinors, the (p+ p′)μ in it can be replaced by 2mγμ − iσμνqν , so we finally obtain

(7.56) Γμ(p′, p) = F1(q
2)γμ + F2(q

2)
iσμνqν
2m

(σμν = 1
2 i[γ

μ, γν ]),

where F1 = A+2mB, F2 = −2mB. (The factor of 2m is adjusted to make F2, like
F1, dimensionless.) The functions F1 and F2 are known as form factors.

� �
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�� �
�

�

�
�

�

Figure 7.17. Diagram for two-electron scattering with vertex corrections.

To understand the physical meaning of this, let us return to the calculation of
the scattering of two Fermions that we performed in §6.9 and add in the radiative
corrections. That is, diagrammatically we replace the diagram in Figure 6.6 with
the diagram in Figure 7.17, and analytically we replace the uγμu terms in the
calculation with uΓμu terms. When we pass to the low-energy limit, we have

Γμ(p′, p)→ Γμ(p, p) = F1(0)γ
μ,

so the end result is the insertion of an extra factor of F1(0)
2 in the expression on

the right side of (6.78). But classical physics tells us that (6.78) is correct as it
stands, so either the charges must be renormalized by a factor of F1(0) (in bare
perturbation theory) or counterterms must be added to F1 so that F1(0) = 1 (in

10This use of the letter σ is a standard convention. It unfortunately invites confusion with
the Pauli matrices σj , to which the σμν are of course related.

                

                                                                                                               



230 7. RENORMALIZATION

renormalized perturbation theory). Either way, we have the condition we need to
fix the renormalization.

In more detail: in bare perturbation theory, the quantity we have been calling
e is really the bare charge e0,

11 and the renormalization is effected by setting
e0 = Z1e, where e is the physical charge and

(7.57) Z1 =
1

F1(0)
.

Let us observe that, to zeroth order — that is, using only the bare vertex diagram
— F1(0) is actually equal to 1. We can therefore write

F1(0) = 1 + δF1(0),

where δF1(0) is the sum of all the higher-order corrections. One computes this to a
given finite order, regularizing all the divergent integrals involved; then δZ1 = Z1−1
is given to that order, as a function of the regularization parameter, by

(7.58) δZ1 =
1

1 + δF1(0)
− 1 =

−δF1(0)

1 + δF1(0)
.

In renormalized perturbation theory, we recalculate Γμ(p′, p) with e taken to
be the physical charge of the electron and diagrams containing counterterm vertices
(as in Table 7.1) included. The result is that

F1(q
2) = 1 + δF1(q

2) + (counterterm contributions),

where δF1(q
2) is the sum of the corrections with ordinary Feynman diagrams. The

quantity δZ1 is calculated, order by order in perturbation theory, so that the coun-
terterm contributions add up to −δF1(0). To first order we have only the diagrams
in Figure 7.18: δF1(0) is the value of the middle diagram, which we shall calculate
in §7.11, and δZ1 = −δF1(0). This agrees to first order with (7.58), as it should.

�
�

�
�

�
�

� � �

� � �

Figure 7.18. Diagrams for the first-order calculation of Γμ(p′, p).

The second form factor F2(q
2) in (7.56) has played no role in all this, but it

has its own story to tell. We shall put it in the spotlight in §7.11.
Let us return for a moment to bare perturbation theory. By (7.56), the defining

relation (7.57) for the renormalization constant Z1 can be written as

(7.59) Γμ(p, p) = Z−1
1 γμ.

On the other hand, the defining relation for the renormalization constant Z2 for
the electron field is that iZ2 is the residue of the “pole” of the dressed electron

11If the electron and electromagnetic fields have already been renormalized, e0 is not the eB
in (7.44) but the Z2Z

1/2
3 eB in (7.45).
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propagator “at �p = m” before renormalization of the electron field; that is, the
dressed propagator S(p) satisfies

(7.60) S(p)−1 =
1

iZ2
( �p −m)[1 +O( �p −m)],

where m is the physical mass of the electron and O( �p −m) denotes a matrix that
is divisible by �p − m. Now recall the Ward identity (7.43), which was proved in
bare perturbation theory:12

Γμ(p, p) = i
∂S(p)−1

∂pμ
.

On comparing this with (7.59) and (7.60), we find that

Z−1
1 γμ = Z−1

2 γμ +O( �p −m).

Letting p approach mass shell and applying both sides to a spinor that annihilates
�p −m, we find that

Z1 = Z2.

In other words, going back to (7.46), we have

(7.61) e = Z
1/2
3 eB.

That the renormalization of the electric charge is influenced only by the renor-
malization of the electromagnetic field and not that of the electron field is an
extremely important result. Indeed, although we have been calling the Fermion
field in QED the “electron field,” the same theory describes electromagnetic in-
teractions of all other charged spin- 1

2 particles too, and if the renormalization of
charge depended on the particle species in question, one would expect some ob-
servable corrections from the differing physical properties of the particles. The fact
that it does not is what allows the charges of electrons and protons (for example)
to be exactly opposite even though electrons and protons are very different beasts.

Another way of looking at this is that the product eAμ in the QED Lagrangian
is invariant under renormalization: eBAμB = eAμ. Thus, in the Lagrangian (7.44)
and in both the “physical” and “counterterm” parts of the rewritten Lagrangian
(7.47), the derivative ∂μ and the field Aμ couple to the electron field ψ only in the
combination ∂μ − ieAμ. The universality of this combination is a manifestation of
the gauge invariance of QED.

Infrared divergences. Before we proceed, there is one other item to be dis-
cussed — or, more honestly, to be swept under the rug. The regularization pro-
cedures discussed in §7.3 are designed to handle “ultraviolet” divergences, that is,
divergences caused by insufficiently rapid decay at infinity in momentum space.
But because the photon is massless, some of the integrals in question also contain
an “infrared” divergence, that is, a divergence caused by singularities as certain
momenta approach zero. In other words, the contributions of very soft photons
to certain scattering processes is apparently infinite. However, an electron in a
scattering process may also emit any number of real photons; classically this is the
radiation produced by an accelerating charge, known as “Bremsstrahlung.” It turns
out that (i) the amplitude for such emissions also diverges in the low-energy limit,
but (ii) when the diagrams with real and virtual photons are all added together, the

12It can also be derived in renormalized perturbation theory.
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divergences cancel. From the empirical point of view, the point is that a real photon
that is too soft to be detected by the apparatus at hand cannot be experimentally
distinguished from a virtual photon, and the theory provides finite answers if one
asks experimentally meaningful questions involving only detectable photons. From
the mathematical point of view, the point is that the sharp distinction between vir-
tual and real soft photons is an artifact of the perturbation-theoretic methods we
are using, and that although these methods are marvellously effective at sorting out
the high-energy components of interactions, they are inefficient at the low-energy
end of the scale. Recently some computational methods have been developed that
avoid infrared divergences; see Bach et al. [5] and the references given there.

In any event, infrared divergences are ultimately spurious, and we shall not
worry about them. As a practical matter, one can regularize infrared-divergent
integrals by replacing the p2 in the denominator of photon propagators by p2 − μ2

where μ is a small positive number — in effect, by assigning a small mass to the
photon; physically meaningful quantities will turn out to be independent of μ. We
refer the reader to Weinberg [131], Chapter 13, Peskin and Schroeder [89], §§6.4–
5, and Jauch and Rohrlich [69], §16.1, for the detailed calculations. (Weinberg, as
usual, does things with a keen eye for generality.)

The divergent one-loop diagrams. We conclude this section by compiling
a complete list of the types of superficially divergent 1PI diagrams in QED that
contain only one loop. Since there is no question of divergent subdiagrams in a
superficially convergent diagram when there is only one loop, all other diagrams
with only one loop either are convergent or contain one of the diagrams on this list
together with some additional tree structure.

We recall from §7.2 that the superficial degree of divergence of a 1PI diagram
in QED is D = 4− 3

2Ee−Eγ where Ee and Eγ are the numbers of external electron
and photon lines. Thus, a superficially divergent diagram must have Ee = 0 and
0 ≤ Eγ ≤ 4 or Ee = 2 and 0 ≤ Eγ ≤ 1. (Ee must be even, since Ee + 2Ie = 2V .)
There are no vacuum bubbles (Ee = Eγ = 0) with only one loop, so there are only
six possibilities: Ee = 0 with 1 ≤ Eγ ≤ 4, and Ee = 2 with 0 ≤ Eγ ≤ 1. They are
listed in Figure 7.19.

The diagrams (b) and (e) are the lowest-order corrections to the photon and
electron propagators, and (f) is the lowest-order correction to the vertex function;
we shall analyze them in detail in the next three sections. The other three, however,
may be quickly disposed of.

The diagram (a) could be excluded by Wick-ordering the interaction, but it is
a fake in any case, and many authors don’t even bother to mention it. Its value
with the photon line amputated, by (6.59), is

−ie
∫

tr[γμ( �q +m)]

−q2 +m2 − iε

d4q

(2π)4
.

This is the sum of two terms, corresponding to the two terms �q and m in the nu-
merator. The second term vanishes because tr γμ = 0; the first is formally divergent
but vanishes in any regularization because the integrand is an odd function of q.
Hence the value of (a) is zero.

The diagram (c) is also a fake, but for a slightly more subtle reason. For a given
set of external photons, there are actually two such diagrams, the one pictured and
another with the electron arrows reversed. Any process that includes one of them
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Figure 7.19. The six superficially divergent one-loop diagrams.

must include the other one too, and it is a consequence of the charge-conjugation
invariance of QED that the values of the two differ by a factor of −1; hence their
sum is zero. We omit the details (see Weinberg [131], §10.1, or Jauch and Rohrlich
[69], §8.4) but mention that this is a special case of a more general consequence of
charge-conjugation invariance known as Furry’s theorem: Diagrams containing an
electron loop with an odd number of vertices contribute nothing, because the two
orientations of the loop cancel each other.

�� �� ��

�� ����

�� ��

�� ����

��

Figure 7.20. The one-loop diagrams for photon-photon scattering.

The diagram (d) is is the lowest-order contribution to a real quantum process
with no classical analogue, the scattering of light by light. (This effect is hard to
observe because it is very weak, i.e., it has an exceedingly small cross section.) Its
divergence, however, turns out to be spurious. In fact, when one specifies all the
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relevant labels on the external lines, there are actually six such diagrams, namely,
the ones in Figure 7.20 and the same three with the electron arrows reversed.
Here, since the number of vertices is even, the two orientations of the loop give
equal rather than opposite results. But when one calculates the sum of the three
diagrams shown, one finds that the divergences cancel and one is left with a finite
integral; see Jauch and Rohrlich [69], §13.1.

7.9. One-loop QED: the electron propagator

In this section we calculate the one-loop correction to the electron propagator,
given by the diagram in Figure 7.21. The regularization of the divergent integral
and the cancellation of the divergence by the addition of counterterms proceed in
much the same manner as the calculations we performed in §7.4 and §7.6 for the
scalar field, so we shall be fairly brief. In particular, we shall take the shortcut in
computing the regularization that was discussed after (7.8) and before (7.19).

� ��� �

� �

Figure 7.21. The one-loop correction to the electron propagator.

We denote the value of the Figure 7.21, with the the external legs amputated, by
−iΣ2(p); the subscript 2 indicates that this is the contribution to the 1PI corrections
that is second-order in the electric charge e. We have

(7.62) −iΣ2(p) =

∫ −igμν
q2 + iε

(−ieγμ)
−i( �p − �q +m)

−(p− q)2 +m2 − iε
(−ieγν)

d4q

(2π)4
.

Introduction of the Feynman parameter x turns this into

Σ2(p) = −ie2
∫ 1

0

∫
R4

γμ( �p − �q +m)γμ

[−x(p− q)2 + xm2 − (1− x)q2 − iε]2
d4q

(2π)4
dx.

Replacing q by q + xp gets rid of the linear term in the denominator:

Σ2(p) = −ie2
∫ 1

0

∫
R4

γμ((1− x) �p − �q +m)γμ

[−q2 − x(1− x)p2 + xm2 − iε]2
d4q

(2π)4
dx.

Wick rotation — that is, the substitution of iq0 for q0 — then yields

Σ2(p) = e2
∫ 1

0

∫
R4

γμ((1− x) �p − �q +m)γμ

[|q|2 − x(1− x)p2 + xm2]2
d4q

(2π)4
dx.

We now perform dimensional regularization. The integral of the term with �q in
the numerator vanishes by symmetry, which reduces the degree of divergence from
linear to logarithmic. Moreover, by (7.16), we have

γμ((1− x) �p +m)γμ = (2− d)(1− x) �p + dm.
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Hence, by (7.15), the regularized integral (still denoted by Σ2(p), although it now
also depends on d) is

Σ2(p) =
2e2

(4π)d/2

∫ 1

0

∫ ∞

0

(2− d)(1− x) �p + dm

[r2 − x(1− x)p2 + xm2]2
rd−1 dr dx,

so by (7.14),

Σ2(p) =
e2

(4π)d/2
Γ(2− 1

2d)

∫ 1

0

(2− d)(1− x) �p + dm

[xm2 + x(1− x)p2](4−d)/2
dx.

Expanding the d-dependent quantities about d = 4,

Γ(2− 1
2d) =

2

4− d
− γ +O(4− d), A−(4−d)/2 = 1− 4− d

2
logA+O((4− d)2),

where γ is the Euler-Mascheroni constant, we see that
(7.63)

Σ2(p) =
e2

16π2

(
1 +

4− d

2
log 4π + · · ·

)(
2

4− d
− γ + · · ·

)
×

∫ 1

0

(
− 2(1− x) �p + 4m+ (4− d)(1− x) �p − (4− d)m

)
×

(
1− 4− d

2
log[xm2 − x(1− x)p2] + · · ·

)
dx

=
e2

16π2

[(
2

4− d
− γ + log 4π

)
(−�p + 4m) + �p − 2m

−
∫ 1

0

[−2(1− x) �p + 4m] log[xm2 − x(1− x)p2] dx

]
+O(4− d).

(We used the fact that 2
∫ 1

0
(1− x) dx = 1.)

So much for the regularization; now for the renormalization. The “Taylor
expansion of Σ(p) about �p = m” (7.49) is accomplished as follows. Setting

Cd =
2

4− d
− γ + log 4π − 1, fx(p

2) = log[xm2 − x(1− x)p2],

by (7.63) we have

(7.64) Σ2(p) =
e2

16π2

[
Cd(−�p + 4m) + 2m−

∫ 1

0

[−2(1− x) �p + 4m]fx(p
2) dx

]
.

We have dropped the O(4− d) error term, since eventually we will let d→ 4. Now,
�p2 = p2I, so we have (p2 −m2)I = 2m( �p −m) + ( �p −m)2 and hence

fx(p
2)I = [fx(m

2) + f ′
x(m

2)(p2 −m2) + o(p2 −m2)]I

= fx(m
2)I + ( �p −m)[2mf ′

x(m
2) +O( �p −m)].

Observe also that fx(m
2) = log(x2m2) and f ′

x(m
2) = (x − 1)/xm2. Substituting

this into (7.64) and writing �p = m+ ( �p −m) therein, we obtain

Σ2(p) = Σ2(m) + ( �p −m)[Σ′
2(m)d +O( �p −m)],

where

(7.65) Σ2(m) =
e2

16π2
(3Cd + 2)m− e2

8π2

∫ 1

0

(1 + x)mfx(m
2) dx
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and
(7.66)

Σ′
2(m) = − e2

16π2

[
Cd + 2

∫ 1

0

(1− x)fx(m
2) dx− 4m2

∫ 1

0

(1 + x)f ′
x(m

2) dx

]
.

Unfortunately, since f ′
x(m

2) = (x−1)/xm2, the last integral in (7.66) diverges.
This is an infrared divergence caused by the masslessness of the photon. As a quick
fix, we replace the photon denominator q2 + iε in (7.62) by q2 − μ2 + iε where μ
is a small positive number. The effect is to add (1 − x)μ2 to the argument of the
logarithm in fx(p

2), so that (7.66) becomes

(7.67) Σ′
2(m)

= − e2

16π2

[
Cd+

∫ 1

0

([
(2− 2x) log[x2m2 + (1− x)μ2]− 4m2x(x2 − 1)

m2x2 + (1− x)μ2

)
dx

]
.

We shall say no more about the μ-dependence of Σ2(p), as it is unimportant for
the main considerations here.

The required counterterms δZ2 and δm are

δZ2 = Σ′
2(m), δm = −Σ2(m) + (δZ2)m = −Σ2(m) +mΣ′

2(m)

as we found in (7.50), where Σ′
2(m) is given by (7.67) and Σ2(m) is given by (7.65)

with fx(m
2) = log[x2m2 + (1− x)μ2]. With their inclusion, the dressed propagator

i( �p −m− Σ2(p) + (δZ2) �p − δm)−1

has a finite limit as d → 4, with the appropriate pole and residue. (It should be
noted that the only part of Σ2(p) that blows up as d → 4, namely, the constant
Cd, appears only in the quantities Σ2(m) and Σ′

2(m); the O( �p −m)2 remainder is
finite.)

A few words about the intuitive interpretation of the mass renormalization:
The idea that suggests itself is that the observed, physical mass of an electron (say)
is the sum of the “bare mass” that it would possess if the electromagnetic field
were turned off and an “electromagnetic mass” due to the presence of the field.
There is nothing wrong with this, except that it appears that the “bare mass”
must be −∞ and the “electromagnetic mass” must be ∞ +m. One’s faith in the
quantum theory of electromagnetism might be shaken by this circumstance were it
not for the fact that the same problem occurs in the classical theory. In classical
electromagnetism, an electrostatic field E possesses an energy density proportional
to |E|2. For the inverse-square-law field generated by a point charge at the origin,
we have |E(x)|2 = |x|−4, so the total electrostatic energy associated to the point
charge is a constant times

∫
|x|−4 d3x, which is infinite. By the equivalence of

mass and energy, a point charge carries an infinite “electrostatic mass,” so its “bare
mass” must also be −∞. Attempts to solve this problem by discarding the notion
of a point charge and taking the electron to be a continuous distribution of charge
on some suitably small region lead to various other difficulties, mostly because one
has to worry about the forces that the different parts of the electron would then
exert on each other, and no good resolution has ever been found. (See the Feynman
Lectures [42], vol. II, Chapter 28, for an extended discussion of this matter.)

In fact, the quantum-mechanical situation is less singular than the classical one
in the sense that the integral

∫
|x|>ε

|x|−4 d3x diverges linearly in 1/ε, whereas the

integral defining Σ2(p), Wick-rotated into Euclidean space and cut off at |q| = Λ,
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diverges only logarithmically in Λ. (Keep in mind that large momenta correspond to
small distances.) In any case, the renormalization procedures of QED, mysterious
though they may seem, lead to finite, meaningful results more successfully than the
classical theory or any of its proposed modifications.

7.10. One-loop QED: the photon propagator and vacuum polarization

We now turn to the evaluation and interpretation of the one-loop correction to
the photon propagator shown in Figure 7.22. By (6.59), the value of this diagram,
with the the external legs amputated, is

(7.68) iΠμν
2 (p) = −(−ie)2

∫
tr

[
γμ i( �q +m)

−q2 +m2 − iε
γν i( �q − �p +m)

−(q − p)2 +m2 − iε

]
d4q

(2π)4
.

As in the preceding section, the subscript 2 means that this is the contribution to
Πμν(p) of order e2.

� � �

�� � �

�

Figure 7.22. The one-loop correction to the photon propagator.

By now the regularization procedure should be familiar, so we proceed quickly
and focus only on the features that are peculiar to this case. The Feynman formula
turns the denominator of the integrand of (7.68) into∫ 1

0

dx

[(−q2 +m2 − iε)(1− x) + (−(q − p)2 +m2 − iε)x]2

=

∫ 1

0

dx

[−q2 +m2 + 2xpρqρm− xp2 − iε]2
.

To eliminate the cross term, we substitute q + xp for q, thus obtaining

iΠμν
2 (p) = −e2

∫ 1

0

∫
R4

tr[γμ( �q + x �p +m)γν( �q − (1− x) �p +m)]

[−q2 +m2 − x(1− x)p2 − iε]2
d4q

(2π)4
dx.

From the formulas for the traces of products of Dirac matrices (which can be found
in practically any physics text that deals with them), one finds that the numerator
of the integrand is equal to

4[(q+xp)μ(q−(1−x)p)ν+(q+xp)ν(q−(1−x)p)μ−(q+xp)ρ(q−(1−x)p)ρgμν+m2gμν ]

= 4[2qμqν − 2x(1− x)pμpν − (−q2 +m2 − x(1− x)p2)gμν ] + linear terms in q.

The linear terms in q may be dropped, as they are odd and so contribute nothing
to the integral; neither do the terms qμqν with μ �= ν, as they are odd in qμ. Next,
we perform the Wick rotation in q. The d4q acquires a factor of i, the q2 becomes
−|q|2, and the q0q0 acquires a minus sign. Each of the terms qμqμ can be replaced
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by (1/d)|q|2 by (7.11) (where d = 4 at the moment), with the result that qμqν can
be replaced by −(1/d)|q|2gμν . In short, iΠμν

2 (p) is equal to

−4ie2
∫ 1

0

∫
R4

[1− (2/d)]|q|2gμν − 2x(1− x)pμpν + (m2 − x(1− x)p2)gμν

[|q|2 +m2 − x(1− x)p2]2
d4q

(2π)4
dx.

We now replace this divergent 4-dimensional integral by a d-dimensional one by
(7.15):

iΠμν
2 (p) =

−4ie2
(2π)d

2πd/2

Γ(d/2)

×
∫ 1

0

∫ ∞

0

[1− (2/d)]r2gμν − 2x(1− x)pμpν + (m2 − x(1− x)p2)gμν

[r2 +m2 − x(1− x)p2]2
rd−1 dr dx,

which converges for d < 2. (The expected singularity at d = 2, however, turns out
to be removable because of the factor of 1− (2/d).) We evaluate it by (7.14):

iΠμν
2 (p)

=
−4ie2

(4π)d/2Γ(d/2)

∫ 1

0

[(
1− 2

d

)
Γ

(
1+

d

2

)
Γ

(
1− d

2

)
gμν(m2 − x(1−x)p2)(d/2)−1

+
[
(x(1−x)p2+m2)gμν − 2x(1−x)pμpν

]
Γ

(
d

2

)
Γ

(
2− d

2

)
(m2−x(1−x)p2)(d/2)−2

]
dx.

But (
1− 2

d

)
Γ

(
1 +

d

2

)
Γ

(
1− d

2

)
= −2

d

(
1− d

2

)
Γ

(
1 +

d

2

)
Γ

(
1− d

2

)
= −Γ

(
d

2

)
Γ

(
2− d

2

)
,

so the two terms can be combined, and some simplifications result. The upshot is
that the regularized Πμν

2 (p) has exactly the form (7.52) that it should:

Πμν
2 (p) = (p2gμν − pμpν)π2(p

2),

where

π2(p
2) =

−8e2
(4π)d/2

Γ

(
2− d

2

)∫ 1

0

x(1− x)(m2 − x(1− x)p2)(d/2)−2 dx.

The factor Γ(2− (d/2)) blows up at d = 4, as expected.
As explained in §7.6, renormalization is accomplished by adding in the coun-

terterm −(δZ3)(p
2gμν − pμpν), where

δZ3 = π2(0) =
−8e2
(4π)d/2

Γ

(
2− d

2

)
md−4

∫ 1

0

x(1− x) dx.

With this specification of δZ3, we can take the limit as d → 4 to get the finite
renormalized value of Πμν

2 (p):

(7.69) Πμν
2,renorm(p) = π(p2)(p2gμν − pμpν),
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where

π(p2) = lim
d→4

[π2(p
2)− π2(0)]

= lim
d→4

−8e2
(4π)d/2

Γ

(
2− d

2

)∫ 1

0

x(1− x)[(m2 − x(1− x)p2)(d/2)−2 −md−4] dx.

(We really should write π2,renorm(p
2) instead of π(p2), but we will use the simpler

notation for the rest of this section.) Since

Γ

(
2− d

2

)
=

(
2− d

2

)−1

+O(1)

and

(m2 − x(1− x)p2)(d/2)−2 −md−4 =

(
d

2
− 2

)
log

m2 − x(1− x)p2

m2
+ o(d− 4),

we have

(7.70) π(p2) =
e2

2π2

∫ 1

0

x(1− x) log
m2 − x(1− x)p2

m2
dx.

This is the final result: a finite quantity with physical significance.
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Figure 7.23. Fermion-Fermion scattering: the basic diagram and
a one-loop correction.

Vacuum polarization. To explain the meaning of π(p2), let us return to the
scattering of two distinguishable Fermions with masses m1 and m2 and charges e1
and e2 that we discussed in §6.9 and consider the contribution of the diagram in
Figure 7.23b to the basic process represented by Figure 7.23a. Here the particles
have incoming 4-momenta p1 and p2, outgoing 4-momenta p′1 and p′2, incoming
spinor coefficients u1 = u(p1, s1) and u2 = u(p2, s2), and outgoing spinor coeffi-
cients u′

1 = u(p′
1, s

′
1) and u′

2 = u(p′
2, s

′
2). We make no assumption about the precise

nature of the incoming and outgoing particles, but the virtual particles in the loop
in Figure 7.23b are supposed to be an electron-positron pair. (Other virtual parti-
cle pairs also contribute to the process, but the more massive they are, the smaller
their effect.)

Letting q = p1 − p′1 = p′2 − p2 be the momentum transferred in the scattering,
the contribution of Figure 7.23a to the delta-function-free S-matrix element iM is

−m1m2e1e2
4
√
ωp1

ωp2
ωp′

1
ωp′

2

u′
1γ

μu1
−igμν
q2

u′
2γ

νu2,
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as we saw in §6.9 ((6.73), modified for the case of two distinct particles). The
contribution of Figure 7.23b is the same, except that the −igμν/q2 is replaced by

−igμρ
q2

[iΠρσ
2,renorm(q

2)]
−igσν
q2

=
−igμρ
q2

[iπ(q2)(q2gρσ − qρqσ)]
−igσν
q2

.

When sandwiched between the spinors, the qρqσ term drops out by the “baby Ward
identity” (7.34), so this boils down to π(q2)(−igμν/q2). Hence the sum of the two
diagrams gives

iM =
−m1m2e1e2

4
√
ωp1

ωp2
ωp′

1
ωp′

2

u′
1γ

μu1[1 + π(q2)]
−igμν
q2

u′
2γ

νu2.

We now pass to the low-energy approximation as in §6.9 to obtain

(7.71) iM = −ie1e2
1 + π(−|q|2)

|q|2 δs1s′1δs2s′2 .

We henceforth take s′1 = s1 and s′2 = s2; the spin variables will play no further
role.

As before, (7.71) is the Born approximation to the S-matrix element for scat-
tering by the potential V (r), where∫

V (r)e−iq·rd3r = e1e2
1 + π(−|q|2)

|q|2 ,

that is,

(7.72) V (r) = e1e2

∫
1 + π(−|q|2)

|q|2 eiq·r
d3q

(2π)3
.

Without the term π(−|q|2), V (r) would just be the Coulomb potential energy
e1e2/4π|r| generated by two point charges e1 and e2 located at points a and b with
a − b = r. To first order in perturbation theory, i.e., the order to which we have
calculated the correction term π(−|q|2), that term has the effect of replacing the
point charges by charge distributions e1ρ(x− a) and e2ρ(x− b) where

(7.73) ρ(r) = δ(r) +
1

2

∫
π(−|q|2)eiq·r d3q

(2π)3
= δ(r) + 1

2 π̌(r),

π̌ being the inverse Fourier transform of the function q �→ π(−|q|2). Indeed, the
potential energy generated by these distributions is

e1e2
4π

∫∫
ρ(x− a)ρ(y− b)

|x− y| d2x d3y =
e1e2
4π

∫∫
ρ(x)ρ(y)

|x− y + a− b| d
3x d3y,

which, on substituting the formula for ρ and setting r = a−b and r = |r|, becomes

e1e2
4πr

+
e1e2
4π

∫
π̌(x)

|x− r| d
3x+

e1e2
16π

∫∫
π̌(x)π̌(y)

|x− y + r| d
3x d3y.

The sum of the first two terms is V (r) since 1/|q|2 is the Fourier transform of
1/4πr, and the last term is of higher order since it involves two factors of π̌ (which
is itself a first-order correction), so it may be dropped.

What does the charge distribution ρ(r) look like? First, observe that∫
ρ(r) d3r = 1 + 1

2

∫
π̌(r) d3r = 1 + 1

2π(0) = 1,
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so that the total charge of the distribution ejρ(x) is still ej . (Actually this cal-
culation is suspect since, as we shall shortly see, π̌ is not an L1 function, but the
arguments that follow will suggest how to make rigorous sense of it by suitable
manipulations with approximations and limits.) To proceed further, we need to
calculate π̌(r).

As a first step, for s ∈ R
3 and s = |s|, let f(s) = log(1 + s2). Then

∇2f(s) =

(
d2

ds2
+

2

s

d

ds

)
log(1 + s2) =

2

1 + s2
+

4

(1 + s2)2
.

This is an L2 function on R3, and its inverse Fourier transform (evaluated via
spherical coordinates) is

(∇2f)∨(r) =
1

(2π)3

∫ ∞

0

[
2

1 + s2
+

4

(1 + s2)2

]
4πs

r
sin rs ds

=
1

4π2r

∫ ∞

−∞

[
2

1 + s2
+

4

(1 + s2)2

]
s sin rs ds

=
1

4π2r
Im

{
2πiRess=ise

irs

[
2

1 + s2
+

4

(1 + s2)2

]}
=

1

2πr
(1 + r)e−r.

On the other hand, (∇2f)∨(r) = −r2f∨(r), so f∨ is a distribution that agrees
away from the origin with −(1/2πr3)(1+ r)e−r. The latter is not integrable at the
origin; to make it into a distribution one must renormalize it by adding an infinite
multiple of δ as in the example in §7.1. That is, the action of f∨ on a test function
φ is actually of the form

〈f∨, φ〉 = − 1

2π

∫
(1 + r)e−r

r3
[φ(r)− φ(0)] d3r+ Cφ(0),

where the finite constant C could be determined, for example, by taking φ to be

a Gaussian and comparing this formula with the formula 〈f∨, φ〉 = 〈f, φ̂〉. (f∨

cannot contain any derivatives of the delta-function, for otherwise f would have
polynomial growth at infinity.)

Rescaling now shows that the inverse Fourier transform of fc(s) = log(1+|s/c|2)
agrees with −(1/4πr3)(1+cr)e−cr away from the origin. Combining this result with

the formula (7.70) for π(−|q|2) (with c = m/
√
x(1− x)), we find that

(7.74) π̌(r) = − e2

4π3r3

∫ 1

0

(
1 +

mr√
α(1− α)

)
e−mr/

√
x(1−x)x(1− x) dx+∞δ(r),

where m and e are the mass and charge of the electron13 and the coefficient “∞”
of δ(r) is determined (informally speaking) by the requirement that

∫
π̌(r) d3r = 0.

