
Radial charged particle trajectories in the extended 
Reissner-Nordstrom manifold 

J. D. Finley III 
The University of New Mexico, Albuquerque, New Mexico 87131 
(Received 20 March 1974) 

It is shown that the trajectory of a charged particle on the extended Reissner-Nordstrom manifold 
can be such as to carry it into regions of the manifold where the definition of energy at infinity is 
different from the one at its point of origin. The various types of radial trajectories are classified. In 
the event one considers the manifold as having been produced by a collapsed star, there exist 
trajectories which go through both horizons, reach a minimum value of r, and go through two more 
horizons to a copy of the space in which it originated (flat at r = + 00) without colliding with the 
matter of the collapsed star. 

In a recent paperl it was shown that there are two 
distinct types of radial geodesics in the complete Kerr 
manifold, which can be classified by their place of 
origin on the manifold. This manifold contains infinite-
ly many copies of two distinct spaces, both flat at 
r = ± 00. It is also shown that geodesics cannot cross 
over from one space to the other. However, this is pos-
sible if there is properly applied acceleration. It is the 
purpose of this paper to show in detail how this cross-
ing over occurs for a very similar manifold: the com-
plete Reissner-Nordstrom manifold. There has been 
renewed interest lately in this manifold. Ruffini has 
suggested that a magnetized rotating object should have 
a nonzero net charge in order to achieve a minimum en-
ergy configuration, and also that a very rapidly rotat-
ing, sufficiently small star would be able to maintain 
this charge in interstellar space. 2 

We will start with the Reissner-Nordstrom metric 
in Schwarz schild-like coordinates3 

(1) 

where 

H=H(r)=I- 2m/r+e2/r, 
and dU 2 = drP + sin2 9 dep2 is the usual spherical surface 
element. Only the case m 2 > e2 will be considered since 
otherwise the manifold is already complete. The com-
plete extension was first determined by Graves and 
Bri1l4 and given in a more convenient form by Carter. t> 

Carter's extension is created by the repeated use of two 
null metrics. We define one coordinate system (r,u, 9, ep) 
with metric 

ds2 = 2drdu - Hdu2 + r2 dU2 (2a) 

and another Similar coordinate system (r, w, 9, ep) with 
metric 

ds2 = 2drdw - Hdw + r dU2 , 

where 

u=i"F(r) + t, - t, and :: 0 

This implies that 

F(r) = 2r + mK;llog I r/r. -11 + mK:llogl r/r_ -11, 
where r" are the roots of H with 

(2b) 

(2c) 

(3a) 
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K" = (r" -r.)/(2r!) and r,,=m± (m2 - e2)1/2. (3b) 

Note that the function F(r) is separately monotonic in 
each of the three regions 

I:r.<r, 

II: r_<r<r., (4) 

III: O<r<r_. 

Each of these coordinate systems is analytic and exten-
sible to a manifold larger than the one upon which the 
original coordinates were definedo Where these two 
manifolds overlap, one may introduce full null coordi-
nates (u, w, 9, ep) with the metric 

(5) 

This overlap region will be one of the three regions in 
Eq. (4); therefore, given u,w, and a region, one may 
uniquely determine r. We may then introduce, following 
Carter, a new coordinate system l/J, 9,ep) by 

± h(u) = tan(1/! + ± h(w) = tan(1/! - (6) 

where h(z) must be a monotone increasing function such 
that h(z)=O[exp(-K"z)] as z-'f OO • The complete mani-
fold will then consist of an infinite sequence of (r, u) 
patches labeled (-, m), and superimposed on this, a 
similar sequence of (r, w) patches labeled (n, -) running 
perpendicularly to the (r, u) sequence. By labeling each 
intersection by (n, m) the manifold consists of those in-
tersections where In - m I ,;;; 1. If n = m is odd (even), 
then it is a II (rr) region; if n is even (odd) and < (» m, 
then it is a I (1') region; if n is even (odd) and> «) m, 
then it is a m (III') region. The choice in sign in the 
definition of and 1/! is determined by which of the re-
gions I, I', II, etc. is under consideration. Given an 
(n,m), the sign is +h(u) [-h(u)] for m odd [even], and 
equivalently for n with ± h(w). 6 

