
then we obtain a D(2, 1; a = -ht2)-invariant model, with 

gab = + 8e8dL(X), 

D a = 
h ' 

K=h+2 L 
2h ' 
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( 4.39a) 

(4.39b) 

(4.39c) 

and Cabe given by equation (4.31d). In an N = 2 supers pace formalism, xa 

is a superfield obeying certain constraints [29, 33] and the potential L is 
the superspace integrand [13, 32, 30]. 

5. The Quantum Mechanics of a Test Particle in a Reissner-
Nordstrom Background 

Our goal is to apply the results on superconformal quantum mechanics to 
the quantum mechanics of a collection of supersymmetric black holes. As a 
warm-up in this section we consider the problem of a quantum test particle 
moving in the black hole geometry. The four-dimensional case was treated 
in [11], which will be followed and adapted to five dimensions in this section. 

Consider a five-dimensional extremal Reissner-Nordstrom black hole of 
charge Q. The geometry of such a black hole is described by the metric 

2 dt2 -2 ds = - 'lj;2 + 'lj;dx , (5.la) 

and the gauge field 

(5.lb) 

where x is the 1R4 coordinate, and 'Ij; = 1 + We have set Mp = Lp = 1. 
The horizon in these coordinates is at Ixl = o. 

Introduce a test particle with mass m and charge q. The particle action 
is 

S = -m J dT + q J A. (5.2) 

Parametrize the particle's trajectory as x = x{t). Eventually we will 
require the test particle to be supersymmetric (by imposing q = m). A 
supersymmetric test particle at rest at a fixed distance from the black hole, 
remains at rest, so it is sensible to consider a test particle that moves slowly. 
Accordingly we shall assume Iii « 1. In this parametrization, we can make 
the following substitution: 

dx= idt, (5.3) 
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which allows us to rewrite (5.1) to obtain the metric 

(5.4) 

Now we solve the equation ds2 = -dr2 and find 

(5.5) 

which is substituted into (5.2) to obtain the action, 

! dt 1 2:"2 ! dt S = -m ('ljJ - 2'ljJ Ixl dt) + q -;j;. (5.6) 

For a supersymmetric test particle, m = q, this action reduces to 

(5.7) 

If the particle is near the horizon, at distances r « VQ, then we can 
approximate 'ljJ = so that 

(5.8) 

or, if we define a new quantity fj = W' then we see that we are actually in 
flat space: 

m Q2 ! ·2 Sp = -2- dtlY1· (5.9) 

Far from the black hole, spacetime and the moduli space look flat once 
again. Thus the moduli space can be described as two asymptotically flat 
regions connected by a wormhole whose radius scales as VQ. At low ener-
gies (relative to Mp/..ftJ) the wavefunctions spread out and do not fit into 
the wormhole. Hence the quantum mechanics is described by near and far 
superselection sectors that decouple completely at low energies. 

This geometry leads to a problem. Consider the near horizon quantum 
theory. Given any fixed energy level E, there are infinitely many states of 
energy less than E . This suggests that there are infinitely many states of 
a test particle localized near the horizon of a black hole, which appears 
problematic for black hole thermodynamics. The possibility of such states 
arises from the large redshift factors near the horizon of a black hole. Similar 
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problems have been encountered in studies of ordinary quantum fields in a 
black hole geometry. 

The new observation of [11] is that this problem is in fact equivalent to 
the problem encountered by DFF [10] in their analysis of conformal quan-
tum mechanics. To see this equivalence let p denote the radial coordinate 
Iyl The Hamiltonian corresponding to (5.9) is 

1 2 4 2 
H = 2mQ2 (p p + p2 J ). (5.10) 

This is the DFF Hamiltonian of (2.1) with 9 = J 2 . The coordinate p 
grows infinite at the horizon. Thus this potential pushes a particle to the 
horizon whenever J2 is nonzero. Our problem of infinitely many states at 
low energies is just the problem discussed by DFF. 

Applying the DFF trick, as discussed in section 2, provides the solution 
to this problem. We work in terms of H + K rather than H, since the former 
has a discrete spectrum of normalizable eigenstates. There is an SL(2, IR) 
symmetry generated by H, D and K, where D and K are defined to be 

D = !(PPp + ppp); 
K = 

These generators satisfy equations (2.3). 