In short, the charge distribution ρ(r) consists of an infinite positive “bare”
charge at the origin surrounded by a continuous distribution of negative charge,
such that the total charge is 1. The density of the negative charge is approximately

e2/24π3r3 for r small (since
∫ 1

0
x(1 − x) dx = 1

6 ), and it decays like e−2mr for

r large (since the maximum value of x(1 − x) is 1
4 ). The approximation for r

small should not be taken too seriously, since the higher-order corrections affect it

13Of course the e inside the integral is exp(1). Sorry about that.
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substantially, but the decay for r large can be trusted. It implies that almost all of
the charge in the distribution is located inside the ball about the origin of radius
1/m, which is about 3.87 × 10−11 cm. (A simple calculation using the estimates

e−mr/
√

x(1−x) ≤ e−2mr and (1/r3)4πr2 dr ≤ (4π/m) dr shows that the integral of
ρ over the complement of this ball is less than .0017 in absolute value; the integral
over the complement of a ball k times as large is smaller by a factor of e−2(k−1).)
The usual picturesque way of describing this situation is that the bare positive
charge at the origin is surrounded by a cloud of virtual electron-positron pairs in
which the electrons are attracted to the origin and the positrons are repelled toward
infinity — an effect known as vacuum polarization — with the result that the bare
charge is shielded.

Whether or not one finds the “virtual cloud” picture appealing, the phenom-
enon that the effective charge of a particle increases at very short distances is an
experimental fact. However, short distances are correlated with high energies, and
this effect is observable only in very energetic reactions.14 In scattering processes in-
volving energies of around 90 GeV, available only in the most powerful accelerators
in existence today, the effective charge of an electron increases by about 3%. (Not
only virtual electron-positron pairs but various other virtual particle-antiparticle
pairs contribute to the vacuum polarization to produce this result.) Outside the
physics lab this effect is not observed, because the requisite energy density is al-
most never available in nature. The temperature required for particles to have a
mean kinetic energy of m, and hence to be able to probe distances r ∼ 1/m, is
around 6× 109 K, which is greater by a factor of about 100 than the temperatures
in the interiors of even the hottest stars. (Particles with such extremely high en-
ergies might be produced in a supernova explosion or in the jets generated in the
vicinity of a supermassive black hole.) Thus the familiar observational fact that
all electric charges in the “real world” are exact integer multiples of e is safe from
contradiction.

The fact that the effective charge of an electron depends on the energy scale
has analogues in other quantum field theories, and it suggests a useful shift in
point of view. To wit, one has to face the fact that the “coupling constants” of a
given theory are not really constants but rather functions of the energy scale. The
study of the behavior of these “coupling functions” goes under the general name
of renormalization group analysis. The name “renormalization group” is rather
misleading, at least for mathematicians who might hope to find some interesting
group theory at work here; the group in question is simply R, acting as the group
of scaling transformations. But renormalization group methods have come to be
recognized as an important part of quantum field theory as well as other areas of
physics where ideas from quantum field theory have applications; see Zee [138],
Weinberg [132], or Peskin and Schroeder [89]. These matters are largely beyond
the scope of this book, but we shall say a little more about them in §7.12.

Another place where vacuum polarization produces a measurable effect is in a
shift in energy levels of electrons in atoms. Consider, for example, a single electron
bound to a nucleus with charge Ze (i.e., atomic number Z). Suppose that in the
Dirac model, as discussed in §4.3, it is in a joint eigenstate of energy and total
angular momentum, with principal quantum number n (i.e., with n is as in (4.39))

14At such high energies, the preceding discussion should be taken as only a very rough guide
to reality.
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and angular momentum quantum number l (i.e., with total angular momentum
l(l + 1)), and let ψ be its wave function. If the Coulomb potential −Ze2/4πr is
replaced by the potential V (r) given by (7.72) (with e1 = −e and e2 = Ze), by
(6.11) the energy level E is shifted by the amount

ΔE =

∫
ΔV (r)|ψ(r)|2 d3r

in the first-order approximation, where ΔV is the correction term,

ΔV (r) = −Ze2
∫

π(−|q|2)
|q|2 eiq·r

d3q

(2π)3
.

(The perturbation parameter g in the discussion leading to (6.11) is e2 in the present
case, and it is incorporated into the function π(−|q|2).)

Now, the calculations we performed above easily imply that ΔV is negligibly
small (with decay like e−2mr) outside the ball of radius 1/m ∼ 10−11 cm. (One can
also approximate ΔV by a direct calculation without using the charge distribution
ρ to show that ΔV (r) ≈ −Ze4e−2mr/4π1/2m3/2r5/2 for r > 1/m; see Peskin and
Schroeder [89], p. 254.) On the other hand, for realistically small Z, the wave
function ψ is essentially constant over such a short distance, its characteristic length
being the diameter of the atom, which is roughly 100 times bigger. Hence we have

ΔE ≈ |ψ(0)|2
∫

ΔV (r) d3r.

In this approximation, the only states with nonzero energy shifts are those for which
ψ(0) �= 0, that is, those for which l = 0. For such states, explicit calculation of the
wave function and its normalization shows that

ψ(0) =
e3

8π2

(
Zm

n

)3/2

.

Moreover, the integral of ΔV can be calculated by the Fourier inversion formula
and l’Hôpital’s rule:∫

ΔV (r) d3r = −Ze2
π(−|q|2)
|q|2

∣∣∣∣∣
q=0

= −Ze4

2π2

d

ds

∫ 1

0

x(1− x) log
m2 + x(1− x)s

m2
dx

∣∣∣∣∣
s=0

= − Ze4

2π2m2

∫ 1

0

x2(1− x)2 dx = − Ze4

60π2m2
.

In particular, for an electron in the 2S1/2 state in a hydrogen atom (Z = 1, n = 2,
l = 0), we have

ΔE = −e6m3

64π2
· e4

60π2m2
= −1.122× 10−7 eV.

The corresponding spectroscopic shift Δν = ΔE/2π� is −27.13 MHz. This shift is
not directly observable; what is observable is the difference between the shifts in
the 2S1/2 and 2P1/2 states, which are at exactly the same energy level according to
the Dirac model. In our approximation (a good one), the shift for the 2P1/2 state is
zero since ψ(0) = 0, so vacuum polarization contributes −27.13 MHz to the energy
level difference between these states. This is known as the Uehling effect. In fact,
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the Uehling effect is a relatively small contribution to the total difference, which is
+1057.9 MHz (the Lamb shift), but since theory agrees with experiment to within
0.1 MHz, its existence is decisively confirmed. We shall comment further on the
Lamb shift at the end of the next section.

7.11. One-loop QED: the vertex function and magnetic moments

We now come to the evaluation of the diagram in Figure 7.24, which gives
the lowest-order radiative correction −ieΓμ

2 (p
′, p) in the dressed vertex function

−ieΓμ(p′, p). Here p, p′, and k are the momenta of the incoming electron, the
outgoing electron, and the internal photon, and q = p′ − p is the momentum of the
external photon (considered as incoming). With the external photon amputated
but the spinors u(p) = u(p, s) and u(p′) = u(p′, s′) for the incoming and outgoing
electron included, and the −ie factored out, it is

(7.75) u(p′)Γμ
2 (p

′, p)u(p)

=

∫
u(p′)

−igνρ
k2 + iε

(−ieγν)
i( �p ′ − �k +m)

(p′ − k)2 −m2 + iε

× γμ i( �p − �k +m)

(p− k)2 −m2 + iε
(−ieγρ)u(p)

d4k

(2π)4

� �
�

� �

� � � �� � �

�� � �� � �

Figure 7.24. The one-loop correction to the vertex function.

We proceed to regularize this. We first apply Feynman’s formula (7.6) to rewrite
the denominator:

(7.76)
1

[k2 + iε][(p′ − k)2 −m2 + iε][(p− k)2 −m2 + iε]

=

∫
[0,1]3

2δ(x+ y + z − 1)

D3
dx dy dz,

where

D = xk2 + y[(p′ − k)2 −m2] + z[(p− k)2 −m2] + iε.

Using the fact that p2 = p′
2
= m2, we have

D = k2 − 2kμ(yp
′ + zp)μ + iε.

                

                                                                                                               



7.11. ONE-LOOP QED: THE VERTEX FUNCTION AND MAGNETIC MOMENTS 245

To eliminate the cross term, let k̃ = k − yp′ − zp and use the facts that 2p′μp
μ =

p′2 + p2 − (p′ − p)2 = 2m2 − q2 and y + z = 1− x:

(7.77)
D = k̃2 − (yp′ + zp)2 + iε = k̃2 − (y2 + z2 + 2yz)m2 + yzq2 + iε

= k̃2 − (1− x)2m2 + yzq2 + iε.

We now attend to the numerator of the integrand in (7.75). We again replace

k by k̃ + yp′ + zp, then drop all terms that are linear in k̃ (since they integrate to

0) and replace k̃μk̃ν by 1
4gμν k̃

2, according to (7.11). Next, we simplify the result
further by using the anticommutation relations {γμ, �p} = 2pμ to move �p ’s to the
right and likewise �p ′’s to the left, then using the Dirac equations u(p′) �p ′ = mu(p′),
�pu(p) = mu(p) to replace them with m’s, and finally using the relation γνγ

μγν =
−2γμ. We omit the tedious details; the result is that the numerator in (7.75) can
be replaced by

u(p′)
[
[− 1

2 k̃
2 + (1− y)(1− z)q2 + (1− 2x− x2)m2]γμ

−mx(1− x)(p′ + p)μ + (x− 2)(y − z)qμ
]
u(p).

Moreover, since D is symmetric in y and z, the qμ term vanishes on integration
over the Feynman parameters and so can be dropped. Finally, we use the Gordon
identity (7.55) to rewrite the remaining terms as

(7.78) u(p′)

[
[− 1

2 k̃
2 + (1− y)(1− z)q2 + (1− 4x+ x2)m2]γμ

+ 2m2x(1− x)
iσμνqν
2m

]
u(p).

When we put together (7.75), (7.76), (7.77), and (7.78), and perform the Wick
rotation, we see that Γμ

2 (p
′, p) has precisely the correct form according to (7.56):

u(p′)Γμ
2 (p

′, p)u(p) = u(p′)

[
δF1(q

2)γμ + δF2(q
2)
iσμνqν
2m

]
u(p).

The contributions δF1(q
2) and δF2(q

2) to the form factors are given (after dropping
the tildes on the k’s) by

(7.79) δFj(q
2) =

∫
[0,1]3

fj(x, y, z; q
2)δ(x+ y + z − 1) dx dy dz (j = 1, 2),

where

f1(x, y, z; q
2) = 4e2

∫
R4

1
2 |k|2 + (1− y)(1− z)q2 + (1− 4x+ x2)m2

[|k|2 + (1− x)2m2 − yzq2]3
d4k

(2π)4
,(7.80)

f2(x, y, z; q
2) = 8e2

∫
R4

m2x(1− x)

[k2 + (1− x)2m2 − yzq2]3
d4k

(2π)4
.(7.81)

These are the integrals we must evaluate. To simplify the notation, we shall set

(7.82) Ξ = Ξ(x, y, z; q2) = (1− x)m2 − yzq2 = (yp′ + zp)2.

(Note that Ξ > 0 since yp′ + zp is timelike.)
The integral (7.80) splits into two parts:

f1(x, y, z; k
2) = I1 + I2,
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where

I1 = 2e2
∫
R4

|k|2
[|k|2 + Ξ]3

d4k

(2π)4
,

I2 = 4e2
∫
R4

(1− y)(1− z)q2 + (1− 4ξ + x2)m2

[|k|2 + Ξ]3
d4k

(2π)4
.

The integral I1 diverges and must be subjected to dimensional regularization. If we
retrace the path from (7.75) to (7.78), working in d dimensions, we find that some
−2’s coming from γνγ

μγν = −2γμ should be (2− d)’s, according to (7.16), and a 1
4

coming from (7.11) should be 1/d, with the result that I1 acquires an extra factor
of (d− 2)2/d. Hence, by (7.15), the regularized I1 is

2(d− 2)2e2

d(4π)d/2Γ( 12d)

∫ ∞

0

rd+1 dr

(r2 + Ξ)3

=
2(d− 2)2e2

d(4π)d/2Γ( 12d)

Ξ(d/2)−2

2

Γ(1 + 1
2d)Γ(2−

1
2d)

Γ(3)

=
(d− 2)2e2

2(4π)d/2
Γ(2− 1

2d)Ξ
(d/2)−2

=
e2

8π2

[
2

4− d
− γ + log 4π − 2− log Ξ

]
+O(4− d).

The integration over the Feynman parameters presents no further problem. Since∫
[0,1]3

δ(x+ y + z − 1) dx dy dz =

∫ 1

0

∫ 1−x

0

dy dx = 1
2 ,

the regularized part of δF1(k
2) coming from I1, with the O(4− d) term omitted, is

(7.83)
e2

16π2

[
2

4− d
+ log 4π + γ − 2

− 2

∫
[0,1]3

log[(1− x)m2 − yzq2]δ(x+ y + z − 1) dx dy dz

]
.

The integral I2 is convergent:

(7.84)

I2 =4e2
∫

(1− y)(1− z)q2 + (1− 4x+ x2)m2

(|k|2 + Ξ)3
d4k

(2π)4

=
4e2

(2π)4
[(1− y)(1− z)q2 + (1− 4x+ x2)m2]2π2

∫ ∞

0

r3 dr

(r2 + Ξ)3

=
e2

8π2

(1− y)(1− z)q2 + (1− 4x+ x2)m2

Ξ
.

Unfortunately, this quantity blows up at x = 1, y = z = 0, so its integral over the
Feynman parameters diverges. (This is obvious, for instance, when q = 0.) This is
another infrared divergence, and as before we tame it by replacing the k2 + iε in
(7.75) by k2 − μ2 + iε with μ a small positive number; the effect is to replace Ξ by
Ξ + xμ2. With this modification, adding the integral of (7.84) over the Feynman
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parameters to (7.83) gives the total contribution to the first form factor:

δF1(q
2) =

e2

16π2

{
2

4− d
− γ + log 4π− 2− 2

∫
[0,1]3

[
log[(1− x)2m2 − yzq2 + xμ2]

− (1− y)(1− z)q2 + (1− 4x+ x2)m2

(1− x)2m2 − yzq2 + xμ2

]
δ(x+ y + z − 1) dx dy dz

}
.

The renormalization is therefore accomplished by the addition of the counterterm

(7.85) δZ1 = −δF1(0) =
e2

16π2

(
− 2

4− d
+ γ − log 4π + 2

+ 2

∫ 1

0

[
log[(1− x)2m2 + xμ2]− (1− 4x+ x2)m2

(1− x)2m2 + xμ2

]
(1− x) dx

)
.

We proved at the end of §7.8 that the renormalization constants Z1 and Z2

are equal. It is worth verifying directly that the one-loop contributions to these
constants are the same. Indeed, if one compares the formulas (7.67) for Σ′

2(m) =
δZ2 and (7.85) for δZ1 and makes the substitution x → 1 − x in the latter, one
finds that

δZ2 − δZ1

=
e2

16π2

(
−1 + 2

∫ 1

0

[
(1−2x) log[x2m2 + (1−x)μ2]− x2(x−2)m2

x2m2 + (1−x)μ2

]
dx

)
.

It is not obvious to the naked eye that this quantity vanishes, but an integration
by parts shows that the integral of the logarithmic term is equal to

−
∫ 1

0

(x− x2)
2xm2 − μ2

x2m2 + (1− x)μ2
dx =

∫ 1

0

[
x+

x2(x− 2)m2

x2m2 + (1− x)μ2

]
dx,

from which the result follows. It is a testimony to the power of the Ward identity
that it explains this apparently fortuitous outcome.

Having tended to the mathematical difficulties of taming the divergent integrals,
let us consider the form factor F2. The one-loop contribution (7.79), (7.81) is
completely finite. By Wick rotation and (7.15), we have

f2(x, y, z; k
2) =

8e2

(2π)4
2π2

Γ(2)

∫ ∞

0

r3 dr

(r2 + Ξ)3
=

e2

4π2Ξ
,

so

(7.86) δF2(q
2) =

e2m2

4π2

∫
[0,1]3

x(1− x)

(1− x)2m2 − yzq2
δ(x+ y + z − 1) dx dy dz.

The factor of 1−x in the numerator tames the singularity at x = 1, so this integral
(unlike that of (7.84)) is still finite. In particular, we have

(7.87) δF2(0) =
e2

4π2

∫ 1

0

∫ 1−x

0

x

1− x
dy dx =

e2

8π2
.
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The anomalous magnetic moment of the electron. To see the physical
significance of (7.87), let us consider the scattering of an electron by a weak classical
static magnetic field, such as one imposed by a macroscopic magnet in a laboratory.
In a little more generality, the setup for describing the scattering of an electron by
a weak classical electromagnetic field15 A(x) is as follows. In diagrammatic terms,
we replace the external photon in Figure 7.24 by an interaction with the external
field A(x) as indicated in Figure 7.25. In analytic terms, we add an extra term to
the QED Hamiltonian that gives the interaction of A(x) with the electron current:

H ′ =

∫
eAμ(x)ψ(x)γ

μψ(x) d3x.

This Hamiltonian arises from the classical interaction Lagrangian−Aμj
μ (cf. (2.32))

by replacing the classical current jμ by the quantum current ψγmψ as in §4.1.

����

Figure 7.25. One-loop correction to the scattering of an electron
by an external field.

We are interested in the first-order approximation to the S-matrix element for
the scattering by this interaction. Writing u(p) and a(p) for u(p, s) and a(p, s) for
short, and q = p′ − p, we have〈

0

∣∣∣∣a(p′) [−i ∫ eAμ(x)ψ(x)γ
μψ(x) d4x

]
a(p)

∣∣∣∣ 0〉
=

−iem
2
√
ω′
pωp

∫
ei(p

′−p)μx
μ

Aμ(x)u(p
′)γμu(p) d4x

=
−iem

2
√
ω′
pωp

Âμ(q)u(p
′)γμu(p).

The key point is that we can get a better approximation to this S-matrix element
by incorporating the radiative corrections to the vertex in Figure 7.25, that is,
by replacing γμ by Γμ(p′, p) (with all renormalizations completed); we denote this
improved S-matrix element by S. By (7.56) and the Gordon identity (7.55), we
have

15In quantum mechanical terms, a “weak classical” field is an inexhaustible source and sink
for low-energy photons that remains essentially unchanged by the absorption or emission of such
a photon.
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S =
−iem

2
√

ω′
pωp

Âμ(q)u(p
′)

[
F1(q

2)γμ + F2(q
2)
iσμνqν
2m

]
u(p)

=
−iem

2
√

ω′
pωp

Âμ(q)u(p
′)

[
F1(q

2)
(p′ + p)μ

2m
+

(
F1(q

2) + F2(q
2)
) iσμνqν

2m

]
u(p).

We now specialize to the case of a static magnetic field, for which A(x) is
independent of x0 and A0(x) = 0: thus Aμ(x) becomes (0,−A(x)) where A(x) is
the vector potential from which the magnetic field B is given by B = curlA. (The
minus sign is there in accordance with (2.25).) The 4-dimensional Fourier transform

Âμ(q) thus becomes −2πδ(q0)Â(q) where Â now denotes the 3-dimensional Fourier
transform. We also assume that the momentum transfer q is small (because the
external field is supposed to be weak), and thereby discard all terms of order bigger
than 1 in q. In particular, since q0 = ωp′ − ωp = O(|q|2), we replace qν by (0,−q),
where the minus sign again comes from the fact that we are dealing with qν rather

than qν . (But there is no minus sign on the q in Â(q) because of the sign convention
for the Fourier transform!) Since F1(0) = 1, the result of these manipulations is
that

(7.88) S =
iem

2
√
ω′
pωp

2πδ(p′0−p0)Âj(q)u(p
′)

[
p′j + pj

2m
−

(
1 + F2(0)

) iσjkqk
2m

]
u(p).

Here the indices j and k run from 1 to 3, but the summation convention is still in
force.

Now, by (1.13), in either the Weyl or Dirac representations we have

σjk =
i

2
[γj , γk] = εjkm

(
σm 0
0 σm

)
,

where σm is a Pauli matrix and εjkm is the sign of the permutation (123)→ (jkm)
if j, k,m are distinct and 0 otherwise. Therefore,

Âj(q)σ
jkqk = (εjkmÂj(q)qk)

(
σm 0
0 σm

)
= −(q× Â(q))m

(
σm 0
0 σm

)
= −1

i

(
B̂(q) · σ 0

0 B̂(q) · σ

)
.

Substituting this into (7.88), we obtain

S =
iem

2
√
ω′
pωp

2πδ(p′0 − p0)u(p′)

×
[
p′j + pj

2m
Âj(q) +

1 + F2(0)

2m

(
B̂(q) · σ 0

0 B̂(q) · σ

)]
u(p).

Finally, we write the spinors u(p) and u(p′) in the Dirac representation (4.28),

u =

(
ul

us

)
, u =

(
ul −us

)
,

and make the nonrelativistic approximation us = 0 as in §4.3; then

S =
iem

2
√
ω′
pωp

2πδ(p′0 − p0)ul(p
′)†

[
p′j + pj

2m
Âj(q) +

1 + F2(0)

2m
B̂(q) · σ

]
ul(p).
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But in the same nonrelativistic approximation, this is the matrix element

(7.89) ie

〈
ψp′

∣∣∣∣ 1

2mi
(∇ ·A+A · ∇) +

1 + F2(0)

2m
B · σ

∣∣∣∣ψp

〉
,

where ∇ ·A denotes the operator f �→ ∇ · (Af) and ψp is the Dirac wave function
of an electron with definite 4-momentum p:

ψp(x) =

√
m

2ωp
eipμx

μ

u(p).

The normalization factor
√
m/2ωp is there because |u(p)| =

√
ωp/m |u(0)| by

(5.30) and the remarks following (4.43), and |u(0)| =
√
2 by our choice of normal-

ization in (5.29).
In turn, (7.89) is the first-order (Born) approximation to the amplitude for

scattering the electron by the “potential”

− e

2m
[i−1(∇ ·A+A · ∇) + (1 + F2(0))B · σ].

Comparing this with (4.31) and (4.32), we see that, for a constant magnetic field B,
these are precisely the orbital angular momentum and spin terms in (4.32) except
for the extra F2(0). The conclusion is that the magnetic moment of the electron
differs from the (e/2m)σ predicted by the Dirac equation by the factor 1 + F2(0),
which in the one-loop approximation (7.87) is

1 + F2(0) = 1 +
e2

8π2
≈ 1.0011614.

The value e2/8π2 for the so-called anomalous magnetic moment of the elec-
tron was first obtained by Schwinger in 1947, by a tour de force of calculation
using his own methods (without Feynman diagrams), and experiments at about
the same time yielded an experimental value of .00118 ± .00003. This impressive
agreement had a profound impact on the physicists of that day and marked the
point where quantum electrodynamics became established as a theory worthy of
the name. Subsequently, theoreticians have calculated F2(0) to order e8, obtain-
ing the value (1159652192 ± 74) × 10−12; and experimentalists have obtained the
empirical value (1159652188± 38)× 10−12.

One can easily believe that it requires experiments of Nobel-prize quality to
obtain such a precise experimental value for the anomalous magnetic moment; de-
scriptions can be found in Dehmelt [20] and van Dyck [123]. The theoretical
evaluation of this quantity, however, also requires heroic efforts. One must calcu-
late all the Feynman diagrams representing higher-order corrections to the basic
electron-photon vertex with up to four loops. Besides the one-loop diagram we have
evaluated above, there are 7 two-loop diagrams, 72 three-loop diagrams, and 891
four-loop diagrams. The two-loop diagrams and some of the three-loop ones can be
evaluated analytically (with a lot of work), but the others must be approximated
by numerical methods. In addition, one must ascertain that Feynman diagrams
containing virtual particles other than electrons and photons do not contribute
significantly. (The reason they do not, in a word, is that the other particles that
participate in the electromagnetic interaction are all much heavier than electrons,
and their contributions are suppressed accordingly.) In the end, one of the limiting
factors in obtaining a precise theoretical value is the precision to which the fine
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structure constant and the mass of the electron are known. More information can
be found in Roskies et al. [102] and Kinoshita [73].

Experiments have also determined the anomalous magnetic moment of the
muon to high precision: it is (1165937 ± 12) × 10−9. Since the muon (as far as
we know) differs from the electron only in being about 200 times as massive, the
theoretical calculation of this quantity is quite similar to that for the electron, with
one significant difference arising from the difference in masses: at two-loop and
higher orders, the dominant effects are created by Feynman diagrams containing
virtual electrons rather than (or in addition to) virtual muons, and diagrams con-
taining virtual strongly interacting particles must also be taken into account. See
Kinoshita and Marciano [74] and by Farley and Picasso [30] for the theoretical and
experimental aspects of this matter.

The Lamb shift. The other classic experimental test of QED — in fact, the
principal experimental motivation for the development of QED in the late 1940s
— is the Lamb shift, the difference in energy levels between the 2S1/2 and 2P1/2

states in the hydrogen atom. This difference is usually stated as a frequency (via
the relation E = 2π�ω) since it is determined experimentally by spectroscopic
methods; the experimental value is

ω2S1/2
− ω2P1/2

= 1057.845± .009 MHz.

The precision of this figure is remarkable (and difficult to improve), for the nat-
ural line width for 2S1/2–2P1/2 transitions is about 100 MHz. An account of the
experimental methods involved can be found in Pipkin [90].

Unlike the anomalous magnetic moment of the electron, which can be neatly
explained to a good level of precision by calculation of a single Feynman diagram,
the Lamb shift is a relatively complicated phenomenon that involves an interplay of
several different effects including all of the QED phenomena we have studied, and
a serious account of its theory is unfortunately beyond the scope of this book. In
particular, it involves an adaptation of quantum electrodynamics to handle prob-
lems involving bound states, which is something we have barely mentioned. Two
separate calculations, involving different approximations, are needed to account for
the effects of low-energy and high-energy virtual photons (we gave a hint of the
low-energy calculation in §6.2), and the results must then be glued together with
some care. We refer the reader to Weinberg [131], §14.3, and Sakurai [103], §2.8
and §4.7, for two accounts of the Lamb shift that both follow the procedure just
outlined but are rather different in detail. Also, Sapirstein and Yennie [105] give a
good account of the theory from a practical (computational) point of view, particu-
larly the ways in which several different physical processes contribute to the Lamb
shift and other shifts of energy levels.

7.12. Higher-order renormalization

We have now given a fairly thorough discussion of the renormalization of one-
loop Feynman diagrams in QED and φ4 scalar field theory. In this section we
give a brief informal account of renormalization in higher orders of perturbation
theory. The discussion that follows refers to an arbitrary quantum field theory
that is formally renormalizable — that is, a theory for which the set of superficial
degrees of divergence of its Feynman diagrams is bounded above — except where
specific theories are mentioned.
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First, on the practical level, one has the problem of renormalizing and eval-
uating specific Feynman diagrams in order to obtain higher levels of precision in
computing S-matrix elements and related quantities that can be compared with
experiment. On the one hand, this is an extremely labor-intensive enterprise. If
one goes to nth order in perturbation theory, the number of Feynman diagrams
involved as well as the difficulty of extracting the physically meaningful numbers
from each of them is a rapidly increasing function of n, as we saw in connection with
the magnetic moment problem in the preceding section. (For an account of analytic
and numerical techniques used to evaluate Feynman diagrams, see Smirnov [115].)
On the other hand, there are no additional conceptual hurdles to be overcome here.
The divergences of the diagrams are cancelled by adding more counterterms to the
Lagrangian, or rather — and this is the essential point — by modifying the co-
efficients of the counterterms already obtained by adding terms involving higher
powers of the coupling constant.

On the theoretical level, the problem is to prove that renormalization really can
be carried out to all orders of perturbation theory — that is, that the divergence of
any diagram can be removed by adding counterterms of the appropriate sort to the
Lagrangian, and that this can be done in a consistent way so that the counterterms
needed to render one diagram finite do not interfere with those needed for any
other. It took a lot of effort to produce a rigorous solution of this problem, and the
early literature is full of errors and obscurities. Here is a brief overview.

The analysis of renormalization began with the fundamental paper of Dyson
[26], who outlined a procedure for performing renormalizations in QED to arbi-
trary order. However, Dyson’s analysis did not adequately address the problem of
overlapping divergences, that is, diagrams that contain two divergent subdiagrams
that share a common internal line. A modification of Dyson’s method by Ward
seemed to clarify the situation, but later it was found that Ward’s method breaks
down at order 14. At about the same time, Salam developed a procedure to han-
dle overlapping divergences, but his papers lack mathematical precision. The first
attempt to provide a truly mathematically respectable procedure for performing
renormalization to arbitrary order for general field theories was made by Bogol-
ubov and Parasiuk [10], but they made some mistakes that were corrected by Hepp
[64], and Zimmermann [140] then found a different but equivalent procedure that
refined and extended the results. The theory that finally emerged from these papers
is generally known as BPHZ renormalization. Manoukian [80] contains an account
of BPHZ renormalization as well as a more rigorous formulation of Salam’s method
and a proof that the two are equivalent.

Zimmermann’s method effectively performs the renormalization at an earlier
stage so that divergent integrals never appear in the theory. Another such method
was devised by Epstein and Glaser; accounts of it can be found in their paper in
[126] and in the monograph of Scharf [106].

In 1951 Matthews and Salam [81] made a famous remark in connection with
renormalization theory that has become known as the “Salam Criterion”: “The
difficulty, as in all this work, is to find a notation which is both concise and in-
telligible to at least two persons, of whom one may be an author.” This began a
tradition of expressions of perplexity by workers in this area about the work of their
colleagues. Here is Hepp [64] speaking of Bogoliubov and Parasiuk: “It is hard to
find two theoreticians whose understanding of the essential steps of the proof is
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isomorphic.” Wightman [135] on Salam’s work: “I will not describe it, if for no
other reason than that I have never succeeded in understanding it.” And Feldman
et al. [33] on all of their predecessors: “But we must confess that none of us has
yet qualified as that other person who is the guarantor of the [Salam] Criterion.”
Accordingly, let the reader who proposes to venture into this jungle beware. The
typical mathematical tourist who wants to learn more about the development of
renormalization theory up to the mid-1970s would be much better off perusing the
volume edited by Velo and Wightman [126], which starts off with the delightful sur-
vey paper of Wightman just quoted and contains a number of informative articles
about various aspects of renormalization theory, including regularization schemes
and nonperturbative methods. And there are newer methods, which we shall cite
shortly.

Given that renormalization has been accomplished to all orders in perturbation
theory, so that the terms in the Dyson series for an S-matrix element or a vacuum
expectation value have all been rendered finite, the question remains: does the
series converge? In spite of the irrelevance of this question to practical calculations,
it is of obvious theoretical interest, for one would then have a rigorous construction
of vacuum expectation values of time-ordered products of fields and hence, by the
Wightman reconstruction theorem (Streater and Wightman [116], Glimm and Jaffe
[55]), of the interacting fields themselves. But the answer is: Nobody knows for
sure whether the series converges, but nobody seriously believes that it does.