By denoting by E the constant of the motion associated 
with the timelike Killing vector, in the original coordi-
nates of Eq. (1), and using a prime to denote the total 
derivative with respect to proper time 7", the equations 
of motion for a particle in radial motion with charge to 
mass ratio X are 

(r,)2=IJ2-H, 

t'=D/H, 
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where D=D(r)=E - eX/r. (7c) 

Solving Eq. (7a) for the constant E (which has the inter-
pretation of the energy per unit mass in unprimed re-
gions and the negative of the energy per unit mass in 
primed regions7), we have 
E = eX/r± [H + (r')2]1/2 

=eX/r± [1 + (r')2 - 2m/r + e2/r]1/2 

= eX/r± [1 - m/r + e2/2r], (8) 

since, for large r, both (r')2 and H -1 are small com-
pared to 1. Since eX/ r is just the classical potential en-
ergy per unit mass of the electromagnetic interaction 
between the black hole and the test particle, this equa-
tion has a reasonable appearance for an energy equation, 
where the term e2/2r is an additional gravitational term 
due to the energy of the electric field associated with the 
charge e, and the ± sign is reminiscent of problems with 
the Klein-Gordon equation in particle physics. 8 Here, 
however, both signs are needed, since the sign of E 
must be negative at r= "" in primed regions. 

The solutions to the equations can be written in the 
following form when E2 < 1 (bound test particle), in 
terms of a parameter T) which is adjus ted to be 0 at 
maximum r, 

r=m(O' + 13 COST), (9 a) 

'T - 'To = m(O'T) + 13 sinT)/ (1 - E2)l/2, (9b) 

t - to = ('T - 'To)E + (2mE - eX)T)/(l - E2)1/2 

+ lX-1[s nD(r)] 10 I tan(T)/2) + tan(7)/2) I 
2 + g + g tan(7)/2) - tan (7)/2) I 

+.!.W1[S nD(r )]10 I tan(7)/2) +tan (7)_/2) I (9c) 
2 - g - g I tan(7)/2) - tan(7)j2) , 

where are the values of 7) at which r = while 
0' ± 13 are the roots of r'(r) = 0: 

0' = (m - EXe)/ (1 - E2), 13= [m2 - 2EXem + e2 _1)]1/2/ 

(9d) 

Solutions for E2> 1 are Similar and may be obtained 
from Eqs. (9a)-(9c) by the following substitutions. 
Change everywhere (1 - E2)1/2 to (E2 _1)1/2. Then there 
are two cases: If 13 is real, replace cos7) by [sgn( r - CI! 
- 13)] coshl/J, sin7) by [sgn(r - 0' - 13)] sinhl/J, and tan(7)/2) 
by tanh(l/J/ 2), where l/J increases from - "" if r> 0' + 13 
and from 0 if r < 0' - 13. If 13 is complex, define y = -
and replace 13 cos7) by y sinh?/! , 13 sin7) by y cosh7) and 
tan(T)/2) by tanh(l/J/2), where l/J increases from - "". In 
particular instances may both be complex, which 
means the particular traj ectory never croSSes the 
horizons, From Eq. (9a) we see that these radial 
trajectories are oscillatory in the coordinate r, al-
though we shall see that they do not actually come back 
to their starting point on the extended manifold (unless, 
of course, one identifies various different regions of the 
same type, which leads to serious causal problems); 

'0' ± 13 are just the turning points of this r motion. It is, 
however, possible for 0' - j3 to be negative in which case 
the particle strikes r= 0 first, which is a singularity. 
It is also clear that t becomes infinite at which 
merely indicates that it is no longer a good coordinate; 
however, either u or w is finite at From Eqs. (3) 
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and (7) we find that 

u' = [D + (sgnr')(D2 - H)1/2]/ H, 

w' = [ - D + (sgnr')(D2 - H)1 /2]/ H. 

(lOa) 

(lOb) 

It is then easily seen that at (roots of H=O) u' 
(w') is finite if sgn(r'D)=-1 (+1). 