(5.11a) 

(5.11b) 

The appearance of the SL{2, IR) symmetry was not an accident. It arises 
from the geometry of our spacetime. Near the horizon, we find that 

d 2 r4 d 2 Q d 2 Qd{l2 
8 -t - Q2 t + r2 r + H 3' (5.12) 

We recognize this metric as that of AdS2 x S3 . Introduce new coordinates 
t± = t ± -$x on AdS2. Now the metric can be written in the form 

Qdt+dr 
d 2 -

82 - - (t+ _ t-)2 ' (5.13) 

The SL(2, IR) isometry generators are then 

(5.14a) 

(5.14b) 

(5.14c) 
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Here h shifts the time coordinate, and d rescales all coordinates. 
The 8L{2, IR) symmetry of the near-horizon particle action reflects the 

8L{2, IR) isometry group of the near-horizon Ad82 geometry. As pointed out 
in [11, 34], the trick of DFF to replace H by H + K has a nice interpretation 
in Ad82 • To understand it, we must first review Ad82 geometry. 

INTERLUDE: AD82 GEOMETRY 

On Ad82 , introduce global coordinates u± defined in terms of the coordi-
nates of (5.13) by the relation 

(5.15) 

Then the Ad82 metric takes the form 

ds2 = _ Q du+du- . 
4 sin2{u+ - u-) 

(5.16) 

In these coordinates, the global time generator is 

Q Q 
h + k = QU+ + QU-' (5.17) 

In figure 2 it is seen that the time coordinate conjugate to h is not a 
good global time coordinate on Ad82 , but the time coordinate conjugate 
to h + k is. In fact, the generators hand d preserve the horizon, while h + k 
preserves the boundary u+ = u- + 7r (the right boundary in figure 2) . 

So in conclusion the DFF trick has a beautiful geometric interpretation 
in the black hole context. It is simply a coordinate transformation to "good" 
coordinates on AdS2 • 

6 . Quantum Mechanics on the Black Hole Moduli Space 

6.1. THE BLACK HOLE MODULI SPACE METRIC 

In this section we will consider five-dimensional N = 1 supergravity with a 
single U{l) charge coupled to the graviphoton and no vector multiplets.l3 

We will use units with Mp = Lp = 1. The action is 

8 = J d5xyg[R - + J A 1\ F 1\ F + fermions. (6.1) 

13 Adding neutral hypermultiplets would not affect the discussion, since they decouple. 
Since these lectures were given, the case with additional vector multiplets was solved 
in [35), and the four-dimensional case was solved in [23) . The supersymmetry of cases 
with more than eight initial supersymmetries [36, 37) has not been worked out . 
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Figure 2. The geometry of AdS2 . The time conjugate to h+k is a good global coordinate. 

We can also get this from M-theory compactified on a Calabi-Yau with 
b2 = 1 (the simplest example of such a threefold is the quintic). The black 
holes are then M2-branes wrapping Calabi-Yau two-cycles. 

This system has a solution describing N static extremal black holes 

ds2 = _'ljJ-2dt2 + 'ljJdx2, (6.2a) 

A = 'ljJ-ldt, (6.2b) 

{ct. equation (5.1)) where 'ljJ is the harmonic function on 

N QA 
'ljJ = 1 + L 1- - 12 ' 

A=l X-XA 
(6.2c) 

and XA is the coordinate of the Ath black hole, whose charge is QA. 
Another picture of these holes is M2-branes wrapping Calabi-Yau cycles. 
The space of solutions is called the moduli space, which is parametrized by 
the 4N collective coordinates x A. The slow motion of such black holes is 
governed by the moduli space metric GAB, so that the low energy effective 
action takes the form 

s = J dt±Aj;BGAB . (6.3) 

Note that due to the no-force condition there is no potential term in the 
action, and since I£AI « 1, the higher order corrections can be neglected. 
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The first calculation of the moduli space metric of the four-dimensional 
Reissner-Nordstrom black holes was performed in [3, 4] and was generalized 
to dilaton black holes in [38]. The metric on the moduli space for the five-
dimensional black holes (6.2) was derived in [14J. In order to find this metric, 
one starts with the following ansatz describing the linear order perturbation 
of the black hole solution (6.2) 

ds2 = _'lj;-2dt2 + 'lj;dx2 + 2'lj;-2R· dxdt, 

A = 'lj;-ldt + (P - 'lj;-l R) . dx, 

(6.4a) 

(6.4b) 

where P and R are quantities that are first order in velocities. In equa-
tion (6.2c), XA is replaced with XA + vAt. This is the most general Galilean-
invariant ansatz to linear order. Then (roughly) one uses the equations 
of motion to solve for P and R. Inserting this into the five-dimensional 
supergravity action gives the following result [14J for the action: 

where 

(6.6) 

with 

(6.7) 

and IT is a triplet of self-dual complex structures on obeying equa-
tion (4.29). This Lagrangian has N = 4 supersymmetry when Hermitian 
fermions ),Ai = ),Ait are added. 