The initial optimism that a proof of convergence would be found for QED was
destroyed by a 2-page paper of Dyson in 1952 [27] in which he gave a nonrigorous
but persuasive argument that the series should not converge. Here is a sketch
of the argument: The Dyson series for any QED process is a power series in the
fine structure constant α = e2/4π.16 If the series converges for the physical value
α ≈ 1/137, it will also converge for −1/137 < α < 0. So, imagine a universe in
which α is negative — in which like charges attract and opposite charges repel.
In such a universe there are configurations in which many electrons are clustered
together in one region and many positrons are clustered together in another region
some distance away. If the clusters are sufficiently large, the Coulomb potential
wells for electrons on one side and positrons on the other will be deeper than the
rest mass of an electron. At this point it becomes energetically advantageous for
electron-positron pairs to be created out of the vacuum, with the electron and
positron going to join the respective clusters of their siblings and thus deepening
the potential wells even more. As Dyson says, “there will be a rapid creation of
more and more particles, an explosive disintegration of the vacuum by spontaneous
polarization.” Moreover, although there is a high potential barrier between such
a pathological state and an “ordinary” state with no large clusters of particles,
there is a nonzero probability of any ordinary state turning into a pathological one
in a finite time because of tunneling effects. Conclusion: the Dyson series cannot
converge for any negative value of α, and hence not for any positive value either.

Where does this leave us? It seems entirely possible that there is no rigorous
nonperturbative mathematical model for QED. However, physicists nowadays are
inclined to respond to this bad news with a shrug of the shoulders, because QED, as

16It is a power series in the electron charge e, but the numbers of internal vertices in all
Feynman diagrams contributing to the process are congruent mod 2, so it is really a power series
in e2.
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a stand-alone theory, is physically wrong when one takes sufficiently large energies
into account, and its mathematical validity in the high-energy regime is therefore
a moot point. More precisely, high-order Feynman diagrams in QED describe elec-
tromagnetic processes involving large numbers of virtual particles and hence large
virtual energies; but it is physically incorrect to consider such processes without
including the other fundamental interactions and their quanta (quarks, gluons, W
bosons, neutrinos, . . . ), and then one’s mathematical models must change. If one
includes energies all the way up to the Planck scale, then gravity must enter the
picture too, but the Planck scale is so far from what is available in our laborato-
ries (or anywhere else in the observable universe) that we really have no idea what
new physics might turn up. Perhaps string theory will provide an answer. But
meanwhile, the generally accepted point of view is that quantum field theories such
as QED that purport to describe real physical processes should all be regarded as
“effective” field theories with a finite range of validity.

This attitude may seem like an admission of defeat, but only if one is seduced
by the probably unattainable dream of constructing a “theory of everything.” On
a more realistic level, it is obvious that one needs different tools for different sit-
uations. It is a good thing, for example, that in order to calculate the trajectory
of a rocket ship one does not have to understand the details of the motion of its
constituent elementary particles. We repeat the recommendation given at the end
of §7.2 that the reader consult the discussions of these issues in Weinberg [131],
§12.3, and Zee [138], §VIII.3.

Moreover, a focus on the relationship between the physics on different scales
leads to some deep new insights: this is the boon granted to us by renormalization
group analysis, to which we alluded briefly in §7.10. In particular, the development
of techniques involving the renormalization group has led to new proofs that renor-
malization can be accomplished consistently to all orders in perturbation theory
that are much simpler than the old BPHZ-type arguments. We refer the reader to
Feldman et al. [33], Hurd [65], Rosen and Wright [100], Keller and Kopper [71],
and the references given in these works. The underlying insight is that the process
of “subtracting off infinities” is really a matter of subtracting off the irrelevant ef-
fects of the (perhaps poorly understood) physics at high energy or short distance
scales in order to obtain the meaningful physics at the scales actually studied in
the laboratory.

There has also been some remarkable recent work by Alain Connes and his col-
laborators that sheds more light on this subject. In particular, Connes and Kreimer
[16], [17] have shown how to impose a Hopf algebra structure on the set of Feyn-
man diagrams and interpret renormalization in terms of a factorization problem in
this algebra. This thumbnail description only hints at the interesting mathematical
structures they have uncovered; the renormalization group also appears naturally
in their framework. See also Boutet de Monvel [13] for a brief sketch of the Connes-
Kreimer work, Kreimer [76] for an exposition of related earlier results, and van Sui-
jlekom [124] for applications of the Connes-Kreimer machinery to QED, including
a derivation of the Ward identities. Finally, ambitious readers should examine the
recent book [18] of Connes and Marcolli, where they will be taken on an exhausting
but exhilarating journey beginning with quantum fields (including Connes-Kreimer
theory) and proceeding through noncommutative geometry, Grothendieck motives,
and quantum statistical mechanics to number theory and the Riemann hypothesis.
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Ultimately, of course, the hope is to find new theories that will provide a more
fundamental level of understanding with a more solid mathematical foundation. In
particular, there is enough hope that a rigorous model for non-Abelian gauge field
theories can be devised that it is one of the Millenium Prize problems; see Jaffe and
Witten [67]. But even if such theories are found, it seems likely that perturbative
renormalization theory will still be the tool of choice for analyzing many problems,
and the structural insight provided by Feynman diagrams will continue to be a
conceptual guide for a long time to come.

                

                                                                                                               



                

                                                                                                               



CHAPTER 8

Functional Integrals

Thirty-one years ago [in 1948], Dick Feynman told me about his “sum
over histories” version of quantum mechanics. “The electron does
anything it likes,” he said. “It goes in any direction at any speed,
forward or backward in time, however it likes, and then you add up
the amplitudes and it gives you the wave function.” I said to him,
“You’re crazy.” But he wasn’t.
—Freeman Dyson ([136], p. 376)

After the very hard work of the last two chapters, the reader is probably ready
for some lighter entertainment. The devil, always ready to oblige, arrives with
another offer: some new insights into the material we have developed and some tools
for extending it further, at the price of working with some mathematically ill-defined
integrals over infinite-dimensional spaces. The attractive thing about this offer is
that these integrals have an intuitive foundation, lead to meaningful calculations,
and are tantalizingly close to being mathematically respectable. They are, in fact,
related to some genuine integrals known to probabilists that we shall discuss briefly.
Our main objective in this chapter, however, is to describe functional integrals as
used by physicists, so the reader must be prepared to exercise a certain amount
of suspension of disbelief. There is some solid mathematics here and there, but
much of the purported mathematics is fiction. Like good literary fiction, however,
it contains a lot of truth.

Functional integrals have proved to be a valuable tool in the development of
advanced quantum field theory, and some physicists like to develop the theory from
scratch in terms of them. (Zee [138] and Ramond [92] are good sources for this
point of view.) However, in this book we will use them only to rederive some of
the results of Chapter 6, the interest being in seeing how to arrive at these results
by a completely different route. Accordingly, we shall carry the calculations only
far enough to make the connection and leave further developments to the physics
texts.

8.1. Functional integrals and quantum mechanics

The cornerstone of the theory of functional integrals is the Gaussian integral
on Rn, which we now review. The basic formula is as follows:

Let A be an invertible complex n × n matrix such that A = AT and ReA is
positive semidefinite. Then for any y ∈ Rn,

(8.1)

∫
e−Ax·x/2eiy·x dnx =

(2π)n/2√
detA

e−A−1y·y/2.
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Here
√
detA =

∏n
1

√
λj where {λj}n1 are the eigenvalues of A and Re

√
λj > 0.

If ReA is singular, the integral is to be interpreted by replacing A by A + εI and
letting ε→ 0+ after performing the integration.

We recall the proof very briefly. First, for the special case n = 1 and A = 1,

the function f(y) =
∫
e−x2/2eiyx dx is easily seen to satisfy f ′(y) = −yf(y) and

f(0) =
√
2π, whence f(y) =

√
2πe−y2/2. Next, suppose A is real and hence

positive definite, and let C be the positive square root of A−1. The substitu-

tion x = Cv turns the left side of (8.1) into (detC)
∫
e−|v|2/2eiCy·v dnv, which

is a product of one-dimensional integrals to which the previous calculation ap-
plies. Since detC = (detA)−1/2 and |Cy|2 = A−1y · y, the result follows. More-
over, both sides of (8.1) are analytic functions of the entries of A in the region
R = {A : A = AT and ReA is positive definite} (for the right side this is clear at
least on the open dense set of A’s with all eigenvalues distinct), and they agree when
A is real and positive definite; hence they agree in general. The formula remains
valid when ReA is merely semidefinite because the right side extends continuously
to such A and the interpretation via A+ εI makes the left side do so too.

Of course, what (8.1) gives is the Fourier transform of the function e−Ax·x/2

— as a Schwartz class function when ReA is positive definite, and as a tempered
distribution in general.

It will be useful to record a rephrasing of (8.1) for Gaussian integrals on Cn.
Here and in the sequel, it will be understood, often without explicit mention, that
the “A = limε→0+(A + εI)” device is to be employed whenever we apply these
results to A’s whose real part is singular — in particular, to A’s that are pure
imaginary, the most important case for quantum theory.

Suppose A is a complex n× n matrix such that A = AT and ReA is positive
semidefinite. Then for w ∈ C

n,

(8.2)

∫
e−Az·zei(z·w+w·z) d2nz =

πn

detA
e−A−1w·w.

Here a · b =
∑

ajbj and d2nz is the volume element on Cn.

The proof is just a matter of sorting out the notation. We identify C
n with

R2n by z = x + ix′ ↔ (x, x′). Then the condition A = AT implies that Az · z =
Ax · x+Ax′ · x′, and z ·w+w · z is twice the real inner product on R2n. Hence the
result follows by applying (8.1) with n replaced by 2n, A by 2 (A 0

0 A ), x by (x, x′),
and y by 2(y, y′).

Next, we use the preceding results to evaluate integrals of the form∫
P (x)e−Ax·x/2 dnx

where P is a polynomial. It is enough to consider the case where P is a monomial,
and it will be convenient to write monomials as products of linear factors. Thus,
given i1, . . . , iK ∈ {1, . . . , n} (which need not all be distinct), we wish to evaluate∫

xi1 · · ·xiKe−Ax·x/2 dnx.
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Obviously the integral vanishes when K is odd, since the integrand is then odd, so
we take K = 2k. The key observation is that∫

xi1 · · ·xi2ke
−Ax·x/2 dnx = (−1)k ∂2k

∂yi1 · · · ∂yi2k

∫
e−Ax·x/2eiy·x dnx

∣∣∣∣
y=0

,

which by (8.1) is equal to

(−1)k
√

(2π)n

detA

∂2k

∂yi1 · · · ∂yi2k
e−A−1y·y

∣∣∣∣
y=0

.

Each of these 2k derivatives can do one of two things: (i) contribute a linear factor
in y, from differentiating the expression A−1y · y, or (ii) differentiate such a linear
factor that is already present. The only terms that are nonzero at y = 0 are those
obtained by using k of the derivatives to bring down linear factors and the other k
to reduce the latter to constants, and all such ways contribute equally. The result
is:

Suppose A is a complex n× n matrix such that A = AT and ReA is positive
semidefinite, and let A−1 = (αlm). Then for any i1, . . . , i2k ∈ {1, . . . , n},

(8.3)

∫
xi1 · · ·xi2ke

−Ax·x/2 dnx =
(2π)n/2√
detA

∑
αij1 ij2

· · ·αij2k−1
ij2k

,

where the sum is over all (2k−1)(2k−3) · · · 1 ways of grouping the indices i1, . . . , i2k
into k unordered pairs.

This ought to look familiar. The combinatorial structure here is exactly the
same as in Wick’s formula (6.42): the creation and annihilation of linear factors
is exactly analogous to the pairing of creation and annihilation operators in the
perturbation expansion of the S-matrix. This is no accident. As we shall soon see,
a slightly souped-up version of this result plays the role of Wick’s theorem in the
functional integral formulation of field theory.

With these results in hand, we begin our study of functional integrals in the
simple setting of a nonrelativistic particle moving in a potential in Rd, that is, a
solution of the Schrödinger equation i∂tψ = Hψ with H = (−1/2m)∇2 + V (x).
Throughout this discussion we omit writing the dimensional superscript on volume
elements ; that is, we write dx instead of ddx.

We shall use the informal language of distributions — more specifically, the
dialect due to Dirac, as discussed in §3.2. Thus, |x〉 denotes the (generalized) state
whose wave function is the delta-function f(y) = δ(y − x), |p〉 denotes the (gen-
eralized) state whose wave function is g(y) = eiy·p, and we have the completeness
relations

(8.4)

∫
|x〉〈x| dx =

∫
|p〉〈p| dp

(2π)d
= I.

The Schrödinger-picture state whose wave function is ψ will be denoted by |ψ〉, so
that ψ(x) = 〈x|ψ〉. Furthermore, we set |xt〉 = eitH |x〉, so that the wave function
at time t is ψ(t, x) = 〈x|e−itH |ψ〉 = 〈xt|ψ〉. We then have

∫
|xt〉〈xt| dx = I for any

t, so if tf > ti (f and i stand for “final” and “initial”),

(8.5) ψ(x, tf ) = 〈xtf |ψ〉 =
∫
〈xtf |yti〉〈yti|ψ〉 dy =

∫
〈xtf |yti〉ψ(y, ti) dy.

                

                                                                                                               



260 8. FUNCTIONAL INTEGRALS

In other words, the function K(x, tf ; y, ti) = 〈xtf |yti〉 is the integral kernel of the

time translation operator e−i(tf−ti)H . Our object is to compute this kernel.
The idea is to break up the interval [ti, tf ] into N equal subintervals of length

τ = (tf − ti)/N with endpoints tn = ti + nτ and apply (8.4) on each subinterval to
obtain
(8.6)

〈xf tf |xiti〉 =
∫
· · ·

∫
〈xf tf |xN−1tN−1〉 · · · 〈x2t2|x1t1〉〈x1t1|xiti〉 dx1 · · · dxN−1.

We shall calculate the terms 〈xn+1tn+1|xntn〉 to first order in τ by using the
Schrödinger equation and then see what happens as τ → 0, i.e., as N → ∞.
First, since e−iτH = I − iτH + o(τ ),

〈xn+1tn+1|xntn〉 = 〈xn+1|e−iτH |xn〉
= 〈xn+1|xn〉 − iτ 〈xn+1|H|xn〉+ o(τ )

= δ(xn+1 − xn)− iτ

[
−1
2m
〈xn+1|∇2|xn〉+ 〈xn+1|V |xn〉

]
+ o(τ ).

Next,

〈xn+1|V |xn〉 = V (xn)δ(xn+1 − xn),

and by (8.4),

〈xn+1|∇2|xn〉 =
∫∫

〈xn+1|p′〉〈p′|∇2|p〉〈p|xn〉
dp′ dp

(2π)2d

=

∫∫
eip

′·xn+1(−|p|2)(2π)dδ(p′ − p)e−ip·xn
dp′ dp

(2π)2d

=

∫
eip·(xn+1−xn)|p|2 dp

(2π)d
.

We can also express the delta-functions in the previous two formulas as p-integrals:

δ(xn+1 − xn) =

∫
eip·(xn+1−xn)

dp

(2π)d
.

Putting these all together, we obtain

〈xn+1tn+1|xntn〉 =
∫

eip·(xn+1−xn)

[
1− iτ

(
|p|2
2m

+ V (xn)

)]
dp

(2π)d
+ o(τ )

=

∫
exp

[
iτ

(
p · (xn+1 − xn)

τ
− |p|

2

2m
− V (xn)

)]
dp

(2π)d
+ o(τ ),

This is a Gaussian integral, so by (8.1) we have

(8.7) 〈xn+1tn+1|xntn〉 =
( m

2πiτ

)d/2

exp iτ

[
m

2

∣∣∣∣xn+1 − xn

τ

∣∣∣∣2 − V (xn)

]
+ o(τ ).

This is valid for n = 1, . . . , N − 2, and also for n = 0 and n = N − 1 if we set
x0 = xi and xN = xf . Plugging it into (8.6) yields

(8.8) 〈xf tf |xiti〉

=
( m

2πiτ

)Nd/2
∫
· · ·

∫
exp iτ

[N−1∑
0

m

2

∣∣∣∣xn+1 − xn

τ

∣∣∣∣2−V (xn)

]
dx1 · · · dxN−1+o(1).
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So far our calculations have been a bit loose but can easily be tightened up. But
now we make the great leap by letting τ → 0, N →∞, to obtain, formally,

(8.9) 〈xf tf |xiti〉 = (const.)

∫
exp

[
i

∫ tf

ti

[ 12m|x
′(t)|2 − V (x(t))] dt

]
[dx].

Here the constant is the (nonexistent) limit of (m/2πiτ )Nd/2, the integration is over
all paths x(t) such that x(ti) = xi and x(tf ) = xf , and [dx] is the (nonexistent)
Lebesgue measure on the space of all such paths.

Leaving aside for the moment the question of how to make real sense out of
this, there is clearly something very interesting going on! The quantity L(x, x′) =
1
2m|x′|2−V (x) is the classical Lagrangian of the system, so the integrand is eiS(x),

where S(x) =
∫ tf
ti

L(x, x′) dt is the classical action of the path x. Thus we have a

way of generating the quantum evolution of a nonrelativistic particle from quantities
that govern its classical physics in the Lagrangian formulation. The nature of the
classical-quantum correspondence becomes clearer if we put Planck’s constant back
in explicitly. As the reader may verify, all that is needed is a factor of 1/� in the
exponential:

(8.10) 〈xf tf |xiti〉 = (const.)

∫
eiS(x)/� [dx].

On the macroscopic scale where � is very tiny, this integral is highly oscillatory,
so that contributions of neighboring paths will tend to cancel out, except for those
paths x for which the first variation of the action S(x) vanishes so that the nearby
paths give constructive rather than destructive interference.1 In other words, the
major contribution to the quantum transition amplitude comes from those paths
whose action is stationary. But according to the principle of least action (§2.2),
these are precisely the classical trajectories!

The formula for the transition function 〈xf tf |xiti〉 is much less formidable when
the time interval tf − ti is infinitesimal. In that case it is given by (8.7), which can
be restated as

(8.11) 〈y + dy, t+ dt|y, t〉 = (const.) exp

[
iL

(
y,

dy

dt

)
dt

]
.

We derived this from the Schrödinger equation, but we can also go the other way by
a neat seat-of-the-pants calculation. Indeed, suppose ψ(x, t) is the wave function
of the quantum particle, whose evolution is given by

ψ(x, t′) =

∫
〈xt′|yt〉ψ(y, t) dy.

Taking t′ = t+ε, using (8.11) as a formula for 〈xt′|yt〉 that is correct to order ε (i.e.,
to within an error that is o(ε)), and replacing dt by ε and the derivative dy/dt by
the finite difference (x − y)/ε, we obtain the following, where the approximations

1This is just the principle of stationary phase, which has a number of rigorous formulations
in the context of finite-dimensional integrals. See, e.g., Erdélyi [28].
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are valid to order ε:

ψ(x, t+ ε) ≈ C

∫
exp

[
iε

[
m

2

(
x− y

ε

)2

− V (y)

]]
ψ(y, t) dy

≈ C

∫
eim(x−y)2/2ε[1− iεV (y)]ψ(y, t) dy.

Setting y = x+
√
ε z and continuing to discard terms that are o(ε), we find that

ψ(x, t+ ε) ≈ C

∫
eimz2/2[1− iεV (x+

√
ε z)]ψ(x+

√
ε z, t) dy

≈ C

∫
eimz2/2[1− iεV (x)]

[
ψ(x, t) +

√
ε
∑

zj∂jψ(x, t)

+
ε

2

∑
zjzk∂j∂kψ(x, t)

]
εd/2 dz.

The Gaussian integrals∫
eimz2/2 dz,

∫
zje

imz2/2 dz,

∫
zizje

imz2/2 dz

are evaluated in (8.3), and the result is

ψ(x, t+ ε) ≈ C

(
2πiε

m

)d/2 [
ψ(x, t) + iε

(
1

2m
∇2ψ(x, t)− V (x)ψ(x, t)

)]
.

On the other hand, to order ε,

ψ(x, t+ ε) ≈ ψ(x, t) + ε∂tψ(x, t).

Comparison of the terms of order 0 (in ε) and then the terms of order 1 in these
expressions for ψ(x, t+ ε) shows first that C = (m/2πiε)d/2 and then that

∂tψ(x, t) = i

(
1

2m
∇2ψ(x, t)− V (x)ψ(x, t)

)
,

which is the Schrödinger equation.
The historical genesis of all this is of some interest. The initial development of

quantum mechanics went by way of Hamiltonian mechanics, as we have sketched in
Chapter 3. In 1933 Dirac wrote a short paper [23] addressing the question of how
the Lagrangian might be connected to quantum mechanics. Based on some calcula-
tions with canonical transformations, he concluded that 〈x+ dx, t+ dt|x, t〉 “corre-
sponds” to exp[iL dt/�], in that the quantity U defined by 〈x+dx, t+dt|x, t〉 = eiU/�

has certain formal similarities to the classical action Ldt. Upon encountering
this paper some years later, Feynman wondered what was really meant by “corre-
sponds.” On the assumption that the meaning might be “is proportional,” Feynman
performed the derivation of the Schrödinger equation from (8.11) that we have just
seen and concluded that the correspondence really is a proportionality. He then pro-
ceeded to redevelop quantum mechanics from scratch, using (8.10) as the starting
point. Integrals of the type (8.10) are therefore often called Feynman path inte-
grals. Feynman’s personal account of this discovery in [36] is well worth reading;
his path-integral version of quantum mechanics is developed in [35] and [41].

Let us briefly consider some of the ways of giving rigorous meaning to (8.9).
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The first observation is that the easy case of a free particle, V = 0, works out
perfectly. Here the Schrödinger equation i∂tψ = −(1/2m)∇2ψ is easily solved via
the Fourier transform:

i∂tψ̂ =
|p|2
2m

ψ̂ =⇒ ψ̂(p, t0 + τ ) = e−iτ |p|2/2mψ̂(p, t0).

In other words, ψ(·, t0+τ ) = ψ(·, t0)∗Kτ where Kτ is the inverse Fourier transform

of e−iτp2/2m, which we have calculated in (8.1) to be (m/2πiτ )d/2eimξ|2/2τ . In other
words, when V = 0 the formula (8.7) for the propagator 〈xn+1tn+1|xntn〉 is exactly
correct. Hence, the finite-dimensional approximation (8.8) to the Feynman path
integral is also an exact formula for 〈xf tf |xiti〉 (we are just using the fact that
KT = KT/N ∗ · · · ∗KT/N [N factors, T = tf − ti]), and we are free to let N →∞.

Now let us put the potential back in. In view of the preceding remarks, the
expression on the right side of (8.8) is the integral kernel of the operator

e−iτH0e−iτV e−iτH0e−iτV · · · e−iτH0 = e−iτH0 [e−iτV e−iτH0 ]N

= eiTH0/N [e−iTV/Ne−iTH0/N ]N ,

where H0 = (−1/2m)∇2 and T = tf − ti. For a wide class of potentials V , this
operator converges in the strong operator topology to e−iTH , the desired propagator
for the Hamiltonian H = H0 + V . Indeed, we have the Trotter product formula:

Suppose A and B are self-adjoint operators such that A + B is essentially
self-adjoint on D(A)∩D(B). Then eit(A+B) (the group generated by the closure of
A+B) is the limit in the strong operator topology of [eitA/neitB/n]n as n→∞.

A proof can be found in Reed and Simon [94]. When A and B are bounded
(alas, not a case with many important applications), the convergence actually takes
place in the norm topology, and the proof is so simple that we present it for the
reader’s entertainment. Let C = eit(A+B)/n and D = eitA/neitB/n; we wish to show
that ‖Cn −Dn‖ → 0. Now,

Cn−Dn = Cn−1(C−D)+Cn−2(C−D)D+ · · ·+C(C−D)Dn−2+(C−D)Dn−1,

so since C and D are unitary and hence have norm 1,

‖Cn −Dn‖ ≤ ‖C −D‖
n∑
1

‖C‖n−j‖D‖j−1 = n‖C −D‖.

But C and D are both of the form I+it(A+B)/n+O(1/n2), so ‖C−D‖ = O(1/n2)
and hence n‖C −D‖ → 0.

The Trotter product formula shows that the transition from (8.8) to (8.9) can
be made rigorously on the level of operators rather than integral kernels, under
suitable conditions on the potential V . These conditions are not very restrictive;
for example, they are satisfied for V ∈ L2 + L∞ or for V a polynomial.

Another interesting possibility is to perform a Wick rotation2 — that is, to
replace t by −it — so that e−itH becomes e−tH and the Schrödinger equation
becomes the heat equation with a potential term, ∂tψ = (1/2m)∇2ψ − V ψ. By

2In momentum space the Wick rotation is p0 → ip0; the corresponding transformation in
space-time is t → −it.
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the same calculation we did above, the integral kernel 〈xf tf |xiti〉 for the operator

e−(tf−ti)H is approximated by

〈xf tf |xiti〉 ≈
( m

2πτ

)Nd/2
∫
· · ·

∫
exp τ

[ N1∑
0

m

2

∣∣∣∣xn+1 − xn

τ

∣∣∣∣2 − V (xn)

]
dx1 · · · dxn

(τ = (tf − ti)/N), which in the limit as N →∞ looks like

(const.)

∫
exp

[∫ tf

ti

[
− 1

2m|x
′(t)|2 − V (x(t))

]
dt

]
[dx],

the integral being over the space of all paths x with x(ti) = xi and x(tf ) = xf .
Now, in this expression the individual ingredients — the constant in front, the
Lebesgue measure [dx], and the velocity x′ — do not make sense (as there is
no reason for the paths to be differentiable), but the combination of them does:

(const.) exp[−
∫ tf
ti

m|x′(t)|2/2 dt] [dx] is nothing but Wiener measure on the space

of (continuous) paths on the time interval [ti, tf ].
3 The resulting formula for the so-

lution of the heat equation with potential in terms of a Wiener integral was worked
out by Kac after hearing Feynman lecture on his ideas; it is known as the Feynman-
Kac formula, and it has been a standard tool in stochastic analysis for many years.
Expositions of it can be found in Simon [114] and in many books that deal with
stoachastic processes and differential equations.

One might wonder if one could make sense of (8.9) in a similar way as the

integral of e−i
∫
V (x(t)) dt with respect to a complex measure on path space, or at

least as a limit of such integrals. The finite-dimensional version, the “measure”

dμN,iτ (x1, . . . xN ) = (2πiτ )−Nd/2 exp

[
−

N∑
1

(xj − xj−1)
2

2iτ

]
dx1 . . . dxN (x0 = 0)

on R
Nd, is not a genuine complex measure because its total variation is infinite,

but it is the limit in a suitable sense of the complex measure dμN,a (defined in
the same way, with iτ replaced by a) as a approaches iτ in the right half-plane.
Unfortunately, as was first pointed out by Cameron [15], one cannot let N → ∞
to obtain a corresponding complex measure on path space except when a is real
and positive, because the total variation |μN,a|(RNd) is (|a|/Re a)Nd/2 (by an easy
computation), and this diverges as N →∞ as soon as Im a �= 0.

The idea of making problems in quantum theory more tractable by performing
an analytic continuation to turn oscillatory integrands into decaying ones and fake
measures on path space into real ones has been quite fruitful, however, and it is the
source of many of the rigorous results in the subject. We shall say more about this
in §8.5. Here we just mention an idea of Nelson [86]: make the mass parameterm in
the Schrödinger equation complex. If we replace m by iμ, μ > 0, the Schrödinger
equation becomes ∂tψ = (1/2μ)∇2ψ − iV ψ. The Feynman-Kac formula applies
to this equation for a large class of potentials V ; the resulting solution can be
analytically continued to the domain Reμ > 0, and its limit as μ → m exists for
a.e. m > 0.

3More precisely, it is Wiener measure if one fixes the initial position xi. If one specifies both

xi and xf , it becomes the “Brownian bridge” measure; other variations are possible. See Folland

[48] and Simon [114] for more about Wiener measure.
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8.2. Expectations, functional derivatives, and generating functionals

We now return to the unrefined, unrigorous Feynman integral (8.9) and perform
some calculations with it in preparation for the passage from one-particle quantum
mechanics to quantum fields. It will be clear that these calculations have a certain
formal elegance but not that they really make sense or lead to something useful
— at least not at first. The reader is asked to be indulgent for a while; we will
eventually come down out of the clouds.

Let X = (X1, . . . , Xd) be the position operator for our particle moving in a
potential in Rd, and let Xt = eitHXe−itH be the corresponding Heisenberg-picture
operator. Suppose that, instead of computing the transition amplitude 〈xf tf |xiti〉,
we wish to compute the matrix element 〈xf tf |g(Xt1)|xiti〉, where ti < t1 < tf , g is
a (reasonable) function on R

d, and g(Xt1) is the operator defined by the spectral
functional calculus. (Why would we wish to do this? Again, have patience: this is a
warmup for some field-theoretic calculatons.) The key is to insert the eigenfunction
expansion for the operators Xt1 :

〈xf tf |g(Xt1)|xiti〉 =
∫
〈xf tf |g(Xt1)|xt1t1〉〈xt1t1|xiti〉 dxt1

=

∫
g(xt1)〈xf tf |xt1t1〉〈xt1t1|xiti〉 dxt1 .

Each of the transition probabilities in this last integral can be expressed as a func-
tional integral as in (8.9):

〈xf tf |g(Xt1)|xiti〉

= C

∫∫∫
g(xt1) exp

[
i

∫ t1

ti

[ 12mx′(t)2 − V (x(t)] dt

+ i

∫ tf

t1

[ 12my′(t)2 − V (y(t)] dt

]
[dx] [dy] dxt1 ,

where x runs over all paths on the time interval [ti, t1] with x(ti) = xi and x(t1) =
xt1 , and likewise y runs over all paths on the time interval [t1, tf ] with y(t1) = xt1

and y(tf ) = xf . (Here and in the following formulas, C denotes an [ill-defined]
normalization constant that may change from instance to instance.) But since we
are integrating over the intermediate position xt1 too, this is the same as integrating
over all paths on the interval [ti, tf ] with x(ti) = xi and x(tf ) = xf :

〈xf tf |g(Xt1)|xiti〉 = C

∫
g(x(t1)) exp

[
i

∫ tf

ti

[ 12mx′(t)2 − V (x(t)] dt

]
[dx].

In other words, inserting g(Xt1) into 〈xf tf |xiti〉 is equivalent to inserting g(x(t1))
into the corresponding functional integral.

Let’s generalize this: how about 〈xf tf |g2(Xt2)g1(Xt1)|xiti〉, where ti < t1 <
t2 < tf? The same procedure works. We have

〈xf tf |g2(Xt2)g1(Xt1)|xiti〉

= C

∫∫
〈xf tf |g2(Xt2)|xt2t2〉〈xt2t2|g1(Xt1)|xt1t1〉〈xt1t1|xiti〉 dxt1 dxt2 .