We now proceed to discuss the possible trajectories 
in more detail. In particular we divide all trajectories 
originating in a given region I into classes, as a function 
of E, X, and e, which have a given future history. From 
Eq. (7a) one sees that D may vanish along a trajectory 
only when H is negative, which happens in regions II and 
II. There may then exist trajectories for which D 
changes sign while the particle is passing through 
such a region. This would then change which of u or 
w is finite as the boundary of the region is crossed, 
and therefore change which boundary is crossed. For 
sufficiently large r, D and E must have the same sign 
[Eq. (7c)], so that D is positive in region I and negative 
in I'. We now restrict consideration to particles origi-
nating in region I, while in this region the energy is 
given by Eq. (8) with a plus sign and is, of course, a 
fixed number for a given traj ectory thereafter. Defining 

= eX/r± [H(r)]1/2, (11) 

we see that for r>r+, Eo;, V+, but for r<r_, we have 
either Eo;, V+ (if D>O) or V_ (if D<O). There are 
then five possible types of traj ectories, In Fig. I is ex-
hibited an E,X plane, for a specific choice of e=O,8 m, 
which is divided into regions according to the future 
history of a trajectory with those initial conditions, If 
X - 1 then the traj ectory ends at the singularity r = 0 
in region III [type (a)]. If - 1 < X 0, then the traj ectory 
enters region Ill, reaches a minimum value of r and re-
bounds through IT back into another I region [type (b)]. 
However, when X> 0, there are more possibilities since 
D now may change sign. For 0 <X< 1, if E> eX/r_ the 
minimum r lies in region III as above, But for E < eX/ r_ 
an infalling particle starting in region I enters region 
II and, at some point in region II, D becomes negative, 
The particle must then continue into region III', reach 
a minimum value of r there and rebound back into IT, 
where D becomes positive again, allowing it to exit into 

E 

3 

2 
(a) 

o 

-1 

(b) 

(c) 

o 

(cj) 

No allowed 
traJectories 

2 X 

FIG. 1. Determination of the future history of a trajectory 
which originated in region I with given values of the energy per 
unit mass, E, and the charge per unit mass, X. 
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FIG. 2. Typical examples of different types of radial trajec-
tories on the extended Reissner-Nordstrom manifold. The 
particular values chosen for these curves were: 
(a), E=05, X=-2, to=-13.57 m; (b), E=0.3, X=-0.7, to 
=-4.SSm; (c), E=0.7, X=0.5, to=-S.74m; (d), E=0.96, X 
=1.2, to=-23.09 m; (e), E=2.0, X=4.2, to=-2.71 m. 

another region I [type (c)]. 

If 1 m/e, then there are three possibilities. If 
E < A., the trajectory enters into region nI' (D < 0) and 
hits the singularity at r== 0 [type (d»), where A* == (mX 
± (Xl! _1)1/2(m2 - e2)1/2]/ e. If m/ e < X, there are four 
possibilities. If E < 1, the traj ectory is of type (c), end-
ing at r == 0 in nI'. If 1 E < eX/ r. the traj ectory will 
stay in region I, eventually going toward r== + 00 [type 
(f)]. If A. < E, then one has traj ectories of types (d), (c), 
and (b), as shown in Fig. 1. However, for 1 < E < A., 
the situation is more complicated because V.(r) has a 
maximum at r == s, 

So if the initial value of r is greater than s, the traj ec-
tory will stay always in region I, eventually going toward 
r == + 00. If the initial value of r is less than s, the tra-
j ectory will end at r == 0 in region nI' [type (e), a choice 
between motions of types (d) and (f).]. For larger val-
ues of E there are trajectories of types (d), (c), and (b), 
as is shown in Fig. 1. In Fig 0 2 typical examples of 
these various possible trajectories are shown on the ex-
tended manifold for a fixed (] and ¢. 

We note that for X < 0 there exist traj ectories for 
which the energy is negative; i.e., states in region I 
for which E < 0 even though D> O. These traj ectories 
are an indication that the energy of electrical attraction 
can be so negative as to overwhelm the energy associ-
ated with the rest mass. 9 In the case E < 0 the maximum 
value of r for the orbit, d, must satisfy 
m + (m2 - e2)1/2 == r. d m + (m2 - e2 + e2)(2)l/2. (13) 

For any particular fixed value of E, with D> 0, there 
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is a maximum value of X for which that E can be real-
ized by a particle on a radial orbit-Xmax = Er.l e. For 
X==Xmax ' d==r. and the gap between states with positive 
D is zero, Therefore, increasing X so that X>Xmax 
causes D to become negative, and the value of d now in-
creases with increaSing X, but the starting point of the 
motion is in region I'. Also the energy is now positive 
since the energy has been seen to be - E in region I' . 