6.2. THE NEAR-HORIZON LIMIT 

6.2.1. Spacetime geometry 
Taking the near-horizon limit of (6.2a) corresponds to neglecting the con-
stant term in (6.2c). In figure 3 we have illustrated the resultant spatial 
geometry at a moment of fixed time for three black holes. Before the limit 
is taken (figure 3a), the geometry has an asymptotically fiat region at large 
Ixl. Near the limit (figure 3b), as the origin is approached along a spatial tra-
jectory, a single "throat" approximating that of a charge L QA black hole 
is encountered. This throat region is an Ad82 x 8 3 geometry with radii of 
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Q, 

(b) 

Figure 3. (a) Widely separated black holes. (b) Near-coincident black holes. (c) The 
near-horizon limit. 

order vI: Q A· As one moves deeper inside the throat towards the horizon, 
the throat branches into smaller throats, each of which has smaller charge 
and correspondingly smaller radii. Eventually there are N branches with 
charge Q A . At the end of each of these branches is an event horizon. When 
the limit is achieved (figure 3c), the asymptotically flat region moves off to 
infinity. Only the charge I: QA "trunk" and the many branches remain. 

6.2.2. Moduli space geometry 

It is also interesting to consider the near-horizon limit of the moduli space 
geometry. The metric is again given by (6.5), where one should neglect the 
constant term in the harmonic function (6.7). This is illustrated in figure 4 
for the case of two black holes. Near the limit there is an asymptotically flat 
]R.4N region corresponding to all N black holes being widely separated. This 
is connected to the near-horizon region where the black holes are strongly 
interacting, by tubelike regions which become longer and thinner as the 
limit is approached. When the limit is achieved, the near-horizon region is 
severed from the tubes and the asymptotically flat region. 
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widely separated black holes widely separated black holes 

(a) (b) 

near-coincident black holes near-coincident black holes 

Figure 4. (a) Regions of the two-black hole moduli space. (b) The near-horizon limit . 

6.3. CONFORMAL SYMMETRY 

The near-horizon quantum mechanics has an 8L(2, JR.) conformal symmetry. 
The dilations D and special conformal transformations K are generated by 

1 A" 
D = -2(x tPAi + h.c.), (6.8) 

K 6 2 
= 7f L 1- - 12' Af.B XA - XB 

(6.9) 

By splitting the potential L appearing in the metric (6.5) into pieces 
representing the I-body, 2-body and 3-body interactions, one can show [14] 
that the conditions (4.34) and (4.36) are satisfied. Thus the 8L(2, JR.) sym-
metry can be extended to the full D(2, 1; 0) superconformal symmetry as 
was described in section 4.4. This group is the special case of the D(2, 1; a) 
superconformal groups for which there is an 8U(I, 112) subgroup (in fact , 
D(2, 1; 0) 8U(I, 112) )q 8U(2)), in agreement with [39]. 

So we have seen that there are noncompact regions of the near-horizon 
moduli space corresponding to coincident black holes. These regions are 
eliminated by the potential K in the modified Hamiltonian Lo = (H + K), 
which is singular at the boundary of the noncompact regions. Lo has a well 
defined spectrum with discrete eigenstates. A detailed description of the 
quantum states of this system remains to be found [40]. 

7. Discussion 

Let us recapitulate. We have found that at low energies the quantum me-
chanics of N black holes divides into superselection sectors. One sector 
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describes the dynamics of widely separated, non-interacting black holes. 
The other "near horizon" sector describes highly redshifted, near-coincident 
black holes and has an enhanced superconformal symmetry. Since they 
completely decouple from widely separated black holes, states of the near 
horizon theory are multi-black hole bound states. 

It is instructive to compare this to an M-theoretic description of these 
black holes. In Calabi-Yau compactification of M theory to five dimensions, 
the black holes are described by M2-branes multiply wrapped around holo-
morphic cycles of the Calabi-Yau. In principle all the black hole microstates 
are described by quantum mechanics on the M2-brane moduli space, which 
at low energies should be the dual CFT l living on the boundary of AdS2 
[12J. In practice so far this problem has not been tractable. This mod-
uli space has what could be called (in a slight abuse of terminology) a 
Higgs branch and a Coulomb branch. This Higgs branch is a sigma model 
whose target is the moduli space of a single multiply wrapped M2-brane 
worldvolume in the Calabi-Yau. In the Coulomb branch the M2-brane has 
fragmented into multiple pieces, and the branch is parametrized by the M2-
brane locations. At finite energy the Coulomb branch connects to the Higgs 
branch at singular points where the M2-brane worldvolume degenerates. 