The operators gj(Xtj ) can now be replaced by their eigenvalues gj(xtj ), after which
inner products in this integral can be written as functional integrals that can be
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combined to yield

〈xf tf |g2(Xt2)g1(Xt1)|xiti〉

= C

∫
g1(x(t1))g2(x(t2)) exp

[
i

∫ tf

ti

[ 12mx′(t)2 − V (x(t)] dt

]
[dx].

Clearly this procedure extends to any number of factors gj(Xtj ). Here is the intrigu-
ing point: the product of gj ’s on the right is a product of ordinary numerical-valued
functions, so the order of the factors is immaterial; but the product of gj ’s on the
left is a product of noncommuting operators! What must be kept in mind is that
we assumed t1 < t2; the calculation does not work if the time ordering is reversed.
In short, we have:

If t1, . . . , tn ∈ (ti, tf ), then

(8.12)

〈
xf tf

∣∣∣∣T n∏
1

gj(Xtj )

∣∣∣∣xiti

〉

= C

∫ n∏
1

gj(x(tj)) exp

[
i

∫ tf

ti

[ 12mx′(t)2 − V (x(t)] dt

]
[dx],

where the integration is over all paths x on the interval [ti, tf ] with x(ti) = xi and
x(tf ) = xf , and C is a normalization constant that does not depend on g1, . . . , gn.

As an application, here’s how to derive the perturbation series for a perturbed
potential from the functional integral. Suppose the potential V is V0 + V1, and we
regard the Hamiltonian H0 = (−1/2m)∇2 + V0 as “known” and the extra term V1

as a perturbation; we wish to calculate the evolution operator e−itH in terms of
e−itH0 and V1. The transition amplitude 〈xf tf |xiti〉H for the evolution e−itH is
given by

〈xf tf |xiti〉H = C

∫
exp

[
i

∫ tf

ti

[ 12mx′(t)2 − V (x(t)] dt

]
[dx]

= C

∫
exp

[
i

∫ tf

ti

[ 12mx′(t)2 − V0(x(t))] dt

]
exp

[
−i

∫ tf

ti

V1(x(t)) dt

]
[dx].

Expand the last exponential in its power series and replace the “=” by “∼” to
acknowledge that nothing is being claimed about convergence, and use (8.12):

〈xf tf |xiti〉H

∼
∞∑
0

C

∫
exp

[
i

∫ tf

ti

[ 12mx′(t)2 − V0(x(t))] dt

]
× (−i)n

n!

∫
[ti,tf ]n

V1(x(t1)) · · ·V1(x(tn)) dt1 · · · dtn [dx]

=
∞∑
0

(−i)n
n!

〈
xf tf

∣∣∣∣ ∫
[ti,tf ]n

T[V1(Xt1) · · ·V1(Xtn)]dt1 · · · dtn
∣∣∣∣xiti

〉
H0

.

But this is nothing but the Dyson series (6.6), i.e., the transition-amplitude version
of the formula

e−i(tf−ti)H = e−i(tf−ti)H0T exp
1

i

∫ tf

ti

V1(t) dt.
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Returning to (8.12), let us introduce a little notation: we set

G(x) =
n∏
1

gj(x(tj)), TG(X) = T

n∏
1

gj(Xtj ).

It may be that we are interested not in 〈xf tf |TG(X)|xiti〉 but in 〈ψf |TG(X)|ψi〉
where ψf and ψi are given initial and final states. This modification is easy to
make:

〈ψf |TG(X)|ψi〉 =
∫∫

〈ψf |xf tf 〉〈xf tf |TG(X)|xiti〉〈xiti|ψi〉 dxf dxi.

The 〈xf tf |TG(X)|xiti〉 on the right can be written as a functional integral over all
paths having the specified initial and final values; but we are now integrating over
these values too, and the upshot is a functional integral over all paths over the time
interval [ti, tf ]:

(8.13) 〈ψf |TG(X)|ψi〉 = C

∫
ψf (x(tf ), tf )

∗ψi(x(ti), ti)G(x)ei
∫ tf
ti

L(x,x′) dt [dx].

In case ψi and ψf are both the ground state of the Hamiltonian H, we can
put this into a more useful form. For simplicity we assume that H has a discrete
spectrum, although this restriction is not essential; what is crucial is that the lowest
point of the spectrum of H, which we may take to be 0, is a simple eigenvalue. Let
{|ψn〉}∞0 be an orthonormal basis of eigenstates of H, with eigenvalues 0 = E0 <
E1 ≤ E2 ≤ · · · . Pick T+ > tf and T− < ti, and write

〈x+T+|TG(X)|x−T−〉 =
∫∫

〈x+T+|xf tf 〉〈xf tf |TG(X)|xiti〉〈xiti|x−T−〉 dxf dxi.

We have

〈x+T+|xf tf 〉 =
∑
m

〈x+|e−iT+H |ψm〉〈ψm|eitfH |xf 〉

=
∑
m

ψm(x+)ψm(xf )
∗ei(tf−T+)Em ,

and likewise

〈xiti|x−T−〉 =
∑
n

ψn(xi)ψn(x−)
∗
ei(T−−ti)En ,

where ψn(x) is the Heisenberg-picture (time-independent) wave function of the state
|ψn〉. Hence

(8.14) 〈x+T+|TG(X)|x−T−〉

=
∑
m,n

∫∫
ψm(x+)ψn(xi)ψm(xf )

∗ψn(x−)
∗ei(−T+Em+tfEm−tiEn+T−En)

× 〈xf tf |TG(X)|xiti〉 dxf dxi.

We wish to isolate the contribution of the ground state |ψ0〉. For this purpose,
we employ the same device we used in §6.11: we multiply T+ and T− by 1 − iε
where ε is a positive infinitesimal (i.e., a small quantity that ultimately is made to
vanish) and then let them tend to ±∞. The addition of the terms −εT+Em and
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εT−En to the exponent in (8.14) causes all the terms to vanish in the limit except
for m = n = 0, with the result that

(8.15)

lim
T±→±∞(1−iε)

〈x+T+|TG(X)|x−T−〉
ψ0(x+)ψ0(x−)

∗

=

∫∫
ψ0(xf )

∗
ψ0(xi)〈xf tf |TG(X)|xiti〉 dxf dxi

= 〈ψ0, tf |TG(X)|ψ0, ti〉.

In this last expression we can omit the tf and ti, because |ψ0, t〉 = e−itH |ψ0〉 = |ψ0〉.
Moreover, the choice of x+ and x− is at our disposal; we may assume (by translating
the coordinates if necessary) that ψ0(0) �= 0 and take x± = 0.

It is important to note that instead of giving a small negative imaginary part to
T±, we could equally well replace H by (1− iε)H, or perform some other operation
on H that has the effect of giving the eigenvalues a small negative imaginary part.
For example, if H is the Hermite operator −∇2 + |x|2, we could replace it with
−∇2+(1−iε)|x|2. This amounts to giving the Lagrangian a small positive imaginary
part, the significance of which will shortly become apparent.

Now, the numerator on the left of (8.15) can be expressed as a functional
integral by (8.12) (with ti, tf replaced by T±), and the denominator is a numerical
factor that does not depend on G. We can get rid of the latter by considering the
ratio of the quantities in (8.15) to the corresponding quantities with G ≡ 1. Since
〈ψ0|ψ0〉 = 1, this gives the final result:

(8.16) 〈ψ0|TG(X)|ψ0〉 =
∫
ei

∫
L(x,x′) dtG(x) [dx]∫
ei

∫
L(x,x′) dt [dx]

,

where the t-integrals are over the whole real line, the x-integrals are over all paths
on R that tend to 0 at ±∞, and the Lagrangian is taken to contain a positive infin-
itesimal imaginary part — quite analogously to the implicit convergence-enhancing
ε in (8.1) when the matrix A is imaginary. The nice thing about (8.16) is that the
inconvenient normalization factors on the functional integrals cancel out, being the
same for both numerator and denominator.

The formula (8.16) is very reminiscent of the Gell-Mann–Low formula (6.96).
The similiarity will turn into an equivalence when we generalize the preceding
results to the field-theoretic situation.

Recall that G(x) is a product of polynomials gj(x(tj)). It is enough to consider
monomials G(x) = xi1(t1)xi2(t2) · · ·xiJ (tJ) (where some tj ’s may coincide), corre-
sponding to the operator TG(X) = T[Xi1,t1Xi2,t2 · · ·XiJ ,tJ ]. For these G’s there is
a very convenient way to encode the preceding information in terms of “functional
derivatives” of a suitable generating functional.

Functional derivatives. The functional derivative is one of those handy in-
formal notions that tend to make sticklers for rigor tear their hair. In brief, suppose
X is a space of functions on Rn (we deliberately decline to be more specific) and
Φ : X → C is a (presumably nonlinear) functional. The functional derivative
δΦ(f)/δf(x) is formally defined as

δΦ(f)

δf(x)
= lim

ε→0

Φ(f + εδx)− Φ(f)

ε
,
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where δx is the delta-function with pole at x. Of course, if this definition is to
be taken literally, the space X of “functions” had better contain some generalized
functions as well. Alternatively, if X is a Banach space, one can define the deriv-
ative Φ′(f) to be the element of the dual space X∗ such that Φ(f + δf) − Φ(f) =
〈Φ′(f), δf〉 + o(‖δf‖). If X∗ can also be identified with a space of functions such
that the pairing of λ ∈ X∗ with f ∈ X is 〈λ, f〉 =

∫
λf , then δΦ(f)/δf(x) is just

[Φ′(f)](x). We shall not worry about the conditions on X and Φ needed to make
sense of this in general, as we need only some simple special cases for which the
functional derivative may be defined ad hoc and regarded merely as a convenient
formalism.

The simplest case is that of a linear functional given by an integral,

Φ(f) =

∫
f(y)h(y) dy,

for which we have
δΦ(f)

δf(x)
= h(x).

(Pragmatically speaking: think of the integral as a discrete sum
∑

f(yi)h(yi)Δyi
with one of the yi’s equal to x, take the ordinary partial derivative of this sum with
respect to f(x), and throw away the Δyi. The same idea applies to the functionals
discussed below.) A slightly less trivial and decidedly more useful case is

Φ(f) = exp

[∫
f(y)h(y) dy

]
,

for which it is of interest to take functional derivatives of all orders:

(8.17)
δJΦ(f)

δf(x1) δf(x2) · · · δf(xJ)
= h(x1)h(x2) · · ·h(xJ)Φ(f).

For a quadratic functional

Φ(f) =

∫∫
f(y)K(y, z)f(z) dy dz (K(x, y) = K(y, x)),

we have

δΦ(f)

δf(x)
=

∫
K(x, z)f(z) dz +

∫
f(y)K(y, x) dy = 2

∫
K(x, z)f(z) dz,

δ2Φ(f)

δf(w) δf(x)
= 2K(w, x).

Here again we are more interested in the exponential,

Φ(f) = exp

[∫∫
f(y)K(y, z)f(z) dy dz

]
,

which gives

(8.18)

δΦ(f)

δf(x)
=

[
2

∫
K(x, z)f(z) dz

]
Φ(f),

δ2Φ(f)

δf(w) δf(x)
=

(
2K(w, x) + 4

[∫
K(x, z)f(z) dz

]2)
Φ(f).

These formulas will suffice for our needs.
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The generating functional. Returning to the calculations involving func-
tional integrals, let us replace the Lagrangian L(x, x′) by L(x, x′) + F (t) · x, where
F is a more-or-less arbitrary function of t with values in the same Rd as the variable
x, and consider the functional integral

(8.19) Z[F ] =

∫
ei

∫
(L(x,x′)+F (t)·x) dt[dx],

where the integrand in the exponential is implicitly assumed to carry an infinitesi-
mal positive imaginary part.

We can derive the ground-state expectations 〈ψ0|TG(X)|ψ0〉 of (8.16) by func-
tional differentiation of Z[F ] with respect to F . Indeed, by (8.17) we have

δJ

δFi1(t1) · · · δFiJ (tJ)

∫
ei

∫
(L(x,x′)+F (t)·x) dt[dx]

= iJ
∫

xi1(t1) · · ·xiJ (tJ)e
i
∫
(L(x,x′)+F (t)·x) dt[dx],

so ∫
xi1(t1) · · ·xiJ (tJ)e

i
∫
L(x,x′) dt[dx]

= (−i)J δJ

δFi1(t1) · · · δFiJ (tJ )

∫
ei

∫
(L(x,x′)+F (t)·x) dt[dx]

∣∣∣∣
F=0

.

For G(x) = xi1(t1)xi2(t2) · · ·xiJ (tJ ), this is the numerator on the right side of
(8.16), and the denominator is just Z[0], so we have

(8.20) 〈ψ0|T[Xi1,t1 · · ·XiJ ,tJ ]|ψ0〉 = (−i)J δJ

δFi1(t1) · · ·FiJ (tJ)

Z[F ]

Z[0]

∣∣∣∣
F=0

.

Since Z[F ] can be used to generate all these expectation values, it is called the
generating functional for them.

Let us say a few words about the physical meaning of F and Z[F ]. It is
appropriate to think of F as an external driving force, because for L(x, x′) =
1
2m|x′|2 − V (x), the modified Lagrangian L(x, x′) + F (t) · x corresponds to the
Newtonian equation mx′′ = −∇V (x)+F (t) for motion in a potential with an extra
force F (t). On the quantum level, the functional Z[F ], or rather its normalized
version Z[F ]/Z[0], can be interpreted as the transition probability for the ground
state at time −∞ to return to the ground state at time +∞ in the presence of the
external force F , by the obvious modification of (8.16):

〈ψ0,+∞|ψ0,−∞〉F =
Z[F ]

Z[0]
.

In the analogous construction in field theory, which we will consider in the next
section, F can be interpreted as an external field that provides a source and sink for
particles entering and leaving an interaction, and hence it is often referred to as a
source. The philosophy of systematically using sources in field-theoretic calculations
is due to Schwinger and is developed in his book [110]. However, the reader need
not worry too much about the physical significance of F ; for our purposes it is
a mathematical device, and it will always be set equal to zero at the end of the
calculations, as in (8.20).
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8.3. Functional integrals and Boson fields

Scalar fields. We are now ready to see how the functional integral formulation
of quantum field theory works. We begin with the easiest case, a free real scalar
field φ(t,x), whose Lagrangian density is

L(φ, ∂φ) = 1
2 [(∂φ)

2 −m2φ2].

All we have to do is to pass from finite to infinite dimensions: the field φ(t,x)
(functions of t parametrized by x ∈ R3) plays the role of the position variables
x1, . . . , xd (functions of t parametrized by the integer 1, . . . , d), and the action
functional is ∫ tf

ti

L(φ, ∂φ) dt =

∫ tf

ti

∫
R3

L(φ, ∂φ) d3x dt.

What we wish to calculate is vacuum expectation values of time-ordered products
of field operators, for S-matrix elements can be obtained from them as explained
in §6.11. We achieve this simply by adapting the formulas derived in the preceding
section for ground-state expectation values of time-ordered products of position
operators to the infinite-dimensional situation.

The reader may find this blithe passage from finite to infinite dimensions rather
breathtaking, although it is probably no worse a mathematical sin than the use
of Feynman path integrals to begin with. It may be reassuring to note that the
corresponding passage to infinite dimensions in the theory of real Gaussian integrals
is perfectly well-defined and not particularly difficult; we shall sketch the basic ideas
in §8.5.

At this point we alert the reader to an upcoming shift of notation. The letter
x, which denoted an element of Rd in the discussion of finite-dimensional theory,
will henceforth be used for an element of 4-dimensional space-time, x = (t,x), and
we will revert to including the superscript 4 in the volume element d4x. Moreover,
the ground state ψ0 in the field-theoretic situation is the vacuum state for the free
field, and we denote it by |0〉 as in Chapter 6.

We begin by adding an arbitrary source F (x) = F (t,x) into the Lagrangian:

LF (φ, ∂μφ)(x) =
1
2 [(∂φ)

2 −m2φ2](x) + F (x)φ(x).

Thus, the analogue here of the F (t) · x in the finite-dimensional problem is∫
F (t,x)φ(t,x) d3x,

and the analogue of the generating functional (8.19) is

(8.21) Z[F ] =

∫
exp

[
i

∫
( 12 [(∂φ)

2 − (m2 − iε)φ2] + Fφ)d4x

]
[dφ].

Here we have given the ghostly positive imaginary infinitesimal in the integrand in
the exponential a concrete form by replacing m2 by m2 − iε; and the integration is
over the space of all classical fields vanishing at infinity.

Now, the quantity exp
[
i
∫

1
2 [(∂φ)

2− (m2− iε)φ2]d4x
]
is a Gaussian function of

φ, and the integral on the right side of (8.21) is its Fourier transform in the variable
F . We know how to compute such Fourier transforms. There is just one little step
that must be taken: we perform an integration by parts,∫

(∂φ)2 d4x =

∫
∂μφ∂

μφ d4x = −
∫

φ∂2φ d4x,
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to rewrite (8.21) as

(8.22)
Z[F ]

Z[0]
=

∫
exp

[
i
∫
[− 1

2φ(∂
2 +m2 − iε)φ+ Fφ] d4x

]
[dφ]∫

exp
[
i
∫
[− 1

2φ(∂
2 +m2 − iε)φ] d4x

]
[dφ]

.

By (8.1), generalized to infinite dimensions, the numerator on the right is equal to

C exp

[
i

2

∫
F (∂2 +m2 − iε)−1F d4x

]
,

where the constant C is formally (2π)∞/2/
√
det i(∂2 +m2 − iε), and the denomi-

nator is the same constant C. The value of C is of no real concern since it cancels
out in the fraction.

Behold the miracle: we are left with a perfectly well-defined finite-dimensional
integral. Moreover, by virtue of (6.48), the operator (∂2 +m2 − iε)−1 in it is given
by convolution with our old friend the Feynman propagator ΔF :

4

(8.23)

∫
exp

[
i
∫
[− 1

2φ(∂
2 +m2 − iε)φ+ Fφ] d4x

]
[dφ]∫

exp
[
i
∫
[− 1

2φ(∂
2 +m2 − iε)φ] d4x

]
[dφ]

= exp

[
i

2

∫
F (∂2 +m2 − iε)−1F d4x

]
= exp

[
i

2

∫∫
F (x)ΔF (x− y)F (y) d4x d4y

]
.

This can now be functionally differentiated to yield vacuum-to-vacuum expectations
for time-ordered products of field operators, by (8.20) (again, generalized to infinite
dimensions). Namely, for x1, . . . , xn ∈ R4,

(8.24) 〈0|T[φ0(x1) · · ·φ0(xn)]|0〉 = (−i)n δn

δF (x1) · · · δF (xn)

Z[F ]

Z[0]

∣∣∣∣
F=0

= (−i)n δn

δF (x1) · · · δF (xn)
exp

[
i

2

∫∫
F (x)ΔF (x− y)F (y) d4x d4y

] ∣∣∣∣
F=0

.

Here the subscripts 0 on the left are included to make clear that the φ’s on the
left are free quantum fields, i.e., operator-valued functions, as opposed to the φ’s
in (8.23), which are classical fields, i.e., numerical-valued functions.

Each differentiation in (8.24) either brings down a factor of the convolution
iΔF ∗ F or turns such a factor into iΔF , as in (8.18), and all terms with a factor
of iΔF ∗ F vanish at F = 0. Hence, 〈0|T[φ0(x1) · · ·φ0(xn)]|0〉 vanishes if n is odd
and is equal to

(8.25) (−i)n
∑

iΔF (xi1 − xi2)iΔF (xi3 − xi4) · · · iΔF (xin−1
− xin)

=
∑

[−iΔF (xi1 − xi2)][−iΔF (xi3 − xi4)] · · · [−iΔF (xin−1
− xin)]

if n is even (since (−i)n = (−1)n/2), where the sum is over all ways of pairing
the indices x1, . . . , xn up — just as in (8.3). In effect, in view of (6.44) we have
recovered the formula (6.42) for vacuum expectation values of free fields.

Well, free fields are boring — but we are now in a position to derive the Feynman
diagrams for a self-interacting scalar field. Specifically, let us add a polynomial

4Recall that the F in ΔF is in honor of Feynman and has nothing to do with the source F .
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interaction term −P (φ) to the Lagrangian (P (φ) = λφ4/4! for the standard case).
Thus, we take

L = L0 − P (φ) + Fφ, L0 = 1
2 [(∂φ)

2 − (m2 − iε)φ2].

The generating functional with source F is

Z[F ] =

∫
ei

∫
(L0+Fφ) d4xe−i

∫
P (φ) d4x[dφ],

and we can obtain vacuum expectation values of time-ordered products of quantum
fields by functional differentiation as in (8.24). Here, however, the quantum fields
are interacting, and the ground state is the interacting-field vacuum. We accordingly
denote the quantum fields by φH (the H stands for “Heisenberg-picture”) and the
vacuum by |Ω〉 as in §6.11:

(8.26) 〈Ω|T[φH(x1) · · ·φH(xk)]|Ω〉 = (−i)k δk

δF (x1) · · · δF (xk)

Z[F ]

Z[0]

∣∣∣∣
F=0

.

The integral defining Z[F ] is no longer Gaussian, and we cannot evaluate it explic-

itly as it stands, so we formally expand ei
∫
P (φ) d4x in its power series to obtain

(8.27)

Z[F ] =
∞∑
0

(−i)n
n!

∫ ∫
· · ·

∫
P (φ(y1)) · · ·P (φ(yn))e

i
∫
(L0+Fφ) dx d4y1 · · · d4yn [dφ].

Here the equality must be understood in the sense of perturbation theory: we do
not mean to take the whole series in (8.27) seriously, but only to use finitely many
terms of it to derive computable results. With this understanding, we combine
(8.26) and (8.27) to get

(8.28) 〈Ω|T[φH(x1) · · ·φH(xk)]|Ω〉

=
1

Z[0]

∞∑
n=0

(−i)k+n

n!

∫ ∫
· · ·

∫
φ(x1) · · ·φ(xk)P (φ(y1)) · · ·P (φ(yn))

× ei
∫
L0 d4x d4y1 · · · d4yn[dφ].

Now, the integrals on the right are again vacuum expectation values — not of the
quantum fields φH(xj) but of the corresponding free fields, with respect to the
free-field vacuum |0〉:

(8.29)

∫ ∫
· · ·

∫
φ(x1) · · ·φ(xk)P (φ(y1)) · · ·P (φ(yn))e

i
∫
L0 d4x d4y1 · · · d4yn [dφ]

=

〈
0

∣∣∣∣∫ · · ·∫ T
[
φ0(x1) · · ·φ0(xk)P (φ0(y1)) · · ·P (φ0(yn))]

]
d4y1 · · · d4yn

∣∣∣∣ 0〉 .

Moreover, by (8.27) and (8.29),

Z[0] =
∞∑
0

(−i)n
n!

∫ ∫
· · ·

∫
P (φ(y1)) · · ·P (φ(yn))e

i
∫
(L0) d

4x d4y1 · · · d4yn [dφ]

=
∞∑
0

(−i)n
n!

〈
0

∣∣∣∣∫ · · ·∫ T
[
P (φ0(y1)) · · ·P (φ0(yn))]

]
d4y1 · · · d4yn

∣∣∣∣ 0〉 .

Substituting this and (8.29) into (8.28), we recover the Gell-Mann–Low formula
(6.94)!
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On the other hand, the integrals on the left of (8.29), with the y-integrations
suppressed, are again functional derivatives of the Gaussian integral∫

ei
∫
(L0+Fφ)dx[dφ]

— each P (φ(yj)) is obtained by applying P (−iδ/δF (yj)) — and hence they are
given by functionally differentiating the finite-dimensional integral on the right of
(8.23). The upshot is that these integrals are integrals over y1, . . . , yn of products
of Feynman propagators −iΔF (yi − yj) and −iΔF (xi − yj); these are precisely
the position-space integrals corresponding to Feynman diagrams, with external as
well as internal lines representing propagators. From them one obtains S-matrix
elements by replacing the propagators for external lines by suitable coefficients, as
we explained in §6.11.

One can also derive the interpretation of Feynman diagrams in terms of S-
matrix elements directly from the picture of functional integrals with sources, rather
than going through the calculations in §§6.3–7. We refer the reader to Zee [138]
for a lucid account.

To sum up: functional integrals have given us a new derivation of the Feynman
rules and the Gell-Mann–Low formula for a self-interacting scalar field. In a sub-
ject where complete mathematical rigor is out of reach, it is reassuring to see two
quite different paths leading to the same destination. It also offers the hope that
functional integrals may be useful at a more advanced level in obtaining results
that are inaccessible otherwise; and this indeed turns out to be the case.

The procedure for a charged scalar quantum field ψ of mass M (correspond-
ing to a complex-valued classical field) is similar. The free Lagrangian is L0 =
∂μψ

∗∂μψ−M2ψ∗ψ. The functional integration must be extended over both ψ and
ψ∗, just as the differential form representing area on C is not dz but (1/2i)dz∧dz∗.
Thus, the generating functional with a source J (a complex-valued function) is

Z[J, J∗] =

∫∫
ei

∫
L0 dxeiJψ+J∗ψ∗

[dψ][dψ∗].

This is a Gaussian integral that is evaluated by the infinite-dimensional analogue
of (8.2). In taking functional derivatives of it, one must treat J(x) and J∗(x)
as independent variables, just as one treats z and z∗ as independent variables in
analyzing nonholomorphic functions on C.

As an example of two interacting fields, consider a neutral scalar field φ and a
charged scalar field ψ with an interaction Hamiltonian cψ∗ψφ. The Lagrangian is

L = Lφ + Lψ + Lint

= 1
2 (∂μφ∂

μφ−m2φ2) + (∂μψ
∗∂μψ −M2ψ∗ψ)− cψ∗ψφ.

The generating functional with a source F for φ and a source J for ψ is

(8.30) Z[F, J, J∗] =

∫∫∫
ei

∫
L dxeiFφ+iJψ+iJ∗ψ∗

[dφ][dψ][dψ∗].

If the interaction term Lint is omitted from L, this is a Gaussian integral that can be
evaluated as before. The interaction is incorporated perturbation-theoretically by
writing ei

∫
Lint as

∑
(in/n!)(

∫
Lint)

n, and one obtains vacuum expectation values
and S-matrix elements by functional differentiation just as in the case of a single
neutral field.
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Massless vector fields. The functional integral treatment of massive vector
quantum fields is similar to that of scalar fields. For massless vector fields such as
electromagnetism, however, gauge invariance requires an extra twist. The action
for the free electromagnetic field, as we saw in §2.4, is

(8.31)

S(A) = − 1
4

∫
FμνF

μν d4x (Fμν = ∂μAν − ∂νAμ)

= 1
2

∫
Aμ(g

μν∂2 − ∂μ∂ν)Aν d
4x,

and the analogue of (8.21) with a source J (a vector-valued function) is

(8.32)

∫
ei[S(A)+

∫
JμAμ d4x][dA],

which should equal (up to a normalization constant)

exp

[
i

2

∫
Jμ(x)Δμν(x− y)Jν(y) d4x d4y

]
,

where Δμν is a fundamental solution for the operator −gμν∂2 + ∂μ∂ν . However, as
we pointed out in §6.5, this operator has no fundamental solution. The situation is
analogous to the finite-dimensional Gaussian integral (8.1) in which the matrix A
is not invertible.

The trouble comes from the redundancy in the description of the electromag-
netic field. The Lagrangian −1

4FμνF
μν is invariant under all gauge transformations

Aμ �→ Aμ+∂μχ, so the integrand in (8.32) is constant along the orbits of the (non-
compact, infinite-dimensional) gauge group, just as e−Ax·x is constant along cosets
of the nullspace of A when A is singular. The result is that the integral (8.32)
diverges badly enough that even physicists are willing to admit that there is a
problem. What is needed is a way to factor out the action of the gauge group so
that integration is extended only over physically inequivalent fields.

The usual way of doing this is a device due to Faddeev and Popov [29].5

To explain the idea, let us consider a similar but much simpler situation. Let
{σt : t ∈ R} be a one-parameter group of measure-preserving diffeomorphisms of
Rn whose orbits are (generically) unbounded, and suppose F is a function on Rn

that is invariant under these transformations. We wish to extract a finite and
meaningful quantity from the divergent integral

∫
F (x) dnx. One possibility is to

find a hypersurfaceM that is a cross-section for the orbits (perhaps after judiciously
pruning away sets of measure zero) and consider instead the integral

∫
M

F (x) dΣ(x)
where dΣ is surface measure on M . This quantity, however, depends on the choice
of M . A related procedure is to find a smooth function h such that M = h−1({0})
and consider the integral

∫
F (x)δ(h(x)) dnx. This quantity depends on the choices

of both M and h, for one must take into account the behavior of the delta-function
under a change of variable. (The basic formula is this: if φ is a smooth functon on
R and there is a unique t0 such that φ(t0) = 0, then δ(t− t0) = φ′(t0)δ(φ(t)).)

A better idea is to incorporate the appropriate change-of-measure factor into
the integral. Specifically, with M and h as above, let

Δ(x) =
d

dt

[
h(σt(x))

]
t=t(x)

,

5Short papers that have a big impact are more common in physics than in mathematics, but
this sketchy little two-page note is an extreme example.
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where t(x) is the unique number such that h(σt(x)(x)) = 0, and insert the factor

1 =

∫
δ(u) du =

∫
δ(h(σt(x)))Δ(x) dt

into the integral
∫
F (x) dnx to obtain (informally speaking)∫
F (x) dnx =

∫∫
F (x)δ(h(σt(x)))Δ(x) dt dnx.

Now, F and the measure dnx are assumed to be invariant under the transformations
σt, and it is easily checked that Δ(x) is too; hence we can make the substitution
x = σ−t(y) to obtain∫

F (x) dnx =

[∫
dt

] [∫
F (y)δ(h(y))Δ(y) dny

]
.

The divergence has now been isolated as the infinite factor
∫
dt. The remaining y-

integral is the quantity we have been seeking: it is finite provided that the restriction
of F toM decays suitably at infinity, and one can verify that it is independent of the
choice of M and φ. (On the informal level, one can observe that

∫
dt is merely the

volume of the transformation group, which does not depend on M , φ, or f , so that
its removal should yield an invariant quantity too. This, of course, is the reasoning
employed in the functional integral situation, where everything is somewhat ill-
defined but infinite constants in numerators and denominators cancel out.) The
same idea works for multi-parameter groups of transformations; the factor Δ(x)
there is an appropriate Jacobian determinant.