We consider in detail a sequence of particles all re-
leased at the same starting pOint, d> r., but such that 
the members of the sequence have increasing charge to 
mass ratio, X. Since all the particles are momentarily 
at rest at r == d, the energy depends on d, and is given by 

Ed = eX/ d + [H(d)]1/2, (14a) 

with the turn around point at minimum r given as 

(14b) 

Starting with X == 0 and looking at particles with larger 
and larger values of X, one obtains trajectories of type 
(b), above, similar to geodeSic trajectories. But as X 
approaches 

X ==r.\ d-r. /1/2 <1, 
oed - r. 

d. approaches r. and U., the value of u at r==r., ap-
proaches + 00. For X> Xo, D(rJ < 0 and w. is finite 
rather than u., while d. is again less than r. but in re-
gion nI'. So the trajectory now exits from region II into 
nI' [type (c)]. Increasing X further to X==l, we find that 
the particle hits the singularity at r = 0 in region III' 
(type (d)]. However, there is a point at which the charge 
to mass ratio gets so large that there is no longer an 
attractive force at r == d. For X greater than 

a particle released at r==d, momentarily at rest there, 
will be repelled toward r == 00, all in region I [type (f)]. 

It is seen that a full set of (radial) trajectories on the 
extended manifold requires use of both the plus and the 
minus sign for the energy in Eq. (8). On those trajec-
tories for which D changes Sign, one must use both signs 
in Eq. (8) for a single traj ectory. Also note that even in 
the case where the collapsing matter which caused the 
horizon is not ignored, the trajectories of types (c) and 
(d), as well as (f) are perfectly feasible since the matter 
lies only in unprimed regions lO and no collision with it 
occurs for these orbits. 

lR.H. st. John and J.D. Finley III, J. Math. Phys. 15, 147 
(1974). 

2R. Ruffini and A. Treves, Astrophys. Lett. 13, 109 (1973) 
and R. Ruffini, in Black Holes, edited by C. deWitt and B. S. 
deWitt (Gordon and Breach, New York, 1973), p. 525. 

3We use units in which c = 1 = G. When observed from very far 
away, the central region has mass m and electric charge e, 
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which we assume is positive. For purposes of comparison, 
in Gaussian units, with c = 1 = G, the charge of a single proton 
is 1. 381 X10-39 km = 9. 353 X10- 4o solar masses. 

4J.C. GravesandD.R. Brill, Phys. Rev. 120, 1507 (1960). 
5B. Carter, Phys. Lett. 21, 423 (1966). Note, however, that 
his figure (Fig. 1b) relevant to the case 0 < flo < m2 does not 
correctly indicate the locations of the singularities r=O. [A 
similar figure is also in Misner, Thorne, and Whee ler, 
Gravitation (Freeman, San Francisco, 1973), Fig. 34.4.] 
There is no allowable choice of the function h(z) [Eq. (6)] 
which makes the singularity a vertical line in the t,1/! plane, 
since h(z) may not be solely even or odd, except when e2 =m2• 
It is always a curve with two symmetrical bulges toward the 
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1/! axis, as indicated in Fig. 2, where the choice h(z) 
= e-K- z _ (!"K.z has been made. 
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sA more complete description of the manifold will be found in 
B. Carter, Phys. Rev. 141, 1242 (1966). 

7See Ref. 1 for a complete discussion of this. 
BSee also R. Ruffini and D. Chrsitodoulou, Phys. Rev. D 4, 
3552 (1971), for some reference to this problem. 

9These trajectories are discussed in more detail, in region I, 
by R. Ruffini, in Black Holes, p. 503 (see Ref. 2). 

1oFor example, see Ya. B. Zeldovich and I. D. Novikov, Rela-
tivistic Astrophysics (Univ. of Chicago Press, Chicago, 
1971), p. 147. 
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