At first one might think that the considerations of this paper corre-
spond to the Coulomb branch, since the multi-black hole moduli space 
is parametrized by the black hole locations. However it is not so simple. 
The fact that the near horizon sector decouples from the sector describing 
non-interacting black holes strongly suggests that it is joined to the Higgs 
branch. Indeed in the D1/D5 black hole, there is a similar near-horizon re-
gion of the Coulomb branch which is not only joined to but is in fact a dual 
description of the singular regions of the Higgs branch [41, 42, 43, 44, 45J. 
We conjecture there is a similar story here: the near-horizon, multi-black 
hole quantum mechanics is dual to at least part of the Higgs branch of 
multiply wrapped M2-branes. Near-horizon microstates should therefore 
account for at least some of the internal black hole microstates. Exactly 
how much of the black hole microstructure is accounted for in this way 
remains to be understood. 
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A. Differential Geometry with Torsion 

In this appendix, we give a brief summary of differential calculus with 
torsion, for the reader who is frustrated by the usual absence of such a 
discussion in most general relativity books.14 Recall [47] that the covariant 
derivative of a tensor is given in terms of the (not necessarily symmet-
ric) connection The torsion ce ab is just the antisymmetric part of the 
connection: 

e - ce 1 (Ce Ce ) 
C ab = lab] = 2" ab - ba ' (A.I) 

Either by direct computation, or by recalling that the difference between 
two connections is a tensor, one finds that the torsion is a true tensor. Of 
course, the torsion does contribute to the curvature tensor, and we remind 
the reader that many of the familiar symmetries of the curvature tensor are 
not obeyed in the presence of torsion. Also, if the symmetric part of the 
connection is given by the Levi-Civita connection, then the full connection 
annihilates the metric iff the fully covariant torsion tensor Cabe = gadcdbe is 
completely antisymmetric. 

Hopefully, the preceding paragraph was familiar. We now discuss the 
torsion in a tangent space formalism. As usual, the first step is to define 
the vielbein which is a basis of cotangent space vectors, labelled by 
a = 1, . . . ,n, where n is the dimension of the manifold, obeying 

(A.2) 

The vielbein and the inverse vielbein which obeys 

(A.3) 

can then be used to map tensors into the tangent space; e.g. Va: == 
The connection one-form Oa a: /3 is defined by demanding that the vielbein 

is covariantly constant: 

(A.4) 

Note that equation (A.4) is valid for any choice of connection, and does 
not imply that the metric is covariantly constant. The metric is covariantly 
constant iff oa:/3 is covariantly constant, which in turn holds iff the connec-
tion one-form Oaa:/3 is antisymmetric in the tangent space indices, where 

HOne excellent reference for physicists is [46] . 
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we have lowered the middle index using the tangent space metric 801/3 . In 
other words, the familiar antisymmetry of the connection one-form [47] ex-
ists if and only if the metric is covariantly constant, whether or not there 
is torsion. 

Equation (A.4) is easily solved for the connection one-form, giving 

(A.5) 

An immediate corollary of this, and the fact that the difference of two 
connections and is a tensor, is that the difference between two 
connection one-forms is a tensor, and is, in fact, the same tensor as -

but with the band c indices lifted to the tangent bundle. IS 

The unique torsion-free connection one-form which annihilates the met-
ric (i. e. that obtained from equation (A.4) using the Levi-Civita connection) 
is known as the spin connection, and is usually denoted Wa 01 /3 . Given a com-
pletely antisymmetric torsion Cabe = C[abe], as in the first paragraph of this 
appendix, we define the connection one-form 

o+a 01 + a Ha /3 = Wa /3 C a/3 , (A.6) 

where, of course, any required mapping between the tangent bundle and 
the spacetime is achieved by contracting with the vielbein. 

As usual, spinors 'l/J are defined on the tangent bundle, and their covari-
ant derivative is given by 

- a 1 n a/3 V' a'l/J - a'l/J - 4 aOt/3"( 'l/J, (A.7) 

where "(a/3 == ["ta, "(/3] is a commutator of SO(n) ,,(-matrices, which satisfy 
{"ta, "(/3} = 2801/3. 
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