With this as motivation, we are ready to make sense out of the functional
integral (8.32). The gauge group here is the additive group G of differentiable
functions on R4 modulo constants, and the gauge transformation corresponding to
χ ∈ G is A �→ Aχ = A+∂χ. We begin by choosing a gauge-fixing condition g(A) = 0
to obtain a cross-section to the orbits of the gauge group. The Lorentz condition
g(A) = ∂μAμ = 0 is a reasonable choice (the one originally made by Faddeev
and Popov), but we shall do something more general with the aim of deriving the
whole family of photon propagators that we presented in §6.5. Namely, we take
h(A) = ∂μAμ − ω where ω is an arbitrary continuous function on R4. As before,
we write

(8.33) 1 =

∫
G

δ(f) [df ] =

∫
G

δ(h(Aχ)) det
δh(Aχ)

δχ
[dχ].

The integrals here are functional integrals over the space of differentiable functions
on R4; the delta-function represents the point mass at the origin in this space;
and since h(Aχ) = ∂μ(Aμ + ∂μχ) − ω = h(A) + ∂2χ, the functional determinant
det(δh(Aχ)/δχ) — the Faddeev-Popov determinant for this situation — is simply
det(∂2). In spite of its infiniteness, this determinant has the great virtue of being
independent of A. It can therefore be brought outside all integral signs as a constant
factor, where it will eventually cancel out when we pass to quotients of integrals.

We insert (8.33) into (8.32), obtaining

(8.34)

∫
ei[S(A)+

∫
JμAμ d4x][dA]

= (det ∂2)

∫∫
ei[S(A)+

∫
JμAμ d4x]δ(h(Aχ)) [dA] [dχ].
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At this point we must make explicit an assumption on the source J that has been
implicitly present all along: J represents an electromagnetic current, so it must
satisfy the charge-conservation equation ∂μJ

μ = 0; we also assume that J vanishes
at infinity to faciliate integration by parts. With this understood, the integral in
the exponent is invariant under all gauge transformations, since

∫
Jμ∂μχd4x =

−
∫
(∂μJμ)χd4x. So is the “Lebesgue measure” [dA], since gauge transformations

are simply translations in the space of fields. Hence the substitution of A−χ for A
turns the integrand of (8.34) into an expression that is independent of χ, so that

(8.35)

∫
ei[S(A)+

∫
JμAμ d4x][dA]

= (det ∂2)

[∫
[dχ]

] ∫
ei[S(A)+

∫
JμAμ d4x]δ(∂μAμ − ω) [dA].

The integral
∫
[dχ] (the volume of the gauge group) is another infinite constant that

can be ignored, and the integral that is left has some hope of being meaningful;
this is the analogue of the finite-dimensional result that we derived above.

To proceed further, we put the arbitrary function ω to use. Since (8.35) is
valid for each ω, it remains valid if we take a weighted average over different ω’s.

We choose the Gaussian weight function e−i
∫
(ω2/2a) d4x, where a is a nonzero real

number, and obtain∫
ei[S(A)+

∫
JμAμ d4x][dA]

= N(a)(det ∂2)

[∫
[dχ]

]∫∫
ei[S(A)+

∫
JμAμ d4x]e−i

∫
(ω2/2a) d4xδ(∂μAμ−ω) [dω] [dA],

where N(a) is another (infinite) normalization factor. Performing the integration
over ω and recalling the definition (8.31) of the action S(A), we obtain the final
result:

(8.36)

∫
ei[S(A)+

∫
JμAμ d4x][dA]

= C

∫
ei[S(A)−

∫
((∂μAμ)

2/2a)d4x+
∫
JμAμ d4x] [dA]

= C

∫
ei

∫
[−(1/2)Aμ(−gμν∂2+(1−a−1)∂μ∂ν)Aν+JμAμ] d

4x [dA],

where C is an infinite but harmless constant.
In short, the net effect of this lengthy calculation is to add the term −∂μ∂ν/a

to the differential operator −gμν∂2+∂μ∂ν . The point is that this new operator has
a fundamental solution, namely, the distribution Δ(a) whose Fourier transform is

Δ̂(a)
μν (p) =

1

p2 + iε

[
gμν − (1− a)

pμpν

p2

]
,

as we discused in §6.5. The functional integral can therefore be evaluated as in the
case of scalar fields to yield∫

ei[S(A)+
∫
JμAμ d4x][dA] = C ′ exp

[
i

2

∫
Jμ(x)Δ(a)

μν (x− y)Jν(y) d4x d4y

]
,

and one can proceed from there to obtain vacuum expectation values and integrals
corresponding to Feynman diagrams. The choice of a remains at one’s disposal;
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we have generally used a = 1 (“Feynman gauge”), but other values of a are ad-
vantageous for certain calculations, as we saw in §7.8. One can even take a = 0
(“Landau gauge”), which effectively corresponds to the simple choice g(A) = ∂μAμ

of gauge-fixing function.

8.4. Functional integrals and Fermion fields

To do interesting physics we need Fermions. The functional integral approach
can be adapted to them, but only with a rather bizarre twist: the “classical fields”
over which functional integration is performed must be taken to have values in a
set of “anticommuting numbers,” i.e., in a Grassmann algebra. This may seem
to make functional integrals for Fermion fields even further removed from honest
mathematics than those for Boson fields, but they are not quite as outlandish
as they appear at first sight. Just as we led up to Bosonic functional integrals
by considering finite-dimensional Gaussian integrals, we shall introduce Fermionic
functional integrals by describing the well-defined finite-dimensional analogue.

Grassmann-valued functions: finite dimensions. We start with an n-
dimensional real vector space V and consider the complexified Grassmann (exterior)
algebra G = C ⊗

∧
V over V . (The reason for not taking V to be complex to

begin with will appear in due course.) We write the exterior product by simple
juxtaposition, without the usual ∧. Let ξ1, . . . , ξn be a basis for V . We regard the
ξj ’s as elements of G and hence as “anticommuting variables” of which we can form
G-valued functions. The most general such function is

(8.37) f(ξ1, . . . , ξn) = c+
∑
i

ciξi+
∑
i<j

cijξiξj+
∑

i<j<k

cijkξiξjξk+· · ·+c1···nξ1 · · · ξn,

where the c’s are complex constants. Differentiation of such functions (on the left)
is defined by the rule

(8.38)
∂

∂ξj
ξi1 · · · ξik =

{
0 if j /∈ {ii, . . . , ik},
(−1)l−1ξi1 · · · ξ̂il · · · ξik if j = il,

where ξ̂il means that the term ξil in the product is omitted. It is easy to verify
that the operators ∂/∂ξj and left multiplication by ξj (which we denote simply by
ξj) satisfy the canonical anticommutation relations{

∂

∂ξj
, ξk

}
= δjkI,

{
∂

∂ξj
,

∂

∂ξk

}
= {ξj , ξk} = 0.

(One can also consider differentiation on the right: ξi1 · · · ξik(∂/∂ξj) is defined by
the right side of (8.38) with (−1)l−1 replaced by (−1)k−l. But we shall have no
need of this.)

The main order of business is integration of Grassmann-valued functions. The
definition (due to Berezin [8]) may seem rather peculiar, so we shall lead up to it
gently. The integral is performed one variable at a time: that is, for f of the form
(8.37) we are going to define

(8.39)

∫
dξj f(ξ1, . . . , ξn)
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as an analogue of the integral over the whole real line of a function of some real
variables,

(8.40)

∫ ∞

−∞
g(x1, . . . , xn) dxj .

(Writing the dξj on the left is a matter of convention — physicists commonly write
ordinary integrals this way too — but it is not without significance, because of
the anticommutativity in this situation.) The properties of the real integral (8.40)
that we wish the Grassmann integral (8.39) to emulate are as follows, where for
notational simplicity we take j = 1:

i.
∫
g dx1 is a function of the remaining variables x2, . . . , xn (a complex

number if g depends only on x1).
ii. If g(x1, . . . , xn) = g1(x1)g2(x2, . . . , xn), then∫

g dx1 =

(∫
g1 dx1

)
g2(x2, . . . , xn).

iii. For any function u of the variables x2, . . . , xn,∫
g(x1 + u(x2, . . . , xn), x2, . . . , xn) dx1 =

∫
g(x1, . . . , xn) dx1.

Again taking j = 1, let us see what these conditions mean for (8.39). First, we again
require

∫
dξ1 f(ξ1, . . .) to be a function of the remaining variables, or a complex

number if there are no remaining variables. Next, any f of the form (8.37) can be
written as f(ξ1, . . .) = α+ξ1β where α and β are functions of the remaining variables
ξ2, . . . , ξn. (To obtain the analogous formula for j �= 1, f(. . . , ξj , . . .) = α+ξjβ, one
must rearrange the orders of the factors in the terms of (8.37), introducing some
factors of −1.) Hence, in accordance with (ii) we require that∫

dξ1(α+ ξ1β) =

(∫
dξ1

)
α+

(∫
dξ1 ξ1

)
β,

where
∫
dξ1 and

∫
dξ1 ξ1 are complex numbers. Finally, in accordance with (iii) we

require that for any function γ of the remaining variables,∫
dξ1 (α+ (ξ1 + γ)β) =

∫
dξ1 (α+ ξ1β),

that is, (∫
dξ1

)
(α+ γβ) +

(∫
dξ1 ξ1

)
β =

(∫
dξ1

)
α+

(∫
dξ1 ξ1

)
β

for any γ, which forces
∫
dξ1 to be 0. It remains only to normalize the integral

by specifying the number
∫
dξ1 ξ1, which we take to be 1. Thus, going back to a

general index j, we have∫
dξj (α+ ξjβ) = β (α, β functions of the remaining variables).

A moment’s thought then reveals that integration is the same as differentiation:∫
dξj f(ξ1, . . . , ξn) =

∂f

∂ξj
.
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Multiple integrals are now defined as iterated integrals, with the convention
that the integrations are to be performed in order from innermost to outermost:∫

· · ·
∫

dξi1 · · · dξik f(ξ1, . . . , ξn) =
[∫

dξi1

[∫
dξi2 · · ·

[∫
dξik f(ξ1, . . . , ξn)

]]]
.

With this convention, interchanging two integrations changes the result by a factor
of −1; in other words, the dξi’s should be construed as anticommuting quanti-
ties just like the ξi’s. Thus, for example,

∫
· · ·

∫
dξi1 · · · dξik ξj1 · · · ξjk is the sign of

the permutation that takes {i1, . . . , ik} to {jk, . . . , j1} if the sets {i1, . . . , ik} and
{j1, . . . , jk} are equal, and is 0 otherwise.

It is immediate from the definition that integration commutes with right mul-
tiplication by constants. More precisely, if {i1, . . . , ik} is a subset of {1, . . . , n} and
{j1, . . . jn−k} is the complementary subset, then∫

dξi1 · · · dξik f(ξ1, . . . , ξn)g(ξj1 , . . . , ξjn−k
)

=

[∫
dξi1 · · · dξik f(ξ1, . . . , ξn)

]
g(ξj1 , . . . , ξjn−k

).

Left multiplication is a little less simple; the reader may verify that∫
dξi1 · · · dξik g(ξj1 , . . . , ξjn−k

)f(ξ1, . . . , ξn)

= g((−1)kξj1 , . . . , (−1)kξjn−k
)

[∫
dξi1 · · · dξik f(ξ1, . . . , ξn)

]
,

which may be restated as∫
g(ξj1 , . . . , ξjn−k

) dξi1 · · · dξik f(ξ1, . . . , ξn)

= g(ξj1 , . . . , ξjn−k
)

[∫
dξi1 · · · dξik f(ξ1, . . . , ξn)

]
if we make the convention that the dξi’s anticommute with the ξi’s.

In the applications of this machinery to physics, one must sooner or later inte-
grate over all the available Grassmann variables so that one ends up with ordinary
complex numbers. For future reference we display the result of doing this:
(8.41)

f(ξ1, . . . , ξn) = c1···nξ1 · · · ξn + · · · =⇒
∫
· · ·

∫
dξ1 · · · dξnf(ξ1, . . . , ξn) = c1···n.

That is, the integration over “the whole space,” or Berezin integral, simply picks
out the coefficient of the highest-order term ξ1 · · · ξn.

Suppose now that η1, . . . , ηn is another basis for our vector space V , and let M
be the change-of-basis matrix: ηj =

∑
j Mjkξk. Then

η1η2 · · · ηn = (detM)ξ1ξ2 · · · ξn
(recall that these products are exterior products!). On the other hand, our rules
for integration should apply just as well to the ηj ’s as to the ξj ’s, so we want∫

· · ·
∫

dηn · · · dη1 η1 · · · ηn = 1 =

∫
· · ·

∫
dξn · · · dξ1 ξ1 · · · ξn.
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To make this consistent, we need

(8.42) dη1 · · · dηn = (detM)−1dξ1 · · · dξn (η = Mξ).

Thus, the formula for the change of the “volume element” under linear transfor-
mations is exactly the reverse of the formula in real-variable calculus, which has
(detM) instead of (detM)−1! (A corollary of this is that the correspondence ξ → dξ
is not linear : we have ηj =

∑
Mjkξk, the corresponding transformation of differ-

entials is not dηj =
∑

Mjkdξk but dηj =
∑

(M−1)jkdξk.)
Since Fermions generally have distinct antiparticles, we really want complex

Grassmann variables rather than real ones. The transition is easy but requires a
bit of care to make things work smoothly. We start with a complex vector space
V of complex dimension n and think of it as a real vector space of dimension 2n
equipped with a complex structure, that is, a linear map J : V → V such that
J2 = −I. Let {ξ1, . . . , ξn} be a basis for V over C; then {ξ1, Jξ1, . . . , ξn, Jξn}
is a basis for V over R. We set ζj = (ξj − iJξj)/

√
2 and ζ∗j = (ξj + iJξj)/

√
2

to obtain a set of generators for the complex Grassmann algebra G = C ⊗
∧
V

consisting of ±i-eigenvectors of J . (The
√
2’s are there to make the transformation

(ξj , Jξj) �→ (ζj , ζ
∗
j ) unitary.) The transformation of differentials is given by the

inverse map as explained in the preceding paragraph: dζj = (dξj + idJξj)/
√
2 and

dζ∗j = (dξj − idJξj)/
√
2. With these definitions in hand, we consider elements of G

as “functions of the complex Grassmann variables ζj and ζ∗j ” and integrate them
just as before. That is, if α and β (resp. α′ and β′) contain no terms divisible by
ζj (resp. by ζ∗j ), then∫

dζj(ζjα+ β) = α,

∫
dζ∗j (ζ

∗
j α

′ + β′) = α′,

and so forth.
Next, we develop the finite-dimensional models for the Gaussian integrals of

Grassmann variables that will arise from quantum fields. Let ζj and ζ∗j (j =
1, . . . , n) be complex Grassman variables as in the preceding paragraph, and let A
be a complex n× n matrix. With the notational conventions

ζ∗Aζ =
∑
j,k

Ajkζ
∗
j ζk,

∫∫
[dζ∗ dζ] =

∫∫
· · ·

∫∫
dζ∗n dζn · · · dζ∗1 dζ1,

we claim that

(8.43)

∫∫
[dζ∗ dζ]e−ζ∗Aζ = detA.

(The exponential is defined by the usual power series, which is actually a finite sum
since the terms of degree > 2n vanish.) Indeed, the term in e−ζ∗Aζ of degree 2n is

(−1)n
n!

∑
Aj1k1

· · ·Ajnkn
ζ∗j1ζk1

· · · ζ∗jnζkn
=

1

n!

∑
Aj1k1

· · ·Ajnkn
ζj1ζ

∗
k1
· · · ζjnζ∗kn

,

where the sum is over all j’s and k’s such that {j1, . . . , jn} = {k1, . . . , kn} =
{1, . . . , n}. Since the ζjlζ

∗
kl
, being of degree 2, all commute with each other, they

can be rearranged so that the ζj ’s occur in their canonical order without changing
the value. Hence the sum over the j’s can be performed immediately to yield∑

A1k1
· · ·Ankn

ζ1ζ
∗
k1
· · · ζnζ∗kn

.
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Rearranging the k’s to put the ζ∗k ’s in canonical order introduces a factor of sgn(σk)
where σk is the permutation taking {k1, . . . , kn} to {1, . . . , n}. (The presence of the
ζj ’s does not affect this; when one interchanges two ζ∗k ’s, each of them must pass
through the same number of ζj ’s.) Hence we obtain∑

(sgnσk)A1k1
. . . A1kn

ζ1ζ
∗
1 · · · ζnζ∗n = (detA)ζ1ζ

∗
1 · · · ζnζ∗n,

and (8.43) follows immediately from this and (8.41).
Now let η1, . . . ηn be another set of complex Grassmann variables, indepen-

dent of ζ1, . . . , ζn (i.e., the ζ’s, ζ∗’s, η’s, and η∗’s together form a basis for a 4n-
dimensional space, and they all anticommute), and assume that the matrix A is
invertible and symmetric (A = AT ). Setting

η∗ζ =
∑

η∗j ζj ,

we have

−ζ∗Aζ + i(η∗ζ + ζ∗η) = −(ζ∗ − iA−1η∗)A(ζ − iA−1η)− η∗A−1η.

(The symmetry ofA is needed here so that, for example, (A−1η∗)Aζ = η∗(A−1A)ζ =
η∗ζ.) Moreover, the quantitiesX = (ζ∗−iA−1η∗)A(ζ−iA−1η) and Y = η∗A−1η are
of degree 2 and so commute with each other, from which it follows that e−(X+Y ) =
e−Xe−Y . In view of (8.43) and the translation-invariance of the integral, we there-
fore have
(8.44)∫∫

[dζ∗ dζ]e−ζ∗Aζ+i(η∗ζ+ζ∗η) =

∫∫
[dζ∗ dζ]e−(ζ∗−iA−1η∗)A(ζ−iA−1η)e−η∗A−1η

= (detA)e−η∗A−1η.

This is the “Gaussian Fourier transform” for Grassmann variables. It looks
very similar to the corresponding formula (8.2) for complex variables except that
the π’s are missing and — more significantly — the factor of detA appears in the
numerator instead of the denominator.

One can differentiate (8.44) to obtain integrals of polynomials times Gaussians,
just as in (8.3). For example,
(8.45)∫∫

[dζ∗ dζ]ζ∗j ζke
ζ∗Aζ =

∂

∂ηj

∂

∂η∗k

∫∫
[dζ∗ dζ]eζ

∗Aζ+i(η∗ζ+ζ∗η)
∣∣∣
η=η∗=0

= (detA)
∂

∂ηj

∂

∂η∗k
e−η∗·A−1η

∣∣∣
η=η∗=0

= (detA)(A−1)jk.

The verification of this is straightforward if one keeps a couple of things in mind:
first, the derivatives ∂/∂η∗j and ∂/∂ηk anticommute with each

∫
dζl and

∫
dζ∗l and

each ζl and ζ∗l ; second, the products ζ∗Aζ, η∗ζ, and ζ∗η are of even degree, and
their exponentials are sums of terms of even degree, so they all belong to the center
of the Grassmann algebra.

We need one more simple extension of these ideas, really just a notational
device: the notion of a Grassmann spinor. This is just a 4-tuple of complex Grass-
mann variables, construed as a column vector: η = (η1 η2 η3 η4)

T . Its Dirac adjoint
is η = η†γ0 = (η∗1 η∗2 η∗3 η∗4)γ

0, and the corresponding “volume element” is then

[dη dη] = [dη† dη] = dη∗1 dη1 · · · dη∗4 dη4.
The interchangeability of η and η† results from the fact that det γ0 = 1.
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Fermionic functional integrals. The preceding calculations may look a bit
strange and artificial, but at least they make perfectly good sense. But what we need
for field theory is the infinite-dimensional analogue in which the discrete index j on
ξj is replaced by a continuous space-time index x = (t,x). That is, the analogue
of the generating functional (8.21) for a free Dirac field is

(8.46)

∫∫
[dψ dψ] exp

[
i

∫
(ψ(iγμ∂μ −m)ψ + ηψ + ψη) d4x

]
.

where the variables ψ and ψ and the source fields η and η are Grassmann spinor-
valued functions on space-time — that is, 4-tuples of functions on R4, construed
as column vectors in the case of ψ and η and row vectors in the case of ψ and η,
whose values all anticommute with each other.

At first glance, the assertion that a real meaning can be attached to such an
expression must strike any mathematician, even one who can cheerfully accept the
Bosonic analogue (8.21), as an act of astounding effrontery. We shall sketch a
way to make more sense of it below, but for now let us persevere a little longer
on a highly informal level. By analogy with (8.44), the value of this “Grassmann
functional integral” should be

(8.47) i∞[det(iγμ∂
μ −m)] exp

[
i

∫
η(−iγμ∂μ +m)−1η d4x

]
.

The ghastly factors in front of the exponential give the value of the integral when
η = η = 0, so they will drop out when we divide by that value as we did in the
Bosonic case.6 Inside the exponential, we at least know what (−iγμ∂μ + m)−1

means: it is the integral operator whose kernel is the fundamental solution of
−iγμ∂μ +m, i.e., the Dirac propagator (iγμ∂

μ +m)ΔF .
Now let us take functional derivatives with respect to various η(x) and η(x)

and then set η = η = 0. In (8.47), the latter step will give a result of 0 unless
each δ/δη(x) is paired with some δ/δη(y), and in any case it will collapse the
exponential (which is an element of some immense Grassmann algebra) to the
numerical constant 1. Thus, for example,

δ2

δη(x)δη(y)
e−i

∫
η(iγμ∂

μ−m)−1η dx

∣∣∣∣
η=η=0

= −i(iγμ∂μ +m)ΔF (x− y),

and similarly for higher derivatives. (One must take a little care here, as the
derivatives δ/δη(x) and δ/δη(y) anticommute.) On the other hand, functional
differentiation of (8.46) yields functional integrals of products of fields; for example,

δ2

δη(x)δη(y)

∫∫
[dψ dψ] ei

∫
(ψ(iγμ∂

μ−m)ψ+ηψ+ψη) dx

∣∣∣∣
η=η=0

=

∫∫
[dψ dψ]ψ(x)ψ(y)ei

∫
ψ(iγμ∂

μ−m)ψ dx.

(Here again, the derivatives anticommute, as do the components of ψ(x) and ψ(y).
Both sides of this equation are 4× 4 matrices.) One can argue, more or less as we
did for Boson fields, that such functional integrals of products of Grassmann-valued

6Even though the determinant in (8.47) is ill-defined, the physicists find some significance in
the fact that it occurs in the numerator, not in the denominator as in the Bosonic analogue: see
Zee [138], §II.5.
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classical fields are (up to a normalization constant) the vacuum expectation values
of the corresponding products of Fermionic quantum fields. For example,

(8.48) 〈0|T(ψ0(x)ψ0(y))|0〉 = C

∫∫
[dψ dψ]ψ(x)ψ(y)ei

∫
ψ(iγμ∂

μ−m)ψ dx,

where the ψ0’s on the left are quantum fields, i.e., operator-valued functions, and the
ψ’s on the right are “classical fields,” i.e., Grassmann-valued functions. (A detailed
discussion can be found in Weinberg [131], §9.5.) Putting this all together, we
recover the fact that the vacuum expectation values of time-ordered products of
free spinor fields are given by products of Dirac propagators, just as for Bosons.

We emphasize that that the integral in (8.48) is a number, not an element of
some Grassmann algebra, because all of the Grassmann-valued variables have been
integrated out.

Now one can deal with interactions involving both Fermions and Bosons. For
QED, for example, the generating functional is similar to (8.30):

(8.49) Z[J, η, η]

=

∫∫∫
[dA][dψ dψ]ei

∫
[−FμνF

μν/4+ψ(iγμ∂μ−m)ψ−eAμψγμψ d4x]ei[J
μAμ+ηψ+ηψ],

where η and η are spinor-valued functions and J is a vector-valued function such
that ∂μJ

μ = 0. (We have moved the [dA] to the left merely so that it can keep

company with the [dψ dψ].) Without the interaction term e−ie
∫
Aμψγμψ d4x, this

integral can be evaluated in terms of the electron and photon propagators, using
the Faddeev-Popov device to tame the integration over A. As with scalar fields,
then, one can expand the interaction term in its power series, evaluate the resulting
functional integrals by functional differentiation of (8.49), and thereby recover the
Feynman calculus for QED. We refer to physics texts for further discussion of
these matters; for example, a derivation of the Ward identities through functional
integrals can be found in Peskin and Schroeder [89], §9.6.

Now let us examine how to make a little more mathematical sense out of these
infinite-dimensional Grassmann integrals.

Grassmann-valued functions: infinite dimensions. First, the transition
from a finite set of Grassmann-valued variables to a countable discrete set is not
hard, although we must take a little care to construct a Grassmann algebra that is
big enough to contain everything we need. We start with a separable Hilbert space
H that is equipped with a decomposition H = H+ ⊕H− and an antiunitary invo-
lution v �→ v∗ that interchanges H+ and H−. We then work with an orthonormal
basis {ζn} of H+ and the corresponding basis {ζ∗n} for H−; these are the analogues
of the ζ’s and ζ∗’s in the finite-dimensional case. Let

∧
0 H be the algebraic exterior

algebra over H, that is, the set of finite linear combinations of exterior products
of elements of H.

∧
0 H is a pre-Hilbert space, and we could complete it to form

the Hilbert exterior algebra over H (what we have previously called the Fermion
Fock space over H), but that does not contain infinite sums such as

∑
ζ∗nζn, much

less their exponentials, that are needed for Gaussian-type integrals. Rather, we
consider the full algebraic dual

∧′
H of

∧
0 H, which we call the extended exterior

algebra over H.∧′
H still has the structure of a Grassmann algebra. Indeed, each element of∧

0 H defines a linear functional on
∧

0 H via the inner product, so we can consider
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0 H as a subspace of

∧′
H, and the exterior product extends in a natural way

from
∧

0 H to
∧′

H. Namely, if φ ∈
∧′

H and M is a finite-dimensional subspace of
H, let φM be the restriction of φ to

∧
M, which we consider via the inner product

as an element of
∧
M itself. Then the exterior product of φ, ψ ∈

∧′
H is the unique

χ ∈
∧′

H such that χM = φMψM for all finite-dimensional M. In other words, the
set of finite-dimensional subspaces M ⊂ H is directed in one way by inclusion and
in the opposite way by orthogonal projection;

∧
0 H and

∧′
H are the corresponding

inductive and projective limits of the finite-dimensional algebras
∧
M.

The Berezin integral is defined on (a subset of)
∧′

H as follows. Let Mn be the
subspace spanned by the basis vectors ζ1, . . . , ζn, ζ

∗
1 , . . . , ζ

∗
n. If φ ∈

∧′
H, and φMn

is as in the preceding paragraph, we define

(8.50)

∫∫
[dζ∗ dζ]φ = lim

n→∞

∫∫
· · ·

∫∫
dζ∗n dζn · · · dζ∗1 dζ1 φMn

,

provided that the limit exists.
For example, let us abbreviate

∑
ζ∗nζn by ζ∗ζ. This sum is a well-defined

element of
∧′

H — more specifically, of the degree-2 subspace with respect to its
natural gradation. Hence e−ζ∗ζ =

∑
(−ζ∗ζ)n/n! is a well-defined element of

∧′
H

(the nth term belonging to the degree-2n subspace), and we have

(8.51)

∫∫
[dζ∗ dζ]eζ

∗ζ = 1,

as all the finite-dimensional approximants are equal to 1 by (8.43).
The Berezin integral is actually independent of the choice of orthonormal basis

ζn, ζ
∗
n, and its definition can be formulated in a basis-independent fashion with

a little more work. (The limit as n → ∞ in (8.50) is replaced by a limit over
the directed set of finite-dimensional subspaces of H.) For a lucid and detailed
exposition of this theory, including the calculation of a variety of Berezin integrals
of Gaussian type, we refer the reader to Robinson [99].

The transition from a discrete family of Grassmann-valued variables to a con-
tinuous one parametrized by points in space-time is not a matter of redoing this
with an uncountable index set but rather of reinterpreting it after adding a lit-
tle more structure. The ideas that follow are due to Berezin [8], but we shall
recast them in a more concrete form. To begin with, recall that the underlying
Hilbert space H is equipped with a decomposition H = H+ ⊕ H− and an anti-
unitary involution that interchanges H+ with H−. We now take H+ to be L2(R4).
The Grassmann variables parametrized by x ∈ R4, however, are going to be the
delta-functions δx(y) = δ(y − x), so we need to enlarge L2(R4) to a space that
contains delta-functions. A suitable negative-order Sobolev space will do nicely;

say, H̃+ = H−s(R
4) (see Folland [46] or [48]) where s is some fixed number greater

than 2. We take H− to be another copy of L2(R4), accompanied by its enlargement

H̃− = H−s(R
4). The anti-involution on H is given by (f, g)∗ = (g∗, f∗), where the

stars on the right denote complex conjugation.

We denote the copies of the delta-function δx in H̃+ and H̃− by ζ(x) and
ζ∗(x). If f is a continuous function with compact support on R4,

∫
f(x)ζ(x) dx =∫

f(x)δx dx is a perfectly good H̃+-valued integral, and its value is f itself, con-
sidered as an element of H+. It is therefore not much of a stretch to write
f =

∫
f(x)ζ(x) dx for any f ∈ H+, and likewise f =

∫
f(x)ζ∗(x) dx for f ∈ H−.
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(This is just the expansion of f with respect to the “continuous orthonormal ba-
sis” of generalized eigenvectors δx for the position operators on R4, as in §3.2. See
Gelfand and Vilenkin [52] for a general framework in which such things may be
discussed rigorously.)

Now we pass to the exterior algebras
∧

0 H and
∧

0 H̃. In the latter we have
the exterior products ζ(x)ζ(y), ζ(x)ζ∗(y), ζ∗(x)ζ∗(y), ζ(x)ζ(y)ζ(z), etc., and these
may be used to express elements of the former in terms of integrals as above. For
example, the exterior product of f ∈ H+ and g ∈ H+ is
(8.52)(∫

f(x)ζ(x) dx

)(∫
g(x)ζ(x) dx

)
=

∫∫
f(x)g(y)ζ(x)ζ(y) dx dy

=

∫∫
f(x)g(y)− f(y)g(x)

2
ζ(x)ζ(y) dx dy.

This notation makes clear the distinction between f considered as an element of H+

and f considered as an element of H−, as well as between the pointwise product of
two functions f and g and the anticommutative product in the Grassmann algebra.

The Hilbert-space completion
∧2

H+ of
∧2

0 H+ can be identified with the space
of skew-symmetric functions in L2(R4 × R4); the correspondence is given by

F (x, y)←→
∫∫

F (x, y)ζ(x)ζ(y) dx dy.

This space in turn can be identified with the space of antilinear Hilbert-Schmidt
operators T on L2(R4) that are skew-symmetric in the sense that 〈Th1|h2〉 =
−〈Th2|h1〉; the correspondence is given by

F ←→ TF , where TFh(x) =

∫
F (x, y)h(y)∗ dy.

(This is a specialization of a general construction of the tensor product of two
Hilbert spaces, as in Folland [45].) In particular, the F and TF corresponding to
the exterior product in (8.52) are

F (x, y) = 1
2 [f(x)g(y)− g(x)f(y)], TFh = 1

2 [〈h|g〉f − 〈h|f〉g].

More generally, elements of the Hilbert space
∧2

H correspond to 2× 2 matrices of
L2 functions (Fij)

2
i,j=1 with Fij(x, y) = −Fji(y, x), or to skew-symmetric antilinear

Hilbert-Schmidt operators on H. If F = (Fij) is such a matrix, the corresponding

element of
∧2

H is∫∫
[F11(x, y)ζ(x)ζ(y) + F12(x, y)ζ(x)ζ

∗(y) + F21(x, y)ζ
∗(x)ζ(y)

+ F22(x, y)ζ
∗(x)ζ∗(y)] dx dy

=

∫∫
[F11(x, y)ζ(x)ζ(y) + 2F21(x, y)ζ

∗(x)ζ(y) + F22(x, y)ζ
∗(x)ζ∗(y)] dx dy,

and the corresponding operator TF is

TF (h1, h2) = (TF11
h1 + TF12

h2, TF21
h1 + TF22

h2).

In particular, the F and TF corresponding to the exterior product of (f1, f2) and
(g1, g2) (elements of H+ ⊕H−) are given by

(8.53) Fij(x, y) =
1
2 [fi(x)gj(y)− fj(y)gi(x)], TF (h1, h2) = (H1, H2),
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where

(8.54)
H1 = [〈h1|g1〉+ 〈h2|g2〉]f1 − [〈h1|f1〉+ 〈h2|f2〉]g1,
H2 = [〈h1|g1〉+ 〈h2|g2〉]f2 − [〈h1|f1〉+ 〈h2|f2〉]g2.

Analogous, but more complicated, formulas hold for products of order > 2.
We can also express many elements of the extended exterior algebra

∧′
H as

“generalized linear combinations of the continuous family of Grassmann variables
ζ(x), ζ∗(x)” by taking the F ’s here to be generalized functions — say, tempered
distributions. Specifically, every bounded antilinear operator on L2(R4) can be
expressed as complex conjugation composed with an integral operator with a tem-
pered distribution kernel, by the tempered version of the Schwartz kernel theorem.
The correspondence in the preceding paragraph extends to give a correspondence
between 2× 2 matrices of distributions arising in this fashion with certain degree-2
elements of

∧′
H. In particular, let {ζn} be an orthonormal basis for H+, and

consider ζ∗ζ =
∑

ζ∗nζn ∈
∧′

H. By (8.53) and (8.54) (with (f1, f2) = (0, ζ∗n) and
(g1, g2) = (ζn, 0)), the corresponding operator is

T (h1, h2) =
1

2

[∑
〈h1|ζn〉ζ∗n −

∑
〈h2|ζ∗n〉ζn

]
=

1

2
(−h∗

2, h
∗
1),

and hence the corresponding matrix F is

F (x, y) =
1

2

(
0 −δ(x− y)

δ(x− y) 0

)
.

In other words,

(8.55)
∑

ζ∗nζn =

∫∫
δ(x− y)

ζ∗(x)ζ(y)− ζ(x)ζ∗(y)

2
dx dy =

∫
ζ∗(x)ζ(x) dx.

The “functional integral” in this context is simply the Berezin integral (8.50).
That is, one interprets suitable “(generalized) functions of the Grassmann variables
ζ(x), ζ∗(x)” as elements of the extended Grassmann algebra

∧′
H and integrates

them by (8.50). For example, in view of (8.55), the basic Gaussian integral (8.51)
can be written as ∫∫

[dζ dζ∗]e−
∫
ζ∗(x)ζ(x) dx.

Suitable generalizations of this then lead to physically interesting integrals of the
form (8.46) — on the formal level, of course, as the latter integrals have to be taken
with some grains of salt even when one understands how to set them up.

8.5. Afterword: Gaussian processes

After the fantasies of the preceding two sections, the reader may feel a need
to be brought back to reality with a dose of honest mathematics. We therefore
conclude this chapter with a brief discussion of the connection between the Bosonic
functional integrals of §8.3 and some genuine integrals with respect to measures on
function spaces.

In §8.1 we saw that if one makes a Wick rotation to imaginary time, the func-
tional integral for a particle moving in a potential turns into a well-defined integral
with respect to Wiener measure (the Feynman-Kac formula). Similarly, if one starts
with the “measure”

C exp

[
i

∫
((∂φ)2 −m2φ2)d4x

]
[dφ]
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that arises from the Lagrangian for a free scalar field, one can replace x0 by −ix0

to obtain

(8.56) C exp

[
−

∫
(|∇φ|2 +m2φ2) d4x

]
[dφ],

where ∇ means the 4-dimensional Euclidean gradient. This clearly has the appear-
ance of an infinite-dimensional analogue of a real Gaussian measure, and it is not
hard to give it a precise mathematical meaning.

Let us give some definitions. A Gaussian measure on Rn (with mean 0) is a
Borel probability measure μ on R

n whose Fourier transform is of the form μ̂(y) =
e−Ay·y/2 where A is a real positive semi-definite matrix. Thus, if A is positive

definite, we have dμ(x) = [(2π)n detA]−1/2e−A−1x·x/2 dx, whereas if the nullspace

N(A) is nontrivial, we have dμ(x) = [(2π)k detB]−1/2e−B−1x·x/2 dσ(x) where σ is
surface measure on N(A)⊥, B = A|N(A)⊥, and k = dimN(A)⊥. The matrix A is
called the covariance of μ; we observe that Aij =

∫
xixj dμ(x) (differentiate the

formula
∫
e−ix·ydμ(x) = e−Ay·y/2 with respect to yi and yj , then set y = 0).

A Gaussian process (with mean 0) indexed by a set I is a probability space
(Ω,B, μ) and a family {Xi : i ∈ I} of random variables on Ω such that for any finite
subset {i1, . . . , in} of I, the joint distribution of Xi1 , . . . , Xin is Gaussian — that
is, setting X = (Xi1 , . . . , Xin) : Ω→ Rn, the measure X∗μ(E) = μ(X−1(E)) on Rn

is Gaussian. The matrix C = (Cij)i,j∈I defined by Cij =
∫
XiXj dμ is called the

covariance of the process; the covariance matrices of the Gaussian measures X∗μ
on R

n are all submatrices of it.
Here are two examples. (1) Let B be a real positive definite n× n matrix, let

Ω = Rn, dμ(x) =
√

detB/(2π)ne−Bx·x dnx, and Xi(x) = xi. Then {Xi : 1 ≤ i ≤
n} is a Gaussian process with covariance C = B−1. (2) Let μ be Wiener measure
on C([0,∞)) and Xt(ω) = ω(t) for t ≥ 0, ω ∈ C([0,∞)). Then {Xt : t ≥ 0} is a
Gaussian process with covariance Cst = min(s, t).

Next, let H be a real Hilbert space. A Gaussian process associated to H is a
Gaussian process {Xf : f ∈ H} on a probability space (Ω,B, μ), indexed by H,
such that the correspondence f �→ Xf is linear and isometric from H to L2(μ).
Note that the requirement of isometry means that the covariance is given by the
inner product: Cfg = 〈f |g〉. For any H, Gaussian processes associated to H

exist, and they are all isomorphic in the abstract probabilistic sense subject to the
technical requirement that the random variables of the form G(Xf1 , . . . , Xfn) with
G bounded and Borel be dense in L2(μ).7 Hence we speak of the Gaussian process
associated to H and refer to its various concrete realizations as models. We briefly
describe two important models.

Model I: Let {ej}j∈J be an orthonormal basis for H, and let Ω = R
J
where

R is the one-point compactification of R. Put the measure (2π)−1/2e−x2/2 dx on
each copy of R, let μ be the product measure on the compact Hausdorff space Ω,
and let Xei be the ith coordinate function on Ω (redefined to be 0 at the point at
infinity). It is easy to check that the Xei ’s are an orthonormal set in L2(μ), so the

7To be precise, suppose (Ω,B, μ, {Xf}) and (Ω′,B′, μ′, {X′
f}) are two such processes. Let N

be the σ-ideal in B of sets of μ-measure zero, and let q : B → B/N be the quotient map; likewise

N′ and q′. Then there is a σ-algebra isomorphism Φ : B/N → B′/N′ such that Φ(q(X−1
f (E))) =

q′((X′
f )

−1(E)) for all f ∈ H and all Borel E ⊂ R.
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map ei �→ Xei extends by linearity and continuity to an isometry f �→ Xf from H

into L2(μ).
Model II: Suppose H is a space of real-valued functions or distributions on

Rd in which the real-valued Schwartz class S = SR(R
d) is a dense subspace. We

take Ω to be S′, the space of real-valued tempered distributions, and B to be the
σ-algebra generated by the weak-* topology on S′. The map E(f) = exp(− 1

2‖f‖2H)
is a positive definite function on S (i.e., the matrix (E(fi − fj)) is positive definite
for any finite set {f1, . . . , fn} ⊂ S), so by Minlos’s extension of Bochner’s theorem
(see Simon [114] for a very nice proof) there is a measure μ on S′ such that

(8.57)

∫
S′
eiT (f) dμ(T ) = exp(− 1

2‖f‖
2
H), f ∈ S.

For f ∈ S, let Xf be the fth coordinate function on S′, Xf (T ) = T (f). Then∫
X2

f dμ = ‖f‖2H, as one sees by replacing f by tf (t ∈ R) in (8.57) and comparing

the t2 terms in the Taylor expansion of both sides. It follows that the map f �→ Xf

extends to an isometry from H into L2(μ).
This gives us what we need to make sense of the expression (8.56). Since∫

|∇φ|2 dx = −
∫
φ∇2φ dx (assuming φ vanishes at infinity), (8.56) is formally a

Gaussian measure with inverse covariance −∇2 + m2. Thus, let us take H to be
the real Sobolev space of order −1 on R4,

H =

{
f ∈ S′(R4) : f real valued,

∫ |f̂(k)|2
|k|2 +m2

d4k

(2π)4
<∞

}
,

with inner product

〈f |g〉H =

∫
f̂(k)∗ĝ(k)

|k|2 +m2

d4k

(2π)4
=

∫
f(x)(−∇2 +m2)−1g(x) d4x.

Then the Minlos model of the Gaussian process associated to H gives a measure μ
on S′(R4) with covariance (−∇2 +m2)−1. Formally dμ(φ) is precisely of the form
(8.56) where C is the (infinite) normalization constant to make μ a probability
measure, and the integral in (8.56) makes sense not for all φ ∈ S′(R4) but only on
a dense subspace, namely, the Sobolev space of order 1. This may still seem a little
mysterious if one has not seen such things before, but we are now in a well-explored
region of probability theory.

The nth-order moments of the measure μ define a tempered distribution Sn on
R4n: for f1, . . . , fn ∈ S(R4),

Sn(f1 ⊗ · · · ⊗ fn) =

∫
CS′

Xf1 · · ·Xfn dμ =

∫
S′
φ(f1) · · ·φ(fn) dμ(φ).

In fact, Sn is a locally integrable function, essentially our old friend (8.25) trans-
ferred to the Euclidean region:

S(x1, . . . , xn) =
∑

pairings

ΔE(xj1 − xj2) · · ·ΔE(xj2n−1
− xj2n),

where ΔE is the Euclidean Green’s function, i.e., the fundamental solution of
(−∇2+m2)−1. This function has an analytic continuation to a region in C4n whose
boundary includes the noncoincident points of the Minkowski region (xj �= xk,
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x0
j ∈ iR), and the boundary values of S there give the vacuum expectation val-

ues of the free quantum fields, 〈0|T (φ0(x1) · · ·φ0(xn))|0〉, according to (8.24) and
(8.25). In this way we can recover the field theory from the measure μ.

What we have sketched here is the way to formulate a free field theory in
terms of Gaussian processes. The real point, however, is that this is the most
fruitful approach to the rigorous construction of interacting quantum fields. In
brief, the idea is to find a measure μ on S′(R4) whose moments define a suitable set
of “Schwinger functions” S (analytic continuations of vacuum expectation values),
and then to apply “reconstruction theorems” to recover the field from the Schwinger
functions. As we indicated in §5.5, this program has been carried out for some field
theories in space-time dimensions 2 and 3, but it remains a major open problem in
space-time dimension 4. For the results in dimensions 2 and 3, we refer the reader
to the brief introductory articles by Brydges [14] and Federbush [32] and the more
extensive expositions in Glimm and Jaffe [55], Simon [113], and Rosen [101], as
well as the references given in these sources. Jaffe and Witten [67] gives a good
account of the current state of affairs along with recommendations for avenues
of future research in dimension 4. Finally, Simon [114] is a good reference for
applications of rigorous functional integrals to other areas of quantum physics.

                

                                                                                                               



CHAPTER 9

Gauge Field Theories

Nature uses only the longest threads to weave her patterns, so each
small piece of the fabric reveals the organization of the entire tapestry.
—Richard Feynman ([37], p. 34)

This chapter is a very brief introduction to gauge field theories. To do a proper
job of developing this subject, one must deal with some difficult issues concerning
renormalization and the use of functional integrals, but we shall mention them only
briefly. We shall work with gauge fields mostly on the pre-quantum level — we
say “pre-quantum” rather than “classical” because non-Abelian gauge fields do not
correspond to anything in classical physics — with the Lagrangian at center stage.
One can learn a remarkable amount about quantum gauge fields simply by first
asking what their Lagrangians must look like and then letting those Lagrangians tell
their own story. The connection to quantum physics comes from the way Feynman
diagrams can be read off from a Lagrangian, as we explained in §§6.3–6.6.

9.1. Local symmetries and gauge fields

The notion of “gauge invariance” got off to an inauspicious start in 1918 when
Hermann Weyl used it in an attempt to build a unified field theory, that is, a unified
theory of gravity and electromagnetism. Weyl’s idea was simple and attractive.
According to general relativity, space-time is modeled by a 4-manifold M equipped
with a Lorentz metric g0, but this presupposes the choice of unit of length (or time).
This choice is of no consequence as long as the choice of a unit at one point p ∈M
determines the choice at every other point; but if one is allowed to choose a unit of
length independently at every point, one has not just one Lorentz metric g0 but a
whole conformal class of them — namely, the class G of all metrics g = eχg0 where
χ is a (smooth) positive function on M . Equivalently, one has the line bundle
L over M whose fiber over p ∈ M is the set {g(p) : g ∈ G} of metrics on TpM
arising from G; G is then the space of sections of L. In order to compare lengths
at two different points p and q, one needs to impose a connection on L, which
allows one to transport an element of Lp along a given curve C from p to q; this
amounts to the choice of a mapping Φ from G to the space of 1-forms on M such
that Φ(eχg) = Φ(g) − dχ. If γ : [0, 1] → M is a smooth curve with γ(0) = p and
γ(1) = q, the transport of gp ∈ Lp from p to q along γ is then exp(

∫
γ
Φ(g))g(q),

where g(·) is any element of G such that g(p) = gp.
Weyl suggested that the 1-forms Φ(g) should be interpreted as electromagnetic

potentials; that is, their common exterior derivative F = dΦ(g) should be the elec-
tromagnetic field. Gravitation and electromagnetism would then be tied together
by the fact that the choice of potential (a 1-form φ such that dφ = F ) is tied to
the choice of metric g ∈ G — that is, to the choice of a length scale or gauge at
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each point — so that a “gauge transformation” φ �→ φ− dχ of the potential is ac-
companied by the literal gauge transformation g �→ eχg. (This is the origin of the
various uses of the word “gauge” in gauge field theories!) Weyl’s theory made its
way into several books on general relativity, but it was a failure as a physical theory
for one simple reason: It predicts that if one starts with two identical measuring
rods at p and transports them to q along different paths that go through regions
with different electromagnetic fields, in general they will no longer have the same
length on arrival at q, a phenomenon for which there is not a shred of experimental
evidence. (Weyl’s mathematics, however, is perfectly sound, and it still has echoes
in the study of conformal geometry — usually with Riemannian metrics instead of
Lorentzian ones. More details can be found in Folland [43].)

Weyl was therefore delighted when quantum mechanics came along a decade
later and he found that with the simple substitution of eiχ for eχ, his “principle of
gauge invariance” could be revived as a bond not between electromagnetism and
gravity but between electromagnetism and matter fields. This point has already
been discussed in §4.2: the Dirac equation (i∂μ−eAμ)γ

μψ = mψ is invariant under
the simultaneous transformations ψ �→ eieχψ, Aμ → Aμ − ∂μχ. More to the point

from the perspective of field theory, the Lagrangian L = ψ(i∂μ − eAμ)γ
μψ −mψψ

is invariant under the same pair of transformations.
In fact, one can take the principle of gauge invariance as a starting point and

reason one’s way to the theory of electromagnetism. One starts with the free
Dirac Lagrangian, L0 = ψ(i∂μγ

μ − m)ψ, observing that it is invariant under the
transformation ψ �→ eiχψ when χ is a constant, and asks how it must be modified
in order to be invariant under the transformation ψ �→ eiχψ when χ is an arbitrary
smooth function. The catch, of course, is that the derivative ∂μ does not commute
with multiplication by eiχ when χ is nonconstant. One way of looking at this is
that if one knows the field ψ only up to a phase factor at each point, there is no way
to compare its values at neighboring points in order to form a difference quotient.
Rather, one must think of ψ as a section of a vector bundle V (whose fiber is
the space of spinors) associated to the principal bundle P = U(1) × R4 over the
space-time R4, and replace the ordinary derivative ∂μ by the covariant derivative
Dμ with respect to a connection on P . We shall explain the notion of connection
in more detail a little later, but for now it is enough to think of a connection as a
map Φ that assigns to each global section σ of P a 1-form Φ(σ) = Aμ dx

μ on R4

such that Φ(e−iχσ) = Φ(σ) − dχ. The section σ also determines an identification
of sections of V with spinor-valued functions ψ on R

4, and when this identification
is made, the covariant derivative takes the form Dμ = ∂μ + iAμ. Replacing σ by
e−iχσ amounts to replacing ψ by eiχψ and Aμ by Aμ − ∂μχ, so this definition is
consistent:

[∂μ + i(Aμ − ∂μχ)](e
iχψ) = eiχ[∂μ + iAμ](ψ).

We therefore obtain a gauge-invariant Lagrangian by taking

L = ψ(i∂μ −Aμ −m)ψ,

whose physical interpretation is that the matter field ψ is coupled to a “gauge field”
Aμ. To complete the picture, we need to add in a free-field Lagrangian for Aμ. The
requirement that it be invariant under both Lorentz and gauge transformations
narrows down the possibilities enormously; in fact, the only ones that are at most
quadratic in the field Aμ and involve derivatives of order at most one are constant

                

                                                                                                               



9.1. LOCAL SYMMETRIES AND GAUGE FIELDS 293

multiples of FμνF
μν , where Fμν = ∂μAν − ∂νAμ as usual.1 In particular, gauge

invariance forbids a term proportional to AμA
μ (which Lorentz invariance would

allow), so the quanta of the gauge field are massless. Thus, up to adjustment of
constant factors (the coupling constant e and the factor of − 1

4 for FμνF
μν), we

have arrived at the standard Lagrangian for electrodynamics.
The construction just outlined can be redone in a much more general setting,

with the group U(1) of complex numbers of modulus 1 replaced by a more general
Lie group. (The amount of Lie theory we need is quite modest; Hall [62] is a good
source for more information.) In what follows, we work at the unquantized level,
where a “field” is a function (whose values may be scalars, spinors, vectors, . . . )
on space-time rather than an operator-valued distribution. The ingredients are as
follows:
i. an n-tuple Φ = (φ1, . . . , φn) of fields of the same type (scalar, spinor, . . . )

together with a Lagrangian L0(Φ, ∂Φ);
ii. a compact subgroup G of GL(n,C) that acts on the fields (or rather the space

of their linear combinations) in the obvious way — (g · Φ)i =
∑

j g
j
iφj for

g = (gji ) ∈ G — subject to the condition that the Lagrangian be invariant:
L0(g · Φ, g · ∂Φ) = L0(Φ, ∂Φ).

We say that G is a group of global symmetries of the theory described by the fields
Φ. The compactness of G is not a strict requirement at the outset, but it will soon
play a role, and it is always satisfied in practice.

We now promote the symmetries from global to local ones: that is, we consider
not just the transformations Φ �→ g ·Φ but rather Φ(x) �→ g(x) ·Φ(x) where g(x) is
an arbitrary smooth G-valued function on space-time. How must the Lagrangian
be modified in order to remain invariant under this larger group of transformations?
As before, the point is that ∂μ(g(x) ·Φ(x)) = g(x) · ∂μΦ(x) + ∂μg(x) ·Φ(x), and we
have to find a way to cancel the second term on the right. Note that ∂μg(x) is an
element not of G but of the tangent space to G at g(x); thus (∂μg(x))g(x)

−1 belongs
to the Lie algebra g of G (the tangent space to G at the identity, or equivalently,
the space of n× n matrices X such that eX ∈ G).

We shall describe the process first in physicists’ language and then translate it
into the language of differential geometry. In what follows, g will denote a G-valued
function on R4, and we set

Φg(x) = g(x) · Φ(x).

As before, the idea is to replace the derivative ∂μ by a “covariant derivative”

Dμ = ∂μ + iAμ,

where iAμ is (for each μ) a g-valued function on R4. (The factor of i is a standard
convention in the physics literature; it is intended to preserve the analogy with
electromagnetism, where G = U(1) and hence g = iR.) We demand that when we
make the transformation Φ �→ Φg, Aμ should simultaneously transform to another
g-valued function Ag

μ, and Dμ likewise to Dg
μ = ∂μ + iAg

μ, in such a way that

1If we required invariance only under the restricted Lorentz group SO↑(1, 3), there would be
another possibility: εμνρσFμνFρσ, where εμνρσ is the sign of the permutation taking (μ, ν, ρ, σ)

to (0, 1, 2, 3) if the indices are all distinct and is 0 otherwise.
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Dg
μΦ

g = (DμΦ)
g. But

(DμΦ)
g = g ·DμΦ = g · (∂μΦ+ iAμ · Φ) = ∂μ(g · Φ)− ∂μg · Φ+ i(gAμ) · Φ

= (∂μ + igAμg
−1 − (∂μg)g

−1)Φg.

Hence the desired transformation law for Aμ is

(9.1) Ag
μ = gAμg

−1 + i(∂μg)g
−1,

where the products on the right are simply matrix multiplication.
The modified Lagrangian L0(Φ, DΦ) is now invariant under the gauge transfor-

mations Φ �→ Φg, D �→ Dg. The result is going to be a theory in which the n fields
φj are coupled to N = dim(g) vector fields Ak

μ, the components of the g-valued
fields Aμ, which are known as gauge fields ; the interactions come from the products
of the Dμφj with each other or with the φj in L0(Φ, DΦ). To complete the picture,
we need to add in a free-field Lagrangian for the gauge fields Aμ, which should
be invariant under Lorentz transformations and under the gauge transformations
(9.1). The simplest way to generate such a quantity is to consider the commutator
of two covariant derivatives. We have

DμDνΦ = (∂μ+iAμ)(∂ν+iAν)Φ = ∂μ∂νΦ+iAμ∂νΦ+iAν∂μΦ+i(∂μAν)Φ−AμAνΦ,

so
[Dμ, Dν ]Φ = i(∂μAν − ∂νAμ + i[Aμ, Aν ])Φ = iFμνΦ

where Fμν is the g-valued function

(9.2) Fμν = ∂μAν − ∂νAμ + i[Aμ, Aν ].

The covariance condition Dg
μD

g
νΦ

g = (DμDνΦ)
g, or equivalently Dg

μD
g
ν(g · Φ) =

g ·DμDνΦ, implies that Fμν (for each μ and ν) transforms under gauge transfor-
mations via the adjoint representation of G on g:

F g
μν = gFμνg

−1.

Therefore, if 〈·|·〉 is an Ad-invariant inner product on g, the quantity − 1
4 〈Fμν |Fμν〉

is Lorentz- and gauge-invariant can be used to make a free-field Lagrangian. (This
is where the compactness of G comes in: the existence of an Ad-invariant inner
product on g is equivalent to G being of the form G = G′ × Rn for some n ≥ 0,
where G′ is compact.) The full Lagrangian is then

(9.3) L(Φ, ∂Φ, A, ∂A) = L0(Φ, (∂μ + iAμ)Φ))− 1
4 〈Fμν |Fμν〉.

Writing things in this way conceals the coupling constants in the choice of
Ad-invariant inner product on g. In the case of electrodynamics, for example, it
amounts to substituting Aμ/e for Aμ so that ∂μ + ieAμ becomes ∂μ + iAμ and
FμνF

μν becomes FμνF
μν/e2: that is, the inner product on u(1) = iR is taken to

be 〈is|it〉 = st/e2. If G is simple or G = U(1), there is only one Ad-invariant
inner product up to a scalar normalization factor, namely, 〈X|Y 〉 = − tr(XY ).
Otherwise, there is one normalization factor for each simple or U(1) factor, so that

if g =
⊕k

1 g
j , the inner product must have the form

〈X|Y 〉 = −
∑

α−2
j tr(XjY j)

(
X =

∑
Xj , Y =

∑
Y j , Xj , Y j ∈ g

j
)

for some αj > 0. Alternatively, we can rescale the fields Aμ =
∑

Aj
μ, where Aj

μ

is gj-valued, by substituting αjA
j
μ for Aj

μ; then the inner product on g is just

〈X|Y 〉 = − tr(XY ) and the covariant derivative becomes ∂μ + i
∑

αjA
j
μ. This is
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the more common procedure, as it displays αj explicitly in the coupling between
Aμ and Φ.

This construction was first considered by Yang and Mills in 1954 [137] in the
special case where G = SU(2) and Φ is a pair of Dirac spinor fields. Hence the
gauge fields Aμ are often referred to as Yang-Mills fields, and the Euler-Lagrange
equation for their free action − 1

4

∫
〈Fμν |Fμν〉 d4x (sometimes called the Yang-Mills

functional) is known as the Yang-Mills equation.
Two important features of the corresponding quantized field theory can be read

off immediately from the form of this Lagrangian. On the one hand, gauge invari-
ance forbids the inclusion of terms that are quadratic in the fields Aμ themselves
(without derivatives), such as the Lorentz-invariant 〈Aμ|Aμ〉; hence the quanta of
the fields Aμ are massless (like photons). On the other hand, if G is non-Abelian,
they interact directly with each other (unlike photons), because the [Aμ, Aν ] term
in (9.2) yields cubic and quartic terms in 〈Fμν |Fμν〉.

Quantizing Yang-Mills fields is a decidedly nontrivial undertaking; the prob-
lems in quantizing the electromagnetic field that we pointed out in §6.5 and §8.3
reappear here in amplified form. A serious discussion of these matters is beyond
the scope of this book, and we refer the reader to the physics texts (e.g., Weinberg
[132], Peskin and Schroeder [89], Zee [138], and Ramond [92]). Here we just give
a thumbnail description of a couple of interesting points. It has been found that
the most perspicuous way to arrive at Feynman rules for perturbation theory is via
the functional integral formalism, much as we did for the electromagnetic field in
§8.3. One writes down the functional integral for the gauge field and eliminates the
redundancy due to the gauge transformations by introducing a gauge-fixing condi-
tion h(A) = 0 as in §8.3. However, the Faddeev-Popov determinant det(δh(Ag)/δg)
(where Ag is given by (9.1)) here turns out to be det(∂μDμ), where Dμ denotes
the covariant derivative for g-valued fields associated to the adjoint action of G on
g. This depends on the field variables when G is non-Abelian, so it is not just a
harmless constant that can be brought outside the integral.

There is a clever stratagem to handle this difficulty: one writes the determi-
nant as a Fermionic Gaussian integral by (8.43), or rather its infinite-dimensional
analogue:

det(∂μDμ) =

∫∫
[dζ∗ dζ]eζ

∗∂μDμζ ,

where ζ, ζ∗ are Grassmann-valued fields. Inserting this expression for det(∂μDμ)
into the functional integral for the Yang-Mills field amounts to adding an extra
field into the theory, called the Faddeev-Popov ghost. It is a Fermionic field of spin
zero, which violates the spin-statistics theorem, so it cannot have any direct phys-
ical significance, but there is no harm in using it as a formal calculational device.
One adds Feynman diagrams with ghost lines (in loops only, not as initial or final
particles) into the picture, much as we added Feynman diagrams with counterterm
vertices for renormalization theory, and the resulting calculations give sensible re-
sults. In effect, the contributions from the ghosts cancel out the contributions from
the equally unphysical longitudinal modes of the gauge fields.

The unquantized Yang-Mills theory can be recast in a more abstract geometric
setting as follows. (See Morgan [85] for more details.) The basic ingredients are
a manifold M , a Lie group G, a principal G-bundle P over M , a connection on
P , and a vector space V equipped with a G-action. From these we can form the
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associated vector bundle E = P ×G V over M and a covariant derivative D on
sections of E. (That is, for any vector field X on M , DX : Γ(E) → Γ(E) is the
covariant derivative of sections of E in the direction X.) We also have the vector
bundle Ad(P ) on M with fiber g, which is the bundle associated to P by the adjoint
action of G on g.

Among several equivalent ways to define the connection on P , the most con-
venient is to specify a g-valued 1-form ω on P that transforms under the G-action
on P according to the adjoint action of G on g and whose value on the vertical

vector field X̃ induced by any X ∈ g is simply X. (The horizontal subspace of
TpP is then the kernel of ω(p) for any p ∈ P .) The curvature of the connec-
tion can be defined either as (i) the g-valued 2-form Ω = dω + [ω, ω] on P (that
is, Ω(X,Y ) = dω(X,Y ) + [ω(X), ω(Y )] for any vector fields X, Y on P ), or (ii)

the Ad(P )-valued 2-form Ω̃ on M such that π∗Ω̃ = Ω, where π : P → M is the
projection.2

A local trivialization τ : U × G → P of P over the open set U ⊂ M gives an
embedding τ (·, 1) of U into P ; the pullback ωτ of ω under this embedding is a g-
valued 1-form on U . τ also induces local trivializations of E and Ad(P ). When one
uses the former to identify sections of E with V -valued functions on U , the covariant
derivative takes the form DXf = df(X) + ωτ (X) · f , where the last term denotes
the action of g on V induced by the given action of G. Under the trivialization of

Ad(P ), the curvature form Ω̃ becomes a g-valued form Ω̃τ on U .
The translation from this terminology to the previous one is as follows. We

take M to be R
4, V to be the space C

n in which the fields Φ take their values,
and P to be the trivial G-bundle over R4. The whole point of gauge invariance,
however, is that there is no canonical choice of trivialization for P . The gauge field
iAμ in a particular gauge (that is, a particular trivialization τ ) is the form ωτ , and

the derived field iFμν is the curvature Ω̃τ :

ωτ = iAμ dx
μ, Ω̃τ = iFμν dx

μ ∧ dxν .

There is an easy and important generalization of the gauge field theory dis-
cussed above. As a first step, instead of starting with G ⊂ GL(n,C), one can start
with an abstract compact Lie group G and a representation π : G→ GL(n,C). The
gauge field Aμ is still g-valued; g ·Φ is interpreted as π(g)Φ, and the covariant deriv-
ative is ∂μ+iπ′(Aμ) where π

′ is the derived representation of g. In this setting, there
can be several different Φ’s, say Φ1, . . . ,ΦK (where Φk is an nk-tuple), each with
its own G-action πk : G → GL(nk,C) and its own free Lagrangian Lk(Φk, ∂Φk).
One then obtains a theory in which all of these fields are coupled to the gauge field
Aμ by taking the Lagrangian to be

K∑
1

Lk(Φk, (∂ + iπ′
k(A))Φk)− 1

4 〈Fμν |Fμν〉.

For example, if G = U(1) and πk is the irreducible representation π(eiθ) = eimkθ,
the derived representation of g = iR is π′

k(ix) = imkx, so the field Φk couples to Aμ

with strength proportional to mk. In this way, or in a more general setting where G
contains a U(1) factor, the theory can accommodate particles with different electric

2Different conventions by different authors may result in extra factors of 2 in these formulas.
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charges (all integer multiples of some fundamental charge). We shall see this idea
at work in §9.4.

9.2. A glimpse at quantum chromodynamics

The most important non-Abelian gauge theory with unbroken symmetry is
quantum chromodynamics (QCD), the theory of strongly interacting particles. Here
n = 3 and G = SU(3), and one has six 3-tuples of Dirac spinor fields Ψf =

(ψf
1 , ψ

f
2 , ψ

f
3 ) whose quanta are called quarks, and one su(3)-valued gauge field Aμ,

the components of which are massless vector fields whose quanta are called gluons.
There are eighteen quark fields ψf

c , and hence eighteen different quarks and
eighteen different antiquarks. We shall take the index f to run from 1 to 6 in
formulas, but in common parlance f denotes the “flavor” of the quark:

f ∈
{
u, d, s, c, t, b

}
=

{
up, down, strange, charm, top, bottom

}
.

Likewise, the subscript c in ψf
c refers to the “color” of the quark, and the set

{1, 2, 3} is sometimes replaced by {red, green, blue}. The antiquarks are said to
carry anticolors rather than colors — antired, antigreen, and antiblue, sometimes
called cyan, magenta, and yellow; symbolically we may denote them by 1, 2, and
3. Quarks also participate in the electromagnetic and weak interactions: the up,
charm, and top quarks carry an electric charge of 2

3 |e|, and the down, strange, and

bottom quarks carry an electric charge of − 1
3 |e| =

1
3e, where e is the charge of

the electron; the antiquarks carry the opposite charges. All transitions between
different flavors of quarks are caused by the weak interaction; in pure QCD the
different flavors operate completely independently.

There are 8 = dim(su(3)) different gluons. The gluons carry color-anticolor
combinations such as 12 (red-antigreen); the nine such combinations, subject to
the single linear relation 11 + 22 + 33 = 0, give the eight gluons. Gluons do not
participate in the electromagnetic or weak interactions.

Actually, this whole business of color labels is merely an aid to intuition and
should not be taken too seriously. It depends on a choice of orthonormal basis for
C

3, but nature makes no such choice. It would be more honest just to say that a
quark field Ψ takes values in S⊗H where S is the Dirac spinor space equipped with
the action of the Lorentz group and H is a 3-dimensional Hilbert space equipped
with the action of its special unitary group G = SU(H).

The Lagrangian is deceptively simple:

L =
6∑

f=1

Ψ
f
([i∂μ − αAμ]γ

μ −mf )Ψf − 1
4 〈Fμν |Fμν〉,

where the mf ’s are the quark masses and α is the strong coupling constant (the
same for all flavors of quarks). However, the resulting theory is amazingly rich.
The basic interactions are of three types, coming from the ψAμγ

μψ terms and the
cubic and quartic terms in 〈Fμν |Fμν〉; they are pictured in Figure 9.1. (Gluons
are conventionally denoted by “coiled-spring” lines.) The first diagram in Figure
9.1 can represent, for example, a red quark emitting a red-antigreen gluon and
turning into a green quark, and the second can represent a red-antigreen gluon and
a green-antiblue gluon combining to yield a red-antiblue gluon.

A fundamental feature of QCD is color confinement, which means that all real
(non-virtual) particles that can actually be observed are bound states of quarks
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Figure 9.1. The basic interactions of QCD.

and gluons that are color-neutral, that is, invariant under the SU(3)-action. (This
phenomenon is abundantly attested by experiment, but so far it has been proved
theoretically only for a lattice approximation to QCD and not for QCD itself.) The
observed bound states are of two types: Bosons made of quark-antiquark pairs and
Fermions made of three quarks of different colors or three antiquarks of different
anticolors.3 The Bosons can have spin 0 or 1, and the Fermions can have spin 1

2 or
3
2 , depending on how the spins of the constituent quarks line up.4 For example, the

proton is the spin- 12 bound state of one down and two up quarks, the neutron is

the spin- 12 bound state of one up and two down quarks, and the negatively charged
pion π− is the spin-0 bound state of an up antiquark and a down quark; the
corresponding spin- 32 and spin-1 particles are called Δ+, Δ0, and ρ−, respectively.
There are also color-neutral combinations of gluons, called glueballs, which may
have been observed although the evidence is not conclusive as of this writing.

Color confinement accounts for the fact that the strong interaction is effectively
of very short range even though gluons, like photons, are massless: particles with
nontrivial color charges cannot travel alone over long distances.

The other crucial feature of QCD, which is shared with other non-Abelian gauge
theories, is asymptotic freedom: the property that the effective coupling constant
becomes weaker at higher energies, or equivalently at shorter distances, so that
perturbation theory works better in the high-energy regime. The demonstration of
this property (by ’t Hooft, Politzer, and Gross and Wilczek) was a major milestone
in the development of QCD and its acceptance as a workable theory of strongly
interacting particles. It is quite surprising, as the vacuum polarization by virtual
electron-positron pairs that causes the effective coupling in QED to become stronger
at higher energies, as we discussed in §7.10, has an analogue in QCD — vacuum
polarization by virtual quark-antiquark pairs — that has the same effect. But it
turns out that in QCD, this effect is overwhelmed by reverse polarization effects
whose existence depends on the non-Abelian nature of the gauge fields. (See Peskin
and Schroeder [89], §16.7, for an informal discussion of this matter.) Because
of asymptotic freedom, QCD has been very successful in accounting for the large
variety of strongly interacting particles produced in high-energy collisions and quite

3Exercise: Show that the electric charge of such combinations is always an integer multiple
of e.

4This statement is an oversimplification. Experimental evidence indicates that the spin of a
3-quark Fermion arises in a complicated way from quark spins, gluon spins, and the orbital angular
momentum of the quarks, even though on a priori grounds it must be exactly a half-integer. See
Rith and Schäfer [98].
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successful in making quantitative predictions about their behavior (although the
latter are nowhere near as precise as those of QED). However, the situation in the
low-energy regime is much less satisfactory. The “strong force” that binds atomic
nuclei together is understood to be a by-product of the QCD interaction, but this
understanding is not on a very precise quantitative level.

Further information about QCD, at varying levels of completeness and techni-
cality, can be found in Aitcheson and Hey [2], Greiner, Schramm, and Stein [58],
Griffiths [59], Peskin and Schroeder [89], Weinberg [132], and Zee [138].

9.3. Broken symmetries

The phrase “broken symmetry” refers to situations in which a symmetry in an
underlying problem is lacking in its solutions. For example, suppose the problem
is to find the values of ξ ∈ R

n that minimize V (ξ) = |ξ|4 − 2|ξ|2. The function V
is invariant under the full orthogonal group O(n), but the minimizing ξ’s (those
with |ξ| = 1) are invariant only under a subgroup of O(n) conjugate to O(n − 1).
Moreover, if one looks at the graph of V only in a small neighborhood of one of
these ξ’s, only the smaller symmetry group is evident.

We begin with a result concerning the breaking of a global symmetry group in
field theory. Suppose Φ = (φ1, . . . , φn) is an n-tuple of classical real scalar fields
— complex fields can be accomodated by breaking them into real and imaginary
parts — with a Lagrangian

L = 1
2 (∂μΦ) · (∂

μΦ)− V (Φ) = 1
2

∑
(∂φj)

2 − V (φ1, . . . , φn),

where V is a polynomial on Rn that has a minimum value Vmin and is invariant
under some compact group G ⊂ O(n). (The V in the preceding paragraph is a good
example.) The Lagrangian L is then invariant under G, since the derivative term is
invariant under O(n). We are interested in the behavior of the resulting field theory
near a field configuration that minimizes the total energy. If such a configuration
is unique, it will be invariant under G, but if not, some of the symmetry will
probably be broken. The total energy is the sum of the kinetic energy 1

2 (∂0Φ)
2

and the potential energy 1
2

∑3
i=1(∂iΦ)

2 + V (Φ), so it is minimized when Φ(x) is a
constant ξ ∈ Rn such that V (ξ) = Vmin. Let

M =
{
ξ ∈ R

n : V (ξ) = Vmin

}
,

fix ξ0 ∈M , and let

H =
{
g ∈ G : gξ0 = ξ0

}
.

If H �= G, there are broken symmetries: the choice of ξ0 reduces the symmetry
group from G to H.

Let us expand V (Φ) about Φ = ξ0. Setting Φ̌ = Φ− ξ0, we have

V (Φ) = V (Φ̌ + ξ0) = Vmin +
1
2

n∑
i,j=1

∂i∂jV (ξ0)φ̌iφ̌j + (higher order).

The eigenvalues of the Hessian (∂i∂jV (ξ0)) are nonnegative since V has a minimum
at ξ0. Let η1, . . . , ηn ∈ R

n be an orthonormal eigenbasis for the Hessian, with

eigenvalues m2
1, . . . ,m

2
n, and let φ̃j = Φ̌ · ηj ; then

V (Φ) = Vmin +
1
2

∑
m2

j φ̃
2
j + (higher order)
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and hence

(9.4) L = −Vmin +
1
2

∑[
(∂μφ̃j)

2 −m2
j φ̃

2
j

]
+ (higher order).

Now, the final point: The nullspace of the Hessian includes (and usually is exactly
equal to) the tangent space of M at ξ0. Indeed, if η is tangent to M at ξ0, for small
ε there is a point ξε ∈M such that |(ξ0 + εη)− ξε| = O(ε2). Since V (ξε) = Vmin =
V (ξ0) and ∇V (ξ0) = 0, we have

V (ξ0 + εη)− V (ξ0) = V (ξ0 + εη)− V (ξε)

= ∇V (ξ0 + εη) · (ξ0 + εη − ξε) +O(|ξ0 + εη − ξε|2)
= O(ε) ·O(ε2) +O(ε4)

= O(ε3).

It follows that the restriction of the Hessian form to Tξ0M vanishes. We can there-
fore choose the basis η1, . . . , ηn so that the ηj with j ≤ dim(M) span Tξ0M and
hence the corresponding mj are zero.

Now let us interpret this result from a quantum perspective. The “configuration
of minimum energy” is the vacuum state |Ω〉, and for quantum fields the thing that
plays the role of the vector ξ0 in the preceding argument is the vacuum expectation
value 〈Ω|Φ(0)|Ω〉 ∈ R

n;5 the translated field Φ̌ is Φ − 〈Ω|Φ(0)|Ω〉I. (This, by
the way, is where one really needs the assumption that the φj ’s are scalar fields.
The vacuum expectation value of a field of higher spin always vanishes — it must
transform under the Lorentz group according to the representation of appropriate
spin, but at the same time it must be Lorentz-invariant since the vacuum is — and
so H = {g ∈ G : g · 0 = 0} = G.) When the Lagrangian is written in the form (9.4)

in terms of the translated and rotated fields φ̃j , it appears as the Lagrangian for a
set of interacting scalar fields of masses m1, . . . ,mn. (The constant Vmin does not
affect the physics and can be discarded; we could have assumed that Vmin = 0 from
the beginning.) The number of massless particles is at least dim(M), and since M
includes the G-orbit of ξ0, which can be identified with G/H, this number is at
least dim(G)− dim(H), the “number of broken symmetries.”

In short, our classical argument has led us, on the heuristic level, to a result
known as Goldstone’s theorem. In its general form it says: Suppose the Lagrangian
L for a set of n Hermitian scalar fields Φ = (φ1, . . . , φn) is invariant under a group
G ⊂ O(n) (acting on Φ through its canonical action on Rn), but the vacuum ex-
pectation value 〈Ω|Φ|Ω〉 ∈ Rn is invariant only under a proper subgroup H ⊂ G.
Then there are at least dim(G) − dim(H) massless particles in the theory. These
massless particles are known as Goldstone Bosons or Nambu-Goldstone Bosons.
Their existence in particular models was first pointed out by Nambu and Gold-
stone; the general result is due to Goldstone, Salam, and Weinberg [57]. For the
quantum-mechanical derivation of the theorem we refer the reader to this paper or
to Weinberg [132], §19.2, or Peskin and Schroeder [89], §11.1.

Since the set of massless, spinless particles in the real world is apparently
empty, one may wonder what the point of all of this is. In fact, the attitude in
the paper [57] just cited is that the existence of Goldstone Bosons in theories with
broken symmetry is a reason to reject such theories. However, one might envision a
theory with an approximate symmtery group that is broken to yield a particle that is

5〈Ω|Φ(x)|Ω〉 is independent of x, because the vacuum is translation-invariant.
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approximately massless, and a few years after the appearance of [57] people realized
that the pion can be considered as the Goldstone Boson for a broken approximate
symmetry of strongly interacting particles. (See Weinberg [132], §19.4, or Zee [138],
§IV.2.) For our purposes, however, the important point is that if one promotes the
symmetry group G to a gauge group — that is, incorporates not just the global
symmetries Φ �→ gΦ but also the local ones Φ(x) �→ g(x)Φ(x) into the theory —
the outcome is rather different.

Before we study that situation, however, a point needs to be made that pertains
to both global and local broken symmetries. The description of the physics in terms
of particles of certain masses, as in Goldstone’s theorem, pertains only to field
configurations that are not too far from the ground state or vacuum and whose
energy is therefore not too much greater than Vmin; it is only for these that the
Taylor expansion (9.4) is a reliable guide. At high energies where one can, so to
speak, leap over the bumps in the potential V , the nature of the physics changes.
In the applications of gauge field theories to elementary particle physics, such as
the one discussed in the next section, the low-energy regime generally includes all
energies that are available in the laboratory (or the observatory) with room to
spare. However, these ideas also have applications in condensed matter physics —
in particular, superconductivity — and there the “phase transition” from low to
high energy is a directly observable phenomenon. (See Weinberg [132], §21.6, and
Zee [138], Parts V and VI.)

To begin the study of broken local symmetries, let us return to the classical
fields Φ considered above, with their energy-minimizing configuration ξ0, and make
the Lagrangian gauge-invariant. That is, as in §9.1, we introduce a g-valued vector
field iAμ and replace ∂μ by the covariant derivative Dμ = ∂μ + iAμ, yielding the
Lagrangian

(9.5) L = 1
2 (DμΦ) · (DμΦ)− V (Φ)− 1

4 〈Fμν |Fμν〉,

where the coupling constants are implicit in the inner product in the last term.
This Lagrangian is invariant under the transformations

Φ �→ gΦ, Aμ �→ gAμg
−1 + i(∂μg)g

−1

for arbitrary (smooth) G-valued functions g on R4. We now add the modest extra
assumption that G acts transitively on M , so that M = {gξ0 : g ∈ G} ∼= G/H and
Tξ0M = {Y ξ0 : Y ∈ g}. The key point is the following lemma:

For any η ∈ Rn there is a g(η) ∈ G such that g(η)η · Y ξ0 = 0 for all Y ∈ g.
Moreover, there is a neighborhood U of ξ0 such that g(η) can be chosen to depend
smoothly on η for η ∈ U .

To prove the first assertion, consider the real-valued function Fη(g) = η ·gξ0 on
G. Since G is compact, this function has a maximum at some g0, where dFη|g0 = 0.
But for Y ∈ g (considered as a left-invariant vector field on G) we have

0 = dFη

∣∣
g0
(Y ) =

d

dt
Fη(g0e

tY )

∣∣∣∣
t=0

= η · g0Y ξ0 = g−1
0 η · Y ξ0,

since G ⊂ O(n). Thus we can take g(η) = g−1
0 . This choice is not unique: in

particular, for any h ∈ H we have hξ0 = ξ0, hence Fη(gh) = Fη(g), so g(η) can be
replaced by hg(η).
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For η = ξ0, since |gξ0| = |ξ0| we have η · gξ0 ≤ |ξ0|2 with equality if and only
if gξ0 = ξ0, i.e., g ∈ H, so the maximizers of Fξ0 are precisely the elements of H.
Let V be a complementary subspace to h in g. It is easily seen by via the implicit
function theorem that for η near ξ0 there is a unique g0(η) near the identity in
exp(V ), depending smoothly on η, that maximizes Fη, and then g(η) = g0(η)

−1 is
the desired solution for the second assertion. We leave the details to the reader. (For
the case we need in the next section, we will be able to produce an explicit solution
that is valid on the largest possible neighborhood U of ξ0, namely, U = Rn \ {0}.
However, g(η) clearly cannot depend continuously on η in a neighborhood of 0.)

Now, recall that we are interested in fields that are close to ξ0; more precisely,
we restrict attention to smooth fields that take values in the neighborhood U of
ξ0 specified in the lemma. If Φ0 is any such field, the lemma guarantees that
that there is a smooth G-valued function g such that the gauge-transformed field
Φ(x) = g(x)Φ0(x) satisfies

(9.6) Φ(x) · Y ξ0 = 0 (x ∈ R
4, Y ∈ g).

We henceforth assume that Φ satisfies (9.6), and as before we set Φ̌ = Φ − ξ0 and

φ̃j = Φ̌ ·ηj where {ηj}n1 is a basis for Rn such that {ηj}m1 is a basis for Tξ0M . Then
ηj = Yjξ0 for j ≤ m, where Yj ∈ g. Since ξ0 · Y ξ0 = 0 for Y ∈ g (as g ⊂ so(n) and

so(n) consists of skew-symmetric matrices), we find that the Goldstone fields φ̃j(x)
(j = 1, . . . ,m) vanish identically. The gauge invariance of the theory therefore
implies that there are no physical Goldstone Bosons.

Moreover, we have

DμΦ = (∂μ + iAμ)(Φ̌ + ξ0) = DμΦ̌ + iAμξ0,

so

(DμΦ) · (DμΦ) = (DμΦ̌) · (DμΦ̌) + 2i(∂μΦ̌) ·Aμξ0 − (Aμξ0) · (Aμξ0).

The term (∂μΦ̌) · (Aμξ0) = (∂μΦ) · (Aμξ0) vanishes by (9.6) because Aμ is g-valued,
and the term (Aμξ0)·(Aμξ0) representsmasses for the fields that are the components
of Aμ. To make this more explicit, let Y1, . . . , YN be an orthonormal basis for g

(with respect to the given Ad-invariant inner product) such that Y1ξ0, . . . , Ymξ0 are
a basis for Tξ0M and Ym+1, . . . , YN are a basis for h. Then Yjξ0 = 0 for j > m, and
the matrix ((Yiξ0) · (Yjξ0))

m
i,j=1 is positive definite, so we can subject Y1, . . . , Ym to

an orthogonal transformation to make it diagonal: (Yiξ0) · (Yjξ0) = M2
j δij for some

positive constants Mj .
With Φ satisfying (9.6) and Aμ expanded in terms of the basis {Yj} as Aμ =∑

j A
j
μYj , the Lagrangian (9.5) now takes the form

(9.7)

L = − 1
2

N∑
j=m+1

(Dφ̃j)
2 − 1

2

N∑
j=m+1

m2
j φ̃

2
j − 1

2

m∑
j=1

M2
j A

j
μA

μj − V (Φ)− 1
4 〈Fμν |Fμν〉.

(Recall that N = dim(G) is the number of symmetries and m = dimM is the num-
ber of broken ones.) The m Goldstone fields have disappeared, and we are left with

n−m massive scalar fields φ̃j , m massive gauge fields Aj
μ (j = 1, . . . ,m), and N−m

massless gauge fields Aj
μ (j = m + 1, . . . , N). This phenomenon is picturesquely

described by saying that “the gauge fields A1
μ, . . . , A

m
μ eat the Goldstone Bosons
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and become massive.” It was explored by several people, including Peter Higgs, in
the mid-1960s, and is now generally known as the Higgs mechanism.6

It is worth noting that in the conversion from m massless scalar fields and m
massless gauge fields to m massive gauge fields there is a “conservation of degrees
of freedom,” because massive vector fields have longitudinal modes of vibration
whereas massless ones do not. In effect, the Goldstone fields turn into the longitu-
dinal modes of the massive gauge fields.

We refer the reader to the physics texts for the development of these matters
on the level of quantum fields except to comment on one essential point. As we
showed in §6.5, the Fourier-transformed propagator for a quantum vector field of
mass M is

(9.8) −iΔμν(p) = −i
gμν − pμpν/M

2

p2 −M2 + iε
.

Since this has no decay as p → ∞ in sectors where pμ and pν are both large,
there are clearly going to be serious divergence problems when one inserts this
into the integrals defined by Feynman diagrams. Indeed, since the gauge fields can
interact with each other, one can easily construct Feynman diagrams with many
loops but few lines whose propagators decay at infinity, and such diagrams can
have arbitrarily high degrees of divergence. It therefore appears that a theory with
massive gauge fields will necessarily be nonrenormalizable. But, in fact, gauge
invariance comes to the rescue again. Just as we found that the photon propagator
−igμν/(p2 + iε) is only one of a family of admissible propagators whose interplay
is an useful feature of the theory, it turns out that (9.8), which results from the
gauge-fixing condition (9.6), is only one of a family of admissible propagators for
the massive gauge fields associated to different gauge-fixing conditions, and some
of them have better decay at infinity. This discovery, due to ’t Hooft, was a crucial
ingredient in the development of the modern “standard model” for elementary
particles. Specifically, by introducing suitable gauge-fixing delta-functions into the
functional integrals for the gauge fields, as we did for the photon field in §8.3 (but
with the additional complications described in §9.1), one can derive the propagators

−iΔ(a)
μν (p) =

−i
p2 −M2 + iε

[
gμν −

(1− a)pμpν
p2 − aM2

]
,

where a is an arbitrary real parameter. These propagators, after Wick rotation,
have the healthy 1/|p|2 decay at infinity, and (9.8) can be recovered as the limiting
case a→∞.

9.4. The electroweak theory

In this section we discuss a strikingly successful application of the ideas of
the preceding section, the unified model for electromagnetic and weak interactions
or “electroweak” theory due (independently) to Salam and Weinberg. To prepare
the ground, we give a little background on the weak interaction. The story of
the development of the theoretical and experimental understanding of the weak
interaction is a fascinating one that is too long to tell here in detail, but I cannot
resist devoting a page or two to a brief outline. A much more comprehensive account
can be found in Franklin [51].

6The use of the term “Higgs mechanism” by Deligne and Freed in [21], p. 185, is incorrect.
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The weak interaction: a historical sketch. The first manifestation of the
weak interaction to be observed was beta decay, the form of radioactivity in which an
atomic nucleus emits an electron and increases its electric charge by one unit. In the
early 1900s when this process was first studied, an atomic nucleus of atomic number
Z and atomic weight n was generally thought to be composed of n protons and n−Z
electrons, and beta decay was understood as the expulsion of an electron. But there
were difficulties: beta decay did not seem to respect conservation of energy, and
there were anomalies in the spins of some nuclei. (For example, the N14 nucleus was
observed to have spin 1, which could not be explained if it consisted of 14 protons
and 7 electrons that all have spin 1

2 .) In 1930 Pauli proposed a “desperate way
out” of both difficulties: nuclei should contain not only protons and electrons but
light neutral particles of spin 1

2 that he called “neutrons,” one of which would be
emitted along with the electron in beta decay. A little over a year later, Chadwick
isolated the particle that we now call the neutron, and subsequent experiments led
to the conclusion that nuclei consist of protons and neutrons rather than protons
and electrons. This accounted correctly for nuclear spin but not for the missing
energy in beta decay, which is much less than the rest mass of a neutron, so a second
neutral particle was postulated, and Fermi dubbed it the “neutrino.” Nowadays,
having developed an appreciation for the law of lepton conservation, we call it an
antineutrino instead.

By the mid-1930s, beta decay was generally understood to be the process n→
p+e+ν, although the distinction between ν and ν was not yet clear, and the neutrino
remained a shadowy device for making the books balance until its existence was
confirmed by observation of the “reverse beta decay” ν+p→ n+e, where e denotes
a positron, in the mid-1950s. The first good theoretical model for its mechanism was
provided in 1934 by Fermi [34], who proposed a theory in which proton, neutron,
electron, and neutrino fields (denoted by ψp, ψn, ψe, and ψν , respectively) interact
via a Hamiltonian of the form

(9.9) Hint = (const.)(A+A†), A = (ψeγ
μψν)(ψpγμψn).

This was one of the early successes of the field-theoretic description of elementary
particles. It was recognized right away, however, that several variants of this inter-
action that still maintained Lorentz invariance were possible: one could replace the
A in (9.9) by

(9.10)
(ψeψν)(ψpψn), (ψeγ

μγνψν)(ψpγμγνψn),

(ψeγ
μγ5ψν)(ψpγμγ

5ψn), (ψeγ
5ψν)(ψpγ

5ψn),

or combinations of these. (The interaction (9.9) was called V for “vector”; the
ones corresponding to (9.10) were called S, T, A, and P for “scalar,” “tensor,”
“axial-vector,” and “pseudoscalar,” respectively.) The picture was enriched by the
discovery of the muon and its decay process μ → e + νμ + νe,

7 which could be
modeled by the interactions (9.9) or (9.10) with n and p replaced by μ and νμ. The
history of weak-interaction physics in the quarter-century after Fermi’s paper is a
tangled tale involving an accumulation of experimental evidence (some of it faulty)
that suggested first one hypothesis on the correct form of the interaction and then
another.

7The distinction between muon-neutrinos and electron-neutrinos was not yet established,
however.
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The breakthrough came in 1956, when Lee and Yang proposed the shocking
idea that the weak interaction is not parity-invariant. Experimental confirmation
was quickly obtained by three groups of experimenters, and within a couple of years
Feynman, Gell-Mann, and the team of Marshak and Sudarshan independently found
the correct form for any weak interaction of four spin- 12 Fermion fields ψ1, . . . , ψ4:
(9.11)

Hint =
√
8GF (A+A†), A = (Pψ1γ

μPψ2)(Pψ3γμPψ4), P = 1
2 (1− γ5),

where the fields must be paired up correctly for each specific process. The coupling
constant is called

√
8GF for historical reasons, GF being the constant in Fermi’s

original paper. It was supposed to be universal — that is, the same for beta decay,
muon decay, and all other such interactions — with the experimentally determined
value of 3.25 × 10−5 GeV−2 in natural units where � = c = 1. This turns out
to be wrong, for a rather subtle reason that we shall explain near the end of this
section, but it is approximately correct for beta decay and muon decay. Feynman
and Gell-Mann were persuaded to write up their results in a joint paper [40] which,
as one might expect, is a gem. Feynman’s personal account [39] of his discovery is
also very entertaining and instructive.

Let us examine the meaning of (9.11). We use the Weyl representation (4.12)
of the Dirac matrices, in which γ5 =

(−I 0
0 I

)
and hence P = ( I 0

0 0 ). Thus P and

I − P = 1
2 (1 + γ5) are just the projections onto the first and second factors of the

decomposition C4 = C2×C2. (Note that Pψ = ψ(I −P ) and (I −P )γμ = γμP , so
that Pψiγ

μPψj = ψiγ
μPψj . It follows that the interaction (9.11) is a combination

of the V and A interactions of (9.9) and (9.10).) As in §4.3, for any spinor ψ we call
ψL = Pψ and ψR = (I − P )ψ the left-handed and right-handed components of ψ;
these may be regarded as 2-component (Pauli) spinors. The point of (9.11) is that
the weak interaction involves only the left-handed components of the Fermion fields.
In making this statement, however, one must be careful to distinguish between par-
ticles and antiparticles, as the antiparticle of a left-handed particle is right-handed.
It is implicit in this theory that one can distinguish “matter” from “antimatter” in
a coherent way so that all the fields ψi in (9.11) are matter fields; then the interac-
tion represented by (9.11) involves annihilation of ψ2 and ψ4 particles or creation
of their antiparticles; vice versa for ψ1 and ψ3.

There is now persuasive (although indirect) evidence that neutrinos have a
small but nonzero mass, but for most purposes it is a good approximation to assume
that they are massless. In that case they can be described from the outset by two-
component fields with left- or right-handed helicity, as we pointed out in §4.4.
The theory of weak interactions just outlined then entails that only left-handed
neutrinos and right-handed antineutrinos participate in the weak interaction, and
since they apparently don’t interact in any other way (except with gravity), one
loses nothing by assuming that all neutrinos are left-handed and all antineutrinos
are right-handed.

In any case, the theory of weak interactions based on (9.11) was able to account
for a large and diverse body of experimental data in terms of tree-level calculations.
But trouble loomed as soon as one tried to include Feynman diagrams with loops:
as we pointed out in §7.2, simple dimension counting shows that the interaction
(9.11) is not renormalizable. Moreover, it was natural to hope that the weak in-
teraction could be explained in terms of a new field whose quanta (“intermediate
vector Bosons”) would mediate the interaction, like photons for electromagnetism
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or pions for the Yukawa model of the strong nuclear force. A model of this sort
was proposed by Glashow [54] in 1961, but it included symmetry-breaking terms
in the Lagrangian in order to make the intermediate vector Bosons massive. In
1967 Salam [104] and Weinberg [130]8 independently developed an improved the-
ory of the weak interaction combined with electromagnetism that maintained the
symmetry of the Lagrangian and used the Higgs mechanism to generate the re-
quired masses. They conjectured that it would be renormalizable, and the proof
was provided in 1971 by ’t Hooft [119].

The rest of this section is devoted to an outline of the Salam-Weinberg elec-
troweak theory. In it, neutrinos are assumed to be massless. We shall indicate at
the end how the theory can be modified to accommodate nonzero neutrino masses.

Construction of the Salam-Weinberg model. To keep the notation rea-
sonably compact, we first describe a simplified version of the Salam-Weinberg model
whose only Fermions are electrons and electron-type neutrinos (and their antiparti-
cles). Later we shall show how to incorporate more species of Fermions. Moreover,
we shall employ a shorthand notation in which the field of a Fermion f is de-
noted simply by f rather than ψf . There will not be a confusion in the use of e
to denote both electric charge and the electron field, because from the outset we
shall separate the electron field into its left-handed and right-handed components
eL = 1

2 (1 − γ5)ψe and eR = 1
2 (1 + γ5)ψe, reserving e itself for the absolute charge

of the electron. Thus, the Fermionic ingredients for our model are left-handed
electrons eL, right-handed electrons eR, and (necessarily left-handed) electron-type
neutrinos ν, all of which are described by four-component spinor fields of which two
components vanish.

We begin by writing down a Lagrangian for free massless electrons and neutri-
nos:

(9.12) L0 = iνγμ∂μν + ieLγ
μ∂μeL + ieRγ

μ∂μeR.

This Lagrangian is invariant under the group U(3), acting in the natural way on the
triple (eL, ν, eR) of fields, and our gauge group will be based on a carefully chosen
subgroup of U(3).

The key idea is that the action of SU(2) on the first two components imple-
ments a symmetry between left-handed electrons and neutrinos under the weak
interaction, which is manifested in the older theory by the fact that eL and ν are
always paired up in (9.11) as νγμeL or eLγ

μν. An analogous idea had already been
used in hadron physics, where protons and neutrons behave essentially identically
under the strong interaction and can be considered as two states of one particle, the
“nucleon.” There one considers the action of SU(2) on the pair of fields (p, n) as an
analogue of the action of SU(2) on two-component spinors; the proton (p, 0) and
neutron (0, n) then appear as the ± 1

2 -eigenstates of the Pauli matrix 1
2σ3 ∈ isu(2),

just like the “z-spin up” and “z-spin down” states of a spin-12 particle. One says
that the “isospin” (short for “isotopic spin”) of the proton — or more precisely,
its third component — is 1

2 , and the isospin of the neutron is − 1
2 . The analogous

operator

I3 =

⎛⎝ 1
2 0 0
0 − 1

2 0
0 0 0

⎞⎠
8A three-page paper worthy of a Nobel prize!
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on the triple of fields (ν, eL, eR) is called “weak isospin.” Thus, we have (with a
minor abuse of notation, writing I3(ξ) = λ when ξ is an eigenvector of I3 with
eigenvalue λ) I3(ν) =

1
2 , I3(eL) = −

1
2 , I3(eR) = 0.

The other operator on the triple of fields that has obviously important eigen-
values is the electric charge Q, measured in units of the absolute charge of the
electron: Q(eL) = Q(eR) = −1, Q(ν) = 0. However — and it took some cleverness
to realize this — the right thing to look at in this situation is not Q but the “weak
hypercharge”

Y = 2(Q− I3) =

⎛⎝−1 0 0
0 −1 0
0 0 −2

⎞⎠ .

(Again, the name is derived from an analogous operator in hadron physics.) This
operator generates an action of U(1) on the triple of fields, eiθ �→ eiθY , that com-
mutes with the SU(2) action of the preceding paragraph. Putting them together,
then, we have an action Π of SU(2)× U(1) on the 3-dimensional field space:

Π

((
a b
c d

)
, eiθ

)
=

⎛⎝e−iθa e−iθb 0
e−iθc e−iθd 0
0 0 e−2iθ

⎞⎠ .

This is the symmetry group on which the Salam-Weinberg theory is based.
Note that the matrices I3 and Y come from the corresponding Lie algebra action:
I3 = i−1dΠ(A, 0) and Y = i−1dΠ(0, B) where A = i

2σ3 ∈ su(2) and B = i ∈ iR =
u(1).

We now promote this group of global symmetries to a group of local symmetries,
i.e., a gauge group. This entails the introduction of an su(2) × u(1)-valued gauge
field, which we denote by ( 1

2iWμ · σ, 1
2iXμ). Here Wμ = (W1μ,W2μ,W3μ) where

Wjμ are real-valued, as is Xμ, and σ denotes the triple of Pauli matrices. (The
factors of 1

2 are conventional. 1
2iσ is the basis of su(2) that corresponds to the

standard basis of so(3), and the 1
2i onXμ is then dictated by consistency.) The fields

Wμ and Xμ are normalized as in the paragraph following (9.3) so that the coupling
constants appear in the covariant derivative rather than in the inner product. There
are two of them: g for the su(2) field and g′ for the u(1) field. The covariant
derivative acting on the pair (ν, eL) is thus

Dμ

(
ν
eL

)
= (∂μ + 1

2igWμ · σ − 1
2ig

′Xμ)

(
ν
eL

)
,

where Wμ · σ acts on the column vector by matrix multiplication and ∂μ and Xμ

acts componentwise, and the covariant derivative acting on eR is

DμeR = (∂μ − 1
i g

′Xμ)eR.

(The coefficients −1 and −2 multiplying 1
2ig

′Xμ in these formulas are the rele-
vant eigenvalues of the hypercharge Y .) Replacing the ordinary derivatives in the
Lagrangian (9.12) by covariant derivatives yields the gauge-invariant Lagrangian

(9.13) Leν =
(
ν eL

)
γμ(i∂μ + 1

2gWμ ·σ − 1
2g

′Xμ)

(
ν
eL

)
+ eRγ

μ(i∂μ − g′Xμ)eR,

to which we must add the pure gauge field Lagrangian

(9.14) LF = − 1
4 〈Fμν |Fμν〉,
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where Fμν is the C3 × C-valued function

Fμν =
(
∂μWν − ∂νWμ + gWμ ×Wν , ∂μXν − ∂νXμ

)
and the inner product is the standard inner product on C4.

At this point we have a theory of massless electrons, neutrinos, and gauge fields,
so we need to add something to break the symmetry. For this purpose we introduce
a pair of complex scalar fields (or a 4-tuple of real scalar fields)

Φ =

(
φ+

φ0

)
=

(
φ+
1 + iφ+

2

φ0
1 + iφ0

2

)
equipped with an action of the symmetry group SU(2)× U(1): SU(2) acts in the
canonical way on the two-dimensional vector Φ, and U(1) acts as scalar multiples
of the identity, that is, ((

a b
c d

)
, eiθ

)
�→

(
eiθa eiθb
eiθc eiθd

)
.

We then have I3(φ
+) = 1

2 , I3(φ
0) = − 1

2 , and Y (φ+) = Y (φ0) = 1, where I3
and Y are defined in terms of the corresponding Lie algebra action as before. It
follows that the electric charge Q = I3 + 1

2Y is +1 for φ+ and 0 for φ0 (hence
the superscripts). We endow Φ with a gauge-invariant Lagrangian that will induce
symmetry breaking:

(9.15) LΦ = 1
2 (DμΦ)

†(DμΦ) + κΦ†Φ− λ(Φ†Φ)2,

where κ and λ are positive constants and the covariant derivative here is

Dμ = ∂μ + 1
2igWμ · σ + 1

2ig
′Xμ.

(Normally one would omit the factor of 1
2 on the derivative term in (9.15) since

Φ is complex-valued; we include it so that the real scalar field that remains after
the Goldstone components have been removed is correctly normalized.) The final
ingredient is an interaction Lagrangian for Φ and the lepton fields:

(9.16) LeνΦ = −G
(
ν eL

)(φ+

φ0

)
eR −GeR

(
φ+∗ φ0∗)( ν

eL

)
,

where G is another coupling constant. The total Lagrangian is the sum of (9.13)–
(9.16):

(9.17) L = Leν + LF + LΦ + LeνΦ.

This completes the construction of the Salam-Weinberg model.

Interpretation of the Salam-Weinberg model. First of all, the potential
V (Φ) = −κΦ†Φ + λ(Φ†Φ)2 in the Lagrangian (9.15) is minimized when Φ†Φ ≡
|φ+|2 + |φ0|2 = κ/2λ. Among the constant fields satisfying this equation, we take
the one corresponding to the physical vacuum to be

(9.18) φ+ = 0, φ0 = a, where a =

√
κ

2λ
.

(Recall that this means that when the fields are quantized, the vacuum expectation
values of φ+ and φ0 are 0 and a, respectively.) The subgroup H of SU(2) × U(1)
that fixes

(
0
a

)
is

H =

{((
eiθ 0
0 e−iθ

)
, eiθ

)
: θ ∈ R

}
.
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As explained in §9.3, we can perform a gauge transformation to put any field with
values near

(
0
a

)
into the form

(9.19) Φ =

(
0

a+ φ

)
where φ is real-valued (Hermitian, after quantization). In fact, there is a canonical
choice of gauge transformation g(x) here that works for any Φ such that Φ(x)
never vanishes: namely, the one such that g(x) ∈ SU(2) for all x, because for any
(z1, z2) �= (0, 0) ∈ C

2 there is a unique g ∈ SU(2) such that g(z1, z2) = (0, y) with
y > 0. The field φ is called the Higgs field ; its quanta are particles of spin 0 known
as Higgs Bosons.

Henceforth all our calculations will be in the gauge such that (9.19) is valid.
We then have

DμΦ =

(
0

∂μφ

)
+

[
g

2i

(
W 3

m W 1
μ − iW 2

μ

W 1
μ + iW 2

μ −W 3
μ

)
+

g′

2i
Xμ

](
0

a+ φ

)
=

1

2i

(
ag(W 1

μ − iW 2
μ) + g(W 1

μ − iW 2
μ)φ

2i∂μφ+ a(−gW 3
μ + g′Xμ) + (−gW 3

μ + g′Xμ)φ

)
,

so

DμΦ
†DμΦ

= ∂μφ∂
μφ−a2g2

4
(W 1

μ+iW 2
μ)(W

1μ−iW 2μ)−a2

4
(gW 3

μ−g′Xμ)(gW
3μ−g′Xμ)+· · · ,

where the dots, here and in the following formulas, denote terms involving products
of three or four fields. The quadratic terms are mass terms, and the field combi-
nations with definite masses and charges9 (which therefore correspond to particles)
are

(9.20) W =
W 1 + iW 2

√
2

, Z =
gW 3 − g′X√

g2 + g′2
, A =

g′W 3 + gX√
g2 + g′2

.

Note that the single complex field W has replaced the two real fields W 1 and W 2;
the quanta of W are particles with distinct antiparticles, whereas the Z and A
quanta are their own antiparticles. We now have

DμΦ
†DμΦ = ∂μφ∂

μφ− a2g2

4
W ∗

μW
μ − a2

8
(g2 + g′2)ZμZ

μ + · · · .

Moreover,

κΦ†Φ− λ(Φ†Φ)2 = κ(a+ φ)2 − λ(a+ φ)4 =
κ2

4λ
− 2κφ2 + · · · ,

since a2 = κ/2λ. Thus, after discarding the constant κ2/4λ, we have

LΦ = 1
2∂μφ∂

μφ− a2g2

4
W ∗

μW
μ − a2

8
(g2 + g′2)ZμZ

μ − 2κφ2 + · · · .

The Higgs mechanism has done its job: The gauge fields W and Z have acquired
masses, and the Higgs field is also massive:

(9.21) mW =
ag

2
, mZ =

a
√
g2 + g′2

2
, mφ = 4κ.

9We shall identify the charges of these fields shortly.
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(Recall that for complex fields the mass coefficient is m2 rather than 1
2m

2.) Only
the last gauge field A remains massless.

Next, we observe that under the condition (9.19) the Lagrangian (9.16) becomes

LeνΦ = −Ga(eLeR + eReL)−G(φeLeR + φeReL).

Note that the neutrino field has dropped out. The second pair of terms represents
the interaction of the electron field with the Higgs field, but the first pair is a
mass term for electrons. Indeed, the mass of the electron should appear in the
Lagrangian as −mψeψe where ψe is the full electron field. We have ψe = eL + eR,
ψeψe = ψ†

eγ
0ψe, and γ0 = ( 0 I

I 0 ); it follows easily that ψeψe = eLeR + eReL. In
short, the presence the field Φ imparts a mass to the electron:

(9.22) me = aG.

Finally, we take a close look at the Lagrangian (9.13):

(9.23)
Leν =

(
ν eL

)
γμ

[
i∂μ +

1

2

(
gW 3

μ − g′Xμ g(W 1
μ − iW 2

μ)
g(W 1

μ + iW 2
μ) −gW 3

μ − g′Xμ

)](
ν
eL

)
+ eRγ

μ(i∂μ − g′Xμ)eR.

In terms of the fields W , Z, and A, the 2× 2 matrix in (9.23) is(
(g2 + g′2)1/2Zμ

√
2 gW ∗

μ√
2 gWμ (g2 + g′2)−1/2((g′2 − g2)Zμ − 2gg′Aμ)

)
,

whereas
g′Xμ = (g2 + g′2)−1/2(gg′Aμ − g′2Zμ).

Substituting these formulas into (9.23), we find that
(9.24)
Leν =i[νγμ∂μν + eLγ

μ∂νeL + eRγ
μ∂μeR]

+
g√
2
[νγμW ∗

μeL + eLγ
μWμν]

− gg′√
g2 + g′2

[eLγ
μAμeL + eRγ

μAμeR]

+
1

2
√
g2 + g′2

[(g2 + g′2)νγμZμν + (g′2 − g2)eLγ
μZμeL + 2g′2eRγ

μZμeR],

where we have collected the terms into the groups that involve ∂, W , A, and Z.
The first group is just the usual free-field terms for the lepton fields, but each of
the other three has some new information to impart.

First, in the language of Feynman diagrams, the first term on the second line
of (9.24) represents a vertex with an incoming electron or outgoing positron, an
outgoing W -particle or incoming W -antiparticle, and an outgoing neutrino or in-
coming antineutrino. Charge conservation therefore dictates that the W -particle
have the same charge as the electron. It is therefore usually denoted by W−, and
its antiparticle is denoted by W+. W− and W+ are the field quanta that mediate
the familiar forms of the weak interaction such as beta decay and muon decay, as
we shall see shortly. For the same reason, the interactions on the third and fourth
lines show that the quanta of the A and Z fields have no electric charge.

Second, we observe that the massless, neutral field Aμ does not couple to the
neutrino field at all, and it couples to eL and eR in exactly the same way, namely,
the coupling for electromagnetism. We may therefore take Aμ to represent the
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electromagnetic field, and the coupling constant −gg′/
√
g2 + g′2 is then the charge

of the electron:

(9.25)
gg′√

g2 + g′2
= e.

Finally, the last line of (9.24), involving the neutral vector Boson Z, represents
the “weak neutral current” interaction. It produces effects such as electron-neutrino
scattering, the basic diagram for which is shown in Figure 9.2a. Such effects were
the most striking new prediction of the Salam-Weinberg theory and the earlier
version of Glashow, and their observation in experiments beginning in 1973 were
one of the main confirmations of the theory.

�

�
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Figure 9.2. Two weak neutral current processes.

To complete the picture of the weak interaction, we need to introduce more
Fermion species. Adding more leptons — muons and tauons and their associated
neutrinos — is easy. One first adds subscript e’s to all the neutrino fields ν in the
preceding calculations and to the coupling constant G in (9.16). To incorporate
muons, one then adds two more terms Lμνμ

and LμνμΦto the Lagrangian (9.17),
which are just like the Leνe

and LeνeΦ already present except that the electron
and electron-neutrino fields are replaced by muon and muon-neutrino fields, and a
new coupling constant Gμ = Gemμ/me is used for the μ − Φ coupling. Similarly
for tauons. The three generations of leptons then interact with each other through
exchange of W± and Z particles.

Two such interactions are depicted in Figure 9.2b and Figure 9.3. Figure 9.3
shows the basic process for muon decay. Figure 9.2b shows an interaction by which
an electron and a positron can collide and turn into a muon and an antimuon. Such
transmutations are observed in particle accelerators. At moderate energies, they
occur more often through the intermediation of a photon rather than a Z particle,
but the Z contribution becomes particularly strong, resulting in an enhanced cross-
section, when the total energy of the electron-positron pair is close to the mass mZ .
This phenomenon has provided a very precise experimental determination of mZ .

Before putting hadrons into the picture, let us examine what we have developed
a little more closely. The preceding formulas are commonly rewritten in terms of
the Weinberg angle

θW = arctan
g′

g
.

Specifically, (9.20) says that

Z = (cos θW )W 3 − (sin θW )X, A = (sin θW )W 3 + (cos θW )X,
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Figure 9.3. The basic process for muon decay.

(9.25) says that

(9.26) e = g sin θW = g′ cos θW ,

and (9.21) therefore says that

(9.27) mW =
ea

sin θW
, mZ =

mW

cos θW
=

ea

sin θW cos θW
.

Now, what are all these quantities?
Since the lepton-W coupling is given by the third line of (9.24), and the prop-

agator of the W− is of the form (6.53), the diagram in Figure 9.3 corresponds to
the S-matrix element

(−i)3 g
2

2
u(eL)γ

ρu(νe)
gρσ − qρqσ/m

2
W

q2 −m2
W

u(νμ)γ
σu(μL)

for muon decay. Here u(μL) is the spinor of the incoming muon, projected into the
left-handed eigenspace (actually a function of the momentum of the muon), and
likewise for the other u’s; q is the momentum transferred by the W−; and there
is one factor of −i for each vertex and another one from the propagator. In the
low-energy regime where |q| is negligible in comparison with mW , this reduces to

−i g2

2m2
W

u(eL)γ
ρu(νe)u(νμ)γρu(μL).

But this is exactly the matrix element given by the old theory (9.11), except that

g2/2m2
W here is replaced by

√
8GF there, so the coupling constant g is related to

the Fermi constant GF by

(9.28) GF =
g2√

32m2
W

.

Precise experiments with muons have yielded the valueGF = 1.16637×10−5 GeV−2,
specifically for muon decay, so this relation together with (9.21) determines the vac-
uum expectation value a:

a =
2mW

g
=

1

21/4G
1/2
F

= 246.2 GeV.

Moreover, experiments with weak neutral current processes have yielded the value
0.231 for sin2 θW , or 0.448 for θW itself, so we can now read off the masses of the
W and Z particles from (9.27): with e =

√
4π/137 we get mW = 77.6 GeV and

mZ = 88.4 GeV. However, these figures are somewhat inaccurate, because there
are various higher-order corrections to be taken into account. The biggest of these
is something we have pointed out in §7.10: the fine structure constant e2/4π needs
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to be taken not as the usual low-energy value 1/137 but as the effective value at the

energy scale ∼ 90 GeV, which turns out to be about 1/129. Taking e =
√
4π/129

yields the improved values mW = 79.9 GeV and mZ = 91.1 GeV. The experimental
values (not obtained until the 1980s, when particle accelerators were built that were
powerful enough to create particles with such energies) are mW = 80.4 GeV and
mZ = 91.2 GeV.

A word about coupling strength: since g = 2mW /a, the W -Fermion coupling

constant g/
√
2 in the second line of (9.24) is about .46, which is comparable to but

larger than the (low-energy) electromagnetic coupling e ≈ .30. As (9.28) makes
clear, the observed weakness of the weak interaction in low-energy processes such
as particle decays is due not to the intrinsic smallness of its coupling but to the
relative immensity of mW .
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Figure 9.4. The basic process for neutron decay.

Our model so far does not include the original manifestation of the weak in-
teraction, beta decay, and it is time to do something about that. Beta decay
n → p + e + νe involves the transmutation of one of the neutron’s down quarks
d into an up quark u; the basic Feynman diagram is shown in Figure 9.4. To
accomodate this in the electroweak theory, one can add another piece Lud to the
Lagrangian, which looks almost like (9.13) but with u and d replacing e and ν
(= νe):

(9.29) Lud =
(
uL dL

)
γμ(i∂μ + 1

2gWμ · σ + 1
6g

′Xμ)

(
uL

dL

)
+ uRγ

μ(i∂μ + 2
3g

′Xμ)uR + dRγ
μ(i∂μ − 1

3g
′Xμ)dR.

There are two changes from (9.13): an extra term for the right-handed component
of d, and different coefficients for the Xμ terms due to the fact that the electric
charges of the quarks are Q(u) = 2

3 and Q(d) = − 1
3 and hence the hypercharges

are Y (uL) = Y (dL) =
1
3 , Y (uR) =

4
3 , and Y (dR) = − 1

3 .
However, this is not quite right. The coupling constants for neutron decay and

muon decay were originally thought to be the same, but more precise experiments
revealed that the former is about 3% smaller, so the g of (9.13) does not seem
appropriate for (9.29). Moreover, a theory of hadronic weak processes must include
decays of particles containing strange quarks s, for which the coupling is weaker yet.
There is a common resolution of these difficulties: one builds the new Lagrangian
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not out of u and d but rather out of u and d′, where d′ is a linear combination of
d and s:

d′ = (cos θC)d+ (sin θC)s.

θC is called the Cabibbo angle after the physicist who first suggested this idea
(in a pre-quark model); it is experimentally determined to be about .23, so that
cos θC ≈ .97 (3% less than one!) and sin θC ≈ .23.

This improved model worked well for beta decay and for some strange parti-
cle decays but gave incorrect results for others. To solve that problem, Glashow,
Iliopoulos, and Maiani proposed in 1970 that there should be a fourth quark c
(“charm”) and a new piece Lcs′ of the Lagrangian involving c and

s′ = −(sin θC)d+ (cos θC)s.

Decisive experimental confirmation was obtained in 1974 with the discovery of the J
or ψ meson10 which consists of a bound state of c and its antiparticle c. Since then,
a third generation of quarks (t and b) has entered the picture, and the (presumably
final) version of the theory involves three new pieces of the Lagrangian of the form
(9.29) (with the original g and g′) built from the three doublets (u, d′′), (c, s′′),
and (t, b′′), where d′′, s′′, and b′′ are linear combinations of d, s, and b whose
coefficients form a 3 × 3 unitary matrix, the Cabibbo-Kobayashi-Maskawa matrix.
(The entries of this matrix are known only from experiment, and only to a rather
crude approximation.) To complete the picture, one needs to add more terms to
the Lagrangian to give the interaction of the quark fields with the Higgs field in
order to generate the quark masses. We omit the details, which are a bit involved;
see Weinberg [132], §21.3, for a terse account.

For further information on the applications of the electroweak theory to exper-
imental particle physics, see Griffiths [59], Aitcheson and Hey [2], Weinberg [132],
and Peskin and Schroeder [89].

To conclude, we say a few words about neutrino masses. There is now per-
suasive observational evidence for “neutrino oscillations,” that is, the ability of
neutrinos of the three different species (electron, muon, and tauon) to change into
one another, a phenomenon that would be impossible if they were truly massless.
The theoretical explanation for it relies on the assumption that the mass eigen-
states of the triple of neutrino fields (νe, νμ, ντ ) are not νe, νμ, and ντ themselves
but certain linear combinations of them. (As we saw earlier, the same is true of
the electroweak gauge fields, where the mass eigenstates are A and Z rather than
W 3 and X.) A neutrino created in muon decay, for example, begins as a pure νμ,
which is a superposition of particles of three different masses. As the neutrino prop-
agates, these components travel with slightly different speeds, creating interference
patterns that yield a nonzero probability that it will behave as a νe or ντ when
it arrives at a detector. Neutrino rest masses are estimated to be on the order of
1 eV, although they have not been measured directly: all observed neutrinos travel
with a speed that is experimentally indistinguishable from that of light, so their

rest masses m =
√
p2 are negligible in comparison with their observed masses p0.

So where does this leave the electroweak theory? The main point to be made
is that it needs only modification, not outright replacement. The weak interaction
still involves only left-handed neutrinos, so for many purposes one can simply add a

10This particle was discovered independently by two groups of experimentalists, who gave it
two different names.
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subscript L to the ν’s in the theory and proceed as before. To complete the picture,
one possibility is to incorporate right-handed neutrinos into the theory in much the
same way as right-handed electrons by adding suitable terms to the Lagrangian:
kinetic terms iνRγ

μ∂μνR in (9.13) (with no X since Y (νR) = 0) and extra terms in
the Fermion-Higgs interaction (9.16) to impart masses to the neutrinos. The right-
handed neutrinos are then “sterile”: they do not interact with anything except
the Higgs field and gravity. However, there are also other models that employ a
different kind of mass term in the Lagrangian, the so-called “Majorana masses.”
The explanation of these ideas is beyond the scope of this book; more information
can be found in Ramond [93] and the references given there. In any case, the correct
theory of massive neutrinos is, as of this writing, still a matter of conjecture; the
question awaits further experimental input.

The combination of the electroweak theory with QCD is the standard model
which (with some modification to accomodate massive neutrinos) has come to be
accepted as the correct description of elementary particle interactions with gravity
excluded — as far as it goes. However, some aspects of it (strong interactions at
low energies, for one thing) are still incompletely understood, and it leaves some
fundamental questions unanswered. Much effort has been devoted to attempts
to incorporate the standard model into a more complete theory of fundamental
interactions — “grand unified theories” that embed the electroweak theory and
QCD into a single gauge field theory, supersymmetry, string theory — but the
physical validity of these theories remains a matter of speculation.

Mathematical visitors may wish to return for a closer look at these regions of
physical theory, as they offer much of mathematical interest. But the subject of
this tourist guide is honest physics that can be checked against experiment, so this
is a good place to stop.
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Dirac representation, 68

dressed propagator, 214

Dyson series, 125

electromagnetic field, 28

electromagnetic potential, 28

electroweak theory, 303

expectation, 36

extended exterior algebra, 284

external line, 155

external vertex, 155

Faddeev-Popov determinant, 276

Faddeev-Popov ghost, 295

Fermi model, 141, 304

Fermion, 7, 89

Fermion Fock space, 93

Feynman diagram, 154–167

momentum space, 163

position space, 155

Feynman gauge, 152

Feynman parameters, 200

Feynman path integrals, 262

Feynman propagator, 147

Feynman rules

for φ4 theory, 164

for counterterms in QED, 225

for QED, 165

Feynman’s formula, 200

Feynman-Kac formula, 264

final vertex, 155

fine splitting, 80
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fine structure constant, 7

finite-particle space, 91

form factor, 229

Fourier transform, 4

functional derivative, 268

Furry’s theorem, 233

g-factor, 76

gauge, 27, 291

gauge fields, 294
renormalization of, 303

gauge transformation, 27, 294

Gaussian process, 288

Gell-Mann–Low formula, 184

generating functional, 270

global symmetry, 293

gluon, 297

Goldstone Boson, 300

Goldstone’s theorem, 300

Gordon identity, 229

grand unified theory, 315

hadron, 7

Hamilton’s equations, 14
Hamiltonian, 14, 49

harmonic oscillator, 17, 53

Heaviside-Lorentz units, 6

Heisenberg algebra, 44

Heisenberg group, 44

Heisenberg picture, 40

helicity, 86

Hermitian operator, 37

Higgs Boson, 309

Higgs field, 309

Higgs mechanism, 303

hypercharge, 307

infrared divergence, 195, 231
initial vertex, 155

interaction picture, 124

intermediate vector Boson, 305

internal line, 155

internal vertex, 155

isospin, 307

ket, 2

Klein-Gordon equation, 66

Lagrange’s equation, 18

Lagrangian, 18

Lamb shift, 81, 244, 251

Landau gauge, 27
Lehmann-Symanzik-Zimmerman formula,

188

lepton, 7

light cone, 10

line width, 131

local observables, 121

local quantum field theory, 122

local symmetry, 293
Lorentz force, 25

Lorentz gauge, 27
Lorentz group, 8
Lorentz inner product, 3
LSZ formula, 188

magnetic moment, 76
anomalous, 76, 250

Mandelstam variables, 209
mass shell, 10

Maxwell’s equations, 25
meson, 8
Minkowski space, 3

Nambu-Goldstone Boson, 300
Noether’s theorem, 17, 20
nonrenormalizable theory, 199
normal ordering, 111, 144
normalized state, 34

number operator, 91, 94

observable, 33, 36
orbital angular momentum, 59
orthochronous Lorentz group, 9

overlapping divergences, 252

Pauli exclusion principle, 95
Pauli matrices, 10

Pauli-Villars regularization, 203
PCT theorem, 121
φ4 scalar field theory, 140

Feynman rules for, 164
renormalization of, 206–211, 217

photon propagator, 152, 276
Planck scale, 7
Planck’s constant, 6, 43
Poincaré group, 12

Poisson bracket, 14
polarization vector, 117
principle of least action, 19
Proca equations, 116
projective representation, 39

propagator, 146
Dirac, 150
Feynman, 147
photon, 152, 276

QED, 140
quantum chromodynamics, 297–299
quantum electrodynamics, 140

Feynman rules for, 165

renormalization of, 224–251
quantum numbers, 63
quark, 7, 297

reduced mass, 18

reduction formula, 188
renormalizable theory, 199
renormalization
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in φ4 theory, 206–211, 217

in gauge field theory, 303

in QED, 224–251

of charge, 230, 242

of coupling constant, 206–211, 230

of field strength, 215, 225, 227

of mass, 135, 215, 225, 236

renormalization group, 242, 254

renormalized perturbation theory, 211–214

Rydberg energy, 61

S-matrix, 136–147

Salam-Weinberg model, 306–315

scalar potential, 27

scattering matrix, 136–147

scattering operator, 137

Schrödinger equation, 40, 49

Schrödinger picture, 40

Schrödinger representation, 44

second quantization, 82

self-adjoint operator, 37

spherical harmonics, 59

spin, 59

spin-statistics theorem, 89, 116, 121,
152–153

spinor, 68
spinor space, 68

standard model, 315

state, 33

state space, 33, 34

for a nonrelativistic particle, 46

for a relativistic particle, 83–89

multiparticle, 89–96

Stone-von Neumann theorem, 45

superficial degree of divergence, 197

superrenormalizable theory, 199

symmetric operator, 37

symmetry factor, 157

time-ordered exponential, 126
time-ordered product, 126

transition rate, 132, 172

Trotter product formula, 263

Uehling effect, 243

ultraviolet divergence, 194

uncertainty inequality, 52

uncertainty principle, 51

vacuum bubble, 186

vacuum polarization, 242

vector potential, 27

vertex function, 228

virtual particle, 161
virtual quantum, 133

Ward identities, 219, 222

Ward-Takahashi identities, 219, 224

Weinberg angle, 311

Weinberg’s theorem, 197
Weyl representation, 68
Wick ordering, 111, 144
Wick rotation, 195, 196
Wick’s theorem, 145
Wightman axioms, 119

Yang-Mills equation, 295
Yang-Mills field, 295
Yukawa field theory, 140, 175
Yukawa potential, 176

                

                                                                                                               



                

                                                                                                               



SURV/149

Quantum field theory has been a great success for physics, but it 
is difficult for mathematicians to learn because it is mathemati-
cally incomplete. Folland, who is a mathematician, has spent 
considerable time digesting the physical theory and sorting out the 
mathematical issues in it. Fortunately for mathematicians, Folland 
is a gifted expositor.

The purpose of this book is to present the elements of quantum 
field theory, with the goal of understanding the behavior of 
elementary particles rather than building formal mathematical 
structures, in a form that will be comprehensible to mathemati-
cians. Rigorous definitions and arguments are presented as far as they are available, but 
the text proceeds on a more informal level when necessary, with due care in identifying 
the difficulties.

The book begins with a review of classical physics and quantum mechanics, then 
proceeds through the construction of free quantum fields to the perturbation-theoretic 
development of interacting field theory and renormalization theory, with emphasis 
on quantum electrodynamics. The final two chapters present the functional integral 
approach and the elements of gauge field theory, including the Salam–Weinberg model 
of electromagnetic and weak interactions.

For additional information 
and updates on this book, visit

www.ams.org/bookpages/surv-149 www.ams.org
AMS on the Web
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